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Chapter 1

Introduction

In this chapter we will introduce the subject matter of this dissertation, namely Tag
Prediction under Social Tagging Systems (STSs) and provide some insight into the
problem scope and our line of research.

1.1 Motivation

The motivation for this work is twofold.
Firstly, it is easy to see that naïve methods of organization may be hard to use

in complex, real-world systems. Tags are one way to help users and administrators
better organize and reason about concepts and/or resources in many such systems.

Take the following example: You organize scientific articles into folders and you
have a new article called The History of Football in Europe. Should you place
it under "history", "sports" or "Europe"? Maybe place a copy under each folder?
Create a new folder called "Europe_Sports" instead?1 Clearly, assigning multiple
labels or tags to each resource is an elegant way of solving this problem.

Secondly, it is well established that suggesting tags to users promotes faster
convergence to a common vocabulary (DATTOLO et al., 2010; HASSAN et al.,
2009; MARLOW et al., 2006) and increases the likelihood that resources are tagged
(DATTOLO et al., 2010; FLOECK et al., 2010). Additionally, it has been claimed
that identifying good tags from a set of recommended tags is orders of magnitude
less demanding than coming up with good tags without intervention (MARINHO
et al., 2012).

Since there are massive amounts of data available from Social Tagging Systems
(STSs), it’s natural to think of a data-driven, machine-learning based method to
pursue that goal. In addition to being a worthy research problem from a theoretical

1Note that similar classification schemes have already been in use for some time in places such
as libraries. Some noteworthy examples include the Dewey Decimal System and the Library of
Congress Classification methodologies, both in use for more than a century.
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standpoint, good tag prediction techniques could also effectively help people in the
real world navigate these online communities.

1.2 Social Tagging Systems

The massive expansion experienced by the Internet and web communities in the
last decades has undoubtedly had a large effect on how we live our lives. Nowadays,
we have access to many kinds of services on the web, such as search engines, email
messaging, online purchases, and so on.

However, some of the most widely used websites are places where people inter-
act with digital resources and with other human beings. Among these we could
cite websites such as Facebook, Twitter, Youtube, StackOverflow, Quora, LinkedIn,
Reddit, Sina Weibo and many others.

These online communities form what is commonly referred to social media or
social networking services, or SNSs. (AMICHAI-HAMBURGER & HAYAT, 2017;
OBAR & WILDMAN, 2015)

Moreover, some of these so-called social media services support tags, which are
user-given, generally free-form, keywords used to help categorize resources MATHES
(2004). These systems are called Social Tagging Systems or STSs.

1.3 Problem scope

When considering Social Tagging Systems, one can envision many different problems
and areas where scientific knowledge and research could be put to use. For this
reason, we chose to address the problem of how to correctly predict which tags will
be used to describe a given textual object in such a system.

Since this problem touches upon many areas of scientific knowledge, such as
machine learning, natural language processing (for textual resources), computer
vision (similarly, for images and visual objects), recommender systems and so on, it
is necessary to further limit our scope in a more precise manner.

Firstly, one may create a distinction between broad and narrow folk-
sonomies.2 Broad folksonomies are those where not just a resource’s owner
but the whole community of users may assign tags to any one resource available
on the system. Narrow folksonomies, on the other hand, only allow items to be
tagged once, by the person who has first added that particular item to the system
(i.e. that item’s owner). A summary can be seen on the following table:

2Following commonly-cited sources such as WAL (2005a)
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Table 1.1: Broad and narrow folksonomies

Broad folksonomies
Anyone can assign tags to any resource, and
all tags are viewable by everyone using the
system.

Narrow folksonomies
Only the owner of a given resource may as-
sign tags to it. Other users can view them
but cannot add their own.

Secondly, many authors (ILLIG et al., 2011; SONG et al., 2011) have made a dis-
tinction between resource-centered user-centered approaches. This refers to
the fact that some approaches take user information into account when performing
tag prediction (user-centered) while others take a global view, giving the same pre-
dictions for every user (resource-centered). Note that other authors, (e.g. ZHANG
et al. (2014) and HU et al. (2010) refer to these two types as personalized and
collective tag recommendation). The following table summarizes these differences:

Table 1.2: Tag prediction approaches, classified according to the information they
use

Resource-centered
approaches

Only information regarding the resources themselves is
used to build the tag prediction mechanism. For a given
resource, the same predictions are displayed for every
user.

User-centered
approaches

In addition to information about the resources, user-
specific data (e.g. users’ tagging history and profile) is
leveraged for suggesting tags to be used at tag assign-
ment time.

In this work, have chosen to limit our scope to resource-centered approaches
to predicting tags in broad folksonomies. This is due to the previous rea-
sons and to the fact that user-centered approaches do not perform so well vis-a-vis
resource-centered methods (SONG et al., 2011); the distribution of users and tags
in broad folksonomies follow a power law and reusability of tags by each individual
user is low.

Resource-centered approaches more robust as we generally have much more in-
formation about resources than about users. This is particularly true with textual
resources and broad folksonomies. Also, resource-centered methods have the added
benefit of being able to work in the absence of user information, the so called cold
start problem.
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More specifically, with regards to the chosen scope, we would like to inquire
into the performance of different tag prediction techniques, as applied to different
problem sets. We would like to be able able to answer questions such as:

• How do different methods of multi-label ranking perform when applied to the
same data?

• How do dataset characteristics such as the total number of resources, average
number of tags per resource, etc, affect the outcomes?

• Does the type of feature representation used affect the outcomes for different
methods? If so, how?

In parallel to this, we would also like to investigate the effect of the sparsity of
features on a specific label ranking method, namely multi-instance multi-label SVM
(MIMLSVM), when applied to social tag prediction3.

This is an interesting method that was originally used for scene classification
(ZHANG & ZHOU, 2007). However, it was recently adapted for text classification,
with satisfactory results. (SHEN et al., 2009)

Given that there has been some work done on representation learning4 for text
(BENGIO et al., 2003; LE & MIKOLOV, 2014; MIKOLOV et al., 2013b) recently,
we would like to investigate to what extent this particular method works when
exposed to other kinds of text representations, namely dense representations.

For this, we would like to answer questions such as:

• Does MIMLSVM only work for the commonly-used bag-of-words representa-
tion?

• Do different types of dense representation affect the algorithm in different
ways?

• Does the domain of the folksonomy under research affect the outcomes? If so,
how?

1.3.1 Binary Tag Assignment Model

We would like to point out that most works in the literature do not take into account
the number of times each tag has been assigned to a given resource. In other words,

3For detailed information on this, see section 5.2.
4Representation Learning (also called Feature Learning) refers to using machine learning meth-

ods just to find good representations of data. In other words, the objective of these unsupervised
methods is to learn useful ways to represent instances. These can then be used in traditional
supervised classifiers or used as is.
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a binary tag-assignment model or BTAS (ILLIG et al., 2011) is used, whereby a tag
assignment is equated with the fact that there exists at least one user who assigned
that tag to that resource. We follow that convention in this article.

Definition. BTAS5

Let TAS be all tag assignments made by all users u ∈ U , using tags t ∈ T for
resources r ∈ R:

TAS = {(u, t, r) ∈ U × T ×R | user u has assigned tag t to resource r}

BTAS abstracts the user dimension away, considering instead a binary tag as-
signment (t, r) the existence of any user u having assigned tag t to resource r:

BTAS = {(t, r) ∈ T ×R | ∃u ∈ U : (u, t, r) ∈ TAS}

More information on these issues is given in chapter 2.

1.4 Methodology

Here we will give a brief overview of the research methodology used in this work.

1.4.1 Literature Review

In order to add replicability and transparency to our literature review, we partially
adopted principles from Systematic Literature Review, as defined in works such as
BAUMEISTER & LEARY (1997), WOHLIN (2014) and BEM (1995).6

We selected three reputable repositories of scientific articles and research pieces,
namely IEEE-XPlore Digital Library7, ScienceDirect8 and Scopus9.

After initial contact with the subject matter of our work, we selected four sets of
search terms, namely "collaborative tagging", "social tag prediction", "social tagging"
and "tag prediction" and used those to search the titles, abstracts and contents of
research pieces in the websites’ databases.10

We gathered and organized the results of the aforementioned queries; after re-
moving duplicated entries, we had a collection of 2466 articles, book chapters or

5Adapted from ILLIG et al. (2011).
6Evidence such as screenshots of search results and the actual set of articles retrieved from

each query can be provided upon request.
7http://ieeexplore.ieee.org/Xplore/home.jsp
8https://www.sciencedirect.com/
9https://www.scopus.com/

10These search terms were chosen because we believe they encompass a large part of the available
literature related to the topic of our work which we defined (for the purpose of this literature review)
as "Predicting or recommending tags in a social tagging environment".
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conference proceedings. No date filter was used, and only texts in English were
selected.

We read the abstracts of all 2466 pieces and, based on that, we selected 399 as
being somehow related to the subject of our work, as explained above.

Out of these 399 relevant works, we further refined our set to 285 articles, by
extending our analysis to the introduction and conclusion sections. This final list
of 285 articles all contained information directly related to the task of predicting
and/or recommending tags in a social tagging environment. They were all read in
order to inform our research, although not all were included or cited in this text.11

Naturally, many articles not on this list were also read because they were referenced
very often. In this light, this formal method of searching for articles only produces
an initial list of articles to read; citations obviously lead us to other works eventually.

1.5 Document structure

In this chapter we introduced the subject matter for this dissertation and the work
methodology we will use.

In Chapter 2 we will give a brief overview of Social Tagging Systems and Folk-
sonomies. In Chapter 3, related work is analyzed and compared. In Chapter 4 we
will propose a solutions to the research questions we previously highlighted, and de-
scribe the way we intend to address them. In Chapter 5 we describe the experiments
conducted and analyze the results. Finally, in Chapter 6 we conclude this disser-
tation and provide pointers for future work and ways in which it can be extended
and/or continued.

11Many other articles, which did not feature in the search results, but were obviously relevant
(based upon citation count for example), were also added and read.
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Chapter 2

Social Tagging

Continuing the description of Social Tagging we started in the introduction, we will
now go into more detail about this concept, as well as some related terms (such as
folksonomies) in the next sections.

2.1 Examples of Social Tagging Systems

Examples of STSs abound in the modern Web. We will present two different exam-
ples so that the reader can better grasp what a Social Tagging System looks like in
practice.

2.1.1 MovieLens

MovieLens1 is a research website run by GroupLens Research at the University of
Minessota.

It provides users with personalized movie recommendations based on how they
have rated individual films. In addition to information and ratings for many movies,
MovieLens also lets users add tags to movies and view tags others have assigned.

As can be seen in the following image, tags allow users to give objective (car
chase, espionage) and subjective (great plot attributes to resources, in this case
films.

1https://movielens.org
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Figure 2.1: The MovieLens website supports tagging; any user can add their own
tags and view tags assigned by other users to a particular resource. Retrieved from
https://movielens.org/movies/54286 in January 2018.

2.1.2 StackOverflow

StackOverflow2 is a very popular Q&A (Question and Answer) website. It receives
roughly 8,000 new questions related to computer programming every day.3

StackOverflow supports tagging of questions; users can add up to 5 tags to
every question they post. Among other features, tags can be used to narrow down
search results and they can also be subscribed to. Tags are also part of the website’s
incentive and reputation mechanisms; you can be awarded tag medals for completing
specific objectives such as answer many questions having a particular tag.

2https://stackoverflow.com/
3As of 2017: https://stackoverflow.blog/2017/05/09/introducing-stack-overflow-trends/
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Figure 2.2: The StackOverflow website also supports tagging, but only
a single set of tags is shown, namely the tags assigned by the re-
source’s original owner (and maybe edited afterwards). Retrieved from
https://stackoverflow.com/questions/231767/what-does-the-yield-keyword-do
in January 2018.
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Figure 2.3: Tags are also used to help drive Stackoverflow’s incentive mechanisms;
tag medals are awarded for activity related to a certain tag. Retrieved in January
2018. (Blur is used to protect the user’s privacy)

2.2 Social Tagging and Folksonomies

Since the beginning of STSs, it has been observed that such systems grow in an
organic way and that certain patterns are noticed with respect to how tags are
used. As an example, it has been observed (HALPIN et al., 2006) that the number
of times each tag is used to tag a particular resource forms a power law, i.e. some
tags are used exponentially more often than others.

More generally, the term folksonomy has been used to describe these emerging
patterns of informal organization and meaning assumed by tags in a Social Tagging
System (MATHES, 2004; WAL, 2005b).

According to MIKA (2007), one way to model folksonomies is via tripartite hy-
pergraphs. Hypergraphs are generalizations of graphs (BERGE, 1985) where edges
can join not just two but multiple nodes. Furthermore, hypergraphs representing
folksonomies are also tripartite, inasmuch as there is a three-way partitioning scheme
(namely users-resources-tags) such that edges do not connect nodes that are in the
same partition:
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(a) User1-Tag1-Item1 (in red) is a single hy-
peredge in this folksonomy hypergraph.

(b) This is a tripartite hypergraph because
we can find 3 disjoint partitions

Figure 2.4: A folksonomy can be represented as a tripartite hypergraph, where
three-way hyperedges connect users, tags and items. Adapted from RAWASHDEH
et al. (2013). (Best viewed in colour).

The word folksonomy itself (formed by folk + taxonomy) points to the fact that,
differently from a rigid, often expert-driven taxonomy, the patterns that arise with
the free use of tags by a community follows a more fluid, hapzard fashion, as can
be visualized in the next image where the the tag afghanistan was used as search
criterium on a photo-sharing website; searching for images tagged afghanistan on
Flickr yields pictures from the Afghani people, the war in Afghanistan, the Afghani
landscape, etc. This reflects the multitude of meanings a single tag may acquire due
to the way users tag their pictures.

Figure 2.5: Retrieved from https://www.flickr.com/search/?tags=afghanistan in
January 2018.
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2.3 Narrow and Broad Folksonomies

Based on the examples given and one’s general day-to-day experience, it’s natural
to conclude that folksonomies and their underlying STSs vary widely with respect
to their features and how they’re implemented.

One basic difference, raised as early as 2005 (WAL, 2005a) and commented on
by other authors (HALPIN et al., 2006; MARLOW et al., 2006; PETERS, 2009)
since, is that between narrow and broad folksonomies.

As mentioned before, narrow folksonomies are folksonomies which only allow a
resource’s original poster (commonly referred to as O.P. in such systems) to add tags
to that resource. In other words, users can only tag their own content. Conversely,
broad folksonomies are those where every user can add tags to any resource on the
platform.

This distinction is relevant for researchers studying the dynamics of social tagging
systems. For example, it has been noted by SCHIFANELLA et al. (2010) that a
global, shared tag vocabulary cannot be observed in narrow folksonomies, unless it
is specifically promoted by the system.

Broad folksonomies exhibit more diversity and richness of information, not to
mention sheer scale, which makes them more amenable to analysis by data-driven
methods, such as machine learning. More concretely, it has been suggested that a
shared, global vocabulary of tags cannot be observed in narrow folksonomies (SCHI-
FANELLA et al., 2010).

On a similar note, AIELLO et al. (2012) have suggested that tag predicting is
more meaningful in broad folksonomies, since users can tag the same, global, set
of resources. Also, tagging in such systems tend to reflect resource contents rather
than users’ personal preferences.

As related to the ease of navigation in STSs, HELIC et al. (2012) have suggested
that broad folksonomies are better and more efficient for user browsing, inasmuch
as these tags encode more information than their counterparts in narrow systems.

2.4 Other Aspects

Here we will talk about a few other aspects which we deem relevant in light of this
work’s objective, namely that of predicting tags in STSs.

2.4.1 Tag Stabilization and Convergence

In broad folksonomies (i.e. those where all users can add tags to any resource), the
tag distribution for a given resource has been observed to stabilize after about 100
individual tag assignments (GOLDER & HUBERMAN, 2006). Reasons given for

12



this phenomenon include imitation, i.e. users are influenced by other tags already
given to a resource and shared knowledge, i.e. other tags help build a user’s mental
model of the meaning for each tag. We consider this an important result because it
may affect the level of tag prediction we can achieve.

One can attest to this phenomenon in the following image; it clearly shows that
once that critical level is reached, the tag distribution for a given resource hardly
changes anymore.

Figure 2.6: Tag distributions for two resources on Delicious.com. Tag proportions
reach equilibrium after around 100 tag assignments. Adapted from GOLDER &
HUBERMAN (2005)

2.4.2 Effect of tag suggestion on STSs

It has been suggested by MARLOW et al. (2006) that a STS falls under one of three
types depending upon how much system support there is for tagging:

• Blind Tagging: Users cannot view other tags assigned to an item, before adding
their own.
• Viewable Tagging: Users can view other tags assigned to an item before adding

their own tags.
• Suggestive Tagging: Users can not only view other tags but the system also

suggests appropriate tags.(MARLOW et al., 2006)

They have suggested that the level of tagging support (as referred to above)
present in a system may make tag stabilization and convergence faster.

In light of that, we can suggest that tag prediction can contribute to a higher
quality STS, if we assume that a folksonomy where the global vocabulary has con-
verged is more useful than one where it hasn’t.
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Chapter 3

Related Work

3.1 Introduction

In this section, we will present general approaches to tag prediction, with a special
focus on resource-based methods for broad folksonomies, that being our problem
scope.

After reviewing the literature, we chose to divide these methods in categories for
easier analysis:

• Association Rule Mining: Methods that leverage the learning of empirical
co-occurrence rules in the datasets.

• Content-based Tag Propagation: Methods that learn a representation of
each resource based on their contents and use neighbour-based techniques to
find similar points.

• Resource-based tag propagation: Similar to the above, but using other
information to build representations for each resource.

• Multi-label Classification/Ranking: Methods based upon training multi-
label classification algorithms, ranked or otherwise.

• Topic Modelling/Tensor Factorization: Methods based on finding a ma-
trix and/or tensor based representation for resources and tags, and then ap-
plying factorization methods on those.

• Graph-based: Methods which model folksonomies as graphs and leverage
graph-theoretic algorithms to predict tags for resources.

• Other: Other methods not in the previous categories.
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As related to how authors name their particular approaches, one should be careful
inasmuch as there is no apparent consensus as to what constitutes a recommendation
approach vis-a-vis a prediction approach with respect to STSs. It is frequently the
case in the literature that the word "recommendation" is used to refer to methods
that use no user-specific information whatsoever and, conversely, words like "pre-
diction" and "suggestion" used in cases where personalized recommendations are
made.

3.2 Resource-centered Methods

In this section, we present a collection of resource-centered methods for tag predic-
tion. They are so called because they leverage only resource-specific information
in order to predict what tags should be assigned to a new, unlabelled resource. In
other words, all prediction are of unpersonalized nature.

We note that, although our problem domain only includes textual documents,
we chose to also mention in this section approaches used in other domains, such
as audio, video and images. This is because we are mostly interested in how these
approaches work irrespective of the choice of features used.

3.2.1 Association Rule Mining

Association rule mining1 refer to methods whereby one extracts rules and regu-
larities from event databases (AGRAWAL et al., 1993). For example, the rule
{Beer,Bread} → {Milk}, when referring to a database of supermarket items, may
indicate that Beer and Bread jointly co-occur very frequently with Milk, suggesting
a possible relationship between the two.

In one of the earlier papers on social tag prediction, HEYMANN et al. (2008)
have applied association rules of the form X → Y (where X and Y are tagsets) in
order to expand the set of tags given to a resource. Using techniques such as Market
Basket Analysis, the authors derive association rules of length 4 and below, using a
certain level of support2 as threshold to remove overly noisy rules.

The authors report (HEYMANN et al., 2008) that a surprisingly high number
of high quality rules can be found (such as those representing type-of relationships
and synonyms). Furthermore, the added tags help increase precision and recall for
user queries, when the result sets are augmented to include documents tagged with
those tags.

1Alternatively, Association rule learning.
2A rule’s support equals the number of examples where both X and Y are present.
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The authors also claim that using larger and larger rules would probably increase
performance, but computational complexity quickly become prohibitive.3

Another approach involving association rules was put forward by
VAN LEEUWEN & PUSPITANINGRUM (2012). They acknowledge the
fact that gains in performance brought about by using larger rules come at a high
cost in terms of processing time. They, however, suggest that a compromise can
be achieved by choosing a carefully selected set of association rules, such that
performance is increased at a lower cost.

Their approach works by using a compression mechanism to efficiently compute
expanded tagsets for any given tagset. It computes the most suitable expanded
tagsets ranked by support.4

3.2.2 Content-based tag propagation

Here we provide a basic overview of methods which, in one way or another, use
the content-based similarity to propagate tags from labelled instances to unlabelled
ones.

In the first approach, SORDO et al. (2007) have used both first-order (stylistic)
and second-order (mood-based, extracted from the stylistic ones) features and a
neighbours-based similarity measure to propagate labels from labelled audio pieces
to unlabelled ones.

They reported good results for the approach, as measured by rank-based metrics
such as Spearman’s rank and Precision@k. They claim that ignoring tags with
too few assignments improves results and that sometimes using more neighbors is
beneficial, while sometimes it’s harmful.

It should be noted here that this work was not run on a broad folksonomy, since
all examples were annotated by a single person.

Another interesting example is that of MOXLEY et al. (2008). Their approach
uses many feature modalities to represent a resource (in this case, videos). In other
words, they use multiple sources of information to build a feature vector, namely
text information from the video transcripts, image information from video snapshots
and concept information from external source.

They report good results using set-based performance metrics (slight variants
of precision and recall). Furthermore, they claim that using an average of features
built from multiple modalities helps suppress the effect of noisy information.

3Note that this method assumes that a resource already has some tags assigned to it. These
are then used to predict another set of tags. This is sometimes called tag-set expansion in order
to differentiate it from methods that do not make this assumption.

4The support for a given tagset is simply the number of times that particular tagset was
assigned to a resource in the system.
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In GUILLAUMIN et al. (2009), the authors propose a weighted neighbor ap-
proach where one can choose an arbitrary distance measure (i.e. Euclidean, Man-
hattan, etc) one wishes to use to measure similarity between resource representa-
tions. Then, the optimal weights for each resource are found via the optimization
of a custom loss function that encodes the accuracy each individual tag prediction.

In other words, the dataset is used to inform the decision on what weights to use
for each resource. This will, in turn, define to what extent tag assignments for each
resource will influence those of its neighbors.

This approach has been called metric learning and, according to the authors, it
has been used in the past in other contexts.

In LI et al. (2009), the authors have approached the problem from a slightly
different angle. Although they have also used content-based similarity to search for
neighbors, the weight given to each tag is not just proportional to the similarity
between each pair of neighbors; it also incorporates a term that normalizes each tag
according to the tag’s prior, i.e. the overall frequency of a given tag in the whole
dataset.

By using rank-based metrics such as Precision@k and Mean Average Precision
(MAP), they report that their method consistently outperforms approaches that do
not take a tag’s overall prior into account.

In conclusion, two common themes in such content-based tag propagation ap-
proaches seem to be a) designing similarity measures and other ways to retrieve
similar resources given a query resource and b) once the neighbor resources are
found, find meaningful ways to weigh the contribution given by each neighbor in
order to predict tags for the query resource.

3.2.3 Resource-based tag propagation

In this subsection, we will talk about methods which use information about the
resource (other than its contents encoded as features) to build representations for
these resources. These representations are then used in neighbor-based algorithms
for actual classification.

AU YEUNG et al. (2009) propose a slightly different approach. They encode
each resource as a vector over the space of the full tag vocabulary, so that it resembles
a bag-of-words approach, using tags instead of terms in the document. Similarity
between resources is then calculated via simple measures like cosine similarity.

The authors report above-benchmark performance when using the described ap-
proach to predict tags for unlabelled examples. Metrics used to for gauging perfor-
mance include Precision@k and NDCG.
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3.2.4 Multi-label Classification/Ranking

Since resources in an STS can be assigned multiple tags, it is natural to model this
problem as a Multi-label Classification (MLC) problem.

Multi-label learning5 (TSOUMAKAS & KATAKIS (2007)) refers to learning
from data that is multi-labelled, that is, data where each example has not just a
single label6 but multiple ones.

A more particular approach, generally called Multi-label Ranking, refers (ILLIG
et al. (2011)) to problems where not only do instances have multiple labels associated
with them, but every label also has a rank; in other words, each label assignment
also carries a weight, so that labels assigned to a particular example may be ranked
with respect to the weight each label has. This is in contrast with regular multi-
label classification, where labels are represented with a binary vector, making no
distinction between labels.7

Figure 3.1: When each label prediction is given a score, we can choose a threshold
k and return only the top k labels, as ranked by score.

In KATAKIS et al. (2008), the authors have applied multi-label classification to
the task of classifying HTML pages and journal abstracts into tags.

The chosen method was to train a binary classifier for each individual label, a
meta-classification procedure called Binary Relevance 8 in the MLC community. The
underlying classifier was a simple Naïve Bayes model, trained on the bag-of-words
representation of the text documents.

The authors claim good results with their model, while noting that they have
restricted the tag vocabulary to those tags appearing in at least 50 documents in
order to trim rare tags.

BERTIN-MAHIEUX et al. (2008) use a 2-level model to predict tags for audio
pieces from a popular STS for songs, namely last.fm9.

5Not to be confused with multi-class classification.
6Problems where each example has a single label are, unsurprisingly, referred to as single-label

classification in MLC literature
7Although our own method is of the multi-label ranking type, we find it worthwhile to list

regular MLC method due to how similar both are.
8Binary Relevance is an adaptation of the well-known One-versus-All (RIFKIN & KLAUTAU,

2004) classifier, commonly used for multi-class classification.
9Reachable online via http://last.fm
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For the first level, they use a technique called Filter Boosting, which is an exten-
sion to Adaptive Boosting meta-learning, better suited at online learning with large
datasets. Using decision stumps (decision trees with a single level) as the underlying
classifier, they train an individual classifier for each tag, which is also used to extract
features to be used downstream.

The second level is another Filter Boosting classifier trained on the output of
the first one, possibly dropping features found to be irrelevant by the first level.

They reportedly beat previous performances on this particular dataset and noted
that using the first level for feature selection seems to help with generalization.

SHEN et al. (2009) introduce a different approach to predicting tags, namely
one leveraging multi-instance learning (DIETTERICH et al., 1997), whereby one
considers a single training example as a bag of instances, rather than a single entity.

The technique10 combines multi-instance learning with multi-label learning by
splitting a single resource (in this case, tagged documents from theDelicious website)
into a bag of individual parts, combining these into a single instance by means of
clustering and then using those for classifying the original resource into multiple
tags.

More specifically, they use a well-known text segmentation algorithm called Text-
Tiling (HEARST, 1994) to split each document into segments. This turns each doc-
ument into a bag of segments. Then, as per the technique, each bag of segments is
transformed into a single feature vector, by means of k-medoids clustering (KAUF-
MAN & ROUSSEEUW, 1987).11 Once the problem has been reduced into a regular
multi-label ranking problem, a simple one-vs-all metaclassifier using an SVM model
is used for actually predicting tag scores.

The authors report that this method compares favourably against other common
multi-label models such as Binary Relevance and ML-k-NN (ZHANG & ZHOU,
2007), as evaluated by metrics such as Precision @k, Recall @k and Accuracy @k.

SONG et al. (2011) is an interesting work inasmuch as almost equal attention is
given to performance and to training time. They train an adapted Gaussian Process
model on three different datasets with varying characteristics (Delicious, Bibsonomy
and CiteULike). They argue that Gaussian Processes are a good fit to the problem
at hand (label ranking) because they naturally output posterior probabilities for
each class, which can be naturally used for label ranking.

In order to make training and inference faster, they only choose M , where
M <<< N to estimate the hyperparameters for the model, yielding significant
gains in training and test times.

10This technique was adapted from a previous work by ZHANG & ZHOU (2006) in scene
classification

11In order to enable clustering of multiple bags of vectors, a custom distance metric needs to
be used. In this case, the Hausdorff distance metric (HUTTENLOCHER et al., 1993) was used.
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Notably, the authors report that their method outperforms competitive alterna-
tives such as SVM by as much as 30% while only using 5% of the training data (due
to the selection of prototypes).

KATARIA & AGARWAL (2015a) have leveraged recent research on word and
document-level embeddings (LE & MIKOLOV, 2014; MIKOLOV et al., 2013) to
build text representations specifically for tag prediction in the context of an STS.
Their model, named Tags2Vec, extends the ParagraphVector framework by using
tag assignment information in addition to word contexts.

The original ParagraphVector model uses a shallow neural network in an unsu-
pervised way to induce document and word representations, by using an objective
function that forces a document to be a good predictor or words that occur in it.
Tags2Vec augments the objective function so that, in addition to words, a docu-
ment’s representation should be also good at predicting tags that are assigned to
it.

These document representations were then used to train SVM and Gaussian
Process classifiers using two datasets: CiteULike and Delicious. The models trained
using Tags2Vec representations significantly outperform analogous models trained
on other representations such as ParagraphVector and the traditional TF-IDF vec-
tors, indicating that the additional tag information has indeed helped in inducing
better representations for documents in an STS setting.

TAO & YAO (2016) also made use of ParagraphVector to represent documents
in a Chinese STS, namely ZhiHu12. These representations were then used to train
a One-versus-Rest SVM classifier and also a neural network with one output node
for each tag.13

They report better results when using document embeddings vis-a-vis bag-of-
words features. In addition, they report that results using One-vs-Rest SVM are
also better than those obtained using neural networks.

This is an interesting example because it shows the relative performance of neural
networks with respect to SVM classifiers. It also shows that document embeddings
work for the Chinese language, which has very different structure and syntax when
compared to western languages.

12https://www.zhihu.com
13This is a commonly-used way to train neural nets for multi-label problems. While normal

neural nets use softmax activations on the last layer, it’s also possible to use N output nodes
(where N is the size of the tag vocabulary) to obtain individual predictions for each tag.
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3.2.5 Methods based on Topic Modelling/Tensor Factoriza-
tion

We now turn our attention to methods that leverage Topic Modelling and/or Tensor
Factorization. We group these two topics together because topic modelling and
tensor factorization are sometimes intimately related, e.g. Latent Semantic Analysis
(LSA) (DEERWESTER et al., 1990) is nothing but Singular Value Decomposition
(SVD) applied to a term-document matrix.

Topic modelling methods used include LSA and variations (ZHANG et al., 2014)
and LDA and variations (GONG et al., 2017; SI & SUN, 2008; WU et al., 2016).

With regards to tensor factorization, this method is heavily used in user-centered
approaches such as RENDLE & SCHMIDT-THIEME (2009), RENDLE et al. (2009)
and SYMEONIDIS et al. (2008), all of whom model the user-resource-tag relation
as a tensor, and apply factorization to arrive at more economic representations that
can be used for predicting unlabelled resources.

Latent Dirichlet Allocation (LDA) (BLEI et al., 2003) is a well-known Topic
Modelling method for learning the best way to represent a given corpus into topics.
On broad lines, LDA models each document as a distribution over topics which, in
turn, are distribution over words.14 As the model is generally intractable, one uses
methods such as variational inference (as in the original paper itself) of MCMC-
based methods such as Gibbs sampling.

Tag-LDA is a method introduced by SI & SUN (2008)15, which extends LDA to
account for tags in addition to words in a document. In other words, a model is
trained to find topics which are not only distributions over words (as in the original
LDA model) but distributions over words and tags.

Since this is a supervised model aimed at predicting tags for unseen documents,
the test time procedure is as follows: the most likely topic distribution for the query
document are calculated, and the most likely tags for each of the topics are retrieved:

p(t|d) =
∑

z∈Zd

p(t|z) · p(z|d) , (3.1)

where Zd is the set of topics assigned to document d at test time.

KRESTEL & FANKHAUSER (2010) also leverage LDA for predicting tags but
they use a different approach. They use no content information but just a resource’s

14The Dirichlet distribution can be seen as a distribution over the space of possible parameter
vectors for a multinomial distribution.

15Other authors such as HU et al. (2012b) have created slight variations on this method.
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previous tag assignments as its representation.16 In other words, instead of docu-
ments composed of terms, this approach models resources composed of tags.

At training time, hyperparameters for the Dirichlet distribution are inferred, so
that a certain number of tag topics are found. Each topic is a vector of probabilities
for each tag in the vocabulary. At prediction time, the most likely topics for a given
resource are estimated and the most likely tags are predicted for that resource. This
is similar to the previous work by SI & SUN (2008).

The authors note that the performance of this method is not as good as when
using regular LDA on documents and terms, because the number of tags assigned
to a resource is orders of magnitude smaller than the usual number of terms in a
document, making it harder for LDA to correctly infer good topics (KRESTEL &
FANKHAUSER, 2010).

In the article ZHANG et al. (2014), the authors also use a topic modelling
approach, namely a modified version of Latent Semantic Analysis (LSA) (DEER-
WESTER et al., 1990), applied on the resource-tag matrix. They add an additional
constraint to LSA, by requiring that all elements in the reduced matrix be nonneg-
ative.17 The nonnegativity constraint helps with interterpretability and ensures the
factor matrices are sparse (GILLIS, 2014).

At training time, the LSA model is trained on the training set (the resource-tag
matrix). At inference time, a query resource is projected from the resource-tag space
to the topic space, yielding topic probabilities. Finally, tags are suggested for the
new resource using the same approach as SI & SUN (2008).

They report that their method outperforms similar topic-modelling and/or di-
mensionality reduction approaches, such as SVD, LDA and k-NN.

3.2.6 Graph-based

It is usually the case that a folksonomy is modelled as a tripartite graph, as explained
on section 2.2. Many methods take advantage of that fact to leverage graph-based
algorithms such as PageRank 5

These methods generally model folksonomies in terms of a graph G = 〈V,E〉,
where V is the set of nodes representing resources, E is the set of edges, which
connects nodes if they share a common tag.

Although the methods we describe next all take a resource-centered approach
to tag prediction18, we deem worthwhile to mention that it is in user-centered ap-
proaches that graph-based models have been more heavily used. The most widely
used and cited graph-based method is probably FolkRank (JÄSCHKE et al., 2007),

16Note that this method assumes that a resource has been assigned at least one tag already.
17Such methods are generally called Nonnegative Matrix Factorization (NMF).
18Because this dissertation is focused on this type of methods.
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an adaptation of the famous PageRank algorithm (PAGE et al., 1999), trained to
predict tags in a personalized manner. Methods based on Random Walks are also
commonly used in user-centered approaches (JIN et al., 2010; MROSEK et al., 2009;
SI et al., 2009).

WANG et al. (2015) models resources (in this case, web pages) and tags as a
graph G = 〈V,E, ω〉, where ω is a function that defines the weight of the connection
between two nodes. Function ω assigns a weight between two nodes such that it is
larger if the two nodes’ textual contents is similar, and smaller otherwise.

Once this modelling is complete, the authors apply a clustering method called
DenShrink (HUANG et al., 2011) which clusters nodes together. At prediction
time, one uses tags in the same cluster to suggest for resources with few or no tags.
The authors claim that this method succeeds at suggesting tags for what they call
hesitant (i.e. with few or no assigned tags) but they do not compare it to other
methods in the literature.

KAKADE & KAKADE (2013) propose a different graph-based approach,
wherein nodes are resources (in this case, images) and tags. However, differently
from previous methods, they build 3 different graphs: in the first graph edges con-
nect resources to tags. In the second graph, nodes are resources and egdes connect
resources to other resources, based on feature similarity. Finally, in the third graph,
tags are connected to other tags, based on how often they occur together. They call
this a fused graph.

At prediction time, they perform a random walk in these graphs; using the query
resources features, they find similar images on the image-image graph. Then, they
apply the same method on the image-tag graph and then on the tag-tag graph,
in order to arrive at a set of suggested tags for the query resource. They com-
pare multiple variations of their algorithm and conclude that the best performance
is achieved using all three graphs and, in addition, performing a technique called
Pseudo Relevance Feedback.

3.2.7 Other

In this subsection, we describe a few more methods which do not fit into the previous
categories. However, we nonetheless deem them important because they show that
methods applied to predicting social tags are not limited to the ones in the categories
previously mentioned.

SI & SUN (2010) introduce a generative probabilistic model aimed at inferring
the latent reasons behind every tag assignment. This is somewhat inspired by LDA
but they also model the noise inherent in all STSs.19

19This is especially true of broad STSs, because of the fact that all users can tag all resources.
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The authors claim that their model outperforms baseline methods like k-NN and
Naïve Bayes on multiple datasets.

TRABELSI et al. (2012) employ Hidden Markov Models (HMM) (RABINER,
1990) to build prediction model for tags. At training time, They model the sequences
of users’ latent (hidden) intents when tagging a resource as the hidden states in the
HMM, and the actual tag assignments are the visible states.

At prediction time, the model is used in reverse to infer the hidden state from the
observable data. Finally, tags related to the most likely hidden intent are suggested
for the query resource. They claim their method outperforms similar probabilistic
methods in terms of prediction and recall, for multiple values of k.

With an ensemble-based approach, LIU et al. (2013) propose a blending of mul-
tiple method into a single classifier.

It works as follows: they first extract features from the resources and then train
three individual classifiers20, namely a simple keyword extractor, item-based col-
laborative filtering and LDA. Next, they train a linear model to find out what are
the optimal weights λ such that a linear combination of the results of the three
individual is better than each individual classifier.

In order to ascertain the performance of the proposed solution, they compare
the output to each of the individual underlying classifiers, and conclude that the
blending method succeeds at increasing performance on a crawl of the Delicious
website.

SATTIGERI et al. (2014) propose using Deep Architectures for learning good
features for audio tagging. More precisely, they train low-dimensional representa-
tions (embeddings) for audio data, apply a sparse transformation and then cluster
the obtained features into similar categories. Finally, they apply a simple Linear
SVM classifier on the final features. The authors claim that their approach has com-
parable performance to the best competitors at the time, even though a relatively
simple classifier was used.

Although this method is specifically used for the audio domain, we believe that
it highlights that the feature extraction step may be just as important as choices
over which classifiers and hyperparameters to use.

The following table provides a quick summary of the main types of approaches
described in this section:

20They cite general ensembling theory, whereby an ensemble of unrelated, non-correlated weak
classifiers works better than combining classifiers which are similar to one another.
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Table 3.1: Approaches to tag prediction, classified by techniques used

Association Rule
Mining

Methods that leverage the learning of empirical co-
occurrence rules in the datasets.

Content-based Tag
Propagation

Methods that learn a representation of each resource based
on their contents and use neighbour-based techniques to
find similar points.

Resource-based tag
propagation

Similar to the above, but using other information to build
representations for each resource.

Multi-label Classi-
fication/Ranking

Methods based upon training multi-label classification al-
gorithms, ranked or otherwise.

Topic
Modelling/Tensor
Factorization

Methods based on finding a matrix and/or tensor based
representation for resources and tags, and then applying
factorization methods on those.

Graph-based Methods which model folksonomies as graphs and leverage
graph-theoretic algorithms to predict tags for resources.

Other Other methods not in the previous categories.

3.3 Other Aspects

In this section, we will go over a couple of aspects we deem important inasmuch as
they are model-agnostic - these can be use no matter what approach one takes for
predicting tags in a social tagging context.

3.3.1 Data Representation

Feature representation is an essential part of any kind of machine learning, because
any kind of information (be it text, images, sound, etc) must be encoded as vectors
so that models can be trained on them. In this subsection we cite a couple of
approaches that have leveraged alternative feature representations for the task of
predicting social tags.

HAN et al. (2010) suggest an interesting technique wherein they use concepts
from transfer learning (PAN & YANG, 2010) to train an embedding matrix M on
a training dataset. At test time, M is used to project the test data into a lower
dimensional vector space such that the correlations between the multiple labels
are kept. Finally, a simple regularized linear regression model is used to train an
independent classifier for each label.

The authors claim that their method outperforms similar and baseline methods
on an image tagging dataset, as measured by ranked metrics such as Mean Average
Precision (MAP) and Precision@k.
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KATARIA & AGARWAL (2015a) suggest an approach whereby resources (in
this case, text documents) and tags are represented in the same shared subspace.
More specifically, they train so-called translational embeddings (BORDES et al.,
2013a) using a shallow neural network that forces the feature vectors to assume rep-
resentations that minimize a loss function that represents the relationship between
documents and tags (and optionally users).21

They claim their method outperfoms baseline methods, when used as prepro-
cessing step for multi-label classification problems, where the actual classifiers may
be neural networks, SVMs or method based on Gaussian Processes.

3.3.2 Clustering

Clustering22 refers to a type of unsupervised machine learning techniques whose
objective is to group instances in order to extract common patterns and other sim-
ilarities.

SHEN et al. (2009)23 use k-medoids clustering to predict tags for text data.
They first break up each individual document into segments by using the TextTiling
procedure (HEARST, 1994) and then cluster the segments back together. Finally,
classification is done using SVM classifiers.

In a somewhat similar approach, NIKOLOPOULOS et al. (2009) use k-means
with additional connectivity constraints to break up images into regions.24 Then,
regions from multiple images are clustered together in order to find the general
topics represented in the images. Using a labelled dataset with multiple tags for
each image, they construct a derived dataset where each region cluster is assigned
the most common tags for all the regions in that cluster. Finally, a simple multi-label
SVM classifier is used for actual prediction.

LEGINUS et al. (2012) present a different take on clustering because, unlike the
previous examples, they apply clustering not on the examples but on the labels. In
other words, they cluster labels into label clusters, based on similarity. They use
clustering techniques such as k-Means, Spectral k-Means and Mean Shift and report
gains in efficiency and accuracy when using these representations, when compared
to using the full data.

21One may argue that this is similar to training paragraph vectors (as in LE & MIKOLOV
(2014)), wherein neural networks are used to force the learning of vector representations that
minimize the relationship between paragraph vectors and words therein.

22See JAIN (2010) for a comprehensive overview and summary on data clustering.
23This method is explained in detail in section 5.2.
24This is known as image segmentation (HARALICK & SHAPIRO, 1985).
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Chapter 4

Proposal and Experiment Outline

4.1 Proposal

Initially, our proposal was to analyze multiple multi-label classification algorithms
and verify how they perform when applied to the task of predicting social tags in
broad folksonomies. We chose multi-label classification techniques because they are
by far the most common method applied to social tag prediction (as evidenced in our
literature review) and also because there is already a large body of work dedicated
to this particular form of machine learning1

However, after reading many articles where this particular type of technique is
applied to social tag prediction, we noticed that most use, in fact, a label ranking
approach, which is very similar to multi-label classification, but where continuous,
rather than real-valued, scores are assigned to each label.2

Since it quickly became apparent that label ranking was indeed the most widely
used approach, we have chosen to slightly modify our proposal; we changed our
focus from multi-label classification to multi-label ranking. This has enabled us to
compare methods that are actually in use in the literature and see how these results
fare in comparison to those reported by other authors.

Our final proposal is twofold:
Firstly, we would like to verify the performance of a group of social tag predic-

tion methods. We will use techniques that are widely used
Additionally, we intend to test these on two different datasets, which differ on

key metrics such as average number of tags per resource, total number of tags, total
number of resources, etc. This will enable us to compare the performance of these
methods under different settings. If we had used a single dataset to experiment
with, we could risk choosing one that unfairly benefits one method to the detriment

1See TSOUMAKAS & KATAKIS (2007) for a comprehensive overview of the subject.
2More about the relationship between multi-label classification and label ranking on section

3.2.4
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of others. In other words, this is a way to reduce any possible bias that could result
from using a single dataset to compare these methods.

We consider this an important issue because the tag vocabulary and the folkson-
omy as a whole exhibits emergent semantics (CATTUTO et al., 2007; KÖRNER
et al., 2010) due to its collaborative nature. This means that the characteristics of
such systems may vary in multiple, sometimes unpredictable ways.

Among the characteristics datasets may differ in, we can count:

• Total number of resources: The total number of resources in a dataset may
affect the outcome of many prediction approaches, particularly those that need
many samples to learn from.

• Total number of unique tags: A dataset where resources are tagged using
a limited tag vocabulary will probably be more amenable to tag prediction,
independently of the approach used.

• Average number of tags per resource: We suspect that the number of
tags each resource has been assigned will have an impact on classification and
ranking. This is because it may be easier to return valid tags if there are more
to choose from (for a given resource).

• Minimum and maximum number of tags per resource: The fact that
some datasets allow some resources to have either zero or an unlimited number
of tags may affect the performance of ranking approaches that rely on some
sort of calculated threshold or cut-off value to define which tags are predicted.

• Number of resources per tag: The number of times each individual tag
was assigned will probably be important because if there are too few examples
some approaches may be unfeasible.

Secondly, we would like to verify to what extent the technique introduced by
SHEN et al. (2009), namely Multi-Instance Multi-label Learning for Automatic Tag
Recommendation works when applied to other kinds of textual features other than
TF-IDF-weighted bag of words.

We propose this experiment because there are multiple techniques (mostly linear
methods, such as Logistic Regression and SVM with a linear Kernel) that work well
with bag of words due to their sparse nature (LI et al., 2015; WEI HSU et al., 2010),
but may struggle with text representations where each document is represented not
by a sparse feature vector but by a dense one instead.

We would therefore like to investigate if and in what way the results obtained
using multi-instance learning for sparse vectors extrapolate for dense and otherwise
different text representations.
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One way to find that out is to try the aforementioned method with other represen-
tations for documents that have been used in the literature, which turn documents
into dense feature vectors, as follows:

• LDA Topic Probabilities: As suggested in the original article that intro-
duced LDA (BLEI et al., 2003), one can use topic probabilities for each topic
as a representation for a document. This is in spite of the fact that LDA
is mainly a non-supervised technique to extract topic densities from a text
corpus.

• IDF-weighted Average of Word Embeddings: Word embeddings3 are
fixed-dimension, dense representations for individual words. It has been re-
cently suggested that one used the IDF-weighted average of word embeddings
in a document as a representation for that document (JÚNIOR et al., 2017;
ZHAO et al., 2015). Furthermore, this strategy has been established to work
reasonably well according to many authors (ARORA et al., 2017; WIETING
et al., 2015).

For the same reasons as in proposal 1, we will conduct these experiments on two
datasets with different characteristics, to avoid biased results.

4.2 Datasets

For verifying our initial proposals, we envisioned a set of experiments on real world
datasets. We decided to use at least two data sources with significant previous usage
in the literature, so we could easily compare our results to previous experiments.

In addition, we wanted to see our proposed methods fares in tag prediction tasks
in datasets with different characteristics. We took into account dataset metrics such
as the average number of tags assigned to each resource, total number of resource,
total number of unique tags, and so on.

4.2.1 Dataset 1: Delicious t-140

This dataset has been created during June 2008 for ZUBIAGA et al. (2009), for the
task of Content-based Clustering.

4.2.1.1 Construction

This dataset was constructed using by subscribing to the 140 most popular tags on
the Delicious.com website4 between April 07, 2008 and April 12, 2008. Every time

3One of the seminal articles for word embeddings is BENGIO et al. (2003).
4Delicious was a popular online bookmarking website now inactive.
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a URL was tagged using one of these 140 tags, the corresponding HTML document
would be stored in the database (along with all tags assigned to it, even if they
weren’t in the top 140 set).

Once this dataset was collected, all tags having occurred in less than two docu-
ments were removed (so as to abide by the website’s "common tag" definition and to
remove overly noisy tags). Also, webpages written in languages other than English
were also removed from the dataset.

After these initial steps, the dataset totalled 144,574 unique documents and
67,104 unique tags.

4.2.1.2 Preprocessing

Following literature conventions, we added a few pruning and preprocessing steps
to this dataset, so as to make it more amenable to training models on.

We removed documents that had only been tagged with a single unique tag. We
also removed from the dataset all documents which has been tagged by only a single
user. More importantly, we removed from the dataset all tags which had been used
in less than 10 separate documents.5 These pruning steps brought the total number
of documents down to 143,716 and the number of distinct tags to 9,184.

As for text preprocessing, we normalized all tags by applying lowercasing and
removing special characters. As far as the textual contents of HTML pages are
concerned, we removed HTML tags to arrive at a clean version of the dataset, again
following literature convention,

Table 4.1: Dataset Statistics: Delicious t-140 (after pruning and preprocessing)

Total number of Resources 147,716

Total number of unique tags 9,184

Average number of tags per resource 13.12

Minimum number of tags per resource 1

Maximum number of tags per resource 25

Average number of resources per tag 205.24

Minimum number of resources per tag 10

Maximum number of resources per tag 26,603

5Such tag-pruning reflects standard practice in many works dealing with tag prediction, espe-
cially as related to broad folksonomies.
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Figure 4.1: Distribution of the number of unique tags assigned to each document in
the Delicious t-140 dataset (after pruning and preprocessing).

Figure 4.2: Distribution of the number of documents each tag was assigned to in
the Delicious t-140 dataset (after pruning and preprocessing, not counting multiple
assignments).

4.2.2 Dataset 2: Movielens 20M + IMDB Synopses

For our second dataset we chose one which, as previously explained, had different
characteristics compared to the first dataset. We did this to verify whether (and to
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what extent) our methods and other methods perform in datasets which differ with
respect to metrics such as average number of tags per document, total number of
tags, etc.

Once again, we wanted to choose data from sources which have been often used
in the literature. With that in mind, we chose to work with a MovieLens dataset
and with movie synopsis data from the International Movie Database.

While it is true that combining both datasets yields another dataset which dif-
ferent from the first two, there are examples in the literature (KATARIA, 2016;
PERALTA, 2007) where these two datasets were combined.

Table 4.2: Dataset Statistics: MovieLens 20M + IMDB Synopses (after pruning and
preprocessing)

Total number of Resources 6,710

Total number of unique tags 2,138

Average number of tags per resource 12.21

Minimum number of tags per resource 1

Maximum number of tags per resource 189

Average number of resources per tag 38.33

Minimum number of resources per tag 10

Maximum number of resources per tag 854
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Figure 4.3: Distribution of the number of unique tags assigned to each document in
the Movielens 20M + IMDB Synopses dataset (after pruning and preprocessing).

Figure 4.4: Distribution of the number of documents each tag was assigned to in
the Movielens 20M + IMDB Synopses dataset (after pruning and preprocessing, not
counting multiple assignments).

4.2.2.1 Construction and Preprocessing

The first part of the dataset was obtained at
https://grouplens.org/datasets/movielens/20m/. This download package in-
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cludes a file with every tag assignment until October 17, 2016, for movies in the
MovieLens website.

We preprocessed this dataset by normalizing all tags: lowercasing and removing
special characters. In addition, we removed from the dataset all tags that occurred
in less than 10 documents, following literature convention.

The download package includes a file that matches each MovieLens movie ID
with the corresponding movie ID on the Internet Movie Database (IMDb) website
6. So, for each movie in the MovieLens dataset, its synopsis (when available) was
manually scrapped from the IMDB website, using the Scrapy 7 tool.

After crawling the website for the matching movie synopses, we saved the results
and filtered out movies with non-english synopses.

4.3 Experiment Outline

In the following subsections, we will briefly explain the underlying reasons for the
way we have setup our experiments.

4.3.1 Project Structure

In the following subsection, we will briefly describe the actual software project cre-
ated to fulfill the objectives described in earlier chapters.

4.3.1.1 Frameworks and Libraries used

We have chosen to use the Python programming language, due to its ease of use as
well as the widespread availability of scientific libraries.

For exploratory data analysis and training all models, we have used tools such
as Numpy, Scipy, Pandas, Scikit-learn and Matplotlib. All of these were used on top
of Jupyter notebooks, to make all process easiily viewable and auditable.

For text preprocessing, we have used a parallel processing framework called
Apache Spark, due to the size of the datasets. All workloads were executed on
top of Amazon Web Services (AWS) infrastructure.

For crawling the IMDB website we have used a tool called Scrapy.
Finally, for training and using word embeddings we have used the Gensim frame-

work for topic modelling.
A more detailed description of the project structure can be found in Appendix

A.

6http://www.imdb.com/
7https://scrapy.org/
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All code for the experiments is available under
https://github.com/queirozfcom/auto-tagger/tree/master/social-tags.

4.3.2 Method Selection

These experiments are meant to address proposals 1) (performance comparison of
multiple tag-predictions approaches in two very different datasets) and 2) (compar-
ing the MIMLSVM tag prediction method using sparse and dense features).

In order to have representative and non-biased experiments, we have chosen to
use methods that were a) widely used in practice, b) different from other methods
or c) both.

4.3.3 Hyperparameter Tuning

As is commonplace in most machine learning tasks, we have, for each experiment,
tried a combination of hyperparameters for each method we have applied. We have
used grid search, probably the most common way to conduct hyperparameter search,
to search for good configurations for the problems at hand. The actual search was
done on a sample (generally 30% of the full data) and the victor parameters used
to train the model on the full datasets.

With respect to text-specific machine-learning, there is also the question of how
to tune some feature extraction procedures. Once again, we have tried to emulate
what has been done by other authors we have reviewed while also taking into account
standard practice in the Natural Language Processing (NLP) field. We consider
the two most important choices to be a) the number of words to use in BOW
representation and b) the number of dimensions to use for word embeddings. We
have conducted two simple comparisons to help us make appropriate choices for these
parameters, taking into account both accuracy but also more practical matters such
as training time and memory needed.
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(a) Comparing performance using different
vocabulary sizes (OvR SVM).

(b) Comparing performance using different
embedding dimensions. (OvR SVM)

Figure 4.5: Comparing choice of hyperparameters for feature extraction. Using
Dataset 2 for illustrative purposes.

Based on the above tests, we have concluded that using a vocabulary with only
500 as the number of words and 100 as the embedding dimension represents a good
trade-off between performance and training time and complexity. In other words,
we consider these to be enough to enable comparing methods while not incurring
long training times and extreme memory consumption.

4.3.4 Metrics and Evaluation

Problems with multi-label data (the type we have in this work) can be approached
in one of two ways (ILLIG et al., 2011; TSOUMAKAS et al., 2010): as multi-
label classification or label ranking. The first type produces models that output
a partition of labels (relevant/non-relevant) for each example. Conversely, label
ranking implies training models that output an ordering of labels for each instance.

In this work, we have chosen to frame social tag prediction as a label ranking
problem. This follows standard practice in the literature but we also deem it more
useful for real world tasks such as displaying a (finite) number of tag suggestion-
s/predictions to users in an STS. In other words, the output of our classifiers will
be a list of tags ranked in decreased order or relevance.

A wide variety of evaluation metrics8 is used in label ranking. Among the many
articles reviewed for this dissertation, we cite the following as the most commonly-
used metrics in this domain.

4.3.4.1 Average Precision and Mean Average Precision

Average Precision (AP) is a widely-used9 metric to measure the result of a single list
of ranked labels or a list of ranked documents (in an information retrieval setting).

8For extended commentary on ranking metrics see SOKOLOVA & LAPALME (2009) and
KISHIDA (2005).

9See BUCKLEY & VOORHEES (2000) for a comprehensive study.
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In general terms, AP measures, up to a cutoff value m, the precision achieved
considering all labels up to label i:

APm = 1
m

m∑
i=1

Precision@i · φ(i) , (4.1)

where Precision@i refers to the precision considering only the top i labels; φ(t)
is an indicator function whose value equals 1 if predicted label at rank i is indeed a
true label and 0 otherwise.

Now, when one wants to calculate AP over a whole dataset (as is out case), one
can average AP over all documents for which we have predicted labels. This brings
us to Mean Average Precision (MAP), which is calculated as follows:

MAPm = 1
|D|

∑
d∈D

APm(d) , (4.2)

where D is the set of documents for which labels are to be predicted.

4.3.4.2 Micro-Averaged F1 @k

Another very commonly-used metric, and the one that we have chosen to work with,
is micro-averaged F1-score @k

This measure was chosen due to the problem we wish to consider (namely, label
ranking) and the way we want to average the results over a given dataset. In
addition, this metric is commonly used in articles we have reviewed.

The F1-score (a particular case of the more general F-measure, where β equals
1) is widely used in information retrieval problems related to search or ranking of
results; it is the harmonic mean of precision and recall, given by:

F1 = 2 · precision · recall
precision+ recall

(4.3)

which can be also written in terms of generic error metrics:

F1 = 2 · true positive
2 · true positive+ false negative+ false positive

(4.4)

With regards to micro-averaging, it refers to the way we report results for the
whole dataset, be it training or validation.

When macro-averaging is used, equal weight is given to every class (label) in
the dataset, which means that classes which occur only very rarely are given the
same weight and very common classes when the full metrics over the dataset are
calculated.
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On the other hand, with micro-averaging, the individual metrics (true posi-
tive, true negative, false positive and false negative) are aggregated over the whole
dataset, which is preferable in cases (such as ours) where the dataset is highly un-
balanced.10

Finally, when metrics @k are considered, it simply means that only the results
up to the k-th position are taken into account when gathering the results:

F1 @k = 2 · true positive @k
2 · true positive @k + false negative @k + false positive @k (4.5)

This gives a more complete view of how the classifier works at different preci-
sion/recall levels, and can be easily visualized via graphical charts.

10I.e. some labels appear much more often than others.
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Chapter 5

Experiments

5.1 Experiments for Proposal 1

In this section we present the results of experiments we conducted in order to empir-
ically ascertain the difference in performance of several multi-label ranking methods,
applied to social tag prediction, as detailed in Chapter 4.

For all experiments, we split the datasets into train/test sets in the proportion
of 85/15. In other words, training and testing are done disjoint sets, so as to enable
an unbiased estimate of the model’s error rate.

5.1.1 TF-IDF weighted Bag-of-words Features, Binary Rel-
evance + Linear SVM Classifier

In this experiment, we apply the commonly-used Binary Relevance1 meta-estimator
(TSOUMAKAS & KATAKIS, 2007) using a linear SVM classifier as underlying
model.

This is a commonly-used technique for social tag prediction, as seen in CHEN
et al. (2008); GOH et al. (2008); ILLIG et al. (2011); TAO & YAO (2016) among
others.

1As previously noted, this method is also called One-vs-Rest because one classifier is trained
for each separate category, or label.
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5.1.1.1 Results on Dataset 1

Figure 5.1: Results of applying Binary Relevance + Linear SVM with TF-IDF
features on the Delicious t-140 Dataset (validation set scores shown)

5.1.1.2 Results on Dataset 2

Figure 5.2: Results of applying Binary Relevance + Linear SVM with TF-IDF
features on the Movielens Dataset (validation set scores shown)

5.1.1.3 Discussion

Figure 5.3: Binary Relevance, Linear SVM with TF-IDF features: Compared results
(validation set scores)
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As expected, the results in Dataset 1 were far better than those for Dataset 2, due
to the differences in the tag distribution for both datasets.

It is interesting to note that the decrease in scores for Dataset 1 is somewhat
more pronounced than in Dataset 2.

5.1.2 TF-IDF weighted Bag-of-words Features, k-Nearest
Neighbours Classifier

The k-Nearest Neighbors is a very popular machine learning method that can be
used both for classification and for regression. It consists in simply calculating the
distances (assuming an n-dimensional representations) to every other instance, at
inference time2. Then, each neighbor up to k is treated as a source of information
to help predict the class for the query instance.

With respect to tag prediction, multiple (CHARTE et al. (2015); CHIDLOVSKII
(2012); MARTÍNEZ et al. (2009); ZHANG et al. (2015)3 to cite but a few) authors
have applied some form of neighbor-based classifier to predicting tags for a query
resource.

In general, they proceed by finding nearest neighbors based on the resource’s
vector representation, as per the usual algorithm. Then, each neighbor’s binary tag
vector is added up and tags which are more commonly seen in the query instance’s
neighborhood are suggested.

Since we only want to use this method as a baseline, we implemented the most
basic version thereof, namely simple, unweighted k-NN. Furthermore, we ran grid
search over the method’s hyperparameters, namely k, the number of neighbors to
consider and also over the distance metric to use (cosine, euclidean, manhattan,
etc).

2Methods such as k-NN are called lazy methods because they need no training, as they defer
all processing until actual inference is made.

3CHARTE et al. (2015) have applied an approach very similar to ours, namely using multi-label
k-NN to classify text into multiple tags, using TF-IDF representation.
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5.1.2.1 Results on dataset 1

Figure 5.4: Applying k-NN on the Delicious Dataset, using TF-IDF weighted bag-
of-words representation (validation set scores shown)

5.1.2.2 Results on Dataset 2

Figure 5.5: Applying k-NN on the Movielens Dataset, using TF-IDF weighted bag-
of-words representation (validation set scores shown)

5.1.2.3 Discussion

Figure 5.6: k-NN with TF-IDF features: Compared results (validation set scores)
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Although the results were satisfactory, one can see that the difference in performance
on both datasets is not as large as in the previous example. One reason for that may
be that the large number of neighbours (found by model selection via grid search)
may act as a regularizer, decreasing the variance on out-of-sample examples but at
the cost of a higher bias.

We would like to note that, surprisingly, using a weighted variant did not increase
performance on this task. In other words, weighing the contribution by the inverse
of the distance to each neighbor did not increase the accuracy of the model.

5.1.3 TF-IDF weighted Bag-of-words Features, Topic Dis-
tances

In this approach, which has been suggested by CHOUBEY (2011),we first train a
topic model on train set documents using Latent Dirichlet Allocation (LDA) (BLEI
et al. (2003)). Then, at query time, we calculate the topic distribution for the
query document and also the single most similar train set document, as measured by
the Kullback-Leibler Divergence (KL-Divergence, KULLBACK & LEIBLER (1951))
between the topic distributions of the documents. Finally, the tags used in the found
document are used as suggestions for the unlabelled query document.

5.1.3.1 Results on dataset 1

Figure 5.7: Applying Topic Distances on the Delicious Dataset, with varying values
for the choice of LDA components
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Figure 5.8: Applying Topic Distances on the Movielens Dataset, with varying values
for the choice of LDA components

5.1.3.2 Discussion

Figure 5.9: Topic Distances: Compared results (validation set scores). Best and
worst results for each Dataset shown for comparison.

While the results were overall worse than previous classifiers, the overall pattern of
dataset 1 (Delicious) performing better than dataset 2 was maintained. Notably,
however, the difference is now much more pronounced (in relative terms), standing
at up to 300%.

It is worth mentioning that the results achieved are close to what the original au-
thors’, lending credibility to the fact that this method performs very poorly overall,
not just on specific datasets and/or specific conditions.

5.1.4 TF-IDF weighted Bag-of-words Features, Topic
Words

In this approach, also suggested by CHOUBEY (2011), one trains an LDA topic
model on documents in the train set. At test time, the topic distribution for each
query document is calculated with the trained model. Then, the most representa-
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tive words4 for the most representative topic are suggested as tags for the query
document.

5.1.4.1 Results on dataset 1

Figure 5.10: Applying Topic Words on the Delicious Dataset, with varying values
for the choice of LDA components (validation set scores shown)

5.1.4.2 Results on Dataset 2

Figure 5.11: Applying Topic Words on the Movielens Dataset, with varying values
for the choice of LDA components (validation set scores shown)

4Only words that are in the actual tag vocabulary are used.
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5.1.4.3 Discussion

Figure 5.12: Topic Words: Compared results (validation set scores) using the best
choice for the number of components.

Once again, the results are not very good (in comparison to classifiers such as
SVM, used previously). These, however, resemble results in the original source
(CHOUBEY, 2011). Notably, there doesn’t seem to be any consistent difference
when one dataset is compared to another, or as k grows. This may indicate that
this method is not effectively learning much.

5.1.5 LDA Topic Probabilities, k-nearest Neighbours Clas-
sifier

Although Latent Dirichlet Allocation (LDA) (BLEI et al., 2003) was originally cre-
ated as a means to infer representative words for topics in corpora, it can be (and
frequently is) used to extract features for documents. In fact, this approach was
used and suggested in the original paper itself.

In other words, LDA can be used as a form of dimensionality reduction to reduce
the size of feature vectors5 from V to k, respectively the vocabulary size and the
number of components in the LDA model.

Using these topic probabilities as features, we can then proceed onto classifying
the documents using any classifier we wish. We have chose to use two classifier for
this task: a) a simple k-nearest Neighbours Classifier so as to enable comparison
between using LDA features and using bag-of-words features and b) (in the next
subsection) an SVM classifier, as suggested in the original LDA article.

5Assuming an original bag-of-words representation without trimming the number of words
used.
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5.1.5.1 Results on dataset 1

Figure 5.13: k-Nearest Neighbor classifier on the Delicious dataset, using LDA topic
probabilities as features (validation set scores shown).

5.1.5.2 Results on Dataset 2

Figure 5.14: k-Nearest Neighbor classifier on the Movielens dataset, using LDA topic
probabilities as features (validation set scores shown).

5.1.5.3 Discussion

Figure 5.15: k-NN using LDA features: Compared results (validation set scores).

47



It is interesting to note that, although only 50 components are used in this setup, we
get 0.43 as F-1 score, compared with 0.45 when using k-NN with 500-dimensional
bag-of-words features. In other words, we were able to reduce the dimensionality6

of the problem while losing just a bit of performance.
Interestingly, however, the compared results for the second dataset, namely,

Movielens+IMDB, was markedly worse; 0.21 using LDA features vs 0.33 using bag-
of-words features.

5.1.6 LDA Topic Probabilities, SVM classifier

As mentioned on the previous subsection, we will compare results between both
datasets using LDA as a simple dimensionality reduction step on top of TF-IDF
weighted bag-of-words features. We will use an SVM classifier, as suggested in the
original LDA paper by BLEI et al. (2003).

However, since the features are now of a denser nature, we will add other types
of kernels to the hyperparameter search space, namely Radial Basis Function (RBF)
and a also a polynomial kernel, in addition to the default linear kernel.

5.1.6.1 Results on dataset 1

Figure 5.16: SVM classifier on the Delicious dataset, using LDA topic probabilities
as features (validation set scores shown).

6Therefore also reducing the training and testing time, processing power needed, not to mention
better generalization due to using a less complex model.

48



5.1.6.2 Results on Dataset 2

Figure 5.17: SVM classifier on the Movielens dataset, using LDA topic probabilities
as features (validation set scores shown).

5.1.6.3 Discussion

Figure 5.18: SVM using LDA features: Compared results (validation set scores).

Once again, we see that the difference in outcomes is large, of up to 80%. This is
surprising in light of the fact that the best results for each dataset (as obtained via
grid search) used just 5 LDA components.

In other words, we were able to provide good performance for this experiment
setup using a mere 5 dimensional in place of the original 500 dimensions of the
bag-of-words vectors. Note that an RBF kernel was used in this section.
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5.1.7 Final Results and discussion

(a) Full comparison of all techniques used on
dataset 1: Delicious T-140.

(b) Full comparison of all techniques used on
dataset 2: Movielens+IMDB.

Figure 5.19: Full comparison of all techniques used for proposal 1 (validation set
scores).

As we had initially expected, results in dataset 1 far outperform those in dataset 2,
Delicious T-140 and Movielens+IMDB respectively.

Table 5.1: Compared dataset statistics (after pruning and preprocessing)

Dataset 1 Dataset 2

Total number of resources 147,716 6,710

Total number of unique tags 9,184 2,138

Average number of unique tags per resource 13.12 12.21

Minimum number of unique tags per resource 1 1

Maximum number of unique tags per resource 25 189

Average number of resources per tag 205.24 38.33

Minimum number of resources per tag 10 10

Maximum number of resources per tag 26,603 854

The experiments seem to confirm the intuitive explanation that dataset charac-
teristics (as seen on the table above) do indeed affect the performance of classifiers,
at least when measured with our metric of choice (micro-F1 @k).

Intuitively, we could claim that the results were better in dataset 1 because
number of resources is much larger (there are many more examples to learn from),
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the tag vocabulary is smaller (there are less tags to choose from at each prediction)
and the number of tags assigned to each resource is capped at 25.

Another possible explanation is that documents in dataset 1 represent the re-
source itself (a webpage) while in dataset 2 the documents are but a description
of the resource, not the resource itself (resources are movies). In a way, dataset 2
contains secondhand information about the resource.

In addition to the points above, dataset 2 is a mixture of two different sources7,
namely Movielens for the tags and IMDB for the movie plot summary. This may
have had an additional effect on lowering the performance of the classifiers since
there is a potential mismatch between the two sources.

5.2 Experiments for Proposal 2

Multi-instance Learning8 is a technique (the name was first coined by DIETTERICH
et al. (1997)), whereby a an instance in a traditional supervised learning problem is
split into multiple so-called bags.

In other words, each individual sample in a dataset is represented not by a single
feature vector but by a set thereof. For example, images may be represented as a bag
of patches (ANDREWS et al., 2003; MARON & RATAN, 1998), pharmacological
drug molecules may be represented as a bag of configurations (ANDREWS et al.,
2003; DIETTERICH et al., 1997).

Figure 5.20: Multi-instance learning works by representing a single example as mul-
tiple instances.

In 2006, ZHANG & ZHOU have adapted the multi-instance learning paradigm
into the multi-label setting, in the context of scene classification. The main insight
put forward by this work is that a multi-instance, multi-label (MIML) problem
can be transformed into either a) a single-instance, multi-label task or b) a multi-
instance, single-label task:

7See subsection 4.2.2 for a detailed explanation.
8Also called Multiple-instance Learning
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Figure 5.21: Original algorithm, devised by ZHANG & ZHOU (2006), transforms
an MIML problem into either a SIML or an MISL problem, using MIMLSVM and
MIMLBOOST techniques, respectively.

In 2009, SHEN et al. have applied multi-instance, multi-label (MIML) learning
to the tag prediction problem. In particular, they have adapted the MIMLSVM
algorithm from ZHANG & ZHOU (2006) to multi-label text classification.

The main idea here is that a single textual document may be split into multiple
segments via some kind of text segmentation algorithm. This makes it possible to
view this problem as a multi-instance, multi-label (MIML) problem, where each
segment represents one of many instances for a single document.

Each document is split into segments using a well-known text segmentation
algorithm called TextTiling (HEARST (1994)). Then, these segments are vectorized
into bag-of-words vectors. In order to turn the multiple segments into a single
instance, the authors use k-medoids clustering based on the Hausdorff distance
(EDGAR (2008)). Finally, an SVM classifier9 is applied on to the transformed
dataset.

9Configured so that it predicts a real-valued score for each tag instead of a binary prediction.
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Algorithm 1: MIMLSVM applied to Tag Prediction (SHEN et al., 2009)
input : A set D of text documents
output: A trained SVM model to rank tags yd for every d in D

Part I: Building a Single-Instance Dataset
foreach document d in D do

// split document into segments
segmentsd ← TextT iling(d)

// transform each segment into a vector of features
vectorizedSegmentsd ← extractFeatures(segmentsd)

// apply k−medoids clustering algorithm to the segments of d.
// note that featuresd is now a single-instance vector
// because Hausdorff Distance was used in clustering
featuresd ← kMedoids(vectorizedSegmentsd)

// this becomes a single row in the new D′ dataset
D′

d ← featuresd

Part II: Training an SVM Classifier on D′

Train a Ranked SVM algorithm on the transformed features in D′

The objective of the experiments in this section is to ascertain whether (if at all)
the original results generalize to other kinds of features.

As before, we split the datasets into train/test sets in the proportion of 85/15. In
other words, training and testing are done disjoint sets, so as to enable an unbiased
estimate of the model’s error rate.

5.2.1 MIMLSVM with IDF weighted Bag-of-words features

The following is the original version of the MIMLSVM algorithm, i.e. using TF-IDF
weighted Bag-of-words features. Values for all hyperparameters were found via grid
search on a sample of the full dataset.
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5.2.1.1 Results on Dataset 1

Figure 5.22: MIMLSVM classifier applied on the Delicious dataset, using TF-IDF
weighted bag-of-words features (validation set scores shown).

5.2.1.2 Results on Dataset 2

Figure 5.23: MIMLSVM classifier applied on the Movielens dataset, using TF-IDF
weighted bag-of-words features (validation set scores shown).

5.2.1.3 Discussion

Figure 5.24: MIMLSVM with TF-IDF features: Compared results (validation set
scores)
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Although results for Dataset 1 continue to be better than dataset 2, we notice an
interesting development: the difference in scores appears to be smaller than for
previous classifiers (i.e. in part 1). We suspect this may be due to the fact that
TextTiling works by identifying topics to split the documents by.

Dataset 1 is fully composed of actual sentences and phrases, while dataset 2
is made up of HTML source code (albeit with things like tags and javscript code
removed). This may have caused the MIMLSVM technique to be better able to
extract segment information from the former and not the latter.

Other than that, the results are comparable to those obtained by the original
authors.

5.2.2 MIMLSVM with LDA Topic Probabilities as Features

Latent Dirichlet Allocation (LDA) BLEI et al. (2003) was originally thought of as
an unsupervised method to learn the best way to infer latent topics for documents,
based upon the distribution of words in them.

As mentioned before in section 5.1.5, the original LDA article itself suggests that
topic probabilities be used as features to represent a document. This way, LDA can
be thought of as a form of dimensionality reduction for documents, reducing the size
of feature vectors from V , where V is the size of the vocabulary to D, where D is
the number of components chosen when training the LDA model.

Each document is therefore represented as a feature vector of size D, where each
di ∈ D represents how much topic i is present is a document, as per BLEI et al.
(2003). Since this vector is a dense vector, it serves out purpose of experimenting
on using MIMLSVM on dense document representations.

5.2.2.1 Results on Dataset 1

Figure 5.25: MIMLSVM classifier applied on the Delicious dataset, using LDA topic
probabilities as features. (validation set scores shown)
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5.2.2.2 Results on Dataset 2

Figure 5.26: MIMLSVM classifier applied on the Movielens dataset, using LDA
topic probabilities as features features.

5.2.2.3 Discussion

Figure 5.27: MIMLSVM with LDA features: Compared results (validation set
scores)

This is the first experiment where we test out our original idea as detailed in proposal
2, namely whether MIMLSVM can generalize with non-sparse, i.e. dense, features.

The results seem to be only very slightly superior to those in the previous exper-
iment using regular bag-of-words features. Initially, it doesn’t seem to be the case
that using more informative features, with less dimensions makes the prediction task
much easier.10

10Note that hyperparameters and other choices such as SVM kernels and distance functions
were kept the same so as to enable a fair comparison.
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5.2.3 MIMLSVM with IDF-weighted Bag-of-embeddings
Features

5.2.3.1 Results on dataset 1

Figure 5.28: MIMLSVM classifier applied on the Delicious dataset, using IDF
weighted bag-of-embeddings features (validation set scores shown).

5.2.3.2 Results on Dataset 2

Figure 5.29: MIMLSVM classifier applied on the Movielens dataset, using IDF
weighted bag-of-embeddings features (validation set scores shown).
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5.2.3.3 Discussion

Figure 5.30: MIMLSVM with IDF weighted bag-of-embedding features: Compared
results (validation set scores)

In this case, the switch to IDF-weighted bag-of-embeddings decreased classifier ac-
curacy by a significant amount.

5.2.4 Final Results and discussion

(a) Full comparison of all MIMLSVM vari-
ants used on dataset 1: Delicious T-140.

(b) Full comparison of all MIMLSVM vari-
ants used on dataset 2: Moivelens+IMDB.

Figure 5.31: Full comparison of all techniques used for proposal 2 (validation set
scores).

After conducting these experiments, it does look like the MIMLSVM algorithm can
indeed be used for dense text representations, in both well-structured text with
phrases and sentences as in dataset 1 and in looser, more unstructured text as in
dataset 2.

Apparently the variant using LDA topic probabilities as features had a small but
noticeable advantage over other cases for dataset 1, but not for dataset 2.

On the other hand, the variant using IDF-weighted bag-of-embeddings performed
clearly worse in both cases.
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Chapter 6

Conclusion and Future Work

In this chapter, we conclude the findings from the experiments and link them back
to our original proposals and problem scope.

6.1 Conclusion

Overall, we consider the experiments to have been very informative in helping us
answer the questions detailed in the problem scope, and planned in the proposals.
Next, we give more detailed insights on both proposals.

6.1.1 Proposal 1

As seen in subsection 5.1.7, we verified that all methods perform consistently better
on Dataset 1 as compared with Dataset 2. This may indicate that the first dataset,
namely Delicious T-140 is inherently easier to predict tags for. Intuitively, this is
probably related to the dataset characteristics outlined on tables 5.1 and 4.2.

Other factors may have played a role too: as mentioned before, dataset 1 is a
firsthand dataset, in which we deal with the resources themselves, namely HTML
source code for web pages. Dataset 2, on the other hand, contains textual descrip-
tions of movies, not movies themselves (in which case we would need visual and/or
audio features instead). When someone describes data such as video using text,
some information will invariably be lost in translation.

In addition, we would also like to draw attention to the fact that the simplest
algorithm, namely Binary Relevance with TF-IDF features and Linear SVM classifier
yielded the best results for both datasets. This reminds us that, in the absence of
more specific, semantic information about the problem domain, simple solutions
which carry little to no assumptions about the data may be the safest approaches.
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6.1.2 Proposal 2

Once more, as we have already briefly explained, the MIMLSVM algorithm (SHEN
et al., 2009) doesn indeed seem to generalize for other, non-sparse text representions;
notably, using LDA topic probabilities as features (while keeping all other hypepa-
rameters constant) seemed to yield a slight increase in prediction performance, at
least for Dataset 1. The algorithm does not seem to fare as well with IDF-weighted
bag-of-embeddings features, however, which has cause decreased performance across
both datasets.

As in experiments for Proposal 1, the nature of the text in both datasets may
have also played a role here; the segmentation procedure, namely TextTiling, is
particularly sensitive to punctuation and other markers of prose text; applying this
on HTML text (albeit cleaned HTML), may be stretching some assumptions this
procedure was built for.

6.2 Threats to Internal and External Validity

The experimental setup detailed in this work may contain errors and inaccuracies
inherent to any empirical undertaking. These can affect the results and jeopardize
our conclusions.

By threats to internal validity, we mean issues that may compromise our con-
fidence in saying the trust the results obtained. Threats to external validity are
factors that may cause our approaches to fail to generalize well to other scenarios.

In the following list we state factors that may present threats to our experiment’s
internal or external validity.

• Confounding variables: There may be other, unaccounted for, variables that
may affect the results obtained.
• Generalization to other approaches: It is possible that the approaches we se-

lected for proposal 1 are not representative enough of all possible classifiers.
We may have reached different results had we extended our experiments to
even more methods.
• Generalization to other STSs: It may be that the two STS we selected, namely

Delicious and Movielens+IMDB, display very specific features that have some-
how biased the reuslts obtained.
• Temporal effects: It is possible that the results obtained here are only so

because of the time frames involved; maybe if we had conducted the same
experiments at some point in the future, the results would have been different.
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6.3 Future Work

Although we were able to verify some aspects of the problems addressed, there
remain many other areas which may be worthy of research.

6.3.1 Alternative similarity metrics for clustering multi-
instances

The suggested approach uses the Hausdorff distance to calculate similarity between
bags of instances, after a document has been split into segments. However, as
suggested in the original article about scene classification (ZHANG & ZHOU, 2006),
Hausdorff distance is but one possible mapping to convert multiple bags into a single
feature vector prior to performing clustering.

Other distance metrics are available for comparing bags of vectors; HUTTEN-
LOCHER et al. (1993) alone cite more than twenty variations that can be used
under different conditions. Different metrics may yield different results, particularly
when one considers not only sparse but also dense text representations.

6.3.2 Alternative clustering algorithms

While the k-medoids algorithm was used in the proposed approach, it remains to be
seen whether other similar clustering algorithms could yield better results than those
shown. In particular, similar, centroid-based clustering algorithms include k-means
clustering (MACQUEEN, 1967), k-medians clustering (JAIN & DUBES, 1988) and
k-means++ (ARTHUR & VASSILVITSKII, 2007).

6.3.3 Other classifiers for MIMLSVM

The choice of SVM for the classifier part of MIMLSVM seems to be reminiscent from
the original paper by ZHANG & ZHOU (2006). The adaptation to text data intro-
duced by SHEN et al. (2009) followed the example of the original implementation,
but no reason was given for using SVM over any other classifier.

In particular for different types of features such as embedded representations,
neural networks would be a natural choice, which could enhance results and make
predictions more accurate.

6.3.4 Adapting algorithms from Computer Vision to Natu-
ral Language Processing

In Proposal 2, we applied a multi-label classification technique that had been origi-
nally designed for use with images. This indicates that there may be other ways to
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adapt approaches from the area of Computer Vision to Natural Language Processing
(NLP) problems.

This may be in part caused by similarities between the nature of images and
text, among which:

• Complex compositionality: Compositionality for image parts and text
parts is not trivial. In the same way that a picture of people and furniture
may imply a higher concept (i.e. a home), composing words and/or phrases
also displays a high level of abstraction. For instance, the phrase New York
has hardly any connection to its composing parts (i.e. the individual words
New and York).
• Rich representation possibilities: Computer Vision benefits from sophis-

ticated ways of building representations for individual examples. For exam-
ple, Convolutional Neural Networks (CNNs) (in particular multi-layer CNNs)
build increasingly more complex representations for image data. (RAWAT &
WANG, 2017)
In the case of NLP, one can cite word and document embeddings as success-
ful examples of the use of higher-level representations in machine learning.
(MIKOLOV et al., 2013)
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Appendix A

Code Layout

The project as a whole was based off a project template called Cookiecutter Data-
science1 which is recommended for aiding reproducibility in data science projects.

The project2 is organized as follows:

s o c i a l−tags /
data/ <−− saved data

ex t e rna l
in te r im
proce s sed
raw

models / <−− t r a in ed models

notebooks / <−− a l l code f o r t r a i n i n g a l l models
he lper−s c r i p t s /
d e l i c i o u s−t140 /
movielens−imdb/

s c r i p t s / <−− other s c r i p t s

s r c / <−− u t i l s and he lpe r code
data/ <−− code f o r bu i l d i ng the da ta s e t s
f e a t u r e s / <−− code f o r ex t r a c t i n g f e a t u r e s
h e l p e r s / <−− he lpe r code
u t i l s / <−− he lpe r code that ’ s f i t f o r r euse

systemat ic−search / <−− ev idence o f c o l l e c t e d mate r i a l
1Available online at https://drivendata.github.io/cookiecutter-data-science/
2Available online at https://github.com/queirozfcom/auto-tagger/tree/master/social-tags
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