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PREVENÇÃO AO RATCHETING EM ELASTOPLASTICIDADE

Rafael Sant’Anna do Nascimento
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Esta tese descreve três contribuições relacioadas a estruturas elastoplasticas sob
carregamento cíclico. (i) O desenvolvimento de um método direto para determinação
de resposta assintótica em elastoplasticidade ideal. Exemplos de validação demon-
stram que o método é rápido e preciso. O incremento de desempenho registrado
foi de uma a duas ordens de grandeza superior à integração incremental. (ii) O
desempenho permitiu o desenvolvimento de uma estratégia direta para identificação
do limite de ratcheting estrutural. O procedimento é aplicável para cargas cíclicas
e não possui limitação no número de cargas aplicadas. (iii) A extensão do método
de resposta assintótica contemplando encruamento não linear que é requerido para
modelagem do efeito Baushinger e ratcheting material. De conhecimento do autor,
este é o primeiro método direto com tal capacidade. A comparação com análise
incremental demonstra um aumento de desempenho de ao menos uma ordem de
grandeza.
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This thesis summarizes three contributions to improve design accounting elasto-
plasticity under cyclic loads. (i) The development of a direct method to compute
the asymptotic steady-state solution in ideal elastoplasticity. Validation examples
show that the method is fast and accurate. The performance ranges from one to
two orders of magnitude higher than incremental analysis. (ii) The performance
allowed the development of a direct strategy to identify the structural ratchet-limit.
The procedure applies to periodical loads and has no limitations on the number of
applied loads. (iii) The upgrade of the asymptotic solution method with nonlinear
kinematic hardening, which is required to model the Baushinger effect and material
ratcheting. To the author knowledge, this is the first direct method for steady-
state solution with this capability. Comparison with step-by-step solutions shows a
increase in performance of one order of magnitude, at least.
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Chapter 1

Introduction

The use of metallic structures developing inelastic strains is a requirement of the
modern society. Plastic strains are often desired to manufacture industrial equip-
ment parts. Moreover, when put in service, structural components are prone to
develop additional inelastic strains at stress concentration regions or at geometrical
discontinuities. This happens even for structures designed to constrain its principal
components into elastic regime.

Unfortunately, accidents caused by unaccounted plastic strains are present in
industrial history. High impact cases are the Chernobyl nuclear accident, Columbus
space ship and aircraft failures in a recent past (Varvani-Farahani and Nayebi, 2018).
Instantaneous plastic collapse, incremental collapse and low-cycle fatigue are the
main failure modes involving plasticity.

The prevention of plastic collapse has less uncertainty than the avoidance of other
types of failures with plastic action caused by variable loads. The assurance that
the maximum expected load is below a pre-defined level, based in limit analysis, is
a sufficient condition to avoid the instantaneous plastic failure. On the other hand,
avoiding low-cycle fatigue and ratcheting requires load and displacement controlled
stress levels inside shakedown limits. The probability of success decreases due to:
(i) the uncertainty of displacement induced stresses (thermal stresses, for instance)
and (ii) the requirement of constraining stress levels below shakedown limits even
at stress concentration regions.

The development of methods to evaluate protection against failures in elasto-
plastic structures motivates the scientific community for decades. Efforts include
the development of computational methods to deal with cyclical elastoplasticity, as
well as, the identification of constitutive models capable of reproducing experimental
results with higher precision.
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This thesis summarizes three contributions to improve design accounting elasto-
plasticity under cyclic loads.

(i) The development of a direct method to compute the asymptotic steady-state
solution in ideal elastoplasticity. Validation examples show that the method is fast
and accurate. The performance ranges from one to two orders of magnitude higher
than incremental analysis.

(ii) The performance allowed the development of a direct strategy to identify the
structural ratchet-limit. The procedure applies to periodical loads and has no limi-
tations on the number of applied loads.

(iii) The upgrade of the asymptotic solution method with nonlinear kinematic
hardening, which is required to model the Baushinger effect and material ratcheting.
To the author knowledge, this is the first direct method for steady-state solution
with this capability. Comparison with step-by-step solutions shows a increase in
performance of one order of magnitude, at least.

The text has seven chapters. Following introduction chapter, a literature review
appears in chapter 2. The review comprises the three topics listed above. Chapter 3
reviews the theoretical background related to the research. Chapter 4 describes the
direct method to compute asymptotic solution. Chapter 5 presents the ratchet-limit
algorithm, object of the qualified proposal for the thesis. Chapter 6 includes the
upgrade of the direct method to nonlinear kinematic hardening. In chapter 7 the
conclusions of the thesis are summarized.

The procedure outlined in chapter 5, designed and implemented by the author
under Prof. Zouain orientation, accomplishes the objective of the qualified thesis
proposal. However, the procedure is a layer above the direct method developed by
the Professor, with author contributions.Thus, aiming self-containment, chapter 4
details the direct method to compute the asymptotic response, its implementation
and validation. Moreover, chapter 6 describes an upgrade of the asymptotic response
method (chapter 4), again developed by Professor Zouain, that also accounted with
contributions by the author.

Chapters 4, 5 and 6 follows Zouain and SantAnna (2017), SantAnna and Zouain
(2018) and Zouain and SantAnna (2018), respectively.

2



Chapter 2

Literature Review

This chapter reviews the literature related to the research project development. It in-
cludes (i) the asymptotic steady-state response of elastic-ideally plastic solids under
cyclic loads, (ii) the structural ratchet limit identification and (iii) the computation
of the asymptotic solution with nonlinear kinematic hardening.

2.1 On the asymptotic response

The literature review of the present section follows Zouain and SantAnna (2017).
Experimental observation shows that many structures submitted to cyclic load-

ings reach a stabilized response. Such stabilization is theoretically proven for some
models of inelastic behavior, like the generalized standard materials (GSM), (Poliz-
zotto, 2003). It was so recognized (Frederick and Armstrong, 1966; Polizzotto,
1994a,b) that the asymptotic stresses in such structures variate cyclically and with
the same period as the applied loading.

Here, “steady state” refers to a solution where the stresses and strain rates are
periodical. It means the long term solution, after the stabilization phase, which is
denoted by “transient”. This definition is different from the classical thermodynamic
steady state, in which the state variables become time independent. Morover, it is
remarked that the elastoplastic problem treated here is time dependent, but rate
independent. That means that the sequence of loading affect results, whereas the
loading rate does not.

Frederick and Armstrong (1966) endorse the direct determination of the steady-
state solution to avoid history computation, if the long-term solution is of interest.
They proved a theorem assuring convergence to an unique solution of two identi-
cal structures submitted to the same variable loads, but with different initial stress
states. The main hypothesis are: small strains and stable material (Drucker pos-
tulate holds true). Thus, a remarkable characteristic of the stabilized solution is

3



the independence of initial conditions (Frederick and Armstrong, 1966; Polizzotto,
2003).

This thesis focuses on direct methods for computing the asymptotic response un-
der cyclic loads (Ponter and Chen, 2001; Spiliopoulos and Panagiotou, 2012; Tereshin
and Cherniavsky, 2015), as opposed to incremental integration procedures that re-
produce the complete time solution, including the transient deformation process.
Direct methods aim to obtain the desired steady state in much less processing time
than step-by-step analysis (Rohart et al., 2015).

Gokhfeld and Charniavsky (1980) addressed the determination of the steady
state, formulated as a linear programming problem, with simplifications based on
the concept of fictitious yield surface. The same theoretical unified approach is
adopted in Tereshin and Cherniavsky (2015), where a nonlinear optimization prob-
lem is solved for a small finite element mesh. Ponter and Chen (2001) presented a
generalization of the upper bound theorem of shakedown in the form of a minimum
theorem for a general cyclic history. Then, they applied this theory in a method for
identifying the ratchet limit for a class of loading histories. Several improvements
and extensions of that contribution were presented by these authors, making use of
the Linear Matching Method as main computational approach; see (Lytwyn et al.,
2015a,b) and references therein.

Maitournam et al. (2002) proposed the Direct Cyclic Method for inelastic re-
sponse, based on decomposition in Fourier series, already implemented in a com-
mercial code. In the case of ratcheting, the method does not converge.

Polizzotto (2003) proposed variational formulations for the steady state response
in the context of generalized standard materials. Solution methods emerging from
those theoretical achievements were then specialized to the determination of the
ratchet limit.

Spiliopoulos and Panagiotou (2012) (see also Panagiotou and Spiliopoulos
(2016)) proposed the Residual Stress Decomposition Method, based on decomposing
the residual stress in Fourier series. The stress rates are found satisfying equilibrium
and compatibility. Then, plastic straining is accounted for by adding the elastic and
residual stress and estimating the plastic strain rate from the stress in excess of the
yield surface.

Peigney and Stolz (2003) presented a control approach to cyclic analysis. The
asymptotic cycle is found minimizing a functional of arbitrary fields of plastic strains
and internal variables. This functional is always positive and zero for any minimizer.
The approach is applicable to other nonlinearities than plasticity.

Chapter 4 of this thesis describes an algorithm to compute the stabilized solu-
tion, based on a computational formulation of the set of conditions characterizing
the asymptotic response. The method was proposed and implemented by Professor
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Zouain with author contributions (Zouain and SantAnna, 2017). This computa-
tional formulation consists of the identification of a set of equations for the problem,
comprising a reduced number of primary unknowns and equations, and obtained
mainly by the formal use of the linear map associating a residual stress field to
any plastic strain field. The algorithm proceeds by successive substitutions on this
formulation. It strongly relies on a special trial and projection operation for the
local update of the plastic strain increments. The complete procedure adopts the
backward Euler approximation of the plastic flow law and standard finite element
assumptions. That is, it does not introduce any additional approximation compared
to the traditional integration of elastoplastic equations.

2.2 On the identification of the ratchet limit

Considering cyclic loads, the asymptotic response is an elastic cycle for loadings be-
low the shakedown limit (Lubliner, 2008; Zouain, 2018). Plastic collapse (impending
unbounded deformation) occurs for a loading program reaching a limit load at some
instant. Otherwise, the asymptotic plastic strain rates are nonzero and periodic,
with the same period. The accumulated plastic strains either: (i) exhibit zero net
increment per cycle, in the case named alternating plasticity (ii) undergo constant
per-cycle increment in the case of a process of incremental collapse, leading to gross
distortion.

In summary, elastoplastic steady-state responses to cyclic loadings necessarily
belong to one of the following classes: purely elastic cycling, alternating plasticity,
incremental collapse or plastic collapse.

Failure analysis of structures and machines submitted to variable loadings often
requires the identification of the expected behavior in terms of the above classifi-
cation. Furthermore, the quantification of plastic deformation and residual stresses
is also of interest, for instance, when a subsequent analysis assess safety against
fatigue.

Melan (1938) and Koiter (1956) theorems define the necessary and sufficient
conditions for shakedown (SD). Any arbitrary load path contained inside SD domain
is safe against alternating plasticity, ratcheting or plastic collapse (König, 1987;
Zouain, 2018).

During a SD analysis, a traditional stress classification becomes convenient. Load
controlled stresses are defined as primary, due to its capability of instantaneous
collapse development. In turn, displacement controlled stresses are classified as
secondary, because such type of stresses are incapable of developing instantaneous
collapse.

For instance, the shakedown boundary solution for the Bree problem with a
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rectangular reference loading program (OABC) appears in figure 2.1 (Bradford,
2017). According to SD theorems, arbitrary cyclic loading programs shake down
to elastic response if they are encapsulated by an µ amplified rectangle (OA’B’C’),
where µ is the shakedown factor.

Figure 2.1: Shakedown analysis, definition of the broad safe domain.

Similar amplified programs, with different ratios of primary (load controlled) P

and secondary (displacement controlled) stresses Q, build the SD boundary. That is,
rectangles with different aspect ratios generate the shakedown limits when amplified
through SD analysis. Figure 2.1 includes the mechanical model adopted for this
example.

Unfortunately, structural components often have stress concentration regions
which reduce shakedown probability. In such positions, stress levels are typically
higher than SD limits. In pressure vessels, shell to nozzle transitions or shell to
support attachments are some examples. Depending on the stress levels, the risk of
alternating plasticity or structural ratcheting rises.

Shakedown analysis and the determination of a ratchet boundary are distinct
analyses, although related in many ways. A main difference is that the ratchet-
limit factor ηR applies to a single cyclic loading C (for instance, OA”B”C” in Figure
2.1) while the shakedown safety factor µ refers to arbitrary loadings contained in
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a prescribed load domain ∆ (Ponter and Chen, 2001, Sec. 2.1, p. 540). Even if
one compares the ratchet critical factor for a cycle C to the shakedown factor with
respect to the same cycle C (or its enclosing convex hull) different results occur,
whenever the critical shakedown mechanism is alternating plasticity. The latter is
the case of principal interest in searching for the ratchet boundary since alternating
plasticity is sometimes admissible.

Concerning structural integrity, ratcheting is critical. The plastic strain accu-
mulation has the potential to cause incremental collapse or turning the structure
unserviceable. Moreover, when low cycle fatigue and ratcheting interact, uncertain-
ties arise turning difficult to predict material damage evolution (Rahman et al.,
2008; Varvani-Farahani and Nayebi, 2018).

Thus, ratcheting prevention develops itself into a design requirement (Kalnins
and Rudolph, 2011; Polizzotto, 1993a,b; Reinhardt, 2003; Rudolph et al., 2011).

This section focus on structural ratcheting, rather than material ratcheting, as
defined in Hubel (1996). The lack of material models capable of representing multi-
axial material ratcheting in detail (Chaboche, 2008; Hassan et al., 2008; Khutia et al.,
2015; Krishna et al., 2009; Rahman et al., 2008) justifies such scope limitation.

Despite of the progress of the non-linear kinematic hardening rules, focusing to
reproduce experimental ratcheting (see Bari and Hassan (2002); Chaboche (1991);
Jiang and Sehitoglu (1996); Ohno and Wang (1993) and many others), multi-axial
stress histories still represent a challenge. Moreover, those rules are modified versions
of the Armstrong and Frederick (1966) model, thus sharing its lack of mathematical
proof on the existence and uniqueness of cyclic steady-state solutions (Zouain and
SantAnna, 2018).

The ideal plasticity model still appears as the middle ground choice to evalu-
ate structural ratcheting (Chaboche, 2008, p. 1675; Kalnins and Rudolph, 2011,
p. 4), regardless of its known limitation to reproduce material ratcheting even under
uniaxial condition with controlled loads.

Pressure vessel design codes and fitness for service standards contain criteria
targeting ratcheting prevention. The simplified versions include determination of
unlimited elastic stresses, categorization and comparison with limits based on the
analytic solution determined by Bree (1967).

Conversely, stresses acting in pressure vessels, for example, are frequently multi-
axial and not limited to a constant primary membrane and cyclic secondary bending
stresses. Those differences modify shakedown and ratcheting boundary positions
when compared to the classical Bree solution. But in practice, the application of
general simplified criteria minimizes the risk of failure, when conservative assump-
tions hold true.

However, as a consequence of mechanical model differences, particular cases may
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turn simplified criteria non-conservative, as pointed by Reinhardt (2003, p. 6–7),
Carter (2005a, p. 16) and Zheng et al. (2017, p. 8).

During the last decades, the identification of ratchet boundaries became an ac-
tive area of research. König (1987, Sec. 4.5) includes a general criterion against
incremental collapse. Polizzotto (1993a,b) addresses equations governing steady-
state solutions, basic properties, a minimum principle and theorems concerning the
ratchet limit direct solution. Ponter and Chen (2001) also established a minimum
principle and an analogous theorem for the location of a ratchet boundary.

The referred principles and theorems consider as premise a loading system com-
posed by a sustained load acting with a cyclic loading program. The limit identifica-
tion occurs when the amplified permanent load, superposed to the cyclic program,
renders an imminent state of ratcheting. With such strategy, the intent is to measure
the increment of permanent load that causes an incremental collapse in a cyclically
loaded structure. Thus, the presence of a sustained load is not only necessary but
also constitutes a metric for the distance to the failure.

Direct methods to identify the boundary emerged, following those principles, the-
orems and the proposed loading system. Examples are the linear matching method
(Chen and Ponter, 2001, 2010; Ure et al., 2011), non-cyclic elastic modulus ad-
justment procedure (Adibi-Asl and Reinhardt, 2011a,b; Reinhardt, 2008a), hybrid
procedures (Jappy et al., 2013a,b; Martin and Rice, 2009) and yield surface modifi-
cation method (Abou-Hanna and McGreevy, 2011). Recently an algorithm capable
of treating proportional loading cases appeared (Lytwyn et al., 2015a,b).

Adopting a different path, Martin (2008) applies direct cyclic analysis (DCA)
driven by a bisection procedure to identify the ratcheting limit for general loading
conditions. DCA assumes a truncated Fourier series as the periodic solution for
the stable cycle. The method adjusts the series coefficients with a minimization
procedure.

Analytical solutions, including more general loading conditions, are still unfold-
ing for problems in which it is feasible (Bradford, 2012, 2015, 2017; Bree, 1989; Ng
and Moreton, 1986; Reinhardt, 2008b; Shen et al., 2018; Zheng et al., 2017, 2015;
Zouain, 2018). New solutions contribute as references for comparison with numerical
results and to analyze sensitivity to more general loading conditions.

The incremental elastoplastic time history integration is an alternative to build
bounds. Using the same procedure for boundary determination by trial and error
constitutes an option, but it is computationally expensive when the problem requires
a refined mesh. Unfortunately, two nested trial and error procedures are necessary.
The first to achieve steady cycle and the second to search for the ratchet limit
position.

In contrast with the Bree problem, in which stabilization occurs after the second
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cycle, more general problems tend to stabilize with a higher number of cycles (not
known in advance), as noted by Reinhardt (2003) and Martin (2008).

This behavior turns the history integration procedure costly, once a structure has
to be cycled until stabilization when searching for the ratchet boundary. Moreover,
when dealing with ratchet limit determination using step-by-step incremental proce-
dure, Carter (2005b, p. 30) arguments with precision: “Unless there is an ability to
calculate the plastic cyclic solution directly, the distinction between reverse plasticity
and ratcheting is often unclear in all but the simplest of structures”.

Chapter 5 describes a novel direct method to identify the ratchet boundary for
an elastoplastic structure submitted to a cyclic loading program (SantAnna and
Zouain, 2018).

2.3 On nonlinear kinematic hardening and material

ratcheting

The contents of the present section follows the literature review from Zouain and
SantAnna (2018).

Using nonlinear kinematic hardening allows representing the material ratcheting
phenomenon, experimentally observed for homogeneous non-symmetric stress cycles
(Armstrong and Frederick (1966),Jirásek and Bazant (2002, p.327)).

In contrast, ideal plasticity or (some) isotropic hardening may represent struc-
tural ratcheting (Hubel, 1996) and these approximations are acceptable in many
situations.

Indeed, König and Maier (1981, Sec.12 p. 92–93) argument: “Theoretical and
experimental results on SD loads and, when available, on incremental collapse mech-
anisms, appear to be in fairly good agreement...”. Furthermore: “For ductile steel
structures the fact that experimental SD loads are normally slightly higher than ex-
perimental values can be probably justified by the influence of hardening neglected
in the numerical analysis...”. Besides: “Stabilization observed in experiments occurs
after a number of cycles which is often larger than that predicted theoretically (say
5-20 instead of 1-2) . This discrepancy can be probably due to the fact that the ac-
tual generalized stress-strain relation varies from cycle to cycle and stabilizes only
after several cycles.”. In addition, the referred data is directly related with ratch-
eting, once most of the experiments measure “the increment of displacement at two
subsequent unloaded situations”.

Therefore, when the case under analysis calls for a more reliable model, the
expectation is that nonlinear kinematic hardening models can give more realistic
progressive strain accumulation in structures under variable loadings. See Chaboche
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(2008, p. 1675) and Abdel-Karim (2005) for discussions about these issues.
Accordingly, the inclusion of Armstrong Frederick (AF) nonlinear kinematic

hardening in the computational formulation for the cyclic response of structures
aims to improve the capability of the method in accurately predict the material
ratcheting phenomenon.

It is worth to mention that the AF nonlinear kinematic hardening is non-
associated and this has significant theoretical and computational consequences on
the determination of the asymptotic response.

Elastoplastic solids, with associated models, under periodic loadings undergo
long-term states of stress, plastic strain rates and internal variables, which are cyclic
and with the same period of the load. The time derivatives of plastic strains and
internal variables in the stabilized response are unique in the sense that are inde-
pendent of initial conditions. Furthermore, in regions of the body where the plastic
strain rate is nonzero the uniqueness (meaning indifference to initial conditions) is
assured for stresses, plastic strains and internal variables. In the complementary re-
gion, the asymptotic fields of plastic strains and internal variables are independent
of time but dependent on initial conditions.

Frederick and Armstrong (1966) and Polizzotto (1994a,b) proved these facts, but
assuming associativity of both the plastic flow and the hardening evolution.

The direct approach to the computation of steady state cyclic responses, for
materials obeying associative plastic flow laws, has been addressed by several re-
searchers, notably Gokhfeld and Charniavsky (1980); Maitournam et al. (2002);
Peigney and Stolz (2003); Ponter and Chen (2001); Spiliopoulos and Panagiotou
(2012).

To the best of the author knowledge, there is no direct procedure for cyclic
responses able to include nonlinear kinematic hardening; besides the one in Zouain
and SantAnna (2017), where the inclusion appears in Zouain and SantAnna (2018).

Despite computational evidences that the Armstrong-Frederick model behaves
asymptotically cyclic under repeated loads, there is no theoretical proof that an
elastoplastic solid obeying the AF model always stabilize cyclically for periodic loads.

Moreover, there is no proof of existence of a cyclic solution under repeated loads
with AF hardening. This is in contrast with the case of Generalized Standard
Materials (GSM) thoroughly considered by Polizzotto (1994a).

In view of this, this section explains the sense of the problem of computation of
steady-state solution with AF kinematic hardening.

First, theoretical issues concerning: (i) uniqueness of solution in incremental
analysis, (ii) conditions assuring elastic shakedown and (iii) asymptotic response
under cyclic loads, are related and often treated using the same key equations or
mathematical properties. Here, a crucial monotonicity property of the evolution
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relation between thermodynamic forces and generalized plastic flows is identified,
valid for some GSM-materials (with an additional assumption on convexity), given
by the inequality (65) of Halphen and Nguyen (1975).

In short, it states that, considering two arbitrary pairs of generalized plastic
strain rates and stresses, with each pair associated by the evolution relation, the
scalar product of the respective differences is always nonnegative.

Indeed, the monotonicity property (65) of Halphen and Nguyen (1975) is used,
in that paper, to prove uniqueness of the stress field and internal parameters in
incremental analysis.

Afterwards, Polizzotto (1994b), addressing GSM-solids under repeated loads,
used the same inequality (labeled (5) in Polizzotto (1994b)) to prove convergence
of any incremental solution to an asymptotic cyclic response. It is remarkable that
Frederick and Armstrong (1966) used a similar equation labeled (20) in that paper
to prove the existence and uniqueness of the steady state for elastoplastic solids
absent of hardening and obeying Drucker postulate.

Chelminski (2003) identifies lack of monotonicity as the main difficulty in the
mathematical analysis of the AF model. Moreover, all attempts to assess well-
posedness of this model, for instance those by Dettmer and Reese (2004), Francfort
and Stefanelli (2013) and Chełmiński et al. (2015), involve modifications of the
original equations.

de Saxcé et al. (2000), Bodovillé and de Saxcé (2001) and Bouby et al. (2015) ad-
dressed shakedown analysis with nonlinear kinematic hardening from the viewpoint
of non-smooth mechanics and using the concept of bipotentials.

Quoting from de Saxcé et al. (2000, p.170): “Unfortunately, no generalisation of
Melans theorem to material admitting a bipotential has been rigorously proved up to
now.” In the same paper, the authors propose two coupled optimization problems
aimed to give upper and lower bounds to the shakedown load factor of structures
admitting bipotential representation. To the author knowledge, there is no published
stability assertion, similar to the statical shakedown theorem of Bleich and Melan,
and valid for AF nonlinear kinematic hardening.

Also in other problems of inelastic solids, lack of monotonicity complicates the
analysis of uniqueness of incremental solutions and shakedown conditions. This
happens in the incremental problem for elastic perfectly plastic structures with tem-
perature dependent elastic coefficients. Nevertheless, Halphen (2005) and Peigney
(2014) established theoretical results for the asymptotic behavior and uniqueness of
solutions to this problem. In a similar example of lack of monotonicity, Ahn et al.
(2008) addressed the shakedown analysis of coupled two-dimensional discrete fric-
tional systems. Both Ahn et al. (2008) and Peigney (2014) identified systems where
some loading results in an elastic steady state for certain initial condition while the
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same loading combined with some other initial conditions leads to cyclic plasticity
(slip).

Similarly, Polizzotto and Borino (1996) developed an extension of classical shake-
down theory to large displacements, where the authors point out that, under the
assumptions of their formulation, “ratchetting as a steady-state response to periodic
loads has been found to be impossible”.

As in the previous references, this calls for caution in the generalization of numer-
ical results for cyclic loading on non-standard structures, in both the conventional
incremental approach and the direct asymptotic analysis.

Bearing in mind the studies referenced above, the aim of chapter 6 is: to describe
an efficient procedure to compute directly a strictly cyclic steady state for a solid
with AF nonlinear kinematic hardening.

Alternatively, this response could be obtained using conventional incremental
analysis by taking any state in the directly computed cycle as initial condition
(Polizzotto, 2003, p. 2679).

The computational method is assessed, in the examples of section 6.7, by com-
paring the direct numerical solutions with a conventional step-by-step integration
corresponding to trivial initial conditions; in all cases, they closely match. This
suggests that the cyclic solution is unique; but obviously, this is not a proof.

However, the devised direct method is a tool to investigate, numerically, the
asymptotic behavior of these systems. Besides, according to uniqueness properties
proven for GSM materials, direct approaches cannot guarantee to match stresses
and plastic strains in the elastic parts of the structure, where they depend on initial
conditions.
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Chapter 3

Theory Review

3.1 Elastic-ideally plastic model

3.1.1 Kinematics

A structural body occupies a region B with a boundary Γ. The boundary Γ has
two complementary parts, Γu and Γτ , where displacements and surface forces act,
respectively.

The equation (3.1) defines tangent deformation operator

Dv =
1

2

(
∇v + (∇v)T

)
, (3.1)

where ∇v denotes the gradient of the vector v.
The operator D maps the velocity fields v into compatible strain rate tensors

d. Under small deformations hypothesis, the same operator D maps displacement
fields u into compatible strain tensors ε.

Du = ε Dv = d (3.2)

Consequently, the displacement fields u and the compatible strains ε are directly
related by D mapping, as well as, compatible strain rates d and velocity fields v.

3.1.2 Equilibrium

The equilibrium operator D′ maps stress tensors σ into applied external forces F .

D′σ = F (3.3)
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3.1.3 Virtual power principle

A power of external forces Ẇe, considering any virtual velocities field v∗, compatible
with the applied constraints, is

Ẇe =

∫
B
b · v∗ dx+

∫
Γτ

τ · v∗ dΓ. (3.4)

Where b and τ are the body and surface load densities, defining F ; and x is a
material point.

An internal virtual power Ẇi, for a virtual strain rate field d∗ is

Ẇi =

∫
B
σ · d∗ dx. (3.5)

A virtual strain rate tensor d∗ results from computing the deformation operator
D on proposed virtual velocities field v∗, using equation (3.2).

The virtual power principle states that internal power Ẇi equals external power
Ẇe. That is, the internal power due to body straining is identical to the power of
external forces. This principle is equivalent to body forces equilibrium.∫

B
σ · d∗ dB =

∫
B
b · v∗ dx+

∫
Γτ

τ · v∗ dΓ (3.6)

3.1.4 Yielding criterion and yielding surface

Most of the applications of this thesis adopt elastic-ideally plastic material model
that obeys Von-Mises yield criterion. Consequently, equation (3.7) defines the con-
vex yielding function f(σ), where σY is the yielding stress. Equation (3.8) defines
the deviatoric stress tensor S, where 1 is the identity tensor and tr(·) is the trace
operator.

f(σ) =

√
3

2
∥S∥ − σY (3.7)

S = σ − 1

3
tr(σ)1 (3.8)

where ∥S∥ = (S · S)1/2 .
The plastic admissibility condition, equation (3.9), assures that stress fields σ

are constrained inside the set P formed by admissible stress fields through equation
(3.10).

f(σ) ≤ 0 (3.9)

P = {σ | f(σ) ≤ 0} (3.10)
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3.1.5 Constitutive equations

Elastic εe, plastic εp and prescribed εΘ additive decomposition of strains follows
equation (3.11)

ε = εe + εp + εΘ. (3.11)

Using equation (3.12), elastic operator E maps elastic strain εe in stresses σ.
Such operator is symmetric and positive definite, consequently invertible.

σ = E εe (3.12)

εe = E−1 σ (3.13)

The elastic behavior is linear and isotropic. Coefficients using the elastic modulus
E and Poison ratio ν define the components of the fourth order tensor E.

Prescribed thermal strain εΘ follows equation (3.14). Where cε is the secant
coefficient of thermal expansion and ∆Θ(x) is the difference between the applied
temperature Θ and the reference temperature Θref at the material point x.

εΘ = cε∆Θ(x)1 (3.14)

Furthermore, εΘ can embrace other types of prescribed strains, adding the prescribed
strain in the right side of (3.14).

The plastic component εp of the equation (3.11) is a consequence of flow law time
integration. The flow law has to describe the non-linear relation between imposed
stresses σ and the developed plastic strain εp.

For a material point x loaded in the plastic regime a saturation behavior in
the developed stress σ occurs in experiments. Moreover, if an unloading condition
applies, the plastic strain εp stays unchanged. The unloading path is elastic, with a
linear change in the developed stress σ. Furthermore, experiments show negligible
volume changes during plastic straining.

The referred set of experimental evidence demands a non-linear rule relating
stress and strain increments including thresholds. The thresholds activate the stress
saturation and the elastic unloading.

Equation (3.15) express the volume invariance of the plastic strain.

tr(εp) = 0 (3.15)

That is, εp is a deviatoric tensor, as well as, the plastic strain rate dp = ε̇p.
Interpretation of experimental data shows evidences of proportionality between

the plastic strain rate dp and the deviatoric stress tensor S.
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The normal stress unity tensor is

n =
1

∥S∥
S, (3.16)

where ∥S∥ = (S · S)1/2 is the euclidean norm of the tensor S. The proportionality
between deviatoric stresses S and plastic strain rate dp follows

dp =

√
3

2
λ̇n. (3.17)

Taking Euclidean norms at both sides of equation (3.17), the definition of the
plastic strain rate multiplier becomes evident. It is a Von Mises equivalent of plastic
strain rate.

λ̇ =

√
2

3
∥dp∥ = dpeq (3.18)

The above definition imposes constrains to the plastic strain rate multiplier λ̇.
(i) It is non-negative λ̇ ≥ 0, once it is an euclidean norm. (ii) Elastic action occurs
when the stress σ is inside the yield surface, thus, if f(σ) < 0 (elastic action), then
λ̇ = 0. (iii) Else, when the stress σ reaches yield surface, that is f(σ) = 0, plastic
action may occur λ̇ ≥ 0, depending on the loading condition. Conditions (ii) and
(iii) obey the condensed equation λ̇f(σ) = 0.

Those constrains, summarized in (3.19), are the complementary equations of the
flow rule in ideal plasticity. In summary,

λ̇f(σ) = 0 λ̇ ≥ 0 f(σ) ≤ 0. (3.19)

Equation (3.19) additionally includes the plastic admissibility of the stresses,
that is f(σ) ≤ 0.

Recalling that the gradient operation ∇ applied in a surface gives a normal to the
surface, the set of equations (3.20) summarizes normality rule and its complementary
equations.

dp = λ̇∇f(σ) λ̇ f(σ) = 0 λ̇ ≥ 0 f(σ) ≤ 0 (3.20)

Equation (3.21) alternatively evokes the same rule, but using convex analysis
definitions, as presented in Maugin (1992).

dp ∈ NP (3.21)

It means that plastic strain rates dp shall be in the set formed by cone of normals
Np to the plastic surface f(σ).

16



The plastic dissipation rate function dint(d
p) is the supremum of the contraction

product between admissible stresses σ and plastic strain rate dp, following equation
(3.22).

dint(d
p) = sup

σ∈P
(σ · dp) (3.22)

An important highlight is the dissipation rate function dint(d
p) independence of

stress tensor σ. The supremum function together with the bounded characteristic
of stresses, imposed by plastic admissibility, result in the independence of the stress
tensor σ.

Along with f(σ) convexity, the definition of the dissipation rate function dint(d
p)

is equivalent to Drucker stability postulate, reproduced in equation (3.23).

(σ − σ∗) · dp ≥ 0 (3.23)

In the referred postulate, σ∗ is an arbitrary plastically admissible stress, that is
σ∗ ∈ P .

The set of constitutive equations applies for an elastic-ideally plastic material
model. The model forms the basic constitutive field where classical limit load and
shakedown theorems apply.

The incremental form of plasticity constitutive equations results in the require-
ment of time integration if one wants to determine the plastic strain tensor εp, which
thus, depends on the local stress history (path dependence).

3.2 Limit analysis

3.2.1 Definitions

Before recalling limit load theorems, this section reviews some key definitions.
A velocity field v is compatible, if v fulfills the prescribed velocity boundary

conditions at Γu and the required regularity conditions.
A strain rate field d is compatible, if d is obtained by applying deformation

operator D into a compatible velocity field v.
A stress state σ is static admissible if σ satisfies equilibrium with the applied

set of external forces.
A stress state σ is plastic admissible if σ is interior to plastic surface f(σ) ≤ 0.

In other words, if σ ∈ P .
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3.2.2 Limit load statical theorem

The plastic admissibility f(σ) ≤ 0 and the equilibrium D′σ = F enforce a limit on
the level of external load F that a structure can support.

Any stress field σ that satisfies plastic admissibility and equilibrium all over the
body constitutes a lower bound to the refereed limit.

The limit load problem consists in the identification of the maximum amplified
imposed load αF that equilibrates with a plastic admissible stress field σ, that is
f(σ) ≤ 0. In this sense, the statical limit load theorem states that the limit load
αF is obtained solving the following maximization problem.

α = sup(α∗) (3.24)

such that
D′σ = α∗F f(σ) ≤ 0. (3.25)

Such theorem is commonly named the lower bound for the limit load (Kachanov,
2004; Lubliner, 2008).

3.2.3 Limit load kinematical theorem

Using optimization duality on statical theorem, it is possible to demonstrate the
kinematic limit load theorem (Krabbenhøft et al., 2007a).

During plastic collapse, the extinction of the body capacity of elastically respond
to external power occurs. Consequently, external power turns into plastic dissipation
rate.

Hence, considering a proposed virtual compatible velocity field v∗ during collapse
(namely, a collapse mechanism), one can determinate the corresponding applied load
α∗F , which is capable of causing the instantaneous failure, equaling the total plastic
dissipation rate

∫
B dint(d

p∗) dx to external power α∗Ẇe. This procedure produces
an upper bound for the limit load.

The arising question is why the amplification factor found is an upper bound
and not the collapse amplification factor itself? The answer lies in the fact that
proposed collapse mechanism (virtual velocity field v∗) is not necessarily the most
incipient one. If one proposes the most incipient mechanism, he reaches exactly the
collapse amplification factor α.

Consequently, the procedure to reach the limit load is finding the minimum
amplification factor α∗, and correspondent collapse mechanism v∗.

α = inf(α∗) (3.26)
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such that

α∗ =

∫
B dint(d

p∗) dx

Ẇe

dp∗ = Dv∗. (3.27)

A highlight in limit load theorems is the independence of stresses developed due
to the imposed strain εΘ. Only the stresses equilibrating the external force F are
important to the plastic collapse load determination.

3.3 Shakedown analysis

3.3.1 Introduction

Considering cyclic loads applied in structures, the response (including the transient
phase) belongs to one of the following classes.

Purely Elastic: yield surface is not reached in any point of the structure. In
consequence no plastic dissipation occurs. The response is a steady-state with no
transient phase.

Shakedown: the structure has plastic strains active just in a finite number of
cycles, during a transient phase. After that, the response to the loading program is
elastic all over the body. Consequently, the plastic dissipation is bounded.

Alternating Plasticity: in each steady-state cycle, plastic strains occur, but they
oppose each other resulting in zero net plastic strain at the end of the cycle. As a
result, the plastic dissipation is unbounded.

Incremental Collapse: the plastic strains occurring at each steady-state cycle
accumulate causing collapse after a finite number of cycles. The cumulative plastic
strain also results in unbounded plastic dissipation.

Plastic Collapse: the primary loads range is higher than the structure limit
load. As a consequence, the structure collapses at the instant when the primary
load reaches the limit load. Plastic dissipation is unbounded.

The above responses arrangement obeys a decreasing order of safety. Under a
different perspective, considering structures such pressure vessels, some responses
can be re-ordered by hardness of achievement. At stress concentration regions, the
elastic response is rarely achieved. Shakedown may occur in some cases, while in
others it is necessary to accept alternating plasticity. Depending on the amount of
cycles, care shall be taken to prevent low cycle fatigue.
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In consequence of design criteria, the occurrence of incremental collapse (ratch-
eting) or instantaneus plastic collapse are unusual, in general causing accidents.

3.3.2 Load domain definition

Assuming an unlimited elastic body, the following system of equations relates
stresses σE(t), applied forces F (t) and imposed strains εΘ(t).

DuE(t) = ε(t) (3.28)

D′σE(t) = F (t) (3.29)

ε(t) = εE(t) + εΘ(t) (3.30)

σE(t) = E εE(t) (3.31)

In the above system, uE(t) is the displacement solution due to applied external loads
F (t) and imposed strains εΘ(t).

The definition of the stiffness operator

K := D′
ED, (3.32)

allows describing the displacement solution by

uE(t) = K−1
(
F (t) +D′

EεΘ(t)
)
, (3.33)

when ε(t), σE(t) and εE(t) are eliminated from the system.
Further substitutions and the definition of the residual operator

Z := EDK−1D′
E −E, (3.34)

directly correlate the applied load F (t) and the imposed strains εΘ(t) with the
unlimited elastic stresses σE(t), through equation (3.35).

σE(t) = EDK−1F (t) +ZεΘ(t) (3.35)

In shakedown analysis, it becomes convenient to work with the elastic unlimited
stresses σE(t) to represent the applied loadings F (t) and imposed strains εΘ(t).

It is assumed that the applied loads can be decomposed by

F (t) =
n∑

i=1

ϕi(t)F i εΘ(t) =
n∑

i=1

ϕi(t)ε
Θ
i , (3.36)

as described in König and Maier (1981), where ϕi(t) are temporal functions that
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scale fixed loads F i and fixed imposed strains εΘi .

σE(t) =
n∑

i=1

ϕi(t)σ
E
i σE

i = EDK−1F i +ZεΘi . (3.37)

Thus, {σE
i | i = 1..n} forms a set of load vertexes. The convex hull of this set

∆ := Conv
(
{σE

i | i = 1..n}
)

(3.38)

defines a load domain encompassing σE(t).

3.3.3 Shakedown: statical formulation

As the steady-state response of a structure which progressed to shakedown is elastic,
the plastic dissipation is bounded.

That is, ∫ t

0

∫
B
dint(d

p) dx dt∗ = c ∀ t ≥ t̄, (3.39)

where c is a arbitrary constant and t̄ is the time to reach the steady-state.
Melan (1938) proved that a sufficient condition for shakedown in a body with

applied loads scaled by the factor µ∗, represented through unlimited elastic stresses
µ∗σE(t), is the existence of a time independent residual stress field σr that when
superposed to the time dependent elastic stresses µ∗σE(t) results a plastic admissible
stress field σ(t) for all time. That means

σ(t) = µ∗σE(t) + σr (3.40)

D′σ(t) = µ∗F (t) (3.41)

f(σ(t)) ≤ 0. (3.42)

Similar to limit load analysis, the shakedown factor µ may be reached searching
for the maximum amplifying factor µ∗ and correspondent residual stresses σr, which
satisfy the above set of equations. As the shakedown factor µ is a maximum, µ∗

configures a lower bound.
With aid of set theory and above load domain definitions, the shakedown equa-

tions (3.40), (3.41) and (3.42) may be reduced to equation (3.43).

µ∗∆+ σr ⊂ P (3.43)

3.3.4 Shakedown: kinematical formulation

Koiter (1956) proposed another theorem for the same problem, based in the un-
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bounded plastic dissipation. "Shakedown is impossible if no time-independent dis-
tribution of residual stresses can be found with the property that the sum of residual
stresses and elastic stresses is an allowable state of stress (possibly attaining the yield
surface) at every point of the body and for all possible load combinations." The cited
statement is represented by the non-shakedown equation (3.44) (Zouain, 2018).

µ∗∆+ σσσr ̸⊂ P (3.44)

If equation (3.44) holds true, µ∗ is an upper bound for the shakedown factor
µ. With optimization theory duality assistance, it is possible to prove Koiter’s
kinematic theorem from Melan’s static theorem.

Appendix A has shows that the residual operator Z definition aids in the shake-
down theorems interpretation by establishing the linear relation between εp and σr.
Once the latter becomes fixed in time, the former becomes time independent.
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Chapter 4

Direct Computation of Steady States

The present chapter partially follows Zouain and SantAnna (2017). The aim is to
devise a method for direct computation of asymptotic response for an elastic-ideally
plastic structure submitted to cyclic loads.

4.1 General equations

In summary, the relations governing the incremental elastoplastic problem are: the
kinematical eq.(3.2); the equilibrium eq.(3.3); the state equations (3.11) and (3.12)
(strains decomposition and elastic mapping); and the plastic strain evolution equa-
tion (3.21) (alternatively (3.20)), together with suitable prescribed initial conditions.
The referred equations are reviewed in sequel.

Du = ε Dv = d (3.2)

D′σ = F (3.3)

ε = εe + εp + εΘ (3.11)

σ = E εe (3.12)

dp ∈ NP(σ) (3.21)

dp = λ̇∇f(σ) λ̇ f(σ) = 0 λ̇ ≥ 0 f(σ) ≤ 0 (3.20)

The combination of equations (3.2), (3.3), (3.11) and (3.12) generates the solution
equations (4.1) and (4.2).

u = K−1[F +D′
E(εp + εΘ)] (4.1)

σ = EDK−1F +Z
(
εp + εΘ

)
(4.2)

Where the equations (4.3) recall the positive definite stiffness mapping K and
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the strains to residual stress mapping Z.

K = D′
ED Z = EDK−1D′

E −E (4.3)

The operator Z gives the residual stress field associated with some assumed
strain field and has the following properties:

(i) It is symmetric and negative semi-definite. The latter means that the
residual stress projection at the increment of plastic strain opposes this increment.
Indeed, recalling that the increment of plastic strain is normal to the yield surface
and that the residual stress brings an inadmissible elastic stress back to the yield
surface, the negative semi-definiteness becomes clear;

(ii) Its range R(Z) coincides with the linear space of residual stresses (the
null space of the equilibrium operator D′). Strictly, stresses computed through the
residual operator application are self-equilibrated;

(iii) Its null space N (Z) coincides with the linear space of compatible strain
fields (the range of the compatibility operator D). It means that any compatible
strain ε = Du, with u compatible, gives null residual stresses through Z mapping;

(iv) it holds ZE−1σr = −σr for any σr (in the null space of D′).
The proof of the properties, which play an important role in the presented ap-

proach, is in Appendix A of Zouain and SantAnna (2017). The influence operator
Z was first defined by G. Maier (Comi et al., 1992; Maier, 1970).

The pair present in equations set (4.4)

uE = K−1
(
F +D′

EεΘ
)

σE = EDK−1F +ZεΘ (4.4)

denote the solutions of a similar problem, using unlimited elastic material model
(see section 3.3.2).

For convenience, the residual (or self-equilibrated) stress field σr = σ − σE

becomes a primary variable, rewriting equations (4.1) and (4.2), using (4.4) and
(4.5).

u = uE +K−1D′
Eεp σ = σE + σr σr = Zεp (4.5)

4.2 The equations of the asymptotic response (I)

Only cyclic loadings act in the structure. Without loss of generality, the period of
the cycle equals 1. Thus, periodic loads verify F (t̂) = F (t̂+1) for all t̂. This is also
valid for the imposed thermal loadings (prescribed strains εΘ). Furthermore, time
in each period m is denoted by t = t̂− (m− 1) ∈ (0, 1).

Given a cyclic unlimited elastic stress field σE(t), which represents the loading
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program, the system of equations (4.6) to (4.10) govern the state-state problem.

σE = EDK−1F +ZεΘ (4.6)

σr = Zεp (4.7)

σ = σE + σr (4.8)

dp ∈ NP(σ) (4.9)

σ(1) = σ(0) (4.10)

The solution gives σr(t), εp(t), dp(t), for t ∈ [0, 1]. Where t = 0 defines the
initial time for a steady-state and t = 1 the period of the cycle.

Polizzotto (1993a, p. 319) proposed the same governing equations, with different
notation. The equations are analogous to those given in Polizzotto (2003, p. 2679)
in the framework of generalized standard materials, thus, with amplified generality.

In the above formulation, the self-equilibrium condition D′σr = 0 is a con-
sequence of (4.7) because R(Z) = N (D′). Further, the plastic admissibility of
σ = σE + σr is enforced by (4.9) and the periodicity of stress is due to (4.10).

An important consequence of the asymptotic response equations (4.6-4.10) is
that the increment of plastic strain accumulated in each cycle, ∆ε, is compatible.
That is, there exists a displacement field ∆u, giving the increment of deformation
produced in any cycle, such that

D∆u = ∆ε with ∆ε :=

∫ 1

0

dp dt (4.11)

where dp solves (4.6-4.10).
Indeed, time derivation of (4.7) generates σ̇r = Zdp and by integration σr(1)−

σr(0) = Z
∫ 1

0
dp dt. Then, using (4.8) and (4.10), Z

∫ 1

0
dp dt = 0 holds true. But

this implies that
∫ 1

0
dp dt is kinematically admissible, since N (Z) = R(D). This

proves (4.11).
It becomes convenient to eliminate from the unknowns of the system (4.6-4.10)

the plastic strain field εp, which is not cyclic in general. To this end, the following
equations are adopted, which equivalently ensure σr = Zεp.

4.3 The equations of the asymptotic response (II)

Given σE(t), find σr(t) and dp(t) such that

dp ∈ NP (σ
E + σr) (4.12)

σ̇r = Zdp (4.13)
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σr(1) = σr(0) (4.14)

D′σr(1) = 0 (4.15)

Note that the constraint

D′σr(t) = 0 ∀ t ∈ (0, 1) (4.16)

is fulfilled because

D′σr(t) = D′
(
σr(0) +

∫ t

0

σ̇r(τ)dτ

)
= D′Z

∫ t

0

dp(τ)dτ = 0 (4.17)

according to the properties of the residual operator Z and taking account of (4.13),
(4.15) and (4.11).

The system of equations (4.12) to (4.15) is used in the following as the charac-
terization of the asymptotic response to cyclic loadings.

In this formulation, (4.11) constitutes a subsidiary relation determining the in-
crement of displacement per cycle ∆u. The subsidiary problem D∆u = ∆ε is
consistent and has a unique solution, because ∆ε is kinematically compatible and
D is always assumed non-singular (N (D) is trivial). However, ∆ε is only approxi-
mately compatible when obtained in the computational solution of the main problem
(4.12-4.15) and so the subsidiary problem may become inconsistent. In view of this,
∆u is computed by solving the linear system

K∆u = D′
E∆ε (4.18)

which is equivalent to D∆u = ∆ε, whenever ∆ε is exactly compatible, and always
has a unique solution (even for an incompatible ∆ε). In addition, the matrix of the
system (4.18) is already available in decomposed form and the right-hand side is
easily computed.

4.4 Steady-state solution categories

Two non-negative scalar measures of plastic action characterize a steady-state cycle.

Pa :=

∫ 1

0

∫
B
∥dp∥ dx dt (4.19)

Pb :=

∫
B
∥
(∫ 1

0

dpdt

)
∥dx =

∫
B
∥∆ε∥dx (4.20)

Indeed:

1. Pa measures plastic activity for the steady-state cycle. This indicator assumes
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null value for cycles where shakedown occurs. It is strictly positive in case of
alternating plasticity or ratcheting.

2. Pb measures plastic balance for each steady cycle. It assumes non-zero value for
ratcheting, since this term applies to cycles with non-null strain deformation
per cycle, ∆ε.

If the solid is homogeneous and obeys the Mises model, the total dissipation equals√
2/3PaσY , with σY denoting the yield stress.
In view of (4.11), it always holds

Pa ⩾ Pb (4.21)

The contribution of alternating plasticity is measured, using the per-cycle accumu-
lated plastic strain, by the parameter defined as

pAP :=
Pa − Pb

Pa

(4.22)

if Pa > 0, and 0 otherwise.
Table 4.1 summarizes the possible ranges for plastic activity and plastic balance

and the corresponding stable cycle.

Table 4.1: Stable cycle characterization
Plastic activity Plastic balance Description

Pa = 0 Pb = 0 Shakedown
Pa > 0 Pb = 0 Alternating plasticity
Pa > 0 Pb > 0 Ratcheting

Ratcheting stabilized responses belong to two different sub-classes, explained in
the following.

The first class is characterized by simple ratcheting, where the structure under-
goes, at each point being not elastic during the entire steady cycle, a monotonous
plastic strain increment in each steady cycle.

The second class is the combination of simple ratcheting and alternating plastic-
ity.

These two modes of ratcheting are considered in Zouain (2018), where simple
ratcheting is denoted simple mechanism of incremental collapse (SMIC) and the
superposition of simple ratcheting and alternating plasticity is denoted combined
mechanism of incremental collapse (CMIC).

Table 4.2 precisely classifies sub-modes of ratcheting in terms of relations between
plastic action and plastic balance.
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Table 4.2: Sub-classes of ratcheting
Plastic activity and balance Description

Pa > Pb > 0 Mixed ratcheting and alternating plasticity

Pa = Pb > 0 Simple ratcheting

Concerning structural integrity, both classes of ratcheting may result in different
types of macroscopic failures. When mixed with alternating plasticity, ratcheting
has the potential to reduce the fatigue life, and/or accelerating crack nucleation and
abbreviating propagation stages. Some pertinent remarks on this subject can be
found in Hassan et al. (2008).

Figure 4.1 applies the above classification with some examples of steady-state
responses. The figure considers a body composed by a material point submitted to
four stress-strain regimes. The figure schematically shows only one of the compo-
nents of the stress and strain, for each steady-state cycle.

Figure 4.1: Steady-state classification for a material point under different regimes:
(a) shakedown, (b) alternating plasticity, (c) simple ratcheting and (d) mixed ratch-
eting and alternating plasticity

4.5 The discretized equations of the steady state

A grid in the time interval [0, 1] generates the discrete counterparts of the proposed
continuum equations. The discretization of stress and displacement fields uses fi-
nite element interpolation. Here, the implementation adopts mixed finite elements
presented by Zouain et al. (2014).

The discretization adopts the backward Euler approximation of the plastic flow
law. Thus, the results of the direct approach exactly match a conventional incre-
mental solution, when sufficiently stabilized.

The notation is explained in the following.

4.5.1 Spatial interpolation

The index (α, i) refers to a stress control point α in the i-th finite element. To
simplify notation, the same symbols u, σ, ε and d denote also the usual FEM
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column vectors. For instance, the approximation of plastic power is∫
B
σ(x) · dp(x) dx ≈ σ · dp =

∑
α,i

σα,i · dp,α,i. (4.23)

The components of the finite dimensional vector σ are the values, at control points,
of the approximated stress tensor. The discrete vectors ε and dp are its energy-duals,
which thus depend on the element area.

In the framework of a mixed stress-displacement method (Zouain et al., 2014),
the interpolation is given, at each element Bi, by the functions

u(x)
∣∣
Bi =

∑
β

Nβ
u(x)u

β,i σ(x)
∣∣
Bi =

∑
α

Nα
σ(x)σ

α,i, (4.24)

where uβ,i and σα,i are vectors of the interpolation parameters and Nβ
v and Nα

σ are
the matrices of interpolation functions. The summation indexes α and β enumerate
the basis functions for displacement and stress, respectively.

Substitution of (4.24) in the principle of virtual power leads to the following
expression for the matrix of strain-displacemnt relation for element i

Bα,i :=
∑
β

∫
B
(Nα

σ)
T DNβ

v dx. (4.25)

Specific expressions for the mixed finite elements appear in Zouain et al. (2014).
The matrix B denotes the global discrete counterpart of the deformation op-

erator D, as usual. Assembling the contribution of each element, given by (4.25),
builds B.

Consistent with the assumption that the deformation operator D is non-singular,
B is a full column rank matrix.

Then, the discrete kinematical compatibility and equilibrium relations reads

ε = Bu BTσ = F . (4.26)

Similarly, from now on, the symbol E denotes the global discrete elastic operator
obtained, for mixed finite elements, by assembling the matrices

E
α,i :=

[∑
β

∫
B
(Nα

σ)
T
Ê

−1Nβ
v dx

]−1

. (4.27)

Accordingly, the definition of the discrete stiffness and the residual stress-plastic
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strain matrices is

K := BT
EB Z := EBK−1BT

E −E. (4.28)

Although the explicit presentation of the global matrices B and E giving the
discrete strain-displacement and elastic relations is not common practice in the usual
kinematical approach of incremental elastoplastic analysis, the asymptotic response
algorithm proposed in this section is not essentially constrained to be used only
with mixed finite elements interpolations. Indeed, it is possible to develop counter-
parts of (4.25), (4.27) and (4.28) in the framework of kinematical finite elements
formulations. An example of this is the finite element v6-UB (Zouain et al., 2014).
Krabbenhøft et al. (2007b) offer a thorough discussion concerning this subject.

Furthermore, appendix B develops a conventional kinematic element (v6) and
builds the necessary matrices B and E, allowing the implementation of the element
with the direct methods present in this thesis.

The residual stress-plastic strain matrix Z, which has important participation
in the algorithm, could be effectively computed, once, in the preamble. However,
this is a huge matrix for large size meshes, even using sparse storage. This was a
drawback in the method for shakedown analysis proposed by Pycko (1997), already
identified by that author. Instead of computing this matrix, the algorithm applies
the same mapping by performing the sequence of operations in the definition of Z
in (4.28). This is much more efficient in the use of memory and cpu time.

Consequently, to apply the influence operator Z, the algorithm uses the fixed
stiffness matrix K, which is computed and decomposed once, initially.

4.5.2 Approximations in time

The time discretization renders N sub-intervals in the cycle interval [t0, tN ] = [0, 1].
The discrete cyclic variables, defined at the time stations j = 1 : N (the sequence
from 1 to N), are

εp,j := εp(tj) dp,j := dp(tj) σr,j := σr(tj) σE,j := σE(tj). (4.29)

With the implicit Euler approximation of the flow law, the backwards plastic
strain increments are

δεp,j := εp,j − εp,(j−1) =

∫ tj

tj−1

dp dt, j = 1 : N. (4.30)
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Consequently,

∆ε =

∫ 1

0

dp dt =
∑
j=1:N

δεp,j. (4.31)

Using the above definitions, integration of σ̇r = Zdp leads to

σr,1 − σr,N = Zδεp,1 (4.32)

σr,j − σr,(j−1) = Zδεp,j j = 2 : N. (4.33)

4.5.3 Discrete formulation

In the asymptotic cyclic analysis, the discrete problem to be solved, based on (4.12-
4.15), is stated as follows.

The discrete equations of the asymptotic response

Given σE,j for j = 1 : N , find σr,j and δεp,j, for j = 1 : N , such that

δεp,j ∈ NP (σ
E,j + σr,j) j = 1 : N (4.34)

σr,1 − σr,N = Zδεp,1 (4.35)

σr,j − σr,(j−1) = Zδεp,j j = 2 : N (4.36)

BTσr,N = 0 (4.37)

with the subsidiary equations

∆ε =
∑
j=1:N

δεp,j ∆u = K−1BT
E∆ε (4.38)

4.6 An algorithm for computing the steady state

This section includes an iterative algorithm to solve the elastoplastic steady-state
problem, based on the formulation (4.34-4.37). The main idea of this method is
to perform a fictitious sequence of cycles aiming to reduce the residuals of these
equations. The procedure consists in a sequence of substitutions using the equalities
(4.35) and (4.36) combined with return mapping operations with respect to the
evolution relation (4.34).

The algorithm has two stages. Firstly, the basic update procedure, BU, at each
time station. Secondly, the global procedure for computing the elastoplastic steady
state, ESS, constituted of nested loops that apply the basic update.
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Figure 4.2: Projection procedure to obtain a new iterate δε̂p,j: (i) compute trial
stress σtrial and (ii) project σtrial to find the update δε̂p,j.

4.6.1 Basic update (BU) at time station j

A pseudo-code defines the update procedure in sequel. Afterwards, remarks analyze
and justify the method.

Procedure BU (at time station j)
Given the current global approximations, σr,(j−1), σr,j and δεp,j , such that

σr,j − σr,(j−1) = Zδεp,j BTσr,j = 0 BTσr,(j−1) = 0 (4.39)

compute the new iterate, σ̂r,j and δε̂p,j , as follows.

1. for all control points of the mesh

Define (see Figure 4.2)

σtrial := σE,j + σr,j +Eδεp,j (4.40)

and find the new plastic strain approximation, δε̂p,j , such that

σ̃ = σtrial −Eδε̂p,j ∈ P (4.41)

δε̂p,j ∈ NP (σ̃) (4.42)

end for

2. Compute new approximation of the residual stress

σ̂r,j = σr,(j−1) +Zδε̂p,j (4.43)

end procedure BU

Algorithm 1: Basic Update
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The following remarks serve to justify or analyze properties of this basic proce-
dure.

1. The input, comprising σr,(j−1), σr,j and δεp,j, fulfills the set of conditions
(4.39). Moreover, the output values σ̂r,j and δε̂p,j also satisfies the same set
of conditions due to equation (4.43) and suitable initialization.

2. The projection procedure defined by (4.40), (4.41) and (4.42), sketched in fig-
ure 4.2, is formally identical to the return mapping (or closest point mapping)
commonly utilized in incremental elastoplastic analysis. However, the trial
stress is computed here from current iterates of the residual stress and the
plastic strain increment, instead of using, as in standard incremental analysis,
the time-step total strain increment.
Consequently, the algorithm can perform this projection using all the com-
mon tools proposed and tested in a vast literature; see for instance Simo and
Hughes (2006), de Souza Neto et al. (2008) and de Borst et al. (2012).

3. In the event that the input satisfies

δεp,j ∈ NP (σ
E,j + σr,j) (4.44)

the basic updating procedure replicates the input values at the output, that
is σ̂r,j = σr,j and δε̂p,j = δεp,j. Hence, the heuristic equality (4.40) does not
introduce any spurious constraint on the converged solution. In addition, it
holds that a fixed point for the projection procedure (4.40-4.42) is necessarily
comprised by a plastically admissible total stress σE,j+σr,j and one associated
plastic flow δεp,j (see definition (3.21)).

4.6.2 An algorithm for elastoplastic steady state

The proposed algorithm to compute the stabilized elastoplastic response consists of
a sequence of fictitious time cycles, described in the following.

At each time step, labeled by j ∈ 1 : N , it is performed a loop of applications of
the basic update procedure BU. The loop ends when the difference between succes-
sive approximations of residual stress at one BU,

∫
B ∥σ̂

r,j − σr,j∥dx, becomes less
than a prescribed tolerance for the step, or when k exceeds kmax.

At the end of each fictitious cycle, the total difference of residual stress∑
j=1:N

∫
B ∥σ

r,j − σr,j,old∥dx is checked for convergence. If a fixed point for the
iterative algorithm is attained, then it solves the set of equations determining the
asymptotic elastoplastic response.
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The pseudo-code of the algorithm is given in the following.

Procedure ESS: Elastoplastic steady state

Compute iteratively σr,j and δεp,j as follows:

Initialize icyc = 0; σr,j = 0, δεp,j = 0, j = 1 : N

Var(σr) = big; varj(σr,j) = big, j = 1 : N

do while (icyc ⩽ icycmax and Var(σr) ⩾ tolcyc)

icyc = icyc + 1

for j = 1 : N

k = 0

σr,j,old = σr,j

do while
(
k ⩽ kmax and varj(σr,j) ⩾ tolstep

)
k = k + 1

Use procedure BU to compute new approximations σ̂r,j and δε̂p,j

τj =
∫
B ∥σ̂r,j∥dx

ξj =
∫
B ∥σ̂r,j − σr,j∥dx

varj(σr,j) = ξj/max{τj , 1}

Update σr,j = σ̂r,j , δεp,j = δε̂p,j

end do

end for

ξj =
∫
B ∥σr,j − σr,j,old∥dx

Var(σr) = (
∑

1:N ξj) /max{
∑

1:N τj , 1}
end do

σj = σE,j + σr,j , j = 1 : N

Compute ∆εp and ∆u using (4.18)
∆ε =

∑
j=1:N δεp,j

∆u = K−1BT
E∆ε

end procedure ESS

Algorithm 2: Elastoplastic Steady State

This fictitious sequence of cycles qualifies as a direct method for the asymptotic
problem mainly because the proposed trial stress

σtrial := σE,j + σr,j +Eδεp,j (4.40)

is computed from the ideally elastic stress and the current iterates of plastic strain
increments and residual stress. On the other hand, in the standard elastoplastic
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time-integration, the trial stress is

σtrial = σj−1 +Eδεj, (4.45)

with δεj calculated through

δεj = Bδuj δuj = K̂
−1
δF j. (4.46)

where δF j is the load step and K̂ the algorithmic consistent stiffness matrix, up-
dated and decomposed at each time step.

So, another noticeable distinction between algorithm 2 and the standard time-
integration in elastoplasticity is that the only global operations in ESS, (4.43), are
always performed using a fixed decomposed stiffness matrix, differently from the
usual computation and decomposition of the algorithmic tangent stiffness matrix.

The present procedure is implemented in Fortran; it uses the package Pardiso
(Schenk and Gärtner, 2004) for solving sparse systems of linear equations.

4.7 Numerical examples

4.7.1 A tube under cyclic pressure and temperature

This section presents the application of the proposed procedure to compute the
asymptotic cyclic response for a variation of the classical Bree’s problem (Bree,
1967). Zouain and Silveira (2001) and Zouain (2018) used this model in shakedown
analysis.

The model represents a long thick closed tube, with Rext = 1.25Rint (Rext and
Rint are external and internal radii of the tube).Figure 4.3 shows a sketch of the
model.
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Figure 4.3: Closed tube under cyclic pressure and cyclic temperature profile.

The loading regime is cycle composed by four peaks of internal pressure pint

and temperature Θint (the external temperature is fixed at the reference temper-
ature of the material). The imposed temperature fluctuation is quasi-static, thus
producing a logarithmic decay through the wall thickness. The material is linear
elastic-perfectly plastic, with constants E and ν, and obeys the Mises model with
yield stress σY . All material coefficients are independent of temperature. Since
the tube is long, a boundary condition imposes that all cross sections remain plane
during deformations.

A variable modification allows substitution of the radial coordinate R by the
dimensionless coordinate r given below, together with the relevant geometric pa-
rameter ℓ.

r :=
R

Rext
ℓ :=

Rext

Rint
(4.47)

The following dimensionless pressure parameter applies

p̂ :=
pint

pc
pc =

2√
3
σY ln ℓ (4.48)

where pc is the collapse pressure of the closed tube.
The temperature Θ at a distance r of the axis is

Θ = Θext − (Θint −Θext)
ln r

ln ℓ
(4.49)
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Accordingly, the dimensionless thermal parameter is

q̂ :=
Ecε (Θint −Θext)

2(1− ν)σY

(4.50)

where E denotes the Young’s modulus, ν is the Poisson’s coefficient, and cε is the
thermal expansion coefficient.

Gokhfeld and Charniavsky (1980) or Zouain (2018) include analytical expressions
for the ideally elastic stresses produced by the above pressure and thermal loadings.

The class of cycles C used here to demonstrate the performance of the algorithm
appears as rectangles in the q̂ versus p̂ plot of Figure 4.4, with vertices (0, 0), (p̂, 0),
(p̂, q̂) and (0, q̂).
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Figure 4.4: Interaction diagram for a closed tube, with Rext = 1.25Rint, under
cycles C of internal pressure and logarithmic temperature. Label E identifies purely
elastic response, S means (elastic) shakedown, AP is alternating plasticity, SMIC
and CMIC are simple and combined mechanisms of incremental collapse, and C is
plastic collapse.

Each one of these cycles C also defines a corresponding reference domain ∆0 for
the related shakedown analysis, which computes the maximally amplified domain
µ∆0 among those that only contain loading programs (cyclic or not) leading to
elastic accommodation. The plot of µp̂ versus µq̂ is shown in Figure 4.4b, marked
by circles. This curve separates the safe region, S

∪
E, from the regions where the

class of cycles C gives either plastic collapse (C), alternating plasticity (AP), simple
mechanisms of incremental collapse (SMIC) or combined mechanism of incremental
collapse (CMIC).
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It is worth to emphasize that the region S
∪

E is safe for all kind of cycles em-
bedded in each µ∆0 while the type of response obtained outside this region depends
on the type of loading cycle considered, the class C in this study.

The following paragraphs describe the numerical experiments performed for this
example. Data and results appear in terms of nondimensional quantities. All these
tests assume E = 1000σY and ν = 0.3.

The triangular finite elements used in this calculations are the axisymmetric ver-
sions of the mixed stress-displacement interpolations σ3-v6 and S3-σm1-v6 defined
in Zouain et al. (2014) for plane strain limit analysis. The mixed element named
σ3-v6 assumes quadratic displacements (velocities in limit analysis), interpolated
from six nodes in each triangle and being continuous between elements. The stresses
are linear, interpolated from the three vertices of the triangle and discontinuous be-
tween elements. The element S3-σm1-v6 uses the same displacement approximation,
interpolates linearly and discontinuous the deviatoric stress components and con-
stant and discontinuous the mean stress. Zouain et al. (2014) extensively tested
these elements and compared to other finite elements for plane strain limit analysis.

The adopted mesh forms a rectangular strip, from the internal to the external
surfaces of the tube, comprising 100 squares (in line radially), each one divided, by
the square diagonals, into four equal triangles. It has 400 elements and 1003 nodes.
Nodes at the strip bottom (with z = 0) are constrained in the axial direction and
nodes at the strip top (with z = (Rext−Rint)/100) are constrained to move together
in the axial direction; this results in 1605 dof.

The time discretization consists of N = 32 equal time intervals, with peaks
reached at times j = {8; 16; 24; 32}.

The chosen control parameters of the algorithm are tolcyc = tolstep = 10−3 and
kmax = 10.

1. A preliminary task builds the Bree’s interaction curve in Figure 4.4 by solving
a sequence of classical shakedown problems. The circles in the figure represent
these numerical results. The algorithm for shakedown analysis used is de-
scribed in Zouain et al. (2002) and Zouain (2018). Additionally, this analysis
precisely identifies the class of impending failure mechanism corresponding to
each prescribed domain. The identification is alternating plasticity (AP) for
the upper part of the shakedown limit and simple mechanism of incremental
collapse (SMIC) for the lower part.

2. Each point computed by shakedown analysis (a circle in Figure 4.4) serve as a
reference to validate the present numerical procedure for steady state response.
Specifically, if (µp̂, µq̂) denotes one of these points, two asymptotic analyses
were performed: (i) one for a loading cycle C determined by (0.99µp̂, 0.99µq̂)
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so as to obtain a purely elastic stabilized response, and (ii) the second one
for loading cycle C determined by (1.01µp̂, 1.01µq̂) to obtain a cyclic (finite)
mechanism of failure of the same kind predicted by the shakedown analysis.

The proposed asymptotic procedure ESS passed these tests.

3. The curve marked by squares in Figure 4.4 is the ratchet limit in this problem.
It is the boundary of regions where the response to cycles C is alternating
plasticity (AP) or combined mechanism of incremental collapse (CMIC). It
was determined by direct tentative, using ESS, similar to the procedure of the
previous item.

4. The boundary between SMIC and CMIC, marked by crosses, was obtained
analogously. In this case, however, this curve could not be precisely identified
because the component of alternating plasticity in the asymptotic cycle in-
creases very slowly when we surpass this boundary, entering the CMIC region.

5. This item shows some numerical results and comparisons of the asymptotic
response for the particular loading cycle C̄ := {p̂ = 0.8, q̂ = 1.8}, a cycle
producing CMIC according to the interaction diagram in Figure 4.4.
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Figure 4.5: Per-cycle accumulated plastic radial strain versus radial coordinate.
Asymptotic distributions at peaks 1, 2, 3 and 4 of cycle C̄.
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Figure 4.6: Per-cycle accumulated plastic circumferential strain vs radial coordinate.
Asymptotic distributions at peaks 1, 2, 3 and 4 of cycle C̄.
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Figure 4.7: Per-cycle accumulated plastic axial strain versus radial coordinate.
Asymptotic distributions at peaks 1, 2, 3 and 4 of cycle C̄.

Figures 4.5-4.7 display the asymptotic distributions, along the r-axis, of per-
cycle accumulated plastic strain components εpr, εpθ and εpz at peaks 1, 2, 3
and 4 of cycle C̄. The per-cycle increment of plastic strain components ∆εpr,
∆εpθ and ∆εpz, marked by diamonds, are not null; thus, the steady state is
incremental collapse (IC).

The inner points of the tube, with r < 0.82, undergo positive circumferential
plastic strain between peaks 0 and 1 (pressure increase) and negative circumfer-
ential plastic strain between peaks 2 and 3 (pressure decrease), characterizing
local alternating plasticity. This completes the identification of a global com-
bined mechanism of incremental collapse (CMIC). It is observed, in addition,
that points with r > 0.98 also suffer direct and reverse circumferential plastic
strain in each cycle.

There is also direct and reverse plastic strain increments in the r and z com-
ponents, at the same internal and external cylindrical parts of the tube. Dif-
ferently, points in the core region 0.82 < r < 0.98 undergo only monotonic
plastic strain evolution.

6. Now it is shown, for cycle C̄, a comparison of the results to a step-by-step
solution obtained by running Ansys with the same mesh and time discretiza-
tion. Figure 4.8 displays increments of plastic strain components given by
both methods.
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Figure 4.8: Increments of plastic strains for cycle C̄. Dots are present results and
lines are stabilized incremental solutions with Ansys.

The plane183 second order displacement standard element of Ansys, and also
the plane183 with mixed u-p formulation, were used in this comparison. The
first stabilized cycle in the step-by-step response was detected, a posteriori,
with a similar criterion than tolcyc = 10−3 used for stress convergence in the
present algorithm.

The increments of plastic strain components, compared in Figure 4.8, show
close agreement between the results of the present algorithm and those ob-
tained by incremental analysis. The two adopted finite elements give solutions
indistinguishable in the figure. Also the two variants of plane183, standard
and u-p mixed, are coincident in the figure.

Table 4.3 displays the CPU time required for the proposed algorithm to solve
this problem, compared to the time spent in the incremental analysis by Ansys.
Both codes were running in the same computer (a laptop Intel i7 with 8GB
RAM). For the incremental solution, it is only compared here the time spent
up to the first stabilized cycle, although a normal run exceeds this time because
of the lack of a stopping criterion for asymptotic convergence.

Table 4.3: Performance for the tube under cyclic loading C̄

Direct Incremental
Finite element σ3-v6 S3-σm1-v6 plane183 u-p

CPU elapsed time (sec) 4 4 450 8450
Cycles 19 19 6 7

Linear system solutions 1024 998 1019 2161
Total AP strain pAP 6.2% 6.2 %

In summary, this example is solved by incremental analysis in more than 110
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times the elapsed time in the present algorithm.

Table 6.1 also shows the percentage of plastic straining that corresponds to
the alternating plasticity component of the asymptotic response, pAP = (Pa −
Pb)/Pa, given in the last row of the table.

4.7.2 Square plate with a central circular hole

This section considers a square plate of side length 2b with a central circular hole
of radius a = 0.2b, shown in Figure 4.9. The plate is homogeneous, isotropic, linear
elastic-ideally plastic, complying with von Mises criterion for a yield stress denoted
σY , and subjected to plane strain conditions. The material constants comply with
the relations E = 1000σY and ν = 0.3.

Figure 4.9: A perforated plate under thermo-mechanical cyclic loading.

Loadings consist of a constant uniform traction px and a fluctuating temperature
Θ, assumed uniformly distributed in the plate at any instant. This cyclic loading is
sketched in Figure 4.9 in terms of the nondimensional parameters p̂ := px/σY and
q̂ := q/σY , with q := EcεΘ (cε is the thermal expansion coefficient). The reference
loading C̃ for this example is defined by (p̂, q̂) = (0.714, 1.428).

The unstructured mesh used has 11091 triangles, 22530 nodes and 44864 dof. It
was adapted to better approximate the elastic stress solution under traction.

The model has triangular finite elements with mixed stress-displacement inter-
polations, σ3-v6 and S3-σm1-v6 defined in Zouain et al. (2014) for limit analysis
in plane strain. Between elements, displacements are continuous and stresses are
discontinuous. They have quadratic interpolation of displacements and geometry in
each triangle, associated to three nodes at vertices and three midside nodes. The
element denoted σ3-v6 adopts linear interpolation for all stress components. In
S3-σm1-v6 deviatoric stress components are linear and the mean stress is piecewise
constant.

In addition, solutions with a finite element, denoted v6-UB, are included. This
type of element is used by other authors for upper bound limit analysis; see for
instance Makrodimopoulos and Martin (2007). The element v6-UB, also described
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and compared in Zouain et al. (2014), only assumes the quadratic interpolation
of displacements but deviates from the standard quadratic kinematical finite ele-
ment in order to guarantee rigourous upper bounds in plane strain or plane stress
limit analysis. In particular, the formulation of this element substitutes the plastic
dissipation function by a majorant function.

0

|Strain Rate| - Direct shakedown
8642

10

Figure 4.10: Strain rate modulus contour obtained by shakedown analysis of the
perforated plate under the cyclic loading C̃. The deformed configuration shown
corresponds to small displacements proportional to the critical velocities.

Firstly, it is presented a shakedown analysis for the reference cycle C̃. It consists
in finding the maximal amplifying factor µ under the constraint that the cycle µC̃
produces elastic shakedown as steady state. Using the procedure of Zouain et al.
(2014), with element σ3-v6, we obtain µ = 0.9504 and (µp̂, µq̂) = (0.6786, 1.3572).
This procedure gives the field of compatible strain rate depicted in Figure 4.10 and
identifies this impending failure mechanism as combined incremental collapse. Limit
analysis, with the same mesh and finite element, gives the plastic collapse traction
p̂C = 0.9237.

Secondly, we computed the asymptotic response for cycle C̃, obtaining the incre-
ment of displacements and strains depicted in Figure 4.11.a. Our results are vali-
dated by comparison with the incremental solution, performed by Ansys with the
quadratic element PLANE183 (displacement formulation), shown in Figure 4.11b.

There are three rigid blocks embedded in the deformed plate of Figure 4.11: the
first block moves down along the vertical axis, the second one moves to the right
horizontally and the third one rotates counterclockwise with center in the upper right
corner. The computed increment of displacement, divided by 10−4a, for the vertical
block movement is −1.661 (−1.699 and −1.699) in the direct solution, with element
v6-UB (resp. σ3-v6 and S3-σm1-v6), and −1.666 in the incremental solution. For
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the horizontal displacement increment, the analogous values are 1.857 (1.909 and
1.906) in the direct solution and 1.868 in the incremental one.

0

|Strain increment| - Direct
0.00240.0020.00160.00120.00080.0004

0.00254
0

|Strain increment| - Incremental
0.00240.0020.00160.00120.00080.0004

0.00254

Figure 4.11: Per cycle increment of displacement and strain (modulus contour) for
the perforated plate under loading C̃. A comparison between direct and incremental
numerical solutions.

Table 4.4 shows the performance of the direct and incremental procedures to
compute the asymptotic response, in terms of elapsed cpu time. This comparison
is important to justify the proposed direct method, intended to be faster than the
integration along the load history. In this case, the direct procedure is remarkably
faster.

The comparison in Table 4.4 was designed to be as fair as possible. Both pro-
grams were running the same mesh in the same computer (Intel i7 with 8GB RAM).
Time expended in output operations of Ansys were eliminated from the cpu time
reported in the table.

The difference in processing times may be partially explained by the fact that in
the present approach the stiffness matrix is decomposed only once in the preamble
of the iterative procedure.

The time integration was considered stabilized in 52 cycles, according to a crite-
rion similar to the one in the present algorithm, which is a relative variation lower
than 10−3 of the vector collecting all stress components in one cycle. The number
of fictitious cycles of our algorithm are reported in Table 4.4.

Table 4.4 includes the percentage of plastic strains, pAP = 23.4% (see (4.22)),
corresponding to alternating plasticity, which indicates that the response is a com-
bined mechanism of incremental collapse.
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Table 4.4: Performance for the perforated plate under cyclic loading C̃

Direct Incremental
Finite element v6-UB σ3-v6 S3-σm1-v6 plane183

CPU elapsed time (sec) 45 58 62 10801
Cycles 68 70 56 52

Linear system solutions 531 544 431 912
Total AP strain pAP 23.5% 23.4 % 23.4 %
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Chapter 5

Ratchet-Limit Identification

The contents of the present chapter follows SantAnna and Zouain (2018). The
project achieved all the topics included in the initial proposal for this thesis.

5.1 Computing the ratchet limit

This section introduces the main procedure proposed here to identify the ratchet
boundary. In a diagram of loading parameters, this boundary contains all points
that represent load cycles producing the impending phenomenon of ratcheting.

Accordingly, Algorithm 3 computes these critically amplified cycles, sequentially,
one at a time.

The first task, in the following, is to define the mathematical conditions that
precisely identify a critical loading cycle.

Conceptual description

Null plastic balance (Pb = 0) during the steady state defines cyclic programs inside
the ratchet boundary. Differently, loading cycles beyond the ratchet-limit result in
positive net plastic straining (Pb > 0).

The central idea of the method is to search for the most intense loading program
amplification generating null net plastic balance (Pb = 0).

With this goal, the procedure solves the problem for modified loads inside
and outside the boundary, which produce nested intervals [ηinf , ηsup] bracketing the
ratchet load factor ηR.

The procedure minimizes the size of the search intervals by applying the secant
method, or modified regula falsi operations, until convergence.
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5.2 The definition of a critical cyclic loading

The loading is decomposed in two prescribed sets of basic systems, represented by
{σE

a,i, i = 1 : na} and {σE
f,i, i = 1 : nf}, in order to determine the class of cycles

considered in the search of the ratchet limit. Loadings in the first set are amplified
by a factor η, while loadings in the second set are not.

Accordingly, the following loading cycles are considered

σE(t) = ησE
a (t) + σE

f (t) t ∈ (0, 1) (5.1)

where
σE
a (t) =

∑
i=1:na

ca,i(t)σ
E
a,i ca,i(0) = ca,i(1) (5.2)

σE
f (t) =

∑
i=1:nf

cf,i(t)σ
E
f,i cf,i(0) = cf,i(1) (5.3)

The scalar functions ca,i(t) and cf,i(t) are prescribed in the outset.
Each cycle is denoted by

C(η) = {ησE
a (t) + σE

f (t), t ∈ (0, 1)} (5.4)

The reference loading cycle is C(1) = {σE
a (t) + σE

f (t), t ∈ (0, 1)}.
The procedure searches for a critical value ηR such that C(ηR) is a cycle of

impending ratcheting, in the following sense:

1. For any η > ηR, the cycle C(η) produces ratcheting.

2. For any η < ηR, the cycle C(η) produces a steady state that is either elastic or
alternating plasticity.

When there are only two basic loadings (i.e. na + nf = 2), it is possible to
draw the cycles C(η) in a parametric plane. The arbitrary loading program and the
rectangles in Fig. 2.1 are examples.

The classification of the basic loads as amplified and non-amplified is important
to model properly the structure and the phenomenon of ratcheting. However, it is
frequently found that different choices of amplified loading essentially describe the
same situation and thus give rise to identical interaction diagrams.

It is worth noting that this approach does not introduce any constraint on this
amplified/non-amplified classification.

According to the above definitions, given a reference cyclic load program C(1), the
ratchet boundary lies where the loading amplification factor η causes an impending
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net plastic balance Pb at the end of each steady-state cycle. That is

ηR = max {η∗ | Pb(C(η∗)) = 0} (5.5)

However, the solution for an asymptotic response adopts the procedure ESS,
which terminates with small residuals in the equations and small errors in the com-
puted solutions. This avoids strict null values for plastic balance, Pb, for cycles inside
the non-ratchet region but near the ratchet boundary. This effect is always present
(close to the ratchet limit) when the non-ratchet response is alternating plasticity.
In turn, when (proper) ratcheting takes place, even for slightly greater amplifica-
tions above the boundary, the plastic balance Pb grows orders of magnitude above
such residuals, clearly indicating the ratchet limit.

In view of the above remark, we choose a prescribed tolerance, tolPb
, and state

the numerical version of (5.5) as

ηapp
R = max {η∗ | Pb(C(η∗)) ⩽ tolPb

} (5.6)

Formulation (5.6) constitutes the core of the boundary identification procedure,
Algorithm 3.

The indication of the boundary by (5.6) is clear in cases where the transition from
alternating plasticity to ratcheting is sharp, as in most of our examples. However, it
becomes sensitive to the tolerance tolPb

when such transition is smooth. Remarkably,
these cases are challenging not only for the present method but also (even worst) for
incremental strategies. In such scenario, the analyst can use the specification of an
allowable ratchet strain ∆εa, accumulated during the structure life, as some design
codes already define. Indeed, recalling that Pb is the volume integral of per-cycle
ratchet strain, the allowable ratcheting strain ∆εa supports the use of the plastic
balance tolerance tolPb = ∆εaV/N , where N is the structure life (in cycles) and V

is the volume of the structure.
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Procedure RL: Ratchet limit identification

Given the reference loading cycle C(1) and a factor η∗ such that Pb(C(η∗)) > tolPb
.

Compute ηR for C(ηR) at the ratchet limit:

Initialize: Set

j = 0 η0inf = 0

k = 0 η0sup = η∗ + δη

k = 1 η1sup = η∗

Use procedure ESS to compute

P 0
b,sup = Pb(C(η0sup)) P 1

b,sup = Pb(C(η1sup))

do while (ηksup − ηjinf ⩾ tolη)

(a) Update ηnew by the secant method (Fig. 5.1):

β =
ηk−1
sup − ηksup

P k−1
b,sup − P k

b,sup

ηnew = ηksup − βP k
b,sup

if ηnew ̸∈ ]ηjinf , η
k
sup[ then

Change ηnew applying regula falsi (Figure 5.2):

α =
tolPb

P k
b,sup

ηnew = αηksup + (1− α)ηjinf

end if

(b) Use procedure ESS to compute

Pb,new = Pb(C(ηnew))

Update the search interval [ηjinf , η
k
sup] using ηnew

if Pb,new > tolPb
then

k := k + 1 ηksup = ηnew P k
b,sup = Pb,new

else

j := j + 1 ηjinf = ηnew

end if

end do

ηR = ηjinf

end procedure RL

Algorithm 3: Ratchet limit identification

The procedure RL adopts the secant method supplemented with regula falsi
operations to minimize the interval [ηjinf , η

k
sup] that brackets the solution ηR, after j

(respectively k) modifications of the left end (right end) of the initial interval.
The graph of the plastic balance in Fig. 5.1 is convex. Thus, when the proce-
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dure starts above the ratchet limit, the secant iterations will estimate successive
upper bounds ηksup (k = 1, 2, 3...) of the ratchet limit. However, as the estimates
converge to the solution ηR, the numerical errors in the computation of the plastic
balance Pb(C(ηksup)) and Pb(C(ηk−1

sup )) may modify the secant angle, thus breaking this
tendency.

Therefore, when the numerical errors become significant, the secant operation
may deliver new lower bound estimates ηjinf (j = 0, 1, 2...) or even useless values
outside the current bracketing interval. To avoid the latter event, the algorithm
tests if the new estimate ηnew falls outside the current interval ]ηjinf , η

k
sup[. If it does,

a modified regula falsi iteration (Fig. 5.2) on the equation

Pb(C(η))− tolPb
= 0 (5.7)

substitutes the secant operation to assure convergence for the sequence of nested
intervals.

Figure 5.1: Update of η using the secant method.
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Figure 5.2: Modified update of η using regula falsi.

The plastic balance of the new steady-state cycle Pb(C(ηnew)) is the driver of the
search interval update given in item (b) of Algorithm 3. It defines whether ηnew

replaces the lower bound ηjinf or the upper bound ηksup; the end points of the search
interval.

5.3 Implementation

The boundary identification method works as a new driver routine in a Fortran
finite element software developed for research including a direct asymptotic solution
module. This structure allows control of the development process and provides space
for performance enhancements.

Besides, this procedure uses the same basic operations that any commercial
finite element software does. Therefore, the same method may be implemented in
any commercial finite element software with aid of user programmable functions.

5.4 Numerical examples

Each of the examples in this section has objectives with increasing levels of com-
plexity.

The first example compares the method results with the analytical solution of the
benchmark Bree’s problem. The second includes more complex loading condition
with cyclic non-proportional loading.

A third example assesses the Bree model under proportional loading. In this
condition, an edge of the ratchet boundary is coincident with the plastic collapse
limit, thus adding a numerical challenge.

In sequence, a non-conventional case appears embodying a tridimensional loading
program.

In the next example, the algorithm solves a constrained block under cyclic ther-
mal and mechanical loads. Again, cyclic non-proportional loading takes place. This
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problem is the first multi-axial stress state problem analyzed here, adding another
increment of complexity.

The next problem is a closed thick tube under cyclic thermal loading and variable
internal pressure. The cyclic temperature profile is logarithmic following the solution
of a thermal conduction problem. Therefore, it constitutes a multi-axial stress state
with non-linear spatial distribution. A direct shakedown numerical solution serves
for comparison, where the ratchet boundary is coincident with the SD limit. In the
complementary part, step-by-step incremental computation performs the reference
solution duty.

The last case represents an industrial application. A printed circuit heat ex-
changer model using a unit cell under plane strain, constant hot fluid pressure and
representative temperature field. The results are verified against direct shakedown
limits and incremental step-by-step solutions.

Unless declared in contrary, all examples adopt the following values for the elastic
modulus, Poisson ratio and thermal expansion coefficient: E = 1000σY , ν = 0.3 and
cε = 10−3 ◦C−1, respectively. Likewise, the initial step is set to δη = 10−3 · η∗.

5.4.1 Classic Bree: fixed primary and cyclic secondary loads

The first numerical example is the standard Bree problem (Bree, 1967) about a bar
under constant primary traction and cyclic thermal bending. The bar has cross-
section area A and the material has yield stress σY .

The reference cycle C(1) consists of an axial load σE
a = σY superposed with a

cyclic bending load σE
f (t) determined by imposed fluctuating temperature. At any

instant, the temperature is linear across the bar and equal for all cross sections. The
temperature of the top of the bar, Θ1, is the reference (ambient) temperature and
the temperature at the bottom varies cyclically from Θ1 to a maximum denoted Θ2.
Then, the thermal stress cycle is described in terms of the nondimensional stress
parameter

Q =
Ecε(Θ2 −Θ1)

2σY

(5.8)

Fig. 5.3 contains a sketch of loads and prescribed boundary conditions.
The model uses plane stress interpolations on triangles, with quadratic displace-

ments (Zouain et al., 2014). The mesh in Fig. 5.3 has 400 triangular elements and
1003 nodes, which form a strip orthogonal to the bar, comprising 100 squares divided
into four triangles.

Fig. 5.3 depicts a traditional Bree interaction diagram for the usual mechanical
and thermal parameters. To draw each point of this curve, the procedure sets one
value of Q, solve for ηR and then plot the point (P,Q) = (ηR, Q). Note that p = ηRσY

is the constant traction force in the critical cycle computed by the search algorithm
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RL.

Figure 5.3: Ratchet boundary for the classic Bree problem: analytical results
plotted in red and direct results in black dots. The small circle marks the transition
between regions: R1, of simple ratcheting, and R2, of combined ratcheting.

The red curve in Fig. 5.3 is the analytic solution (Bree, 1967), whereas the fifty
black dots compose the present direct solution. Errors are negligible in this example
and this serves as an initial test of the method and its implementation.

In Fig. 5.3, R1 and R2 identify, respectively, the regions where simple or combined
incremental collapse (ratcheting) is the steady-state response. This classification is
obtained here by comparing, according to Table 4.2, the values Pa and Pb computed
for an amplified cycle C(η) with η slightly greater than ηR.

5.4.2 Modified Bree: cyclic out-of-phase primary and sec-

ondary loads

In this example the loading program is modified with respect to the previous model.
Now, primary and secondary loads vary following a non-proportional path as shown
by the oriented rectangle in Fig. 5.4.
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Figure 5.4: Ratchet boundary for the modified Bree problem, with out-of-phase
cyclic primary and secondary stresses. Analytic results plotted in red and direct
results in black dots. The small circle marks the transition between regions: R1, of
simple ratcheting, and R2, of combined ratcheting.

Again, the direct numerical solution precisely fits the analytical solution given
by Bradford (2017).

5.4.3 Modified Bree: cyclic in-phase primary and secondary

loads

This example constitutes another loading modification of the basic Bree problem,
concerning a proportional cyclic loading program. Fig. 5.5 shows the mechanical
model and one critical cycle, C(ηR), of the class considered here.
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Figure 5.5: Ratchet boundary for a modified Bree problem, with in-phase cyclic
primary and secondary stresses. Analytic solution plotted in red and present direct
results in black dots.

Fig. 5.5 depicts the direct solution and the analytic solution by Bradford (2012).
Since the numerical method applies spatial and time discretizations, small differences
between analytical and numerical solutions occur. Clearly, the direct procedure
passes this test too.

5.4.4 Bree 3D: two independent primary loads

A modification in loadings of the original Bree problem (Section 5.4.1) produces an
example with a tridimensional load space. Now, two superposed loading functions
P̄1(t) and P̄2(t) form a time dependent load P̄ (t).

The loading P̄1(t) is constant, with amplitude P1 whereas P̄2(t) is cyclic with
amplitude P2 and null mean value. The graph in Fig. 5.6a defines the functions
P̄1, P̄2(t) and Q̄(t). As in the original problem, the secondary load Q̄(t) is the
nondimensional thermal stress and has range Q, defined through equation (5.8).
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(a) Basic loads P̄1(t), P̄2(t) and Q̄(t)

(b) Loading space: the reference cycle C(1) and the amplified cycle C(η)

Figure 5.6: Loads - Definition and amplification

The reference cycle C(1) in Figure 5.6b is a representation, in the tridimensional
space, of the loads specified in Fig. 5.6a. The amplified cycle C(η) is obtained with
a factor η amplifying P1.

Adopting this choice of amplification, the present method determines the ratchet-
limit points marked with crosses in Fig. 5.7. A surface fitting these points appears
in the same figure with a rainbow gradient.
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Figure 5.7: Ratchet limit surface in the load parameter space for cyclic thermal
loading and two independent mechanical loadings (constant and cyclic).

To verify the results, it is compared with three analytical solutions (Bradford,
2017; Bree, 1967) and a set of five incremental step-by-step calculations.

The analytical curves in Fig. 5.7 are: (i) the Bree solution presented in Sec-
tion 5.4.1, which excludes the variable mechanical load, that is, for P̄2 = 0, (ii) the
solution given by Bradford (2017), when P̄2 = P̄1, and (iii) the plastic collapse plane
P̄1 + P̄2 = 1.

Fig. 5.7 shows that the surface of present results matches all three analytical
curves.

In addition, step-by-step calculations are performed with Ansys at five points.
The chosen positions are inside the ratchet boundary, at the plane P1 = 0. In all
points, marked with non-filled dots at the plane P1 = 0, the stabilized solution is
alternating plasticity, meaning a non-ratcheting condition, as expected.

Comparisons between the analytical solutions and step-by-step calculations show
that the proposed method is capable of generating solutions for multidimensional
load spaces. Moreover, there are no restrictions when choosing constant (in time)
loads, or cyclic loads, as either amplified or non-amplified loadings.
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5.4.5 A block, in plane strain, under out-of-phase traction

and temperature

This subsection deals with another benchmark problem: a block constrained to plane
strain deformation and submitted to cyclic temperature (uniform at any instant)
superposed to cyclic out-of-phase uniaxial traction.

The loading nondimensional parameters P and Q are now defined as

P =
p

σY

Q =
EcεΘ

σY

(5.9)

where p is the applied traction and Θ is the difference between the block temperature
and the reference temperature.

Figure 5.8: Ratchet boundary for the plane strain block under uniaxial traction
and uniform temperature.

The shakedown analysis of this block is solved in closed form in Zouain (2018,
p. 34) serving as a reference solution. Then, for consistency, the Poisson ratio is
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ν = 0.2 in this case.
It is known, in advance, that in this example the shakedown and ratcheting

solutions coincide because incremental collapse is the critical mechanism defining
the whole boundary of the shakedown domain in the analytical solution.

The exact shakedown boundary depicted in Fig. 5.8 has two parts, marked in red
and blue, corresponding to two different kinds of impending combined ratcheting;
see details in (Zouain, 2018, p. 34). The black dots in Fig. 5.8 compose the numerical
solution obtained with the method devised in this article. A close agreement between
both solutions occur.

5.4.6 Closed tube under internal pressure and logarithmic

temperature

The pioneer Bree problem (Section 5.4.1) originates from simplifications applied to
the modeling of a thin tube under constant internal pressure and cyclic through-
thickness temperature profile.

The model used in this section (Zouain, 2018, p. 37) disregards many simplifi-
cations usually adopted in the literature. Indeed, it considers a closed thick tube
under cyclic temperature obeying a logarithmic trough-thickness profile (quasi-static
thermal conduction solution) and cyclic internal pressure.

Figure 5.9: Closed thick tube: axisymmetric elements mesh, loads and boundary
conditions.

Figure 5.9 depicts the axisymmetric finite element mesh. The model has null
axial displacements at the bottom edge and coupled axial displacements at the top.
A strip with 400 second order triangular elements and 1003 nodes forms the mesh.
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The problem has pressure cycles out-of-phase with internal temperature, follow-
ing the rectangular path shown in Fig. 5.10.

The nondimensional pressure load P is the ratio of internal pressure p and plastic
collapse pressure pc, that is

P =
p

pc
pc =

2√
3
σY ln ℓ ℓ =

Rext

Rint
(5.10)

where Rint and Rext are the internal and external radii, respectively.
The through-thickness temperature profile is

Θ(r) = Θext − (Θint −Θext)
ln r

ln ℓ
r =

R

Rext
(5.11)

where Θint is the internal temperature, while Θext is the external and reference
temperature, and cε is the thermal expansion coefficient.

The nondimensional thermal parameter is

Q =
Ecε(Θint −Θext)

2(1− ν)σY

(5.12)

Exact and numerical shakedown solutions for the same cylinder and conditions
are shown in (Zouain, 2018, p. 37), for a ratio ℓ = 1.25. This serves as reference
solution where the shakedown and ratchet boundaries coincide. In the complemen-
tary part, step-by-step integrations (Incremental results), performed with Ansys,
give the reference bounds bracketing the ratchet limit.
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Figure 5.10: Ratchet boundary for the thick tube (ℓ = 1.25) under internal pressure
and logarithmic temperature.

The present solution, shown by full dots in Fig. 5.10, matches the numerical
shakedown reference solution, shown by the red curve, where ratcheting and shake-
down boundary coincide. For the complementary part, the ratchet boundary is
consistent with the incremental results generated with Ansys.

5.4.7 Printed circuit heat exchanger

Fig. 5.11 presents a printed circuit heat exchanger (PCHE) . Using diffusion bonded
plates; this type of equipment is compact and designed to operate in high-pressure
systems. Applications include offshore oil production platforms (gas compression
modules) and the expansion to nuclear industry is achievable.

61



Figure 5.11: Printed circuit heat exchanger.

An unitary cell model of a PCHE appears in fig. 5.12. The cell dimensions are
the same reported in Natesan et al. (2009, 2006). To avoid a singularity in the
elastic solution, the model includes a corner radius of 0.042 mm at the basis of both
semi-circular channels.

The model has coupled normal displacements at the left and top boundaries.
Whereas, the right and bottom edges have null normal displacements to represent
symmetry. Moreover, plane strain is assumed, making a conservative model, as
noted by Lee and Lee (2014).
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Figure 5.12: Unitary cell model for a printed circuit heat exchanger. Dimensions
in millimeters.

The mesh has 12857 nodes building 6206 triangular elements. The type of the
finite elements is second order with mixed stress-displacement formulation (Zouain
et al., 2014).

The primary loading is internal pressure p applied at the hot channel.
The secondary loading corresponds to a simplified thermal analysis with pre-

scribed temperatures Θh and Θc at the hot and cold channel walls, respectively.
The temperature is coupled between top and bottom edges of the cell. There is no
thermal flux at both lateral boundaries.

The primary and secondary parameters are

P =
p

σY

Q =
Ecε(Θh −Θc)

σY

. (5.13)

Pressure is sustained, whereas thermal loading is cyclic, as shown by the loading
program in Fig. 5.13. The thermal expansion coefficient is cε = 1.2 · 10−5 ◦C−1.
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Figure 5.13: Ratcheting and shakedown boundaries for the PCHE plane strain
model.

Fig. 5.13 depicts the ratchet boundary produced by the present algorithm. As a
reference solution, the shakedown limits obtained with the direct method developed
by Zouain et al. (2002) appear as the red curve in the same figure.

Shakedown and ratchet-search direct methods agree, in Fig. 5.13, where the
shakedown limit is determined by an impending ratchet mechanism.

When alternating plasticity defines the shakedown boundary (upper plateau),
incremental analysis generate the bounds to compare with the present solution.
The step-by-step solutions, made in Ansys, are devised to bracket the transition
of steady-state responses from alternating plasticity to ratcheting. In agreement
with the direct solution, ratcheting is active for points outside the boundary. Fur-
thermore, alternating plasticity manifested, in incremental analyses, for points lying
between the ratcheting and shakedown limits.

The position of points representing incremental analyses in Fig. 5.13 was defined
to allow clear identification of the steady-state response. When these points are
closer to the ratchet boundary, the incremental solution requires higher numbers
of cycles to stabilize increasing the uncertainty to identify the ratchet-limit. Each
one of the 6 points in Fig. 5.13 has a predefined set up of 20 cycles. The total
computation took 260 minutes of cpu, which gives the entry 43.3 minutes per point
in Table 5.1.
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On the other hand, the direct procedure required a mean time of 4.76 minutes per
point. According to Procedure RL (Algoritm 3), each of these points corresponds to
a series of direct steady-state solutions, by Procedure ESS (Algorithm 2), automated
to identify the boundary. In the present case, a mean value of 9 steady-state solutions
was necessary to reach a ratchet-limit point. That gives a mean time of 0.53 minutes
for each steady-state cyclic solution.

Table 5.1: Mean time to compute a solution, in minutes
Solution type Direct Shakedown Present method Incremental

Steady-state cycle – 0.53 43.3
Ratchet-boundary point 5.01 4.76 –

From the viewpoint of efficiency in the steady-state solution, the direct proce-
dures perform, in this example, 81.7 times faster than the incremental solution.

Regarding efficiency in the overall process of identifying one amplification of
loads at impending ratcheting, there are many comparisons to consider. Note that
the report in this example has only two step-by-step computations bracketing each
point of the target curve; this is obviously not an actual process of identification.
Nevertheless, the time spent in these two computations, 86.6 minutes, is a lower
bound for any incremental search and it is 18 times the cpu time, 4.76 minutes,
taken by the proposed algorithm.

A final comparison can be made in Table 5.1 for points where the shakedown
and ratchet boundaries coincide: the mean time of 4.76 minutes is of same order
than 5.01 minutes, which corresponds to a direct shakedown solution computed by
the optimization algorithm proposed by Zouain et al. (2002).

Figure 5.14 shows a close agreement between direct and incremental solutions for
∥∆u∥, in a point with (P,Q) = (0.368, 1.793). It is remarkable that both solutions
differ not only by the solution strategy, but also by the finite element formulation.
While the present method adopts a stress-displacement formulation, the incremental
solution adopts the kinematical formulation.
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Figure 5.14: Norm of the displacement increment ∥∆u∥ per-cycle, using direct and
incremental methods. Deformed shape amplified by 1000.

Figure 5.15 shows the norm of the ratchet strain ∥∆ε∥ with both solutions strate-
gies. Indeed, the figure turns evident the ratcheting at the border of the hot channel.
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Figure 5.15: Norm of the ratchet strain ∥∆ε∥, using direct and incremental meth-
ods.

5.4.8 Specified tolerances and time discretization

Table 5.2 describes the mean time per ratchet-limit point (MTP) performed by
the present procedure, for all the numerical examples. The same table includes
the prescribed tolerances tolη and tolPb, the adopted number of time steps N for
backward Euler integration and the number of vertexes nv that compose the loading
cycle C(η).

Table 5.2: Tolerances, time steps and mean time per ratchet-limit point (MTP).
Example tolPb tolη N nv MTP(s)

Classic Bree 1.0 · 10−7 1.0 · 10−4 32 2 10.1
Bree out-of-phase 1.0 · 10−7 1.0 · 10−4 64 4 13.6

Bree in-phase 1.0 · 10−6 1.0 · 10−4 32 2 11.7
Bree 3D 1.0 · 10−7 1.0 · 10−4 64 4 11.9

Plane strain block 1.0 · 10−6 1.0 · 10−4 64 4 3.3
Closed Tube 1.0 · 10−7 1.0 · 10−4 64 4 19.9

PCHE 1.0 · 10−6 1.0 · 10−3 32 2 285.6
N is the number of integration steps and nv the number of vertexes of the path C(η).

In addition, tolcyc = tolstep = 1.0 ·10−3 and kmax = 10 were set at ESS procedure,
for all examples. Table 5.3 shows the mean number of iterations for a ratchet-limit
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point identification. It also includes the mean number of secant and regula-falsi
iterations.

Table 5.3: Mean iterations per ratchet-limit point.
Example total secant regula

Classic Bree 10 6 4
Bree out-of-phase 10 6 4

Bree in-phase 11 6 5
Bree 3D 10 6 4

Plane strain block 11 7 4
Closed Tube 8 6 2

PCHE 9 6 3

Table 5.4 summarizes the difference between present method and analytical,
closed form, reference solutions. The ratio ei is the relative difference between a
ratchet-limit factor ηiR determined by present method and the reference solution
ηiref . Considering a ratchet-limit curve, composed by n points, ē measures the mean
relative difference between present and reference curves. In addition, s measures the
standard deviation of ei.

ē =
1

n

n∑
i=1

ei ei =
ηiR − ηiref

ηiref
(5.14)

s =

√∑n
i=1(e

i − ē)2

n− 1
(5.15)

Table 5.4: Numerical precision measures.
Example ē (%) s (%)

Classic Bree −0.12 0.48

Bree in-phase 0.08 0.99

Plane strain block 0.00 0.14

5.5 Discussion

On the ratchet-limit algorithm

The developed method adopts plasticity theory equations. Thus, upgrading it from
perfect plasticity to more general models follows the strategies developed for step-
by-step incremental integration described in de Souza Neto et al. (2008). Indeed, the
nonlinear kinematic hardening module is already integrated with the ratchet limit
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determination module. Thus a systematic research on the existence of such limit,
when using AF hardening is possible. This research is suggested as a future work
using the implemented procedure and is outside the qualified scope of this thesis.

The same procedure can be applied for shakedown-limit identification simply
substituting Pb by Pa inside the RL procedure. Here, the choice to pursue ratchet
instead of shakedown limit is due to the to the apparent existence of a higher quantity
of scientific gaps to fulfill in the former than the latter, when considering GSM
materials. Despite of that, the implementation and use of this method to deal with
shakedown has the advantage to be more natural to engineers that prefer to treat
the problem without recovering to optimization theory.

The application of the procedure for shakedown identification, using nonlinear
kinematic hardening is another potential research route. Naturally, the lessen the-
oretical basis of the AF model for shakedown also calls for caution and requires
systematic research.

For the RL procedure, the presence of a sustained load is non-mandatory. More-
over, the method allows the analyst to choose any of the loads to amplify. No
restriction applies on the number of different prescribed loads. In other words, the
ratcheting boundary is not restricted to be a curve in a bi-dimensional Bree like
interaction diagram. To the author knowledge, this is the first direct method for
ratchet-limit determination with those capabilities. It follows the same path de-
vised for shakedown with multi-dimensional loading spaces described in Simon and
Weichert (2012).

Converged steady-state solutions build the ratcheting boundary, with no need
of solving a modified limit load problem. In this aspect, it resembles a step-by-
step incremental strategy, but without storing transient solution results and without
wasting time to verify if the steady state was reached. The augmented secant method
drives the algorithm automatically to the ratcheting boundary solution.

On the generality of non-ratcheting condition

A remarkable characteristic of shakedown analysis is that it allows the definition
of a safe domain for loading programs rather than assuring safety for a particular
loading program. For instance, this extension of safety assessment from a particular
loading program to a domain of loading programs allows working under the realistic
assumption that maximum ranges of loadings are anticipated instead of the complete
history of loadings.

In general, the extension of a safety condition from a particular cyclic program
to a domain encapsulating an infinite set of interior load paths holds true only inside
the shakedown region König (1987); Ponter and Chen (2001); Zouain (2018).

To clarify this subject, Figure 5.16 combines two analytical ratchet-limit solu-
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tions. The blue curve is the sustained primary loading program C(ηR) (vertical
loading path) solution, given by Bree (1967). Whereas the red curve, is the rectan-
gular program C̄(ηR) ratcheting boundary, given by Bradford (2017).

The same figure identifies an example of sustained pressure program C(η∗) ren-
dering ratcheting, once η∗ > ηR. Remarkably, the same program is encapsulated by
the rectangular C̄(ηR).

Figure 5.16: Counter-example on the ratcheting program to domain extension.

Indeed, the case constitutes a counter-example showing that the extension from
safe program to safe domain does not hold inside the entire ratcheting boundary
as it would inside shakedown limits. If the same extension kept its validity for the
ratcheting limit, it would be impossible to identify any arbitrary cycle inside the
rectangular cycle C̄(ηR) capable of developing ratcheting.

Moreover, the author verified, by testing with direct and incremental methods,
that a simple change in the orientation of the cycle has the potential to change
the ratchet-limit position for some problems. This can be verified comparing the
boundaries given in sections 4.7.1 and 5.4 for the closed tube. Both examples follow
rectangular paths and differ only by its cyclic orientation, that is counter-clockwise
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in the former against to clockwise in the latter. This observation corroborates with
the suspects raised by Bradford (2017), which suggests this verification as a future
work for the Bree model. The author intent to investigate this sensibility in future
research.

The restriction has hidden implications in practical application of ratcheting
limits for equipment integrity assessment. The proposed loading program must
represent accurately the cyclic program that the equipment is expected to suffer.

Strictly speaking, the examples shows that a small modification in the cyclic
regime can activate an unexpected ratcheting mechanism.

On the conceptual distinction of direct and incremental methods

Another remarkable observation, is that the conceptual distance between direct and
incremental methods decreases when dealing with ratcheting boundary determina-
tion.

Outside shakedown limits, direct methods become restricted to identify load-
ing program dependent structural responses. Paradoxically, this is the goal that
motivated the development incremental methods. In direct methods, usually the
goal is to identify load domain (encapsulating infinite programs inside) dependent
structural responses.

Independently of the development intentions and the conceptual approximation,
the superior computational performance and precision of the direct path justifies
further research on such strategy, even when the establishment of safe domains is
not possible.
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Chapter 6

Nonlinear Kinematic Hardening

The contents of this chapter follows Zouain and SantAnna (2018). The article up-
grades the direct method presented in chapter 4 with nonlinear kinematic hardening.

All the cited contributions were oriented and conduced with Professor Zouain
close integration. The work benefited to understand the different types of ratcheting,
and allowed the establishment of several future topics of research.

6.1 Introduction

Experiments with many metals shows Baushinger effect. That is a decrease in the
compression yield stress after the plastic action in tension and vice versa. Theoret-
ically, this effect can be included through a translation of the yield surface, that is
with a kinematic hardening. Thus, the modeling requires the back-stress A as an
additional variable. This state variable measures the translation of the yield surface
inside the stress space.

Experimental evidences also display a bound in the translation of the yield sur-
face and that the transition to this bound is asymptotic (Lemaitre and Chaboche,
1994). In other words, a nonlinear saturation in hardening. A model capable of re-
producing those experimental facts is the one proposed by Armstrong and Frederick
(1966).

Moreover, the chosen model can represent material ratcheting, that is, the plastic
strain accumulation for unsymmetrical cycles of controlled stress acting in a material
point. This capability may help in improving computational accuracy to model
ratcheting as discussed in section 2.3.
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6.2 Plasticity with nonlinear kinematic hardening

The elastoplastic material considered here behaves linear and isotropic in elasticity.
Imposed thermal strains are isotropic and all material constants are independent
of temperature. The Mises yield function and the Armstrong and Frederick (1966)
kinematical hardening rule determine the plastic response. The constitutive equa-
tions are as follows (Auricchio and Taylor, 1995; de Souza Neto et al., 2008; Lemaitre
and Chaboche, 1994)

S = 2G (εdev − εp) (6.1)

σm = K tr(ε− εΘ) (6.2)

A =
2

3
Hkinβ (6.3)

tr(A) = 0 (6.4)

dp =

√
3

2
λ̇n (6.5)

Ȧ = λ̇

(√
2

3
Hkin−HnlA

)
(6.6)

n =
S −A

∥S −A∥
(6.7)

f(S,A) =

√
3

2
∥S −A∥ − σ0

Y ≤ 0 (6.8)

λ̇f(S,A) = 0 (6.9)

λ̇ ≥ 0 (6.10)

where G and K are the shear and bulk elastic moduli, “tr” is the trace operator,
and the constants Hki and Hnl are the linear and nonlinear kinematic hardening
coefficients.

The inclusion of the back-stress A imposes its dual strain-like internal variable
β, as a consequence. Thus, the specific dissipation is dint = σ · dp −A · β̇ for this
model.

Relations (6.1–6.4) are the state equations of the material. The plastic strain
evolution (6.5) is associated with respect to the plastic function (6.8). Equations
(6.5) and (6.7) give rise to the following relation.

λ̇ = dpeq =

√
2

3
∥dp∥ (6.11)

The hardening evolution (6.6) is non-associated whenever Hnl ̸= 0. Remarkably,
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the associativity would demand that

β̇ = −∂(f(S,A))

∂A
= dp. (6.12)

However, (6.6) can be viewed in the form

β̇ = dp −Hnld
p
eqβ (6.13)

due to (6.3), (6.5) and (6.11), thus not satisfying (6.12). Pragers linear hardening
is recovered for Hnl = 0, in which case the backstress is unbounded and the model
becomes associated.

For an effective AF hardening, with Hnl > 0, the following bound for the equiv-
alent back-stress is deduced from (6.6).√

3

2
∥A∥ ≤ Hki

Hnl

(6.14)

Consequently, using ∥S∥ ≤ ∥S −A∥+ ∥A∥ and (6.8)

∥S∥ ≤ σY∞ = σ0
Y +

Hki

Hnl

(6.15)

6.3 The equations of steady state with AF harden-

ing

The mechanical and thermal loadings are represented again by the fictitious elastic
field σE(t), for t ∈ (0, 1) and the main unknown is the residual stress, varying in
space and time.

The following set of equations governs the asymptotic cyclic response and it is
analogous to the one deduced by Polizzotto (2003, p.2679) for GSM. This system of
equations is part of the set that characterizes incremental analysis under a general
loading program (possibly non-cyclic). The main difference between both analyses
is that the initial conditions of the incremental problem are substituted, in the direct
asymptotic analysis, by constraints enforcing the asymptotic stress and backstress
to be cyclic and with same period as the loadings. The self-equilibrium condition, at
all times, is imposed here in a simplified manner, taking into account the periodicity
constraint, as explained below.
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Given σE(t), find σr(t), A(t) and dp(t) such that, for all times

S = σE,dev + σr,dev (6.16)

dp =
√

3
2
λ̇n (6.17)

Ȧ = λ̇

(√
2
3
Hkin−HnlA

)
(6.18)

n =
S −A

∥S −A∥
(6.19)

f =
√

3
2
∥S −A∥ − σ0

Y ≤ 0 λ̇ ≥ 0 λ̇f = 0 (6.20)

σ̇r = Zdp (6.21)

and at the end of each cycle

σr(1) = σr(0) (6.22)

D′σr(1) = 0 (6.23)

A(1) = A(0) (6.24)

The equilibrium conditions, D′σr = 0 for all t ∈ (0, 1), are deduced now from
(6.21–6.23). Indeed, D′σ̇r = 0 because of (6.21) and the fact that the range of Z
is the self-equilibrium space; hence σr(t) = σr(0) +

∫ t

0
σ̇r(t)dt∗ is self-equilibrated,

since D′σr(0) = D′σr(1) = 0 due to (6.22) and (6.23).
Another important consequence of the asymptotic response equations (6.16–6.24)

is that the increment of plastic strain accumulated in each cycle, ∆ε, is compatible.
That is, there exists a displacement field ∆u, giving the increment of deformation
produced in any cycle, and such that

D∆u = ∆ε ∆ε =

∫ 1

0

dpdt (6.25)

where dp solves (6.16–6.24). This is proven, for instance, in Zouain and SantAnna
(2017, p. 269) and reproduced in section 4.2.

In this formulation, (6.25) constitutes a subsidiary relation determining the in-
crement of displacement per cycle ∆u. The subsidiary problem D∆u = ∆ε is
consistent and has a unique solution because ∆u is kinematically compatible and
D is non-singular. However, ∆u is only approximately compatible when obtained
in the computational solution of (6.16–6.24) and hence the subsidiary problem may
become numerically inconsistent. In view of this, ∆u is computed solving the linear
system

K∆u = D′
E∆ε (6.26)
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This is equivalent to D∆u = ∆ε, whenever ∆ε is exactly compatible, and always
has a unique solution (even for an incompatible ∆ε). In addition, the corresponding
matrix of the system (6.26) is already available in decomposed form and the right-
hand side is easily computed.

6.4 The discretized equations of the steady state

Discrete counterparts of the proposed continuum equations are generated defining
a grid in the time interval [0, 1] and using finite element interpolations for the stress
and displacement fields or using traditional kinematical interpolations. It is adopted
here the mixed finite elements presented in Zouain et al. (2014).

The present algorithm has two alternative approximate integrations of the evo-
lution equations, following techniques of stress analysis in the presence of nonlinear
hardening. These alternatives are: (i) the backward Euler integration scheme, and
(ii) the generalized midpoint rule, aiming second-order accuracy (Artioli et al., 2007).
As a result, it is ensured that the direct solution exactly matches the one obtained,
at the stabilized regime, by a conventional incremental analysis that uses the same
integration, mesh and finite element interpolation.

Spatial and time discretizations

The procedure adopts the same strategy present in section 4.5 for discretization in
time and space. Complementing the notation presented in the cited section, the
discretized backstress vector at the time station j is Aj := A(tj).

6.5 An algorithm for computing the steady state

The iterative algorithm solves the elastoplastic steady state problem, which is based
on a discretized version of the formulation (6.16-6.24). The main proposal is to per-
form a fictitious sequence of cycles aiming to reduce the residuals of these equations.

The procedure consists in a sequence of substitutions: in δσr = Zδεp, to up-
date residual stresses, combined with return mappings, using evolution relations, to
update plastic strain increments.

This algorithm is presented in two stages. First, the basic update procedure, BU,
at each time station. Second, the global procedure for computing the elastoplastic
steady state, ESS, constituted of nested loops that apply the basic update.

This section explains a crucial component of the algorithm for direct cyclic anal-
ysis. It consists of the following modification in the return mapping of the usual
integration of elastoplastic analysis.
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First, consider the backward Euler approximation of the constitutive equations
(6.1-6.10).

Sj − Sj−1 = 2G (δεdev − δεp) (6.27)

δσm = K tr
(
δε− δεΘ

)
(6.28)

δεp = δλn (6.29)

Aj −Aj−1 = δλ

(√
2
3
Hkin−HnlA

j

)
(6.30)

n =
Sj −Aj

∥Sj −Aj∥
(6.31)

f =
√

3
2
∥Sj −Aj∥ − σ0

Y ⩽ 0 δλ ⩾ 0 fδλ = 0 (6.32)

In incremental analysis, the usual projection procedure, driven by a globally
computed strain increment δε, is to set S̄trial

:= Sj−1 + 2Gδεdev and then solve the
system above with (6.27) in the form S̄

trial
= Sj + 2Gδεp.

The present algorithm adopts a different trial stress for asymptotic analysis.
Specifically, using the current approximations denoted by Sr,j, δεp,j and Aj−1, the
driving parameters are defined, according to Figure 6.1.ii, as

Strial := SE,j + Sr,j + 2Gδεp,j Atrial := Aj−1 (6.33)

where SE,j := (σE,j)dev and Sr,j := (σr,j)dev are the deviatoric parts of the residual
and ideally elastic stresses at time j.

Then, the method finds the new approximations δε̂p,j and Â
j

by solving the
following backward Euler version of the constitutive relations (6.1-6.10), with addi-
tional (dummy) unknowns S̃, δλ and n. That is (Figure 6.1.ii)

Strial = S̃ + 2Gδε̂p,j (6.34)

ε̂p,j =
√

3
2
δλn (6.35)

Â
j
−Atrial = δλ

(√
2
3
Hkin−HnlÂ

j
)

(6.36)

n =
S̃ − Â

j

∥S̃ − Â
j
∥

(6.37)

f =
√

3
2
∥S̃ − Â

j
∥ − σ0

Y ⩽ 0 δλ ⩾ 0 f δλ = 0 (6.38)

The system (6.34-6.38) is formally identical to a standard incremental return
mapping. The trial parameters, given by (6.33), are the only special assumptions
pertaining to the asymptotic algorithm.

Consequently, the method can perform this projection using common tools pro-
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Figure 6.1: Projection procedure to obtain new iterates δε̂p,j and Â
j
: (i) compute

trial stress Strial, by (6.33), and (ii) project Strial to find the updates.

posed and tested in a vast literature; see for instance Simo and Hughes (2006),
de Souza Neto et al. (2008), Auricchio and Taylor (1995), Artioli et al. (2007),
Armero (2018) and De Angelis and Taylor (2016).

In summary, the above return mapping computes, at local level, new iterates
δε̂p,j and Â

j
, for plastic strain increments and hardening variables, which are then

used as input for a global operation to update the residual stresses. This scheme is
formalized in the following basic update procedure.

6.5.1 Basic update (BU) at time station j

The update procedure is defined in the form of a pseudo-code, and afterward justified
in some remarks.
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Procedure BU (at time station j)
Given the current global approximations, σr,(j−1) = Sr,(j−1) + σ

r,(j−1)
m 1 , Aj−1, σr,j =

Sr,j + σr,j
m 1 and δεp,j , such that

σr,j − σr,(j−1) = Zδεp,j BTσr,(j−1) = 0 (6.39)

compute the new iterates, σ̂r,j = Ŝ
r,j

+ σ̂r,j
m 1 , Â

j
and δε̂p,j , as follows.

1. for all control points of the mesh
Set (Figure 6.1)

Strial := SE,j + Sr,j + 2Gδεp,j (6.40)

Atrial := Aj−1 (6.41)

if
√

3
2∥S

trial −Atrial∥ ⩽ σ0
Y

then Elastic step. Set

δε̂p,j = 0 Â
j
= Atrial (6.42)

else Elastoplastic step.
Find new approximations, δε̂p,j and Â

j
, by solving the following system

for the unknowns S̃, Â
j
, δε̂p,j , δλ > 0 and n.

Strial = S̃ + 2Gδε̂p,j (6.43)

ε̂p,j =
√

3
2δλn (6.44)

Â
j
−Atrial = δλ

(√
2
3Hkin−HnlÂ

j
)

(6.45)

n =
S̃ − Â

j

∥S̃ − Â
j
∥

(6.46)√
3
2∥S̃ − Â

j
∥ = σ0

Y (6.47)

end if
end for

2. Compute new approximation of the residual stress

σ̂r,j = σr,(j−1) +Zδε̂p,j (6.48)

end of Procedure BU

Algorithm 4: Basic Update with AF

Remarks on Procedure BU

1. Conditions (6.39), assumed to be fulfilled by the input and involving σr,(j−1),
σr,j and δεp,j, are also satisfied by the output σ̂r,j and δε̂p,j, due to (6.48).
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2. The projection procedure defined by (6.43-6.47) and sketched in Figure 6.1 is
analyzed in the section 6.6.

3. If the input satisfies (6.43-6.47), the basic updating procedure replicates the in-
put values at the output, that is σ̂r,j = σr,j, δε̂p,j = δεp,j and Â

j
= Aj. Hence,

the heuristic equality (6.40) does not introduce any spurious constraint on the
converged solution. Furthermore, it holds that a fixed point for the projection
procedure (6.43-6.47) is necessarily comprised by a plastically admissible to-
tal net stress κj := σE,j + σr,j −Aj and a plastic flow δεp,j associated with
σE,j + σr,j.

6.5.2 An algorithm for computing the elastoplastic steady

state

The algorithm to compute the stabilized elastoplastic response consists of a sequence
of fictitious time cycles, described in the following.

At each time step, labeled by j ∈ 1 : N , it is performed a loop of applications of
the basic update procedure BU. The loop ends when the difference between succes-
sive approximations of residual stress at one BU,

∫
B ∥σ̂

r,j − σr,j∥dx, becomes less
than a prescribed tolerance for the step, or when the number of loops exceeds kmax.

At the end of each fictitious cycle, the total difference of residual stress∑
j=1:N

∫
B ∥σ

r,j − σr,j,old∥dx is checked for convergence. If a fixed point for the
iterative algorithm is attained, then the current iterate solves the set of equations
determining the asymptotic elastoplastic response.

The algorithm pseudo-code is given in the following.
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Procedure: Elastoplastic steady state (ESS)

Compute iteratively σr,j , δεp,j and Aj as follows:

Initialize icyc = 0; σr,j = 0, δεp,j = 0, Â
j
= 0,

Var(σr) = big; varj(σr,j) = big, j = 1 : N

do while (icyc ⩽ icycmax and Var(σr) ⩾ tolcyc)

icyc = icyc + 1

for j = 1 : N

k = 0

σr,j,old = σr,j

do while
(
k ⩽ kmax and varj(σr,j) ⩾ tolstep

)
k = k + 1

Use procedure BU to compute new iterates σ̂r,j , δε̂p,j and Â
j
.

τj =
∫
B ∥σ̂r,j∥dx

ξj =
∫
B ∥σ̂r,j − σr,j∥dx

varj(σr,j) = ξj/max{τj , 1}

Update σr,j = σ̂r,j , δεp,j = δε̂p,j , Aj = Â
j

end do

end for

ξj =
∫
B ∥σr,j − σr,j,old∥dx

Var(σr) = (
∑

1:N ξj) /max{
∑

1:N τj , 1}
end do

σj = σE,j + σr,j , j = 1 : N

∆ε =
∑

j=1:N δεp,j

∆u = K−1BT
E∆ε

end procedure ESS

Algorithm 5: Elastoplastic steady state with AF

This fictitious sequence of cycles qualifies a direct method using similar argu-
ments to the ones described in section 4.6.2. Again, remarkably, the stiffness matrix
K is decomposed only once in the preamble.

6.6 The return mapping problem

This section is devoted to the solution of the return mapping problem, defined
by (6.43-6.47), adopting the backward Euler integration, or by (6.88-6.93), when
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generalized midpoint integration is used. It follows Auricchio and Taylor (1995),
Artioli et al. (2007) and De Angelis and Taylor (2016).

6.6.1 Using backward Euler integration

The return mapping (6.43-6.47) is reformulated below.
The notation used in Figure 6.1 is simplified as: S := S̃ = SE,j + S̃

r
(dropping

the tilde), A := Â
j

and δεp := δε̂p,j (dropping hat and superscripts).

Problem 1. Given: Strial and Atrial as in (6.40) and (6.41).
Find: S, A, δλ > 0 and n such that

Strial = S −
√
6Gδλn (6.49)

A = Atrial + δλ

(√
2
3
Hkin−HnlA

)
(6.50)

n =
S −A

∥S −A∥
(6.51)√

3
2
∥S −A∥ = σ0

Y (6.52)

The next section describes how this system is solved in the present implementa-
tion. The most effective strategy is adopted (Auricchio and Taylor, 1995; De Angelis
and Taylor, 2016; de Souza Neto et al., 2008) consisting of first reducing the problem
to an independent equation in δλ. In this case, δλ is the least positive root of the
fourth-order polinomial. Once δλ is obtained, the algorithm computes the other
unknowns as follows.

Tλ = (1 +Hnlδλ)
−1 (6.53)

κtrial = Strial − TλA
trial (6.54)

n =
κtrial

∥κtrial∥
(6.55)

S = Strial −
√
6Gδλn (6.56)

Finally, the method updates the selected variables as

δε̂p,j =
√

3
2
δλn (6.57)

Â
j
= Tλ

(
Atrial +

√
2
3
Hkiδλn

)
(6.58)

δβ̂
j
= 3

2Hki
(Â

j
−Atrial) (6.59)

It is not necessary to calculate S here because the stresses are only updated in
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the global stage (6.48) of the basic procedure BU.

The polynomial equation in the backward Euler integration

This section describes the equations and procedures (Auricchio and Taylor, 1995;
De Angelis and Taylor, 2016) used to solve Problem 1, given by (6.49-6.52).

First, setting κ := S −A and simplifying Problem 1 to the following form.

Given: Strial and Atrial as in (6.40) and (6.41).
Find κ, δλ > 0 and n such that

κ = Strial − TλA
trial − Uλn (6.60)

n =
κ

∥κ∥
(6.61)

Tλ = (1 +Hnlδλ)
−1 (6.62)

Uλ =

(√
6G +

√
2
3
HkiTλ

)
δλ (6.63)√

3
2
∥κ∥ = σ0

Y (6.64)

with subsidiary equations

A = Tλ

(
Atrial +

√
2
3
Hkiδλn

)
(6.65)

S = κ+A (6.66)

The solution of the above problem is considered next.
From (6.60) it is obtained

κtrial(δλ) := Strial − TλA
trial = κ+ Uλn (6.67)

Since κ = ∥κ∥n and Uλ > 0 it is deduced now that κtrial = ∥κtrial∥n and

∥Strial − TλA
trial∥ = ∥κ∥+ Uλ (6.68)

Moreover, by using (6.64), a transform (6.68) in

sSS + T 2
λsAA − 2TλsSA = (

√
2
3
σ0
Y + Uλ)

2 (6.69)

applies with

sSS := ∥Strial∥2 sAA := ∥Atrial∥2 sSA := Strial ·Atrial (6.70)
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The relation (6.69) is a nonlinear scalar equation for the single variable δλ that
reduces to the following quartic

p(δλ) = 0 p(t) := a4t
4 + a3t

3 + a2t
2 + a1t+ a0 (6.71)

where

a4 = 6G 2H2
nl > 0 (6.72)

a3 = 12G 2Hnl + 4GHkiHnl + 4GH2
nlσ

0
Y > 0 (6.73)

a2 = 6G 2 + 4GHki +
2
3
H2

ki + 8GHnlσ
0
Y

+ 4
3
HkiHnlσ

0
Y + 2

3
H2

nlσ
2
Y 0 −H2

nlsSS (6.74)

a1 = 4Gσ0
Y + 4

3
Hkiσ

0
Y + 4

3
Hnlσ

2
Y 0 − 2Hnl (sSS − sSA) (6.75)

a0 =
2
3
σ2
Y 0 − sSS + 2sSA − sAA < 0 (6.76)

Then, δλ is the least positive root of the quartic polynomial (6.71), computed
by Laguerre’s method.

In particular, the solution for linear hardening, when Hnl = 0, is directly obtained
as

δλ =

√
b2 − ac− b

a
(6.77)

where

a = 6G 2 + 4GHki +
2
3
H2

ki > 0 (6.78)

b = 2Gσ0
Y + 2

3
Hkiσ

0
Y > 0 (6.79)

c = 2
3
σ2
Y 0 − sSS + 2sSA − sAA < 0 (6.80)

6.6.2 Using generalized midpoint integration

This subsection introduces a generalized midpoint approximation (Artioli et al.,
2007; de Souza Neto et al., 2008; Iserles, 2009) for the evolution equations in each
time step, as an alternative in the proposed method.

In this case, the modeling only substitutes the system of equations (6.43-6.47)
by the system (6.88-6.93), as described in the following. Besides this modification,
both procedures, BU and ESS, remain unchanged.

The model adopts the following generalized midpoint integration of the consti-
tutive equations (6.16-6.20), depending on the parameter ϑ ∈ [0, 1]. Here, ϑ = 1
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gives the backward Euler approximation, ϑ = 0.5 the (genuine) midpoint rule and
0 < ϑ < 1 generalized implicit integrations (Artioli et al., 2007, p. 1829).

Sj − Sj−1 = 2G (δεdev,j − δεp,j) (6.81)

δεp,j =
√

3
2
δλnϑ (6.82)

Aj −Aj−1 = δλ

(√
2
3
Hkin

ϑ −HnlA
ϑ

)
(6.83)

nϑ :=
Sϑ −Aϑ

∥Sϑ −Aϑ∥
(6.84)

f j =
√

3
2
∥Sj −Aj∥ − σ0

Y ⩽ 0 δλ ⩾ 0 f jδλ = 0 (6.85)

with

Sϑ := ϑSj + (1− ϑ)Sj−1 (6.86)

Aϑ := ϑAj + (1− ϑ)Aj−1 (6.87)

Based on the above midpoint integration rules, a method for the asymptotic
response is formulated next, using the same choice on the trial stresses adopted, in
(6.40), for the backward Euler integration.

Problem 2. Given: Strial and Atrial as in (6.40) and (6.41).
Find: S, A, δλ > 0 and nϑ such that

Strial = S +
√
6Gδλnϑ (6.88)

A−Atrial = δλ

(√
2
3
Hkin

ϑ −HnlA
ϑ

)
(6.89)

nϑ :=
Sϑ −Aϑ

∥Sϑ −Aϑ∥
(6.90)

Sϑ := ϑS + (1− ϑ)Sj−1 (6.91)

Aϑ := ϑA+ (1− ϑ)Atrial (6.92)√
3
2
∥S −A∥ = σ0

Y (6.93)

The next section sketches how this system is solved by first computing δλ as
the least positive root of a tenth-degree polynomial. The remaining unknowns are

85



obtained using the following relations.

Sϑ,trial := ϑStrial + (1− ϑ)Sj−1 (6.94)

Vλ := (1 + ϑHnlδλ)
−1 (6.95)

κλ := Sϑ,trial − VλA
trial (6.96)

nϑ =
κλ

∥κλ∥
(6.97)

Sϑ = Sϑ,trial −
√
6ϑGδλnϑ (6.98)

S = 1
ϑ

[
Sϑ − (1− ϑ)Sj−1

]
(6.99)

Aϑ = VλA
trial +

√
2
3
ϑHkiδλVλn

ϑ (6.100)

Finally, the computation of the selected local updates follows

δε̂p,j =
√

3
2
δλnϑ (6.101)

Â
j
= 1

ϑ

[
Aϑ − (1− ϑ)Atrial] (6.102)

δβ̂
j
= 3

2Hki
(Â

j
−Atrial) (6.103)

It is not necessary to calculate Sϑ and S here because the stresses are only updated
in the global stage (6.48) of the basic procedure BU.

The polynomial equation in the generalized midpoint integration

This section describes the equations and procedures (Artioli et al., 2007) used to
solve Problem 2, given by (6.88-6.93).

Eliminating the unknown δεp,j from the system of equations (6.88-6.93), a system
appears to be solved for the main unknowns δλ > 0, S and A.

Strial = S +
√
6Gδλnϑ (6.104)

A−Atrial = δλ

(√
2
3
Hkin

ϑ −HnlA
ϑ

)
(6.105)

nϑ :=
Sϑ −Aϑ

∥Sϑ −Aϑ∥
(6.106)

Sϑ := ϑS + (1− ϑ)Sj−1 (6.107)

Aϑ := ϑA+ (1− ϑ)Atrial (6.108)√
3
2
∥S −A∥ = σ0

Y (6.109)

The following paragraphs sketch the procedure to obtain a single equation for
δλ.
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Combining (6.104), (6.107) and (6.94), it follows that

Sϑ = Sϑ,trial −
√
6ϑGδλnϑ (6.110)

Likewise, from (6.105), (6.108) and (6.95) it comes

Aϑ = VλA
trial +

√
2
3
ϑHkiδλVλn

ϑ (6.111)

Furthermore, combining (6.110), (6.111), (6.96) and the definitions

κϑ := Sϑ −Aϑ (6.112)

Yλ := ϑδλ

(√
6G +

√
2
3
HkiVλ

)
(6.113)

one obtains
κλ = κϑ + Yλn

ϑ (6.114)

In the equation above, it holds that κϑ = ∥κϑ∥nϑ, due to (6.106) and (6.112).
Moreover, Yλ > 0; hence, deducing from (6.114) that

nϑ =
κλ

∥κλ∥
(6.115)

and ∥κλ∥ = ∥κϑ∥+ Yλ.
Note that with

κ := S −A κj−1 := Sj−1 −Atrial (6.116)

it holds
κϑ = ϑκ+ (1− ϑ)κj−1 (6.117)

Now using (6.114), (6.115) and (6.117) to write

ϑκ =

(
1− Yλ

∥κλ∥

)
κλ − (1− ϑ)κj−1 (6.118)

Finally, taking modulus and square both sides in (6.118), and also using (6.109),
it is obtained the aimed scalar equation for the single variable δλ.

(
1− Yλ

∥κλ∥

)2

∥κλ∥2 + (1− ϑ)2∥κj−1∥2

− 2(1− ϑ)

(
1− Yλ

∥κλ∥

)
κj−1 · κλ − 2

3
ϑ2σ0

Y
2
= 0 (6.119)
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It is still necessary to perform cumbersome substitutions in (6.119), and eliminate
denominators containing δλ, to obtain explicit expressions for all the coefficients of
the tenth-degree polynomial in δλ. Appendix C contains the detailed computation
of the polynomial coefficients.

Finally, δλ is the least positive root of the tenth-degree polynomial, computed
by Laguerre’s method.

6.7 Examples of application

For all examples, the following material constants are assumed: E = 210GPa,
ν = 0.3, Hki = 280GPa, Hnl = 1300 and σ0

Y = 225MPa.
This section describes the application of the algorithm ESS, defined in Sec-

tion 6.5.2, with the parameters tolcyc = tolstep = 10−3 and kmax = 10. For midpoint
integration, it is adopted ϑ = 0.5 unless mentioned otherwise.

6.7.1 Material ratcheting in tensile testing

The first example considers a material point obeying the AF rule and being cycled
in uniaxial stress range σx ∈ [σmin

x , σmax
x ]. Whenever the applied stress has non-zero

mean value, the steady state solution results in material ratcheting.
Let σ̄x := σx/σ

0
Y , Āx := Ax/σ

0
Y and h̄ := Hki/(Hnlσ

0
Y ) define nondimensional

quantities.
Figure 6.2 displays the graph of the axial stress σ̄x and backstress Āx versus the

plastic strain εpx. Without loss of generality, zero plastic strain at the start of the
cycle is assumed; that is, εpx(0) = 0 and thus ∆εpx = εpx(1) is the ratcheting plastic
strain.
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Figure 6.2: Material ratcheting with AF kinematic hardening. Numerical and
analytical solutions for an imposed cyclic uniaxial stress σ̄x in [−1.1, 1.9].

As a reference, a summary of the results of a closed form integration of this
problem appears in the following. First, from the loading data σ̄min

x and σ̄max
x , the

computation of the ratcheting plastic strain follows

∆εpx =
1

Hnl

ln
(σ̄min

x + 1)2 − h̄2

(σ̄max
x − 1)2 − h̄2

(6.120)

and the peak values

Āmin
x = 2

3
(σ̄min

x + 1) Āmax
x = 2

3
(σ̄max

x − 1) (6.121)

εp,max
x = − 1

Hnl

ln
σ̄max
x − 1− h̄

σ̄min
x + 1− h̄

(6.122)

Then, for the plastic loading phase (Figure 6.2) εpx ∈ [0, εp,max
x ] and

Āx(ε
p
x) =

2
3
h̄+

(
Āmin

x − 2
3
h̄
)
exp(−Hnlε

p
x) (6.123)

σ̄x(ε
p
x) =

3
2
Āx(ε

p
x) + σ0

Y (6.124)

For the plastic unloading phase, εpx ∈ [∆εpx, ε
p,max
x ] and

Āx(ε
p
x) = −2

3
h̄+

(
Āmax

x + 2
3
h̄
)
exp [−Hnl(ε

p,max
x − εpx)] (6.125)
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σ̄x(ε
p
x) =

3
2
Āx(ε

p
x)− σ0

Y (6.126)

The numerical solution is obtained considering a cylinder under axial load and
its discretization with mixed axisymmetric triangular finite elements (linear stress-
quadratic displacement). The mesh in the meridian plane consists of a square divided
into two triangles. Figure 6.2 shows numerical and analytical solutions for a repeated
loading with σ̄x in [−1.1, 1.9].

This example demonstrates that the numerical method matches the analytical
solution precisely. Next sections address the capability of this method for solving
complex problems, where no analytical solution is available.

6.7.2 Tube under internal pressure

Figure 6.3: Stresses versus plastic strains for the tube under cyclic pressure p̄ in
[−1.7, 1.7]. (a) Direct and incremental steady state solutions for σ̄r and σ̄θ at the
internal surface. (b)-(c) Present solutions, σ̄r(R̄, εpr) and σ̄θ(R̄, εpθ), displayed across
tube thickness.

The subsection considers a long thick closed tube, with Rext = 1.25Rint (Rext

and Rint are external and internal radii), submitted to a differential of pressure p

(internal minus external), varying cyclically in the range [pmin, pmax].
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The nondimensional radial coordinate is denoted R̄ := R/Rint.
The nondimensional pressure is

p̄ :=
p

pref
pref :=

2√
3
σ0
Y ln

(
Rext

Rint

)
(6.127)

with reference to the collapse pressure of a parent tube assumed elastic-ideally plastic
and with yield stress σ0

Y . The ultimate pressure for the tube

pu =
2√
3

(
σ0
Y +

Hki

Hnl

)
ln

(
Rext

Rint

)
(6.128)

corresponds to the maximum Mises equivalent stress, σ0
Y + Hki

Hnl
, asymptotically

reached with AF-hardening. For the assumed material pu = 1.957pref.
Nondimensional stresses are defined as follows

σ̄r :=
σr

σ0
Y

σ̄θ :=
σθ

σ0
Y

σ̄z :=
σz

σ0
Y

(6.129)
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Figure 6.4: Stresses versus plastic strains for the tube under cyclic pressure p̄

in [0, 1.9]. (a) Direct and incremental steady state solutions for σ̄r and σ̄θ at the
internal surface. (b)-(c) Present solutions, σ̄r(R̄, εpr) and σ̄θ(R̄, εpθ), displayed across
tube thickness.

The mesh and boundary conditions used here are the same described in section
5.4.6.
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Figure 6.5: Stresses versus plastic strains for the tube under cyclic pressure p̄

in [0, 1.7]. (a) Direct and incremental steady state solutions for σ̄r and σ̄θ at the
internal surface. (b) Extreme plastic strains during one steady cycle, across tube
thickness.

Table 6.1: Computational times, in seconds, for the tube under cyclic pressure.

LR [p̄min, p̄max] Direct Incremental
Eulera Eulerb Midpointc Ansysd

1 [−1.7, 1.7] 211 52 16 86
2 [0, 1.9] 68 36 4 2229
3 [0, 1.7] 526 136 12 13021

(a) Reference direct solution (RDS): 4000 time steps for first load range (LR1)

and 2000 for LR2 and LR3

(b) RDS ±0.7%: 1000 time steps for LR1 and LR2, 500 time steps for LR3

(c) RDS ±0.6%: 120 time steps for LR1, 60 for LR2 and 38 for LR3

(d) RDS ±1.5% 10 substeps per cycle for LR1 and 200 for LR2 and LR3

The responses to three loading programs, with pressure ranges within ultimate
limits, are evaluated in the following.

The first range, [−1.7pref, 1.7pref], results in alternating plasticity (Figure 6.3).
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Ratcheting occurs for the second range, [0, 1.9pref] (Figure 6.4). In both cases the
entire tube thickness undergoes plastic deformations during the steady state cycle.

The third case, with pressure varying in [0, 1.7pref], results in alternating plas-
ticity, restricted to a core region adjacent to the interior surface of the tube (Figure
6.5).

Results of our direct procedure are checked against incremental solutions gen-
erated by Ansys (Figures 6.3 to 6.5). The same model is cycled, performing true
incremental integration in Ansys, and applying fictitious cycles in the present algo-
rithm, until the stabilized solutions are obtained to the same prescribed tolerance.
Note that the finite elements and the integration scheme are different in the present
procedure and in Ansys.

For all cases evaluated (Figures 6.3 to 6.5) the differences in stabilized results
are marginal.

Table 6.1 presents CPU times for the load ranges named LR1, LR2 and LR3. The
first column of times, labeled Eulera, corresponds to the reference direct solutions
(RDS), obtained with very small time steps and backward Euler integration. With
respect to this reference solution, the footnote of Table 6.1 gives the deviation of
the other solutions at a representative point. For instance, when the note says that
“RDS ±0.7%" holds for the column labeled Eulerb, it means that the convergence
indicator deviates from RDS less than ±0.7%, when computed for LR1, LR2 and
LR3. We choose the maximum plastic strain increment in a cycle, at the internal
surface, as the indicator for convergence.

The relevant remark on the results in Table 6.1 is that the time spent in the
incremental method is always significantly greater than the time consumed in the
direct procedure. This is the main justification for the present algorithm.

6.7.3 Holed plate in plane strain

This subsection assesses the cyclic response of a holed square plate in plane strain
conditions and submitted to uniaxial lateral loading. The hole has diameter D =

0.2L, where L is the edge length.
The loading p̄ := p/σ0

Y and the boundary conditions are depicted in Figure 6.6.
The mesh has 1152 triangles and 2405 nodes. It uses second order plane strain
elements with mixed formulations, described in Zouain et al. (2014). The same mesh
is adopted in Ansys, with standard kinematical second order triangular elements.
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Figure 6.6: Plane strain finite element model of the holed plate.

Two load ranges are evaluated.
Figure 6.7 summarizes results from incremental and direct methods for the load

range with p̄ in [−0.5, 1.2]. The focus is the maximum increment, in a cycle, of the
plastic strain component in the direction coincident with the load (x-axis). This
particular result is important due to its relation with the fatigue life of the plate.

Figure 6.8 shows results for the second load range, with p̄ in [−0.3, 1.6]. Here,
when using midpoint integration, we set ϑ = 0.75 to avoid numerical instability.
For this loading, ratcheting becomes significant near the north position of the hole.
Accordingly, this is a case of structural ratcheting.
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Figure 6.7: Direct and incremental asymptotic solutions for the plate at the upper
point of the hole (A), under a cyclic loading p̄ in [−0.5, 1.2]. The contour plots show
the strain range εpx(t̄p) in a steady-state cycle.
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Figure 6.8: Direct and incremental asymptotic solutions for the plate at the upper
point of the hole (A in Figure 6.7), under a cyclic loading p̄ in [−0.3, 1.6].

For both load cases, differences between direct and incremental solutions are
marginal. It is remarked that the finite element interpolations used in the direct
and incremental computations are different, as well as the discrete time integration.

Times shown in Table 6.2 demonstrate that the direct method performed much
faster than the true incremental procedure (with similar tolerances). For the second
range the direct solution with backward Euler integration is 12 times faster than
the incremental procedure. In all load cases and for both integration schemes, it is
at least 9 times faster.

Table 6.2: Computational times, in seconds, for the holed plate.

LR [p̄min, p̄max] Direct Incremental
Eulera Midpointb Ansysc

1 [−0.5, 1.2] 457 463 4195
2 [−0.3, 1.6] 1572 2196 19117

(a) 200 time steps for LR1 and 400 for LR2

(b) 200 time steps for LR1 and 400 for LR2

(c) 40 substeps per cycle for LR1 and 400 for LR2

97



Chapter 7

Conclusions

Chapter 4 describes a procedure for the direct computation of the asymptotic re-
sponse of elastoplastic solids submitted to cyclic loadings. The algorithm is robust
and fast, as was demonstrated in section 4.7.

The approach does not introduce any additional approximations or constraints,
besides the time and space discretization usually adopted in incremental elastoplastic
analyses. Specifically, it uses the implicit (backward Euler) approximation of the
plastic strain evolution relation and a true closest point projection. This implies that
the direct and incremental converged approximations are exactly equal whenever the
finite element interpolation and time discretization coincide.

The special trial stress (4.40) for the closest point projection performed in the al-
gorithm is based on the direct formulation of the asymptotic problem. This essential
component of the procedure proved to be efficient for inducing convergence.

Robustness of the algorithm, meaning good rate of successful convergence, was
experimentally investigated with respect to the qualitative different critical scenarios
of alternating plasticity and simple or combined incremental collapse. The observed
behavior was robust for all types of cyclic response. This statement is strictly
based on the limited scope of applications shown in the thesis, although some other
applications have been run with similar results. Concerning this issue, it is worth
to point out that many usual elastoplastic incremental procedures may undergo
convergence difficulties because, for instance, of an inappropriate time discretization
and that this effect may appear in the proposed direct approach. Finally, there is
no assumption in the formulation suggesting a selective convergence limitation.

In chapter 5, the author presents a novel direct method to identify structural
ratchet boundaries for elastoplastic solids under periodic loading programs.

The method is devised in a general framework of elastoplasticity where the pres-
ence of a sustained load is non-mandatory. Moreover, the method allows the analyst
to choose any of the loads to amplify. No restriction applies on the number of dif-
ferent prescribed loads. In other words, the ratchet boundary is not restricted to
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be a curve in a bidimensional Bree-like interaction diagram. In this capability, the
approach is similar to the procedure for shakedown described in Simon and Weichert
(2012) for shakedown analysis with multi-dimensional loading spaces.

Through comparison with analytical and numerical benchmark solutions, the
thesis assessed the proposed procedure under several circumstances. Namely, (i)
uniaxial and multi-axial stress states; (ii) linear and non-linear spatial stress dis-
tributions; (iii) non-proportional and proportional loading programs; (iv) bidimen-
sional and multi-dimensional loading spaces.

In view of the above mentioned features, the proposed method constitutes an
enhanced alternative approach to other previously developed direct methods.

In an industrial application example, on a printed circuit exchanger model, the
method demonstrates precision by comparison with the standard numerical iterative
solutions. The improvements in computational performance became evident, with
the method being at least 80 times faster than step-by-step integration.

All the algorithms described here are written in terms of general linear elasticity
and associated ideal plasticity, although only applications adopting the Mises model
of plasticity are shown. In Zouain and SantAnna (2018) (chapter 6) it is constructed
an extension for the solver ESS, which computes one steady-state response, when the
material model is nonlinear kinematic hardening plasticity. Using such extensions
the present method can be applied to other constitutive behaviors.

Chapter 6 describes an upgrade in the direct method to compute the cyclic
response of a solid that allows the use of nonlinear kinematic hardening. This is
the first direct approach for the steady state elastoplastic problem with nonlinear
kinematic hardening. This capability is important to model material ratcheting.

Again, the algorithm performed much faster than an incremental stabilized pro-
cedure in some typical applications. Tables 6.1 and 6.2 show CPU times at least
nine times faster than the incremental solution of the tube under periodic pressure
and the holed plate submitted to cyclic traction. These rapid responses are perhaps
the main justification for developing a direct method.

The algorithm ESS, formalized in Section 6.5.2, basically consists of alternate
updates of the plastic strain increments, by a particular projection scheme, and the
residual stresses, by using the fixed influence (residual) operator relating residual
stresses to inelastic strains. The special return mapping defined by (6.43-6.47) is the
key component of the method. In the case of AF nonlinear kinematical hardening,
the integration approach becomes important to the efficiency of the procedure. This
issue required the implementation and testing of various alternative integration tech-
niques. To this respect, the conclusion drawn from the examples is that the direct
method is much faster than incremental procedures, regardless of the integration
schemes adopted.
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The proposed method does not include any supplementary approximation or
simplification other than the standard discretization by the finite element method.

The fact that the Armstrong-Frederick hardening model is non-associated sig-
nificantly lessen the theoretical results concerning existence of cyclic solutions and
convergence of incremental solutions to cyclic responses. Nevertheless, computa-
tional experience in step-by-step integration indicates that convergence is the rule.
In this regard, the procedure, giving verifiable converged cyclic solutions, may be a
useful computational tool to address this issue.

In summary, the main contributions of the research are:
(i) The development of a direct method to compute the asymptotic steady-state

solution in ideal elastoplasticity. Validation examples show that the method is fast
and accurate. The performance ranges from one to two orders of magnitude higher
than incremental analysis.

(ii) The performance allowed the development of a direct strategy to identify
the structural ratchet-limit. The procedure applies to periodical loads and has no
limitations on the number of applied loads.

(iii) The upgrade of the asymptotic solution method with nonlinear kinematic
hardening, which is required to model the Baushinger effect and material ratcheting.
To the author knowledge, this is the first direct method for steady-state solution
with this capability. Comparison with step-by-step solutions shows a increase in
performance of one order of magnitude, at least.

Future research

The author indicates some future research topics related to the developments of the
thesis. (i) The use of the direct procedure to numerically reproduce experimen-
tal data and to evaluate the sensibility to material hardening parameters; (ii) the
implementation of the procedures described herein in a commercial finite element
software, to amplify its industrial usage; (iii) the application of the direct procedure
to identify shakedown and ratchet limits with non-linear hardening material.
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Appendix A

Residual operator and shakedown

A.1 Elastic-ideally plastic model

Due to virtual power principle, the following stress decomposition applies

σ(t) = σE(t) + σr(t). (A.1)

The flow law is associated, so the plastic strain rate follows

dp(t) ∈ Np. (A.2)

In addition, the residual operator maps plastic strains to residual stress through

σr(t) = Zεp(t). (A.3)

Shakedown occurs if ∫ t∗

0

∫
B
dint(d

p(t)) dx dt = c ∀ t∗ ≥ t̄, (A.4)

that means
dp = 0 ∀ t∗ ≥ t̄. (A.5)

Thus,
εp = C ∀ t∗ ≥ t̄, (A.6)

however, using equation (A.3)

σr = ZC ∀ t∗ ≥ t̄ (A.7)

That is, the shakedown condition results in the time independent residual stress σr.
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A.2 Armstrong Frederick model

The stress field is decomposed by,

σ(t) = σE(t) + σr(t). (A.8)

Taking only the deviatoric components,

S(t) = SE(t) + Sr(t). (A.9)

The residual operator applies

σr(t) = Zεp(t) σ̇r(t) = Zdp(t). (A.10)

The flow law is non-associated, but the plastic strain rate follows

dp(t) =
√

3
2
λ̇(t)n(t). (A.11)

The backstress evolution is

Ȧ = λ̇

[√
2
3
Hkin(t)−HnlA

]
. (A.12)

The yield surface is

f [S(t),A(t)] =
√

3
2
∥S(t)−A(t)∥ − σ0

Y ≤ 0, (A.13)

and the complementary conditions are

λ̇(t) ≥ 0 f [S(t),A(t)] λ̇(t) = 0. (A.14)

The shakedown condition reads

εp(t > t̄) = εp(t̄) = ε̄p (A.15)

Once dp(t) = ε̇p(t), thus, for all t > t̄, dp(t) = 0. So, substituting in (A.10b)

σ̇r(t) = 0 ∀ t > t̄ (A.16)

Thus,
σr(t) = σr(t̄) = σ̄r ∀ t > t̄ (A.17)
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Using dp(t) = 0 in (A.11),

0 =
√

3
2
λ̇n(t) ∀ t > t̄ (A.18)

Assuming n(t) ̸= 0, so λ̇(t) = 0, for all t > t̄. Using it in backstress evolution
equation (A.12),

A(t) = A(t̄) = Ā ∀ t > t̄ (A.19)

Using (A.9) in (A.13),

f [S(t),A(t)] =
√

3
2
∥SE(t) + Sr(t)−A(t)∥ − σ0

Y ≤ 0. (A.20)

Considering the post transient phase,

f [S(t),A(t)] =
√

3
2
∥SE(t) + (S̄

r − Ā)∥ − σ0
Y ≤ 0 ∀ t > t̄ (A.21)

Defining S̄ = S̄
r − Ā,

f [S(t),A(t)] =
√

3
2
∥SE(t) + S̄∥ − σ0

Y ≤ 0 ∀ t > t̄ (A.22)

In summary, if shakedown occurs with the AF model, there exists a time independent
S̄ that when superposed with SE(t) renders an admissible stress for all time after
the transient phase (t > t̄).

113



Appendix B

Triangular kinematical element

The examples developed in the thesis adopted elements with stress-displacement
mixed formulation. Systematic research already showed that such kind of formula-
tion is well suited to deal with elastoplastic problems (Krabbenhøft et al., 2007a,b;
Zouain et al., 2014).

In turn, the author recognizes that the kinematical formulation is the standard
choice of commercial codes, such as Ansys, when dealing with incremental analysis.
Moreover, the incremental path does not require a structural (global) deformation
operator B, but only a structural stiffness matrix K, mounted by elemental stiffness
matrices contributions.

This fact could minimize the potential implementation of the methods described
in this project, due to a cultural barrier, which, clearly, is not scientific at all.
To overcome this potential risk, the author developed a conventional element us-
ing kinematical formulation, triangular shape with straight edges and second order
interpolation functions, shown in figure B.1.

Figure B.1: Second order kinematical triangle. Nodes (n1, n2, ..., n6) and interior
Gauss points (g1, g2, g3)
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The implementation applies for plane strain. Enhanced versions of such basic
element are present in most of the commercial codes. The development includes the
determination of the structural deformation operator B and residual matrix Z.

Embracing alternatives for implementation of second order triangles can be found
in Felippa (2004).

B.1 Natural coordinates

The second order kinematic triangle is formulated considering natural coordinates
(ζ1, ζ2, ζ3). See figure B.2.

Figure B.2: Triangle natural coordinates (ζ1, ζ2, ζ3).

Equation (B.1) lists the coordinates of the triangle vertexes.

[n1, n2, n3]
T = [(x1, y1), (x2, y2), (x3, y3)]

T (B.1)

The natural coordinates (ζ1, ζ2, ζ3) relate to the Cartesian coordinates (x, y) by
the linear mapping present in equation (B.2).1x

y

 =

 1 1 1

x1 x2 x3

y1 y2 y3


ζ1ζ2
ζ3

 (B.2)

B.2 Interpolation operators

The kinematical finite element is a triangle with quadratic displacements, continuous
through elements. The nodes (n4, n5, n6) positions are in the middle of the straight
edge triangle, as show in figure B.1.
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The vector collecting the twelve displacements components ui, when considering
the six element nodes (n1, n2, ..., n6) is

ui =
[
u1
x u1

y u2
x u2

y . . . u6
x u6

y

]T
(B.3)

The interpolation functions Ni (i = 1, 2, ..., 6), shown in equations (B.4)-(B.9),
build the interpolation operator N though equation (B.10).

N1(ζ1, ζ2, ζ3) = 4ζ1

(
ζ2 −

1

2

)(
ζ3 −

1

2

)
(B.4)

N2(ζ1, ζ2, ζ3) = 4ζ2

(
ζ1 −

1

2

)(
ζ3 −

1

2

)
(B.5)

N3(ζ1, ζ2, ζ3) = 4ζ3

(
ζ1 −

1

2

)(
ζ2 −

1

2

)
(B.6)

N4(ζ1, ζ2, ζ3) = 4ζ1ζ2 (B.7)

N5(ζ1, ζ2, ζ3) = 4ζ2ζ3 (B.8)

N6(ζ1, ζ2, ζ3) = 4ζ1ζ3 (B.9)

N =
[
N11 2 N21 2 . . . N61 2

]
1 2 =

[
1 0

0 1

]
(B.10)

The interpolation operator N applied to elemental displacement vector ui gives
the interpolated displacements field inside the element.

B.3 Stress and strain vectors

The strain list, calculated at a Gauss point g, is

εg :=
[
εgx εgy 0

√
2εgxy

]
. (B.11)

The element strain vector collecting the twelve strain components, comprising three
Gauss points, is

εe :=
[
ε1 ε2 ε3

]T
. (B.12)

The stress list, calculated at a Gauss point g, is

σg :=
[
σg
x σg

y σg
z

√
2σg

xy.
]

(B.13)
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The elemental stress vector collecting the twelve stress components, considering all
three Gauss points, is

σe :=
[
σ1 σ2 σ3

]T
(B.14)

The
√
2 factor placed in the fourth position of stress list σg and strain list εg

simplifies internal work computation, using dot product between σe and εe.

B.4 Elemental deformation operator

Applying the symmetric gradient operator D on interpolation mapping N , the nodal
displacements to point strains mapping Bp is generated. This operator applies to
calculate strain list in a point p = (x, y) inside the element.

Bp = DNNN =
[
B1 B2 . . . B6

]
Bk =


Nk,x(p) 0

0 Nk,y(p)

0 0
1√
2
Nk,y(p)

1√
2
Nk,x(p)

 (B.15)

Where Nk,x := ∂Nk/∂x and Nk,y := ∂Ny/∂y.
The three interior Gauss points (g1, g2, g3) are of particular interest. By evalua-

tion and stacking, the elemental deformation operator B̄
e is generated.

B̄
e
=

Bg1

Bg2

Bg3

 (B.16)

Such operator maps the nodal displacements ue to Gauss points strain vector ε̄e

inside an element e.

ε̄e = B̄
e
ue (B.17)

For future convenience in the stiffness matrix Ke calculation, one third of the
element area Je is included in the definition of the operator Be. The motivation for
such inclusion comes from the numerical integration in the parent domain Ω (Je)
and the weights of the numerical integration (one third).

Be =
Je

3
B̄

e (B.18)
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The strain vector εe is calculated with the equation

εe = Beue. (B.19)

Intentionally, the vector εe incorporates one third of the element area due to Be

definition.

B.5 Local elasticity operator

The Gauss point elastic operator Eg maps Gauss point strain vector ε̄e to Gauss
point stress vector σg.

Eg =
E

(1 + ν)(1− 2ν)


1− ν ν ν 0

ν 1− ν ν 0

ν ν 1− ν 0

0 0 0 1− 2ν

 (B.20)

σg = Egε̄g (B.21)

The elemental (local) elastic operator Ēe maps the element strain vector ε̄e to
element stress vector σe.

Ē
e =

Eg 000 000

000 Eg 000

000 000 Eg

 (B.22)

σσσe = Ēeε̄e (B.23)

Again, to simplify future calculation of Ke, a slight modification is proposed to
compute Ee.

E
e =

3

Je
Ē

e (B.24)

Thus, alternatively to (B.23),

σe = Eeεe. (B.25)

B.6 Global deformation operator

The procedure to mount the global deformation matrix B is similar to the conven-
tional one applied to mount stiffness matrix K. The assembly of the operator B is
required to apply the operations that define the residual operator Z.
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To build B, two connectivity matrices are necessary, Cu and Cs. The matrix
Cu connects the labels of the degrees of freedom (displacements) for the global mesh
with the labels of the local degrees of freedom. Each line of Cu corresponds to an
element e. The line has twelve positions, filled by the labels of the element degrees
of freedom corresponding to the twelve local labels 1, 2, .., 12 (six nodes, with two
displacements in each). The use of the matrix Cu is a standard practice for the
assembly of the matrix K.

Additionally, the matrix Cs stacks the global labels of the elemental strain com-
ponents. Each row corresponds to an element e. The row has twelve positions,
corresponding to the three Gauss points times the four strain components per point.
The construction of Cs is straightforward, stacking sequential integers. That is, the
first line has the sequence 1, 2, ...12, the second 13, 14, ..., 24 and so on.

Thus, the assembly of the global deformation operator follows the procedure
described by algorithm 6

Procedure: B Assembly

for e = 1 : number of elements of the mesh

for i = 1 : number of total strain components of the mesh
for j = 1 : number of degrees of freedom of the mesh
l := Cs

e,i m := Cu
e,j

Bl,m := Bl,m +Be
i,j

end for
end for

end for

end procedure B Assembly

Algorithm 6: Global Deformation Operator Assembly

The global deformation operator B maps the global mesh displacement vector
u into the global mesh strain components vector ε.

ε = Bu (B.26)

B.7 Global elasticity operator

The global elasticity matrix E stacks n elemental elasticity operators Ee (with
e = 1, 2, ..., n) through equation B.27.
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E =



E
1 0 0 . . . 0

0 E
2 0 . . . 0

0 0 E
3 . . . 0

...
...

... . . . ...
0 0 0 . . . E

n


(B.27)

It maps the global mesh strain components ε into global mesh stress components
σ, by the equation

σ = Eε. (B.28)

B.8 Elemental stiffness matrix

The computation of the elemental stiffness matrix is

Ke =

∫
A

B̄
eT
Ē

eB̄
e
dA (B.29)

Modifying coordinates to natural coordinates,

Ke =

∫
Ω

B̄
eT
Ē

eB̄
e
JedΩ, (B.30)

where dΩ is the infinitesimal area element in natural coordinates and Ω represents
its integration limits.

Taking in consideration that at the Gauss points, the value of the evaluated inter-
polation functions multiplied by the element area and weighted by 1/3 approximates
the integral result,

Ke =
Je

3
B̄

eT
Ē

eB̄
e
. (B.31)

Considering previous definitions,

Ke = BeT
E

eBe (B.32)

B.9 Global stiffness matrix

Using the elemental stiffness matrices Ke, algorithm 7 applies as the conventional
route to assembly the global stiffness matrix K.
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Procedure: K Assembly

for e = 1 : number of elements of the mesh

for i = 1 : Number of degrees of freedom of the mesh
for j = 1 : Number of degrees of freedom of the mesh
l := Cu

e,i m := Cu
e,j

Kl,m := Kl,m +Ke
i,j

end for
end for

end for

end procedure K Assembly

Algorithm 7: Global Stiffness Operator Assembly

Alternatively, if the global deformation operator B is computed with algorithm 6
and global elasticity operator E with the equation (B.27), the global stiffness matrix
K can be directly computed by

K = BT
EB (B.33)

B.10 Residual matrix

Once B and K are assembled, the operations to mount the residual matrix are

Z = EBK−1BT
E −E. (B.34)

Remarkably, Z tends to become a big matrix, so the algorithm applies the sequential
operations that form Z in order to perform.

B.11 Example of application - PCHE

Figure B.3 shows the norm of the ratchet strain ∥∆ε∥ using different element for-
mulations. The model is the same reported in section 5.4.7.

Concerning direct results, the Figure shows two mixed stress-displacement and
the kinematical formulation. The mixed formulations are S3–σm–v6 and σ3–v6.
Whereas v6 is the kinematical formulation introduced in this annex. In sequence the
incremental result generated with Ansys and PLANE183 kinematical formulation
appears in the same figure.
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Figure B.3: Norm of the ratchet strain ∥∆ε∥ with different elements.
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Appendix C

Integrating with a generalized
midpoint approximation

Artioli et al. (2007) and de Souza Neto et al. (2008, p. 202)
Given σE(t) = SE(t) + σE

m(t)1 , find σr(t), A(t), and dp(t) such that

σr(t) = Sr(t) + σr
m(t)1 (C.1)

dp =
√

3
2
λ̇n (C.2)

Ȧ = λ̇

(√
2
3
Hkin−HnlA

)
(C.3)

n =
S −A

∥S −A∥
(C.4)

f =
√

3
2
∥S −A∥ − σ0

Y ⩽ 0 λ̇ ⩾ 0 fλ̇ = 0 (C.5)

Generalized midpoint approximation

Consider the generalized midpoint approximation of the constitutive evolutive equa-
tions (C.1-C.5), where ϑ ∈ [0, 1] and ϑ = 1 gives purely implicit Euler approximation
(Artioli et al., 2007, p. 1829).

Sj − Sj−1 = 2G (δεdev,j − δεp,j) (C.6)

δεp,j =
√

3
2
δλnϑ (C.7)

Aj −Aj−1 = δλ
(
Hkin

ϑ −HnlA
ϑ
)

(C.8)

κj = Sj −Aj (C.9)

f j =
√

3
2
∥κj∥ − σ0

Y ⩽ 0 δλ ⩾ 0 f jδλ = 0 (C.10)
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where

nϑ =
κϑ

∥κϑ∥
(C.11)

κϑ = Sϑ −Aϑ (C.12)

Sϑ := ϑSj + (1− ϑ)Sj−1 (C.13)

Aϑ := ϑAj + (1− ϑ)Aj−1 (C.14)

Given the current approximations Sr,j, δεp,j and Aj−1, the definition of the
driving parameters is

Strial := SE,j + Sr,j + 2Gδεp,j Atrial := Aj−1 (C.15)

κtrial := Strial −Atrial (C.16)

The new approximations δεp,j and A := Aj are found by solving the generalized
midpoint equations, with additional unknowns S, δλ and nϑ.

If
√

3
2
∥κtrial∥ ⩽ σ0

Y the response is the trial state. Otherwise, proceed to solve

Strial = S + 2Gδεp,j (C.17)

δεp,j =
√

3
2
δλnϑ (C.18)

A−Atrial = δλ

(√
2
3
Hkin

ϑ −HnlA
ϑ

)
(C.19)

nϑ =
κϑ

∥κϑ∥
(C.20)

κϑ = Sϑ −Aϑ (C.21)

Aϑ := ϑA+ (1− ϑ)Atrial (C.22)

Sϑ := ϑS + (1− ϑ)Sj−1 (C.23)

κ = S −A (C.24)√
3
2
∥κ∥ = σ0

Y (C.25)

Note that with
κj−1 := Sj−1 −Atrial (C.26)

Thus,
κϑ = ϑκ+ (1− ϑ)κj−1 (C.27)

Eliminating the unknown δεp,j from the system of equations (C.17-C.25), one
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obtains a system to be solved for the main unknowns δλ, S and A.

Strial = S +
√
6Gδλnϑ (C.28)

A−Atrial = δλ

(√
2
3
Hkin

ϑ −HnlA
ϑ

)
(C.29)

nϑ =
κϑ

∥κϑ∥
(C.30)

κϑ = Sϑ −Aϑ (C.31)

Aϑ := ϑA+ (1− ϑ)Atrial (C.32)

Sϑ := ϑS + (1− ϑ)Sj−1 (C.33)

κ = S −A (C.34)√
3
2
∥κ∥ = σ0

Y (C.35)

It is proved in the following sections that this system can be solved by firstly
computing δλ as the least positive root of a tenth degree polynomial. Then, the
other unknowns are computed by sequentially applying the following equalities.

1. Basic solution.

Here, sequentially apply the following equalities.

Sϑ,trial := ϑStrial + (1− ϑ)Sj−1 (C.36)

Vλ := (1 + ϑHnlδλ)
−1 (C.37)

κλ := Sϑ,trial − VλA
trial (C.38)

nϑ :=
κλ

∥κλ∥
(C.39)

Sϑ = Sϑ,trial −
√
6ϑGδλnϑ (C.40)

S = 1
ϑ

[
Sϑ − (1− ϑ)Sj−1

]
(C.41)

Aϑ = VλA
trial +

√
2
3
ϑHkiδλVλn

ϑ (C.42)

A = 1
ϑ

[
Aϑ − (1− ϑ)Atrial] (C.43)

κ = S −A (C.44)

n =
κ

∥κ∥
(C.45)

2. Updating equations

Aj = A (C.46)

δβj = 3
2Hki

(Aj −Aj−1) (C.47)
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Finally, the alternative updates are

δεp,j =
√

3
2
δλnϑ (C.48)

or
δεp,j =

√
3
2
δλn (C.49)

where the first one is the only consistent with the proposed approximate inte-
gration given by (C.17-C.25).

C.1 The equation in δλ for midpoint integration

Strial = S +
√
6Gδλnϑ (C.50)

Sϑ := ϑS + (1− ϑ)Sj−1 (C.51)

ϑStrial = ϑS +
√
6ϑGδλnϑ (C.52)

ϑStrial = Sϑ − (1− ϑ)Sj−1 +
√
6ϑGδλnϑ (C.53)

Sϑ,trial := ϑStrial + (1− ϑ)Sj−1 (C.54)

Sϑ = Sϑ,trial −
√
6ϑGδλnϑ (C.55)

ϑA− ϑAtrial = ϑδλ

(√
2
3
Hkin

ϑ −HnlA
ϑ

)
(C.56)

Aϑ = ϑA+ (1− ϑ)Atrial (C.57)

Aϑ − (1− ϑ)Atrial − ϑAtrial = ϑδλ

(√
2
3
Hkin

ϑ −HnlA
ϑ

)
(C.58)

Aϑ −Atrial = ϑδλ

(√
2
3
Hkin

ϑ −HnlA
ϑ

)
(C.59)

(1 + ϑHnlδλ)A
ϑ = Atrial +

√
2
3
ϑHkiδλn

ϑ (C.60)

Vλ := (1 + ϑHnlδλ)
−1 (C.61)

Aϑ = VλA
trial +

√
2
3
ϑHkiδλVλn

ϑ (C.62)

κϑ = Sϑ,trial −
√
6ϑGδλnϑ − VλA

trial −
√

2
3
ϑHkiδλVλn

ϑ (C.63)

κϑ = Sϑ,trial − VλA
trial −

√
6ϑGδλnϑ −

√
2
3
ϑHkiδλVλn

ϑ (C.64)
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κϑ = Sϑ,trial − VλA
trial − (

√
6ϑGδλ+

√
2
3
ϑHkiδλVλ)n

ϑ (C.65)

Defining
κλ := Sϑ,trial − VλA

trial (C.66)

Yλ := ϑδλ

(√
6G +

√
2
3
HkiVλ

)
(C.67)

So that (C.65) becomes
κλ = κϑ + Yλn

ϑ (C.68)

Now, a crucial step: Since κϑ = ∥κϑ∥nϑ and Yλ > 0 (for δλ > 0, thus, Vλ > 0),
it is deduced from (C.68) that

nϑ =
κλ

∥κλ∥
(C.69)

and
∥κλ∥ = ∥κϑ∥+ Yλ (C.70)

Then
κϑ = κλ − Yλn

ϑ = κλ − Yλ

∥κλ∥
κλ (C.71)

or
κϑ =

(
1− Yλ

∥κλ∥

)
κλ (C.72)

Recalling that, if ϑ > 0,

κ = 1
ϑ
κϑ − 1−ϑ

ϑ
κj−1 (C.73)

Substituting κϑ, from (C.72), in the above equation,

ϑκ =

(
1− Yλ

∥κλ∥

)
κλ − (1− ϑ)κj−1 (C.74)

ϑ2∥κ∥2 =
(
1− Yλ

∥κλ∥

)2

∥κλ∥2 + (1− ϑ)2∥κj−1∥2

− 2(1− ϑ)

(
1− Yλ

∥κλ∥

)
κj−1 · κλ (C.75)

(
1− Yλ

∥κλ∥

)2

∥κλ∥2 + (1− ϑ)2∥κj−1∥2

− 2(1− ϑ)

(
1− Yλ

∥κλ∥

)
κj−1 · κλ − 2

3
ϑ2σ0

Y
2
= 0 (C.76)
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Defining w

w := 2
3
ϑ2σ0

Y
2 − (1− ϑ)2∥κj−1∥2 (C.77)

(
1− Yλ

∥κλ∥

)2

∥κλ∥2 − 2(1− ϑ)

(
1− Yλ

∥κλ∥

)
κj−1 · κλ − w = 0 (C.78)

∥κλ∥2 + Y 2
λ − 2Yλ∥κλ∥ − 2(1− ϑ)κj−1 · κλ +

2(1− ϑ)Yλ

∥κλ∥
κj−1 · κλ − w = 0 (C.79)

∥κλ∥2 + Y 2
λ − 2(1− ϑ)κj−1 · κλ − w = 2Yλ∥κλ∥ − 2(1− ϑ)Yλ

∥κλ∥
κj−1 · κλ (C.80)

(
∥κλ∥2 + Y 2

λ − 2(1− ϑ)κj−1 · κλ − w
)2

=

(
2Yλ∥κλ∥ − 2(1− ϑ)Yλ

∥κλ∥
κj−1 · κλ

)2

(C.81)

∥κλ∥4 + Y 4
λ + 4(1− ϑ)2(κj−1 · κλ)2 + w2

+ 2Y 2
λ ∥κλ∥2 − 4(1− ϑ)∥κλ∥2(κj−1 · κλ)− 2w∥κλ∥2

− 4(1− ϑ)Y 2
λ (κ

j−1 · κλ)− 2wY 2
λ + 4w(1− ϑ)(κj−1 · κλ)

= 4Y 2
λ ∥κλ∥2 + 4(1− ϑ)2Y 2

λ

∥κλ∥2
(κj−1 · κλ)2 − 8(1− ϑ)Y 2

λ (κ
j−1 · κλ) (C.82)

Multiplying by ∥κλ∥2

∥κλ∥6 + Y 4
λ ∥κλ∥2 + 4(1− ϑ)2∥κλ∥2(κj−1 · κλ)2 + w2∥κλ∥2

+ 2Y 2
λ ∥κλ∥4 − 4(1− ϑ)∥κλ∥4(κj−1 · κλ)− 2w∥κλ∥4

− 4(1− ϑ)Y 2
λ ∥κλ∥2(κj−1 · κλ)− 2wY 2

λ ∥κλ∥2 + 4w(1− ϑ)∥κλ∥2(κj−1 · κλ)

= 4Y 2
λ ∥κλ∥4 + 4(1− ϑ)2Y 2

λ (κ
j−1 · κλ)2 − 8(1− ϑ)Y 2

λ ∥κλ∥2(κj−1 · κλ) (C.83)

Let
Zλ := V −1

λ = 1 + ϑHnlδλ (C.84)
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Then, recalling the definition (C.66) of κλ

Zλκ
λ = κ̄λ := ZλS

ϑ,trial −Atrial = (1 + ϑHnlδλ)S
ϑ,trial −Atrial (C.85)

Analogously, using the previous definition

Yλ := ϑδλ

(√
6G +

√
2
3
HkiVλ

)
(C.86)

and introducing

Qλ := ZλYλ = ϑδλ

(√
6GZλ +

√
2
3
Hki

)
= ϑδλ

[√
6G (1 + ϑHnlδλ) +

√
2
3
Hki

]
=

√
6ϑ2GHnlδλ

2 + ϑ

(√
6G +

√
2
3
Hki

)
δλ (C.87)

∥κλ∥6 + Y 4
λ ∥κλ∥2 + 4(1− ϑ)2∥κλ∥2(κj−1 · κλ)2 + w2∥κλ∥2

+ 2Y 2
λ ∥κλ∥4 − 4(1− ϑ)∥κλ∥4(κj−1 · κλ)− 2w∥κλ∥4

− 4(1− ϑ)Y 2
λ ∥κλ∥2(κj−1 · κλ)− 2wY 2

λ ∥κλ∥2 + 4w(1− ϑ)∥κλ∥2(κj−1 · κλ)

= 4Y 2
λ ∥κλ∥4 + 4(1− ϑ)2Y 2

λ (κ
j−1 · κλ)2 − 8(1− ϑ)Y 2

λ ∥κλ∥2(κj−1 · κλ) (C.88)

C.2 The polynomial equation

Let
Qλ := ZλYλ κ̄λ := Zλκ

λ

Multiplying now by Z6
λ to obtain

∥κ̄λ∥6 +Q4
λ∥κ̄λ∥2 + 4(1− ϑ)2Z2

λ∥κ̄λ∥2(κj−1 · κ̄λ)2 + w2Z4
λ∥κ̄λ∥2

+ 2Q2
λ∥κ̄λ∥4 − 4(1− ϑ)Zλ∥κ̄λ∥4(κj−1 · κ̄λ)− 2wZ2

λ∥κ̄λ∥4

− 4(1− ϑ)ZλQ
2
λ∥κ̄λ∥2(κj−1 · κ̄λ)− 2wZ2

λQ
2
λ∥κ̄λ∥2 + 4w(1− ϑ)Z3

λ∥κ̄λ∥2(κj−1 · κ̄λ)

− 4Q2
λ∥κ̄λ∥4 − 4(1− ϑ)2Z2

λQ
2
λ(κ

j−1 · κ̄λ)2 + 8(1− ϑ)ZλQ
2
λ∥κ̄λ∥2(κj−1 · κ̄λ) = 0

(C.89)
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or, simplifying terms,

∥κ̄λ∥6 +Q4
λ∥κ̄λ∥2 + 4(1− ϑ)2Z2

λ∥κ̄λ∥2(κj−1 · κ̄λ)2 + w2Z4
λ∥κ̄λ∥2

− 2Q2
λ∥κ̄λ∥4 − 4(1− ϑ)Zλ∥κ̄λ∥4(κj−1 · κ̄λ)− 2wZ2

λ∥κ̄λ∥4

− 2wZ2
λQ

2
λ∥κ̄λ∥2 + 4w(1− ϑ)Z3

λ∥κ̄λ∥2(κj−1 · κ̄λ)

− 4(1− ϑ)2Z2
λQ

2
λ(κ

j−1 · κ̄λ)2 + 4(1− ϑ)ZλQ
2
λ∥κ̄λ∥2(κj−1 · κ̄λ) = 0 (C.90)

which is a 10th-degree polynomial in δλ.
Rearranging to put higher degrees first,

Q4
λ∥κ̄λ∥2 − 2Q2

λ∥κ̄λ∥4 + 4(1− ϑ)ZλQ
2
λ∥κ̄λ∥2(κj−1 · κ̄λ)− 2wZ2

λQ
2
λ∥κ̄λ∥2

− 4(1− ϑ)2Z2
λQ

2
λ(κ

j−1 · κ̄λ)2 + ∥κ̄λ∥6

+ 4(1− ϑ)2Z2
λ∥κ̄λ∥2(κj−1 · κ̄λ)2 + w2Z4

λ∥κ̄λ∥2 − 4(1− ϑ)Zλ∥κ̄λ∥4(κj−1 · κ̄λ)

− 2wZ2
λ∥κ̄λ∥4 + 4w(1− ϑ)Z3

λ∥κ̄λ∥2(κj−1 · κ̄λ) = 0 (C.91)

Equivalently, denoting ηλ := (1− ϑ)
(
κj−1 · κ̄λ

)
,

Q4
λ∥κ̄λ∥2 − 2Q2

λ∥κ̄λ∥4 + 4ZληλQ
2
λ∥κ̄λ∥2 − 2wZ2

λQ
2
λ∥κ̄λ∥2 − 4Z2

λη
2
λQ

2
λ

+ ∥κ̄λ∥6 + 4Z2
λη

2
λ∥κ̄λ∥2 + w2Z4

λ∥κ̄λ∥2 − 4Zληλ∥κ̄λ∥4 − 2wZ2
λ∥κ̄λ∥4

+ 4wZ3
ληλ∥κ̄λ∥2 = 0 (C.92)

or

Q4
λ∥κ̄λ∥2 − 2Q2

λ∥κ̄λ∥4 + 2Zλ (2ηλ − wZλ)Q
2
λ∥κ̄λ∥2 − 4Z2

λη
2
λQ

2
λ

+ ∥κ̄λ∥6 + 4Z2
λη

2
λ∥κ̄λ∥2 + w2Z4

λ∥κ̄λ∥2 − 2Zλ (2ηλ + wZλ) ∥κ̄λ∥4

+ 4wZ3
ληλ∥κ̄λ∥2 = 0 (C.93)
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For the sake of simplicity it is defined

h := ϑHnl (C.94)

g :=
√
6ϑG (C.95)

w := 2
3
ϑ2σ0

Y
2 − (1− ϑ)2∥κj−1∥2 (C.96)

cgh := ϑ

(√
6G +

√
2
3
Hki

)
(C.97)

Zλ := V −1
λ = hδλ+ 1 (C.98)

Yλ := ϑδλ

(√
6G +

√
2
3
HkiVλ

)
(C.99)

Qλ := ZλYλ = ϑδλ

(√
6GZλ +

√
2
3
Hki

)
= δλ (> hδλ+ cgh) (C.100)

Sϑ,trial := ϑStrial + (1− ϑ)Sj−1 (C.101)

s̄SS := ∥Sϑ,trial∥2 (C.102)

sAA := ∥Atrial∥2 (C.103)

s̄SA := Sϑ,trial ·Atrial (C.104)

s̄κ := ∥Sϑ,trial −Atrial∥2 = s̄SS − 2s̄SA + sAA (C.105)

s0 := ∥κj−1∥4 = ∥Sj−1 −Atrial∥4 (C.106)

tS := κj−1 · Strial (C.107)

tA := κj−1 ·Atrial (C.108)

rS := κj−1 · Sj−1 (C.109)

cκ0 := (1− ϑ) {[ϑtS + (1− ϑ)rS]− tA} (C.110)

cκ1 := h(1− ϑ) [ϑtS + (1− ϑ)rS] (C.111)

κλ := Sϑ,trial − VλA
trial (C.112)

κ̄λ := Zλκ
λ = ZλS

ϑ,trial −Atrial (C.113)

ηλ := (1− ϑ)
(
κj−1 · κ̄λ

)
= cκ1δλ+ cκ0 (C.114)
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Intermediate expressions

Expressions in ηλ := (1− ϑ)
(
κj−1 · κ̄λ

)
ηλ := (1− ϑ)

(
κj−1 · κ̄λ

)
(C.115)

= (1− ϑ)
[
κj−1 · (ZλS

ϑ,trial −Atrial)
]

= (1− ϑ)
{
κj−1 ·

{
(hδλ+ 1)

[
ϑStrial + (1− ϑ)Sj−1

]
−Atrial}}

= (1− ϑ){(hδλ+ 1) [ϑtS + (1− ϑ)rS]− tA}

= (1− ϑ){h [ϑtS + (1− ϑ)rS] δλ+ [ϑtS + (1− ϑ)rS]− tA} (C.116)

ηλ = cκ1δλ+ cκ0 (C.117)

Expressions in Zλ

Zλ = hδλ+ 1 (C.118)

Z2
λ = h2δλ2 + 2hδλ+ 1 (C.119)

Z3
λ = h3δλ3 + 3h2δλ2 + 3hδλ+ 1 (C.120)

Z4
λ = h4δλ4 + 4h3δλ3 + 6h2δλ2 + 4hδλ+ 1 (C.121)

4wZ3
λ = z33δλ

3 + z32δλ
2 + z31δλ+ z30 (C.122)

w2Z4
λ = z44δλ

4 + z43δλ
3 + z42δλ

2 + z41δλ+ z40 (C.123)

Expressions in Zληλ

Z2
λη

2
λ =

(
h2δλ2 + 2hδλ+ 1

) (
c2κ1δλ

2 + 2cκ1cκ0δλ+ c2κ0
)

(C.124)

= h2c2κ1δλ
4 + 2h

(
hcκ1cκ0 + c2κ1

)
δλ3 (C.125)

+
(
h2c2κ0 + c2κ1 + 4hcκ1cκ0

)
δλ2 + 2

(
hc2κ0 + cκ1cκ0

)
δλ+ c2κ0 (C.126)

4Z2
λη

2
λ = p4δλ

4 + p3δλ
3 + p2δλ

2 + p1δλ+ p0 (C.127)

p0 = 4c2κ0 (C.128)

p1 = 8
(
hc2κ0 + cκ1cκ0

)
(C.129)

p2 = 4
(
h2c2κ0 + c2κ1

)
+ 16hcκ1cκ0 (C.130)

p3 = 8h
(
hcκ1cκ0 + c2κ1

)
(C.131)

p4 = 4h2c2κ1 (C.132)
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Expressions in Qλ

Qλ => hδλ2 + cghδλ (C.133)

Q2
λ =>2 h2δλ4 + 2 > hcghδλ

3 + c2ghδλ
2 (C.134)

Q4
λ =>4 h4δλ8 + 4 >2 h2c2ghδλ

6 + c4ghδλ
4

+ 4 >3 h3cghδλ
7 + 2 >2 h2c2ghδλ

6 + 4 > hc3ghδλ
5 (C.135)

Q4
λ =>4 h4δλ8 + 4 >3 h3cghδλ

7 + 6 >2 h2c2ghδλ
6 + 4 > hc3ghδλ

5 + c4ghδλ
4 (C.136)

Q2
λ = δλ2

(
q22δλ

2 + q21δλ+ q20
)

(C.137)

Q4
λ = δλ4

(
q44δλ

4 + q43δλ
3 + q42δλ

2 + q41δλ+ q40
)

(C.138)

q20 = c2gh (C.139)

q21 = 2 > hcgh (C.140)

q22 =>2 h2 (C.141)

q40 = q220 (C.142)

q41 = 2q21q20 (C.143)

q42 = q221 + 2q22q20 = 6q22q20 (C.144)

q43 = 2q22q21 (C.145)

q44 = q222 (C.146)

Expressions in κ̄λ

κ̄λ := ZλS
ϑ,trial −Atrial (C.147)

∥κ̄λ∥2 = Z2
λs̄SS − 2Zλs̄SA + sAA (C.148)

∥κ̄λ∥2 = (h2δλ2 + 2hδλ+ 1)s̄SS − 2(hδλ+ 1)s̄SA + sAA (C.149)

∥κ̄λ∥2 = h2s̄SSδλ
2 + 2h(s̄SS − s̄SA)δλ+ s̄SS − 2s̄SA + sAA (C.150)

∥κ̄λ∥2 = h2s̄SSδλ
2 + 2h(s̄SS − s̄SA)δλ+ s̄κ (C.151)

∥κ̄λ∥2 = k22δλ
2 + k21δλ+ k20 (C.152)

∥κ̄λ∥4 = k44δλ
4 + k43δλ

3 + k42δλ
2 + k41δλ+ k40 (C.153)

∥κ̄λ∥6 = k66δλ
6 + k65δλ

5 + k64δλ
4 + k63δλ

3 + k62δλ
2 + k61δλ+ k60 (C.154)
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k20 = s̄κ (C.155)

k21 = 2h(s̄SS − s̄SA) (C.156)

k22 = h2s̄SS (C.157)

k40 = k2
20 (C.158)

k41 = 2k21k20 (C.159)

k42 = k2
21 + 2k22k20 (C.160)

k43 = 2k22k21 (C.161)

k44 = k2
22 (C.162)

k60 = k40k20 (C.163)

k61 = k41k20 + k40k21 (C.164)

k62 = k42k20 + k41k21 + k40k22 (C.165)

k63 = k43k20 + k42k21 + k41k22 (C.166)

k64 = k44k20 + k43k21 + k42k22 (C.167)

k65 = k44k21 + k43k22 (C.168)

k66 = k44k22 (C.169)

Expressions in Q2
λ∥κ̄λ∥2

Q2
λ∥κ̄λ∥2 = δλ2

(
q22δλ

2 + q21δλ+ q20
) (

k22δλ
2 + k21δλ+ k20

)
(C.170)

Q2
λ∥κ̄λ∥2 = q22k22δλ

6 (C.171)

+ (q22k21 + q21k22) δλ
5 (C.172)

+ (q22k20 + q21k21 + q20k22) δλ
4 (C.173)

+ (q21k20 + q20k21) δλ
3 (C.174)

+ q20k20δλ
2 (C.175)

Q2
λ∥κ̄λ∥2 = m6δλ

6 +m5δλ
5 +m4δλ

4 +m3δλ
3 +m2δλ

2 (C.176)
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m2 := q20k20 (C.177)

m3 := q21k20 + q20k21 (C.178)

m4 := q22k20 + q21k21 + q20k22 (C.179)

m5 := q22k21 + q21k22 (C.180)

m6 := q22k22 (C.181)

Expanding the polynomial expression

Q4
λ∥κ̄λ∥2 − 2Q2

λ∥κ̄λ∥4 + 2Zλ (2ηλ − wZλ)Q
2
λ∥κ̄λ∥2 − 4Z2

λη
2
λQ

2
λ

+ ∥κ̄λ∥6 + 4Z2
λη

2
λ∥κ̄λ∥2 + w2Z4

λ∥κ̄λ∥2 − 2Zλ (2ηλ + wZλ) ∥κ̄λ∥4

+ 4wZ3
ληλ∥κ̄λ∥2 = 0 (C.182)

Term 1

Q4
λ∥κ̄λ∥2 = δλ4

(
q44δλ

4 + q43δλ
3 + q42δλ

2 + q41δλ+ q40
) (

k22δλ
2 + k21δλ+ k20

)
(C.183)

Q4
λ∥κ̄λ∥2 = q44k22δλ

10

+ (q44k21 + q43k22) δλ
9

+ (q44k20 + q43k21 + q42k22) δλ
8

+ (q43k20 + q42k21 + q41k22) δλ
7

+ (q42k20 + q41k21 + q40k22) δλ
6

+ (q41k20 + q40k21) δλ
5

+ q40k20δλ
4 (C.184)

Term 2

−2Q2
λ∥κ̄λ∥4 = − 2δλ2

(
q22δλ

2 + q21δλ+ q20
)(

k44δλ
4 + k43δλ

3 + k42δλ
2 + k41δλ+ k40

)
(C.185)
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−2Q2
λ∥κ̄λ∥4 = − 2q22k44δλ

8

− (2q22k43 + 2q21k44) δλ
7

− (2q22k42 + 2q21k43 + 2q20k44) δλ
6

− (2q22k41 + 2q21k42 + 2q20k43) δλ
5

− (2q22k40 + 2q21k41 + 2q20k42) δλ
4

− (2q21k40 + 2q20k41) δλ
3

− 2q20k40δλ
2 (C.186)

Term 3

2Zλ (2ηλ − wZλ)Q
2
λ∥κ̄λ∥2 =(

m6δλ
6 +m5δλ

5 +m4δλ
4 +m3δλ

3 +m2δλ
2
) (

n2δλ
2 + n1δλ+ n0

)
(C.187)

2Zλ (2ηλ − wZλ) = 2 (hδλ+ 1) {2 (cκ1δλ+ cκ0)− w (hδλ+ 1)} (C.188)

= 2 (hδλ+ 1) {(2cκ1δλ+ 2cκ0)− (hwδλ+ w)} (C.189)

= 2 (hδλ+ 1) [(2cκ1 − hw) δλ+ (2cκ0 − w)] (C.190)

= 2
{
h (2cκ1 − hw) δλ2

+ [h(2cκ0 − w) + (2cκ1 − hw)] δλ+ (2cκ0 − w)} (C.191)

= n2δλ
2 + n1δλ+ n0 (C.192)

n0 := 2(2cκ0 − w) (C.193)

n1 := 2 [h(2cκ0 − w) + (2cκ1 − hw)]

= 4 (cκ1 + hcκ0 − hw) (C.194)

n2 := 2h (2cκ1 − hw) (C.195)

2Zλ (4ηλ − 2wZλ)Q
2
λ∥κ̄λ∥2 = m6n2δλ

8 (C.196)

+ (m6n1 +m5n2) δλ
7 (C.197)

+ (m6n0 +m5n1 +m4n2) δλ
6 (C.198)

+ (m5n0 +m4n1 +m3n2) δλ
5 (C.199)

+ (m4n0 +m3n1 +m2n2) δλ
4 (C.200)

+ (m3n0 +m2n1) δλ
3 (C.201)

+m2n0δλ
2 (C.202)
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Term 4

− 4Z2
λη

2
λQ

2
λ =

− δλ2
(
p4δλ

4 + p3δλ
3 + p2δλ

2 + p1δλ+ p0
) (

q22δλ
2 + q21δλ+ q20

)
(C.203)

−4Z2
λη

2
λQ

2
λ =− p4q22δλ

8 (C.204)

− (p4q21 + p3q22) δλ
7 (C.205)

− (p4q20 + p3q21 + p2q22) δλ
6 (C.206)

− (p3q20 + p2q21 + p1q22) δλ
5 (C.207)

− (p2q20 + p1q21 + p0q22) δλ
4 (C.208)

− (p1q20 + p0q21) δλ
3 (C.209)

− p0q20δλ
2 (C.210)

(C.211)

Term 5

∥κ̄λ∥6 = k66δλ
6 + k65δλ

5 + k64δλ
4 + k63δλ

3 + k62δλ
2 + k61δλ+ k60 (C.212)

Term 6

4Z2
λη

2
λ∥κ̄λ∥2 =(

p4δλ
4 + p3δλ

3 + p2δλ
2 + p1δλ+ p0

) (
k22δλ

2 + k21δλ+ k20
)

(C.213)

4Z2
λη

2
λ∥κ̄λ∥2 = p4k22δλ

6 (C.214)

+ (p4k21 + p3k22) δλ
5 (C.215)

+ (p4k20 + p3k21 + p2k22) δλ
4 (C.216)

+ (p3k20 + p2k21 + p1k22) δλ
3 (C.217)

+ (p2k20 + p1k21 + p0k22) δλ
2 (C.218)

+ (p1k20 + p0k21) δλ (C.219)

+ p0k20 (C.220)

Term 7

w2Z4
λ∥κ̄λ∥2 =(

z44δλ
4 + z43δλ

3 + z42δλ
2 + z41δλ+ z40

) (
k22δλ

2 + k21δλ+ k20
)

(C.221)
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w2Z4
λ∥κ̄λ∥2 = z44k22δλ

6 (C.222)

+ (z44k21 + z43k22) δλ
5 (C.223)

+ (z44k20 + z43k21 + z42k22) δλ
4 (C.224)

+ (z43k20 + z42k21 + z41k22) δλ
3 (C.225)

+ (z42k20 + z41k21 + z40k22) δλ
2 (C.226)

+ (z41k20 + z40k21) δλ (C.227)

+ z40k20 (C.228)

Term 8

− 2Zλ (2ηλ + wZλ) ∥κ̄λ∥4 =(
k44δλ

4 + k43δλ
3 + k42δλ

2 + k41δλ+ k40
) (

u2δλ
2 + u1δλ+ u0

)
(C.229)

2Zλ (2ηλ + wZλ) = 2 (hδλ+ 1) {2 (cκ1δλ+ cκ0) + w (hδλ+ 1)} (C.230)

= 2 (hδλ+ 1) {(2cκ1δλ+ 2cκ0) + (hwδλ+ w)} (C.231)

= 2 (hδλ+ 1) [(2cκ1 + hw) δλ+ (2cκ0 + w)] (C.232)

= 2
{
h (2cκ1 + hw) δλ2

+ [h(2cκ0 + w) + (2cκ1 + hw)] δλ+ (2cκ0 + w)} (C.233)

= u2δλ
2 + u1δλ+ u0 (C.234)

−2Zλ (2ηλ + wZλ) ∥κ̄λ∥4 = − k44u2δλ
6 (C.235)

− (k44u1 + k43u2) δλ
5 (C.236)

− (k44u0 + k43u1 + k42u2) δλ
4 (C.237)

− (k43u0 + k42u1 + k41u2) δλ
3 (C.238)

− (k42u0 + k41u1 + k40u2) δλ
2 (C.239)

− (k41u0 + k40u1) δλ (C.240)

− k40u0 (C.241)

138



Term 9

4wZ3
ληλ∥κ̄λ∥2 =(

t4δλ
4 + t3δλ

3 + t2δλ
2 + t1δλ+ t0

) (
k22δλ

2 + k21δλ+ k20
)

(C.242)

4wZ3
ληλ∥κ̄λ∥2 = t4k22δλ

6 (C.243)

+ (t4k21 + t3k22) δλ
5 (C.244)

+ (t4k20 + t3k21 + t2k22) δλ
4 (C.245)

+ (t3k20 + t2k21 + t1k22) δλ
3 (C.246)

+ (t2k20 + t1k21 + t0k22) δλ
2 (C.247)

+ (t1k20 + t0k21) δλ (C.248)

+ t0k20 (C.249)

4wZ3
ληλ =

(
z33δλ

3 + z32δλ
2 + z31δλ+ z30

)
(cκ1δλ+ cκ0) (C.250)

= t4δλ
4 + t3δλ

3 + t2δλ
2 + t1δλ+ t0 (C.251)

t4 := z33cκ1 (C.252)

t3 := z33cκ0 + z32cκ1 (C.253)

t2 := z32cκ0 + z31cκ1 (C.254)

t1 := z31cκ0 + z30cκ1 (C.255)

t0 := z30cκ0 (C.256)
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C.3 Computing the coefficients

h := ϑHnl (C.257)

g :=
√
6ϑG (C.258)

w := 2
3
ϑ2σ0

Y
2 − (1− ϑ)2∥κj−1∥2 (C.259)

cgh := ϑ

(√
6G +

√
2
3
Hki

)
(C.260)

Sϑ,trial := ϑStrial + (1− ϑ)Sj−1 (C.261)

s̄SS := ∥Sϑ,trial∥2 (C.262)

sAA := ∥Atrial∥2 (C.263)

s̄SA := Sϑ,trial ·Atrial (C.264)

s̄κ := ∥Sϑ,trial −Atrial∥2 = s̄SS − 2s̄SA + sAA (C.265)

s0 := ∥κj−1∥4 = ∥Sj−1 −Atrial∥4 (C.266)

tS := κj−1 · Strial (C.267)

tA := κj−1 ·Atrial (C.268)

rS := κj−1 · Sj−1 (C.269)

cκ0 := (1− ϑ) {[ϑtS + (1− ϑ)rS]− tA} (C.270)

cκ1 := h(1− ϑ) [ϑtS + (1− ϑ)rS] (C.271)

q20 = c2gh (C.272)

q21 = 2 > hcgh (C.273)

q22 =>2 h2 (C.274)

q40 = q220 (C.275)

q41 = 2q21q20 (C.276)

q42 = q221 + 2q22q20 (C.277)

q43 = 2q22q21 (C.278)

q44 = q222 (C.279)
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k20 = s̄κ (C.280)

k21 = 2h(s̄SS − s̄SA) (C.281)

k22 = h2s̄SS (C.282)

k40 = k2
20 (C.283)

k41 = 2k21k20 (C.284)

k42 = k2
21 + 2k22k20 (C.285)

k43 = 2k22k21 (C.286)

k44 = k2
22 (C.287)

k60 = k40k20 (C.288)

k61 = k41k20 + k40k21 (C.289)

k62 = k42k20 + k41k21 + k40k22 (C.290)

k63 = k43k20 + k42k21 + k41k22 (C.291)

k64 = k44k20 + k43k21 + k42k22 (C.292)

k65 = k44k21 + k43k22 (C.293)

k66 = k44k22 (C.294)

m2 := q20k20 (C.295)

m3 := q21k20 + q20k21 (C.296)

m4 := q22k20 + q21k21 + q20k22 (C.297)

m5 := q22k21 + q21k22 (C.298)

m6 := q22k22 (C.299)

n0 := 2(2cκ0 − w) (C.300)

n1 := 2 [h(2cκ0 − w) + (2cκ1 − hw)]

= 4 (cκ1 + hcκ0 − hw) (C.301)

n2 := 2h (2cκ1 − hw) (C.302)

u0 := 2(2cκ0 + w) (C.303)

u1 := 2 [h(2cκ0 + w) + (2cκ1 + hw)] (C.304)

u2 := 2h (2cκ1 + hw) (C.305)
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p0 = 4c2κ0 (C.306)

p1 = 8
(
hc2κ0 + cκ1cκ0

)
(C.307)

p2 = 4
(
h2c2κ0 + c2κ1

)
+ 16hcκ1cκ0 (C.308)

p3 = 8h
(
hcκ1cκ0 + c2κ1

)
(C.309)

p4 = 4h2c2κ1 (C.310)

z40 = w2 (C.311)

z41 = 4w2h (C.312)

z42 = 6w2h2 (C.313)

z43 = 4w2h3 (C.314)

z44 = w2h4 (C.315)

z30 := 4w (C.316)

z31 := 12wh (C.317)

z32 := 12wh2 (C.318)

z33 := 4wh3 (C.319)

t4 := z33cκ1 (C.320)

t3 := z33cκ0 + z32cκ1 (C.321)

t2 := z32cκ0 + z31cκ1 (C.322)

t1 := z31cκ0 + z30cκ1 (C.323)

t0 := z30cκ0 (C.324)
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The coefficients

a10 = q44k22 (C.325)

a9 = q44k21 + q43k22 (C.326)

a8 = (q44k20 + q43k21 + q42k22)− 2q22k44 +m6n2 − p4q22 (C.327)

a7 = (q43k20 + q42k21 + q41k22)− (2q22k43 + 2q21k44)

+ (m6n1 +m5n2)− (p4q21 + p3q22) (C.328)

a6 = (q42k20 + q41k21 + q40k22)− (2q22k42 + 2q21k43 + 2q20k44)

+ (m6n0 +m5n1 +m4n2)− (p4q20 + p3q21 + p2q22) + k66

+ p4k22 + z44k22 − k44u2 + t4k22 (C.329)

a5 = (q41k20 + q40k21)− (2q22k41 + 2q21k42 + 2q20k43)

+ (m5n0 +m4n1 +m3n2)− (p3q20 + p2q21 + p1q22) + k65

+ (p4k21 + p3k22) + (z44k21 + z43k22)− (k44u1 + k43u2)

+ (t4k21 + t3k22) (C.330)

a4 = q40k20 − (2q22k40 + 2q21k41 + 2q20k42)

+ (m4n0 +m3n1 +m2n2)− (p2q20 + p1q21 + p0q22) + k64

+ (p4k20 + p3k21 + p2k22) + (z44k20 + z43k21 + z42k22)

− (k44u0 + k43u1 + k42u2) + (t4k20 + t3k21 + t2k22) (C.331)

a3 = − (2q21k40 + 2q20k41) + (m3n0 +m2n1)− (p1q20 + p0q21) + k63

+ (p3k20 + p2k21 + p1k22) + (z43k20 + z42k21 + z41k22)

− (k43u0 + k42u1 + k41u2) + (t3k20 + t2k21 + t1k22) (C.332)
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a2 = −2q20k40 +m2n0 − p0q20 + k62 + (p2k20 + p1k21 + p0k22)

+ (z42k20 + z41k21 + z40k22)− (k42u0 + k41u1 + k40u2)

+ (t2k20 + t1k21 + t0k22) (C.333)

a1 = k61 + (p1k20 + p0k21) + (z41k20 + z40k21)− (k41u0 + k40u1)

+ (t1k20 + t0k21) (C.334)

a0 = k60 + p0k20 + z40k20 − k40u0 + t0k20 (C.335)
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