
FRACTIONAL EDGE COLORING FOR WIRELESS LINK SCHEDULING IN THE

PHYSICAL INTERFERENCE MODEL

Guilherme Iecker Ricardo

Dissertação de Mestrado apresentada ao

Programa de Pós-graduação em Engenharia

de Sistemas e Computação, COPPE, da

Universidade Federal do Rio de Janeiro, como

parte dos requisitos necessários à obtenção do

t́ıtulo de Mestre em Engenharia de Sistemas e

Computação.

Orientadores: José Ferreira de Rezende

Valmir Carneiro Barbosa

Rio de Janeiro

Março de 2018

FRACTIONAL EDGE COLORING FOR WIRELESS LINK SCHEDULING IN THE

PHYSICAL INTERFERENCE MODEL

Guilherme Iecker Ricardo

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO

LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA (COPPE)

DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS

REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE MESTRE EM

CIÊNCIAS EM ENGENHARIA DE SISTEMAS E COMPUTAÇÃO.

Examinada por:

Prof. José Ferreira de Rezende, Ph.D.

Prof. Ab́ılio Pereira de Lucena Filho, Ph.D.

Prof. Diego Gimenez Passos, D.Sc.

RIO DE JANEIRO, RJ – BRASIL

MARÇO DE 2018

Ricardo, Guilherme Iecker

Fractional Edge Coloring for Wireless Link Scheduling

in the Physical Interference Model/Guilherme Iecker

Ricardo. – Rio de Janeiro: UFRJ/COPPE, 2018.

IX, 52 p.: il.; 29, 7cm.

Orientadores: José Ferreira de Rezende

Valmir Carneiro Barbosa

Dissertação (mestrado) – UFRJ/COPPE/Programa de

Engenharia de Sistemas e Computação, 2018.

Referências Bibliográficas: p. 51 – 52.

1. Wireless Networks. 2. Link Scheduling. 3.

Operational Research. I. Rezende, José Ferreira de

et al. II. Universidade Federal do Rio de Janeiro, COPPE,

Programa de Engenharia de Sistemas e Computação. III.

T́ıtulo.

iii

To my parents,

Dulceléa and Hélio

iv

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos

necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

COLORAÇÃO FRACIONÁRIA DE ARESTAS PARA O ESCALONAMENTO DE

ENLACES SEM FIO NO MODELO FÍSICO DE INTERFERÊNCIA

Guilherme Iecker Ricardo

Março/2018

Orientadores: José Ferreira de Rezende

Valmir Carneiro Barbosa

Programa: Engenharia de Sistemas e Computação

A popularidade de aplicações para Redes de Sensores Sem Fio (WSN) e Internet of

Things (IoT) tem aumentado bastante nos últimos e, com ela, a demanda por redes mesh

sem fio (WMN) mais eficientes e econômicas em termos de utilização de recursos. O pro-

blema de Escalonamento de Enlaces tem por objetivo melhorar a capacidade das redes

por meio da adoção de uma estratégia inteligente de ativação dos enlaces sem fio. Essa

estratégia garante a correta comunicação entre dispositivos, respeitando as restrições do

Modelo de Interferência F́ısica adotado. O presente trabalho oferece uma abordagem

para encontrar o escalonamento ótimo por meio da redução do problema de Escalona-

mento de Enlaces ao problema de Coloração Fracionária de Arestas. Uma formulação de

Programação Linear com complexidade exponencial no tamanho do grafo e um algoritmo

para auxiliar uma construção mais eficiente dos modelos são apresentados. Finalmente,

uma grande quantidade de experimentos foram realizados objetivando verificar a aplica-

bilidade e o desempenho da técnica na prática.

v

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Master of Science (M.Sc.)

FRACTIONAL EDGE COLORING FOR WIRELESS LINK SCHEDULING IN THE

PHYSICAL INTERFERENCE MODEL

Guilherme Iecker Ricardo

March/2018

Advisors: José Ferreira de Rezende

Valmir Carneiro Barbosa

Department: Systems Engineering and Computer Science

The popularity of Wireless Sensor Networks (WSN) and Internet of Things (IoT) ap-

plications is experiencing an unprecedent increase in the last few years. Along with it,

the demand for more efficient and economic Wireless Mesh Networks (WMNs) in terms of

resource management. The Link Scheduling problem aims to improve network capacity

and the resource usage of WMNs through adopting a smart strategy for wireless links

activation. This strategy guarantees the strict communication between network devices,

satisfying the adopted Physical Interference Model (PIM) constraints. The current work

offers an approach to find the optimal scheduling by modeling the Link Scheduling prob-

lem as a Fractional Edge-Coloring problem. A Linear Programming (LP) formulation

with exponential complexity on the graph size and an algorithm to aid efficiently build-

ing such models are introduced. Finally, a considerable amount of experiments were run

in order to assess the technique’s practical applicability and performance.

vi

Contents

List of Figures viii

1 Introduction 1

2 Literature Review 4

3 Fractional Edge-Coloring Problem 6

3.1 Optimization Preliminaries . 6

3.2 Traditional Coloring . 11

3.3 Fractional Coloring . 14

4 The Link Scheduling Problem 18

4.1 Transmission Properties . 18

4.2 The Physical Interference Model . 19

4.3 The Link Scheduling Problem . 21

4.4 Fractional Edge-Coloring Model . 22

4.5 PIM-based Enumeration Algorithm . 24

4.6 Model Application Example . 29

5 Experiments and Results 33

5.1 Random Network Generation . 33

5.2 Implementation Details . 36

5.3 Model Applicability . 37

5.4 Performance Analysis . 44

6 Conclusion 48

6.1 Final Remarks . 49

6.2 Future Work . 49

Referências Bibliográficas 51

vii

List of Figures

1.1 Example of WMN . 2

3.1 Examples of Solution Possibilities . 8

3.2 Example of a model with real and integer domains 10

3.3 Map coloring of all cities by the Baia de Guanabara that share borders . 12

3.4 Vizing’s two class of graphs and its chromatic indices 14

3.5 How the edges of an R5 can be colored and multicolored 16

4.1 Different transmission scenarios . 20

4.2 Examples of different types of scheduling on a R5 network 23

4.3 Tree of combination of links for a graph G = (E, V) with E = {0, 1, 2, 3} 25

4.4 Enumeration algorithm execution flowchart. 28

4.5 Example Network . 29

4.6 Enumeration algorithm execution flowchart for the example network . . . 30

4.7 The graph G edge coloring resulting from (a) IP and (b) LP models . . . 31

4.8 The resulting optimal link schedulings of (a) IP and (b) LP models . . . 32

5.1 Randomly generated networks examples 35

5.2 Number of dropped networks due to m = 0 38

5.3 Number of dropped networks due to m > 128 38

5.4 Number of dropped networks due to |F| > 50M 39

5.5 Average number of links . 40

5.6 Average number of feasible sets . 41

5.7 Average enumeration time . 42

5.8 Average LP solution time . 42

5.9 Average IP solution time . 43

5.10 Number of WM schedulings . 45

5.11 Number of SM schedulings . 45

5.12 Network capacity for TC-based schedulings 46

5.13 Network capacity for SM-based schedulings 46

viii

5.14 Number of Weak and Strong Multicoloring 47

ix

Chapter 1

Introduction

The Link Scheduling is a classic problem in Computer Networks, studied since the early

1980s. Enforcing a good link scheduling is important to optimize the amount of informa-

tion exchanged in a certain network. More efficient wireless communication capabilities

can lead to significant resource savings, such as for power, bandwidth, and so on. This is

especially interesting to resource limited network architectures and technologies, such as

Wireless Sensor Networks (WSNs) and Internet of Things (IoT) applications. Recently,

with the increasing popularity of WSNs and IoT paradigms, the problem of finding bet-

ter schedulings has been revisited and brought back to discussion in both scientific and

industrial community. Therefore, investigating this problem has great relevance to the

Wireless and Mobile Network field’s status quo.

In order to help understanding the Link Scheduling problem, we first introduce a

wireless mesh network (WMN) infrastructure that often offers the basis for WSN, IoT,

and many other ad-hoc communication technology systems. A WMN is a sort of Ad-Hoc

wireless network so its architecture is decentralized and radio nodes are arranged in a

mesh topology. This means that nodes are able to communicate directly to each other

and have a certain autonomy to decide what is the proper way to forward data. Figure

1.1 shows an example where a WMN architecture defines the network’s backbone.

Usually, in WMNs, all nodes share the same transmission medium and multiple trans-

missions are allowed simultaneously. So in order to better use network resources, trans-

missions need to be organized in an efficient way. In this work, we use the Space Time

Division Multiple Access (STDMA) strategy so we divide the transmission period into

timeslots and try to arrange as many non-interfering transmission links as possible in

a same timeslot. Therefore, the Link Scheduling problem can be roughly defined as

determining the least number of timeslots such that all links are scheduled once.

1

Figure 1.1: Example of WMN [1]

The scheduling rules are defined by the enforced Interference Model. Due to its sim-

plicity, the Wireless Link Scheduling problem has been broadly approached using the

Protocol Interference Model. Basically, under that protocol model, a successful transmis-

sion occurs when the intended receiving node falls within the transmission range of its

sender node and falls outside the interference ranges of other non-intended senders [2].

Usually, a conflict graph is used to model such interference constraints and the problem

can be reduced to the problem of vertex or edge-coloring the conflict graph. However, the

Protocol Model is not realistic because it does not consider the cumulative interference

of the many other possible simultaneous transmissions’ contributions.

The Physical Interference Model (PIM), or the SINR Model, represents wireless com-

munication considering different kinds of interference constraints, as we will discuss in

details in Chapter 4. Although it makes a more realistic modeling possible, it also consid-

erably increases the problem’s complexity. There are many approaches to this problem

in the literature and we present some of them in Chapter 2. An intuitive strategy would

be representing the WMN as a graph and finding the optimal edge-coloring. The total

number of colors used in the final coloring is the number of timeslots. This strategy is

actually adopted by many other works. Here, we introduce in Chapter 3 the concept of

edge-multicoloring and try to use this idea do model the Link Scheduling problem.

The Link Scheduling model based on edge-multicoloring can provide the optimal

scheduling, promising even better results than edge-single-coloring schedulings. How-

ever, the model has an exponential size complexity due to combinatorial explosion. In

theory, there is no way to escape from the exponential complexity. However, we use the

2

PIM’s hereditary unfeasiblity property, also described in Chapter 4, to efficiently enumer-

ate the feasible sets of links. Therefore, the model’s applicability is directly connected

to how well we can perform the enumeration in practice. So, the first objective is to un-

derstand the enumeration’s performance variation for networks with different structures.

Furthermore, we want to understand for what network structures the proposed technique

is a good fit.

Regardless of its practical applicability, the second objective is observing how better

are the schedulings produced by the model’s solution. This objective can be reached by

analyzing the overall performance from different perspectives. For example, we need to

know how many networks actually admit a multicoloring-based scheduling. Also, how

better is a multicoloring-based scheduling compared to the single-coloring based ones.

Furthermore, how the different kinds of schedulings influence the networks’ capacities.

All these questions are addressed by an experiment consisting in applying the model to

a huge variety of random networks and observing some key quantities such as running

times and objective functions.

The remainder of this dissertation is organized as follows. Chapter 2 describes some

other work on the Link Scheduling problem and its variants. Chapter 3 provides an

overview to some useful theory and introduces the Fractional Edge-Coloring Problem.

Chapter 4 defines the PIM adopted in this work, formalizes the Link Scheduling problem

as an optimization problem and shows how to build the model enumerating the feasible

sets of links. Chapter 5 describes the experiments and the results are discussed. Finally,

Chapter 6 summarizes the findings and makes the last comments on this work.

3

Chapter 2

Literature Review

The Link Scheduling problem has many different flavors and solution approaches. This

chapter is dedicated to listing some interesting and relevant work in this area. In time,

we indicate the differences and the similarities between them and the present work.

BJÖRKLUND et al. [3] proposes a STDMA method very similar to ours. They

tackle the Link Scheduling problem under the Physical Interference Model using a column

generation method on the linear relaxation of the IP model for the respective Set Covering

problem. They guarantee a very tight bound to the optimal scheduling. However, the

biggest difference to the present work is that fractional solutions are considered unfeasible

schedulings in this work. For us, fractional solutions are desirable because they lead to

potentially better schedulings, as we will demonstrate throughout this text.

The second work has a similar problem set up. GANDHAM et al. [4] tackles the

Link Scheduling problem in its TDMA form so basically links need to be allocated to

time slots. As a first difference, this work does not consider physical interference and

limited decoding capabilities. The only constraint is the exclusive dedication of a node

to a specific transmission within a time slot, so the communication constraints are purely

defined by the graph structure. The proposed technique is based on edge-coloring the

graph representing the transmissions for a period of time. Authors propose a distributed

algorithm to find a scheduling using at most ∆ + 1 colors in polynomial time. As we will

discuss in further chapters, this target number is actually the theoretical upper bound

for the chromatic index so it is indeed an impressive result.

Another relevant work, in spite of using the same WMN environment to define the

problem constraints, is an application-driven approach. That choice is good on the one

hand because the application characteristics helped DEZFOULI et al. [5] to develop two

classes of algorithms. Both algorithms are distributed but one class allows nodes to set

their own channels, while the second class queries the neighborhood. On the other hand,

this is a technique with limited application scope, basically for data gathering in WSNs.

4

However, they could significantly increase the network throughput.

Centralized polynomial scheduling algorithms are proposed by HAJEK e SASAKI

[6]. Besides the centralized approach, this work also deals with how data is forwarded

in a WMN. Again, two versions of algorithms are presented. In the first one, nodes are

concerned with their own interests and find the best way to allocate their transmission

pools to the available timeslots. The forwarding issue is addressed by the second class of

algorithms that determines the minimum scheduling for situations where communication

spans multiple hops.

One of the first works to use the initials MANET for Mobile Ad-Hoc Networks was

that of FANG e BENSAOU [7]. It uses the idea of conflict graphs to represent the

harmful direct interference between communication links. Maximal cliques in the conflict

graph determines what they called contention context and are used as constraints in an

optimization formulation. This formulation is based on non-cooperative and cooperative

games frameworks and the resulting models are solved using Lagrangian relaxation. In

the end, a distributed medium access control algorithm that uses this technique is de-

scribed providing a fair scheduling. Finally, the second algorithm is based on cooperative

game and, although the fairness concept is no longer valid, nodes face an on-demand

competition for the medium and this considerably increase the network throughput.

Considering this modest selection of related works, WAN et al. [8] is the first one

that explicitly uses the Physical Interference Model (PIM) in the problem formalization.

As the authors emphasize in the paper, the inclusion of the PIM makes the problem

even harder to address. They propose an approximative algorithmic approach to the

Link Scheduling problem for different kinds of WMNs and multihop-based architectures.

However, the authors claim that the physical interference and its strong combinatorial

nature invalidates all traditional graph coloring techniques. As we will show in the present

work, they are only partially right given that several traditional coloring concepts and

tools helped us devising our novel link scheduling technique.

5

Chapter 3

Fractional Edge-Coloring Problem

This chapter presents an overview of some theoretical concepts useful to understand the

model proposed in Chapter 4. First, some concepts and techniques of Linear Optimization

and Traditional Graph Coloring are reviewed. The last and most important topic is the

Fractional Coloring that works as a framework for the proposed model.

3.1 Optimization Preliminaries

Models for various problems are frequently described through accompanying mathemat-

ical formulation for them. The formulation specifies the optimization direction (mini-

mization or maximization), the objective function to be optimized, and a set of con-

straints that capture the essence of the problem. For simplicity, we will call these prob-

lems/formulations as ”optimization problems”.

3.1.1 Linear Programming

Linear Programming (LP) is a set of techniques used to solve formulations that are

restricted to linear objective functions and constraints. A linear program in standard

form is described as

(P) min z = cTx (3.1)

s.t. Ax = b

x ∈ Rn,x ≥ 0

where c ∈ Rn, b ∈ Rm, and A ∈ Rm×n.

6

For program P , c is the objective function’s coefficients array, b is the constraint’s

boundaries array, and A is the constraint’s coefficients matrix. The set of variables are

represented by the x array. Let X = {x : x ∈ Rn : Ax = b,x ≥ 0} be the Feasible Region,

i.e., the set of points in Rn that satisfy all constraints of the program. Accordingly, an

optimal solution for it must necessarily belong to X. If x ∈ X, then x is a feasible solution

for P . If x∗ ∈ X and cTx∗ ≤ cTx,∀x ∈ X, then x∗ is an optimal solution.

After applying a solution method, e.g. the Simplex method, three outcomes are

possible: (i) the model has one or more optimal solutions; (ii) the model is infeasible

and therefore has no feasible solutions (X = ∅); or (iii) the model is unbounded and

no constraint is able to stop the objective function from being improved – if it is a

minimization problem, then cTx→ −∞, else cTx→ +∞. Figure 3.1 shows an example

for each of the possibilities above.

Figure 3.1(a) has a well defined feasible region X bounded by its constraints. In this

case, any values for x on the green line is an optimal solution with z = 2. Notice that

the feasible region is convex so the Simplex method will return only one of its vertices.

Figure 3.1(b) has two separated feasible regions X1 and X2. Each region is determined

by the respective constraint. However, because there is no intersection between these

regions, the problem’s feasible region is empty (X = X1 ∩X2 = ∅). Lastly, Figure 3.1(c)

shows an example of an unbounded model. In this case, because the feasible region is not

properly bounded by its constraints, the objective function can always increase its value.

It is desirable that formulations never lead to unfeasible or unbounded models.

3.1.2 Duality

It is possible to explore the opposite optimization direction writing a formulation in its

dual form. The dual of problem P in (3.1) is formulation D in (3.2). Note that D has no

non-negativity constraint such as x ≥ 0 which means that variables are free to assume

any values. See LEE [9] for instances for a systematic procedure to perform primal-dual

conversion. The conversion procedure may be repeatedly applied so that one returns to

P after applying it to D. Thus, it is reasonable to affirm that the dual’s dual is the

primal.

(D) max z = yTb (3.2)

s.t. yTA ≤ cT

In Linear Programming Theory, there are some important theorems and corollaries

regarding Duality. See LEE [9] once again for more interesting and useful ones. The

7

(a)

(b)

(c)

Figure 3.1: Examples of Solution Possibilities

8

Existence Theorem for optimization problems with convex feasible solution regions sum-

marizes the most relevant ones for this work.

The Existence Theorem: Let P and D be a primal-dual pair. Only one of the

following sentences holds:

• P (D) is unlimited ⇒ D (P) is unfeasible

• P and D are unfeasible

• P and D have optimal solutions and, in this case, z∗P = z∗D

3.1.3 Integer Programming

Important implications occur when the variables’ domain is changed. When the variables

assume integral values, i.e. x ∈ Zn, the problem is called Integer Linear Programming

problem, or simply Integer Programming (IP). Equation 3.3 shows a general formulation

for IP problems.

(P) min z = cTx (3.3)

s.t. Ax = b

x ∈ Zn,x ≥ 0

The discretized IP domain brings combinatorial characteristics to the problem, which

makes its solution way more difficult to find than for most pure LP problems. Because

they are similar in form, one can think that a rounded IP solution could be inferred from

its LP version. It is true for some cases but it usually leads to very bad approximations.

A linear relaxation for an IP problem can be roughly defined as its correspondent LP

version. Figure 3.2 shows how the variables’ domain can change the model structure and

solution.

This is a classic example from WOLSEY [10] where both real and integer domains

are represented in the same chart. Specifically, the integer domain is represented by the

small circles. The green region is the LP feasible region while the green circles compose

the IP feasible region. The IP solution is the dark green point on the bottom (5, 0) and its

linear relaxation solution is the point (1.95, 4.92) on the top. The closest integer point to

the linear relaxation solution is the point (4, 2). Although they result in similar objective

functions, both the LP and the rounded solutions are quite different from the IP solution.

Due to its inherent difficulty to find optimal IP solutions, sometimes it is enough to

determine bounds on their value, which can be much easier to obtain than solving the

problem itself. For example, for a minimization IP problem, any feasible solution for it

9

Figure 3.2: Example of a model with real and integer domains

already provides an upper bound while its LP relaxation dual solution provides a lower

bound. Another well-known strategy to solve IP problems is to adopt Branch and Bound

algorithms.

3.1.4 Combinatorial Optimization

Consider a finite set N = {1, 2, 3, ..., n} and a weight function c(i), defined for each

element i ∈ N . Let C be the set of all combinations of elements in N . Thus, |C| = 2n.

Some elements of C satisfy some constraints established by the problem definition and

are called feasible. The set of all feasible elements is the feasible set, denoted F , such

that F ⊆ C. The problem of finding an F ∈ F with the minimum total weight is called

a Combinatorial Optimization Problem (COP) and can be formalized as

(COP) min
S∈C
{
∑
i∈S

c(i) : S ∈ F}. (3.4)

This problem could be solved by individually verifying if each combination S ∈ C is

feasible and choosing the one with the lowest total weight. This brute-force approach is

not a good idea because all |C| = 2n combinations must be tested, making this search not

suitable for most applications. This phenomenon is called Combinatorial Explosion.

It is common to rewrite a COP as a Binary IP (BIP) problem. In this case, an inci-

dence vector x(C) ∈ {0, 1}n represents a combination of elements C, such that x(C)i = 1

if element i ∈ N is in C, and x(C)i = 0, otherwise. Equation 3.5 shows a BIP formulation

for a general COP.

10

(BIP) min z = cTx (3.5)

s.t. Ax = b

x ∈ {0, 1}n

The same solution strategies used in IP problems can be used to solve COP/BIP

problems. There are some cases where Greedy and Dynamic Programming algorithms

can be used to find good approximations or, sometimes, effectively solve such problems

as well.

3.2 Traditional Coloring

Graph Theory provides the mathematical abstraction used to model relationships between

objects, e.g. networks in general. Therefore, models for many different problems and their

solution techniques and algorithms were conceived in this area. In order to understand

the Fractional Edge-Coloring Problem introduced in the next section, a few notations

and definitions must be presented first.

Consider a graph G = (V,E) with the set of vertices V and the set of edges E. Let

|V | = n and |E| = m. The degree dv of a vertex v is the number of incident edges or the

number of its neighboring vertices. The maximum degree ∆(G) of a graph G is defined

as max{dv},∀v ∈ V . By definition, a matching M ⊆ E of G is a set of disjoint edges (no

two edges are incident to a same vertex).

Graph coloring is usually presented using the canonical Cartography’s example, in

which coloring a map is essentially assigning colors to geographical units (e.g. coun-

tries, cities, etc.), in a way that neighboring units get different colors. Let the map be

represented as a graph G = (V,E) where vertices are countries and an edge is placed

connecting two vertices if their respective countries are neighbors. Equivalently, colors

are assigned to vertices such that adjacent vertices get different colors. In this case, the

actual color assignment is named vertex-coloring.

Regarding the vertex-coloring task, there exists a decision and an optimization prob-

lem. The decision problem consists in determining if G can be colored using k colors.

If so, G is called k-colorable. The optimization problem consists in finding the chro-

matic number χ(G), or simply χ when the context is clear, that is the least number of

colors needed to color all vertices of G once. The optimization problem is called the

Vertex-Coloring Problem.

11

(a) (b)

Figure 3.3: Map coloring of all cities by the Baia de Guanabara that share borders

Figure 3.3 shows how coloring a map and a graph’s vertices are equivalent tasks.

The map coloring is only one very simple example of how real problems can be modeled

as a graph coloring instance. Figure 3.3(a) shows a colored map and 3.3(b) shows its

respective vertex-coloring version.

On the other hand, the edge-coloring is concerned with assigning colors to the edges

instead of vertices. In this case, the edge-coloring constraint is defined such that no

two edges incident to a same vertex can get the same color. From another perspective,

all edges with the same color are necessarily disjoint. Both decision and optimization

problems are also valid for this task. The optimization version is named Edge-Coloring

Problem and its solution provides the chromatic index χ′. From now on, all discussions

will be focused on edge-coloring due to its extreme relevance to this work.

The Edge-Coloring problem can be analyzed from the perspective of matchings. No-

tice that the edge-coloring constraint is equivalent to the matching definition so, basically,

a color is a matching of G. Therefore, this problem can be reinterpreted as the problem

of finding a partition of the edges of G into the smallest possible number of matchings.

Given that M is the set of all possible matchings for G, the Edge-Coloring problem can

be formalized using the optimization formulation presented in Equation 3.6.

(IP) z = min
∑
M∈M

xM (3.6)

s.t. c(e) =
∑
M3e

xM = 1,∀e ∈ E

xM ∈ Z, xM ≥ 0,∀M ∈M

12

This formulation has |M| variables and m constraints. Variable xM is related to

matching M ∈ M and indicates whether this matching is in the resulting partitioning

(xM = 1) or not (xM = 0). Each constraint c(e) corresponds to an edge e ∈ E and is the

sum of all variables that corresponds to matchings that contain e.

Because c(e) = 1,∀e ∈ E and all variables are non-negative integers, it is actually a

BIP problem so indeed xM ∈ {0, 1}. As a consequence, exactly one variable equals 1 in

each c(e) and this means that we are guaranteeing that e will be considered only once in

the final partition.

The number of variables equal to 1 is the number of matchings in the final partition.

Since the objective function is the sum of all variables, it represents the partition size.

Moreover, as we are minimizing this function, we are actually finding a partition of the

edges of G into the smallest possible number of matchings. Finally, using the matching-

color equivalence, we know that each matching used in the optimal partition represents

one color in the optimal coloring, thus z∗ = χ′.

The optimization problem is easy to solve analytically for simple graphs. However,

this is an NP-hard problem so it is unknown if there exists a polynomial algorithm to

solve it for arbitrarily large graphs. So, it would be interesting to have efficient ways to

estimate the chromatic index using only the graph’s structure and its properties.

The graph structure can provide information on lower and upper numerical bounds

for χ′. Following the definition, all edges incident to a specific vertex must get different

colors. Then, at least ∆(G) colors are needed. In worst cases, one different color is

assigned to each edge, so m colors would be used. Hence, a first and naive boundary

interval for χ′ is ∆(G) ≤ χ′ ≤ m.

VIZING [11] proved that all graphs could be categorized in two different classes. All

class one graphs have χ′ = ∆ and all class two graphs have χ′ = ∆ + 1. This allowed the

boundary interval to be narrowed to ∆ ≤ χ′ ≤ ∆ + 1. He demonstrated that all bipartite

graphs are class one while all regular graphs with an odd number of vertices are class

two. However, deciding if a general graph is class one or two is also NP-hard. Figure 3.4

shows an example of each graph class.

13

(a) (b)

Figure 3.4: Vizing’s two class of graphs and its chromatic indices

Because the problem is NP-hard, solving it directly through an optimization method

such as Branch and Bound may not be encouraged for some practical applications. For not

so large instances of this problem, even building the optimization model would demand an

extremely large number of variables (O(2m)) and an impractical amount of computational

resources. If the solution must be obtained in a relatively short amount of time, the

optimal coloring may not be a requirement; sometimes a good coloring is enough. For

these cases, approximative and stochastic approaches can be good fits.

3.3 Fractional Coloring

Going deeper into edge-coloring, consider now that each edge of G is allowed to get multi-

ple colors. This is a case of edge-multicoloring and, by solving its optimization problem,

the fractional chromatic index χ′f can be obtained; thus it is named Fractional Edge-

Coloring or Edge-Multicoloring Problem. According to SCHRIJVER [12], the Fractional

Edge-Coloring problem is defined as the LP formulation in Equation 3.7.

(LP) min z =
∑
M∈M

xM (3.7)

s.t. c(e) =
∑
M3e

xM = 1,∀e ∈ E

xM ∈ R, xM ≥ 0, ∀M ∈M

14

In fact, Equation 3.7 is the linear relaxation of the traditional Edge-Coloring problem

formulation given in Equation 3.3. To prove that the proposed formulation indeed finds

the optimal coloring with χ′f , consider the following algebraic procedure.

First, if xM ∈ R+ and c(e) =
∑

M3e xM = 1,∀e ∈ E, then xM ∈ Q+ : xM ∈ [0, 1].

Indeed, if xM admits rational non-negative values, then it can be written in terms of a

fraction of integers, such as:

xM =
pM
qM

(3.8)

where pM , qM ∈ Z+, qM ≥ 1, pM ≤ qM .

Now, consider a generic solution of this problem. If we analyze the optimal objective

function only in terms of variables in their fractional form, we get:

z∗ =
∑
M∈M

pM
qM

=
p1
q1

+
p2
q2

+ ...+
p|M|
q|M|

(3.9)

This is a sum of |M| rational terms so there is an integer q that is the least common

multiple of all qM . In other words, q can be divided by each qM ,∀M ∈ M such that
q
qM
∈ Z+. Thus,

z∗ =
1

q

∑
M∈M

pM
qM

q =

p1
q1
q + p2

q2
q + ...+

p|M|
q|M|

q

q
(3.10)

It is important to notice that pM
qM
q is also an integer. Now, consider the sum of

integral terms in the numerator of Equation 3.10 and focus on those terms belonging to

an arbitrary constraint c(e) related to edge e.∑
M3e

pM
qM

q = q
∑
M3e

pM
qM

= qc(e) = q (3.11)

Equation 3.11 says that each constraint contributes with q colors to its respective

edge in the final solution. However, because some constraints share variables, part of

their individual contribution overlap the others’. Therefore, the numerator of Equation

3.10 represents the total number of colors used and is denoted by L. The optimal objective

function can be rewritten as

z∗ =
L

q
⇒ χ′f =

L

q
(3.12)

where L =
∑

M∈M
pM
qM
q.

If q is the number of colors assigned to each edge in the optimal solution, the variable

xM = pM
qM

represents the proportion of q provided by matching M . For example, if

xM = 1
3
, then matching M provides to its edges 1

3
of the q colors they need. So, the other

2
3

of q are covered by other matchings. The number pM
qM
q is the multiplicity of matching

15

M in the final solution. In other words, matching M is repeated pM
qM
q times and each of

its instances represents a different color.

Figure 3.5 shows the difference between single-coloring and multicoloring an R5. Both

colorings are optimal and their chromatic indices are also indicated in the respective

figure. In this example, the multicoloring in Figure 3.5(b) results in χ′∗ = 2.5 = 5
2
, so

L = 5 colors are used in a way that each edge gets q = 2 different colors.

(a) (b)

Figure 3.5: How the edges of an R5 can be colored and multicolored

It is important to prove that this formulation will not lead to unfeasible or unbounded

models. Let the matchings consisting of a unique edge be called basic sets; so, there exists

m basic sets. Now, split the columns of matrix A into B and N for the basic and non-

basic sets, respectively. Also, split the columns of x such that x = [xB|xN]. Notice that

the columns of B can be arranged as an identity matrix. That being said, B is actually a

base for the model and, consequently, xB = 1 and xN = 0 is a feasible solution. In fact,

such solution represents the worst coloring possible, in which every edge gets a different

color. So, because there is always at least one feasible solution, the model can never be

unfeasible. Moreover, it was shown that 0 ≤ x ≤ 1, so the actual solution is contained

within a feasible region that can be represented as an m-dimensional polyhedron of side

1; more specifically, in one of its vertices. Therefore, models produced by this formulation

can not be unbounded as well.

Now that we presented the optimization formulation and proved it is conceptually

valid, it is important to discuss its solution process. Finding χ′f can lead to three different

color assignments. First, if q = 1, edges get only one color each so the final color

assignment is a traditional edge-coloring (TC). If q > 1, there are two different edge-

multicoloring cases. In the weak multicoloring (WM) case, χ′f ∈ Z : χ′∗ = χ′ so, although

16

edges get multiple colors, the same χ′f could be achieved through q repetitions of a TC.

Finally, the strong multicoloring (SM) is characterized by χ′f ∈ Q : χ′f < χ′.

The Fractional Edge Coloring Problem can also be modeled using the Equation 3.7’s

dual form as presented in Equation 3.13. Duality theory guarantees that both formula-

tions have the same solution and, consequently, result in the same coloring.

(LP) max z =
∑
e∈E

xe (3.13)

s.t.
∑
e∈M

xe ≤ 1,∀M ∈M

xe ∈ R,∀e ∈ E

Unlike the traditional Edge-Coloring Problem, χ′f can be found in polynomial time

[13]. PADBERG e RAO [14] use the Edmonds’ Fractional Edge-Coloring Theorem [15] to

propose a polynomial algorithm to find χ′f . Then, the dual formulation is polynomially

solved applying the Ellipsoid method [16] using EDMONDS [15]’s max-weighted matching

algorithm.

17

Chapter 4

The Link Scheduling Problem

This chapter provides a detailed description of the Link Scheduling problem and intro-

duces a method for solving it using a model based on edge-multicoloring. In the first two

sections, we define the transmission properties and the PIM used in this work. Then,

we prove that the LP formulation presented in Chapter 3 can also be used to model the

Link Scheduling problem. Afterwards, we describe a PIM-based enumeration algorithm

capable of finding all feasible sets of links in a faster way and, consequently, building

the model more efficiently. Finally, we present a simple example of how the optimal

scheduling can be found using this technique.

4.1 Transmission Properties

In a WMN with a set of nodes N and a set wireless links L, a link i ∈ L is established

from a sender node si ∈ N to a receiver node ri ∈ N . A transmission consists of a node

emitting an electromagnetic signal carrying coded information through a shared physical

medium, e.g., through the air or underwater. A wireless link is said to be active when

a transmission is actually taking place. The signal is sent to multiple directions (most

cases use omni-directional antennas) and all nodes sharing the medium are able to detect

and possibly decode it. The generated signal gradually loses its power according to the

distance traveled. This work uses the Log-Distance Path Loss Propagation Model as

described by RAPPAPORT [17] and a simpler version is presented in Equation 4.1.

RP (s, r) =
TP

dαs,r
(4.1)

This model represents how much of a signal transmitted by the sender s at a trans-

mission power TP is attenuated on the way to reach the receiver node r, both separated

by a distance of ds,r. The signal reception power RP on r is a result of a power decay

18

in α, the propagation exponent. The value for α varies according to the environment in

which the transmission is occurring. RAPPAPORT [17] also list some examples of typical

values for α in various radio environments shown in Table 4.1.

Environments Path Loss Exponent (α)
Free space 2

Urban area cellular radio 2.7 - 3.5
Shadowed urban cellular radio 3 - 5

In building line-of-sight 1.6 - 1.8
Obstructed in building 4 - 6
Obstructed in factories 2 - 3

Table 4.1: The values of α for specific environments

Let β denotes the node’s sensibility and represents the minimum reception power

required for the receiver to be able to decode the signal’s information. If the receiver

node is too far from the sender, the incoming signal’s power may have suffered severe

reduction due to attenuation. So, it is reasonable to think that a sender node has a

transmission range such that all other nodes within this area can safely decode its signal.

Henceforth, for simplicity, all nodes have the same TP such that their transmission ranges

are all the same. Therefore, a node’s neighbors are those nodes within its transmission

range in an interference-free environment. The transmission range, denoted by ρ, can be

calculated in meters using Equation 4.2.

ρ = 10
TP−γ−β

10α (4.2)

The noise floor, γ, is the amount of attenuation caused by other electromagnetic

sources present in the environment, e.g. light and radiation. Besides γ, because receivers

have limited decoding capability bounded by β, transmissions can also interfere to each

other. The next section describes the interference model used in this work.

4.2 The Physical Interference Model

The Physical Interference Model (PIM) establishes interference constraints for a wireless

communication environment. The primary and secondary constraints presented here are

the same as those defined by GUPTA e KUMAR [18].

4.2.1 Primary Constraint

The Primary Constraint assumes that nodes are half-duplex. This means that nodes can

not transmit and receive signals at the same time; a node is either a sender or a receiver

19

at any given moment. Moreover, in a given transmission period, nodes are dedicated to

a single communication link. Figure 4.1 depicts four different transmission scenarios.

(a) (b) (c) (d)

Figure 4.1: Different transmission scenarios

In scenario 4.1(a) and 4.1(b), although nodes have unique roles as either sender or

receiver, a same node is making part of two different transmissions simultaneously, so

they violate the dedicated communication rule. Similarly, scenario 4.1(c) does not satisfy

the primary constraint because node 2 is both sender and receiver, violating the half-

duplex rule. The only allowed scenarios are those following the same structure as in

4.1(d), which has disjoint links.

4.2.2 Secondary Constraint

The Signal-to-Interference-plus-Noise Ratio (SINR) is a quantity that determines how

like is a receiver ri to decode the signal transmitted by a sender si. Let C ⊆ L be a set

of links representing all transmissions that must be done within the same transmission

period. The SINR of a link i ∈ C is given by Equation 4.3. The SINR relates the power

of the signal transmitted in i to all interference sources. As was mentioned before, γ

is the noise portion provided by the environment. Furthermore, the
∑

j∈C,j 6=iRP (sj, ri)

part is the total interference caused by the senders of all other links active along with i.

SINR(i, C) =
RP (si, ri)

γ +
∑

j∈C,j 6=iRP (sj, ri)
(4.3)

The antenna sensitivity β can also be used as a numerical boundary for tolerated

interference. Therefore, the Secondary constraint demands that, for a given C ⊆ L,

∀i ∈ C, SINR(i, C) ≥ β. An SINR(i, C) < β means that receiver ri is being exposed to

too much interference and the communication is compromised.

20

4.2.3 Feasible Sets of Links

The PIM determines that a set of links C ⊆ L is feasible if both primary and secondary

constraints are satisfied. In summary, C ⊆ L is feasible if, and only if,

1. ∀i, j ∈ C, i and j are disjoint; and

2. ∀i ∈ C, SINR(i, C) ≥ β

4.3 The Link Scheduling Problem

Consider an application that has a pool of transmissions to be made within a specific

period of time T . The transmission period can be split into L equally long timeslots, also

known as scheduling unit. Now, links can be assigned to these timeslots in a way that a

group of active links in a same timeslot is isolated from links of different timeslots. This

reduces the interference between links and allows them being active in a same transmission

period, although during shorter individual transmission times. There are two extreme

situations worth being analyzed.

First, assume L = 1. This means that the scheduling unit has only one timeslot and

all links are active at the same time. For usual transmission conditions, there would be

so much interference that almost no receiver would be able to decode incoming data.

Obviously, this network has a poor performance, presenting a very low network capacity.

Conversely, assume L = m. This means that the scheduling unit has m timeslots, one

for each link. In this case, timeslots are too short, so is the data transmission duration

in a given communication link. Besides, senders would have to wait too long to have a

chance to transmit again. This makes a considerable part of the network idle for most

of the transmission period, resulting in waste of network resources. Consequently, such

network’s capacity is also very low.

Therefore, there is a trade-off between the number of timeslots and the overall network

capacity. In summary, if L is too large, timeslots are shorter and the retransmission

waiting time is longer. Else, if L is too small, the cumulative interference is stronger in

the whole network, compromising the general communication between nodes. Essentially,

the Link Scheduling problem aims to find the optimal point in this trade-off. In other

words, it tries to find the minimum value for L : 1 ≤ L ≤ m such that, although there

may exist interference inside each timeslot, communication happens harmlessly, resulting

in the maximum network capacity. Better schedulings result in higher network capacity

because transmissions perform with better success rates and, consequently more data is

exchanged in the network. Additionally, the problem is defined such that all links must

be scheduled the same number of times during the scheduling unit.

21

4.4 Fractional Edge-Coloring Model

Consider a wireless network as defined in the first section. Such network can be modeled

as a graph G = (V,E) where V ≡ N and E ≡ L. The communication directions are

only useful to determine the interference components and, because it is not relevant to

this part of the text, links will be safely represented as undirected edges.

Initially, let’s consider a version of the Link Scheduling Problem where the PIM has

only the primary interference constraint. In this oversimplified scenario, a node can

only be part of a single communication link in a same timeslot. In other words, only a

matching-based network structure is allowed in a same timeslot. This means that the

primary interference constraint on the network induces a matching constraint over G.

As we stated in Chapter 3, the edges in a same matching get the same color. Bringing

it all together, a color may be interpreted as a timeslot. As long as these ideas are all

equivalent, coloring the edges of G is actually determining which links are active in each

time slot. Therefore, solving either the Edge-Coloring or the Edge-Multicoloring problem

is equivalent to solving this loose version of the Link Scheduling problem.

In order to help measuring a scheduling’s efficiency, it is possible to use an alternative

definition of network capacity. The idea is that the intensity of the data traffic in the

network is related to how many times links are active during the transmission period

T . Given the previously suggested equivalence between coloring and scheduling, the

network capacity could be redefined as the inverse of the fractional chromatic index, i.e.,

C(G) = 1
χ′f (G)

= q
L

. In other words, the capacity is the proportion of all active links

in a scheduling unit. In fact, as demonstrated in Chapter 3, χ′f ≤ χ′ so the Fractional

Edge-Coloring Problem solution process has better chances of producing schedulings with

higher capacities.

Now, consider a network built on a ring topology represented by an R5 graph, i.e., 5

nodes and 5 edges. For this graph, a TC and an SM examples are both given by Figure

4.2. This figure demonstrates how these colorings can be interpreted as schedulings.

In the TC example of Figure 4.2(a), three time slots {T1, T2, T3} were needed to

allocate all links. Notice that T1 and T2 have two links while T3 has only one and an

empty link position; which could additionally host either edge 1 or 2 along with edge 4.

Figure 4.2(b) shows an example of an SM that actually used all available link positions

avoiding them being wasted. Moreover, in order to all links being active twice, the

SM needed a scheduling unit of 5 timeslots while the TC needed two scheduling units

with a total of 6 timeslots. This improvement is also reflected in the network capacity

where CTC = 1
3

and CSM = 2
5

so, indeed, CSM > CTC . Accordingly, SM offers shorter

schedulings than TC.

22

(a)

(b)

Figure 4.2: Examples of different types of scheduling on a R5 network

So far, the version of the Link Scheduling Problem only with the primary constraint

and the Fractional Edge-Coloring Problem are equivalents. Then, the LP formulation

presented in Chapter 3 could be used to model both problems. However, from now on,

the full PIM, with both primary and secondary interference constraints, is considered.

Now, even though links are disjoint in a same timeslot, scheduling them together might

not be an option due to excessive interference. To be able to keep the equivalence between

coloring and scheduling problems, an adjustment is needed.

Basically, the equivalence between matchings and colors is no longer valid, so the

matchings set M will be replaced by feasible sets of links F . Notice that F is a result

of applying a new interference constraint to the links in M, so F ⊆M. The M set can

be safely replaced by the F set because F is still a matching, with a more limited set

of links though. Therefore, the adapted LP formulation in Equation 4.4 can be used to

model and solve the full Link Scheduling Problem as well.

(LP) z = min
∑
F∈F

xF (4.4)

s.t.
∑
F3e

xF = 1,∀e ∈ E

xF ∈ R, xF ≥ 0,∀F ∈ F

23

This adaptation also works for IP models which is reflected in Equation 4.5.

(IP) z = min
∑
F∈F

xF (4.5)

s.t.
∑
F3e

xF = 1,∀e ∈ E

xF ∈ Z, xF ≥ 0,∀F ∈ F

In the PIM only with the primary constraint considered initially, the coloring combina-

torial nature was essentially defined by the graph’s structure so the techniques presented

in Chapter 3 were all valid for the Link Scheduling Problem. Now, the full PIM adds the

SINR constraint, which depends on several random elements, such as nodes positions,

for example. Unfortunately, it is not guaranteed that all those techniques remain valid.

Moreover, it also not guaranteed that there exists a polynomial algorithmic approach to

solve this problem. The optimization formulation is all we proved that is still valid. In or-

der to find the LP models’ variables and to solve the Link Scheduling problem, we propose

an algorithm to enumerate all feasible sets of links for a given network. This algorithm

uses the PIM characteristics to enumerate faster than pure brute force enumeration.

4.5 PIM-based Enumeration Algorithm

Firstly, to be able to reference the abstractions used to describe the algorithm, some

notations are presented. Let G = (V,E) be a graph representing a network such that

|V | = n and |E| = m. Moreover, let C be the set of all combinations of links and F be

the set of all feasible sets of links, such that F ⊆ C.
Assume there is an O(n) algorithm, named IsFeasible(C), to check whether a certain

combination C ∈ C is feasible or not. Theoretically, given that |C| = 2m, a full enumera-

tion would take O(n2m) to accomplish the task. In practice, the PIM constraints can be

used to avoid checking every single combination and, consequently, improve the enumer-

ation performance by reducing its execution time.

Now, consider that all combinations in C are uniquely arranged in a depth-first struc-

tured tree. The root vertex is the empty combination. The other vertices are recursively

added to the tree in a way that the vertex’s children are the current combination plus

another link such that no combination is repeated. Figure 4.3 shows an example for a G

with E = {0, 1, 2, 3}.
Because C’s children have always one more link, the interference environment is

stronger than in C. The new link will only add more interference to the whole sys-

tem. Therefore, if C is not feasible, its descendants are not feasible as well and this

24

F
ig

u
re

4.
3:

T
re

e
of

co
m

b
in

at
io

n
of

li
n
k
s

fo
r

a
gr

ap
h
G

=
(E
,V

)
w

it
h
E

=
{0
,1
,2
,3
}

25

property is called hereditary infeasibility. The tree traversal can be performed faster

once several combinations are pruned due to hereditary infeasibility.

Instead of storing the full tree in memory, which would spend too many computational

resources, an incidence vector for a combination C, y(C) ∈ {0, 1}m, is used, such that,

ye(C) = 1 if link le ∈ E is in C and ye(C) = 0, otherwise. Henceforth, traversing the tree

means systematically changing the value of y(C). Figure 4.3 also shows the combinations’

binary codes on all vertices.

The number of child nodes of a given combination C is the index of the rightmost

active bit of its binary representation, denoted by L(C). So, if y∗e(C) is the rightmost

active bit, then L(C) = e and there are e 0s to the right of y∗e(C) and C has e children.

Conventionally, the indexation starts in 0 which is the rightmost bit. The only exception

is the empty combination that, although there is no active bits, it has actually m children.

As a final abstraction, consider the decimal representation of y(C), denoted by d(C).

If y∗e(C) is C’s rightmost active bit, L(C) = e can be calculated in O(m) doing L(C) =

log2(d(C) ∧ ¬(d(C) − 1)). Moreover, it is possible to move from C to one of its child

combination Cj assigning y∗j (C) = 1. All C’s children are reached doing d(Cj) = d(C) +

2j, 0 ≤ j ≤ e. Again, if C = ∅, then it is a special case in which 0 ≤ j ≤ m− 1.

Algorithm 1 covers the base case which is when C = ∅. Notice that the data structures

used in the algorithm receive the same name as their respective theoretical abstractions.

The only exception is F that is now a set of integers representing combinations of links.

This is a simple entry point algorithm that basically assigns both the current combination

C and the set of feasible sets F to ∅. It also calls the real enumeration algorithm for C’s

children and, when it is done, returns F .

Algorithm 1 Enumeration Entry Point Algorithm

1: procedure Entry(E)
2: d(C)← 0
3: C ← ∅
4: F ← ∅
5: for i = 0 : m− 1 do
6: Enum(E,C, d(C) + 2i,F)

7: return F

Algorithm 2 performs the actual enumeration. It makes recursive calls until it reaches

a leaf then returns to a parent call. First, in line 2, it calculates L(C) for the current

combination C. Then, adds link lL(C) to C and checks, in line 4, if the new C is feasible.

If so, d(C) is added to F and the enumeration algorithm is applied to C’s children. Else,

the whole branch of descendants of C is pruned by just not applying the algorithm to its

children. Finally, the link added in the current recursive loop is removed from C and the

26

algorithm returns to the outer loop until it comes back to the entry point. This recursive

design allows an implementation in which the SINR calculations for a certain C can be

reused by its children, reducing the time to verifying whether C’s descendants are feasible

or not. Besides, notice that the running time is related to the number of visited vertices

in the tree of combinations. If G has m links, then, in the worst case, 2m recursive calls

and feasibility verifications are performed.

Algorithm 2 Enumeration Algorithm

1: procedure Enum(E,C, d(C),F)
2: L(C)← log2(d(C) ∧ ¬(d(C)− 1)
3: C ← C ∪ {lL(C)}, s.t. lL(C) ∈ E
4: if IsFeasible(C) then
5: F ← F ∪ {d}
6: for i = 0 to L(C)− 1 do
7: Enum(E,C, d(C) + 2i,F)

8: C ← C\{lL(C)}, s.t. lL(C) ∈ E

Figure 4.4 shows a flowchart for the execution of the enumeration algorithm applied to

a network with F = {1, 2, 3, 4, 5, 8, 9, 12, 13}. The tree root is the entry point algorithm

and a vertex’s height indicates its level in the algorithm’s recursive stack. In other words,

moving to a child vertex means starting an inner loop by adding a new instance of the

algorithm to the top of the recursive stack. Conversely, returning to a parent vertex means

resuming the outer loop by removing the last algorithm’s instance from the top of the

recursive stack. For a network with m links, the number of nested recursions is, at most,

m. That being said, the downward arrows represent the algorithm calls leading to inner

loops. The upward arrows indicates that all children were already visited (or pruned) so

the algorithm will return to the outer loop. The numbers in the arrows represent the

order in which the calling and returning events take place. All vertices with solid border

lines are visited whereas the dashed ones are pruned. For this specific network, a pure

brute force enumeration would take 15 recursive calls while this algorithm takes only 12.

This difference tends to increase with the network complexity.

In summary, although its theoretical time complexity is still O(n2m), this algorithm

performs better in practice for two reasons. First, because it uses the hereditary infeasi-

bility to reduce the number of verifications and, second, because the SINR calculations

are reused in inner recursive loops. Therefore, it can be used to enumerate all feasible

sets faster than its theoretical time complexity in practice, allowing the mathematical

formulation being applicable to some specific real scenarios, as discussed in Chapter 5.

27

F
ig

u
re

4.
4:

E
n
u
m

er
at

io
n

al
go

ri
th

m
ex

ec
u
ti

on
fl
ow

ch
ar

t.

28

4.6 Model Application Example

Figure 4.5 presents an arbitrary WMN withN = {A,B,C,D, S0, S1} and L = {0, 1, 2, 3}.
Regular sensor nodes are the blue circles, sink nodes are the blue hexagons, and links

connecting two neighboring nodes are the solid green arrows. The idea is that sensor nodes

are monitoring the environment and somehow want to constantly transmit collected data

to either sink nodes. In this example, node B works as a bridge and helps node D to

reach S1 through a multi-hop transmission. A red arrow represents an interference signal

generated from a sender to a non-neighboring receiver. The network in the figure can

be thought of as a graphical representation of all transmissions demanded by a specific

application for a fixed period of time. For example, node A wants to transmit data to S0

while B wants to transmit to S1. Because they are too close, B’s residual signal reaches

S0, compromising its decoding ability.

Figure 4.5: Example Network

In terms of the PIM constraints, links {1, 2} can not be active at the same time

because this pair violates the primary constraint as well as links {2, 3}. The secondary

constraint is violated by links {0, 2} because B is the sender of 2 and its residual signal

interferes with S0, the receiver of 0. That being said, we can run the enumeration

algorithm following the flow chart on Figure 4.6 and the resulting set of feasible sets of

links is F = {{0}, {1}, {2}, {3}, {0, 1}, {0, 3}, {1, 3}}.
Now, all feasible sets of links are known and we can build the optimization model for

this example. There are |F| = 7 variables and m = 4 constraints. Equation 4.6 presents

the resulting model. We intentionally omitted the variables domain because we want to

29

F
ig

u
re

4.
6:

E
n
u
m

er
at

io
n

al
go

ri
th

m
ex

ec
u
ti

on
fl
ow

ch
ar

t
fo

r
th

e
ex

am
p
le

n
et

w
or

k

30

explore the LP and IP versions and compare both optimal schedulings.

min x0 +x1 +x2 +x3 +x0,1 +x0,3 +x1,3 (4.6)

s.t. x0 +x0,1 +x0,3 = 1

x1 +x0,1 +x1,3 = 1

x2 = 1

x3 +x0,3 +x1,3 = 1

x0, x1, x2, x3, x0,1, x0,3, x1,3 ≥ 0

If x ∈ R7, then it is an LP model and the Simplex method can be applied. The

optimal solution is x0 = x1 = x3 = 0, x0,1 = x0,3 = x1,3 = 1
2
, and x2 = 2

2
= 1, such that

χ′f = z∗LP = 5
2
. In this case, we need L = 5 colors to color each edge twice (q = 2). Notice

that matchings {0, 1}, {0, 3}, and {1, 3} meet half of their edges’ coloring needs and each

one represents one color. However, the link in matching {2} needs to be colored twice

and this demand is fully met by 2 repetitions of this very matching. So, each repetition

will be a different color.

(a) (b)

Figure 4.7: The graph G edge coloring resulting from (a) IP and (b) LP models

On the other hand, if x ∈ Z7, this is an IP model and any Branch and Bound based

technique can be applied. The optimal solution is x0,1 = x2 = x3 = 1 and all other

variables are 0, such that χ′ = z∗IP = 3; In this case, we need L = 3 colors and each

edge is colored only once (q = 1). Matchings {0, 1}, {2}, and {3} meet the full coloring

demands of their edges so each one represents exactly one color. Using the network’s

graph representation, Figure 4.7 shows the colorings resulting from the models’ solutions.

The IP model results in a TC while the LP model results in an SM because z∗LP < z∗IP .

This also means that multicoloring the edges will produce a better scheduling than simply

coloring them. In theory, we can prove it using the definition of capacity, which says that

31

(a) (b)

Figure 4.8: The resulting optimal link schedulings of (a) IP and (b) LP models

C = q
L

. So, the capacity of the scheduling produced by the LP and the IP models

are CLP = 2
5

= 0.4 and CIP = 1
3

= 0.3, respectively. Therefore, CLP > CIP so the

SM produced by the LP model is indeed better than the IP model’s TC. This fact is

reflected in Figure 4.8 which shows examples of different schedulings. Interestingly, in

order to activate all links twice, the TC-based scheduling had to use two repetitions of

its scheduling unit, which lead to a larger number of time slots.

32

Chapter 5

Experiments and Results

In Chapter 4, an LP formulation was presented as an exact approach to model and solve

the Link Scheduling problem. To evaluate how this technique performs in practice, we

simulate a proper experimental environment generating families of random networks. In

this chapter, the process of generating random networks is described. Then, we pro-

vide some details on how the technique was computationally implemented. Finally, the

experiments and their results are discussed.

5.1 Random Network Generation

A virtual random network is essentially a graph representation for a real wireless network.

The architectural characteristics are controlled adjusting some parameters. Depending

on which combination of values is used, different families of networks are produced. In a

same family, networks may differ from each other by random factors. Once the parameters

are defined, a deployment method must be chosen to effectively implement the network.

The method proposed by VIEIRA et al. [19] produces more realistic networks and, for

this reason, was used in this work.

The deployment method consists of two simple steps: choosing the nodes’ location

and defining the set of links. First, n nodes are randomly placed within a square area

of side A. Then, if one node is located within the transmission range of another node, a

wireless link is established with a random direction. This direction is important to assign

nodes the roles of sender, receiver, or both. A random seed is used to better control

the experiments allowing them being replicable. It works as a network id (or netid for

short) that uniquely identifies a network within its family. According to the propagation

model presented on Chapter 4, the transmission range is a function of the parameters α,

β, γ, and TP . These parameters also determine how strong is the physical interference

model for the generated network and consequently the number of feasible sets. Table 5.1

33

lists and gives a brief description of all parameters that somehow influence the network

generation process.

Name Value Description
n {10, 20, ..., 100} Number of nodes
A {1, 2, ..., 10} Side of the square area (km)

netid {1, 2, ..., 1000} Random seed or network identifier
α 4.0 Log-distance propagation exponent
β 25.0 Antenna sensitivity (dB)
γ −100.967 Noise floor (dBm)
TP 24.7712 Transmission Power (dBm)

Table 5.1: Network Generation Default Values

In order to make the experiment simpler and more objective, this study only consid-

ered n, A, and netid as varying parameters. The first two control the network general

structure and the last one alters the random factors. Hence, in this work, the families of

networks are characterized by the pair (A,n). The remaining parameters were kept fixed

so all nodes share the same transmission range (ρ = 329.954m). This work’s experimental

setup followed the same procedure described by VIEIRA et al. [19] so it kept the same

values for the fixed parameters.

Based on the fixed parameters and the resulting ρ, the variation intervals for the

varying parameters were chosen such that more representative changes could be observed.

For example, for this configuration and an arbitrary number of nodes, area sides larger

than 10km result in networks with practically no links due to extremely long distances

between nodes. On the other hand, area sides smaller than 1km would produce excessively

dense networks where interference would be so strong that only single links could be

considered as feasible sets. Therefore, exploring outside the interval [1, 10] would offer

no relevant experimental information. The variation interval for the varying parameters

and the specific values for the fixed ones are also summarized on Table 5.1.

The resulting networks have structures following the examples on Figure 5.1. This

figure shows three different examples of networks formed with the same number of nodes

and random seed (n = 100, netid = 1) but with different area sides (Figure 5.1(a)

A = 10km, Figure 5.1(b) A = 5km, and Figure 5.1(c) A = 1km). In order to improve

visualization, edge directions were omitted as well as sender/receiver labels for the nodes.

Just confirming what was previously commented, it is important to observe the effect

that different area sides have on the network structure. Basically, the smaller the area,

the higher the links’ density. From another perspective, although it is not possible to see

directly on these pictures, a smaller area also means stronger interferences due to nodes’

proximity. These two aspects concerning the area side have opposing influence on the

number of feasible sets.

34

(a) (b)

(c)

Figure 5.1: Randomly generated networks examples

Given a random network generated by the previously described procedure, a series of

experiments is performed on it. First, the LP and IP models are solved, providing the

fractional and traditional chromatic indices, respectively. The time needed to enumerate

the feasible sets and to find each solution is monitored. Once the solutions are obtained,

it is possible to verify whether the network reaches the optimal scheduling through TC,

WM, or SM. Finally, the chromatic index ratio and the network capacity are calculated.

35

5.2 Implementation Details

The random network was implemented as a class using the C++ programming language

that can be included as a library. The class was developed using a graph data structure

such that all interference information are kept and easily handled as a sort of meta data.

The enumeration algorithm was also implemented as a C++ class and receives a

network object and an optimization model object in its constructor. As described in

Chapter 4, it has two basic methods. In a few words, there is an entry point method that

recursively calls the actual enumeration method. Every time a new feasible set is found,

its respective variable is added to the objective function and to related constraints. Both

objective function and constraints are members of the optimization model object.

Because the enumeration algorithm uses basic arithmetic manipulations to traverse

the combination tree, we need unsigned integer variables to represent the combinations of

links. In this abstraction, the variables must have m-bits, one for each link in the network.

Most computer architectures use a 64-bit word so variables can not trespass this size.

Although libraries with longer variables are found for most programming languages, they

are implemented in higher levels. Therefore, they have a more complex structure and the

operations are not performed on a CPU instruction level anymore, making the computing

time considerably higher. However, the C language family has an extension that allows

a 128-bit unsigned integer variable and provides some elementary operations on it. This

extension performs slower than a 64-bit arithmetic system but faster than arbitrary-

precision libraries, such as GMP. In order to consider the widest variety of networks

as possible and not to take too long to perform the experiments, the C extension was

chosen to implement the enumeration algorithm. Hence, the experiments were limited to

networks with at most 128 links.

In this work, we first used GLPK library to implement the optimization model. It

seemed to be a good option because it is open source and is widely used in numerous

other research projects. However, some models demanded huge data structures and the

GLPK’s implementation is deficient providing them. This happens because GLPK’s

data structures are indexed using 2-complement 32-bits integers. As an alternative, we

used Gurobi [20] with an academic trail license. It performed better than GLPK and

dealt perfectly with larger problem instances. After evaluating the running time of all

available solving methods, we forced Gurobi to use the Simplex method to solve both the

LP model and the IP nodes’ relaxations due to its overall better performance. Another

project decision was disabling the presolve because, although it could solve the model

faster for many simpler cases, it has an extremely high RAM usage peak that compromises

its usage in more complex instances.

36

Although Gurobi is based on a fairly flexible and dynamic structure allowing the

implementation of instances with practically any size, we still have to deal with limited

hardware resources. All experiments run in a computer with 128GB of RAM so, with

this amount of available memory, we could solve the model for instances with no more

than 50 million of feasible sets.

In summary, during the network generation process, if a network has over 128 links,

then it is dropped because it is not possible to use the enumeration algorithm. In the

same way, during the enumeration process, if a network has over 50 million of feasible

sets, it is dropped because it is not possible to solve the LP with the available computing

resources. In addition, the combination of parameters can produce networks with no

links at all, and this is considered a type of trivial limitation. Hence, if a network has

zero links, it is also dropped.

5.3 Model Applicability

Although the formulation introduced in Chapter 4 can provide the optimal scheduling,

it has two significant technical limitations. They arise from the necessity of enumerating

all the feasible sets of links in order to find the formulation constraints and also from

storing and processing a large amount of data to solve the model.

Considering the three situations summarized in the end of the previous section, it is

important to determine for which kind of networks the scheduling model can be applied.

Figures 5.2, 5.3, and 5.4 show how many networks were dropped due to absence of links,

excessive number of links, and excessive number of feasible sets, respectively.

On Figure 5.2, it is possible to notice that the larger the area, the more networks

are dropped due to the absence of links, for relatively small number of nodes. This

happens because, for larger areas, generally the distance between nodes is longer than

their transmission range, making links less likely to form.

The opposite happens on Figure 5.3, where networks with smaller areas have more

links because nodes are closer to each other. When a valid number of links is produced

inside an intermediate area side, the third situation emerges. In other words, when a

considerable number of links does not produce enough interference to invalidate most of

the feasible sets, then a large number of feasible sets are found and the related network

must be dropped as well. This is depicted in Figure 5.3.

It is important to mention that, for each family of networks (A,n), a best effort attempt

to find 1000 different networks was made. Because of those three dropping situations,

some families have different number of samples. It was a project decision not forcing to

find all 1000 networks for two reasons.

37

 0

 200

 400

 600

 800

 1000

 10 20 30 40 50 60 70 80 90 100

N
u
m

b
e
r

o
f
D

ro
p
p
e
d
 N

e
tw

o
rk

s

Area side (m)

No Links Dropping

10km
9km
8km
7km
6km
5km
4km
3km
2km
1km

Figure 5.2: Number of dropped networks due to m = 0

 0

 200

 400

 600

 800

 1000

 10 20 30 40 50 60 70 80 90 100

N
u
m

b
e
r

o
f
D

ro
p
p
e
d
 N

e
tw

o
rk

s

Area side (m)

Excessive Links Dropping

10km
9km
8km
7km
6km
5km
4km
3km
2km
1km

Figure 5.3: Number of dropped networks due to m > 128

38

 0

 200

 400

 600

 800

 1000

 10 20 30 40 50 60 70 80 90 100

N
u
m

b
e
r

o
f
D

ro
p
p
e
d
 N

e
tw

o
rk

s

Area side (m)

Excessive Feasible Sets Dropping

10km
9km
8km
7km
6km
5km
4km
3km
2km
1km

Figure 5.4: Number of dropped networks due to |F| > 50M

First, for families with no link formation, if a parameter configuration demands too

much dropping, the related family might not be a representative experimental data source

and, thus, it would be a waste of time to insist on it. Second, the number of droppings is

reflected on the confidence interval. If a certain configuration has only a few drops, this

will result in a richer population and a smaller confidence interval, while families with

smaller samples tend to have larger intervals and therefore not so reliable results. Table

5.2 shows exactly how many networks were considered for each parameter configuration.

PPPPPPPPnodes
side

1km 2km 3km 4km 6km 7km 8km 9km 10km

10 1000 977 814 627 358 271 222 158 125
20 1000 1000 1000 985 830 720 618 524 450
30 178 1000 1000 1000 988 958 894 826 761
40 0 999 1000 1000 1000 998 985 962 933
50 0 733 1000 1000 1000 1000 999 994 983
60 0 1 1000 1000 1000 1000 1000 998 996
70 0 0 982 1000 1000 1000 1000 1000 1000
80 0 0 941 976 1000 1000 1000 1000 1000
90 0 0 205 724 1000 1000 1000 1000 1000
100 0 0 0 339 818 946 988 998 1000

Table 5.2: Number of networks for each parameter configuration

39

By analyzing the average of the feasible random networks for each family, it is possible

to look to this issue from another perspective. As a first analysis, the enumeration

feasibility can be assessed by observing the average number of links. Figure 5.5 shows

this quantity as a function of the number of nodes for different area sides (represented

by curves with different colors).

Again, each point on the chart represents the average number of links for a family of

at most 1000 random networks. In this case, the confidence interval is really small for

each point which means that the calculated average is actually a good representative of

the whole population. Notice that there is an imaginary line on the mark of 128 links

which means that only networks below it are allowed to be enumerated. Depending on

the area side A, this line is reached sooner, for smaller areas, or later, for larger ones.

The absence of links is a phenomenon that indeed only happens for larger areas with few

nodes.

 0

 20

 40

 60

 80

 100

 120

 140

 10 20 30 40 50 60 70 80 90 100

N
u
m

b
e
r

o
f
L
in

k
s

Number of Nodes

Number of Links x Number of Nodes

10km

9km

8km

7km

6km

4km

3km

2km

1km

Figure 5.5: Average number of links

Similarly, the average number of feasible sets can help to determine for what kind of

network the scheduling is actually doable. Figure 5.6 shows the log of the average number

of feasible sets as a function of the number of nodes for different area sides. The curve

for each area side is approximately a straight line parallel to each other which confirms

the exponential growth. The threshold of 50 million feasible sets was used so those lines

that approach the mark of 7 tend to have a higher dropping rate.

40

1

2

3

4

5

6

 10 20 30 40 50 60 70 80 90 100

L
o
g
 N

u
m

b
e
r

o
f
F

e
a
s
ib

le
 S

e
ts

Number of Nodes

Number of Feasible Sets x Number of Nodes

10km
9km
8km
7km
6km
4km
3km
2km
1km

Figure 5.6: Average number of feasible sets

The same pattern is observed as before, the smallest areas trespass this mark sooner

than the largest ones. For example, for A < 6km, this point is reached when networks

have around 90 nodes and, for A = 10km, the same point is reached when networks have

much more than 100 nodes. Thus Figures 5.5 and 5.6 explain the dropping rates and

justify the successful use of the families of networks in the experiments.

The computational resource usage can be measured by the running time for the main

system’s activities. Figures 5.7, 5.8, and 5.9 show the average running time of the enu-

meration, LP solution, and IP solution activities, respectively. The average time is a

function of the number of nodes for different values of area side (represented by the

colored curves). For more complex networks with greater number of feasible sets, e.g.

random networks (3, 70), the average enumeration time to find around 106 feasible sets

was less than 1 minute. Notice that the almost exponential growth of the average enu-

meration time follows the same behavior of the curve representing the number of feasible

sets. This is coherent with what was exposed in theory when the enumeration algorithm

was described. Essentially, the enumeration time complexity is exactly the number of

visited nodes of the combination tree which can be fairly approximated by the number

of feasible sets. Regardless of its potential to get exponentially high running times, the

enumeration process is not a threat to the system because it performs relatively fast for

the selected families of networks.

41

−5

−4

−3

−2

−1

0

1

2

 10 20 30 40 50 60 70 80 90 100

L
o
g
 A

v
e
ra

g
e
 E

n
u
m

e
ra

ti
o
n
 T

im
e
 (

s
)

Number of Nodes

Enumeration Time x Number of Nodes

10km
9km
8km
7km
6km
4km
3km
2km
1km

Figure 5.7: Average enumeration time

−5

−4

−3

−2

−1

0

1

2

 10 20 30 40 50 60 70 80 90 100

L
o
g
 A

v
e
ra

g
e
 L

P
 S

o
lu

ti
o
n
 T

im
e
 (

s
)

Number of Nodes

LP Solution Time x Number of Nodes

10km
9km
8km
7km
6km
4km
3km
2km
1km

Figure 5.8: Average LP solution time

42

−5

−4

−3

−2

−1

0

1

2

3

 10 20 30 40 50 60 70 80 90 100

L
o
g
 A

v
e
ra

g
e
 I
P

 S
o
lu

ti
o
n
 T

im
e
 (

s
)

Number of Nodes

IP Solution Time x Number of Nodes

10km
9km
8km
7km
6km
4km
3km
2km
1km

Figure 5.9: Average IP solution time

In the same fashion, Figures 5.8 and 5.9 show the computational demand in terms of

running time to solve the LP and IP models, respectively. A general observation is that

the time to solve an IP model is at least ten times greater than the time needed to solve

an LP model, in average. There exist extreme cases in which the IP model takes hours to

find a solution and this can invalidate its utilization in applications with real demands.

Now that we know about its excessive computational expense, we are only going to use

the IP model results to support our observations. Specifically for this work, solving the

IP model helps to identify what case of optimal scheduling was assigned to a certain

network, making clear what is the difference of performance between multicoloring and

single-coloring based schedulings.

It is also interesting to highlight that solving the LP for the densest networks did not

take much more than 10 minutes in average. In the end, the total time used to enumerate

and solve the model was about 20 minutes long. Therefore, if an application demands

the optimal scheduling of a fairly amount of wireless links under the physical interference

model and is time tolerable, this technique is a good option.

43

5.4 Performance Analysis

From the theory, we know that IP models will result in TC-based schedulings while

LP models can result in TC, WM, or SM-based schedulings. We also know that these

models can have exponential size. Trying to work around this exponential complexity

issue, most works in the literature propose approximative yet polynomial approaches that

eventually also provide an optimal scheduling and usually are based on traditional vertex

or edge-coloring.

As we observed in the previous section, our multicoloring-based technique can deal

with this complexity issue, in practice, for the variety of tested networks. It takes advan-

tage of the PIM characteristics to perform a faster enumeration and provide always the

optimal scheduling. Therefore, it is pointless to evaluate the difference of performance of

our proposed technique and other well-known heuristics. This comparison could be used

to evaluate how far the heuristics’ results are from the optimal. However, it is interest-

ing to analyze how better are the schedulings provided by multicolorings and traditional

colorings.

In our first analysis, we want to see how many cases of TC, WM, and SM were

produced in our experiments. Figures 5.10 and 5.11 present two different charts with

the percentage of networks scheduled with WM and SM, respectively. This percentage is

related to the number of samples for each family of networks.

The denser are the networks, the more instances of WM and SM are detected. Practi-

cally all samples of smaller areas in Figure 5.10 use multiple colors on their edges although

their performances are as good as a TC. More importantly, Figure 5.11 suggests that the

number of SMs tends to increase with the graph density and the current results show a

maximum of 39% for the area of 3km. Therefore a significant amount of networks are

scheduled using multicoloring and a smaller yet representative portion of these networks

have better schedulings than any TC based approach.

Now, let’s take a closer look to all networks scheduled with SM. We want to demon-

strate the SM-based scheduling superiority making a comparison between its resulting

network capacity and the capacity of a scheduling based on TC. In order to find a TC for

a network, we simply solved the IP model. Figures 5.12 and 5.13 plot the average of the

inverse of the optimal objective function versus the number of nodes for each different

area side. Both charts have similar behavior which in a way confirms the subtle theo-

retical difference between fractional and traditional chromatic indices. This result also

matches GUPTA e KUMAR [18]’s argument that the network capacity decreases with

the increasing number of nodes.

44

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70 80 90 100

%
 o

f
W

e
a
k
 M

u
lt
ic

o
lo

ri
n
g
s

Number of Nodes

Weak Multicoloring x Number of Nodes

Figure 5.10: Number of WM schedulings

 0

 5

 10

 15

 20

 25

 30

 35

 40

 10 20 30 40 50 60 70 80 90 100

%
 o

f
S

tr
o
n
g
 M

u
lt
ic

o
lo

ri
n
g
s

Number of Nodes

Strong Multicoloring x Number of Nodes

10km
9km
8km
7km
6km
4km
3km
2km
1km

Figure 5.11: Number of SM schedulings

45

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 10 20 30 40 50 60 70 80 90 100

N
e
tw

o
rk

 I
n
te

g
ra

l
C

a
p
a
c
it
y

Number of Nodes

Network Integral Capacity x Number of Nodes

Figure 5.12: Network capacity for TC-based schedulings

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 10 20 30 40 50 60 70 80 90 100

N
e
tw

o
rk

 R
e
a
l
C

a
p
a
c
it
y

Number of Nodes

Network Real Capacity x Number of Nodes

Figure 5.13: Network capacity for SM-based schedulings

46

Although we have an interesting result regarding the network capacity, it is still

unclear how SM and TC performances differ from each other. To perform a numerical

evaluation on this subject, we explicitly calculated the ratio between the average capacity

and used it as a performance measure. Figure 5.14 depicts the advantage of SM over

TC, plotting the average ratio of capacities as a function of the number of nodes for

different area sides. Here, simpler cases experience more advantages in multicoloring. The

performance gain in using the SM is up to 30% over the traditional coloring, although

this value is reduced to 4% for families of networks with more incidence of SM-based

schedulings.

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 10 20 30 40 50 60 70 80 90 100

O
b
je

c
ti
v
e
 F

u
n
c
ti
o
n
 R

a
ti
o

Number of Nodes

Objective Function Ratio x Number of Nodes

10km
9km
8km
7km
6km
5km
4km
3km
2km
1km

Figure 5.14: Number of Weak and Strong Multicoloring

47

Chapter 6

Conclusion

This work proposes an optimization model for the Link Scheduling Problem based on

Fractional Edge-Coloring considering the Physical Interference Model. The Physical In-

terference Model is used to make the model more realistic. However, at the same time it

makes the problem harder to solve, it provides some useful properties that help devising

new solution approaches.

The Fractional Edge-Coloring problem was defined as an optimization problem. The

definition was adapted to also model the Scheduling problem under the physical interfer-

ence constraints. This adaptation is almost straightforward given the strong equivalence

between these two problems. Unfortunately, a direct consequence of this adaptation is

that most known solving techniques are no longer applicable.

Because we ran out of tools, we decided to tackle the problem by strictly building and

solving the optimization model. In order to build those models, an exponential number

of feasible sets of links need to be found. The hereditary unfeasibility property was

used to support the development of a brute force enumeration algorithm with a better

performance in practice, allowing us to apply this technique to a very selected family of

networks.

We implemented the optimization model using the Gurobi solver on a resource limited

computational environment. This technique was applied to a large number of different

families of random networks respecting the system limitations. These families are char-

acterized by parameters that control the transmission properties. After applying the

model to the networks, we obtained some handy quantities used to assess the technique

applicability and performance.

The results shown that the LP model is better than the IP, since it potentially offers

shorter schedulings and can be solved faster. For the families of networks we used, many

networks had to be dropped because the solution process demanded more resources than

those available. However, for those that fit the limitations, the enumeration and solution

48

time was no higher than 20 minutes.

We noticed that the multicoloring scheduling occurrence is intimately related to the

network link density. WM-based schedulings are found in 100% of the networks in some

families while SM-based schedulings reach 40% in the densest ones. The most repre-

sentative performance gains were observed in networks where the multicoloring is not a

common result. This gain can represent at most 25% of improvement over TC-based

schedulings. Finally, as expected, network capacities tend to decrease with the increasing

number of nodes.

6.1 Final Remarks

We summarize the main contributions of the present work:

• The first contribution concerns the theory behind fractional coloring. This is a

not so popular topic so the material was extracted from different sources and syn-

thesized here. We also provide an interpretation for the optimization formulation

components which helps its comprehension and possibly motivates its usage as a

powerful modeling tool.

• A technique to find the optimal scheduling of PIM-based networks, consisting of

solving an LP model. The modeling behind the technique is an important con-

tribution because it illustrates how fractional coloring can be used to approach

problems. Interestingly, this technique can handle the combinatorial issues well

while exploring more realistic scenarios.

• The enumeration algorithm presented here, although applied to a very specific wire-

less networks scope, its usage is not limited to it. Any problem with combinatorial

nature and hereditary infeasibility property can use this algorithm to search for

all feasible sets of any objects and somehow support other problems’ solutions and

modelings.

6.2 Future Work

• It is possible to guarantee an application-driven QoS service by determining which

links are more important than the others and answering how to produce schedulings

that consider this information. Once this importance is defined by any ranking

strategy, our scheduling technique can be used to model the problem such that

specific links are scheduled more than others. The equality constraints can be

49

adapted to change each link’s activation proportion, given a fixed transmission

period.

• The formulation used here is only one of the many possible ways to model the

Fractional Edge-Coloring problem. Moreover, it is possible that other formulations

result in better solution approaches; either in terms of efficiency, or time complexity.

We already have a simple alternative Combinatorial Optimization model for this

problem but it needs to be improved and matured.

• We actually ran the experiments for many different values of the several parameters

used. Although we did not notice significant differences, there is a huge amount

of data describing these experiments. Proper data mining tools could be used to

extract useful information from this data and create new intuition on the schedulings

and general network structural-induced properties.

• It would be very interesting to observe what happens outside the computational

limits we imposed to the experiments. We already have ideas on how to implement

the system for networks with an arbitrary number of links. Furthermore, the project

could be submitted to run on a supercomputer so the RAM limitation would also

be removed.

50

Referências Bibliográficas

[1] KUNZ, T. “Carleton University Wireless mesh network”. Dispońıvel em: <http:

//kunz-pc.sce.carleton.ca/mesh/newpage.htm>.

[2] SHI, Y., HOU, Y. T., LIU, J., et al. “Bridging the Gap between Protocol and Phy-

sical Models for Wireless Networks”, IEEE TRANSACTIONS ON MOBILE

COMPUTING, v. 12, n. 7, pp. 1404–1416, July 2012.

[3] BJÖRKLUND, P., VÄRBRAND, P., YUAN, D. “A Column Generation Method for

Spatial TDMA Scheduling in Ad Hoc Networks”, Elsevier Science, 2003.

[4] GANDHAM, S., DAWANDE, M., PRAKASH, R. “Link scheduling in wireless sensor

networks: Distributed edge-coloring revisited”, J. Parallel Distrib. Comput.,

v. 68, pp. 1122–1134, mar. 2008.

[5] DEZFOULI, B., RADI, M., WHITEHOUSE, K., et al. “DICSA: Distributed and

concurrent link scheduling algorithm for data gathering in wireless sensor

networks”, Ad Hoc Networks, v. 25, pp. 54–71, set. 2015.

[6] HAJEK, B., SASAKI, G. “Link Scheduling in Polynomial Time”, IEEE Transactions

on Information Theory, v. 34, n. 5.

[7] FANG, Z., BENSAOU, B. “Fair Bandwidth Sharing Algorithms based on Game

Theory Frameworks for Wireless Ad-hoc Networks”, IEEE INFOCOM, mar.

2004.

[8] WAN, P.-J., FRIEDER, O., JIA, X., et al. “Wireless Link Scheduling under Physical

Interference Model”, IEEE INFOCOM, mar. 2011.

[9] LEE, J. A First Course in Linear Optimization. Reex Press, 2016.

[10] WOLSEY, L. A. Integer Programming. Wiley-Interscience, 1998.

[11] VIZING, V. G. “On an estimate of the chromatic class of a p-graph”, Diskret.

Analiz., v. 3, pp. 25–30, 1964.

51

http://kunz-pc.sce.carleton.ca/mesh/newpage.htm
http://kunz-pc.sce.carleton.ca/mesh/newpage.htm

[12] SCHRIJVER, A. Combinatorial Optimization, v. B. 24 ed. Heidelberg, Springer-

Verlag, 2003.

[13] SCHEINERMAN, E. R., ULLMAN, D. H. Fractional Graph Theory. John Wiley

Sons, 2008.

[14] PADBERG, M. W., RAO, M. R. “Odd minimum cut-sets and b-matchings”, Mathe-

matics of Operations Research, v. 7, n. 1, pp. 67–80, 1982.

[15] EDMONDS, J. “Maximum Matching and a Polyhedron With O,1-Vertices”, JOUR-

NAL OF RESEARCH of the Na tional Bureau of Standards-B. Mathematics

and Mathematical Physics, v. 69B, n. 1,2, pp. 125–130, dez. 1964.

[16] GRÖTSCHEL, M., LOVÁSZ, L., SCHRIJVER, A. Geometric Algorithms and Com-

binatorial Optimization. Berlin, Springer, 1988.

[17] RAPPAPORT, T. S. Wireless communications principles and practices. Prentice-

Hall, 2002.

[18] GUPTA, P., KUMAR, P. “The capacity of wireless networks”, IEEE Trans. Inf.

Theory, v. 46, pp. 388–404, 2000.

[19] VIEIRA, F. R. J., DE REZENDE, J. F., BARBOSA, V. C. “Scheduling wireless

links by vertex multicoloring in the physical interference model”, Computer

Networks, v. 99, pp. 125–133, 2016.

[20] GUROBI OPTIMIZATION, I. “Gurobi Optimizer Reference Manual”. 2016. Dis-

pońıvel em: <http://www.gurobi.com>.

52

http://www.gurobi.com

	List of Figures
	Introduction
	Literature Review
	Fractional Edge-Coloring Problem
	Optimization Preliminaries
	Traditional Coloring
	Fractional Coloring

	The Link Scheduling Problem
	Transmission Properties
	The Physical Interference Model
	The Link Scheduling Problem
	Fractional Edge-Coloring Model
	PIM-based Enumeration Algorithm
	Model Application Example

	Experiments and Results
	Random Network Generation
	Implementation Details
	Model Applicability
	Performance Analysis

	Conclusion
	Final Remarks
	Future Work

	Referências Bibliográficas

