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Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos
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REVISÃO INCREMENTAL DE TEORIA PROBABILÍSTICA A PARTIR DE
EXEMPLOS: UMA ABORDAGEM COM PROPPR

Victor Augusto Lopes Guimarães

Março/2018

Orientadores: Gerson Zaverucha
Aline Marins Paes Carvalho

Programa: Engenharia de Sistemas e Computação

A manipulação de fluxos de dados relacionais estruturados se tornou uma tarefa
crucial, dada a disponibilidade de conteúdo produzido por sensores e pela Internet,
como redes sociais e grafos de conhecimento. Esta tarefa é ainda mais desafiadora
em um ambiente relacional do que em ambientes que lidam com exemplos i.i.d.,
dado que não podemos garantir que os exemplos são independentes. Além disso, a
maioria dos métodos de aprendizado relacional ainda são projetados para aprender
apenas a partir de conjuntos fechados de dados, não considerando modelos aprendi-
dos em iterações anteriores de exemplos. Neste trabalho, nós propomos OSLR, um
algoritmo de aprendizado relacional incremental que é capaz de lidar com fluxos de
dados contínuos de exemplos, a medida em que eles chegam. Nós aplicamos técnica
de revisão de teoria para aproveitar o conhecimento preliminar como ponto de par-
tida, buscando onde o mesmo deve ser modificado para considerar novos exemplos e
aplicando automaticamente essas modificações. Nós nos baseamos na teoria estatís-
tica do limitante de Hoe�ding para decidir se o modelo, de fato, deve ser atualizado,
de acordo com novos exemplos. Nosso sistema foi construído sobre a linguagem
estatística relacional ProPPR, para descrever os modelos induzidos, visando con-
siderar a incerteza inerente de dados reais. Resultados experimentais em bases de
co-autoria e redes sociais mostram o potencial da abordagem proposta comparada
com outros métodos de aprendizado relacional.
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Handling relational data streams has become a crucial task, given the availabil-
ity of pervasive sensors and Internet-produced content, such as social networks and
knowledge graphs. In a relational environment, this is a particularly challenging
task, since one cannot assure that the streams of examples are independent along
the iterations. Thus, most relational machine learning methods are still designed
to learn only from closed batches of data, not considering the models acquired in
previous iterations of incoming examples. In this work, we propose OSLR, an on-
line relational learning algorithm that can handle continuous, open-ended streams
of relational examples as they arrive. We employ techniques from theory revision to
take advantage of the already acquired knowledge as a starting point, find where it
should be modified to cope with the new examples, and automatically update it. We
rely on the Hoe�ding’s bound statistical theory to decide if the model must in fact
be updated accordingly to the new examples. Our system is built upon ProPPR sta-
tistical relational language to describe the induced models, aiming at contemplating
the uncertainty inherent to real data. Experimental results in entity co-reference
and social networks datasets show the potential of the proposed approach compared
to other relational learners.
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Chapter 1

Introduction

Machine learning is a field of study concerned with creating systems that are able
to learn how to perform a task by experience [1]. However, most of the machine
learning algorithms are designed for a batch environment, i.e. that all the data
(experience) are available at the beginning of the learning process.

The availability of sources that continuously generate data has aroused the need
for specific machine learning methods that are capable of processing such data in-
crementally. Regular batch methods would have di�culties on coping with such
dynamic streams as they arrive while still considering the previously acquired mod-
els. Thus, several online algorithms that learn from continuous, open-ended, data
streams have been proposed in the last decades [2–5].

Most of the stream mining methods are designed to deal with propositional data
only, in the sense that the examples are independent and homogeneously distributed,
and therefore characterized in an attribute-value format, with no explicit relation-
ship among the objects. However, real-world data that also present the continuous
arrival behaviour, such as drug discovery [6], social networks [7] and knowledge bases
built from texts [8], are heterogeneous, multi-related, uncertain and noisy.

Although there are languages and algorithms [9–13] that learn from them which
are capable of expressing concepts, objects, and their relationships; they are not
designed to handle data streams. Such methods, which aggregate techniques from
Machine Learning, Knowledge Representation and Reasoning under Uncertainty,
compose the area of Statistical Relational AI (StarAI) [14]. Two main components
make up the StarAI languages: a qualitative one, usually represented by a rich and
expressive structure such as first-order logic; and a quantitative one, mostly char-
acterized by probabilistic parameters. To learn the structure, a number of StarAI
methods take advantage of Inductive Logic Programming [15], while addressing con-
tributions from statistical and probabilistic models [16] to learn the parameters.

Learning in such languages brings the advantage of inducing an interpretable and
explainable model, from a set of examples and even regarding Background Knowledge

1



(BK). The possibility of considering a BK may considerably boost the learning
process from data streams, as learned models induced from a previous incoming of
examples can pose as the BK.

However, the majority of StarAI learning algorithms assume that the BK is fixed
and correct, and therefore not changeable. Notwithstanding, it may be the case that
part of the BK is incorrect or even incomplete. This is particularly true when the
BK has been previously acquired from an old set of examples, as happens in data
streams environments. In such cases, to make the BK useful to the updated model,
it is necessary that it undergoes a data-oriented modification process. Modifying
an initial knowledge from a set of examples is precisely the goal of theory revision
from examples [17–20] algorithms. Besides that, such methods are also capable of
inducing new rules, given the examples and BK. Also, previous works have shown
that theory revision could improve the quality of learned models, while using fewer
examples than the purely inductive methods [17, 19, 20].

Thus, an online relational environment may benefit from theory revision to take
the previously learned model as a starting point, check where it should be modified,
and change it, improving its quality when facing new examples.

In this work, motivated by the need of continuously learning from relational, un-
certain, and open-ended data, we propose the Online Structure Learner by Revision
(OSLR), an algorithm that can learn and revise a StarAI model online. We built
the system to learn models represented by ProPPR language [13] since its inference
engine can e�ciently handle inference on noisy relational data.

ProPPR language address the qualitative component of a StarAI language by the
use of a first-order function-free logic language; while the quantitative component
is represented by weights associated with the clauses in ProPPR language, which
gives higher probabilities for proofs in the path of clauses with higher weights.

Nevertheless, a question that still arises is when to decide that the existing model
needs to be revised. Trying to correctly change the model considering each new
example that is not yet generalized could quickly lead to overfitting and impose high
costs on the learning process. Thus, in this work we use Hoe�ding’s bound [2, 21–
24] to decide whether a revision improvement on the existing model is significant so
that it should be implemented.

We have opted for using Hoe�ding’s bound, instead of others statistical bounds,
because Hoe�ding’s bound does not make assumptions about the probability distri-
bution of the random variable. However, this came at the cost that more examples
must be necessary for a smaller bound if compared with bounds dependent of the
probability distribution [2].

Furthermore, to avoid the bias caused by statistical dependences between rela-
tional instances [25], particularly because Hoe�ding’s bound was originally devel-
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oped to handle independent and identically distributed (i.i.d.) cases, we take extra
care regarding the linkage and autocorrelation between instances. We use the in-
tersection of atoms in the bottom clause [26] of the examples, which represents the
atoms related to the example in the knowledge base, to define whether two examples
are dependent on each other.

We compare OSLR1 against batch StarAI learning methods, namely the RDN-
Boost system, designed to learn Relational Dependency Networks (RDN) [27, 28],
that has obtained the state-of-the-art results in a number of relational datasets; and
against ProbFOIL [29] and Slipcover [30] which use the Sato’s semantic distribution
[31] of possible worlds in order to perform probabilistic logic inference. We designed
a simulated online environment to emulate what would happen in the real world
when new examples appear incrementally.

Additionally, we also present competitive results against HTilde [23, 32], which
is an online algorithm devised to handle streaming relational data but assuming that
they are all independent and free of uncertainty.

The experiments demonstrated that our proposal is promising in the online envi-
ronment, especially in the initial iterations, when only a few examples are available
to train the model.

The main contribution of this work is the Online Structure Learner by Revision
(OSLR), an algorithm that learns probabilistic logic theories online, which can be
summarised in the following parts:

• In order to infer probabilistic theories we have used the ProPPR system [13],
which uses a PageRank [33] based algorithm to give di�erent probabilities of
reaching di�erent proofs of a logic query;

• To perform the online learning, while still considering the previously learned
model, we have applied techniques from theory revision from examples [17–20],
which considers a previous learned model as starting point for a new learning
step;

• The learning step is performed when new examples arrive and is e�ectively
applied when a significant improvement over the current theory is observed.
This significant improvement relies on Hoe�ding’s bound statistical theory
[21], which takes the number of independent examples observed into account;

• Since Hoe�ding’s bound assumes independent examples, we take some extra
care in order to account for the number of examples, assuming that a depen-
dence exists between two examples when they share a common atom on their
bottom clauses [26].

1
The OSLR system is publicly available at https://github.com/guimaraes13/oslr
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In this work, we would like to answer two main research questions, regarding
learning relational models in an online environment:

Q1 Is it better to modify a previously learned model or to learn a new model from
scratch, in order to cope with new examples, regarding the quality of the
learned model?

Q2 Is it better to modify a previously learned model or to learn a new model
from scratch, in order to cope with new examples, regarding the time for
learning the model?

In order to answer these questions, we have experimented the systems on two
domains: UWCSE [10] and Cora [34]. The performance of OSLR is comparable
to the RDN-Boost system on the first domain and it outperforms the RDN-Boost
system on the later. Furthermore OSLR outperforms ProbFOIL and Slipcover on
both datasets. The average runtime of the experiments shows that our system is
faster than the RDN-Boost on most of the learning task. These experiments make
us answer positively both of the proposed questions.

Another advantage of our online learning system is that it is always ready to
make a prediction, considering the most recent examples, while a batch system
would need to be retrained in order to generate an updated model.

Additionally to those questions, since we apply theory revision techniques, we
also investigated the benefit of starting the learning algorithms with an initial human
made theory for the UWCSE dataset. Our experiments have shown that, despite
the human theory being only partially correct, OSLR was able to take advantage of
this theory to create a better model (Q1) in less time (Q2).

The remainder of the dissertation is organized as follows: we first give the back-
ground knowledge to understand our work on Chapter 2, finishing the chapter with
the works related to ours in Section 2.5; then we present our proposal in Chapter 3
followed by the performed experiments in Chapter 4. Finally, we conclude and give
some directions for future works in Section 5.
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Chapter 2

Background Knowledge

As stated before, we are using techniques from theory revision from examples, or
simply theory revision, upon a probabilistic logic system called ProPPR [13]. In this
chapter, first, we will give the logic and statistic fundamentals to understand this
work and then we explain ProPPR’s language and its inference engine; after that,
we describe the key concepts related to theory revision [35, 36]; and finally, we give
an overview of the related works regarding online learning from relational examples.

2.1 Logic and Statistics Fundamentals
In this section we will present the logic fundamentals necessary to a better under-
standing of this work. In addition we will present some possible ways to combine
logic with statistic and probabilistic approaches.

2.1.1 First-Order Logic

First-order logic is a formal language that allows for representing knowledge and
reasoning about this knowledge [37]. First-order logic describes a world consisting
of objects and the objects may relate with each other.

The main symbols of first-order logic are:

• constant and variables;

• predicates;

• functions;

• atoms and literals;

• connectives;

• quantifiers.
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We will describe each one of them in more details.
The constants are used to represent objects from the worlds. Variables are

terms that may be substituted by constants or function terms in order to conform
with a desired goal; for instance, to answer a query about which constants may
have a specified relation. Predicates are used to define relations between objects or
properties of an object. A predicate is represented by a name and have an arity n,
which is the number of terms an atom of this predicate must have; the predicate is
usually referred as name/n.

A function, as usual in mathematics, is a map that relates a set of inputs to an
unique output and is represented as a symbol followed by a n-tuple of terms between
brackets. A term is a constant, a variable or a function applied to a set of terms.

An atom express the relation between objects (or a property of an object) through
a predicate symbol. It is represented by the name of the predicate followed by an n-
tuple of terms between brackets, where n is the arity of the predicate. For instance,
the atom below, which states that john is married to mary.

isMarriedTo(john, mary) (2.1)

This atom is composed by: a predicate isMarriedTo, which represents the married
relation; and the constants john and mary, which represents people (objects) of the
real world. In this case, the relation has arity 2, which is also called a binary relation.
It is also possible to have more than a predicate with the same name, but varying in
its arity. The atom may be either true or false, depending on whether it holds or not
in the described world. In this way, the predicate represents the relation that might
happen between objects and the atom express such a relation for a set of objects.

A literal can be either an atom or the negation of an atom. In the case it is
a negation of an atom, it is true whenever the atom is false, or have failed to be
proved.

In addition, we may use connectives to connect atoms in order to build formulas.
An atom is a formula. A connection of formulas is also a formula. The connectives
below may be used to build more complex formulas.

Considering the formulas A and B, the connectives are:

• ¬ (negation), which states that (¬A) is true whenever A is false;

• · (and) which states that (A · B) is true whenever both A and B are true;

• ‚ (or) which states that (A ‚ B) is true whenever at least one of A or B is
true;

• æ which states that (A æ B) is true whenever A is false or both A and B are
true, intuitively if A is true, B must also be true;

6



• ¡ which states that (A ¡ B) is true whenever A and B have the same logic
value;

Finally we have the quantifiers, that are useful to express properties about col-
lections of objects. The quantifiers are used to quantify variables. There are two
types of quantifiers, the existential quantifier (÷) and the universal quantifier (’).

The quantified formulas use variables to express generic concepts about the ob-
jects in the world and is very useful for reasoning. For instance, the formula below
states that every human is a mammal.

’x human(x) æ mammal(x).

While the formula below says that exists, at least, a mammal that flies.

÷x mammal(x) · fly(x).

When using first-order logic on computational problems it is often restricted to a
subset language constituted by Horn clauses [38]. A Horn clause is a disjunction of
literals with at most one positive literal where all variables are universally quantified
as the example below:

’x1 . . . xn H ‚ ¬B1 ‚ · · · ‚ ¬Bm

Where xi are variables that appear in the clause. A Horn clause is commonly written
in its implication form, omitting the quantifiers:

H Ω B1 · · · · · Bm

In this form, H is called the head of the clause and B1 · · · · · Bm is called the body.
A Horn clause with exactly one positive literal is called a definite clause. When the
body is empty, we call it a fact. We will also call a definite clause as a rule.

In this work, we will use definite clauses and facts to represent the knowledge.

2.1.2 SLD-Resolution

An advantage of having the knowledge described by a formal logic language is that
now we are able to reason about this knowledge. Since the knowledge is composed
by Horn clauses, the most usual way of reasoning about it, we use the Selective
Linear Definite clause resolution, or simply, SLD-Resolution.

The SLD-Resolution allows us to query the data by goal. A goal is a headless
Horn clause, that we would like to answer if it can be proved, given a knowledge

7



Table 2.1: Kinship Knowledge Base

(f1) father(rick, ned) Ω
(f2) father(ned, robb) Ω
(f3) father(ross, kate) Ω
(f4) mother(kate, robb) Ω

(c1) parent(X, Y ) Ω father(X, Y )
(c2) parent(X, Y ) Ω mother(X, Y )
(c3) ancestor(X, Y ) Ω parent(X, Y )
(c4) ancestor(X, Y ) Ω parent(X, Z) · ancestor(Z, Y )

base, and which values the variables of the goal might assume in order to prove it.
Where a knowledge base is a set of definite clauses and facts.

To understand the SLD-Resolution, consider the kinship knowledge described on
Table 2.1. In this table we have some facts about mother and father relations, and
we have rules defining the concept of parent and ancestor.

Supposing we would like to know Robb’s ancestors, we could represent this as
the following query:

Ω ancestor(X, robb).

In other words, it is asking which constants may replace the variable X, such that
X is an ancestor of Robb.

To answer this query we start a SLD-Resolution tree with the query as the root,
which represents a list of goals that must be proved, in this case, a single goal:
ancestor(X, robb). Then, for each goal in the list, we try to solve it by applying a
clause that has an atom on its head which can be unified with the goal. Two atoms
are unifiable when there is a variable substitution that, when applied to both, lead
to the same substituted atom, by replacing each variable of the atoms for another
term.

In order to unify the atoms, the most general unifier is used. The most general
unifier is, roughly speaking, the simplest variable substitution that makes both
atoms equal. The variables substitution replaces each variable in a formula by a
term, simultaneously. The substitution is applied to the whole clause, including its
body.

When a clause is used to solve a goal, we create a node, child of this one, by
removing the goal from the list and append, at the beginning of the list, the body
of the used clause, when it exists. When the list of goals is empty, we say we found
a solution, when there are no more possible clauses to be applied, we say the path
fails to prove the query. This algorithm is usually performed on a depth-first order.

In this way, each solution is associated with a (possibly empty) substi-
tution, when the substitution is applied to the query, it provides the de-
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sired answers, in this case the ancestors of robb are: ned, kate, rick
and ross. In this way, we say the knowledge in Table 2.1 entails
(✏) the facts: ancestor(ned, robb), ancestor(kate, robb), ancestor(rick, robb) and
ancestor(ross, robb); this is, even not explicitly represented in the table, the truth
values of these facts are implicit by the truth values of the clauses c3 and c4 [37].

In Figure 2.1 we can see a subset of the SLD-Resolution tree for the problem
mentioned above. In each edge we can see the clause used to solve the goal and
the substitution ◊ used to unify the atoms. The underlined goals are the ones to be
solved at the time. We omitted some variables renaming substitutions in order to
make the figure clear. The nodes with a ⇤ represent the solutions, emphasising the
desired value of X, which represents the name of Robb’s ancestor, while the ◊ node
represents a failure.

ancestor(X, robb)

parent(X, robb) parent(X, Z), ancestor(Z, robb)

father(X, robb) mother(X, robb)
father(X, Z), ancestor(Z, robb)

X = ned ⇤ X = kate ⇤

ancestor(robb, robb)

· · ·

◊

ancestor(ned, robb)

ancestor(kate, robb)

parent(kate, robb)

mother(kate, robb)

X = ross ⇤father(ned, robb)

parent(ned, robb)

X = rick ⇤

Clause c3
◊ = {Y/robb}

Clause c4
◊ = {Y/robb}

Clause c1
◊ = {Y/robb}

Clause c2
◊ = {Y/robb} Clause c1

◊ = {Y/robb}

Clause f2
◊ = {Y/robb,

X/ned}
Clause f4

◊ = {Y/robb, X/kate}

Clause f2
◊ = {Y/robb,

X/ned, Z/robb}
Clause f1

◊ = {Y/robb, X/rick,
Z/ned}

Clause f3
◊ = { Y/robb,

X/ross,
Z/kate }

Clause c3
◊ = {Y/robb, X/rick, Z/ned,

X Õ/ned, Y Õ/robb}

Clause c1
◊ = {Y/robb, X/rick, Z/ned,

X Õ/ned, Y Õ/robb}

Clause f2
◊ = {Y/robb, X/rick, Z/ned, X Õ/ned, Y Õ/robb}

Clause c3
◊ = {Y/robb,

X/ross, Z/kate,
X Õ/kate, Y Õ/robb}

Clause c2
◊ = {Y/robb,

X/ross, Z/kate,
X Õ/kate, Y Õ/robb}

Clause f4
◊ = {Y/robb,

X/ross, Z/kate,
X Õ/kate, Y Õ/robb}

Figure 2.1: SLD-Resolution Tree

SLD-Resolution is the proof mechanism behind a Prolog interpreter [39], which
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is proved to be complete for a set of Horn clauses. For a more detailed overview on
first-order logic and SLD-Resolution we refer the reader to [40].

2.1.3 Inductive Logic Programming

Inductive Logic Programming (ILP) is a subset of machine learning and programs
induction that combines the knowledge representation with the ability of learning
from examples from machine learning [40]. The main concern of ILP is to induce
rules that are able to prove a set of positive examples without proving a set of
negative examples for a given background knowledge.

Formally, given background knowledge (BK) defined as a set of definite clauses
and facts; and a set of examples E = E+ fiE≠, defined as facts, where E+ represents
the set of positive examples and E≠ represents the set of negative ones; we would like
to find a hypotheses H, which is a finite set of definite clauses (also called theory),
such that it conforms with the following constraints:

1. BK · H ✏ E+, this is, H is complete; and

2. BK · H 2 E≠, this is, H is consistent.

When the hypotheses H conforms with both the constraints, we say that H is correct
[40].

Usually, it is not possible to find a hypotheses that satisfies these both con-
straints, thus, we relax the constraints and try to find a hypotheses as close as
possible to correct.

A simple way to find a theory hypotheses is the Sequential Covering Algorithm
shown on [1] and described in Algorithm 1. This algorithm starts from an empty
theory and find rules that prove as much as possible the positive examples avoiding
proving the negative ones. The rules whose performance, arbitrarily defined by the
function performance, is above a given threshold · are inserted into the theory and
the examples proved by this rule are removed from the set of examples. In the
end, we have a theory that covers as much as possible all the positive examples, if
the threshold · is small enough. The sequential covering name arises since we pass
though each uncovered (not proved) examples and tries to prove it with a new rule.

Algorithm 1 is a bottom-up approach from the point of view of learning logic
theories, it starts from an empty theory, which is the most specific possible theory,
not proving any example, and generalizes it at each step by adding a new rule that
might prove examples not proved before. Besides the bottom-up approach, there is
also the top-down, which is the other way around, starting from an overly generic
theory and specifying it as needed. There are also methods that mix these both
approaches, generalizing and specifying the theory in order to better describe the
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Algorithm 1 Sequential Covering Algorithm
Input:

A Background Knowledge (BK);
A set of examples (E);
An improvement threshold (·);

Output: A Theory;
function Sequential-Covering(BK, E, ·)

theory Ω ÿ
rule Ω learnOneRule(BK, E)
while performance(rule, BK, E) > · do

theory Ω theory fi rule
E Ω E \ {positive example proved by the rule}
rule Ω learnOneRule(BK, E)

end while
return theory
end function

examples. This concept of bottom-up and top-down may be analogously applied to
the rule learning level.

Since the space of hypotheses of ILP systems is very large, possibly containing
each possible combination of literals and their terms, it is common for ILP systems
to require for a language bias to define which hypotheses are possible and which are
not. This language bias is usually represented in the form of modes, which specifies
which literals may appear in the heads and bodies of the rules, and which variables
may be new or must already be in the rule.

The mode declarations may improve both the quality of the learned theory and
the computation time of the learning algorithm, by avoiding the test of bad hypothe-
ses, but it came at the cost of a good knowledge of both the domain of the task
at hand and the declaration language of the system used. A too restrictive mode
declaration or a wrongly biased one may degrade the performance of the learned
model, by discarding potentially good hypotheses. Thus, a balance between the
restrictiveness of the language bias and the search time of the algorithm might be
found in order to find good hypotheses in feasible time [40].

2.1.4 Statistical Relational Artificial Intelligence

Despite the expressive power of logic for both representing knowledge and reasoning
about it, it has a limitation: its proofs are boolean, i.e. either true (prove) or false
(fails to prove). This limitation makes it di�cult for ILP to deal with noise and
uncertainty, two aspects inherent in real world problems.

In order to overcome this limitation, several approaches have been proposed
in the last decades, many of them trying to combine the well founded fields of

11



Probability and Statistics with logic.
Several approaches have been proposed with di�erent ways of combining logic

and probabilities and thus many names have been used to refer to this field of study:
Probabilistic Logic Learning and Statistical Relational Learning are some of them,
and there are disagreements about which framework belongs to which field. For the
concern of this work, we will use Statistical Relational Artificial Intelligence (StarAI)
as a generic term in order to refer to any system that combines logic with statistics
and probability [14].

There are two main approaches to combine logic with probability: First-Order
Logic and Probabilistic Graphical Models, each of which with their own methods.
On one hand, Probabilistic Logic Programming aggregates probability to the logic
reasoning by labelling the rules (possibly also the facts) with weights that will be
used to give di�erent probabilities to di�erent proofs. On the other hand, Proba-
bilistic Graphical Models uses the relational expressiveness of logic language to build
graphical models and performs the inference in the graphical model.

In the following sections we will describe two well-known frameworks from the
First-Order Logic approach: Probabilistic Logic Programming and Stochastic Logic
Programming which are closely related to this work, specially the later; and then,
will give a general overview of Probabilistic Graphical Models.

Probabilistic Logic Programming

A well-known way of combining logic with probability is the field known as Proba-
bilistic Logic Programming (PLP). PLP is a family of languages which usually uses
Sato’s distribution semantics [31], which defines a probability over possible models
(or worlds). The program consists of a set R of definite clauses and a set F of
ground facts (that do not contain variables). It considers that each fact fi œ F is
associated with a probability value pi œ [0, 1] and represents an independent boolean
random variable that is true with probability pi and false with probability 1 ≠ pi

[41]. Each model M is a set of ground facts and has a probability defined by the
equation below:

Pr(M) =
Ÿ

fiœM

pi ú
Ÿ

fiœF \M

(1 ≠ pi)

In this semantic, the probability of a specific fact to be true is given by the sum of
the probabilities of the worlds in which the fact is true.

A prominent system that uses this semantics is ProbLog [11] which is a proba-
bilistic extension of Prolog [39]. ProbLog uses binary decision diagrams in order to
perform, e�ciently, the inference for this semantics. ProbLog’s language also allows
one to specify probabilities for definite clauses, in addition to grounded facts. We
refer the reader to [41] for more details about probabilistic logic concepts.
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Stochastic Logic Program

Another approach that assigns confidences to logic proofs is Stochastic Logic Pro-
gram (SLP) [9]. Instead of defining probability facts that may or may not be true
in possible models, Stochastic Logic Program is a language which states that each
clause has a label p œ [0, 1] meaning the probability of following through such a clause
in the SLD-Resolution tree. In this way, di�erent edges in the SLD-Resolution of a
given query may have di�erent weights, thus, di�erent solutions may be preferred.

Assuming that a node in the SLD-Resolution has n edges with weights p1, . . . , pn,
respectively, the probability of choosing the edge is represented by pi is pi

p1+···+pn
. The

probability of a given solution is the product of the probability in the path from the
root to the solution. Since a solution may occur repeatedly in di�erent leaves of the
SLD-Resolution tree, the probability of those leaves are summed.

In this way, SLP defines a probability distribution over the proved facts. This
formalism is the one closest related to the ProPPR language used in this work, as
we will see in Section 2.2.

Probabilistic Graphical Models

A Probabilistic Graphical Model is a graph-based representation to compactly en-
code a, potentially complex, joint probability distribution over a set of random vari-
ables [42]. The random variables in the domain are represented by the nodes in the
graph, while an edge between two nodes represents that there is a direct probability
interaction between the two random variables represented by these nodes.

There are models that use directed graphs, such as Bayesian networks, which
is an acyclic directed graph and others that use undirected edges, such as Markov
networks [42].

In order to account for the relational nature of the logic programs, while still
reasoning under uncertainty, some approaches have been proposed. Two promi-
nent approaches in this field are Markov Logic Network (MLN) [10] and Relational
Dependency Network (RDN) [12].

Markov Logic Network uses first-order logic in order to describe how to build
a grounded Markov network. Each clause in the first-order language has a real-
valued weight which states that as higher the weight of the clause, possible worlds
that violate this clause are less likely to be true. Inferences in such a language
are performed in the constructed Markov network. MLNs algorithms also allow for
learning the weights of the first-order clauses (parameter learning) and even learn
the clauses itself using ILP techniques (structure learning) [10].
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Relational Dependency Network is an extension of Dependency Networks
(DN) [43] for relational data [12]. DN approximates a joint probability distribution
with a set of Conditional Probability Distributions (CPD) independently learned
from data. RDNs extends DN by specifying a joint probability distribution using
CPDs over the attribute values of relational data.

In this work we opted for using ProPPR because of its e�ciency. ProPPR is
similar to the SLP language, but performs the inference based on an approximation
of the PageRank algorithm in a SLD-Resolution graph, as we explain in the next
section. Nevertheless, we believe that StarAI models learned by first-order logic
paradigm, which aggregates probability to the logic reasoning, are easier to be in-
terpreted and explained by humans, than the probabilist graphical model paradigm.

2.2 ProPPR
ProPPR is a statistical relational system that uses a first-order probabilistic lan-
guage, of the same name, to infer facts, given background knowledge and a set of
definite clauses (theory) [13].

2.2.1 Language

ProPPR follows the language of function-free first-order logic with the main syntactic
elements defined as follows:

• A variable is represented by a string of letters, digits or underscores, starting
with an upper case letter;

• A constant is represented like a variable, but starting with a lower case letter;

• A term is either a constant or a variable;

• An atom is represented by a string of letters, digits or underscores, starting
with a lower case letter followed by a n-tuple of terms between brackets; thus,
we say the predicate has arity n.

A knowledge base written in ProPPR’s language can be composed of grounded
atoms (atoms that have only constants in their terms) and definite clauses, following
the same definitions described in Section 2.1.

Features

In addition to the logic part, ProPPR language allows for specifying features for
the rules. The features are in the form of atoms and, when defined, they appear
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Table 2.2: ProPPR Language Example

(1) about(P, L) Ω hasWord(P, L) · isLabel(L) {w1}.
(2) about(P, L) Ω linksTo(P, P1) · hasLabel(P1, L) · weight2(P1, L) {w2}.
(3) about(P, L) Ω linksTo(P, P1) · hasWord(P1, L) · isLabel(L) · weight3(P1, L) {w3}.
(4) weight2(P1, L) Ω {w2(P1, L)}.
(5) weight3(P1, L) Ω {w3(P1, L)}.

at the end of the rule between curly braces. The role of those features is related
to the weights parameters and will become clear in the following two subsections,
where we will explain the ProPPR’s inference method and parameter learning. Table
2.2 shows an example of a set of rules in the ProPPR language. This example is
inspired by the example in [13] and represents the domain of webpages, where we
would like to learn the topic of a webpage, based on its words and its hyperlinks.
The underlined part has no logical utility; it is only there to define the features.

2.2.2 Inference

ProPPR defines logical inference as a search on a graph, similar to the one produced
by a Prolog interpreter [39]. Let P be a logic program that contains a set of rules
C = {c1, . . . , cn}. Let the query Q be a conjunction of predicates that appear in
P . The graph is recursively constructed as follows: let v0 be the “root” of the
tree, representing the pair (Q, Q) and add it to an empty graph G; then add new
nodes to G such as: let (Q, (R1, . . . , Rk)) be represented by a node u, and c œ C

be a rule of the form RÕ Ω S Õ
1, . . . S Õ

l, such that the pair (R1, RÕ) has the most
general unifier ◊ = mgu(R1, RÕ); then add a new edge u æ v in G, where v =
(Q◊, (S Õ

1, . . . S Õ
l, R2, . . . , Rk)◊). (S Õ

1, . . . S Õ
l, R2, . . . , Rk) is the associated subgoal list.

An empty subgoal list represents a solution.
Note that in this formulation, the nodes are conjunctions of atoms, and the

structure is, often, a directed graph, instead of a tree; since the application of
di�erent rules (or atoms) to solve a subgoal may lead to the equal nodes, these
nodes are represented by a single node in the graph structure.

Figure 2.2 shows a subset of a graph constructed by ProPPR given the query
about(a, L), the set of facts described in Table 2.3, and the program defined in Table
2.2. The nodes with a ⇤ represent the solutions to the query. After constructing
the graph, the answer to a query is found by an approximation of the Personalized
PageRank algorithm [13], performed on the graph described above, via an algorithm
called PageRank-Nibble [44, 45]. This algorithm is used to implement a probabilistic
SLD-Resolution and is outlined as Algorithm 2 [13].

The algorithm works by maintaining two vectors p and r with the same size as
the number of nodes in G, where p represents the PageRank approximation, and r

15



Algorithm 2 The PageRank-Nibble Algorithm
function PageRank-Nibble(v0, –Õ, ‘)

p Ω 0, r Ω 0, r[v0] Ω 1, Ĝ Ω ÿ
while ÷u : r(u)/|N(u)| > ‘ do

push(u)
end while

return p
end function

function push(u) Û this function modifies p, r and Ĝ
p[u] Ω p[u] + –Õ ú r[u]
r[u] Ω r[u] ú (1 ≠ –Õ)
for v œ N(u) do

add edge (u, v) to Ĝ
if v = v0 then

r[v] Ω r[v] + Pr(v|u) ú r[u]
else

r[v] Ω r[v] + (Pr(v|u) ≠ –Õ) ú r[u]
end if

end for
end function

represents a residual error of the approximation, for each node of G. Both vectors
starts with 0 in each position, except for r[v0] that starts as 1, where v0 represents
the query that we would like to answer. Then, the algorithm repeatedly picks a
node v with a large residual error and reduces this error by passing a fraction –Õ

to p[v]. The remaining fraction is passed to r[v1] . . . r[vn], based on Pr(vi|v), that
represents the probability of going from node v to vi, where vi œ N(v) represents
the neighbours of v. Finally, the probability of a solution s is p[s], normalized by
the sum of p[si] for each solution si.

The order on which the nodes are chosen does not matter for the analysis of the
algorithm, but it does matter for inference of logic programs; ProPPR follows the
same order that a Prolog interpreter would, or an order as close as possible of it
[13].

Depending on the program P and the set of facts, this graph might be very large
or even infinite, so it is not fully constructed. ProPPR constructs the graph incre-
mentally as necessary, depending on the values of –Õ, ‘ and a predefined maximum
depth.

In addition to the normal edges of the graph, ProPPR also adds two types of
edges, namely: (1) an edge from every node to the starting node v0, and (2) an edge
from each solution node to itself. In the first case, those additional edges are used as
bias, to give higher weights to shorter proofs. In the second case, it aims at making
the solution nodes have higher probabilities than the other ones.
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Table 2.3: ProPPR Facts Example

isLabel(sport). hasLabel(b, politics).
isLabel(food). hasWord(b, food).
linksTo(a, b). hasWord(b, sport).
hasWord(a, sport).

about(a, L)

hasWord(a, L), isLabel(L)linksTo(a, P1), hasLabel(P1, L), weight2(P1, L) linksTo(a, P1), hasWord(P1, L), isLabel(L), weight3(P1, L)

hasLabel(b, L), weight2(b, L) isLabel(sport) hasWord(b, L), isLabel(L), weight3(b, L)

weight2(b, politics)

L = politics ⇤ L = sport ⇤

isLabel(sport), weight3(b, sport) isLabel(food), weight3(b, food)

weight3(b, food)weight3(b, sport)

L = food ⇤

Rule (2)
◊ = {P/a}, {w2}

Rule (1)
◊ = {P/a}, {w1}

Rule (3)
◊ = {P/a}, {w3}

linksTo(a, b).
◊ = {P1/b}, {db}

hasWord(a, sport).
◊ = {L/sport}, {db}

linksTo(a, b).
◊ = {P1/b}, {db}

hasLabel(b, politics).
◊ = {L/politics}, {db}

isLabel(sport).
{db}

hasWord(b, food).
◊ = {L/food}, {db}

hasWord(b, sport).
◊ = {L/sport}, {db}

Rule(4).
{w2(b, politics)}

isLabel(food).
{db}

isLabel(sport).
{db}

Rule (5)
{w3(b, food)}

Rule (5)
{w3(b, sport)}

Figure 2.2: ProPPR’s Resolution Graph

The PageRank procedure represents a random walk in the graph. Since each step
has a probability of going back to the starting vertex, it is also known as a random
walk with restart [46]. A random walk represents the probability of, starting from
a node v, reaching a node u, after a long time, by walking in the graph following a
random edge at a time. Intuitively, as many paths from the root to a solution node
there are, the higher is the probability of reaching a solution node, since there are
more ways to get to it.

Since every node has an edge to the starting node, ProPPR is biased to solutions
that are closer to this later, representing solutions that are easier to explain. For
instance, lets assume that the probability of getting the edge returning to v0, at
each step, is – œ [0, 1]. Then, we have that the probability of reaching a node that
is d steps away from v0 is (1 ≠ –)d. The bias to short proofs is desired at least for
three reasons: (1) given the Occam’s razor [1], short explanations, represented by
short proofs, are more likely to be the correct ones; (2) they are easier to compute;
and (3) they are easier to be interpreted by humans.

2.2.3 Learning Parameters

To learn the parameters of a model, as usual in machine learning, ProPPR requires
examples. To cope with a relational model, where instances may be dependent
on each other, ProPPR defines an example as composed of a query of the type
p(X1, . . . , Xn), where p is a predicate, n Ø 1, and Xi œ X1, . . . , Xn is either a
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constant or a variable, and at least one term Xi œ X1, . . . , Xn must be a variable.
The query is followed by a set of its possible instantiations (where all the variables
are replaced by constants). Each possible instantiation is preceded by a + or a ≠
sign, indicating whether it is a positive or a negative answer, respectively, where a
negative answer represents an undesirable instantiation. An example is illustrated
below:

about(a, X) + about(a, sport) + about(a, politics) ≠ about(a, food)

The first atom is the query and the others represent possible answers by grounding
X.

Starting from the query, every time ProPPR adds a new edge to the resolution
graph it marks such an edge with a feature. In case the edge has originated from a
rule that has a feature in its body, the edge is annotated with that feature. When
the edge has come from a fact, the edge is associated with a special feature, called
db. If the rule has no related feature, ProPPR creates an unique feature for it. These
features are used to change the probability Pr(v|u) of going from node u to node
v, tuning the weights of the answers. In this way, ProPPR can increase the weight
of the desired answers and reduce the weights of the undesired ones, based on the
examples. Thus, Pr(v|u) Ã f(wuæv) where wuæv is a learned weight for the feature
from the edge u æ v, and f is a di�erentiable function, by default, the exponential
function.

ProPPR, di�erent from other StarAI systems such as ProbLog [11] and MLN
[10], is capable of learning di�erent weights for di�erent constants instantiated by
the rules during the inference, rather than only a fixed weight for the rule itself.
This gives more flexibility to tune this weights, that is the role of the rules (4≠5) in
Table 2.2. From a logic point of view, theses rules have no meaning, since it proves
anything; but for the ProPPR inference mechanism, it creates specific weights for
the variables on their features, depending on the constants used to instantiate them.

It is important for the variable of the features to appear in the head of the
rule because, when the rule is used to prove the goal, the variable must have been
already replaced by the constant defined by the applied substitution. Since the
goal it proves is only used at the end of the rule and the variables of such a goal
have already appeared before in the rule (see the underlined parts of clauses (2 ≠ 3)
in Table 2.2) the variables will be already replaced by constants by the time the
SLD-Resolution tries to prove the last literal of the rule.

To tune the weights, ProPPR generates the graph to answer each one of the
examples and uses Stochastic Gradient Descent (SGD) to minimize the cross-entropy
function, based on the proved answers.
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Stochastic Gradient Descent (SGD) is an optimization process that aims at find-
ing the parameters that minimize a given loss function, with respect to a set of
examples. To achieve this goal, at each step it changes the parameters of the func-
tions following the inverse direction of the gradient, based on a, randomly chosen,
batch of examples. The method iterates over the whole set of examples performing
a batch at a time until it reaches a stop criteria, which, in our case is to pass through
each one of the examples n times.

In the ProPPR’s case, the loss function is the Cross-Entropy, which is defined
by the equation below:

≠ 1
n

nÿ

i=1
[yi ln(yÕ

i) + (1 ≠ yi) ln(1 ≠ yÕ
i)]

Where yi is the correct value of the answer i, 0 for false and 1 for true; yÕ
i is the

predicted value for the proof of the answer i; and n is the number of answers.
Intuitively, the first term, inside the summing, concerns the positive answers,

penalizing the prediction as far it is from 1; while the second term concerns the
negative answers, penalizing the predictions as far it is from 0. By optimizing this
function, we find the parameters that make the desired predictions as closes as
possible to 1 when it is a right prediction or to 0 when it is wrong.

In addition to the Cross-Entropy, ProPPR adds a L2 Regularization term to the
loss function. The L2 Regularization is a regularization technique that adds the
sum of the square of the parameters to the loss functions, avoiding the absolute
value of the parameters to be tuned indefinitely, in order to prevent overfitting. The
equation below show the Cross-Entropy with the L2 Regularization term:

≠ 1
n

nÿ

i=1
[yi ln(yÕ

i) + (1 ≠ yi) ln(1 ≠ yÕ
i)] + ⁄

ÿ

wœW

w2

Where W is the set of parameters to be learned and ⁄ a parameter to regulate the
impact of the regularization in the comparison to the loss function.

This regularization term makes the gradient decay the absolute value of the
weight towards zero, so a balance must be found between the absolute value of a
parameter and its contribution in reducing the loss function, avoid overfitting.

In this way, the current theory, and its parameters, may be used to predict new
answers through logic inference. We refer the reader to [13] for more details about
ProPPR.
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2.3 Theory Revision from Examples
The field of theory revision from examples focuses on modifying an initial theory
to make it better suited to explain the set of examples [35, 47]. Theory revision
methods are suitable to be applied in online environments, since they assume that
in the presence of an initial model, it is better to start from it, and modify it
whenever the examples pointed out that this is necessary, instead of discarding it,
or assuming it is correct.

Generally speaking, a theory revision top-level procedure is constituted of the
following steps: (1) finding the examples incorrectly classified by the current model;
(2) finding the points in the theory that are responsible for the model incorrectly
classifying those examples, namely the revision points; (3) suggesting applying the
proper change to these points, using a number of revision operators; and (4) deciding
if the changes are going to be applied. Next, we briefly explain the concepts of
revision points and revision operators.

2.3.1 Revision Points

Revision points are rules and literals in a theory responsible for the misclassification
of some example. Usually, there are two types of revision points:

• Specialization revision point: the rules in the theory that take place in
the proof of negative examples, indicating that the theory is too generic and
needs to be specialized to avoid such proofs;

• Generalization revision point: the literals in rules that prevent a positive
example to be proved, thus indicating that the theory is too specific and needs
to be generalized to allow positive examples to be proved.

In a single iteration of the search process of a theory revision system, it starts
by identifying the misclassified examples; followed by the discovery of the revision
points in the current theory, by performing the logic inference and finding the rules
that were used in the proof of negative examples or the literals that prevents pos-
itive examples to be proved, given the misclassified examples; to finally apply the
respective revision operators to these points.

2.3.2 Revision Operators

Revision operators modify the theory, at some specific revision point, in order to
improve the theory to a set of examples. The four most common theory revision
operators are:
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1. Add rule: inserts a rule into the theory aiming at proving positive examples,
either taking advantage of an existing clause, or creating one from scratch;

2. Delete antecedent: erases literals, from the body of a rule, that prevents
positive examples of being proved;

3. Delete rule: erases a rule taking place in the proof of a negative example;

4. Add antecedent: includes literals in the body of a rule, so that it becomes
more specific to avoid incorrectly proved examples.

The first two operators aim at generalizing the theory, and the last two aim at
specializing it.

Note that when applying a revision operator, it is possible that a former correctly
classified example becomes misclassified. For example, when creating a rule, it is
possible that a not previously covered negative example becomes provable. There-
fore, the search procedure must decide which operator is going to bring more benefits
to improve the theory, if any. Thus, normally, each appropriated revision operator
is tried at each revision point, and the revision with the best score is kept. Then,
the algorithm proceeds to find new revision points, and employ revisions on it, in a
hill-climbing manner until no further improvements on the score are possible [17].

An overview of a theory revision algorithm, similar to the one in [17] can be
seen in Algorithm 3. At each step, the algorithm: finds the revision points of the
theory, where the theory misclassifies any example; applies the revision operators
to generate new theories; and finally, keeps the theory that better improves the
performance on an arbitrary metric. The algorithm keeps repeating these steps
until no more changes are able to improve the current theory, returning the best
theory found in the process.

2.4 Online Learning
Traditional machine learning algorithms are batch learners, this is, they assume
that all the information is available at the beginning of the learning process. If
new information arrives, in order to be considered by the learned model, the batch
algorithm must be retrained from scratch. To overcome this limitation, several
online learning algorithm have been proposed [2–5].

An online learning algorithm learns over a stream of data, thus, when new data
arrives, it must be able to adapt its model in order to consider the new information
[2].

Since theory revision from examples assumes an, not necessarily correct, initial
model, it becomes well suited for learning logic theories online. In this way, when
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Algorithm 3 Theory Revision Algorithm
Input:

A Background Knowledge (BK);
A Theory (theory);
A set of examples (E);

Output: A (possibly modified) Theory
function Revise(BK, theory, E)

newTheory Ω theory
do

theory Ω newTheory
E Õ Ω findMisclassifiedExamples()
revisionPoints Ω generateRevisionPoints(BK, theory, E Õ)
candidates Ω ÿ
for each rp œ revisionPoints do

if isGeneralization(rp) then
revisions Ω applyGeneralizationOperators(BK, theory, E, rp)

else
revisions Ω applySpecializationOperators(BK, theory, E, rp)

end if
candidates Ω candidates fi revisions

end for
newTheory Ω pickTheBest(candidates)

while performance(newTheory) > performance(theory)
return theory
end function

new data arrives, we may evaluate the current model, find the revision points and
apply the revision operators in order to better fit the model to the new data.

For example, consider the problem of learning the advisory relations between
people in an university department, inspired by the UWCSE dataset [10]. The
knowledge base in Table 2.4 describes the relationships in an university department
and we would like to learn the relation advisedBy(x, y), that states that the person
x is advised by the person y.

Consider that we have the following positive examples to learn the adivisedBy
relationship:

advisedby(person2, person1).

Table 2.4: The Relationships in Department

publication(title1, person1). publication(title2, person3).
publication(title1, person2). publication(title2, person4).
taughtby(course1, person1, winter). taughtby(course2, person3, spring).
ta(course1, person2, winter). student(person4).
professor(person1).
student(person2).
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advisedby(person4, person3).

Both ILP learning algorithms and theory revision algorithms could easily learn
the following rule:

advisedBy(X, Y ) Ω publication(Z, X) · publication(Z, Y ). (2.2)

Which would correctly prove both of the positive examples.
Now, consider that we have a new information that a person cannot be advised

by him/herself, which is very reasonable. The Rule 2.2 becomes too generic, since
it proves the following negative examples:

advisedby(person1, person1).
advisedby(person2, person2).
advisedby(person3, person3).
advisedby(person4, person4).

In order to account for this new information, a batch ILP learning algorithm would
discard the already learned Rule 2.2, which is partially correct (since it proves the
positive examples) and relearn everything from scratch.

On the other hand, a theory revision algorithm could start from the already
learned Rule 2.2 and specialise it, by adding the literals student(X) · professor(Y )
at the end of the rule, becoming:

advisedBy(X, Y ) Ω publication(X, Z) · publication(Y, Z)
· student(X) · professor(Y ).

And thus, not proving the negative examples while still proving the positive ones.
It is already known that starting from a previous, yet partially correct, theory

may improve the quality of the model even using less examples [17, 19, 20].
Analogously, we can apply this capacity of starting from a not empty theory

to online learning, considering as the “initial theory” the one learned at a previous
moment of the learning process, which is subjected to be revised as new information
arrives.

The use of theory revision brings another advantage, even when applied to online
learning: it allows the use of previous acquired theories, either provided by another
learning system or by human experts.

2.5 Related Work
We are using techniques from theory revision from examples to improve the quality
of the StarAI model for a new set of examples. A well-known theory revision system
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is FORTE [17]. FORTE revises first-order logical theories by first finding the points
where the theory is misclassifying the examples (the revision points) and then, ap-
plying revision operators to these points. We also follow this key theory revision
top-level procedure here.

With FORTE’s successor, FORTE-MBC [19], we share the idea of using a Bot-
tom Clause [26] to support the generation of new literals. However, we do not
employ stochastic search here as the FORTE-MBC successor, YAVFORTE [20].
While FORTE and its successors aim at revising theories considering a whole set
of examples at “one-shot”, i.e., they are essentially batch algorithms, here we take
advantage of revision techniques to allow learning first-order models in an online
environment.

To handle examples coming in streams and revise theories in an online fashion, we
have to decide when to apply a revision, given the examples. To take such a decision,
we use Hoe�ding’s bound [21]. The Hoe�ding’s bound has already been used in
a classical machine learning method, yielding the VFDT [2] algorithm, which is a
system to learn decision trees incrementally, by applying Hoe�ding’s bound to decide
whether to split a node, based on the information gained from the examples. Also,
Hoe�ding’s bound has been applied to learn massive data streams from relational
databases [48]. However, in both cases, the bound is employed over i.i.d. data, as
in the second case the data is propositionalized before the statistical test is applied.

Another algorithm related to this work is HTilde, introduced in [23]. HTilde
learns relational decision trees, where the test of a node is the proof of a logic
literal. It grows the decision tree online, using the Hoe�ding’s bound to decide
whether to split a node, given the number of examples. In [32] this algorithm was
enhanced, and it generated new results. HTilde was implemented over Tilde [49, 50]
to incrementally learn first-order logical decision trees by using Hoe�ding’s bound.

The main di�erence between our approach and HTilde is that HTilde can only
grow the first-order tree model, which may produce quite complicated final trees.
Our approach, on the other hand, can also create new rules, and add literals to
existing rules, besides deleting entire rules, and literals from existing rules, according
to the incoming of new examples. As our approach allows more deep changes on the
theory, while still regarding the useful information in the previous model, it needs
fewer examples to perform well, compared to HTilde.

Another benefit of our approach over HTilde is that we rely on a StarAI system.
In this way, we can handle noise and uncertainty inherent to real-world examples,
while HTilde is based on a purely logical language.

As the model language and inference engine we use ProPPR [13] that is a StarAI
system based on an approximation of the PageRank algorithm [33] to find a proba-
bilistic distribution over the possible answers of a logical query. ProPPR is capable
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of using a set of positive and negative examples to tune this distribution in order to
increase the weight of desired answers and decrease the weight of undesired ones. We
have chosen to rely on ProPPR instead of other StarAI languages such as Markov
Logic Networks [10] or ProbLog [11] because of its e�ciency on both answering the
logic queries and learning the weight of the desired answers.

A well-known first-order logic system is FOIL [51]. FOIL learns first-order logic
theories by starting from the most general clause and specifying it in order to better
fit the examples, adding this clauses to the theory in a greedy way [51]. FOIL was
extended in [29] to deal with probability, by using ProbLog [11] as language and
inference engine. ProbFOIL is related to our work because it also learns proba-
bilistic logic theories but in a di�erent inference semantics, in their case, the Sato’s
distribution semantics [31].

Another work that learns probabilist logic theories under this semantics is Slip-
cover [30]. Slipcover uses a beam search to find potentially good clauses, which
are generated by refining bottom clauses, generated by examples, through theory
revision techniques; and by adding the best clauses to compose a theory, in a greedy
way, in order to maximize the likelihood of the examples [30].

Furthermore, [24] investigate the adoption of online learning algorithms to deal
with relational data. The authors also extends ALEPH [52], which is a relational
learning system, to deal with learning streams.

Finally, as explained before on Subsection 2.1.4, there are approaches that use
graphical representation in order to make probabilistic inference. There are two
of those which are more related to this work: MLN and RDN, since they use first-
order logic to describe their knowledge. Furthermore, [28] proposes a gradient-based
boosting approach in order to e�ciently learn RDN models. Thus, the boosted RDN
algorithm proposed in [28] was used in our experiments as a comparing method.
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Chapter 3

Online Learning of ProPPR
Models Based on Theory Revision

In this section, we present the Online Structure Learner by Revision (OSLR), the
algorithm proposed in this work, which learns a ProPPR model online, i.e., from a
stream of examples. We rely on theory revision techniques to address the necessary
adaptations in the learned model, due to the continuously, open-ended incoming of
examples.

First, we introduce the data structure used by our algorithm to revise the model,
then we present the algorithm itself.

3.1 Finding Revision Points
Finding the correct places to change in a theory is quite a challenging and expensive
task [20]. To smoothly do this task, we defined a tree structure to represent the
model, aiming at e�ciently traversing it to suggest possible modifications. A single
tree is used to represent rules with the same predicates in their heads, i.e., in case
the theory has multiple target concepts, where each concept is represented by a
di�erent predicate, there is going to be a tree for each one of them.

Each node in the tree is associated either to a single literal in some rule or to a
special node labelled as false. The root of the tree represents the head of the rule,
while the other nodes represent literals in the body of the rules. The first level of
the tree is the head of the rule; the second level contains literals appearing in the
first position in the body of the rules, the third level includes the literals appearing
in the second position in the body of rules, and so on. Figure 3.1 illustrates an
example of such a tree. The special node labelled as false is always a leaf, appearing
as the child of an internal node ni in the tree, and representing the failure of the
literals that come after the literal associated with ni in the rule, i.e. the failure of

26



about(P, L) Ω . . .

linksTo(P, P1)falsehasWord(P, L)

isLabel(L) false false hasLabel(P1, L)hasWord(P1, L)

isLabel(L) false

Figure 3.1: Tree Structure

all children of ni. Each path in the tree, from the root to a leaf, that does not end
in a false node represents a single rule in the theory. In this way, we do not consider
rules that are a subset of another rule. As the leaves in the tree have a special role,
representing either the end of the rule or a failure point, they are di�erentiated from
the other nodes and graphically exhibited as squares.

Note that the features introduced in ProPPR language do not take part in the
tree, as they act as latent variables to cope with the weights of the rules but they do
not interfere with the logical part. Each leaf (square nodes) in this tree holds a set
of examples. When a new example arrives, we pass it through the tree, to decide in
which sets to put it. We start with the example in the root, then we pass it through
the nodes in the tree recursively, as follows: for each node u in the children nodes
of the current node v, we check if the (partial) rule from u to the root proves the
example; if it does, we pass the example down to u. If none of the children of v

proves the example, it is placed on the false node, child of v. We repeat this process
until the example reaches the leaves of the tree. In case an example is proved by
more than one child node, it goes to all the nodes that prove them.

Since we use the ProPPR’s example format and in this format several answers
may be grouped into a single example, we split such answers into the ones that are
covered by a rule and the ones that are not. Only the covered ones are passed to
the children nodes, as the answers not covered eventually get stuck in a false leaf.
A naive yet easy to understand algorithm to place the answers in the leaves of the
tree can be seen in Algorithm 4.

The leaves of the tree point out the revision points of the model. In addition,
the set of examples of each leaf represents the examples that should be taken into
account when revising its correspondent revision point. The false leaves of the tree
contain examples that are not covered by the correspondent part of the theory while
the other squared leaves includes the examples covered by its respective rule. In
this way, positive examples in the false leaves and negative examples in the other
squared leaves are potential examples to suggest revisions to the theory. We use
this information to choose which part of the theory should be revised.
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Algorithm 4 Algorithm to Place the Example in the Tree Structure

Input:
Background Knowledge (BK);
A set of answers (A);
The tree structure (tree);

Output:
The tree structure (tree) with the answers in place;

function placeAnswers(BK, A, tree)
for each answer a œ A do

queue Ω tree.getRoot()
while queue is not ÿ do

node Ω queue.pickF irstAndRemove()
children Ω passAnswerToChildren(BK, a, node)
queue Ω children fi queue

end while
end for

return tree
end function

function passAnswerToChildren(BK, a, node)
passedChildren Ω ÿ
if node.isLeaf() then

node.put(a)
else

for each node n œ node.getChildren() do
if proves(BK, node.getPartialRule(), a) then

passedChildren Ω passedChildren fi node
end if

end for
if passedChildren is ÿ then

node.getFalseNode().put(a)
end if

end if
return passedChildren
end function

3.1.1 Revision Operators

Now that we have the tree structure indicating the revision points, and the set of
examples that may be a�ected when modifying each point, we can define how such
points are going to be changed, i.e., the revision operators. They are also supported
by the tree and grouped into two types of revision operators: (1) addition of nodes;
and (2) deletion of nodes.

For each revision point, we apply the possible operator and use the examples in
the revision point in order to measure the improvement of the revised theory over
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the current one. Following, we present the proposed revision operators.

Adding Nodes

A not-false leaf with negative examples indicates that the theory needs to be special-
ized, in an attempt to make the negative examples unprovable. On the other hand,
a false leaf with positive examples indicates that the theory needs to be generalized.

Thus, in the first case, we add literals in a rule proving a negative example by
adding a new path as a child of a not-false squared leaf (that will no longer be a
leaf) in an attempt of making the negative examples unprovable due to these new
literals, or at least reduce its proofs. In the second case, we would like to generalize
the theory by adding a new rule. In this case we add a path as a new branch of
the parent of a false leaf, creating a new path from this parent to a not-false leaf,
therefore, creating a new rule.

To create such new paths, we rely on the concept of the bottom clause [26], to
define the set of atoms that are candidates to become nodes in the tree. To generate
the bottom clause, we transform the knowledge base in a graph GKB such that the
nodes in this graph are the constants in the knowledge base (KB) and there is an
edge between two constants if there is a fact in the KB with those two constants as
its terms. Even in the presence of facts with arity greater than two, we still represent
them in the graph, by creating the edges between all pairs of constants in the fact.
For a fact with arity one, we include a loop edge, linking the node to itself.

Since we use the bottom clause in order to define the possible literals to be
added into a rule, either to an existent rule or to start a new one, we dismiss the
mode declarations, making the input configuration of the learning algorithm much
simpler, not requiring a deep knowledge of the task at hand. This is appropriate
to online environments, since new relations (predicates) may appear over time, and
requiring a language bias specific for each new predicate would require constant
human interaction with the system.

We define the bottom clause of depth 0 created from an example p(c1, . . . , cn)
as the set of edges connected to the nodes c1, . . . , cn œ GKB. A bottom clause of
depth 1 is gathered from the set of edges from the bottom clause of depth 0 plus the
edges connected to the nodes that are 1 edge away from the nodes c1, . . . , cn, i.e. the
nodes that can be reached by going from a node ci œ {c1, . . . , cn} to another node
passing through only 1 edge. For a bottom clause of depth n, we include the edges
from nodes that are n edges away from the example’s constants. This bottom clause
is easily obtained by a breadth-first search in the graph of the knowledge base.

In order to create the bottom clause, we randomly pick a subset of a ProPPR
example that is in the node indicating the revision and calculate the bottom clause
of depth i for each one of the positive answers within these examples. Next, we
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replace the constant terms by variables and combine their atoms into a single set.
Both the depth of the bottom clause and the size of the subset of examples to be
used are parameters to the algorithm.

Given the bottom clause, we have the candidate literals to generate the nodes to
be included in the tree. There are two possible ways of including them in the tree:

Hill-climbing: includes a literal at a time, choosing the one that better improves
the theory according to a scoring function. We keep adding predicates, in a greedy
way, until one of the following stop criteria is met:

1. the score can no longer be improved, after a predefined number of tries; or

2. there are no more literals left to be added.

Since di�erent literals from the bottom clause may generate rules that are logically
equivalent, we remove the rules that are equivalent to previously generated ones.

Relational Path-finding: finds a path between the variables1 of the example,
within the subgraph of the KB represented by the bottom clause, following the
classical relational path-finding algorithm [53].

We allow for both algorithms to be executed concurrently and keep the modifi-
cation that better improves the theory.

Figure 3.2 shows an example of a subgraph of the knowledge base presented
in Table 2.4 concerning the example advisedby(person2, person1). The name of
the constants were shortened for clarity. To create a new rule from scratch, the
hill-climbing approach would consider any of the atoms connected either to p1 or
p2 as a possibility and would create several rules, each of which with one of the
possible atoms. On the other hand, the relational path-finding would look for paths
connecting p1 to p2 and could propose, for instance, the following rule:

advisedby(X, Y ) Ω publication(Z, X) · publication(Z, Y )

After substituting each distinct constant by a distinct variable.
As we perform the learning process over iterations, a rule previously learned by

one method can be later improved by the other.

Deleting Nodes

The deletion of nodes operator removes nodes from the tree, and this change is
reflected in the theory. This operator is applied on leaves that are not labelled as

1
The relational path-finding algorithm is only defined over binary target relations.
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taughtby(c1, p1, w) ta(c1, p2, w)
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professor(p1) student(p2)

Figure 3.2: Bottom Clause Graph

false and may have two di�erent behaviours, depending on the node on which it is
applied. In case the leaf is the only not-false leaf child of its parent node, this deletion
represents a deletion of the antecedent in the rule that the node represents. In
this way, the parent of the node becomes a leaf and the rule is shortened. The other
case happens when the leaf’s parent has other not-false leaves as children, which
incites the deletion of a rule in the theory, as the path ending in that leaf is
erased.

The deletion of nodes in the tree represents either a deletion of a literal in a rule,
or the deletion of an entire rule. In the first case, it provides the e�ect of generalizing
the theory, while in the second case it specializes the theory. Here, we only allow
the deletion of a single literal, to preserve as much as we can from the existing rules.
In case there is a not-false leaf with negative examples, we delete the path from this
leaf. To make sure that only a single rule is deleted at once, only the path leading
to that leaf is deleted.

Deleting Nodes (Alternative Approaches)

Since the deletion of the antecedent case is a generalization of the theory, the
most a�ected set of examples is the one in the false leaf child of the same parent of
the deleted node. This set contains the examples that will be now proved, while the
proof of the set of examples of the deleted node will remain unchanged.

In order to take this set of examples into account, we implemented an alternative
version of the deleting operator that takes the examples of the false leaf (sister to
the deleted node) as the set of example to use in the evaluation of the improvement
of the revision; instead of the examples from the deleted node itself, in the case
of a deletion of the antecedent. As such, this deleting of literal is now triggered
by applying this operator on a false leaf whose parent node has a single not-false
child. Di�ering from the original approach, that does not allow the application of
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the deleting node operator on false leaves.
In case the antecedent is deleted, the examples proved by it, which are still proved

by its parent node, are moved to its parent node; and its parent node now becomes
a leaf. We will call this the alternative 1 of the deletion operator, in addition to the
original.

In addition to these two approaches, we have implemented another modifica-
tion, on the top of the alternative 1 approach, that allows the exclusion of a rule
by deleting the leaf and its parent node, if any, until it reaches a bifurcation on
the tree; which represents a node in common with another rule. We will call this
implementation as the alternative 2.

In this case, suppose the node isLabel(L) from Figure 3.1, which represents the
last literal from the rule (1) from Table 2.2. There will be di�erent behaviours,
depending on the implementation used:

1. In the original approach, we would delete the literal, using the examples from
this leaf to evaluate the proposed revision;

2. In the alternative 1 approach, we would delete the literal, when applying the
deleting node operator on the false leaf, child of its parent; using the examples
from the false leaf, to evaluate the proposed revision;

3. In the alternative 2 approach, it could either delete the literal following the
alternative 1 approach, when applied to the false leaf; or delete the whole
Rule (1), from Table 2.2, when applied on the not-false leaf, evaluating the
revision on the examples from the not-false leaf. Since these operations occur
on di�erent leaves, the one to be applied will depend on the potential of the
leaf and if the improvement is significant, based on the Hoe�ding’s bound, as
will be explained later in this section.

In this alternative, we allow for deeper modification in the theory, which could
make the model more susceptible to overfit, especially in online environment where
some new examples could make a big modification and lose the representation of
the older examples.

In fact, as we will show in Chapter 4, theses alternatives make little di�erence
on the performance of the learned model.

3.2 Learning Algorithm
The top-level procedure designed in this work to learn ProPPR models in an online
fashion is described in Algorithm 5. The input is background knowledge and a
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possibly infinite stream of examples. For simplicity we assume that this stream
contains examples of a single predicate.

Algorithm 5 OSLR: The learning algorithm proposed in this work to learn from
a stream of relational examples

Input:
Background Knowledge (BK);
An initial theory (theory), possibly empty;
Stream of Examples (E), possibly infinite;
Maximum number of revisions (N);

Output:
A ProPPR model

tree Ω initialTree(E, theory)
for each e µ E do

leaves Ω putExamplesIntoLeaves(BK, tree, e)
theory, tree Ω revise(BK, theory, leaves, N)

end for

First, we start the tree to handle the predicate of the stream of examples. Then,
for each set of examples received in an instant of time, from the stream, we perform
two steps: (1) we place the examples in the leaves of the tree structure, as already
explained in the previous section; and (2) we call the revision on the leaves that
may have absorbed new examples.

It is important to point out that the revise function does not necessarily change
the current model, but, instead, proposes modifications to it and evaluates the
benefits of really changing it. This function is detailed in Algorithm 6, which is next
described in the following subsections.

3.2.1 Leaf Potential Heuristic

In line 8 of the revise function we sort the leaves based on their potential to improve
the quality of the theory. Since we already know if a leaf proves or not the examples
in it, and the number of positive and negative examples of the leaf, we can easily
calculate the number of misclassified examples of the leaf, and use it as a heuristic
to estimate the potential of the leaf to improve the theory.

The heuristic is that the leaves with the largest number of incorrectly classified
examples are the ones that have more potential to improve the theory if revised [17].
If it is a false leaf, we pick the number of positive examples on it; when it is not a
false leaf, we pick the number of negative ones. Thus, we sort the leaves by these
numbers, from the highest to the lowest.
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Algorithm 6 Revise Leaves

Input:
1: Background Knowledge (BK);
2: An initial theory (theory), possibly empty;
3: Set of leaves (leaves);
4: Maximum number of revisions (N);

Output:
5: A ProPPR model (theory)
6: The tree structure (tree)

7: function revise(BK, theory, leaves, N)
8: leaves Ω sortLeavesByHeuristic(leaves)
9: for i Ω 1; i Æ minimum(size(leaves), N) do

10: tree Ω leaves[i].getTree()
11: examples Ω getExamples(leaves[i])
12: operator Ω pickBestOperator(BK, theory, leaves[i], examples)
13: theory, tree Ω apply(BK, theory, tree, examples, operator)
14: end for
15: return theory, tree
16: end function

3.2.2 Selecting Operators

Given each selected leaf, we now apply both the operators, when possible, as de-
scribed in line 12 of the algorithm; each operator proposes a new theory by changing
the leaf. We evaluate these new theories and pick the one that better improves the
pre-defined score function computed on the correspondent set of examples, i.e. the
set of examples of the leaf where the operator was applied.

Algorithm 7 depicts line 12 of Algorithm 6. If a revision operator cannot be
applied to a specific leaf (for instance, a deletion of a false leaf), it returns an empty
theory. An empty theory has no score, as such, it would not be consider as the best
possible operator to be applied, since there is always an applicably operator for each
leaf.

It is worth noticing that the operators act on the logical part of the model.
However, as we have explained in the ProPPR’s inference method (2.2.2), the logical
part influences the probabilities of the predictions, since it may change the number of
solutions in the graph and the number of paths from the starting node to a solution.
As we use a probabilistic evaluation function to compute the quality of the model,
these probabilities are taken into account to decide whether a model is better than
the other.
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Algorithm 7 Select the Best Operator for the Leaf

Input:
1: Background Knowledge (BK);
2: A theory (theory);
3: A leaf (leaf);
4: A set of examples (examples);

Output:
5: A revision operator (bestOperator)

6: function pickBestOperator(BK, theory, leaf, examples)
7: bestScore Ω 0
8: currentTheory Ω theory
9: bestOperator Ω null

10: for each operator œ operators do
11: currentTheory Ω applyOperator(BK, currentTheory, operator, leaf)
12: currentScore Ω evaluate(BK, currentTheory, examples)
13: if currentScore > bestScore then
14: bestScore Ω currentScore
15: bestOperator Ω operator
16: end if
17: end for
18: return bestOperator
19: end function

3.2.3 Hoe�ding’s Bound

After choosing the operator that most benefits the model, we have to decide if it
is going to be implemented and then replace the current model, or if it is better to
keep the previous model.

We use the Hoe�ding’s bound [21] to decide whether or not to implement the
revision in the theory. Hoe�ding’s bound states that for a random variable r whose
range size is R, and a set of n observations of this random variable, with empirical
mean r, Pr(µr Ø r ≠ ‘) = 1 ≠ ”, where µr is the true mean of the random variable
r, ” is a chosen parameter and ‘ is given by Equation 3.1:

‘ =
Û

R2 ln(1/”)
2n

(3.1)

We use the di�erence between the evaluation of the two theories, in the examples
of the leaf, as the random variable. Consider a bounded metric M and a set of
examples E containing n examples. Let C be the current theory and N be the new
theory proposed by revising C based on E. Let �M = M(N, E) ≠ M(C, E) be
the empirical di�erence between the performance of the new theory over the current
one, given the examples and the metric.

35



Due to the Hoe�ding’s bound, we have, with probability 1 ≠ ”, that �Mr Ø
�M ≠ ‘, where �Mr is the real mean of the random variable and ‘ is given by
Equation 3.1. Thus, if �M > ‘ we have that �Mr > 0, which means that, with
probability 1 ≠ ”, the new theory represents an improvement over the current one.

Summarizing, if the di�erence between the new theory and the current one ex-
ceeds the threshold ‘ established by the Hoe�ding’s bound, given the number of
examples, we say that it is better to make the revised theory as the current one,
otherwise, we discard the revise theory and the algorithm continues. If the revision
is accepted, the examples from the used leaf are discarded.

It is worthy to mention that the Hoe�ding’s bound assumes that the examples
are independent given the class, which is usually not true in the relational case, since
there may be relations between di�erent examples [25]. To overcome this problem,
we consider that two ProPPR examples are dependent on each other if they have a
literal in common on their respective bottom clauses, given a defined depth. Then,
we use as the number of examples, in the Hoe�ding’s bound equation, only the
number of independent examples. By definition, all the answers of an example are
related, since all of them have, at least, a node in common, making all the edges of
this node to appear in the bottom clause of all the answers. Thus, it counts as only
one independent example, even if such an example has a number of answers.

This method may not guarantee the full independence of the examples, however,
it is a good estimator of the e�ective sample size. It is shown in [25] that the ef-
fective size of a sample can be drastically reduced by the relation among dependent
examples, as such, increasing the variance of estimators based on such data. Since
the Hoe�ding’s bound assumes that the sample is composed by independent exam-
ples, using the number of examples on the sample would overestimate its size. In
order to overcome this issue, we use the number of independent examples to better
estimative the e�ective size of the sample.

3.2.4 Feature Generation

Whenever we propose a revision on a rule, we use a heuristic to define the rule’s
feature, in the ProPPR format. Then, if the revision is implemented, we call the
ProPPR parameter learning routine to learn the weights given the examples used
on the revision, improving the quality of the model.

When a new rule is created, it has no feature, so a feature must be generated for
it. When a rule has literals deleted from it or added to it, its feature may no longer
make sense, thus, the feature is discarded and a new one is created for it.

We can see the invention of new features as the problem of choosing the subset
of the variables of the rule that better guide the PageRank-Nibble in the graph. In
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A=0.9
C=0.8

B=0.3
D=0.1

d=0.5Features

Figure 3.3: Feature Selection Example

this way, we propose a heuristic to decide which variables are better to be in this
subset. To do that, first we get all possible ◊ substitutions that prove the examples
used to propose the revision. Then, for each variable, in the clause used to prove the
examples, we create two sets: the set of constants that substitute this variable and
appear in the positive examples and the ones that appear in the negative examples.
Given these two sets, we calculate the value of the heuristic H, for each variable,
according to Equation 3.2:

H = |Intersection|
|Union| (3.2)

where Union is the union of constants appearing in the positive and negative sets
and Intersection is the intersection between them. It is also known as Jaccard’s
index.

Intuitively, this heuristic states that as higher the portion of the terms that
appear in both positive and negative solutions the higher H will be, thus making
the variable better to be considered in the features. In this way, ProPPR is able to
reduce the weights of such rules, in order to avoid paths leading to both positive
and negative answers, as has been observed in our experiments.

We calculate this heuristic for each variable in the rule, then we sort the variable
by its value, from highest to lowest and find the biggest di�erence d between the
heuristic of one variable to the next. Finally, we split this list of variables in d,
getting two sets: the first one whose value of the heuristic is higher and the other
where the value is lower. The first one becomes the variables of the invented feature.

For instance, consider an example where we have four variables A, B, C, D, and
the heuristic values for each one of them are 0.9, 0.3, 0.8, 0.1, respectively. Thus,
we have that the order of the variable, from highest to lowest is A, C, B, D, as
illustrated in Figure 3.3. Then, we calculate the biggest di�erence d, which lies in
between variables C and B and is of 0.5. In this case, we choose variables A and C

to appear in the feature of the rule.
The ProPPR’s features give ProPPR more flexibility to define the probability

distribution over the proofs, since it can tune the weight of a path going through an
edge given the rule (or fact) that was used to create such an edge.
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3.2.5 Applying the Revision

We have explained the overall of the learning algorithm in the subsections above.
In this subsection, we will describe in more details the final part of the revision
iteration, which is to decide if the revision, of a single leaf, will be applied or if
it will be discarded. Finally, we summarize the revision iteration of the learning
system.

Algorithm 8 shows the apply function called in line 13 of Algorithm 6. The
algorithm starts by comparing the current theory and the theory proposed by the
revision operator in the examples of the leaf revised at the moment (lines 9-10).
Then, it calculates the Hoe�ding’s bound threshold value ‘, based on the number of
independent examples (line 11). Finally, it compares the improvement of the score
from the revised theory, over the score of the current theory, against ‘ (line 12).
If the improvement is larger than ‘, the revision is applied; if not, the revision is
discarded and the algorithm proceeds to revise the next leaf.

Algorithm 8 Apply Revision

Input:
1: Background Knowledge (BK);
2: A theory (theory);
3: The current tree (tree);
4: A set of examples (examples);
5: A revision operator (operator)

Output:
6: A revised theory (theory);
7: A revised tree (tree);

8: function apply(BK, theory, leaf, examples, operator)
9: currentScore Ω evaluate(BK, theory, examples)

10: revisedScore Ω evaluate(BK, operator.getTheory(), examples)
11: ‘ Ω calculateHoeffdingBound(getIndependent(examples))
12: if revisedScore ≠ currentScore > ‘ then
13: theory Ω operator.getTheory()
14: tree Ω operator.getTree()
15: learnProPPRParameters(examples)
16: end if
17: return theory, tree
18: end function

In the case of the improvement of the revision on the leaf do exceeds the threshold
imposed by the Hoe�ding’s bound, the revised theory becomes the current theory
and the tree is updated to reflect the changes on the theory. Then, we call the
parameter learning function of the ProPPR system, on the examples from the revised
leaf, in order to learn the weight of the features that might have changed on the
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revision process. Finally, the examples from the revised leaf are discarded, which is
important for systems that learn from stream, since the stream may be very large
or even infinite.

We can summarize an iteration of the learning system in the following steps:

1. New examples arrive and are placed in the tree structure;

2. The revision is called for each leaf that might have absorbed new examples,
sorted by the leaf’s potential;

3. The operator that leads to the best revised theory for the current leaf is chosen
to be applied;

4. If the improvement of the revised theory exceeds the Hoe�ding’s bound:

(a) The revision is implemented;

(b) The ProPPR’s parameters are retrained;

5. The system proceeds to the next leaf.

The system process each iteration at a time, always having a model ready to make
predictions. In the next chapter we present the experiment we have performed along
with their results.
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Chapter 4

Experiments & Results

In this section we present the experiments that we have performed to evaluate
the method proposed in this work and the results obtained from them. We have
performed two types of experiments: the first one is a simulation of an online en-
vironment; the second one is a classical batch cross-validation approach. Next, we
describe both of them.

4.1 Simulating an Online Environment
We proposed a simulated online environment in order to evaluate the application if
theory revision techniques online would be beneficial in order to learn a relational
model in terms of: quality of the learned model, the research question Q1; and
runtime of the learning algorithm, the research question Q2.

In these experiments, we have compared OSLR against: (1) RDN-Boost, which
is an approach that learns Relational Dependency Networks proposed in [28]; (2)
ProbFOIL, which is an extension of FOIL [51] to run over ProbLog [29]; and (3)
Slipcover, which implements an improved search strategy to learn first-order theories
[30]. We considered two domains that were made available by [28], namely: the
Cora [34] domains, composed of four target relations (datasets); and the UWCSE
[44] domains, with a target relation. In the following, we describe the experimental
methodology, the datasets and the obtained results.

4.1.1 Datasets

In this set of experiments we used two datasets, the Cora and the UWCSE as
described below.

Cora is a dataset for citation matching [34]. This dataset is composed of six
background binary relations, represented by the following predicates: author, has-
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Table 4.1: Size of the Datasets

Relation # Positives # Negatives # ProPPR Format
Same Author 488 66 88
Same Bib 30,971 21,952 1,295
Same Title 661 714 209
Same Venue 2,887 4,976 403
Advised By 113 16,601 91

WordAuthor, hasWordTitle, hasWordVenue, title and venue; having a total of 6,540
facts. Besides those, there are four target binary relations to be learned: sameAu-
thor, sameBib, sameTitle, sameVenue. We learned each one of the target relations
separately, i.e., considering that each target relation is a separate dataset.

UWCSE dataset describes thirteen relations about the professors, students and
courses from the University of Washington, having 12,615 facts [10]. The goal of
this dataset is to predict the advisedBy relations between students and professors,
given the other relations.

Before we can split the dataset into iterations, we have to convert the examples
to the ProPPR’s format, as described in 2.2.3. We do this by creating a query
p(a, X) for each predicate p and constant a that appears in the first term of each
example, then we group all the original examples that have the same first term as
the answers for their respective queries. Table 4.1 shows the number of examples for
each relation, the first four are from the Cora domain; and the last one is from the
UWCSE. The last column shows the number of examples in the ProPPR’s format.
It is worthy remembering that in the ProPPR’s format, several original examples
are grouped into the same example.

Since the number of negative examples in the UWCSE is much bigger than the
positive ones, we downsample the set of negative examples to be twice as much as
the number of positives ones, as it is done in [28].

Finally, we split the relations into iterations. For the Cora dataset, we split them
in such a way that the number of examples per iteration would lead to approximately
30 iterations. For the UWCSE, that has fewer examples than Cora, we place each
example in ProPPR’s format in one iteration, ending with 91 iterations.

All the experiments were run on PowerEdge R420 Intel Xeon 12 cores 2.20GHz
with 16GB of RAM machines, making sure that the maximum number of jobs in a
single machine were the number of cores. Each experiment was run 30 times and we
report the averages and standard deviations of those runs; at each time we shu�e the
examples and for the UWCSE dataset we resample the negative examples. Slipcover
did not successfully finish 5 of the 30 runs for the UWCSE dataset, so their results
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is the average over the 25 successfully finished runs.
For the ProPPR inference engine, we use the default values of ProPPR param-

eters –Õ = 0.1, ‘ = 10≠4 and a maximum depth of 20 vertices. In OSLR we use the
following parameters by default (unless explicitly specified otherwise):

• We pass all the examples of the iteration at once to the algorithm and try to
propose modifications to all the leaves at the time of the revision, sorted by
the potential heuristic;

• The depth of the bottom clause i is set to 1; to create the bottom clause, we
use a single, randomly picked, positive example, in ProPPR’s format, from the
set of examples;

• As evaluation score, we optimize the area under the Precision-Recall curve;

• The Hoe�ding’s bound ” parameter is 10≠3, with a decay of 0.5 every time a
revision is implemented, we use a decay to allow us to start with a higher ”,
allowing the algorithm to learn quicker in the initial of the prose, being able
to answer queries as soon as possible; and then, reduce the ” as revisions are
implemented, avoiding overfitting; and

• We use the depth of 0 to define whether two examples are dependent on each
other, so that the algorithm could not consider almost all of the examples as
dependent from each other.

The RDN was run with the parameters made available by its authors along with
the datasets. The ProbFOIL algorithm was run with its default parameters, as it is
done in [29]. The Slipcover algorithm has a lot of parameters to tune, we also uses
its default parameters on our experiments.

It is worthy pointing out that our goal is not to tune the parameters of each
system in order to get the best possible model for each one of them, but to evaluate
the systems on di�erent datasets with minimal tuning.

4.1.2 Methodology

We simulate the online incoming of examples by splitting the examples in the dataset
into iterations and by passing one iteration at a time to the learning algorithms.

Formally, given a Knowledge Base (KB) and a set of examples E, we split E

into n iterations I1, . . . , In of, approximately, the same size. Then we perform the
evaluation similar to the Prequential approach [54]: we start from an empty model
and test it on the first iteration of examples, then we pass this iteration to train
the algorithm, it (possibly) updates its model and then the model is tested on the

42



next iteration. In this way, every example from E will be used to evaluate the
model before the model is able to train on it. We repeat this process until no more
iterations are available. We assume that the KB is fixed during the iterations.

To test OSLR, this method is straightforward. However, to compare against a
batch-learning method, we need to do an adaptation. We transform the N iterations
on N learning tasks of the batch algorithm. Then, for each learning task i œ
[0, N ≠ 1], we create a training set composed of the examples T = ti

k=0 Ik and test
it on the examples from Ii+1; we assume that the iteration I0 is an empty set of
examples. Thus, we have each model evaluated given the same information as the
online evaluation, but we have to retrain the batch algorithm from scratch for every
single iteration.

4.1.3 Results

We now present the results for experiments simulating an online environment sep-
arately for each dataset; then we will present the runtime of experiments; and we
close this subsection with the results of the alternative operators that we presented
in 3.1.1.

Cora Dataset

Figure 4.1 shows the evaluation of the area under the Precision-Recall curve for each
one of the Cora’s relation over the iterations. A point of measure m and iteration
i represents that m is the measure of the model; considering all the test examples
until i, inclusive.

As shown in the charts, OSLR outperforms the RDN and Slipcover on all the
Cora’s relation in both the area under the evaluation curve (AUC), which represents
an overall view of the method on the task over the iterations, and at the final iteration
(Final), which represents the performance of the model after using all the available
data to learn.

We can also see that Slipcover does not performs very well, being the worst
method on all target relations, except by the Same Venue relation, where it outper-
forms the RDN approach.

The values are considered statistically relevant, by a two-tailed paired t-test with
p < 0.05, for all pair of methods for each relation, excepted by the final performance
for Same Author relation between our approach and the RDN approach.

The AUC results are summarized in Table 4.2 while the Final results are on
Table 4.3. ProbFOIL does not work well on the Cora dataset, as it returns the most
general clause for all target relations.
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(a) Same Author (b) Same Bib

(c) Same Title (d) Same Venue

Figure 4.1: The Evaluation of the Cora Dataset Over the Iterations

Table 4.2: Area Under the Iteration Curve of the Methods on Cora Datasets

Relation OSLR RDN Slipcover
Same Author 0.9311 ± 0.0319 0.9107 ± 0.0211 0.8671 ± 0.0244
Same Bib 0.9311 ± 0.0150 0.9093 ± 0.0073 0.7648 ± 0.0103
Same Title 0.7802 ± 0.0689 0.6488 ± 0.0316 0.5996 ± 0.0363
Same Venue 0.5917 ± 0.0801 0.3945 ± 0.0293 0.4414 ± 0.0232

UWCSE Dataset

Figure 4.2 shows the results obtained from the UWCSE dataset. In the upper
Figure 4.2a we can see that the RDN approach is slightly better than OSLR and
both ProbFOIL and Slipcover methods achieve poor performance on this dataset.
In the lower Figure 4.2b we present the methods learning from an initial theory.
Instead of starting from an empty hypothesis, we started from this initial theory in
the Background Knowledge1.

1
This initial theory is manually written and it is available at http://alchemy.cs.washington.

edu/. We modified it to conform with the expressiveness of our logic language, by getting only the

clauses with the target atom in their heads and removing the other atoms from their heads, except
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Table 4.3: Final Performance of the Area Under the Precision-Recall Curve of the
Methods on Cora Datasets

Relation OSLR RDN Slipcover
Same Author 0.9337 ± 0.0399 0.9259 ± 0.0145 0.8606 ± 0.0140
Same Bib 0.9502 ± 0.0097 0.9367 ± 0.0028 0.7771 ± 0.0083
Same Title 0.8498 ± 0.0654 0.6698 ± 0.0165 0.5952 ± 0.0158
Same Venue 0.6187 ± 0.0854 0.3873 ± 0.0154 0.4349 ± 0.0100

Since the RDN is the only approach that have its performance decreased by the
presence of an initial theory, we also include in this chart a line for the RDN without
initial theory (the RDN line) and we call RDN+I the line for the RDN with the
initial theory. Theory line is the performance of the initial theory itself (according
to ProPPR language and inferred with our system) without any revision, and may
be used as a baseline.

As we can see, when starting from an initial model, and allowing the revision
system to modify it, we obtained slightly better results than the RDN with an
initial theory. Furthermore, it is curious to notice that the RDN’s performance
decreases when the initial theory is put into its BK, while the performance of the
other approaches increase. This might be caused by errors in the initial theory; since
the RDN is not able to modify it, and it learns an expressive model, the errors are
going to be taken to the final model. On the other hand, the other approaches were
unable to learn complex models, and thus, an initial (even partially correct) theory
might bring a gain in their performances. However, our approach is able to change
the theory as needed, and keep improving its performance as new examples arrive,
while the unmodified theory may get even worse with the new examples.

Another interesting phenomena that happened in the experiments is that even
the initial theory improving the performance of both ProbFOIL and Slipcover ap-
proaches, their performance remain lower than the initial theory itself, inferred by
the ProPPR system. In fact, the ProPPR’s authors have already notice that logic
theories inferred by ProPPR get good results, even without parameter training, us-
ing the uniform weights, given its bias to assign higher probability values to shorter
answers [13]; this might be the case of better results of the original theory found
here.

It is worthy pointing out that there is no statistical significance, based on a two-
tailed paired t-test with p < 0.05, in any of the comparisons between our approach
(with and without initial theory) and the RDN without initial theory in the UWCSE
dataset. Table 4.4 summarizes the AUC results for the UWCSE dataset, while Table
4.5 summarizes the Final results; the last row (Init), on both tables, represents the

by the target, since they allow for a clause to have multiples atoms on its head. We also remove

rules whose set of atoms in its body are a superset of the atoms on the body of a more generic rule
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(a) Advised By

(b) Advised By with Initial Theory

Figure 4.2: The Evaluation of the UWCSE Dataset Over the Iterations
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Table 4.4: Area Under the Iteration Curve of the Methods on UWCSE Dataset

Experiment OSLR RDN ProbFOIL Slipcover

Advised By 0.7658 ± 0.0510 0.7856 ± 0.0509 0.5979 ± 0.0423 0.5276 ± 0.1153

Advised By - Init 0.7924 ± 0.0526 0.7617 ± 0.0523 0.7335 ± 0.0288 0.7026 ± 0.0492

Table 4.5: Final Performance of the Area Under the Precision-Recall Curve of the
Methods on UWCSE Dataset

Experiment OSLR RDN ProbFOIL Slipcover

Advised By 0.8043 ± 0.0506 0.8270 ± 0.0363 0.6351 ± 0.0412 0.5466 ± 0.1019

Advised By - Init 0.8192 ± 0.0463 0.8067 ± 0.0380 0.7365 ± 0.0186 0.7181 ± 0.0410

approaches with the initial theory.

Runtime Analysis

Table 4.6 shows the average runtime of each system on each relation. The columns
show the average runtime of all the experiments, i.e. the N task per relation, where
N is the number of iterations of the relation.

We can see that our system takes, in the worst case, approximately 2 times longer
than the RDN would take to learn a task, as it is in the Same Venue relation, but
it is faster than the RDN in all other datasets. However, the greatest benefit of our
approach relies on the fact that our system is always ready to make a prediction
at any time, and keeps improving with the arrival of new examples. RDN, on the
other hand would need to run again before considering the new information to make
predictions, at the expense of not representing the new examples.

Despite the low running time of the Slipcover system on every dataset, it was only
able to learn a very simple theory, with only a single rule with a single literal on the
body, for most of the runs; which reflects its poor performance on the experiments.

It is also interesting to notice that our approach was able to gain from an initial
theory both in the quality of the learned model and in the decreasing of the learning
time.

Table 4.6: Average Runtime for Each Learned Relation

Relation OSLR RDN ProbFOIL Slipcover
Same Author 0min19s:483 6min17s:979 - 0min3s:400
Same Bib 29min0s:606 1h18min1s:383 - 0min5s:167
Same Title 3min9s:413 10min31s:380 - 0min19s:867
Same Venue 1h24min0s:26 46min11s:78 - 0min21s:700
Advised By 9min0s:972 23min41s:939 39min20s:602 1min8s:680
Advised By Init 5min59s:588 38min11s:854 5h51min25s:372 1min8s:400
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Alternative Operators Results

As we have explained before, we have implemented two alternative versions of the
deleting node operator of our approaches. Tables 4.7 and 4.8 show the performance
of the alternative approaches for the UWCSE dataset, on the AUC and Final, re-
spectively; for both learning from scratch and from an initial theory. The best result
from each column is underlined. As can be seen, there are minimal changes on the
performance of the methods, compared with each other.

Just to remember, Alternative 1 approach is the one that considers the exam-
ples in the false leaf of the same parent of the node that will be deleted, in a literal
deletion operation, as the examples to evaluate the revised theory. While the Al-
ternative 2 is the one that, in addition to Alternative 1, allows the exclusion of any
rule represented by the not-false leaf it is applied to, possibly removing several nodes
from the tree structure. See 3.1.1 for further details on the alternative approaches.

Table 4.7: AUC of the Alternative Methods on UWCSE Dataset

Methods Advised By Advised By - Init
Original 0.7658 ± 0.0510 0.7924 ± 0.0526
Alternative 1 0.7675 ± 0.0523 0.7925 ± 0.0524
Alternative 2 0.7614 ± 0.0522 0.7925 ± 0.0527

Table 4.8: Final Performance of the Alternative Methods on UWCSE Dataset

Methods Advised By Advised By - Init
Original 0.8043 ± 0.0506 0.8192 ± 0.0463
Alternative 1 0.8058 ± 0.0503 0.8194 ± 0.0462
Alternative 2 0.8008 ± 0.0542 0.8191 ± 0.0464

The results of Cora dataset can be seen on Table 4.9, for the AUC performance;
and on Table 4.10 for the Final performance. Again we underline the best result
from each columns.

Table 4.9: AUC of the Alternative Methods on Cora Dataset

Methods Same Author Same Bib Same Title Same Venue

Original 0.9311 ± 0.0319 0.9311 ± 0.0150 0.7802 ± 0.0689 0.5917 ± 0.0801

Alternative 1 0.9378 ± 0.0318 0.9118 ± 0.0438 0.7960 ± 0.0814 0.5951 ± 0.0849

Alternative 2 0.9307 ± 0.0281 0.8979 ± 0.0502 0.7671 ± 0.0618 0.5834 ± 0.0908

As can be observed from the results of the alternative approaches, in most of the
cases, Alternative 1 approach improves the performance of the learned model. Thus,
making us conclude that this set of examples is more informative to be taken into
account in this type of revision. On the other hand, Alternative 2 decreases the per-
formance of the learned model on most of the cases. The behaviour of this approach
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Table 4.10: Final Performance of the Alternative Methods on Cora Dataset

Methods Same Author Same Bib Same Title Same Venue

Original 0.9337 ± 0.0399 0.9502 ± 0.0097 0.8498 ± 0.0654 0.6187 ± 0.0854

Alternative 1 0.9428 ± 0.0371 0.9329 ± 0.0420 0.8493 ± 0.0921 0.6155 ± 0.0894

Alternative 2 0.9351 ± 0.0306 0.9262 ± 0.0490 0.8311 ± 0.0722 0.6013 ± 0.0989

probably allows deeper modification in the theory, which may cause an overfit to
the current examples, which is not desired, specially in an online environment.

4.2 Batch Environment
In this experiment we compare OSLR in a batch environment against the HTilde
system [23, 32].

We use a 5x2 fold cross-validation, on another relation extracted from Cora
dataset2, the samePaper relation. Each of these five folds has a knowledge base of
approximately 231,500 facts and about 838,500 examples, equally distributed in the
two folds. For each of the five folds we perform two trainings, using a fold at a
time as training set and the other as test, having a total of 10 trainings per method.
OSLR process 10 examples at a time until it finishes the fold. Since the RDN was
the best algorithm to compare with, we considered only it to this dataset.

This base is highly unbalanced, with the negative classes representing about 96%
of the examples. We did not down sample the negative class here, because we would
like to reproduce the results previously published at [32].

Table 4.11 summarizes the results of this experiment. These results are the aver-
age over the 10 runs of the 5x2 fold cross-validation, and has statistical significance
of both OSLR and RDN methods against HTilde on a two-tailed paired t-test with
p < 0.05.

Table 4.11: Area Under the Precision-Recall Curve for the Same Paper Relation

Configuration Measure
OSLR 0.8005 ± 0.0355
HTilde 0.9694 ± 0.0559
RDN-Boost 0.9051 ± 0.0239

As can be seen, the HTilde outperforms (with statistical significance) both OSLR
and the RDN approach. However, HTilde needs a large number of examples, while
OSLR seems to benefit from small amount of examples, as it obtains better results
on early iterations, where only few examples were used to train the model. We

2
This dataset is available at http://dtai.cs.kuleuven.be/ACE/data/cora.zip
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were not able to use HTilde on the UWCSE dataset, for instance, due to the small
number of positive examples.

Another point that is worthy mentioning is that HTilde proposes logic theories
larger than OSLR, often with more than 10 rules, reaching 21 rules in one of the
folds, while OSLR’s theories are usually composed by a few short rules, hence it is
easier to understand their meaning.

Since we had to run the HTilde on a virtual machine, due to compatibility issues,
we will not report the learning time for this experiment.
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Chapter 5

Conclusions

In this work, we proposed a novel method to online learn the structure written in
ProPPR language, relying on theory revision techniques, called Online Structure
Learner by Revision (OSLR). In addition to the structure learning algorithm, we
also proposed a heuristic to create the ProPPR’s features.

Online learning is a field of study that presents many challenges, especially in
the area of learning first-order logic models, where this works lies in. This is because
we have to learn the structure of the first-order models, this is, the logic theory and
this is a challenging task for mainly two reasons: it has a very large hypotheses
space; and, in order to do it online, the ideal would be to consider the structure of
previously learned model.

To mitigate the problem of the large hypotheses space, we first proposed a tree
structure to e�ciently identify the revision points of the logic theory, limiting the
number of possible revisions to the leaves of this tree structure. In addition, we have
used the concept of the bottom clause [26] to restrict the search space of possible
literals to be added to a clause.

In order to cope the challenge of considering the previously learned structure we
have used techniques from theory revision from examples. Theory revision assumes
that might exist a (not necessarily correct) theory that can be used as starting point
to describe the training examples. In this way, theory revision benefits from this
initial theory, making adjustments to it as needed in order to better explain the
examples. In this work, we use as initial theory the theory learned in the past, and
uses theory revision in order to keep this theory up to date with the arrival of new
examples.

Revising the theory for each new misclassified example would be a very costly
task and could easily lead to an overfitted model. To overcome these two issues, we
used the Hoe�ding’s bound statistical theory [21] to decide whether a revision should
be implemented or not. Since the Hoe�ding’s bound assumes a set of independent
examples, which is usually not the case for a relational environment, we proposed
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a mechanism based on the bottom clause to decide if two examples are dependent
given a specified depth (or strictness) and we consider, for the Hoe�ding’s bound,
only the number of independent examples.

The application of theory revision techniques online brings two important ben-
efits to the learning process: (1) the method is capable of continually improving
the model with the arrival of new examples, and (2) it can benefit from an existent
initial theory, even if this theory is only partially correct; as was shown beneficial,
on our experiments.

Our experiments showed that OSLR performs well on a simulated online envi-
ronment, even on the beginning of the learning process, where only few examples are
used to train the model, as have already been observed by [17, 19, 20] that theory
revision works well with few examples. In our simulated online environment, we
outperformed a state-of-the-art RDN-Boost approach [27, 28] on the Cora dataset
[34], achieving a larger area under the Precision-Recall curve on all the target re-
lations; and the system was comparable to the RDN-Boost on the UWCSE [10],
slightly worst without initial theory and slightly better with an initial theory, for
the same metric.

In addition, OSLR outperforms ProbFOIL [29] and Slipcover [30] which are two
learning systems for learning probabilistic first-order theories from examples.

However, it has not performed so well in a batch environment, passing a set of
examples at a time, since it is not designed to act in this kind of circumstance.

5.1 Future Works
We believe that this work opens several possibilities of future research, as such, we
will point out some further directions in this section.

Arguably a natural extension of this work would be to add new logic inference
mechanisms such as ProbLog [55] or Markov Logic Networks [44] in order to allow
more expressive languages to be used, since they can handle negation. The im-
plementation of mechanisms that allows more expressive languages would bring the
need to evolve the structure learning system to allow it to take advantage of this new
language expressiveness. An example would be to deal with non-monotonic knowl-
edge by including, for instance, negation-as-failure and also to allow the system to
learn structures with those negations.

Another direction, instead of making the system more expressive, would be to
make it smarter by implementing ways of finding the best parameters of the learn-
ing system for a given task, in an approach similar to Auto Machine Learning [56].
Finding a way of adjusting theses parameters as needed, or even learning to auto-
matically adjust them, would be very beneficial for an online learning system [57].
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Considering further experiments, it would be advantageous to better investigate,
for instance, the impact of considering the dependent examples in the Hoe�ding’s
bound against considering all examples as independent, or to strict even more the
dependency criteria by increasing the depth of the dependence bottom clause. An-
other interesting aspect to investigate would be the performance of OSLR on other
datasets, specially in the presence of expert-made initial theories.

Furthermore, it would be interesting to investigate the performance of OSLR in
the presence of Concept Drift [58]. If it performs well or not and which measures
could be taken in order to make it better suited to such a task. Investigating whether
a better choice of parameters, for instance a smaller ” value for the Hoe�ding’s
bound, would be su�cient; or it would be necessary to implement active mechanisms
to detect the drifts in the data streams.

Nevertheless, in this work we demonstrated a way of applying theory revision in
an online environment. The performed experiments revealed that revising previously
learned model online is beneficial for both the quality of the learned model and the
runtime of the learning algorithm; archiving better results in the Cora domains and
competitive results in the UWCSE domains. Additionally, the experiments have
shown that the use of a human made initial theory, despite being only partially
correct, has provided useful information for the theory revision system, allowing it
to learn better models. Finally, we believe that theory revision is well suited to be
applied to online learning tasks.
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