
HIGH-PERFORMANCE SIMULATION OF INTERACTING MULTIPARTICLE

QUANTUM WALKS WITH APACHE SPARK

André Luiz Figueiredo de Albuquerque

Dissertação de Mestrado apresentada ao

Programa de Pós-graduação em Engenharia

de Sistemas e Computação, COPPE, da

Universidade Federal do Rio de Janeiro, como

parte dos requisitos necessários à obtenção do

t́ıtulo de Mestre em Engenharia de Sistemas e

Computação.

Orientadores: Alexandre de Assis Bento Lima

Franklin de Lima Marquezino

Rio de Janeiro

Março de 2018

HIGH-PERFORMANCE SIMULATION OF INTERACTING MULTIPARTICLE

QUANTUM WALKS WITH APACHE SPARK

André Luiz Figueiredo de Albuquerque

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO

ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE

ENGENHARIA (COPPE) DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO

GRAU DE MESTRE EM CIÊNCIAS EM ENGENHARIA DE SISTEMAS E

COMPUTAÇÃO.

Examinada por:

Prof. Franklin de Lima Marquezino, D.Sc.

Prof. Ricardo Cordeiro de Farias, Ph.D.

Prof. Renato Portugal, D.Sc.

Prof. Luis Antonio Brasil Kowada, D.Sc.

RIO DE JANEIRO, RJ – BRASIL

MARÇO DE 2018

Albuquerque, André Luiz Figueiredo de

High-Performance Simulation of Interacting

Multiparticle Quantum Walks with Apache Spark/André

Luiz Figueiredo de Albuquerque. – Rio de Janeiro:

UFRJ/COPPE, 2018.

X, 67 p.: il.; 29, 7cm.

Orientadores: Alexandre de Assis Bento Lima

Franklin de Lima Marquezino

Dissertação (mestrado) – UFRJ/COPPE/Programa de

Engenharia de Sistemas e Computação, 2018.

Referências Bibliográficas: p. 65 – 67.

1. quantum walk. 2. simulation. 3. high performance

computing. 4. map-reduce. 5. apache spark. I. Lima,

Alexandre de Assis Bento et al. II. Universidade Federal

do Rio de Janeiro, COPPE, Programa de Engenharia de

Sistemas e Computação. III. T́ıtulo.

iii

Acknowledgments

I would like to thank my advisors Alexandre de Assis Bento Lima and Franklin de

Lima Marquezino for their presence and patience when helping me to finish this

work.

I thank my mother for all the support she gave me during this process.

I also thank the High Performance Computer Center (NACAD) - COPPE/UFRJ,

which has supported this research.

Thanks must be given to CAPES for the financial support too.

iv

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos

necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

SIMULAÇÃO EM ALTA PERFORMANCE DE CAMINHADAS QUÂNTICAS DE

MULTIPARTÍCULAS INTERATIVAS COM APACHE SPARK

André Luiz Figueiredo de Albuquerque

Março/2018

Orientadores: Alexandre de Assis Bento Lima

Franklin de Lima Marquezino

Programa: Engenharia de Sistemas e Computação

Embora muitos algoritmos quânticos têm sido desenvolvidos nas últimas décadas

com consideráveis ganhos em complexidade quando comparados a seus equivalentes

clássicos, a construção de um computador quântico de propósito geral ainda é um

desafio tecnológico. Enquanto o hardware necessário para rodar algoritmos quânticos

ainda não está dispońıvel, pesquisadores dependem de simulações clássicas. Entre-

tanto, as simulações mais interessantes demandam grandes quantidades de recurso

computacional devido à quantidade de dados crescer exponencialmente em relação

ao tamanho das instâncias e, assim, técnicas de computação de alto desempenho são

necessárias. Caminhadas quânticas de multipart́ıculas têm recebido grande atenção

recentemente como uma ferramenta para desenvolvimento de algoritmos quânticos e

para modelagem de fenômenos f́ısicos. No presente trabalho, nós mostramos que o

Apache Spark, um arcabouço para processamento de dados em larga escala, pode

ser usado para simular caminhadas quânticas de multipart́ıculas interativas, com

tamanhos que são impraticáveis em computadores de propósito geral e com ape-

nas um processador. Nós também disponibilizamos um protótipo para simulações

de caminhadas quânticas, adequado para clusters de computadores, desenvolvido

utilizando o Spark.

v

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Master of Science (M.Sc.)

HIGH-PERFORMANCE SIMULATION OF INTERACTING MULTIPARTICLE

QUANTUM WALKS WITH APACHE SPARK

André Luiz Figueiredo de Albuquerque

March/2018

Advisors: Alexandre de Assis Bento Lima

Franklin de Lima Marquezino

Department: Systems Engineering and Computer Science

Although many quantum algorithms have been developed in the last few decades

with considerable speedup when compared to their best classical counterparts, the

task of building a general purpose quantum computer is still a technological challenge.

While the hardware necessary to run quantum algorithms is not available, researchers

rely on classical simulations. However, the most interesting simulations are very

demanding of computational resources due to the amount of data growing exponen-

tially with the instance sizes and, thus, high performance computing techniques are

necessary. Multiparticle quantum walks have been receiving a great deal of attention

recently as a tool for designing quantum algorithms and for modeling physical phe-

nomena. In the present work, we show that Apache Spark, a framework for large-scale

data processing, can be used to simulate quantum walks with multiple interacting

particles, with instance sizes that are impractical on single-processor, general-purpose

computers. We also provide a prototype for quantum walks simulations, suitable to

computer clusters, being developed atop of Spark.

vi

Contents

List of Figures ix

1 Introduction 1

1.1 Motivation . 1

1.2 Organization . 3

2 Fundamental Concepts 4

2.1 A Short Introduction to Quantum Mechanics 4

2.2 Quantum Walks . 6

2.2.1 Single-Particle Quantum Walks 6

2.2.2 Mesh Percolation . 11

2.2.3 Multiparticle Quantum Walk 13

2.3 High-Performance Computing with Apache Spark 14

2.3.1 The Apache Spark Framework 15

2.3.2 Considerations when Using Spark 18

2.4 Related Work . 20

3 Simulating Quantum Walks 23

3.1 Our Quantum Walk Simulator . 23

3.1.1 Operators and States . 25

3.1.2 Coins . 27

3.1.3 Meshes . 29

3.1.4 Discrete Time Quantum Walk 35

3.1.5 Probability Distribution Functions 43

3.2 How to Use . 47

4 Experiments 51

4.1 Methodology and Execution Environment 51

4.2 Results . 53

5 Final Remarks 62

5.1 Conclusions . 62

vii

5.2 Future Work . 63

Bibliography 65

viii

List of Figures

2.1 Probability distribution of a one-dimensional quantum walk with

Hadamard coin after 100 steps. 8

2.2 Example of diagonal and natural meshes. 10

2.3 Probability distribution of a two-dimensional quantum walk with

Hadamard coin after 100 steps. 10

2.4 Possible cases of percolations in one-dimensional mesh. Adapted

from [1]. 11

2.5 Example of quantum walks on a line with p = 0.01 (left) and p =

0.1 (right). 10 simulations were run to get their mean probability

distribution functions. 12

2.6 Spark’s driver-workers architecture. Adapted from [2]. 16

2.7 Examples of narrow (top diagrams) and wide (bottom diagrams)

dependencies. Adapted from [3]. 17

2.8 Example of execution of stages. Adapted from [3]. 18

2.9 Example of possible RDD dependencies in a join transformation.

Adapted from [4]. 19

3.1 Example of edges numbering with an one-dimensional mesh of size 5. 33

3.2 Example of edges numbering with two-dimensional meshes (diagonal

and natural) of size 5x5. 35

3.3 Comparison of the number of nonzero elements of evolution operators

when simulating quantum walks with two particles over a lattice. . . 38

4.1 Execution times for 10 steps quantum walks on one worker node with

different number of partitions. 54

4.2 Execution times for 15 steps quantum walks on one worker node with

different number of partitions. 54

4.3 Execution times for 20 steps quantum walks on one worker node with

different number of partitions. 54

4.4 Execution times for 10 steps quantum walks on two worker nodes with

different number of partitions. 55

ix

4.5 Execution times for 15 steps quantum walks on two worker nodes with

different number of partitions. 55

4.6 Execution times for 20 steps quantum walks on two worker nodes with

different number of partitions. 56

4.7 Execution times for 10 steps quantum walks on three worker nodes

with different number of partitions. 56

4.8 Execution times for 15 steps quantum walks on three worker nodes

with different number of partitions. 57

4.9 Execution times for 20 steps quantum walks on three worker nodes

with different number of partitions. 57

4.10 Memory footprint for the scalability experiments. 58

4.11 Scalability of Spark when doubling the number of cores and the

problem size. 59

4.12 Speedup produced by Spark for a 30 steps quantum walk, while

doubling the number of cores. 59

4.13 Efficiency of Spark for a 30 steps quantum walk, while doubling the

number of cores. 60

4.14 Memory footprint of large quantum walks processed by Spark when

possessing few computational resources. 60

4.15 Execution times of large quantum walks processed by Spark when

possessing few computational resources. 61

x

Chapter 1

Introduction

Quantum computing is a computational model based on the properties and principles

of quantum mechanics, which in turn is a physical theory that describes systems

at the atomic and subatomic scales. Richard Feynman is considered as the pioneer

of quantum computing, since in 1982 he first observed that simulating quantum

systems with classical computers would be highly inefficient, and suggested that

a quantum computer would be able to perform such simulations efficiently [5].

Since then, many quantum algorithms have been invented, offering time complexity

gain in relation to their classical counterparts — for example, Shor’s algorithm for

integer factorization and discrete logarithm performing exponentially faster, Grover’s

algorithm for unstructured search with its quadratic gain, and Harrow, Hassidim

and Lloyd’s algorithm for solving linear systems of equations which, under certain

conditions, can also perform exponentially faster, all of them in [6]. One of the

most successful methods for designing quantum algorithms is the quantum walk [7],

which is the quantum counterpart of the random walk, and is currently a topic of

interest and research in the quantum computing field. Quantum walks can be studied

on different models, and the present work focus on the coined discrete-time model

(DTQW).

1.1 Motivation

Although several quantum algorithms have already been developed (and keep emerg-

ing), the hardware for a universal quantum computer is still a great technological

challenge. This is due to the fact that the inner components of quantum computers

consist of subatomic particles which must be controlled with great precision while

still being kept well isolated from the environment. If the particles interact with the

environment, a phenomenon known as quantum decoherence occurs and they lose the

quantum properties. Some companies have already successfully built prototypes of

quantum computers. The most famous of those prototypes is, perhaps, the one from

1

canadian company D-Wave Systems, which created a lineage of quantum computers

— although not universal — starting with the 128-qubit1 D-Wave One in 20112.

Currently, Google and IBM are battling for the quantum supremacy, with the former

planning to bring a 49-qubit general-purpose quantum computer this year, and the

latter planning a 50-qubit computer to the next few years3.

While a reasonably-sized universal quantum computer is not available, researchers

run numerical simulations of quantum algorithms using classical computers which

are, in turn, quite inefficient for these tasks. Therefore, the idea is to run those

simulations using high-performance computing (HPC) environments, like computer

clusters, allowing such data to be generated and processed at a reduced time in a

parallel/distributed way.

The focus of the present work is the simulation of interacting multiparticle DTQW

with HPC using Apache Spark4. Spark is a parallel, cluster-oriented framework for

data processing, being mainly used for Big Data applications. As they evolve, some

quantum walk simulations acquire characteristics of a Big Data application due to the

exponential growth suffered by their data structures. Thus, employing a framework

like Apache Spark seems to be a good approach, making it possible to execute larger

simulations than when using single-processor, general-purpose computers. On a

previous work, Apache Hadoop5 has been used to simulate DTQW on a low-cost

computer cluster [8]. However, Spark delivers better performance than Hadoop in

several cases due to its in-memory characteristic avoiding the persistence to disk of

every step of MapReduce and providing methods that better exploits the use of the

main memory.

In order to evaluate our approach, we performed experiments on a HPC cluster

using a prototype of a DTQW simulator built atop of Spark that we developed for

this work, which aimed to offer an extensive set of features, be extensible and easy

to use. Results show that the prototype delivers good performance for simulating

DTQW, scaling-up with no issues and provides a speedup reasonably close to the

linear for a majority of the selected nodes.

1A qubit, or quantum bit, is the minimum unity of information in quantum computing; analogous
to concept of bit from classical computing.

2R. C. Johnson, “Is D-Wave a Quantum Computer?”, EETimes, available at http://ubm.io/
2wYNHKD, last access in Sep. 12, 2017.

3M. Feldman, “Google and IBM Battle for Quantum Supremacy”, Top500.org, available at
https://bitly.com/2f9YUA8, last access in Sep. 12, 2017.

4http://spark.apache.org/
5http://hadoop.apache.org/

2

http://ubm.io/2wYNHKD
http://ubm.io/2wYNHKD
https://bitly.com/2f9YUA8
http://spark.apache.org/
http://hadoop.apache.org/

1.2 Organization

This text is organized as follows. In Chap. 2, we provide an introductory review and

a formal definition of DTQW, along with the basic concepts of quantum mechanics.

Also, we discuss the use of Apache Spark as an HPC framework, reviewing its

architecture and some components. In the end, we provide some informations about

other quantum walk simulators. In Chap. 3, we present the application developed

atop of Spark for this work, giving in-depth details of its implementation and

providing some usage instructions. The set of experiments to evaluate our approach

is described in Chap. 4, which also contains its corresponding results. Finally, in

Chap. 5, we present our conclusion about the obtained results and the usage of Spark

to simulate DTQW and discuss future improvements to the ou developed software.

3

Chapter 2

Fundamental Concepts

This chapter starts with a brief review of the fundamental ideas from quantum

mechanics, which are necessary to understand quantum computing and quantum

walks. The following section contains a formal description of one-dimensional and

two-dimensional quantum walks, detailing the construction of their components

and presenting a previously-developed technique to simulate interactions between

particles. Next, we present the Apache Spark, a large-scale data processing framework,

providing some details of its core components and some important considerations

when using it. The last section contains some related works, where we provide a

summary of some already developed quantum walks simulators.

2.1 A Short Introduction to Quantum Mechanics

The mathematical framework of quantum mechanics can be summarized in only

four postulates: the first describes the state of the system; the second describes the

dynamics of the process; the third describes the composition of many systems; and,

finally, the fourth describes the measurements of the system. The mathematical

formalism basically requires linear algebra, and is usually written in Dirac notation,

where vectors, known as kets, are denoted by:

|Ψ〉 =


ψi
...

ψn

 , (2.1)

and their duals, known as bras, are denoted by

〈Ψ| = |Ψ〉† = (ψ∗i · · ·ψ∗n), (2.2)

with ψi ∈ C,∀i. The postulates of quantum mechanics can be stated as follows.

4

State-space postulate The state of a quantum physical system isolated from

the environment is described by an unitary vector in a Hilbert space H. A qubit is

described as a unit vector in a two-dimensional Hilbert space,

|ψ〉 = α|0〉+ β|1〉, (2.3)

where α, β ∈ C are called amplitudes, and {|0〉, |1〉} is known as the computa-

tional basis. Notice that the amplitudes must satisfy |α|2 + |β|2 = 1. The matrix

representation of the computational basis states are usually given by column matrices

|0〉 =

(
1

0

)
and |1〉 =

(
0

1

)
. (2.4)

Evolution postulate The evolution of a closed quantum system is described by

an unitary operator. If a quantum system is at a state |ψ1〉 at time t1, the state of

the system at time t2 will be |ψ2〉 due to a transformation applied by an unitary

operator U ,

|ψ2〉 = U |ψ1〉 (2.5)

Since U is an unitary operator, the norm of the state is preserved — that is, if state

|ψ1〉 is a unit vector, the result |ψ2〉 of the transformation will also be an unit vector.

According to the postulates of quantum mechanics, we expect quantum algorithms

to be described as chains of unitary transformations applied in a given state vector,

as we have in

|ψn〉 = Un . . . U1|ψ1〉 (2.6)

Composition postulate The Hilbert space of a composite system is the tensor

product of the associated state spaces. Therefore, if the state of subsystem A

is associated to Hilbert space HA, of dimension dim(HA) = dA, and the state of

subsystem B is associated to Hilbert space HB, dim(HB) = dB, then a quantum

state in the composed system will be represented by a unit vector in the Hilbert

space HA ⊗ HB, dim(HA ⊗ HA) = dAdB. When we are restricted to the matrix

representations of state vectors and linear transformations, then we refer to the

tensor product as the Kronecker product. If A is an m× n matrix, and B is a p× q
matrix, then the Kronecker product A⊗B is the mp× nq block matrix obtained by

multiplying each entry of A by the entire B matrix, as in

A⊗B =


a00B a01B · · · a0,n−1B

a10B a11B · · · a1,n−1B
...

...
. . .

...

am−1,0B an−1,1B · · · am−1,n−1B

 . (2.7)

5

The tensor product of two vectors can be denoted by |ψ〉⊗ |ϕ〉, or |ψ〉|ϕ〉, or even

|ψ, ϕ〉 for short. When the state of a composed system cannot be factorized into the

tensor product of the states of its constituent subsystems, we say it is entangled. An

example of one such state is 1√
2
(|0, 0〉+ |1, 1〉), which cannot be factorized into the

tensor product of two qubits.

Measurements A projective measurement is described by a Hermitian operator

O in the state space of the measured system, also known as observable. The possible

outcomes of the measurement are the eigenvalues of O. The observable has diagonal

representation given by

O =
∑
λ

λPλ, (2.8)

where Pλ is the projector onto the eigenspace associated with the eigenvalue λ. If

the state before the measurement is |ψ〉, then the probability of obtaining outcome

λ is given by

pλ = 〈ψ|Pλ|ψ〉, (2.9)

and in that case the state of the system after the measurement is irreversibly collapsed

to

|ψ′〉 =
1
√
pλ
Pλ|ψ〉. (2.10)

When clear from context, we may refer to the outcome of the measurement as the

collapsed state |ψ′〉 instead of the eigenvalue λ.

Although the above exposition is sufficient for the scope of this text, the reader

interested in a more detailed explanation of quantum mechanics may refer to Venegas-

Andraca [7] or Portugal [9], which are textbooks focused on quantum computing and

quantum walks.

2.2 Quantum Walks

2.2.1 Single-Particle Quantum Walks

Quantum walk is a generalization of the random walk by replacing the classical

walker by a quantum particle. The simplest discrete time random walk example is

over a line, where the walker moves at each step according to the result of a (possibly

biased) coin flip: if the outcome is heads, with probability p, the particle moves to

the right; if the outcome is tails, with probability 1− p, the particle moves to the left.

Due to the random nature of this process, one cannot know the previous position of

the walker given the current state. However, the model raises several questions, such

as calculating the probability of finding the particle at position n after t steps, or

6

the spread of the particle over time (described by the variance of the position). The

dynamics of the quantum walk is similar to the classical setup.

For a quantum walk on a line, the position of the particle is represented by a unit

vector in Hilbert space Hp, spanned by the basis Bp = {|x〉 : x ∈ Z}. The discrete

time model requires an extra vector space Hc, spanned by Bc = {|0〉, |1〉}, which

corresponds to the possible coin outcomes. Thus, the DTQW on the line takes place

on Hilbert space Hc ⊗Hp.

The general state of the particle at an arbitrary time t can be described as

|ψ(t)〉 =
1∑
i=0

∞∑
x=−∞

ψi,x(t)|i〉|x〉, (2.11)

where ψi,x(t) ∈ C and
∑

i

∑
x |ψi,x(t)|2 = 1.

The evolution process of a DTQW is defined by an unitary transformation U

applied to the state of the system after each step. This transformation is built by

the composition of two unitary operators, namely the coin and the shift operators.

The coin operator is an unitary operator that acts on the coin subspace Hc, and may

be represented as a (2x2) complex matrix. The Hadamard operator, defined as

H =
1√
2

(
1 1

1 −1

)
, (2.12)

is a typical coin operator for the one-dimensional DTQW.

The shift operator is a unitary operator that acts on the position of the particle

conditioned to the state of the coin. For example,

S =
1∑
i=0

∞∑
x=−∞

|i〉〈i| ⊗ |x+ (−1)i〉〈x| (2.13)

is a valid shift operator. Notice that the position of the particle is increased when

the coin state is |0〉, and is decreased when the coin state is |1〉.
Therefore, the unitary operator for the evolution of the quantum walk is

U = S(C ⊗ Ip), (2.14)

where Ip is the identity operator over the position subspace, and C is the chosen

coin operator. The state of the system after t steps can be obtained by applying the

unitary transformation t times after some initial state, achieving

|ψ(t)〉 = U t|ψ(0)〉. (2.15)

7

If the position of the particle is measured after t steps, the probability of finding

it at position x is given by

px,t =
1∑
i=0

|ψi,x(t)|2. (2.16)

Figure 2.1: Probability distribution of a one-dimensional quantum walk with
Hadamard coin after 100 steps.

On Fig. 2.1, we see the probability distribution of a quantum walk using Hadamard

coin after 100 steps with initial state

|ψ〉 =
1√
2

(|0〉+ i|1〉)⊗ |0〉. (2.17)

Quantum walks on two-dimensional lattices are an extension of the previous

example. The position subspace is now spanned by the basis Bp = {|x, y〉 : x, y ∈ Z},
and the coin subspace is spanned by Bc = {|i, j〉 : i, j ∈ {0, 1}}. The state of the

particle at an arbitrary time t is then described as

|ψ(t)〉 =
1∑

i,j=0

∞∑
x,y=−∞

ψi,j;x,y(t)|i, j〉|x, y〉, (2.18)

where ψi,j;x,y(t) ∈ C and
∑

i,j

∑
x,y |ψi,j;x,y(t)|2 = 1.

The coin operator is an unitary operator that acts over the coin subspace, and

may now be represented as a (4x4) matrix. The two-dimensional Hadamard coin, for

8

example, can be achieved by the tensor product H ⊗H, resulting in

H4 =
1

2


1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

 . (2.19)

The Grover coin is another typical coin operator for DTQW on lattices of

dimension two or greater and can be defined for two-dimensional lattices as C =

2|sc〉〈sc| − Ic, where |sc〉 = 1
2

∑
0≤i,j≤1 |i, j〉 is the uniform superposition over all coin

states, and Ic is the identity operator over the coin subspace. The Grover coin is,

therefore, defined as

G4 =
1

2


−1 1 1 1

1 −1 1 1

1 1 −1 1

1 1 1 −1

 . (2.20)

There is a third commonly used coin for two-dimensional lattices: the Fourier

coin, which is described as follows:

F4 =
1

2


1 1 1 1

1 i −1 −i
1 −1 1 −1

1 −i −1 i

 . (2.21)

For two-dimensional lattices, the shift operator may be defined as

Sa =
1∑

i,j=0

∞∑
x,y=−∞

|i, j〉〈i, j| ⊗ |x+ (−1)i, y + (−1)j〉〈x, y|. (2.22)

From this equation, one can notice that the particle moves only on diagonal lines,

illustrated on Fig. 2.2(a). When the coin evaluates |0, 0〉 or |1, 1〉, the particle moves

through the main diagonal of the mesh, while with values |0, 1〉 or |1, 0〉 the particle

moves through the other diagonal.

We can also define another shift operator so that the particle’s movement can

coincide with the mathematical grid — Fig. 2.2(b) —, applying a rotation of π
4
:

Sb =
1∑

i,j=0

∞∑
x,y=−∞

|i, j〉〈i, j| ⊗ |x+ (−1)i(1− δi,j), y + (−1)iδi,j〉〈x, y|, (2.23)

where δi,j is the Kronecker delta, being evaluated to 1 if both i and j are equal, and

9

0, otherwise.

Figure 2.2: Example of diagonal and natural meshes.

The unitary operator for the evolution of the system and the process of mea-

surement are defined analogously as they were for the one-dimensional quantum

walk.

Figure 2.3: Probability distribution of a two-dimensional quantum walk with
Hadamard coin after 100 steps.

As an example, on Fig. 2.3 we see the probability distribution of a quantum walk

using Hadamard coin after 100 steps with initial state

|ψ〉 =
1

2
(|0, 0〉+ i|0, 1〉 − i|1, 0〉+ |1, 1〉). (2.24)

There is also the possibility to perform quantum walks over other topologies of

10

one- and two-dimensional meshes. We can cite, for instance, the segment and cycle

meshes for the first case, presenting reflective and periodic sites on their boundaries,

respectively. These topologies can also be extended for the two-dimensional case,

being named as box and torus meshes. More details about these and other topologies

are given by Marquezino [10].

2.2.2 Mesh Percolation

There is the possibility to consider the effects of decoherence in quantum walks by,

for instance, applying the mechanism of percolations (or broken links) throughout

the chosen mesh. Romanelli et al. [1] introduced the concepts of broken links for

one-dimensional walks, consisting in, at a time t, a random site x having one or both

of its links to its neighbors broken with probability p. In fig. 2.4, we have a visual

representation of all possible cases of percolations in a one-dimensional mesh, where

the topmost diagram represents the situation which has no percolation; the second

and third diagrams depict a site x with its left and right links broken, respectively,

and the last diagram shows a site with both links broken.

Figure 2.4: Possible cases of percolations in one-dimensional mesh. Adapted from [1].

In order to describe all those situations more formally, we can define the function

L(i;x) =

{
(−1)i, if the connection to x+ (−1)i is closed

0, otherwise,
(2.25)

where i ∈ Hc and x ∈ Hp. Note that if L(i;x) = 0, then L(1− i;x+ (−1)i) = 0.

The evolution of the system must be updated accordingly, resulting in a modifi-

cation of the shift operator to consider the effects of one or more percolations:

Sbl =
1∑
i=0

∞∑
x=−∞

|i+ L(i, x)〉〈i| ⊗ |x+ L(i, x)〉〈x|. (2.26)

The decoherence effects start to happen at a time td ≈ 1/p [1], meaning that when

the total time of the walk is strictly greater than this rate, the quantum properties

11

begin to disappear and the classical behavior, the opposite. Also, as one increases the

probability p, the classical behavior emerges sooner, as we can see in Fig. 2.5, which

shows two walks over a line with 100 steps, simulated 10 times to get their mean

probability distribution functions. The left plot exhibits the walk with p = 0.01,

which shows the beginning of the effects of decoherence, while the right one shows

the classical behavior — in this case, similar with a normal distribution — already

emerged due to a higher probability of the occurrence of percolations.

Figure 2.5: Example of quantum walks on a line with p = 0.01 (left) and p = 0.1
(right). 10 simulations were run to get their mean probability distribution functions.

The mechanism of broken links was generalized by Oliveira et al. [11] to consider

two-dimensional meshes which, in this case, two functions are needed to describe all

possible situations, one for each direction:

L1(i, j;x, y) =

{
(−1)i, if the connection to x+ (−1)i, y + (−1)j is closed

0, otherwise

(2.27)

L2(i, j;x, y) =

{
(−1)j, if the connection to x+ (−1)i, y + (−1)j is closed

0, otherwise,

(2.28)

where i, j ∈ Hc and x, y ∈ Hp. Note that if L1(i, j;x, y) = 0, then L1(1− i, 1− j;x+

(−1)i, y+ (−1)j) = 0. The same must occur to L2. Therefore, the new shift operator

is defined as:

Sbl =
1∑

i,j=0

∞∑
x,y=−∞

|i+ L1(i, j;x, y), j + L2(i, j;x, y)〉〈i, j|⊗

|x+ L1(i, j;x, y), y + L2(i, j;x, y)〉〈x, y|.

(2.29)

The two-dimensional mesh percolation can also be employed on natural lattices,

with the needed modifications, starting with the fact that, in this case, only one

12

function is necessary to describe the possible situations:

L(i, j;x, y) =

{
(−1)i, if the connection to x+ (−1)i(1− δi,j), y + (−1)iδi,j is closed

0, otherwise,

(2.30)

where i, j ∈ {0, 1} and, if L(i, j;x, y) = 0, then L1(1− i, 1− j;x+ (−1)i(1− δi,j), y+

(−1)iδi,j) = 0. Hence, the shift operator for natural lattices is defined as:

Sbl =
1∑

i,j=0

∞∑
x,y=−∞

|i+ L(i, j;x, y), j ⊕ L(i, j;x, y)〉〈i, j|⊗

|x+ L(i, j;x, y)(1− δi,j), y + L(i, j;x, y)δi,j〉〈x, y|.

(2.31)

For two-dimensional walks, the relation established between the decoherence time

td and the frequency of the broken links p is still valid, although as for this kind

of quantum walk, varying coins produce different values for the standard deviation.

Consequently, each coin presents different resistance to the effects of decoherence,

for example, the Hadamard coin being more resistant than the Grover coin [11].

2.2.3 Multiparticle Quantum Walk

Multiparticle quantum walks have received a great deal of attention recently, because

it can be used to model physical phenomena [12] and to attack important computa-

tional problems, such as being capable of universal quantum computation [13] and

determining if two graphs are isomorphic [14]. The construction of the evolution

operators for non-interacting multiparticle quantum walks follows the same principles

described earlier for the single-particle case. After defining coin and shift operators

for each particle, a final evolution operator is defined as the tensor product of the

individual evolution operators. If U1 is the evolution operator for the first particle,

and U2 the evolution operator for the second particle, then

U = U1 ⊗ U2, (2.32)

is the evolution operator for the multi-particle system.

Omar et al. [15], for instance, analyzed two non-interacting particles on a line,

both starting at the same position but in three different coin configurations. The

first configuration is

|ψS0 〉12 = |0〉|0〉1 ⊗ |1〉|0〉2, (2.33)

constituting a separable case where the two particles had opposing coin states. The

13

other two cases are entangled, differing only in the relative phase

|ψ±0 〉12 =
1√
2

(|0〉|0〉1 ⊗ |1〉|0〉2 ± |1〉|0〉1 ⊗ |0〉|0〉2). (2.34)

Ahlbrecht et al. [12] extended the two particle quantum walk on a line modeling

a physical phenomena by considering an interaction between the particles, showing

that a molecular state is formed. Thus, an operator responsible for that interaction is

presented as a phase factor applied only when the particles are at the same position.

That operator is defined as

G|i1, x1〉|i2, x2〉 =

|i1, x1〉|i2, x2〉 if x1 6= x2

eig|i1, x1〉|i2, x2〉 if x1 = x2
(2.35)

where g is a free parameter representing the interaction phase. Hence, the evolution

operator for that walk must incorporate the new interaction operator so that, for

each step, the effects of the interaction is taken into account. The final evolution

operator is defined as

U = (U1 ⊗ U2)G. (2.36)

Due to high memory requirements, the classical simulation of interacting multi-

particle quantum walks is extremely challenging even for small lattices.

2.3 High-Performance Computing with Apache

Spark

Over the years, there has been a complexity increase on several computational tasks

on many research fields like weather forecasting; physics simulations (classical and

quantum mechanics); molecular modeling; and, more recently, data science, where

knowledge is expected to be extracted from huge amounts of data by employing data

visualization, statistical and machine learning techniques. Researchers have been

using supercomputers/clusters in order to accomplish these tasks in a reasonable

time, exploiting the parallel nature of their architectures by using message passing

API (e.g., MPI1) or parallel and distributed programming frameworks. Some of

these problems require the use of Big Data processing techniques due to their data

volume, variety and/or velocity characteristics.

Apache Hadoop is one of the most popular distributed frameworks for Big Data

processing, providing an open source implementation of Google’s MapReduce [16].

Hadoop Distributed File System (HDFS), one of its main components, makes it

1http://mpi-forum.org/

14

http://mpi-forum.org/

possible to easily implement a high-available, fault-tolerant, distributed file system

on shared-nothing computer clusters without the need for any special hardware.

However, over the last years, Hadoop has been surpassed by another framework:

Apache Spark, which enhances Big Data processing tasks and is gradually replacing

its predecessor. In this section, we discuss some of its main characteristics.

2.3.1 The Apache Spark Framework

According to its documentation [2], Spark is meant to be “a fast and general engine

for large-scale data processing”, providing:

Speed Due to its advanced execution engine and in-memory characteristic, Spark

can provide 100x faster execution times than Hadoop in some cases.

Ease of use Spark allows its users to write programs in Java, Scala, Python or R,

and offers interactive shells for these languages. Besides that, its core implementation

contains a complete set of parallel operations.

Generality Its framework is composed of libraries that implements SQL, streaming

processing, machine learning and graph processing algorithms, which can be combined

in the same application code. There is also the possibility to process data stored on

HDFS, Cassandra2, HBase3, and others.

Spark adopts a driver-workers architecture, as depicted in Fig. 2.6, where the

driver is responsible for creating executors — processes that run the application — on

worker nodes, and sending application code and its dependencies to them. A unit of

work is called a task. Each executor executes tasks over one or more data partitions.

So, data processing is highly parallelized, according to the number of nodes available.

Spark needs a cluster manager to be run on, which will be responsible to acquire and

set up any necessary cluster resource to the applications. By default, Spark provides

a simple standalone cluster manager, but it can also be run on Apache Mesos4 and

Hadoop YARN5.

Spark relies upon Resilient Distributed Datasets (RDD) [3]. RDD is a distributed,

read-only data structure physically partitioned among executors. Each of these

partitions is processed in parallel by them. Such partitioning is transparently

managed by Spark, i.e., application developers need not to be concerned about it.

RDD are maintained in a fault-tolerant way and provide methods as transformations

2https://cassandra.apache.org
3https://hbase.apache.org
4http://mesos.apache.org/
5http://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/YARN.html

15

https://cassandra.apache.org
https://hbase.apache.org
http://mesos.apache.org/
http://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/YARN.html

Driver

SparkContext

Worker Node

Executor

Task Task

Cache

Worker Node

Executor

Task Task

Cache

Cluster Manager

Figure 2.6: Spark’s driver-workers architecture. Adapted from [2].

(map, filter, etc) and actions (collect, reduce, etc). Transformations can receive

user-defined functions to manipulate RDD data and always produce a new RDD.

On the other hand, actions return results to the driver. Thus, conceptually, during

a typical Spark job, many RDD are created, and there exists a dependency chain

between them. These dependencies are classified as narrow or wide [3]. In some

transformations, each partition of a new RDD is produced from only one partition

of a parent RDD. In this case, we have a narrow dependency between these two

RDD. Other transformations produce each partition of a new RDD using data from

different partitions of one or more parent RDD. In this case, the dependency between

the new RDD and its parent(s) is called a wide dependency. Fig.2.7 presents some

examples of these narrow and wide dependencies.

When an action method is called, Spark executes the necessary computations

in a parallel/distributed way throughout the cluster, returning the results to the

driver. Thus, transformations are not executed until an action call is reached. This

lazy-evaluation model allows Spark to recover the sequence of RDD that were created

in case of data loss caused by node failures. For execution, Spark creates a directed

acyclic graph (DAG) of stages [3]. Each stage comprises a maximal set of consecutive

transformations that generate RDD with narrow dependencies to their parents. This

way, transformations inside a given stage can be pipelined, eliminating the need for

materializing each RDD. Each stage is delimited by a transformation that generates

a RDD that has a wide dependency to its parent(s). This is illustrated by the

example of Fig. 2.8, where Spark would start the execution of stages 1 and 2, each

one delimited by a wide dependency, and, then, move to the execution of stage 3.

A wide dependency generates an operation called “shuffle”, which will be discussed

later.

16

map, filter union

join groupByKey, reduceByKey

Figure 2.7: Examples of narrow (top diagrams) and wide (bottom diagrams) depen-
dencies. Adapted from [3].

RDD can be persisted in different storage levels: only in main memory; only

to disk or, in cases where the RDD does not completely fit in main memory, its

remaining partitions are stored on disk. If a RDD is marked as persisted, when

the next action is performed, Spark will compute its chain of transformations and

materialize it, storing its data using one of the previous storage levels defined by

the user. This way, the next time the persisted RDD is needed in a transformation

or action, Spark will not need to recompute it, delivering better performance to

iterative algorithms, for example. The storage levels also offer the possibility to

replicate the partitions on two cluster nodes, providing a fault tolerant way to store

the RDD. There is another way to persist a RDD: by checkpoint ing it. Checkpointed

RDD have their dependency chain broken and their data stored in a directory, which

must be informed by the user to the Spark Context object. If some variable would

completely fit in the main memory of a node, Spark can also broadcast the desired

variable across the cluster, copying its entire data to each node.

The content of the broadcasted variable can be accessed by any RDD of the

application, delivering huge performance improvements for their operations.

Another important characteristic of Spark is its memory organization, that divides

the Java heap-space into two regions. The first region, which by default corresponds

to 60% of the heap-space, is again divided by Spark into two other regions: the

execution region, reserved to all operations executed by Spark, and the storage

region, used to store internal data across the cluster, like cached RDD and broadcast

variables. By default, Spark creates these two regions with the same size. The rest

of the heap-space is reserved mainly for user defined structures and Spark internal

metadata. This characteristic of keeping as much data as possible in main memory

17

RDD1

RDD2

RDD3

RDD4

Stage 1

Stage 2

RDD5

Stage 3

Figure 2.8: Example of execution of stages. Adapted from [3].

is what gives Spark superior performance when compared to Hadoop, which writes

on disk every intermediate result produced during a MapReduce job [17].

2.3.2 Considerations when Using Spark

Despite all of those benefits, one needs to be aware of some facts when using Apache

Spark in order to obtain better performance. First, transformations that generate

RDD with wide dependencies to their parents have a high cost. For example, ’ByKey

methods (e.g., groupByKey and reduceByKey) and some relational operations (e.g.,

join, cartesian) typically demand data transfers between all nodes in the cluster, in

contrast to transformations that generate RDD with narrow dependencies, like filter

and map. This all-to-all data transfer is an operation called “shuffle” and can generate

high disk and network I/O, which can heavily decrease the application performance,

and should be avoided whenever possible. However, there are situations where is

not possible to avoid shuffling partitions across the cluster, but the total amount of

data transfered can be dramatically reduced. For example, let us consider the join

operation, which produces a new RDD by combining data elements from two parent

RDD that have the same key values. If none of the parent RDD have a partitioner

defined, the shuffle operation will be applied on both RDD and a huge amount of

data will be transferred across the cluster, as depicted in Fig. 2.9(a). In this case,

by default, Spark uses a hash partitioner on both RDD’s keys [18], so that data

elements with the same hash key can be located at the same executor. Although, if

one of the parent RDD have been previously repartitioned under a partition criterion,

for instance, with the partitionBy transformation, the join operation will result in a

child RDD with narrow dependency [4], causing a shuffle only on the other parent

RDD — Fig. 2.9(b). That is because Spark knows internally that one of the parent

18

RDD had a partitioner defined and will distribute only the other parent RDD’s data.

Besides, as illustrated in Fig. 2.9(c), there are some situations where both RDD have

been previously repartitioned in the same number of partitions and using the same

partitioning criterion, resulting in no additional data transfers, as all data elements

with equal keys have already been co-located. In cases where the RDD are generated

and used only once, that strategy does not provide any gains of performance, since

partitioning a RDD already requires a shuffle operation. Although, if a RDD is used

multiple times, such as in iterative algorithms, it is extremely important to define a

partitioner for this RDD and persist/cache it, so there will be no need to recompute

it in future usages and the shuffling for its data can be avoided.

(a)

(b)

(c)

Wide

Narrow

Narrow

Figure 2.9: Example of possible RDD dependencies in a join transformation. Adapted
from [4].

Another factor that has to be taken into account is the level of parallelism

— the number of partitions — of each RDD created by the application. Spark

documentation suggests it to be 2–3 times the number of computing cores in the

cluster, depending on the application and on the dataset. However, when the number

of partitions is too low, some irregular data distribution may occur, causing some

cores to be idle waiting for the others to finish their work. This way, the cluster may

not be fully utilized. Besides, depending on the size of each RDD and its partitions,

the working set of the tasks can be too large, resulting in out-of-memory errors

during the execution of reduce tasks or in long lasting garbage collection operations.

The suggested fix for this situation is to simply increase the number of partitions,

19

resulting in a larger number of tasks for each core in the cluster. Thus, with a

higher number of partitions, the size of the working set of each task becomes smaller,

reducing the memory pressure. Conversely, when the number of partitions is too

high, the working set may become too small, producing a huge number of tasks

that gets executed fast enough in a way that their scheduling overhead becomes

relevant. The key point in this case is choosing the right ratio between the number of

partitions and computing cores so the application can deliver the best performance

possible.

Even though message passing APIs are commonly used for scientific comput-

ing, utilizing Spark for this purpose can make the development easier and more

straightforward, mainly if the application acquires some Big Data characteristics.

Many issues inherent to parallel applications like communication between nodes,

fault-tolerance and data distribution are controlled by Spark. Thus, application

developers can focus on their specific problems. This work uses high-performance

computing with Apache Spark in order to validate its capability to simulate quantum

walks and, as a future work, provide to the community a generic tool for quantum

walks simulation.

2.4 Related Work

As previously stated, until a reasonably-sized universal quantum computer becomes

available, researchers run numerical simulations of quantum algorithms and/or

simulations of quantum circuits using classical computers. As some examples of

quantum walks simulators, we can cite:

QWalk is an open-source DTQW simulator developed in C for Linux and Windows

being composed of three executable files: qw1d, qw2d and qwamplify. The first and

second executables allow the user to perform simulations over several topologies

of one- and two-dimensional meshes, respectively, and provide ways of simulating

decoherence by employing, for example, the mechanism of broken links [19]. The last

executable is used to amplify some regions of the plots generated from the simulation

of two-dimensional quantum walks for a better visualization. QWalk generates files

containing the amplitude values of the final state, the probability distribution of

the positions — and some of its statistics — and the gnuplot script that it uses

to plot the probabilities. In order to use this software, the user must provide all

the configuration entries of the simulation in an input file, e.g., which coin, mesh

and initial state will be used and, when desired, the probabilities of broken links

occurrences.

20

HiperWalk is an open-source DTQW simulator developed in Python which takes

advantages of the parallelism provided by multicore CPUs and GPUs [20]. For this,

it uses the Neblina6 programming language, which relies on OpenCL7 as back-end.

Due to the usage of graphic cards to accelerate the matrix-matrix and matrix-vector

multiplications, Hiperwalk provides a huge level of parallelism, resulting in great

performances for DTQW simulations. HiperWalk provides simulations of one- and

two-dimensional meshes under some configuration specified by the user in an input

file and also generates output files containing the amplitudes of the final state and

the probability distribution along with its plot. Although HiperWalk does not offer

the possibility to generate meshes with broken links, it offers simulations that QWalk

does not, for example, the staggered [21] (coinless) quantum walk. In the future,

HiperWalk developers aim to provide both Continuous Time and Szegedy’s [22]

quantum walks.

An encyclopedia of quantum information named Quantiki has a complete list

containing other quantum algorithms and quantum circuits simulators available on

the Internet8. Unfortunately, as the same as the above simulators, many of the

projects on the list are capable of running simulations only on a single machine

and, due to the exponential growth of the quantum structures, the simulations get

restricted by that amount of available memory. To overcome this limitation, the

following simulator has been developed recently:

Quandoop is a DTQW simulator developed atop of Apache Hadoop. The ex-

ecution flow of Quandoop is given by, first, read, from input files, the operators

and the initial state of the system; next, it performs the necessary multiplications

to execute the walk; and, at the end of the simulation, generates the probability

distribution. Like the other programs, the user needs to specify the characteristics

of the simulation in a text file and, specially to Quandoop, the user also needs

to previously build and provide all the operators. As Hadoop is developed to be

properly run on a shared-nothing computer cluster, this simulator takes advantage of

a greater amount of available memory, being capable of simulating larger quantum

walks and a higher number of particles [8].

Notice that the aforementioned simulators complement each other in terms of

functionalities and even in the number of particles in a quantum walk. The present

dissertation intends to provide to the community a prototype of a DTQW simulator

using HPC with the following goals:

• Gather the main functionalities already developed and combining them. The

6http://www.lncc.br/~pcslara/neblina/
7https://www.khronos.org/opencl/
8https://quantiki.org/wiki/list-qc-simulators

21

http://www.lncc.br/~pcslara/neblina/
https://www.khronos.org/opencl/
https://quantiki.org/wiki/list-qc-simulators

proposed simulator should be able to build the operators and perform simu-

lations over different topologies for one- and two-dimensional quantum walks

with the capability to consider mesh percolations and with one, two, or even a

greater number of particles;

• Be extensible, allowing users with programming skills to implement, mainly,

custom coins and meshes, but not restricted to these structures;

• Differently from the previous simulators, the present one expects a program-

matic way to input the initial conditions of the walk, but its usage is still easy

and simple, requiring few steps to start using it, as it will be shown later;

22

Chapter 3

Simulating Quantum Walks

In this chapter, we discuss about some characteristics of the entities of a quantum

walk simulation and, in the following section, present our DTQW simulator prototype

developed atop of Apache Spark, giving in-depth details of its implementation and

functionalities. In the last section, we inform the necessary requisites to use the

prototype and a basic set of commands to properly use it.

3.1 Our Quantum Walk Simulator

DTQW can be simulated as iterative algorithms, with each step consisting on a

matrix-vector multiplication — the matrix represents the unitary evolution operator,

and the vector represents the current state of the system. These entities’ dimensions

depend on the size of the mesh and on the number of particles being simulated, and

they are constructed by means of matrix-vector and matrix-matrix multiplications,

as well as tensor products.

When simulating 100 steps of a DTQW over the line, the particle can walk at

most 100 positions away from the initial one. In this case, by setting the mesh with

201 positions and choosing the initial position accordingly, we can guarantee that

the particle will not reach boundaries. The identity matrix in the position subspace

will have dimension (201x201), and the tensor product of this matrix with a (2x2)

unitary matrix results in the coin operator, with dimension (402x402). The shift

operator has that same dimension, and the multiplication of both entities results

in the evolution operator. Simulating a DTQW over the two-dimensional lattice

is analogous. The identity matrix in the position subspace will have dimension

(40,401x40,401), and the tensor product of this matrix with a (4x4) unitary matrix

results in the coin operator, with dimension (161,604x161,604). As a result, the

dimensions of the shift and evolution operators will also be the same. The matrices

that represent the operators have cx rows and columns in the one-dimensional case,

23

and cxy rows and columns in the two-dimensional case, as describe below:

row(M1d) = col(M1d) = cx (3.1)

and

row(M2d) = col(M2d) = cxy, (3.2)

where c is the dimension of the coin operator — 2 and 4, for one- and two-dimensional

walks, respectively —, and x and y the size of the mesh in those coordinates.

The dimension of the vectors (representing the quantum system states) is found

analogously.

Regarding the sparsity of the operators, one can easily find their numbers of

nonzero elements. Starting with the coin operator, we can note, from the rightmost

operand of the Equation (2.14), that there is a Kronecker product between the chosen

coin and an identity matrix representing the position space. Therefore, for each

element of the coin, the identity matrix is replicated, resulting in a coin operator with

a maximum of 4x nonzero elements in a one-dimensional walk and, 16xy nonzero

elements in a two-dimensional one. For the shift operator, the Equations (2.13), (2.22)

and (2.23) show a Kronecker product between the coin and position subspaces,

respectively spanned by the bases Bc and Bp. Thus, the number of nonzero elements

of the shift operator is 2x and 4xy, for one- and two-dimensional walks, respectively.

As seen in equation (2.14), the multiplication done by the aforementioned operators

results in the evolution operator, which sparsity is the same as the sparsity of the coin

operator. Back to the previous examples, considering the 100 steps quantum walk

over a line with 201 sites and using the Hadamard coin, the shift operator would have

2 ∗ 201 = 402 nonzero elements and the coin and evolution operators, 4 ∗ 201 = 804.

For a quantum walk with the same number of steps, but now over a 201x201 lattice,

each of these operators would have, respectively, 4 ∗ 201 ∗ 201 = 161, 604 and

16 ∗ 201 ∗ 201 = 646, 146 nonzero elements. Due to the sparsity of the operators,

a quantum walk with these characteristics can be simulated in a few minutes on a

single-processor, general-purpose computer by applying some optimization techniques

like using special data structures to store the operators, in order to reduce memory

footprint and computational time.

However, when a multiparticle quantum walk is taken into account, its evolution

operator is built by applying the Kronecker product on the evolution operator of

each particle, resulting in a matrix with huge dimensions. Hence, the Equations (3.1)

and (3.2) can be generalized for a multiparticle quantum walk as follows:

row(M1d) = col(M1d) = (cx)p (3.3)

24

and

row(M2d) = col(M2d) = (cxy)p, (3.4)

where p is the number of particles in the walk. The sparsity of the operators can

be found in a similar way, also raising its formulas to the power of p. Considering

the interaction between particles employed by Ahlbrecht et al. [12], its correspon-

dent operator — described by Equation (2.35) — can have its dimension found

straightforwardly by applying the previous equations. Also, one can note that this

operator can have its number of nonzero elements found by the same way as it

was for the shift operator. For example, to simulate only 15 steps of a two-particle

quantum walk on a two-dimensional mesh, the size of the evolution operator would

be (14, 776, 336× 14, 776, 336). As long as the mesh size or the number of particles

increases, the matrices and vectors grow exponentially. Therefore, it is very difficult

or even impossible to simulate such walks on a single-processor, general-purpose

computer due to high memory usage and long execution time. Thus, using HPC

tools, like Spark, can make it possible to simulate larger quantum walks. In order to

test this hypothesis and, on a near future, to develop a generic DTQW simulator

tool, a prototype1 was developed atop of Apache Spark version 2.2.0, written in

Python2 version 3.6. The prototype is composed by a Python package containing

modules that represent entities of a quantum walk, i.e., mesh, coin, operator, state

and probability distribution function (PDF), along with all the necessary operations.

3.1.1 Operators and States

As seen before, the base of a DTQW is composed by a initial state of the quantum

system that keeps evolving after t steps, i.e., t applications of an unitary operator to

the state. Our prototype provides a Python module that contains classes to represent

those entities, which inherit from a mathematical Base class, just for generality

purpose. Due to Spark’s in-memory characteristic, the principal idea is to maximize

main memory usage, so this Base class accepts only RDD as data storage. This

class also implements some utility methods to persist, unpersist, materialize and

checkpoint its contained RDD. This RDD stores the data of a mathematical object

in a coordinate format composed of a (c1, ..., cm, v) tuple, where each c corresponds

to a dimension index in a m-dimensional object and v, its correspondent value. Due

to the sparse nature of quantum structures, when employing this representation

technique, only nonzero elements can be retained, avoiding unnecessary memory

usage. Regarding operators, their coordinates are described as (i, j, v) tuples, with i

and j meaning the row and column numbers, respectively. As states are represented

1The software can be downloaded from: https://github.com/alfabr90/dtqw
2https://www.python.org/

25

https://github.com/alfabr90/dtqw
https://www.python.org/

by column vectors, is unnecessary to indicate their column indexes, simplifying their

coordinates in a way that only the row index and value are stored. The Base class

has other properties that store the shape (dimension) and the number of nonzero

elements of the mathematical object that it represents. The latter property is only

obtained after a materialization of the RDD which, in this implementation, uses

the Spark’s count action, providing a way to find the sparsity of the mathematical

object.

We know that, when multiplying the coin operator by the shift operator, results

in an unitary operator responsible for the evolution of the system, which is given by

t multiplications of the initial state by this operator. Therefore, the Operator class

implements matrix-matrix and matrix-vector multiplications. The former is based

on a MapReduce algorithm described in [23]. There, two steps composed of a map

and a reduce operations are necessary and, as a prerequisite, the first and second

operands must be in (i, j, v1) and (j, k, v2) coordinate representations, respectively.

The first map-reduce step is responsible for transforming the coordinates in key-value

pairs of the form (j, (i, v1)) and (j, (k, v2)), so the column index of the first matrix

can match the line index of the second. Then, a join is performed on both matrices

based on the same keys generating elements in the form of ((i, k), v1v2). The second

step sums all values related to the same key — now (i, j) —, producing the elements

of the resulting matrix.

The Algorithm 1 represents our implementation made with Spark, which

the former step was implemented using the join transformation, generating

(j, ((i, v1), (k, v2))) elements, followed by a map transformation to produce ((i, k), v1v2)

elements by applying a user defined function — declared on line 1. For the second

step, the reduceByKey transformation was used. This method also receives a user

defined function, in this case, a summation — declared on line 4 —, that is applied

to every group of elements with the same key. As matrix-vector multiplications work

in a similar way, this algorithm was also used in each step of the walk. The difference

here is that the map user defined function generates i keys, instead of (i, k).

The join and reduceByKey transformations create wide dependent RDD and

are characterized by generating intermediate “shuffle” operations, decreasing the

application performance due to the high cost of transferring all data across the nodes.

As a matrix-vector multiplication must be done between the evolution operators

and the actual state of the system in every step of a quantum walk, too much data

would be transferred during such operations. These wide transformations could not

be avoided for this implementation, so we adopt a strategy to reduce the amount

of data to be transferred. After the construction of the operators, the RDD of this

entity is repartitioned using the partitionBy method. This way, it is not necessary

to transfer the entire operator’s RDD in each step. Instead, only the RDD of each

26

Algorithm 1 Matrix-matrix multiplication

1: function map(m)
2: return ((m[1][0][0],m[1][1][0]),m[1][0][1] ∗m[1][1][1])
3: end function

4: function sum(a, b)
5: return a+ b
6: end function

7: function matrixMatrixMultiplication(operator1, operator2)
8: rdd← operator1.join(operator2)
9: rdd← rdd.map(map)

10: rdd← rdd.reduceByKey(sum)
11: return Operator(rdd)
12: end function

state are transferred — which have much less data than the RDD of the evolution

operators —, dramatically lowering the amount of disk and network I/O operations.

Also, as previously stated, an important feature of Apache Spark is RDD persis-

tence, which stores its data in main memory — and/or disk, if desired — after an

action method is called, avoiding possible unnecessary recalculations of their parti-

tions. This feature is applied by this prototype to every operator built and, specially

for the evolution operator, this avoids their recalculation for those matrix-vector

multiplications during each step of the quantum walk.

3.1.2 Coins

The prototype is also composed of a module that provides classes to represent all

the coins that were presented in this work: the one- and two-dimensional Hadamard

coins, the Grover coin and the Fourier coin.

The implementation to build the coin operator is based on the Kronecker product

between the chosen coin and the identity matrix in Equation (2.14). Even though the

Kronecker product is a costly operation, in this case, each operand has characteristics

that allows us to perform it in an efficient way. First, the identity matrix has only

its main diagonal filled with nonzero elements, so we can store it by creating a RDD

that contains only its row-indexes. Second, as the shapes of the previous coins are

really small, their data can be stored in the driver node as NumPy3 arrays and

broadcast to each worker node, so it can be fast accessed by the RDD. To effectively

build the coin operator, we need to replicate the identity matrix for each element

of the coin and store the resulting (i, j, v) coordinates. The Algorithm 2 illustrates

this process, starting with the range method of the SparkContext object to build

3http://www.numpy.org/

27

http://www.numpy.org/

a RDD with each row-index of the aforementioned identity matrix. As the larger

operand — the identity matrix — is contained in a RDD, we can apply a function

to each of its elements in order to produce the above coordinates based on each

element of the coin. In this case, the Kronecker product would be performed in

an inverse way, but efficiently. To accomplish this, we could use the Spark’s map

transformation, which applies an user defined function to each element of the RDD

but, as the return of the function is a collection of coordinates, we would have to

flatten the result by applying an additional transformation. Instead, we use the

Spark’s flatMap transformation, which is similar to the previous one, but already

flattens any returned collections. Hence, we provided to the flatMap a function

(Algorithm 3) that accesses the broadcast coin and, for each of its elements, produces

a (i, j, v) coordinate calculated as follows:

(i, j, v) = (ms+ p, ns+ q, Cm,n), (3.5)

where s is the size of mesh, (m,n) the coordinates of each coin element and (p, q)

the coordinates of each identity matrix element which, in this case, are equal and

corresponded by the actual element of the RDD. Note that the multiplications ms

and ns represent the replication of the identity matrix by a coin element.

Algorithm 2 Creation of the coin operator

Require: meshSize . number of sites of the mesh
1: function createCoinOperator(sparkContext)
2: rdd← sparkContext.range(meshSize)
3: rdd← rdd.flatMap(map)
4: return Operator(rdd)
5: end function

Algorithm 3 User defined function for coin operator

Require: coinSize . dimension of the coin
Require: meshSize . number of sites of the mesh
Require: broadcastCoin . coin data that has been broadcast
1: function map(p)
2: for m← 0, coinSize do
3: for n← 0, coinSize do
4: i← m ∗meshSize+ p
5: j ← n ∗meshSize+ p
6: v ← broadcastCoin[m][n]
7: end for
8: end for
9: return list(i, j, v)

10: end function

The above implementation is employed in both one- and two-dimensional walks,

28

since the variables coinSize and meshSize be filled accordingly to the dimension of

the walk. For instance, in one-dimensional walks, they must equal, respectively, 2

and the number of sites in the x coordinate, while in two-dimensional walks, they

equal 4 and the result of a multiplication of the numbers of sites in both x and y

coordinates.

In order to build a custom coin, the user can easily do this extending the top-level

Coin class and provide the custom coin elements in a NumPy array.

3.1.3 Meshes

Meshes are also represented by their own module inside the prototype’s package and

are responsible for building the shift operator.

Starting with the one-dimensional case, our implementation of the shift operator

is based on Equation (2.13), where a Kronecker product is applied between two

outer products: one for each coin space element and another one for each position

space element. If we would have to perform all these operations separately, the

shift operator could take a really long time to be built. In this case, as both outer

products are applied to two elementary bases, each resulting matrix will have just one

nonzero element. For example, |0〉〈1| = (1
0) (0 1) = (0 1

0 0). Hence, we can state that

the basis element of the ket and the one of the bra will correspond to the row and

column-indexes of the resulting matrix, respectively, avoiding two unnecessary outer

products. As the position space can be spanned by a basis that composes an identity

matrix, it can be stored in a RDD containing only its row-indexes. Considering

these premises, the shift operator can be implemented in a similar way than the coin

operator was, being described by Algorithm 4. The RDD of the position space can be

transformed in a way that each of its elements produce a (i, j, v) coordinate for each

element of the coin space. The flatMap transformation was again used, receiving

a user defined function (Algorithm 5) to generate the coordinates by the following

calculation:

(i, j, v) = (cs+ (p+ l) mod s, cs+ p, 1), (3.6)

where s is the size of mesh and c and p the elements of coin and position space bases,

respectively. Just for convenience, l represents the shifting (−1)c of the particle over

the mesh. As the coin space basis can also be represented as an identity matrix, it is

not even necessary to broadcast its small content. Therefore, a simple loop is enough

to cover its elements. Again, similar as it was for the coin operator, the product cs

represents the replication of the position space element by a coin space element. One

important thing to note is the modulo operation after incrementing/decrementing the

position p. Even though the mesh size comprises t steps to the left and to the right,

when the calculation reaches the border of the mesh, there will be no additional site

29

to be considered by the above formula, so we must cycle the mesh for this special

case.

Algorithm 4 Creation of the shift operator

Require: meshSize . number of sites of the mesh
1: function createShiftOperator(sparkContext)
2: rdd← sparkContext.range(meshSize)
3: rdd← rdd.flatMap(map)
4: return Operator(rdd)
5: end function

Algorithm 5 User defined function for shift operator of line meshes

Require: coinSize . dimension of the coin: 2
Require: meshSize . number of sites of the mesh
1: function map(p)
2: for c← 0, coinSize do
3: l← pow(−1, c)
4: i← c ∗meshSize+ ((p+ l) mod meshSize)
5: j ← c ∗meshSize+ p
6: v ← 1
7: end for
8: return list(i, j, v)
9: end function

For the two-dimensional mesh, the operations and process of building the shift

operator are the same as for the previous case but, due to a higher dimension, the coin

and position spaces are, each one, in composite form, as described in Equations (2.22)

and (2.23). In order to consider these compositions, additional Kronecker products

are needed, so we have to change the generation of the coordinates in the user defined

function passed to the flatMap transformation.

For diagonal lattices, the calculations to generate the coordinates are described

as follows and fully represented in the Algorithm 6: i

j

v

 =

 (c1k + c2)s1s2 + ((p1 + l1) mod s1)s2 + ((p2 + l2) mod s2)

(c1k + c2)s1s2 + p1s2 + p2

1

 . (3.7)

Here, cn, pn and sn still correspond to the coin space, the position space and the

mesh size, respectively, with each subscription representing a dimension. Analogously

to the one-dimensional mesh, l1 and l2 represent the shifting of the particle in both

directions, i.e., (−1)c1 and (−1)c2 . Due to the higher dimension, the additional

Kronecker product for the coin space is represented by c1k + c2, with k being the

coin space size, while the additional one for the position space is represented by

30

((p1 + l1) mod s1)s2 + ((p2 + l2) mod s2) — for the row-index — and p1s2 + p2 —

for the column-index. Note that the additional modulo operation is also needed to

comprise the border extrapolation, as also occurred in the one-dimensional case.

For natural lattices, the previous modifications are also needed, and the process

of generating the coordinates are very similar, being based on the following equation: i

j

v

 =


(c1k+c2)s1s2+((p1+l1(1−δc1,c2)) mod s1)s2

+((p2+l1δc1,c2) mod s2)

(c1k + c2)s1s2 + p1s2 + p2

1

 . (3.8)

As described by the Algorithm 7, the Kronecker delta (δc1,c2) is implemented by a

XNOR gate applied to both coin values.

Algorithm 6 User defined function for shift operator of diagonal lattices

Require: coinSize . dimension of the coin: 2
Require: meshSize . number of sites of the mesh
Require: s1 . number of sites of the x coordinate
Require: s2 . number of sites of the y coordinate
1: function map(p)
2: p1 ← p mod s1
3: p2 ← p/s1
4: for c1 ← 0, coinSize do
5: l1 ← pow(−1, c1)
6: for c2 ← 0, coinSize do
7: l2 ← pow(−1, c2)
8: i← (c1 ∗ coinSize+ c2) ∗meshSize+ ((p1 + l1) mod s1) ∗ s2 + (p2 +
l2) mod s2

9: j ← (c1 ∗ coinSize+ c2) ∗meshSize+ p1 ∗ s2
10: v ← 1
11: end for
12: end for
13: return list(i, j, v)
14: end function

As our prototype also simulates the effects of decoherence by mesh percolations

(broken links), the package contains a special module with a class responsible for

this decoherence technique: the RandomBrokenLinks class. Given a probability

p that represents the occurrence of broken links and the number of edges of the

used mesh, the class generates a collection containing all the edges that are broken.

As this method of broken links generation only considers the edges numbers, its

implementation becomes extremely simple, due to the fact that it does not need to

worry about whether the mesh has one or two dimensions. To accomplish this, the

total number of edges is used to generate a RDD storing each edge number. This

RDD is then transformed using a map operation which its user defined function checks

31

Algorithm 7 User defined function for shift operator of natural lattices

Require: coinSize . dimension of the coin: 2
Require: meshSize . number of sites of the mesh
Require: s1 . number of sites of the x coordinate
Require: s2 . number of sites of the y coordinate
1: function map(p)
2: p1 ← p mod s1
3: p2 ← p/s1
4: for c1 ← 0, coinSize do
5: l← pow(−1, c1)
6: for c2 ← 0, coinSize do
7: delta← xnor(c1, c2)
8: i← (c1 ∗ coinSize+ c2) ∗meshSize+ ((p1 + l ∗ (1− delta)) mod s1) ∗
s2 + (p2 + l ∗ delta) mod s2

9: j ← (c1 ∗ coinSize+ c2) ∗meshSize+ p1 ∗ s2
10: v ← 1
11: end for
12: end for
13: return list(i, j, v)
14: end function

if a random generated number is lesser than p and produces a tuple composed of

the correspondent edge number and a boolean value to represent the aforementioned

condition. Next, we apply the filter transformation in order to retain only the edges

that were, in fact, broken, i.e., the boolean value holding true.

When the simulator needs to consider mesh percolations, the process of building

the shift operator is modified in order to consider the broken edges. This way, the

initial RDD is not built containing each mesh site, but storing each edge number.

Besides, while building the operator, the Mesh class must convert the edge number

to the appropriate position in order to correctly generate the coordinates of the

operator. Therefore, the RDD generated by the RandomBrokenLinks class has

its items collected as a Python dict structure using the action collectAsMap and

broadcast to the cluster nodes, so it can be fast accessed by the user defined function

that generates the coordinates of the shift operator. The conversion of an edge

number to a position is based on the topology of the mesh and the directions of the

particle’s movement.

Starting with the one-dimensional meshes, we know that, when the coin is

evaluated as |0〉, the particle moves to the right, incrementing its position. When |1〉,
the opposite movement is performed. Hence, the edges are incrementally numbered

following this left-to-right direction, starting with the leftmost edge. The last edge

has the same number of the first, as it was a cycled mesh — depicted on Fig. 3.1 —

to consider the border extrapolation. Concretely, to convert the edge number to a

32

position, our implementation is based on the following calculation:

x = (e− c− l) mod s, (3.9)

with s being the size of the mesh, c the coin value, e the current edge number and l

the shifting (−1)c of the particle. This calculation factors out the particle’s shifting

and determines the position of the particle by identifying if it was moving to the

right or to left, based on the coin state. A modulo operation is applied to consider

the border edges. Hence, the user defined function described by the Algorithm 5

must be modified accordingly, now being based on Equation (2.26) and considering

the conversion of edge numbers into positions, resulting in the Algorithm 8.

Figure 3.1: Example of edges numbering with an one-dimensional mesh of size 5.

Algorithm 8 User defined function for shift operator of line meshes with broken
links
Require: coinSize . dimension of the coin: 2
Require: meshSize . number of sites of the mesh
Require: broadcastEdges . collection of broken links that has been broadcast
1: function map(e)
2: for c← 0, coinSize do
3: l← pow(−1, c)
4: p← (e− c− l) mod meshSize
5: if e in broadcastEdges then
6: l← 0
7: end if
8: i← (c+ l) ∗meshSize+ (p+ l) mod meshSize
9: j ← (1− c) ∗meshSize+ p

10: v ← 1
11: end for
12: return list(i, j, v)
13: end function

For two-dimensional meshes, the previous principle is also used, although some

adaptations must be performed. When considering the diagonal mesh, as the particle

moves only diagonally, the number of sites that can be occupied by the particle

is inferior than the sites of the mathematical mesh, as illustrated on Fig. 3.2(a).

Also, notice that the number of edges traversed by the particle equals the number

of positions of the grid. Thus, the conversion of the edge number to a position for

33

diagonal meshes can be done as:(
x

y

)
=

(
(e mod s1 − c1 − l1) mod s1

(e
s1
− c2 − l2) mod s2

)
, (3.10)

where s1 and s2 represent the sizes of each dimension, c1 and c2 each coin value

and e, the current edge number. This calculation is similar to the one-dimensional

case, with the addition of a modulo operation and a division for each cartesian

coordinate. These operations are needed because, for each shifting, be it through the

main diagonal or not, the edge number is incremented or decremented by s1 units.

For this case, the user defined function is described by Algorithm 9.

Algorithm 9 User defined function for shift operator of diagonal lattices with broken
links
Require: coinSize . dimension of the coin: 2
Require: meshSize . number of sites of the mesh
Require: s1 . number of sites of the x coordinate
Require: s2 . number of sites of the y coordinate
Require: broadcastEdges . collection of broken links that has been broadcast
1: function map(e)
2: for c1 ← 0, coinSize do
3: l1 ← pow(−1, c1)
4: for c2 ← 0, coinSize do
5: l2 ← pow(−1, c2)
6: p1 ← (e mod s1 − c1 − l1) mod s1
7: p2 ← (floor(e/s1)− c2 − l2) mod s2
8: if e in broadcastEdges then
9: bl1 ← 0
10: bl2 ← 0
11: else
12: bl1 ← l1
13: bl2 ← l2
14: end if
15: i← ((c1 + bl1)∗ coinSize+ c2 + bl2)∗meshSize+ ((p1 + bl1) mod s1)∗

s2 + (p2 + bl2) mod s2
16: j ← ((1− c1) ∗ coinSize+ (1− c2)) ∗meshSize+ p1 ∗ s2 + p2
17: v ← 1
18: end for
19: end for
20: return list(i, j, v)
21: end function

When a natural mesh is considered, all the possible positions that the particle

can be located at coincide with the mathematical grid, resulting in a higher number

of positions in relation to the previous case, and being the double of the number of

edges traversed by the particle. In this case, the particle moves vertically when both

34

Figure 3.2: Example of edges numbering with two-dimensional meshes (diagonal and
natural) of size 5x5.

coin states are equal, and moves horizontally, otherwise. The edge numbering is done

for both directions separately, starting with the horizontal (x coordinate) and then,

with the vertical (y coordinate), as illustrated on Fig. 3.2(b). Thus, the conversion

of an edge number to a position can be done considering two conditions, as follows:(
x

y

)
=

(
(e−s1s2

s1
)

((e− s1s2) mod s2 − c1 − l) mod s2

)
, (3.11)

if e >= s1s2, i.e., for vertical edges, and(
x

y

)
=

(
(e mod s1 − c1 − l) mod s1

e
s1

)
, (3.12)

for the horizontal ones. The user defined function for building the shift operator of a

natural lattice with broken links is defined by Algorithm 10. Notice that only one

coin is being considered for this case, since the calculation of the positions is based

only on it. Due to this, the second coin is conditioned by the first, i.e., if an edge is

a vertical one, both coins are equal and, otherwise, they are different.

Similarly for coins, in order to provide extensibility, the prototype allows the

user to develop his/her custom mesh, by extending the top-level Mesh class and

implementing the method responsible for the shift operator building.

3.1.4 Discrete Time Quantum Walk

The DiscreteTimeQuantumWalk class is the main entity of the prototype, receiving

the instantiated coins and meshes and being responsible for the evolution of the

system, executing the quantum walk. The walk method is responsible for performing

the multiplications of each state by the interaction operator, if any, and each particle’s

35

Algorithm 10 User defined function for shift operator of natural lattices with broken
links
Require: coinSize . dimension of the coin: 2
Require: meshSize . number of sites of the mesh
Require: s1 . number of sites of the x coordinate
Require: s2 . number of sites of the y coordinate
Require: broadcastEdges . collection of broken links that has been broadcast
1: function map(e)
2: for c1 ← 0, coinSize do
3: l← pow(−1, c1)
4: if e ≥ s1 ∗ s2 then
5: c2 ← c1
6: p1 ← floor((e− s1 ∗ s2)/s1)
7: p2 ← ((e− s1 ∗ s2) mod s2 − c1 − l) mod s2
8: else
9: c2 ← not c1

10: p1 ← (e mod s1 − c1 − l) mod s1
11: p2 ← floor(e/s1)
12: end if
13: delta← xnor(c1, c2)
14: if e in broadcastEdges then
15: l← 0
16: end if
17: i← ((c1 + l) ∗ coinSize+ abs(c2 + l, coinSize)) ∗meshSize+ ((p1 + l ∗

(1− delta)) mod s1) ∗ s2 + ((p2 + l ∗ delta) mod s2
18: j ← ((1− c1) ∗ coinSize+ (1− c2)) ∗meshSize+ p1 ∗ s2 + p2
19: v ← 1
20: end for
21: return list(i, j, v)
22: end function

36

evolution operator. This class is also responsible for building these operators.

As it has been described in Equation (2.14), the evolution operator is built by

multiplying the shift operator by the coin operator. For quantum walks with only

one particle, this is done really straightforwardly, because the Operator class already

implements the multiplication between operators. Although, when considering

multiparticle quantum walks, the walk operator is composed of Kronecker products

between the evolution operator of each particle, as stated in Equation (2.32). Our

implementation for this situation is different: the evolution operator of the composed

system is applied as a sequence of operators, each corresponding to an individual

particle. This way, as the Kronecker product is not applied, the number of columns

of each particles’ operator would be different than the number of rows of the system

state and, therefore, it would not be possible to perform the multiplications. The

solution for this case is to perform the following algebraic manipulation:

U1 ⊗ · · · ⊗ UN = (U1 ⊗ I2 ⊗ · · · ⊗ IN) · · · (I1 ⊗ · · · ⊗ IN−1 ⊗ UN), (3.13)

which is mathematically equivalent, although computationally more efficient in this

case. Despite the additional matrix-vector multiplications done for each step of

the walk due to this change, evolution operators become sparser than those of the

original method, resulting in an overall reduced number of operations and memory

usage. Fig. 3.3 exhibits a chart with the number of nonzero elements of the evolution

operators for a quantum walk with two particles over a lattice. The size of each

lattice dimension was derived from the number of steps, as the particle must not

trespass the borders of the mesh, as to the left as to the right. The upper line of

the chart contains the values of the evolution operator when it is built by direct

Kronecker products with each particle’s evolution operator, while the lower line

contains the sum of the nonzero elements of both particles’ evolution operators when

built applying the algebraic manipulation of Equation (3.13).

To effectively build the set of evolution operators, our implementation consists

in three parts, detailed in Algorithm 11. The first part of this code comprises the

walk operator of the first particle. As its evolution operator starts the chain of

Kronecker products, all the other operands consist in identity matrices, so they

will result in a new identity matrix with a much bigger shape, with dimension

(row(In)N−1× col(In)N−1). Then, as described in lines 3–5, we just need to store the

final identity matrix in a RDD and perform only one Kronecker product with the

evolution operator of the first particle and the aforementioned identity matrix. The

evolution operator must be broadcast to the cluster nodes and the RDD transformed

using the flatMap operation, which its user defined function, detailed in Algorithm 12,

replicates the current element of the RDD by each element of the particle’s evolution

37

20212223242526272829303132333435363738394041424344454647484950
0

5000

10000

15000

20000

25000

30000

Direct tensor product Algebraic manipulation

Steps

N
on

ze
ro

 e
le

m
e

nt
s

(m
ill

io
ns

)

Figure 3.3: Comparison of the number of nonzero elements of evolution operators
when simulating quantum walks with two particles over a lattice.

operator. The generation of the coordinates is defined as follows:

(i, j, v) = (ms+ p, ns+ q, Um,n), (3.14)

where s is the size of the resulting identity matrix, (m,n) the coordinates of each

particle’s evolution operator element and (p, q) the coordinates of each identity

matrix element which, in this case, are equal and correspond the actual element of

the RDD. The multiplications ms and ns represent the replication of the identity

matrix by a particle’s evolution operator element.

Algorithm 11 Creation of the walk operator

1: function createWalkOperator(sparkContext, particle)
2: if particle = 1 then
3: size← number of elements of the (N − 1) composite identity matrices
4: rdd← sparkContext.range(size)
5: rdd← rdd.flatMap(mapFirst)
6: else
7: size← number of elements of the (particle− 1) identity matrices
8: rdd← sparkContext.range(size)
9: rdd← rdd.flatMap(mapLast)

10: if particle 6= N then
11: size← number of elements of the (N − particle) identity matrices
12: rdd← rdd.flatMap(mapOther)
13: end if
14: end if
15: return Operator(rdd)
16: end function

Regarding the second section of the code, in lines 7–9, we build the walk operator

for the last particle of the system. This case is roughly the same of the previous,

38

Algorithm 12 User defined function of the walk operator for the first particle

Require: size . number of elements of the (N − 1) identity matrices
Require: rows, cols . number of rows and columns of the particle’s evolution

operator
Require: broadcastEvolutionOperator . particle’s evolution operator data that

has been broadcast
1: function mapFirst(p)
2: for m← 0, rows do
3: for n← 0, cols do
4: i← m ∗ size+ p
5: j ← n ∗ size+ p
6: v ← broadcastEvolutionOperator[m][n]
7: end for
8: end for
9: return list(i, j, v)

10: end function

except for the fact that the particle ends the chain of Kronecker products. Therefore,

the only Kronecker product must be performed in an inverse way, with the coordinates

of the operators being generated as follows:

(i, j, v) = (ps+m, qs+ n, Um,n), (3.15)

where s is now the size of the evolution operator, (p, q) the coordinates of the resulting

identity matrix of the previous particles — corresponded by the actual element of

the RDD — and (m,n) the coordinates of each evolution operator element. The

implementation of this case is detailed in Algorithm 13.

Algorithm 13 User defined function of the walk operator for the last particle

Require: size . number of elements of the (N − 1) identity matrices
Require: rows, cols . number of rows and columns of the particle’s evolution

operator
Require: broadcastEvolutionOperator . particle’s evolution operator data that

has been broadcast
1: function mapLast(p)
2: for m← 0, rows do
3: for n← 0, cols do
4: i← p ∗ rows+m
5: j ← p ∗ cols+ n
6: v ← broadcastEvolutionOperator[m][n]
7: end for
8: end for
9: return list(i, j, v)

10: end function

The third part of our code comprises the other particles of the system. For the nth

39

particle, two Kronecker products must be performed. The first needs to be applied

to the resulting identity matrix that correspond to the (n− 1)th particles and the

current particle’s evolution operator. This case is already comprised by the previous

section and does not need to be reimplemented. The other Kronecker product is

performed with the result of the previous operation and the other (N − n) identity

matrices, corresponded by lines 11–12 of the Algorithm 11. For these particles,

the generation of the coordinates is based on Equation 3.14, with the following

differences:

(i, j, v) = (ps+m, qs+m,Vp,q), (3.16)

where s and m are the size and the coordinate of the resulting identity matrix for the

next (N − n) particles, and (p, q) and Vp,q the coordinates and value of each element

of the previous resulting matrix, which is already stored in (i, j, v) coordinates. The

implementation for this case is detailed in Algorithm 14.

Algorithm 14 User defined function of the walk operator for each other particle

Require: size . number of elements of the (N − particle) identity matrices
1: function mapOther(p) . p is already a (i, j, v) coordinate of the previous

transformation
2: for m← 0, size do
3: i← p[0] ∗ size+m
4: j ← p[1] ∗ size+m
5: v ← p[2]
6: end for
7: return list(i, j, v)
8: end function

The interaction operator built by the DiscreteTimeQuantumWalk class is based on

Equation (2.35), which changes the phase of the particles only when they are located

at the same positions. This operator is only built when simulating multiparticle

quantum walks and the free parameter g informed is nonzero. As the coin and position

spaces are considered for each particle in this equation, we can use the premises

mentioned in the shift operator building process to be the base of our implementation.

Hence, this interaction operator works like a diagonal matrix, with its elements being

eig when their row-indexes correspond to particles’ positions that are equal, and 1.0,

otherwise. Thus, this operator can be built by converting the row-indexes to their

correspondent particles’ positions and then, checking whether all of them are equal

or not. Our implementation consists in storing the possible indexes — which can be

found by Equations (3.1) and (3.2) — in a RDD and transforming it using a map

operation to generate the (i, j, v) coordinates, as represented by Algorithm 15. Given

the index, the user defined function passed to that transformation must calculate the

correspondent positions of each particle and check whether they are equal to decide if

40

the value of the element will be 1.0 or eig. From Equation 2.35, Kronecker products

are applied between the particles’ states, which means that, for each particle added

to the system, the number of indexes in the interaction operator is multiplied by

that particle’s state dimension. Besides, as each particle’s state is, by themselves,

compositions of coin and position spaces, for higher dimensional quantum walks,

additional Kronecker products are necessary to represent the bigger coin and position

spaces, increasing the size of the system state. The calculation to find the positions

for one- and two-dimensional walks can be performed applying the inverse of those

operations, being described as follows:

x1
...

xn
...

xN


=



m
(cs)N−1 mod s

...
m

(cs)N−n mod s
...

m mod s


(3.17)

and



(x1, y1)
...

(xn, yn)
...

(xN , yN)


=



(
m

(c1c2s1s2)N−1s2
mod s1,

m
(c1c2s1s2)N−1 mod s2

)
...(

m
(c1c2s1s2)N−ns2

mod s1,
m

(c1c2s1s2)N−n mod s2

)
...(

m
s2

mod s1,m mod s2

)


. (3.18)

Generally speaking, according to the first equation, a position xn is obtained by

dividing the row-index m by (cs)N−n, which corresponds to the dimension of the

remaining N − n composed particles’ states, resulting in a new index for the actual

particle. Then, the modulo s operation is performed, so that we can get the desired

xn position. The second equation just extends the previous one for a two-dimensional

quantum walk, where c1c2s1s2 represents a bigger dimension of each state and an

additional multiplication by s2 to consider the second cartesian coordinate y of

the current particle. The next step is to verify if the positions are equal. In a

positive case, the generated coordinate contains the phase eig and, otherwise, 1.0.

As this operator is a diagonal matrix, the coordinates i and j are the same, and

correspond to the current element in the RDD. The user defined functions for one-

and two-dimensional cases are represented by Algorithms 16 and 17.

41

Algorithm 15 Creation of the interaction operator

Require: size . number of indexes
1: function createInteractionOperator(sparkContext)
2: rdd← sparkContext.range(size)
3: rdd← rdd.map(map)
4: return Operator(rdd)
5: end function

Algorithm 16 User defined function of the interaction operator for one-dimensional
walks
Require: phase . chosen phase for the particles
Require: coinSize . dimension of the coin: 2
Require: meshSize . number of sites of the mesh
Require: N . number of particles in the system
1: function map(m)
2: positions← list
3: for p← 0, N do
4: stateSize← pow(coinSize ∗meshSize,N − 1− p)
5: pos← round(m/stateSize) mod meshSize
6: positions.append(pos)
7: if positions[0] 6= pos then
8: return list(m,m, 1)
9: end if

10: end for
11: return list(m,m, phase)
12: end function

Algorithm 17 User defined function of the interaction operator for two-dimensional
walks
Require: phase . chosen phase for the particles
Require: coinSize . dimension of the composed coin space: 4
Require: meshSize . number of sites of the mesh
Require: s1 . number of sites of the x coordinate
Require: s2 . number of sites of the y coordinate
Require: N . number of particles in the system
1: function map(m)
2: positions← list
3: for p← 0, N do
4: stateSize← pow(coinSize ∗meshSize,N − 1− p)
5: posX ← round(m/(stateSize ∗ s2)) mod s1
6: posY ← round(m/stateSize) mod s2
7: pos← list(posX, posY)
8: positions.append(pos)
9: if positions[0][0] 6= posX or positions[0][1] 6= posY then

10: return list(m,m, 1)
11: end if
12: end for
13: return list(m,m, phase)
14: end function

42

3.1.5 Probability Distribution Functions

After the evolution of the system, the user can perform a measurement in order to

get the outcome of a DTQW: the probability distribution function of the particle’s

position. The State class provides methods that find probabilities associated to

certain types of measurement. These methods returns objects of the following classes:

JointPDF, CollisionPDF and MarginalPDF. The first class represents the probability

distribution found when a full measurement of the system is performed, regarding

all dimensions and particles of the quantum walk; the second contains only the

probability values of sites where all particles are, at the same time, located at, and

the third represents the full measurement of a single particle. These classes extend

the Base class, which means that they also store all the probability values in a

RDD and are represented by coordinate format. Besides, all the PDF classes of the

prototype provide the plot method, which uses matplotlib4 as back-end to generate

images with their probability values.

We know that the probability distribution can be found based on Equation (2.16),

but it only describes the process for one-dimensional quantum walks and with just one

particle. As our prototype provides one- and two-dimensional walks with an arbitrary

number of particles, we have to develop ways to measure the system state under these

configurations. Next, we provide the generalized formulas to find the probability

distribution of the entire system, i.e., the joint PDF, for one- and two-dimensional

walks with N particles:

px1,...,xN ,t =
N∑
n=1

1∑
in=0

|ψi1,x1;...,iN ,xN (t)|2 (3.19)

and

px1,y1,...,xN ,yN ,t =
N∑
n=1

1∑
in,jn=0

|ψi1,j1,x1,y1;...;iN ,jN ,xN ,yN (t)|2. (3.20)

Since we have the state of system represented as (i, v) coordinates and stored in a

RDD, a possible path to find the probability distribution is transforming the that RDD

to convert the row-index i to particles’ positions and then, summing the corresponding

values v when the positions are equal. From Equations (2.11) and (2.18), one can

note that a general state is composed of a Kronecker product between the coin space

and the position space bases. The application of this operation directly interferes in

the dimension of the system state, by means that for each Kronecker product applied

by an additional coin or position space, the size of the state is multiplied by its

dimension. Besides, when considering multiparticle quantum walks, the size of the

state is raised to the power of the number of particles. Thus, in order to accomplish

4https://matplotlib.org/

43

https://matplotlib.org/

the conversion of each row-index to a position, we must apply a transformation to

the RDD with an inverse calculation of those operations as the same as it is done

for the interaction operator. The Algorithm 18 details our implementation for this

measurement, where the chosen method is the Spark’s map transformation, and

the user defined function passed to this method converts the current item of the

RDD to the particles’ positions based on Equations (3.17) and (3.18), for one- and

two-dimensional walks. Even though the positions are properly obtained, each of

them is replicated by the size of their coin space basis, e.g., twice for one-dimensional

walks and four times for two-dimensional ones. The next step is, therefore, to

sum their corresponding values |v|2 in order to get the probability values. For this,

the reduceByKey transformation can be used, receiving a summation as its user

defined function. As this method needs to be applied in a key-value pair RDD, the

previous map transformation must produce the coordinates in the following structure:

((x1, ..., xN), v′), for the one-dimensional case, and (((x1, y1), ..., (xN , yN)), v′), for

the two-dimensional one. After the application of the reduceByKey, another map

transformation is used to get the original coordinate format, by flattening the above

keys. The above map transformations are detailed in Algorithms 19 and 20.

Algorithm 18 Measurement of the entire system

1: function measureSystem(state)
2: rdd← state.map(map)
3: rdd← rdd.reduceByKey(sum)
4: rdd← rdd.map(unmap)
5: return JointPDF(rdd)
6: end function

Algorithm 19 User defined function of the measurement of the system for one-
dimensional walks
Require: coinSize . dimension of the coin: 2
Require: meshSize . number of sites of the mesh
Require: N . number of particles in the system
1: function map(m) . m is already a (i, v) coordinate of the previous

transformation
2: positions← list
3: for p← 0, N do
4: stateSize← pow(coinSize ∗meshSize,N − p)
5: pos← round(m[0]/stateSize) mod meshSize
6: positions.append(pos)
7: end for
8: v ← abs(m[1]) ∗ abs(m[1])
9: return list(positions, v)

10: end function

44

Algorithm 20 User defined function of the measurement of the system for two-
dimensional walks
Require: coinSize . dimension of the composed coin space: 4
Require: meshSize . number of sites of the mesh
Require: s1 . number of sites of the x coordinate
Require: s2 . number of sites of the y coordinate
Require: N . number of particles in the system
1: function map(m) . m is already a (i, v) coordinate of the previous

transformation
2: positions← list
3: for p← 0, N do
4: stateSize← pow(coinSize ∗meshSize,N − p)
5: posX ← round(m/(stateSize ∗ s2)) mod s1
6: posY ← round(m/stateSize) mod s2
7: pos← list(posX, posY)
8: positions.append(pos)
9: end for

10: v ← abs(m[1]) ∗ abs(m[1])
11: return list(positions, v)
12: end function

As previously stated, the CollisionPDF class is responsible to store the probability

values that corresponds to the same positions where all particles are located at. Thus,

to find its values, we need to measure the system for all particles when their positions

are equal, as described bellow:

p̂x,t =
N∑
n=1

1∑
in=0

|ψi1,x;...;iN ,x(t)|2 (3.21)

and

p̂x,y,t =
N∑
n=1

1∑
in,jn=0

|ψi1,j1,x,y;...;iN ,jN ,x,y(t)|2. (3.22)

Here, p̂x,t and p̂x,y,t represent the probability to find all particles at the same position

x, for one-dimensional walks, and (x, y), for two-dimensional ones, when measuring

the system at time t. Instead of recalculating those values, our implementation

(Algorithm 21) operates upon the RDD of a previously built JointPDF object, trans-

forming it using the Spark’s filter operation, in order to retain only the probability

values where all particles’ positions are equal. This method receives a condition

statement through an user defined function, which is applied to each element of

the RDD and creates a new one containing only the elements that the condition

statement validates as true. For this case, the condition statement is really simple,

looping through the positions of all particles — (x1, ..., xN) or ((x1, y1), ..., (xN , yN))

— checking if they are equal. Notice that there is no need to keep all particles’

45

positions, as they are equal, so a map transformation is used to produce a RDD

with the position of just one particle with its correspondent value. The filter and

map operations are detailed in Algorithms 22 and 23. An important consideration

to be done is that the elements of that RDD do not sum 1.0, as every probability

distribution function must do. Although, it can be normalized in order to acquire

this characteristic.

Algorithm 21 Measurement of the collisions

1: function measureSystem(jointPDF)
2: rdd← jointPDF.filter(filter)
3: rdd← rdd.map(map)
4: return CollisionPDF(rdd)
5: end function

Algorithm 22 User defined functions of the measurement of the collisions for
one-dimensional walks
Require: N . number of particles in the system
1: function filter(m) . m is (x1, ..., xN , v) coordinate of the previous

transformation
2: for p← 0, N do
3: if m[0] 6= m[p] then
4: return false
5: end if
6: end for
7: return true
8: end function

9: function map(m) . m is (x1, ..., xN , v) coordinate of the previous
transformation

10: return list(m[0],m[N])
11: end function

The last class that represent probability distributions provided by the prototype

is the MarginalPDF. This class stores the probability distribution of an arbitrary

particle and the process of this partial measurement is very similar to the one that

results in a JointPDF object. Here, the difference is that only the positions of the

particle k being measured are taken into account, as described by the following

equations:

p̃
(k)
x,t =

N∑
n=1

1∑
in=0

size−1∑
xn=0,
n6=k

|ψi1,x1;...;iN ,xN (t)|2 (3.23)

and

p̃
(k)
x,y,t =

N∑
n=1

1∑
in,jn=0

size−1∑
xn,yn=0,
n6=k

|ψi1,j1,x1,y1;...;iN ,jN ,xN ,yN (t)|2. (3.24)

46

Algorithm 23 User defined functions of the measurement of the collisions for
two-dimensional walks
Require: N . number of particles in the system
1: function filter(m) . m is a (x1, y1, ..., xN , yN , v) coordinate of the previous

transformation
2: for p← 0, N, step← 2 do
3: if m[0] 6= m[p] or m[1] 6= m[p+ 1] then
4: return false
5: end if
6: end for
7: return true
8: end function

9: function map(m) . m is a (x1, y1, ..., xN , yN , v) coordinate of the previous
transformation

10: return list(m[0],m[1],m[2 ∗N])
11: end function

From the previous equation, p̃
(k)
x,t and p̃

(k)
x,y,t represent the probability to find the k-th

particle at position x, for one-dimensional walks, and (x, y), for two-dimensional

ones, when measuring the system at time t. Therefore, our implementation — based

on Algorithms 19 and 20 — just need to find the positions of the desired particle and,

consequently, compose the keys for the RDD with these positions. The reduceByKey

is still necessary to sum all values of the state that correspond to the particle being

measured. In particular for the two-dimensional case, a map operation is performed

to flatten the (x, y) position, similar to the one that was used during the measurement

of the entire system.

3.2 How to Use

In order to properly use our prototype, the user must have the Apache Spark

downloaded5 and unzipped on his/her computer. As our prototype is implemented

in Python, another way to get Spark is installing it with pip, the recommended

tool for installing Python packages. To do this, the user needs to have Python

and pip installed and execute the following command in a terminal: pip install

pyspark==2.2.0.post0. Note that Spark 2.2.0 needs Java version 8 to be run and

Python versions 2.7+ and 3.4+, so these prerequisites must be satisfied.

As previously informed, Spark can be launched using different resource managers,

but the simplest way to do so is using its Standalone Mode. The user can manually

start the master and worker nodes, but its easier to use the launch scripts provided

by Spark [24]. In order to start the slaves, the worker nodes URL must be provided

5https://spark.apache.org/downloads.html

47

https://spark.apache.org/downloads.html

in the conf/slaves file inside Spark directory. Besides, the unzipped Spark directory

must be accessible by each cluster node. To launch a custom application, such

as a Python script using our prototype to simulate quantum walks, the user may

execute the spark-submit script, passing, as arguments, the driver URL, the Python

script location and some configuration parameters, if desired. It is worth noting

that, for instance, when using our prototype, its package files must be in the same

directory of the user’s Python script, so they can be imported. A good way to

test the applications is executing the spark-submit script without configuring any

worker nodes and setting “local[*]” as the master URL. This way, Spark is launched

in a single machine, allocating all its available cores. More information about

spark-submit can be found in [25].

When simulating quantum walks with our prototype, the user must write a

Python script where the SparkContext class must be instantiated, a coin and a

mesh must be chosen, the initial state of the system must be created and, then,

the DiscreteTimeQuantumWalk class instantiated. Although, first of all, their

correspondent packages must be imported. This can be done as illustrated by

Listing 1, where the correspondent modules of the Hadamard coin for two-dimensional

walk and the diagonal lattice were imported.

Listing 1 Importing the necessary prototype packages
These ones will be necessary further ahead

import math

import cmath

from pyspark import SparkContext

from dtqw.coin.coin2d.hadamard2d import Hadamard2D

from dtqw.mesh.mesh2d.diagonal.lattice import LatticeDiagonal

from dtqw.math.state import State

from dtqw.dtqw import DiscreteTimeQuantumWalk

With the necessary packages imported, the user can instantiate the aforementioned

classes. The first to be instantiated is the SparkContext. This class is the access

point to the Spark’s functionalities and, consequently, all classes provided by the

prototype need it to work. Next, the user can instantiate the coin and the mesh,

providing its size, as detailed in Listing 2. For one-dimensional walks, the Mesh

class expects an integer, while for two-dimensional ones, it is necessary to provide a

Python tuple containing the size for each cartesian coordinate. Namely for lattices,

the prototype already considers the possible number of steps of the particle to the

left and to the right and adjust itself to the correct size. Besides, the user must not

provide a size smaller than the number of steps, so the particle does not trespass the

borders of the mesh.

48

Listing 2 Instantiating the SparkContext, coin and mesh

sparkContext = SparkContext()

In this example, the walk will last 30 steps

size = steps = 30

coin = Hadamard2D(sparkContext)

mesh = LatticeDiagonal(sparkContext, (size, size))

Now, the user must create the initial state of the system. As previously stated,

operators and states are stored in RDD and have their elements represented as

coordinates. Therefore, the state must be created from a RDD containing its

coordinates. The user can accomplish this by building a collection of coordinates and

passing it to the SparkContext parallelize method, which returns a RDD containing

the parallelized data. This step of the prototype usage is exemplified in Listing 3.

Listing 3 Creating the initial state of the system
Example of two particles in an entangled state

The particle will start the walk from the middle of the mesh

|psi> = (|1,1>|0,0>|0,0>|0,0> - |0,0>|0,0>|1,1>|0,0>) / sqrt(2)

num_particles = 2

The indexes are calculated based on the coins and positions of

both particles

i1 = 193836192

i2 = 27697263

v = 1.0 / math.sqrt(2)

coordinates = ((i1, v), (i2, -v))

rdd = sparkContext.parallelize(coordinates)

As this is a two-particle quantum walk, the shape of the state

comprises both particles' shapes

coin_size = coin.size

mesh_size = mesh.size[0] * mesh.size[1]

shape = (coin_size * mesh_size * coin_size * mesh_size, 1)

initial_state = State(rdd, shape, mesh, num_particles)

Next (Listing 4), the DiscreteTimeQuantumWalk class is instantiated, receiving

the coin and mesh chosen by the user, the number of particles in the system and the

number of partitions, which will be applied to the operators and states generated by

this class. The walk method is, then, called to perform the walk, based on the steps

49

and the initial state provided. The collisional phase is also passed to this method so

that the DiscreteTimeQuantumWalk object can build the interaction operator.

Listing 4 Executing the discrete time quantum walk
The operators and states will be partitioned in 2400 chunks

num_partitions = 2400

dtqw = DiscreteTimeQuantumWalk(

sparkContext, coin, mesh, num_particles, num_partitions

)

The collision phase for the interaction operator

phase = cmath.pi

final_state = dtqw.walk(steps, initial_state, phase)

Finally, after doing the walk, the final state of the system can be measured in

order to provide its probability distributions. The user just need to call the method

measure of the State class to get all the PDF objects. Listing 5 illustrates this

process, along with the plotting of the distributions.

Listing 5 Measuring the final state and plotting the PDF

joint_pdf, collision_pdf, marginal_pdf = final_state.measure()

There is no need to call the plot method

for the joint probability as its dimension is higher than two.

In this case (two particles on a two-dimensional mesh),

it is represented by a four-dimensional array

collision_pdf.plot('./collision_measurement')

marginal_pdf[0].plot('./particle1_measurement')

marginal_pdf[1].plot('./particle2_measurement')

50

Chapter 4

Experiments

This chapter details the evaluation of our approach of using Apache Spark for

simulating DTQW. In the first section, we describe the adopted methodology when

building and profiling the sets of experiments that helped us to do this evaluation,

and show the execution environment specifications where the experiments were run.

Next, we present and analyze the results of the simulations.

4.1 Methodology and Execution Environment

In order to evaluate our approach of using Apache Spark to simulate DTQW, we

built some sets of simulations of two interacting particles walking on diagonal lattice.

The first set of experiments consists in performing short walks simulations utilizing

few worker nodes and different levels of parallelism. The objective here is to know

how Spark behaves with a reasonable low amount of data and to identify some

relevant characteristic related to the number of partitions for DTQW simulations.

Quantum walks of 10, 15 and 20 steps were performed, each one utilizing one, two

and three worker nodes. Besides, each simulation was replicated considering different

levels of parallelism, i.e., the number of partitions, which was applied a range of 1–8

times the total number of cores available for each simulation.

With the next set of experiments, we intend to check how Spark scales when

increasing the number of steps of the quantum walks while also increasing the amount

of available resources. Here, we choose to incrementally double the resources, but we

could not do this for the number of steps, as the structures of quantum walks grow

exponentially based on this number. Instead, we had to calculate, in respect to each

number of steps, the number of nonzero elements for the biggest structures — the

both particles’ evolution operators and the interaction operator — and select the

approximate steps that produced a doubling-rate of the total number of elements.

This set of experiments comprises simulations of 20, 25, 30, 35, 42 and 50 steps

quantum walks utilizing one, two, four, eight, 16 and 32 worker nodes, respectively.

51

Each of the above configurations used a number of partitions equal to eight times

the number of available cores.

A third set of experiments was built in order to observe the speedup produced

by Spark for quantum walks simulations. To do so, we used the same number of

worker nodes of the previous setups, while keeping the size of the dataset of a 30

steps quantum walk. For most of the setups, an eight partitions-per-core multiplier

was used, similar as it was for the previous experiments, except for the scenarios that

one and two worker nodes were selected, where higher multipliers had to be used

due to the large amount of data being processed when having a reduced amount of

memory available. This is needed to ensure that the working set processed by Spark

is not big enough to cause out-of-memory errors. For both of these cases, the total

number of partitions was 2400, when only one worker node was used, and 1440, for

two nodes.

In the last set of experiments, we attempt to evaluate the capability of Spark to

process huge amounts of data with a reduced amount of available resources. For this

scenario, we ran simulations of quantum walks with 30, 40 and 50 steps, on one, two

and four worker nodes, respectively. As a few number of worker nodes were used,

the large data produced by these configurations would not be highly divided if we

chose a small number of partitions, what could generate memory errors. Therefore,

we chose a very high set of multipliers (50, 75 and 150), resulting in 2400, 14400

and 28800 partitions, in order to guarantee that all data would be divided in small

chunks.

For each setup of the experiments described above, we profiled the execution

times and the memory usage of each operator building, each step done and each

of the probability distributions calculated. Also, all the experiments were executed

five times, so the mean and the standard deviation of those both metrics could be

obtained.

All the simulations were run on Lobo Carneiro supercomputer, which contains

252 nodes connected by a 56 Gbs InfiniBand network. Each node has two Intel

Xeon E5-2670v3 processor summing up 48 cores due to HyperThreading and 64 GB

RAM. All nodes share a 500 TB disk with Intel Lustre parallel file system. On Lobo

Carneiro, the job submission is handled by PBS-Pro1. Lobo Carneiro is located at

High Performance Computer Center (NACAD) - COPPE, Federal University of Rio

de Janeiro (UFRJ). As each node provides 60 GB of RAM to be used, 50 GB were

allocated for the executor’s Java Virtual Machine (JVM), so the 10 GB left could

be used by Python processes. The used Python interpreter was the Intel Python2

interpreter version 3.6.2. No configuration parameter regarding Spark’s memory

1http://pbspro.org/
2https://software.intel.com/en-us/distribution-for-python

52

http://pbspro.org/
https://software.intel.com/en-us/distribution-for-python

organization was changed, assuming its defaults.

4.2 Results

We start this section presenting the results for the first set of experiments, which

is composed by a collection of setups regarding simulations of shorter walks using

one, two and three worker nodes, varying the number of partitions by a range of

1–8 times the number of cores. The following charts exhibit, for each number of

partitions, three groups of operations. The first constitutes in the total time to build

all operators, with the legend “Operators building”. The second set of operations

represents the execution time to perform the evolution of the system, i.e., all the

matrix-vector multiplications. This set is named as “Walk execution”. The last one

is the elapsed time to calculate the joint and each particle’s marginal PDF, and find

the collision probabilities, being labeled as “Measurement”. Each group contains the

mean and the standard deviation of its profiled time.

Fig. 4.1, 4.2 and 4.3 exhibit the profiled execution times for quantum walks

with 10, 15 and 20 steps, respectively, when just one worker node was used. In the

10 steps case, we notice, for the first half of partitions-per-core multipliers, that

their corresponding execution times started to increase when the multiplier also gets

higher. When the simulations were performed using the other half of multipliers, the

prototype delivered low execution times, except for the last scenario.

Regarding the 15 steps walk, we can note that the execution time of the three

groups of operations did not change too much for the selected numbers of partitions,

presenting small variations in their overall execution times. The lowest values were

achieved when the first two multipliers were used, although, in general, for this case,

any of the proposed level of parallelism would be appropriate.

When the quantum walk becomes longer (20 steps), and utilizing just one worker

node, a noticeable gain in performance was achieved when the number of partitions

was increased to the double of the number of cores, but the significant improvement

happened when this multiplier valued three or more. This is a scenario where Spark

delivers better performance when the number of partitions is increased. Using a

higher number of partitions facilitates a better data division, providing a better

distribution of partitions for the tasks among executors, what helps to generate a

better utilization of the cores.

The previous setups were again executed, although now using two worker nodes,

as illustrated on Fig. 4.4, 4.5 and 4.6. This time, for the 10 steps simulations, the

overall execution times were delivered when the multipliers valued two and eight.

The other cases produced a linear increasing time. Here, we highlight the best

performances with simulations that used 96, 288 and 672 partitions.

53

48 96 144 192 240 288 336 384
00:00:00

00:00:43

00:01:26

00:02:10

00:02:53

00:03:36

00:04:19

Operators building Walk execution Measurement

Number of partitions

E
xe

cu
tio

n
 ti

m
e

(h
h:

m
m

:s
s)

Figure 4.1: Execution times for 10 steps quantum walks on one worker node with
different number of partitions.

48 96 144 192 240 288 336 384
00:00:00

00:02:53

00:05:46

00:08:38

00:11:31

00:14:24

00:17:17

Operators building Walk execution Measurement

Number of partitions

E
xe

cu
tio

n
 ti

m
e

(h
h:

m
m

:s
s)

Figure 4.2: Execution times for 15 steps quantum walks on one worker node with
different number of partitions.

48 96 144 192 240 288 336 384
00:00:00

00:28:48

00:57:36

01:26:24

01:55:12

02:24:00

02:52:48

03:21:36

Operators building Walk execution Measurement

Number of partitions

E
xe

cu
tio

n
 ti

m
e

(h
h:

m
m

:s
s)

Figure 4.3: Execution times for 20 steps quantum walks on one worker node with
different number of partitions.

54

96 192 288 384 480 576 672 768
00:00:00

00:00:43

00:01:26

00:02:10

00:02:53

00:03:36

00:04:19

00:05:02

Operator building Walk execution Measurement

Number of partitions

E
xe

cu
tio

n
 ti

m
e

(h
h:

m
m

:s
s)

Figure 4.4: Execution times for 10 steps quantum walks on two worker nodes with
different number of partitions.

The 15 steps simulations exhibit the case where Spark delivers the best execution

times when the smallest multipliers were used and, as long as the number of partitions

was being increased, the execution times were also getting higher. Here, the available

resources were sufficient to comfortably handle simulations, requiring only few

partitions to deliver the best performances.

96 192 288 384 480 576 672 768
00:00:00

00:02:53

00:05:46

00:08:38

00:11:31

00:14:24

00:17:17

Operators building Walk execution Measurement

Number of partitions

E
xe

cu
tio

n
 ti

m
e

(h
h:

m
m

:s
s)

Figure 4.5: Execution times for 15 steps quantum walks on two worker nodes with
different number of partitions.

Similar as it happened when one worker node was used, the 20 steps simulations

presented a huge performance gain when moving from 96 to 192 (or higher) partitions,

with the lowest execution times being produced by the 2–3 partitions-per-core

multipliers. Two worker nodes being used for this problem size was not enough

to produce better performance when the number of particles equals the number of

available cores. It is worth noting that the execution times started to increase for

the highest multipliers.

55

96 192 288 384 480 576 672 768
00:00:00

00:14:24

00:28:48

00:43:12

00:57:36

01:12:00

01:26:24

Operators building Walk execution Measurement

Number of partitions

E
xe

cu
tio

n
 ti

m
e

(h
h:

m
m

:s
s)

Figure 4.6: Execution times for 20 steps quantum walks on two worker nodes with
different number of partitions.

The third group of simulations comprises the use of three nodes and has the

execution times of its setups presented on the following charts. Fig. 4.7 contains the

times for the 10 steps quantum walks simulations, where Spark presented, once more,

a linear increasing execution times for the majority of the numbers of partitions.

Although, when using the greatest numbers of partitions — multipliers seven and

eight —, the times to execute the walk were the lowest of these setups. When using

2–3 partitions-per-core multipliers, Spark delivered the best overall performance,

considering the three groups of operations (“Operators building”, “Walk execution”

and “Measurement”).

144 288 432 576 720 864 1008 1152
00:00:00

00:00:43

00:01:26

00:02:10

00:02:53

00:03:36

00:04:19

00:05:02

Operators building Walk execution Measurement

Number of partitions

E
xe

cu
tio

n
 ti

m
e

(h
h:

m
m

:s
s)

Figure 4.7: Execution times for 10 steps quantum walks on three worker nodes with
different number of partitions.

Observing Spark’s behavior for 15 steps quantum walks on Fig. 4.8, we noticed a

very similar shape in comparison to their equivalent setups when using two worker

nodes applying 1–6 multipliers. The previous situation that presented good overall

56

performance for seven and eight multipliers occurred again, but much more evident

for the former rate.

144 288 432 576 720 864 1008 1152
00:00:00

00:02:53

00:05:46

00:08:38

00:11:31

00:14:24

00:17:17

Operators building Walk execution Measurement

Number of partitions

E
xe

cu
tio

n
 ti

m
e

(h
h:

m
m

:s
s)

.

Figure 4.8: Execution times for 15 steps quantum walks on three worker nodes with
different number of partitions.

With 20 steps quantum walks (Fig. 4.9), the best overall execution times started

right away with the first partitions-per-core multiplier, linearly increasing as this

rate was also getting higher. For the last multipliers, a good performance was again

delivered.

144 288 432 576 720 864 1008 1152
00:00:00

00:07:12

00:14:24

00:21:36

00:28:48

00:36:00

00:43:12

00:50:24

00:57:36

Operators building Walk execution Measurement

Number of partitions

E
xe

cu
tio

n
 ti

m
e

(h
h:

m
m

:s
s)

Figure 4.9: Execution times for 20 steps quantum walks on three worker nodes with
different number of partitions.

The next set of experiments intends to check whether Spark is capable to provide

a reasonable scalability when doubling the available resources. To accomplish

this, we chose a set of steps which its correspondent numbers of nonzero elements

could increase in an approximate doubling-rate. The number of partitions for each

configuration was defined as eight times the number of cores, in an attempt to

57

produce working sets with an appropriate size to avoid possible out-of-memory errors.

Using these scenarios, Spark was able to scale-up with no execution issues.

We profiled the memory footprint for these setups, depicted in Fig. 4.10, which

shows that all the operators could fit into main memory, more precisely, the Spark’s

storage region, which is responsible to store the cached RDD and broadcast variables.

Interestingly, for the three largest walks, the required memory to store the operators,

final state and all the PDF, did not keep up with the double-increasing rate of

the available memory, what could allow us to simulate even largest walks for these

specific setups.

1 (20) 2 (25) 4 (30) 8 (35) 16 (42) 32 (50)
0

100

200

300

400

500

600

10.26 28.06
53.72

84.83

155.05

282.51

Required memory Storage region memory

Nodes (Steps)

M
em

o
ry

 fo
ot

pr
in

t (
G

B
)

Figure 4.10: Memory footprint for the scalability experiments.

Even though Spark showed us its capability to scale-up with no problems in

relation to the number of stored elements, the execution times of the simulations did

not keep in a constant rate, which is required to achieve a linear scalability. Although,

Spark produced execution times in a nearly linear rate, as can be seen in Fig. 4.11.

The exception of this case was a particular situation that occurred for the 30 steps

walk — using 192 cores (4 worker nodes) —, which its execution time was even higher

than the next configuration, and presented a higher standard deviation than all of

the other setups. Even though all the functionalities of the prototype are parallelized,

increasing only the number of worker nodes, and consequently, the number of cores

and the amount of memory, was not enough to attain a linear scalability.

The third set was intended to see how is the speedup produced by Spark, where

we fixated a 30 steps quantum walks while doubling the number of working nodes,

from one to 32. From Fig. 4.12, we see that Spark produced a sub-linear speedup,

although presenting results close to the linear (ideal) when utilizing one, two, four

and eight worker nodes. The performance started to degrade as a higher number of

worker nodes was used, indicating that the amount of data was not enough to require

a higher utilization of the cluster. We also highlight that the provided speedup when

58

0:46:20

1:31:57

2:32:34
2:03:12

2:47:56

4:39:58

0:21:36

0:43:12

1:26:24

2:52:48

5:45:36

11:31:12

48 96 192 384 768 1536

Ex
ec

u
�

o
n

 �
m

e
(h

h
:m

m
:s

s)

Cores

Linear Total �me

Figure 4.11: Scalability of Spark when doubling the number of cores and the problem
size.

utilizing 32 worker nodes was roughly the same as when using eight worker nodes.

6:58:55
5:04:52

2:32:34

1:05:41
0:47:59

1:01:19

0:11:15

0:22:30

0:45:00

1:30:00

3:00:00

6:00:00

12:00:00

24:00:00

48:00:00

48 96 192 384 768 1536

Ex
ec

u
�

o
n

 �
m

e
(h

h
:m

m
:s

s)

Cores

Linear speedup Prototype

Figure 4.12: Speedup produced by Spark for a 30 steps quantum walk, while doubling
the number of cores.

We also plot the efficiency for those experiments on Fig. 4.13. From this chart,

one can see that Spark provided, for the majority of the number of nodes, an above-

average efficiency, with the best values of almost 70% when utilizing two and four

worker nodes, and 80% for eight nodes. A loss of efficiency is recognized when

selecting a higher number of nodes, with values of 55% and 21%, corroborating with

the reduced speedup of the previous chart.

Moving to the last set of experiments, we aimed to discover whether Spark is

capable of handling large datasets while having to work with few computational

resources. For a higher increase in the number of nodes, an even higher increase in

the number of nonzero elements were chosen. As the expected number of elements

59

1.00

0.69 0.69
0.80

0.55

0.21

0.125

0.25

0.5

1

48 96 192 384 768 1536

Effi
ci
en

cy

Cores

Maximum Prototype

Figure 4.13: Efficiency of Spark for a 30 steps quantum walk, while doubling the
number of cores.

for these experiments would require a higher amount of memory in comparison

with what would be available, we had, once more, to choose very high numbers

of partitions, so the performed transformations on the RDD could produce small

working sets, avoiding any memory issues. On Fig. 4.14, we plot the required memory

for these quantum walks and the available memory of Spark’s storage region for each

configuration. As we can see, the required memory for this set of experiment is too

much larger than the available space, which resulted in Spark spilling to disk the

partitions that could not fit into their storage region. Fig. 4.15 exhibits the profiled

execution times for these setups, which presented long lasting simulation times as

expected, due to the reduced number of cores to process these quantum walks and

the necessity of Spark to read the partitions that were spilled to disk, instead of

accessing them directly from the memory.

1 (30) 2 (40) 4 (50)
0

50

100

150

200

250

300

55.47

129.91

261.43

Required memory Storage region memory

Nodes (Steps)

M
em

o
ry

 fo
ot

pr
in

t (
G

B
)

Figure 4.14: Memory footprint of large quantum walks processed by Spark when
possessing few computational resources.

60

48 (30) 96 (40) 384 (50)
00:00:00

04:48:00

09:36:00

14:24:00

19:12:00

24:00:00

28:48:00

33:36:00

Operators building Walk execution Measurement

Cores (Steps)

E
xe

cu
tio

n
 ti

m
e

(h
h:

m
m

:s
s)

Figure 4.15: Execution times of large quantum walks processed by Spark when
possessing few computational resources.

61

Chapter 5

Final Remarks

In this work, we used Apache Spark to simulate quantum walks with two interacting

particles on two-dimensional lattices, which can be considered as a problem with Big

Data characteristics due to the exponential growth of their data structures. To do

so, a prototype was developed atop of Apache Spark to validate its capability to

simulate larger quantum walks and to provide a generic simulation tool for this kind

of application.

This chapter starts with the conclusions and some observations regarding the

usage of Apache Spark to simulate DTQW. Next, future work comprising additional

features and possible enhancements to the developed prototype are presented.

5.1 Conclusions

To evaluate our approach, an extensive set of experiments were run on a HPC cluster.

The first experiments intended to observe how Spark behaves when simulating short

quantum walks when few worker nodes were utilized. Also, we applied a range of

partitions-per-core multipliers for each setup in order to determine the best numbers

of partitions for these smaller scenarios. Here, we noted that, in general, for small

problem sizes and using few computational resources (computing cores and available

memory), the number of partitions recommended by Spark, i.e., 2–3 times the number

of cores, are sufficient to achieve the best performances. Of course, depending on

the available memory and processing power, this ratio (partitions-per-core) must be

changed accordingly. For instance, when using fewer nodes and the problem size gets

larger, a higher number of partitions becomes necessary in order to Spark successfully

complete the simulations and delivering better performance.

A few other configurations were used to know whether Spark is capable to scale-

up when both the problem size and the number of cores were increased. For this

set of experiments, we noticed that Spark could handle all problem sizes with no

execution issues. In order to present a linear scalability, the execution times of all

62

these configurations should be kept constant. However, that was not possible using

our prototype and Spark’s default configurations.

Another set of experiments were executed to observe the speedup values provided

by Spark, consisting in keeping constant the problem size, while doubling the number

of worker nodes. Here, Spark presented better results. Even though we achieved

a sub-linear speedup, when utilizing one, two, four and eight worker nodes, the

prototype presented speedup values close to the ideal (linear). Also, we profiled

the efficiency of Spark considering the available resources. According to the results,

Spark allowed our prototype to achieve, in general, an above-average efficiency, with

the highest value of 80%.

A few last simulations were performed in an attempt to check if Spark could

handle large datasets while possessing few computational resources. The simulations

were run successfully when using an appropriate number of partitions. Here, longer

execution times were expected, due to a low number of computing cores and to the

available memory not being enough to hold all the dataset.

To conclude, we noticed that Spark delivered good performance when simulating

quantum walks and handled most simulations without issues. Moreover, our simulator

allowed the size of quantum walk instances to be increased beyond the possibilities

of single-processor, general-purpose computers.

5.2 Future Work

For future work, we first propose an extension of the experiments that considered

the scalability and speedup produced by Spark. Even though reasonable results

regarding these metrics were achieved with the present sets of experiments, the new

setups could comprise different partitions-per-core multipliers, in order to detect if

using different numbers of partitions would result in better or worse performances

for those metrics. Consequently, this would indicate what configurations could be

considered to achieve better scalability and a speedup even closer to the linear.

Regarding the implementation of our prototype, some enhancements can still be

made in order to offer a more complete set of features. First, a possible extension is

to add more modules in the code to consider other types of meshes. For instance,

to consider DTQW over general graphs. GraphX1, the Apache Spark’s API for

graphs, may be employed to that purpose. Even though the prototype requires

few steps to run a quantum walk simulation, we propose a construction of a web

interface to integrate with the our software in order to provide a more user-friendly

utilization, specially for researchers with few programming knowledges. Another

option for these users, is the capability of the prototype to read input files with the

1http://spark.apache.org/graphx/

63

http://spark.apache.org/graphx/

characteristics of the quantum walk to be simulated. Allowing the simulation of

continuous-time or staggered quantum walks are also important additions to our

simulator. Besides, the simulator can be extended to consider another important

quantum algorithm, differentiating from the quantum walks presented so far: the

Grover’s search algorithm for unstructured databases, which searches for a marked

element quadratically faster than the classical counterpart. A last contribution to

our simulator can be the implementation of a resource manager, which would store

the resources information of the cluster being used and, based on some heuristic

and given some characteristics of the simulation, generate more accurate numbers

of partitions. This addition may help to accomplish the previously suggested set of

experiments.

64

Bibliography

[1] ALEJANDRO, R., SIRI, R., ABAL, G., et al. “Decoherence in the quantum

walk on the line”, Physica A: Statistical Mechanics and its Applications,

v. 347, pp. 137–152, 03 2005.

[2] THE APACHE FOUNDATION. “Spark 2.2.0 Documentation”. 2017. Available

at: <https://spark.apache.org/docs/2.2.0/>. Online.

[3] ZAHARIA, M., CHOWDHURY, M., DAS, T., et al. “Resilient Distributed

Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Comput-

ing”. In: Presented as part of the 9th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 12), pp. 15–28. USENIX, 2012.

ISBN: 978-931971-92-8.

[4] HOLDEN KARAU, R. W. High Performance Spark. Sebastopol, CA, USA,

O’Reilly Media, 2017.

[5] FEYNMAN, R. P. “Simulating Physics with Computers”, International Journal

of Theoretical Physics, v. 2, n. 6/7, 1982.

[6] MONTANARO, A. “Quantum algorithms: an overview”, npj Quantum Informa-

tion, v. 2, n. 15023, 2016.

[7] VENEGAS-ANDRACA, S. E. “Quantum walks: a comprehensive review”,

Quantum Information Processing, v. 11, n. 5, pp. 1015–1106, 2012.

[8] DAVID SANTOS DE SOUZA, FRANKLIN DE LIMA MARQUEZINO, A. D. A.

B. L. “A Classical Simulator of Quantum Walks on Computer Clusters”.

In: 4th Conference of Computational Interdisciplinary Sciences, pp. 84(1)–

84(10), 2016.

[9] PORTUGAL, R. Quantum walks and search algorithms. New York, Springer

Science & Business Media, 2013.

[10] MARQUEZINO, F. L. Análise, simulações e aplicações algoŕıtmicas de cam-

inhadas quânticas. Doctoral Thesis, National Laboratory for Scientific

Computing, Petrópolis, Brazil, 2010.

65

https://spark.apache.org/docs/2.2.0/

[11] OLIVEIRA, A. C., PORTUGAL, R., DONANGELO, R. “Decoherence in

Two-Dimensional Quantum Walks”, Physical Review A, v. 74, n. 012312,

07 2006.

[12] AHLBRECHT, A., ALBERTI, A., MESCHEDE, D., et al. “Molecular binding

in interacting quantum walks”, New Journal of Physics, v. 14, n. 073050,

2012.

[13] RUDINGER, K., GAMBLE, J. K., WELLONS, M., et al. “Noninteracting

multiparticle quantum random walks applied to the graph isomorphism

problem for strongly regular graphs”, Phys. Rev. A, v. 86, n. 022334, Aug

2012.

[14] CHILDS, A. M., GOSSET, D., WEBB, Z. “Universal Computation by Multi-

particle Quantum Walk”, Science, v. 339, n. 6121, pp. 791–794, 2013. doi:

10.1126/science.1229957.

[15] OMAR, Y., PAUNKOVIĆ, Y., L, S., et al. “Quantum Walk on a Line with

Two Entangled Particles”, Physical Review A, v. 74, n. 042304, 2006.

[16] DEAN, J., GHEMAWAT, S. “MapReduce: Simplified Data Processing on Large

Clusters”, 6th Symposium on Operating System Design and Implementa-

tion, pp. 137–150, 2004.

[17] SHI, J., QIU, Y., MINHAS, U. F., et al. “Clash of the Titans: MapReduce vs.

Spark for Large Scale Data Analytics”, Proc. VLDB Endow., v. 8, n. 13,

pp. 2110–2121, 2015.

[18] ZAHARIA, M., KARAU, H., KONWINSKI, A., et al. Learning Spark. Se-

bastopol, CA, USA, O’Reilly Media, 2015.

[19] MARQUEZINO, F., PORTUGAL, R. “The QWalk Simulator of Quantum

Walks”, Computer Physics Communications, v. 179, pp. 359–369, 04 2008.

[20] LEÃO, A. B. Um novo simulador de alta performance de caminhadas quânticas.

Master Thesis, National Laboratory for Scientific Computing, 2015.

[21] FALK, M. D. “Quantum Search on the Spatial Grid”, 03 2013.

[22] SZEGEDY, M. “Quantum Speed-Up of Markov Chain Based Algorithms”.

In: Proceedings of the 45th Annual IEEE Symposium on Foundations of

Computer Science, FOCS ’04, pp. 32–41, Washington, DC, USA, 2004.

IEEE Computer Society. ISBN: 0-7695-2228-9. doi: 10.1109/FOCS.2004.

53.

66

[23] ULLMAN, J. D., RAJARAMAN, A., LESKOVEC, L. Mining of Massive

Datasets. Cambridge, England, Cambridge University Press, 2014.

[24] THE APACHE FOUNDATION. “Spark Standalone Mode”. 2017. Avail-

able at: <https://spark.apache.org/docs/2.2.0/spark-standalone.

html>. Online.

[25] THE APACHE FOUNDATION. “Submitting Applications”. 2017.

Available at: <https://spark.apache.org/docs/2.2.0/

submitting-applications.html>. Online.

67

https://spark.apache.org/docs/2.2.0/spark-standalone.html
https://spark.apache.org/docs/2.2.0/spark-standalone.html
https://spark.apache.org/docs/2.2.0/submitting-applications.html
https://spark.apache.org/docs/2.2.0/submitting-applications.html

	List of Figures
	Introduction
	Motivation
	Organization

	Fundamental Concepts
	A Short Introduction to Quantum Mechanics
	Quantum Walks
	Single-Particle Quantum Walks
	Mesh Percolation
	Multiparticle Quantum Walk

	High-Performance Computing with Apache Spark
	The Apache Spark Framework
	Considerations when Using Spark

	Related Work

	Simulating Quantum Walks
	Our Quantum Walk Simulator
	Operators and States
	Coins
	Meshes
	Discrete Time Quantum Walk
	Probability Distribution Functions

	How to Use

	Experiments
	Methodology and Execution Environment
	Results

	Final Remarks
	Conclusions
	Future Work

	Bibliography

