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A indústria offshore de petróleo e gás é confrontada com a questão da instabili-

dade lateral dos arames das armaduras de tração de dutos flex́ıveis por mais de duas

décadas. A presente tese tem por objetivo investigar teórica e experimentalmente o

mecanismo subjacente da instabilidade lateral dos arames das armaduras de tração.

Um modelo anaĺıtico é desenvolvido para descrever a deflexão dos arames das ar-

maduras de tração de um duto flex́ıvel submetido a uma carga compressiva axial

constante associada à flexão ćıclica. Este modelo é capaz de avaliar a trajetória de

equiĺıbrio do arame das armaduras de tração após múltiplos ciclos de flexão em es-

tados estáveis, bem como estimar a carga compressiva axial cŕıtica que pode causar

a instabilidade lateral das armaduras de tração. Dois dutos flex́ıveis são ensaiados

numa câmara hiperbárica aplicando alta pressão hidrostática associada a múltiplos

ciclos de flexão. Os dados obtidos dos testes, bem como os dispońıveis na liter-

atura, são comparados com o limite de estabilidade lateral das armaduras de tração

estimado pelo presente modelo anaĺıtico, mostrando excelente concordância. Além

disso, algumas sugestões úteis para melhorar o projeto do tubo flex́ıvel contra a

instabilidade lateral das armaduras de tração são apresentadas.
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The offshore oil and gas industry has been confronted with the issue of armor

wire lateral instability in unbonded flexible pipes for over two decades. The objective

of the present thesis is by theoretical as well as experimental means to investigate

the underlying mechanism of the armor wire lateral instability. Analytical model

is developed to describe the armor wire deflection in a flexible pipe subjected to a

constant axial compressive load combined to cyclic bending. This model is capable

of evaluating the equilibrium path of the armor wire after numerous bending cycles

in stable states, as well as estimating the critical axial compressive load that may

cause the armor wire lateral instability failure. Two flexible pipes are tested in

a hyperbaric chamber applying high hydrostatic pressure combined to numerous

bending cycles. The obtained test data, as well as that available in the literature,

is compared with the armor wire lateral stability limit estimated by the present

analytical model, showing excellent agreement. Also, some useful suggestions for

improving the flexible pipe design against the armor wire lateral instability are

presented.
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Chapter 1

Introduction

1.1 Unbonded flexible pipe

Even though many countries are increasingly developing modern renewable energy,

fossil fuels, especially hydrocarbons, are still the major sources of the world energy.

Currently, approximately 30% of world oil and gas production is from offshore and

it is expected to continue to increase in the future. Since the 1990s, driven by

the decrease in the available number of oil and gas reservoirs in shallow waters,

the offshore industry was forced to move into deeper waters, which requires a wide

range of solutions. Unbonded flexible pipes are critical elements in deepwater oil and

gas development. Since the first successful application of flexible pipes in Enchova

field offshore Brazil in 1978 as part of a floating production system [2], over 3,300

flexible pipes are in service nowadays in various fields in North America, Latin

America, Europe, Middle-East, Asia-Pacific and Africa. They are often used either

as risers for transporting fluid between subsea installation and topside facilities or

as flowlines or jumpers for connecting subsea equipment as depicted in Fig. 1.1.

Unbonded flexible pipes are designed in accordance with API 17J [3] together with

the associated Recommended Practice API 17B [4]. The ancillary components for

flexible pipe system are presented in API 17L1 [5] and API 17L2 [6].

As the name implies, the main characteristic of a flexible pipe is its low relative

bending to longitudinal stiffness. The compliant structure provides flexible pipes

with many advantages over rigid pipes. Flexible pipes can be easily stored on limited

sized reels which simplifies transportation and installation. Besides, the application

of flexible risers allows for permanent connection between subsea installations and

floating facilities with large motions. Moreover, the use of flexible flowlines enables

routing in crowded subsea layouts.

Fig. 1.2 shows a typical un-bonded flexible pipe cross-section, which is com-

prised of a number of layers with specific functions. Essentially, the metallic layers
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Figure 1.1: Flexible pipe flowline and riser system examples (4Subsea).

provide structural strength and the polymeric layers offer fluid leak-proof capacity

and reduce the friction between metallic layers. The fluid barrier, also known as

the inner liner, is an extruded polymeric layer which contains the bore fluid. The

carcass locates beneath the fluid barrier, and is an interlocked metallic structure

with a high pitch angle that provides the fluid barrier with collapse resistance. The

pressure armor, which is also a metallic structure with a high pitch angle, is applied

over the fluid barrier to resist the hoop pressure and support the carcass against

radial compressive loads. The tensile armor wire layers, conventionally consisting

of helically wound steel wires with quasi-rectangular cross-section, bear most of the

tensile loads. In most applications of flexible pipes, two tensile armor wire layers

are employed with opposite lay angles. The anti-birdcage tapes, commonly made

of aramid fibers, are loosely wound over the tensile armor wire layers to reduce the

radial expansion of the armor wires in axial compression. Anti-wear tape, which is

a nonmetallic extruded thermoplastic sheath or tape wrapping, is generally applied

between metallic layers to reduce the friction abrasion. The outer sheath, which is

an extruded polymer layer, prevents the ingress of seawater and oxygen to the an-

nulus. The space between the fluid barrier and the outer sheath is referred to as the

pipe annulus. Those layers work independently and interact with each other which

generates the desired flexible pipe properties. Depending on the application, some

of those layers may not exist and additional layers may be employed. For instance,

in certain flexible pipe applications, multiple layers of highly insulating polymeric

tapes may be needed to improve thermal insulation properties for bore fluid.

To meet the increasing demand for the application of flexible pipe in ultra-deep
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Figure 1.2: Typical unbonded flexible pipe.

waters, new techniques have continued to be developed over last years. For the ap-

plication in ultra-deep waters, the top sections of flexible riser need to withstand a

high tensile load imposed by the suspended weight proportional to the water depth,

which causes severe fatigue problem in tensile armor wires and increases the instal-

lation and operation difficulty. Worse still, the presence of CO2 and H2S in some

offshore discoveries, such as the pre-salt discoveries in offshore Brazil, requires the

use of steel with reduced mechanical properties compared to a sweet service applica-

tion. Recent works [7–10] have shown the great potential of carbon fiber armor wire

in replacing conventional steel armor wire due to its higher tensile strength, excellent

corrosion resistance, and lower density. The application of carbon fiber armor wires

significantly reduces the overall weight of flexible pipe system, hence making the

simpler and less expensive riser configurations, e.g., free-hanging or free-standing

hybrid riser, possible in the ultra-deep water. However, it needs to be noted that

the carbon fiber composite material is subjected to hydrolysis which leads to degra-

dation of the mechanical performance at elevated temperatures. Other innovative

flexible pipe concepts within recent years include new polymer fluid barrier tech-

nology for pipe applications subjected to harsh bore environments, new design of

carcass to increase the flexible pipe resistance to the external ambient hydrostatic

3



pressure, new design of pressure armor to increase hydrostatic collapse performance

with an optimum weight/strength ratio [11], etc.

1.2 Armor wire instability in flexible pipe

Nowadays, major failures in flexible pipes are often driven by the failure of tensile

armor wire layers, which are the principle layers to carry the axial loads. As per

Eq. 1.1, the actual axial load carried by the flexible pipe wall Nreal is a function

of the effective axial load Nef and the axial load generated by the end-cap effect

(PinAin − PexAex) [4]:

Nreal = Nef + PinAin − PexAex (1.1)

where Pin and Pex are respectively the internal and external pressures, and Ain and

Aex denote respectively the cross-sectional areas where the internal and external

pressures act on. When the pipe annulus is dry or wet, Aex refers respectively to

the cross-sectional areas of the outer sheath and the fluid barrier.

Figure 1.3: Schematic of flexible pipe installation in the free-hanging configuration.

Due to the large effective tensile loads induced by the pipe self-weight and the

large internal pressure generated by the bore fluids, significant tensile loads are usu-

ally experienced by a flexible pipe in most of its service life. Nevertheless, under

certain conditions, large axial compressive loads may also be experienced. For flexi-

ble pipe installation in deep water, the pipe is normally free hanging from the pipelay

4



vessel with pipe bore empty due to the limitation of the pipelay vessel tensioning

capacity, see Fig. 1.3. Note that such empty bore condition is mandatory for the

installation of gas export flexible pipes as there is a high risk of hydrate formation

when there is remaining water inside the pipe. Also, there is no guarantee that the

flexible pipe bore is filled with fluids during the entire service life. Consequently, a

compressive load may be generated by the reversed end-cap effect. Besides, nega-

tive effective axial loads may also be generated when the host platform is in near

conditions (low top angle) and a large heave of host platform is experienced.

Driven by the axial compressive loads, the tensile armor wires tend to deflect

radially. If such radial expansion tendency is not properly restricted, a radial in-

stability mode, also known as birdcaging, may be provoked, as depicted in Fig.

1.4. The birdcaging failure mode has been the subject of research, among others

by SOUSA et al. [12], LI et al. [13], RABELO et al. [14], SÆVIK and THORSEN

[15], BORGES et al. [16], MALTA and MARTINS [17]. A widely applied technique

to prevent this failure mode is wrapping high strength tapes over the tensile armor

wires to restrict their radial expansions. Nevertheless, although the radial degree of

freedom is restricted by the anti-birdcage tapes, the armor wires still have space to

deflect in the lateral direction. In 1997, a pipelay vessel, contracted to run a vertical

connection in Marlim South 3 well in offshore Brazil, could not succeed in handling

the flexible pipe because its stiffness had unexpectedly diminished. At that time,

Marlim South 3, with a water depth of 1709 m, was the deepest offshore production

in operation [18]. After retrieval and dissection, an unconventional failure mode,

characterized by large lateral deflections in the tensile armor wires, was observed.

Such failure mode is nowadays well known as armor wire lateral instability, as de-

picted in Fig. 1.5. It was then demonstrated that the conventional method to avoid

the armor wire instability by reinforcing the anti-birdcage tapes had found a limit.

Figure 1.4: Birdcaging failure mode in a 6” flexible pipe obtained in the laboratory environment.
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Figure 1.5: Lateral instability in the inner armor wire layer of a 6” flexible pipe obtained in the
laboratory environment.

The armor wire lateral instability usually takes place in the touch-down zone, as

depicted in Fig. 1.3, where the largest external hydrostatic pressure is experienced

and cyclic bending is generated by the heave of the host platform. Cyclic bending

is essential for the formation of armor wire lateral instability since it facilitates the

armor wire sliding against the frictional resistance induced by the contact with the

neighboring layers. The armor wire lateral instability is prone to be formed when

the outer sheath is damaged, i.e., in the wet annulus condition, as the lateral sup-

port generated by the frictional forces is substantially reduced. Since the frictional

resistance on the inner armor wires is less than that on the outer armor wires, the

lateral instability is always triggered by the failure of the inner armor wires. Once

the lateral instability is triggered, significant pipe shortening and twist will be gen-

erated, which may cause the unlock of the pressure armor layer. Compared with

the birdcaging failure mode, the armor wire lateral instability is more difficult to be

identified by visual inspection as the outer shield often remains intact and there is

no noticeable change in the pipe outer diameter.

1.3 Research objectives

The overall objective of the present work is to gain further insight in the armor wire

lateral instability mechanism, in especial to estimate the critical condition that may

lead to this failure mode, as well as to provide recommendations for improving the

design of flexible pipes against this failure mode. Key aspects of the present work

are:

• Analytical treatment of six coupled Love’s differential equations for curved

beams through the application of a perturbation technique;

• Evaluation of the armor wire sliding direction and velocity in a flexible pipe
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subjected to dynamic bending and certain axial compressive loads;

• Evaluation of the armor wire equilibrium path after numerous bending cycles

in the stable state as well as the corresponding pipe longitudinal shortening;

• Evaluation of the critical loading condition that may eventually lead to the

armor wire lateral instability after numerous bending cycles;

• Discussion of the armor wire axial rotation when a gap is formed between the

armor wire and the inner core in axial compression;

• Discussion of the effect of the lateral contact of adjacent armor wires on the

lateral instability mechanism;

• Test of two 6-inch flexible pipes in hyperbaric chamber applying hydrostatic

pressure combined to cyclic bending concerning the lateral instability failure;

• Recommendations for improving the design of flexible pipes against armor wire

lateral instability.

1.4 Thesis organization

The thesis is organized in 7 chapters. Chapter 1 gives an introduction to this topic

and the other chapters are briefly summarized as follows.

In Chapter 2, a literature survey of previous work regarding flexible pipe armor

wire lateral instability is presented.

In Chapter 3, an analytical model for the armor wire lateral instability is devel-

oped. A perturbation technique is proposed to linearize Love’s differential equations

for curved beams. Whether the armor wire is able to rotate in its own axis when

a gap is formed in axial compression is discussed. Under certain circumstance, the

sliding direction and velocity of the armor wire in dynamic bending are approxi-

mately evaluated. Finally, the armor wire equilibrium path in the stable state, as

well as the critical axial compression that may lead to the lateral instability, are

obtained.

In Chapter 4, the armor wire mechanical behaviors in cyclic bending in the equi-

librium state are discussed including the armor wire equilibrium path, curvatures,

moments, frictional forces, stresses, longitudinal shortening as well as the lateral

contact of the adjacent armor wires.

In Chapter 5, tests of two 6-inch flexible pipes concerning the armor wire lateral

instability are presented and discussed. This is followed by a comparison between

the present analytical results and the data of the present tests as well as the existing

data in the literature.
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In Chapter 6, some recommendations for improving the design of flexible pipes

against the armor wire lateral instability are presented.

In Chapter 7, concluding remarks, as well as recommendations for the future

work, are presented.
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Chapter 2

Literature review

To date, considerable effort has been made by industrial and academic research

groups to improve the understanding of flexible pipe armor wire lateral instability

mechanism.

Since the first discovery of armor wire lateral instability failure mode, flexible

pipes have been tested through DIP (Deep Immersion Performance) tests, which

were carried out in offshore fields where the conditions were very similar to what

flexible pipes would encounter during their installation and service life. In the DIP

tests, the flexible pipe samples, with inner core empty, were usually suspended

from the installation vessel in the free-hanging configuration with a small top angle

and tested in both dry and flooded annulus conditions for a few hours. DIP tests

have been reported by BECTARTE and COUTAREL [19], CUSTÓDIO et al. [20],

SECHER et al. [21]. Although the DIP tests provide reliable results since they sim-

ulate directly the installation process, they are very expensive and time-consuming,

hence it is necessary to have alternative protocols more practical and economic for

armor wire lateral instability tests.

To develop testing alternatives to reduce the high cost of DIP tests, several

test rigs were constructed by few laboratories. A compression rig and a bending-

compression rig were assembled respectively at the Research and Development Cen-

ter of Petrobras (CENPES) and Federal University of Santa Catarina (UFSC) in

Brazil [18]. Afterward, similar bending-compression test rigs were constructed by

NKT-Flexibles in Denmark [22] and SINTEF Ocean in Norway [23]. While the com-

pression rig is only applicable for the test in the straight pipe condition, bending-

compression rigs enable the application of axial compression and cyclic bending

simultaneously. To avoid the out-of-plane curvature induced by gravitational ef-

fects, the bending was applied in the vertical plane in those bending-compression

rigs. Nevertheless, it needs to be noted that the hydrostatic end-cap effect was repre-

sented in an indirect way that the mechanical loading was applied at the pipe sample

ends at atmospheric pressure. Thus, it only partially represents the wet annulus con-
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dition. Besides, the mechanical system may generate out of plane deformation which

jeopardizes the test representativeness. To overcome those drawbacks brought by

mechanical rigs, bending hyperbaric chambers were implemented, through which

the axial compressive loads on the pipe sample are generated by the hydrostatic

pressure directly. An example of a bending hyperbaric chamber was reported by

SECHER et al. [21]. Besides, a bending hyperbaric chamber was constructed in the

laboratory Núcleo de Estruturas Oceânicas (NEO) at Federal University of Rio de

Janeiro.

Besides the investigation by experimental means, computational tools for the

analysis of complex armor wire mechanical behavior are also in great demand. Two

configurations have been widely used to describe the armor wire path within the

pipe wall: geodesic and loxodromic curves. By employing the geodesic curve, the

armor wire is assumed seeking an equilibrium path corresponding to the shortest line

on the torus. On the other hand, by employing loxodromic curve, the armor wire

transverse deflection is assumed ignored. The geodesic curve has been employed

among others by OUT and VON MORGEN [24]. However, due to the frictional

resistance, the armor wire is actually not able to reach the path corresponding to the

geodesic curve. The study of SÆVIK [25] demonstrated that, due to the frictional

resistance, the armor wire sliding is primarily axial when a flexible pipe is subjected

to tension and dynamic bending as proposed by WITZ and TAN [26]. Consequently,

applying the loxodromic curve, the slip initiation and progression of the armor wire

subjected to bending and tension have been investigated by KRAINCANIC and

KEBADZE [27]. Also based on the loxodromic curve assumption, finite element

formulations were developed by SÆVIK [28] for the prediction of armor wire sliding

and stresses. Nevertheless, the real path of armor wire on a bent cylinder is to be

found between the geodesic and loxodromic curves. In other words, the geodesic and

loxodromic curves represent respectively the upper and lower bounds for the armor

wire deflection. In addition, the pre-defined configurations prevent these models

from being applicable for the armor wire lateral instability analysis.

Without pre-assumed configurations, more general models have been continu-

ously developed in an effort to investigate the armor wire lateral instability mech-

anism. CUSTÓDIO [29] proposed an analytical model to access the stability limit

of flexible pipe armor wires under axisymmetric loading through the application of

a perturbation method by establishing an eigenvalue problem. BRACK et al. [30]

presented a finite element model through which the importance of torsional resis-

tance on the armor wire lateral instability was discussed by artificially changing

the torsional inertia of the armor wire. The bending effect was treated by altering

the initial helical geometry of the armor wire in a straight pipe and the frictional

resistance was ignored. TAN et al. [31] developed an analytical model for the sim-
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ulation of the armor wire instability and post-instability behaviors based on a total

strain energy approach. The results were calibrated by a series of DIP and pressure

chamber tests, but no details were presented. VAZ and RIZZO [32] developed a

finite element model using the commercial software Abaqus for the investigation of

armor wire instability in a straight pipe subjected to monotonic compressive loads.

Only two armor wires were built representing the inner and outer armor wire lay-

ers and the anti-birdcage tapes were modeled by spring elements, which makes the

analysis computationally light. Their study indicated that the armor wire instabil-

ity modes highly depend on the friction coefficient between the armor wire and the

adjacent layer and the radial expansive restriction from the anti-birdcage tapes and

external hydrostatic pressure. Also, a new radial instability mode characterized the

wrinkling of armor wires was reported. This model was thereafter improved by LI

[33] by considering the plastic behavior of armor wires and introducing the friction

between external armor wire and the outer sheath. A similar finite element model

was then developed by YANG et al. [34] using the curved beam method and the

obtained results were in accordance with the results of VAZ and RIZZO [32].

Moreover, a series of studies were presented by ØSTERGAARD et al. [35, 36, 37]

focusing on the armor wire lateral instability on a frictionless toroid, which was prin-

cipally achieved by establishing and solving a system of six order nonlinear differ-

ential equations. Meanwhile, a series of tests were also carried out, which indicates

that the estimation of lateral stability limit given by this numerical model lies on

the conservative side. Afterward, based on the results obtained by the numerical

model developed by ØSTERGAARD et al. [35] in the straight pipe condition, an

empirical model was proposed by PAIVA and VAZ [38] using symbolic regression to

evaluated the armor wire lateral stability limit. In addition, by applying the concept

of elastic stability theory, a finite element model was developed by GONZALEZ [39]

to investigate the armor wire lateral instability in a flexible pipe subjected to mono-

tonic axial compression and constant bending curvature. The frictional resistance

between the armor wires and the neighboring layers is modeled through spring ele-

ments. Based on the obtained numerical results, an empirical model was proposed

by means of symbolic regression. Also, a series of studies were presented by MALTA

and MARTINS [17, 40, 41] investigating the armor wire behavior in axial compres-

sion using finite element method, where the effects of the sample length and friction

coefficient were discussed.

More recently, few analytical models were proposed in an effort to identify the

critical axial load that may trigger the armor wire lateral instability. Assuming that

the buckling shape is sinusoidal and the full magnitude of frictional force is avail-

able in the transverse direction, SÆVIK and THORSEN [42] proposed an analytical

formulation for the prediction of armor wire lateral instability. However, since the
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frictional resistance in the transverse direction was overestimated and the effect of

cyclic bending was not considered, the lateral stability limit given by this model

was much higher than the test data. Besides, ignoring the frictional force, another

analytical model was proposed by SÆVIK and LI [43] considering varying buckling

length. It was demonstrated that the minimum stability limit can be found when

the buckling length is a little bit more than half armor wire pitch length. After-

wards, also based on a predefined harmonic buckling shape, an analytical model was

presented by SÆVIK and JI [44] and SÆVIK and THORSEN [15] for the predic-

tion of armor wire lateral stability limit on a frictionless cylindrical surface, whose

results were in accordance with the numerical results obtained by ØSTERGAARD

[22]. Thereafter, a similar analytical model was developed by LI et al. [45] using a

perturbation technique, however, without predefined deflection shape.

As previously mentioned, frictional resistance and cyclic bending play an impor-

tant role in the armor wire lateral instability mechanism. Nevertheless, none of the

abovementioned analytical and numerical models consider those factors simultane-

ously. There are few numerical models in the literature for the armor wire lateral

instability analysis that consider both friction and cyclic bending. ØSTERGAARD

et al. [46] presented a numerical approach to detect the lateral instability of a single

armor wire in constant axial compression and cyclic bending with frictional effect

included. Besides, a finite element model was developed by SÆVIK and THORSEN

[42] and SÆVIK and JI [44] which is applicable for the armor wire lateral instability

analysis. To save computational effort, only a few armor wires were modeled repre-

senting the entire armor wire layer. The finite element results were compared with

the test data from ØSTERGAARD [22] and good correlation was demonstrated.

Furthermore, also based on this finite element model, ZHOU et al. [47] investigated

the effect of anti-birdcage tape on the armor wire lateral instability mechanism. It

was demonstrated that the anti-birdcage tape may resist the pipe rotation in the

post-buckling state and hence affect the armor wire transverse deflection process.

In addition, considering uniform bending curvature and assuming each armor wire

within the same layer deflects equally, numerical models were developed by CA-

LEYRON et al. [1, 48], LUKASSEN [49] applying periodicity boundary conditions.

By this mean, each armor wire layer can be modeled by only one pitch of a single

armor wire, hence reducing significantly the computational effort. Their work in-

dicated that the lateral contact between neighboring armor wires may increase the

structural stabilization. It needs to be noted that, in all abovementioned numerical

models, a bi-linear Coulomb friction law was employed where the stick displacement

was chosen in a manner that the convergence can be obtained. However, since the

relative slip during each calculation step may not exceed the chosen stick displace-

ment, the full frictional force may not be applied.
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Despite it is demonstrated that the results given by some numerical models are

in good accordance with test data, large processing resources are demanded since

a significant number of bending cycles needs to be simulated. Thus, to save the

computational effort, as well as to improve the understanding of the underlying

mechanism, it is worth devoting effort in developing an analytical model for the

analysis of armor wire lateral instability with both frictional resistance and cyclic

bending considered.
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Chapter 3

Theory

3.1 Field equations for a single armor wire

In this section, a single armor wire in a flexible pipe is modeled as a thin curved

beam over a toroid through a consistent system of differential equations. The math-

ematical development is similar to the work presented by ØSTERGAARD et al. [35]

except that the armor wire rotation around its own axis is considered in the present

context.

3.1.1 Geometrical relations

Figure 3.1: Armor wire geometry and coordinate system.

Consider a flexible pipe bent to a toroid with minor and major radii respec-

tively denoted by r and R = 1/κ, see Fig.3.1. A parameterization of the toroid is
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established through u and θ, which respectively represent the longitudinal and cir-

cumferential positions of the points on the toroid. Besides, a Cartesian coordinate

system with principle directions x, y, z is defined by aligning x to the direction from

the center of the toroid to the center of the tube as depicted in Fig. 3.1. Conse-

quently, a point on the toroid in the Cartesian coordinate system can be defined

by:

X (u, θ) =

 (1/κ+ r cos θ) cos (κu)− 1/κ

−r sin θ

(1/κ+ r cos θ) sin (κu)

 (3.1)

The path of an armor wire in the flexible pipe can then be represented by a

curve on the toroid, which can be determined by specifying a relation between u

and θ. Such relation is herein defined by the angle between the curve tangent and

its projection in the longitudinal direction, represented by φ, as depicted in Fig.3.1.

Attach a local curvilinear coordinate triad of unit orthonormal vectors (t, n, b) on

the curve representing the tangential, normal and bi-normal directions respectively.

The unit tangent vector can be given by:

t =
∂X/∂u

‖∂X/∂u‖
cosφ+

∂X/∂θ

‖∂X/∂θ‖
sinφ (3.2)

Substituting Eq. 3.1 into Eq. 3.2, the unit tangent vector can be obtained as:

t =

 − cosφ sin (κu)− sinφ sin θ cos (κu)

− sinφ cos θ

cosφ cos (κu)− sinφ sin θ sin (κu)

 (3.3)

Alternatively, parameterizing the curve by its arc length, denoted by s, the unit

tangent vector can also be expressed as:

t =
∂X

∂u

du

ds
+
∂X

∂θ

dθ

ds
(3.4)

Comparing Eq.3.2 and Eq.3.4, the following relations can be identified:

du

ds
=

cosφ

1 + κr cos θ
(3.5)

dθ

ds
=

sinφ

r
(3.6)

As previously discussed in the introduction section, a gap may be formed between

the armor wires and the inner core in axial compression since the armor wires tend

to expand radially and push the anti-birdcage tapes. As a consequence, the armor

wire may have space to rotate around its own axis, see Fig. 3.2. Herein, such axial
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rotation is denoted by ω which represents the angle between the toroid normal vector

n0 and the armor wire normal vector n as depicted in Fig. 3.3.

Figure 3.2: Schematic of the armor wire axial rotation: contacts both the upper and lower
borders (left) and only contacts the upper border (right).

Figure 3.3: Armor wire cross-section: contacts both the upper and lower borders (left) and only
contacts the upper border (right).

The unit toroid normal vector can be given by:

n0 =
∂X/∂u× ∂X/∂θ

‖∂X/∂u× ∂X/∂θ‖
(3.7)

and b0 is defined by:

b0 = t× n0 (3.8)

Applying Eqs.3.1 and 3.3 into Eqs. 3.7-3.8 yields:

n0 =

 cos θ cos (κu)

− sin θ

cos θ sin (κu)

 (3.9)

b0 =

 − sinφ sin (κu) + cosφ sin θ cos (κu)

cosφ cos θ

cosφ sin θ sin (κu) + sinφ cos (κu)

 (3.10)
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Consequently, the triad of unit vectors on the armor wire (t, n, b) can be deter-

mined by rotating the unit vector frame (t,n0, b0) in the axial direction through the

following transformation matrix: t

n

b

 =

 1 0 0

0 cosω sinω

0 − sinω cosω


 t

n0

b0

 (3.11)

Thereafter, substituting Eqs. 3.9-3.10 into Eq. 3.11, the unit normal and bi-

normal vectors on the armor wire can be obtained as:

n =

 cosφ sin θ cos (κu) sinω − sinφ sin (κu) sinω + cos θ cos (κu) cosω

cosφ cos θ sinω − sin θ cosω

sinφ cos (κu) sinω + cosφ sin θ sin (κu) sinω + cos θ sin (κu) cosω

 (3.12)

b =

 − cos θ cos (κu) sinω − sinφ sin (κu) cosω + cosφ sin θ cos (κu) cosω

sin θ sinω + cosφ cos θ cosω

− cos θ sin (κu) sinω + cosφ sin θ sin (κu) cosω + sinφ cos (κu) cosω


(3.13)

3.1.2 Wire curvature components

In the differential geometry of surfaces, the first order derivatives of the triad vectors

with respect to the curve arc length can be defined by the Darboux frame, which is

the analog of the Frenet–Serret frame as applied to surface geometry:

d

ds

 t

n

b

 =

 0 κn −κg
−κn 0 τ

κg −τ 0


 t

n

b

 (3.14)

where κg, κn, τ are respectively the geodesic curvature, normal curvature and tor-

sion. Thus, the curvature components can be determined by:

κg = −bdt
ds

= t
db

ds
(3.15a)

κn = n
dt

ds
= −tdn

ds
(3.15b)

τ = −ndb
ds

= b
dn

ds
(3.15c)

Substituting Eqs. 3.3, 3.12-3.13 into Eqs. 3.15a-3.15c, the geodesic curvature,
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normal curvature and torsion of the armor wire can be obtained respectively as:

κg =− sin2φ

κr2 cos θ + r

[
sinω − (1 + κr cos θ)

r cosω

sin2φ

dφ

ds

− κr

sin2φ
(cosφ sin θ cosω − cos θ sinω)

] (3.16a)

κn =− sin2φ

κr2 cos θ + r

[
cosω + (1 + κr cos θ)

r sinw

sin2φ

dφ

ds

+
κr

sin2φ
(cos θ cosω + cosφ sin θ sinω)

] (3.16b)

τ =
dω

ds
− 1

2

sin 2φ

κr2 cos θ + r
(3.16c)

3.1.3 Equilibrium equations

Considering the armor wire as a thin curved beam, the componentwise equilibrium

equations for a curved beam derived by LOVE [50] can be applied:

dPt
ds
− κnPn + κgPb + pt = 0 (3.17a)

dPn
ds

+ κnPt − τPb + pn = 0 (3.17b)

dPb
ds
− κgPt + τPn + pb = 0 (3.17c)

dMt

ds
− κnMn + κgMb +mt = 0 (3.17d)

dMn

ds
+ κnMt − τMb − Pb +mn = 0 (3.17e)

dMb

ds
− κgMt + τMn + Pn +mb = 0 (3.17f)

where Pt, Pn, Pb, Mt, Mn, Mb, pt, pn, pb, mt, mn, mb are respectively the cross-

sectional forces and moments, the external forces and moments on the armor wire

in the tangential, normal and bi-normal directions. Assuming the neighboring armor

wires in the same layer do not contact each other before the lateral instability failure,

mn can be deemed zero. Besides, mb is also assumed zero.

3.1.4 Constitutive equations

Considering that the armor wire cross-sectional dimensions are small compared to

the pipe diameter and the armor wire strains are small, the following linear consti-
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tutive relations can be applied:

Mt = GJ∆τ = GJ
(
τ − τ i

)
(3.18a)

Mn = EIn∆κg = EIn
(
κg − κig

)
(3.18b)

Mb = EIb∆κn = EIb
(
κn − κin

)
(3.18c)

Pt = EAε = EA

(
ds

dsi
− 1

)
(3.18d)

where E, G, A, In, Ib, J , ε are respectively the Young’s modulus, the shear modulus,

the cross-sectional area, the normal inertia, the transverse inertia, the stiffness of

torsion and the axial strain of the armor wire, κig, κ
i
n, τ i and si denote respectively

the armor wire curvature components and arc length in the stress-free state, and

∆κg, ∆κn, ∆τ represent the curvature variations relative to the stress-free state.

Assume that the armor wire is installed stress-freely during flexible pipe fabrication

where the armor wire is helically wound with a constant lay angle φi in the straight

pipe condition and the armor wire normal direction coincides with the toroid nor-

mal direction. Thus, the curvature components in the stress-free condition can be

obtained by substituting κ = 0, ω = 0 and φ = φi into Eqs. 3.16a-3.16c respectively

as:

κig = 0 (3.19a)

κin = −sin2φi

r
(3.19b)

τ i = −sin 2φi

2r
(3.19c)

Considering the armor wire cross-section as a wide rectangle and denoting the

armor wire width and thickness respectively by W and H, the stiffness of torsion

can be approximately evaluated by [51]:

J = WH3

(
1

3
− 64

π5

H

W

)
(3.20)

3.1.5 Boundary conditions

For a flexible pipe subjected to longitudinal compressive loads combined to cyclic

bending, a longitudinal shortening will be generated due to the armor wire axial

strain and transverse slip. Meanwhile, since a flexible pipe conventionally consists

of an even number of armor wire layers with opposite lay angles, it is reasonable

to ignore the axial rotation of a flexible pipe in axial compression before any armor

wire lateral instability takes place. Moreover, as the armor wire lateral instability

generally occurs in the touchdown zone which is far away from the pipe ends, the

19



boundary effect from the pipe ends can be disregarded and it is thus reasonable

to consider the deflection of each armor wire within the same layer identical and

periodical. Due to symmetry, the armor wire can be assumed approximately fixed on

the underlying toroid in the positions of intrados and extrados. Thus, the following

boundary conditions are employed in the present context: (i) the toroid is deformable

in the longitudinal and bending directions, however, with the rotational degree of

freedom fixed; (ii) the armor wire is pinned on the toroid in the positions of intrados

and extrados.

In summary, the aforementioned differential equation system for a single armor

wire contains 18 unknowns including three geometrical parameters u, θ, φ, three

curvature components κg, κn, τ , three internal forces Pt, Pn, Pb, three external

forces pt, pn, pb, three internal moments Mt, Mn, Mb, one external moment mt, the

armor wire axial strain ε and axial rotation ω. Nevertheless, only 15 independent

equations are formulated including Eqs. 3.5-3.6, 3.16a-3.16c, 3.17a-3.17f, 3.18a-

3.18d. The imbalance between the numbers of equations and unknowns is due to

the lack of formulas regarding the axial rotation ω and the external forces pt and pb,

which will be discussed respectively in sections 3.3 and 3.4.

3.2 Linearization through a perturbation tech-

nique

In practical applications of flexible pipes, the ratio between the pipe radius to the

bending radius is generally small, i.e., |κr| � 1. As a consequence, the armor wire

transverse deflection is small before any lateral instability takes place. Thus, the

armor wire equilibrium path can be therefore approximately evaluated by adding

small corrections to the helix path through a perturbation method.

Figure 3.4: Initial and deformed paths of half armor wire pitch length.

Fig. 3.4 depicts the paths of half armor wire pitch in the initial and deformed

states, where ui (θ) and uh (θ) represent respectively the initial helix path and the
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new helix path on the deformed toroid, ∆φ1 represents the angle difference between

the initial and new helixes in the straight pipe condition. The armor wire path on

the toroid in the deformed state can then be expressed by:

u (θ) = uh (θ) + ∆u (θ) (3.21)

where ∆u (θ) denotes the armor wire displacement relative to the new helix due to

slips. Similarly, denote the armor wire lay angle in the deformed state by:

φ (θ) = φi + ∆φ (θ) = φi + ∆φ1 + ∆φ2 (θ) (3.22)

where ∆φ2 is the armor wire lay angle variation relative to the new helix angle and

∆φ is the sum of ∆φ1 and ∆φ2.

Thereafter, combining Eqs. 3.5-3.6, the following relations can be obtained:

duh

dθ
= r cot

(
φi + ∆φ1

)
(3.23a)

du

dθ
=

r cotφ

1 + κr cos θ
(3.23b)

Deriving Eq. 3.21 in terms of the angular coordinate and employing Eqs. 3.23a-

3.23b yields:
r cotφ

1 + κr cos θ
= r cot

(
φi + ∆φ1

)
+
d∆u

dθ
(3.24)

Then, expanding Eq. 3.24 and considering κr, ∆φ1 and ∆φ2 as small terms, the

armor wire lay angle variation relative to the new helix angle can be approximately

obtained as:

∆φ2 (θ) = −κr sin 2φi

2
cos θ − sin2φi

r

d∆u

dθ
(3.25)

Thereafter, integrating Eq. 3.6 for half armor wire pitch in the initial and de-

formed states, the following relation can be obtained through Cauchy’s definition of

strain: ∫ π

0

r

sinφ (θ)
[1− ε (θ)] dθ =

πr

sinφi
(3.26)

The lay angle difference between the initial and the new helixes ∆φ1 can then

be obtained by substituting Eqs. 3.22, 3.25 into Eq. 3.26. With ∆φ1 obtained, the

flexible pipe longitudinal strain, defined by the longitudinal shortening divided by

the original pipe length in the straight pipe condition, can be given by:

∆L̄ = 1− tanφi

tan (φi + ∆φ1)
(3.27)

Intuitively, due to the strong constraint generated by the adjacent layers, even
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if the armor wire may rotate axially, the axial rotation should be small when no

lateral instability takes place, i.e., |ω| � 1. Consequently, the previously developed

formulas can be approximately linearized by solely keeping the first order small

terms of κr, ω and ∆u. For the sake of convenience, hereafter all the variables

are expressed in terms of the angular coordinate θ instead of the armor wire arc

length s by using Eq. 3.6. Substituting Eqs. 3.22, 3.25 into Eqs. 3.16a-3.16c and

ignoring the higher order small terms, the armor wire curvature components can be

approximately evaluated by:

κg (θ) = κ
(
1 + sin2φi

)
cosφi sin θ − sin3φi

r2
d2∆u

dθ2
− sin2φ

r
ω (3.28a)

κn (θ) = −sin2φi

r
+−κ cos 2φicos2φi cos θ + 2

sin3φi cosφi

r2
d∆u

dθ
(3.28b)

τ (θ) = −sin 2φi

2r
+ 2κ sinφicos3φi cos θ +

sin2φi cos 2φi

r2
d∆u

dθ
+

sinφi

r

dω

dθ
(3.28c)

Afterwards, substituting Eqs. 3.19a-3.19c and 3.28a-3.28c into Eqs. 3.18a-3.18c,

the armor wire cross-sectional moments in the tangential, normal and bi-normal

directions can be approximately determined respectively by:

Mt (θ) = GJ

(
2κ sinφicos3φi cos θ +

sin2φi cos 2φi

r2
d∆u

dθ
+

sinφi

r

dω

dθ

)
(3.29a)

Mn (θ) = EIn

[
κ
(
1 + sin2φi

)
cosφi sin θ − sin3φi

r2
d2∆u

dθ2
− sin2φi

r
ω

]
(3.29b)

Mb (θ) = EIb

[
−κ cos 2φicos2φi cos θ +

2sin3φi cosφi

r2
d∆u

dθ

]
(3.29c)

Subsequently, substituting Eqs.3.28a-3.28b, 3.29a-3.29c into Eq.3.17d and ignor-

ing the higher order small terms, the external moment on the armor wire in the

axial direction can be obtained as:

mt (θ) =
(
EInsin2φi −GJ cos 2φi

) sin3φi

r3
d2∆u

dθ2

− κ

r

[
EIn

(
1 + sin2φi

)
− 2GJcos2φi

]
sin2φi cosφi sin θ

−GJ sin2φi

r2
d2ω

dθ2
+ EIn

sin4φi

r2
ω

(3.30)

Thereafter, substituting Eqs. 3.28a-3.28c and 3.29a-3.29c into Eqs. 3.17f, 3.17e

and ignoring the higher order small terms, the armor wire cross-sectional forces in
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the normal and bi-normal directions can be evaluated respectively by:

Pn (θ) =− (EIn + 2EIb)
sin4φi cosφi

r3
d2∆u

dθ2

+
κ

r

[
EIn

(
1 + sin2φi

)
− EIb cos 2φi

]
sinφicos2φi sin θ

− EIn
sin3φi cosφi

r2
ω

(3.31)

Pb (θ) =− EIn
sin4φi

r3
d∆u

dθ
+

(
EIb −GJ

cos 2φi

2cos2φi

)
2sin4φicos2φi

r3
d∆u

dθ

+
κ

2r

[
EIn

(
1 + sin2φi

)
− EIb cos 2φicos2φi − 1

2
GJsin22φi

]
sin 2φi cos θ

− sin3φi

r2
(EIn +GJ)

dω

dθ
(3.32)

Subsequently, substituting Eqs. 3.28a, 3.28c, 3.31-3.32 into Eq. 3.17b-3.17c and

ignoring the higher order small terms, the external forces on the armor wire in the

normal and bi-normal directions can be evaluated respectively by:

pn (θ) =
sin2φi

r
Pt (θ) (3.33)

pb (θ) =EIn
sin5φi

r4
d4∆u

dθ4
− [Pt (θ)− P1]

sin3φi

r2
d2∆u

dθ2

+ κ [Pt (θ)− P2]
(
1 + sin2φi

)
cosφi sin θ

+
sin4φi

r3
(EIn +GJ)

d2ω

dθ2
−
(
Pt (θ) + EIn

sin22φi

4r2

)
1

r
sin2φiω

(3.34)

In which P1 and P2 are constants corresponding to the armor wire characteristics:

P1 =
sin2φi

r2
(
−EIncos2φi − 4EIbcos2φi +GJ cos 2φi

)
(3.35a)

P2 =
sin2φi

r2

[
−EIn

(
1 + cos2φi

)
+ EIb

2cos2φi cos 2φi

1 + sin2φi
+GJ

sin22φi

2 + 2sin2φi

]
(3.35b)

Since the lateral instability may only occur when large axial compressive loads

are applied, it is reasonable to consider that the armor wire cross-sectional force

variation in its tangential direction induced by bending and displacement is small.

Thus, substituting Eqs. 3.28a-3.28b, 3.31-3.32 into Eq. 3.17a and ignoring the higher

order small terms, the armor wire cross-sectional force in the tangential direction

can be approximately evaluated by:

Pt (θ) = Pt (θ0)−
r

sinφi

∫ θ

θ0

ptdθ (3.36)
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3.3 Axial rotation discussion

Assume that the armor wire experiences axial rotation and the gap is insufficiently

big that the armor wire contacts both the outer layer and the pipe core, as depicted

in Fig. 3.3 (left). Denoting the contact forces at the upper and lower interfaces with

the neighboring layers respectively by pup and plow, the torque on the armor wire in

the axial direction can be evaluated by:

mt = − (pup + plow)
W

2
cosω (3.37)

Besides, the equilibrium condition of the forces in the toroid normal direction is

given by:

pn cosω − pb sinω = plow − pup (3.38)

Making pup in Eq. 3.37 substituted by Eq. 3.38, the torque can be rewritten as:

mt = (pn cosω − pb sinω)
W

2
cosω − plowW cosω (3.39)

Substituting Eqs. 3.33-3.34 into Eq. 3.39 and ignoring the higher order small

terms yields:

mt (θ) = Pt (θ)
W sin2φi

2r
− plow (θ)W (3.40)

If the gap is sufficiently big that the armor wire contacts the upper border but

does not contact the pipe core, as depicted in Fig. 3.3 (right), the torque on the

armor wire can be given by setting plow = 0 in Eq. 3.40.

Noting that Eq. 3.30 only contains small terms and Pt is large in case of lateral

instability, it can be seen that the torque given by Eq. 3.40 is much larger than that

given by Eq. 3.30 no matter whether the armor wire contacts the pipe core or not.

In other words, if the armor wire rotates axially, the generated torque, as given by

Eq. 3.40, is much larger than the required torque for equilibrium, as given by Eq.

3.30. This is corresponding to a state that, for a single armor wire in compression,

the axial rotation is unlikely to be initiated even the gap is formed since the external

constraint on the armor wire axial rotation generated by the contact forces is strong.

Thus, to evaluate the armor wire lateral stability limit, it is reasonable to consider

the armor wire normal vector coinciding with the toroid normal vector, i.e., ω = 0.
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3.4 Sliding and frictional forces in dynamic bend-

ing

To investigate the armor wire sliding in cyclic bending, it is important to determine

the directions and magnitudes of the frictional forces on the armor wire. Fig. 3.4

shows a diagram for the frictional force components on a point on the armor wire

sliding on the toroid tangent space from A to A′, where d∆t/dκ and d∆b/dκ denote

respectively the sliding rates of the point on the armor wire relative to the toroid in

the tangential and bi-normal directions with respect to the bending curvature. As

frictional force acts in the opposite direction of relative sliding, the following relation

should hold:
d∆b

dκ

1

pb
=
d∆t

dκ

1

pt
< 0 (3.41)

Figure 3.5: Sliding directions and friction components for a point sliding on the toroid tangent
space from A to A′.

Considering a point on the armor wire at θ = θs, the arc length of the armor wire

from a point at θ = nπ (n is an integer), representing the intrados or extrados, to

the point at θ = θs can be calculated by integrating Eq. 3.6 in terms of the angular

coordinate as:

s (θs, κ) = r

∫ θs

nπ

1

sinφ
dθ (3.42)

Make the armor wire lay angle in Eq. 3.42 substituted by Eqs. 3.22 and 3.25.

Then, by deriving Eq. 3.42 in terms of bending curvature and considering that

the armor wire axial strain due to bending is ignorable, the instantaneous angular

coordinate variation rate of this point on the armor wire with respect to the bending

curvature can be approximately evaluated by:

dθs
dκ

= −rcos2φi sin θs −
sin 2φi

2r

∫ θs

nπ

d

dκ

(
d∆u

dθ

)
dθ (3.43)
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Assuming that the armor wire sliding is primarily axial in cyclic bending, the

integral term in Eq. 3.43 can be taken as a small term. Consequently, considering

that the armor wire is fixed on the toroid in the positions of intrados and extrados

and disregarding the shear deformation of the underlying polyamide anti-friction

tape, the sliding rate of this point in the tangential direction with respect to the

bending curvature can be approximately evaluated by:

d∆t (θs)

dκ
=
dθs
dκ

r

sinφ
(3.44)

Substituting Eq. 3.43 into Eq. 3.44, making the armor wire lay angle substituted

by Eqs. 3.22 and 3.25 and ignoring the higher order small terms, the armor wire

sliding rate in the tangential direction with respect to the bending curvature can be

approximately evaluated by:

d∆t (θ)

dκ
= −r2 cos2φi

sinφi
sin θ (3.45)

According to Eq. 3.45, the armor wire tangential sliding directions in cyclic

bending are illustrated in Fig. 3.6.

Figure 3.6: Schematic of the armor wire tangential sliding direction in cyclic bending.

Subsequently, as the armor wire sliding rate in the tangential direction with

respect to the bending curvature has been obtained, its sliding rate in the bi-normal

direction with respect to the bending curvature can be determined using Eq. 3.41

when the frictional forces in the tangential and bi-normal directions are obtained.

Since the inner armor layer is the critical layer for lateral instability due to less

frictional resistance especially when the armor annulus is flooded, the next task is

thus to evaluate the frictional forces on the inner armor wire in the wet annulus

condition.

Assume that the entire armor wire slides in bending. Using Coulomb frictional
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model, the frictional forces on the inner armor wire under the given condition should

satisfy the following relation:

pt(θ)
2 + pb(θ)

2 = µ2pn(θ)2 (3.46)

where µ is the friction coefficient between the armor wire and the anti-friction tape.

Since the armor wire sliding is assumed primarily axial, the frictional force com-

ponent in the bi-normal direction is thus much smaller than that in the tangential

direction. Consequently, Eq. 3.46 can be approximately simplified as:

|pt (θ)| ≈ µ |pn (θ)| (3.47)

Combining Eqs. 3.33, 3.36 and substituting into 3.47, the frictional and cross-

sectional forces on the inner armor wire in the tangential direction for one armor

wire pitch 0 ≤ θ ≤ 2π can be approximately obtained as:

pt (θ) =


∓Pt (0)

µsin2φi

r
e±µ sinφiθ 0 < θ < π

±Pt (0)
µsin2φi

r
e∓µ sinφi(θ−2π) π < θ < 2π

(3.48)

Pt (θ) =

{
Pt (0) e±µ sinφiθ 0 < θ < π

Pt (0) e∓µ sinφi(θ−2π) π < θ < 2π
(3.49)

where the upper and lower signs of ± and ∓ represent respectively the conditions

when the bending curvature increases or decreases. Pt (0) is the force in the inner

armor wire in the tangential direction at θ = 0. When the bending curvature

increases and decreases Pt (0) is denoted respectively by
_

P t (0) and
^

P t (0).

Figure 3.7: Longitudinal load evaluation assuming that each armor wire deflects identically.

Since the deflection of each armor wire within the same layer is assumed identi-

cal, the cross-sectional force of each armor wire within the same layer at the same

angular position is deemed the same, as illustrated by Fig. 3.7. Thus, the longitu-
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dinal compressive load carried by the inner armor wire layer can be approximately

evaluated by:

Pin =

Nin∑
j=1

Pt (θj) cosφ (θj) (3.50)

where Nin is the number of armor wires in the inner armor wire layer, θj represents

the angular position of the jth inner armor wire at a certain pipe cross-section.

Considering that the armor wire deflection is small when no lateral instability takes

place, the inner armor wires can be considered approximately uniformly distributed

on the pipe cross-section, i.e.:

θj ≈ j
2π

Nin

(3.51)

Substituting Eq. 3.49 into Eq. 3.50 and applying Eq. 3.51, the longitudinal

compressive loads carried by the inner armor wire layer when the bending curvature

increases and decreases can be evaluated respectively by:

Pin ≈


2
_

P t (0) cosφi
Nin/2∑
j=1

e
µ sinφi 2π

Nin
j

(κ increases)

2
^

P t (0) cosφi
Nin/2∑
j=1

e
−µ sinφi 2π

Nin
j

(κ decreases)

(3.52)

Due to the symmetry between the inner and outer armor wire layers, it is as-

sumed that the longitudinal load carried by each armor wire layer is approximately

identical. As a result, Pin should be approximately constant when the bending cur-

vature increases and decreases. Thus, according to Eq. 3.52, the following relation

can be obtained:
_

P t (0) = e−µ sinφiπ
^

P t (0) (3.53)

Substituting Eq. 3.53 into Eqs. 3.49, it can be seen that the tangential force

remains constant at the neutral plane of the pipe (θ = 0.5π, 1.5π) when the bending

curvature increases and decreases, which is herein denoted by P̄t. Accordingly, Eq.

3.52 can be rewritten in terms of P̄t as:

Pin = 2P̄t cosφi
Nin/2∑
i=1

e
µ sinφi

(
2

Nin
i−0.5

)
π

(3.54)

Using the armor wire lay angles and the friction coefficients between the armor

wires and anti-friction tapes (0.05-0.15) that may be encountered in a practical

flexible pipe structure, the following approximation can be used:

eµ sinφi(θ−0.5π) + e−µ sinφi(θ−0.5π) ≈ 2 (0 ≤ θ ≤ π) (3.55)
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Accordingly, Eq. 3.54 can be simplified as:

Pin ≈ NinP̄t cosφi (3.56)

Due to the symmetry between the inner and outer armor wire layers, Eq. 3.56

is also applicable to the outer armor wire layer. Considering the tangential cross-

sectional forces on the inner and outer armor wires at the neutral plane are approx-

imately identical, P̄t can be approximately evaluated by:

P̄t =
Pend

N cosφi
(3.57)

where N is the total number of armor wires in the flexible pipe and Pend is the

longitudinal compressive load carried by the flexible pipe. Then, the external loads

in the armor wire normal and bi-normal directions and the tangential cross-sectional

force given respectively by Eqs. 3.33, 3.48-3.49 can be rewritten in terms of P̄t as:

pn (θ) = P̄t
sin2φi

r
χ (θ) (3.58)

pt (θ) = µP̄t
sin2φi

r
χ (θ) η (θ) (3.59)

Pt (θ) = P̄tχ (θ) (3.60)

In which

χ (θ) =

{
e±µ sinφi(θ−0.5π) 0 < θ < π

e∓µ sinφi(θ−1.5π) π < θ < 2π
(3.61a)

η (θ) =

{
∓1 0 < θ < π

±1 π < θ < 2π
(3.61b)

where the upper and lower signs of ± and ∓ represent respectively the conditions

when the bending curvature increases or decreases.

Subsequently, making the tangential cross-sectional force in Eq. 3.34 substituted

by Eq. 3.60 and applying ω = 0 yields:

pb (θ) =EIn
sin5φi

r4
d4∆u

dθ4
−
[
P̄tχ (θ)− P1

] sin3φi

r2
d2∆u

dθ2

+ κ
[
P̄tχ (θ)− P2

] (
1 + sin2φi

)
cosφi sin θ

(3.62)

Thereafter, substituting the frictional force components given by Eqs. 3.59 and

3.62 and the tangential sliding rate with respect to the bending curvature given by

Eq. 3.45 into Eq. 3.41, the armor wire sliding rate in the bi-normal direction with
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respect to the bending curvature can be approximately evaluated by:

d∆b (θ)

dκ
=
r2 sin θ

µη (θ)

{
− EIn
P̄tχ (θ)

sin22φi

4r3
d4∆u

dθ4
+

[
1− P1

P̄tχ (θ)

]
cos2φi

r

d2∆u

dθ2

−κr
[
1− P2

P̄tχ (θ)

] (
1 + sin2φi

)
cot3φi sin θ

} (3.63)

For consistency purpose, the armor wire sliding rate with respect to the bending

curvature in its local coordinate system is transformed into that in the toroidal

coordinate system. Let d∆u/dκ and d∆θ/dκ denote respectively the instantaneous

longitudinal and angular coordinate variation rates with respect to the bending

curvature of the points on the armor wire. According to the relation depicted in

Fig. 3.5 and applying Eq. 3.1, d∆u/dκ and d∆θ/dκ can be expressed in terms of

d∆t/dκ and d∆b/dκ respectively as:

d∆u (θ)

dκ
=

1

1 + κr cos θ

[
d∆t (θ)

dκ
cosφ (θ) +

d∆b (θ)

dκ
sinφ (θ)

]
(3.64a)

d∆θ (θ)

dκ
=

1

r

[
d∆t (θ)

dκ
sinφ (θ)− d∆b (θ)

dκ
cosφ (θ)

]
(3.64b)

Making the sliding rates in the tangential and bi-normal directions with respect

to the bending curvature in Eqs. 3.64a-3.64b substituted by Eqs. 3.45, 3.63 and

ignoring the higher order small terms, the instantaneous longitudinal and angular

coordinate variation rates with respect to the bending curvature of the points on

the inner armor wire can be obtained respectively as:

d∆u (θ)

dκ
=− r2 cos3φi

sinφi
sin θ

+
r2 sinφi sin θ

µη (θ)

{
− EIn
P̄tχ (θ)

sin22φi

4r3
d4∆u

dθ4
+

[
1− P1

P̄tχ (θ)

]
cos2φi

r

d2∆u

dθ2

−κr
[
1− P2

P̄tχ (θ)

] (
1 + sin2φi

)
cot3φi sin θ

}
(3.65a)

d∆θ (θ)

dκ
=− rcos2φi sin θ

− r cosφi sin θ

µη (θ)

{
− EIn
P̄tχ (θ)

sin22φi

4r3
d4∆u

dθ4
+

[
1− P1

P̄tχ (θ)

]
cos2φi

r

d2∆u

dθ2

−κr
[
1− P2

P̄tχ (θ)

] (
1 + sin2φi

)
cot3φi sin θ

}
(3.65b)
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3.5 Equilibrium state

For a loading condition that does not cause the armor wire lateral instability, each

armor wire would eventually reach an equilibrium state after numerous bending

cycles in which it slightly oscillates around a path in repeated bending. Such a

path is herein named as equilibrium path and denoted by ue (θ). The difference

between the equilibrium path and the new helix is denoted by ∆ue (θ). Considering

a flexible pipe subjected to cyclic bending with the minimum and maximum bending

curvatures respectively denoted by κmin and κmax and denoting the armor wire path

after the nth bending cycle by un (θ), the equilibrium state of the armor wire can be

described by:

lim
n→∞

[un (θ)− un−1 (θ)] =

∫ κmax

κmin

d∆u (θ)

dκ
dκ+

∫ κmin

κmax

d∆u (θ)

dκ
dκ = 0 (3.66)

which means that the armor wire stops marching furtuer after each bending cycle

once the equilibirum path is reached.

For an armor wire in the equilibrium state, considering that its transverse oscil-

lation in cyclic bending is small, the armor wire longitudinal coordinate variation

rate with respect to the bending curvature can thus be approximately evaluated

through Eq. 3.65a by assuming the armor wire transversely fixed on the equilibrium

path. Thus, substituting Eq. 3.65a into Eq. 3.66, using approximation given by Eq.

3.55 and employing ∆u (θ) = ∆ue (θ) yields:

EIn
P̄t

sin5φi

r

d4∆ue

dθ2
−
(

1− P1

P̄t

)
sin3φir

d2∆ue

dθ2

+
1

2
(κmin + κmax) r

3

(
1− P2

P̄t

)(
1 + sin2φi

)
cosφi sin θ = 0

(3.67)

To solve this fourth order differential equation, four boundary conditions are

needed. Considering that the armor wire is pinned on the toroid in the positions of

intrados and extrados in bending, the following boundary conditions can be used:

∆ue (θ = nπ) = 0 (3.68)

Besides, due to symmetry, the bending moment in the armor wire normal direc-

tion at the intrados and extrados in the equilibrium state should be approximately

zero. According to Eq. 3.29b, additional boundary conditions can be obtained:

d∆2ue

dθ2
(θ = nπ) = 0 (3.69)

Applying the periodic boundary conditions given by Eqs. 3.68-3.69, ∆ue (θ) can
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be determined from Eq. 3.67 as:

∆ue (θ) = − (κmin + κmax) r
2

(
1 + sin2φi

)
cosφi

2sin3φi
P̄t − P2

P̄t − P3

sin θ (3.70)

In which P3 is a constant corresponding to the armor wire characteristics:

P3 =
sin2φi

r2
[
−EIn

(
1 + cos2φi

)
− 4EIbcos2φi +GJ cos 2φi

]
(3.71)

It is interesting to note that ∆ue = 0 when κmin = −κmax. In other words, the

armor wire tends to remain in the helix path under this circumstance.

Thereafter, with the equilibrium path determined, the curvatures, forces and

moments on the armor wire in the equilibrium path can be promptly obtained.

Substituting Eq. 3.70 into Eqs. 3.28a-3.28c and considering ω = 0, the curvature

components of the armor wire in the equilibrium path can be obtained as:

κg (θ) =κ
(
1 + sin2φi

)
cosφi sin θ

− 1

2

P̄t − P2

P̄t − P3

(κmin + κmax)
(
1 + sin2φi

)
cosφi sin θ

(3.72a)

κn (θ) =− sin2φi

r
− κ cos 2φicos2φi cos θ

− P̄t − P2

P̄t − P3

(κmin + κmax)
(
1 + sin2φi

)
cos2φi cos θ

(3.72b)

τ (θ) =− sin 2φi

2r
+ 2κ sinφicos3φi cos θ

− 1

2

P̄t − P2

P̄t − P3

(κmin + κmax)
(
1 + sin2φi

)
cotφi cos 2φi cos θ

(3.72c)

Similarly, substituting Eq. 3.70 into Eqs. 3.29a-3.29c and considering ω = 0, the

armor wire cross-sectional moments in the equilibrium path can be obtained as:

Mt (θ) =GJ
[
2κ sinφicos3φi

−1

2

P̄t − P2

P̄t − P3

(κmin + κmax)
(
1 + sin2φi

)
cotφi cos 2φi

]
cos θ

(3.73a)

Mn (θ) = EIn

[
κ− 1

2

P̄t − P2

P̄t − P3

(κmin + κmax)

] (
1 + sin2φi

)
cosφi sin θ (3.73b)

Mb (θ) = EIb

[
−κ cos 2φi − P̄t − P2

P̄t − P3

(κmin + κmax)
(
1 + sin2φi

)]
cos2φi cos θ

(3.73c)

Afterwards, substituting Eq. 3.70 into Eqs. 3.30, 3.62 and considering ω = 0,

the external moment in the axial direction and the external force in the bi-normal
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direction on the armor wire in the equilibrium path can be evaluated by:

mt (θ) =− κ

r

[
EIn

(
1 + sin2φi

)
− 2GJcos2φi

]
sin2φi cosφi sin θ

+
1

2r
(κmin + κmax)

P̄t − P2

P̄t − P3

(
EInsin2φi −GJ cos 2φi

) (
1 + sin2φi

)
cosφi sin θ

(3.74)

pb (θ) =
{
κ
[
P̄tχ (θ)− P2

]
−1

2
(κmin + κmax)

(
P̄t − P2

) P̄tχ (θ)− P3

P̄t − P3

}(
1 + sin2φi

)
cosφi sin θ

(3.75)

Subsequently, substituting Eq. 3.70 into Eqs. 3.31, 3.32 and employing ω = 0,

the armor wire shear forces in the normal and bi-normal directions in the equilibrium

path can be obtained respectively as:

Pn (θ) =
{

+
κ

r

[
EIn

(
1 + sin2φi

)
− EIb cos 2φi

]
−κmin + κmax

2r

P̄t − P2

P̄t − P3

(EIn + 2EIb)
(
1 + sin2φi

)}
sinφicos2φi sin θ

(3.76)

Pb (θ) =
κ

2r

[
EIn

(
1 + sin2φi

)
− EIb cos 2φicos2φi − 1

2
GJsin22φi

]
sin 2φi cos θ

+
κmin + κmax

4r

P̄t − P2

P̄t − P3

(
EIn − 2EIbcos2φi +GJ cos 2φi

) (
1 + sin2φi

)
sin 2φi cos θ

(3.77)

Afterwards, substituting Eq. 3.70 into Eq. 3.25 yields:

∆φ2 (θ) = −κr sin 2φi

2
cos θ +

sin2φi

r
(κmin + κmax) r

2

(
1 + sin2φi

)
cosφi

2sin3φi
P̄t − P2

P̄t − P3

cos θ

(3.78)

Substituting Eqs. 3.22 and 3.78 into Eq. 3.26, employing κ = 0 and the average

axial strain ε = P̄t
/
EA, and only keeping the lowest order of each small term,

the difference between the new and initial helix lay angles can be approximately

evaluated by:

∆φ1 = − P̄t tanφi

EA
+

1

16
(κmin + κmax)

2r2
(
1 + sin2φi

)2
tanφi

(
P̄t − P2

P̄t − P3

)2

(3.79)

Consequently, substituting Eq. 3.79 into Eq. 3.27, the flexible pipe longitudinal

compressive strain, defined by the longitudinal shortening divided by the original

pipe length in the straight pipe condition, in the equilibrium state can be obtained

as:

∆L̄ = − P̄t
EAcos2φi

+
1

16
(κmin + κmax)

2r2
(

1

sinφi
+ sinφi

)2(
P̄t − P2

P̄t − P3

)2

(3.80)
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where the first term represents the effect of armor wire axial strain and the second

term represents the effect of the armor wire deflection.

3.6 Lateral instability

On the contrary, for a flexible pipe subjected to large axial compressive loads com-

bined to cyclic bending, each armor wire would migrate constantly on one side after

each bending cycle and eventually result in the lateral instability failure due to ma-

terial yield. Thus, for an armor wire in the unstable condition, there is no solution

to the equilibrium state described by Eq. 3.66 and the equilibrium path given by

Eq. 3.70 does not exist.

Note that, for a flexible pipe subjected to cyclic bending in the same bending

manner, each armor wire migrates in one direction after each bending cycle, i.e., the

sequence of un (θ) is monotonous. Thus, the following relation must hold:

∆ue (θ)

∆u1 (θ)
> 0 (3.81)

where ∆u1 (θ) represents the armor wire path relative to the new helix after the

first bending cycle. Comparably, since the armor wire transverse deflection in the

first bending cycle is small, its sliding rate with respect to bending curvature can

be approximately evaluated by Eq. 3.65a employing ∆u (θ) = 0. Thus, substituting

∆u (θ) = 0 into Eq. 3.65a and integrating in terms of bending curvature for one

bending cycle, ∆u1 (θ) can be approximately given by:

∆u1 (θ) =
(
κ2max − κ2min

) r3
µ

(
1− P2

P̄t

)(
1 + sin2φi

)
sinφcot3φisin2θ (3.82)

Subsequently, substituting Eqs. 3.70, 3.82 into Eq. 3.81 yields P̄t > P3, which

is corresponding to a state that the equilibrium state does not exist when P̄t ≤ P3.

Note that in the present context the compressive loads are negative. Thus, it can be

concluded that, when the axial compressive load P̄t equals or surpasses the critical

value given by Eq. 3.71, the armor wire lateral instability may take place after

numerous bending cycles. Thus, making P̄t in Eq. 3.57 substituted by Eq. 3.71,

the critical longitudinal compressive load on a flexible pipe that may eventually

result in the armor wire lateral instability after numerous bending cycles can then

be approximately evaluated by:

PLI = −N sin2φi cosφi

r2
[
EIn

(
1 + cos2φi

)
+ 4EIbcos2φi −GJ cos 2φi

]
(3.83)
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Subsequently, defining the non-dimensional parameters P̄LI , ξ, ζ as:

P̄LI = PLI/(EA)

ξ = H/W

ζ = W/r

(3.84)

and leting Ω represents the average filling factor of the inner and outer armor wire

layers:

Ω =
NW

4πr cosφi
(3.85)

Eq. 3.83 can be rewriten in a non-dimentional form as:

P̄LI = −πΩζsin22φi
[

1

8
+
ξ2

6
+

(
1

24
+
ξ2

6

ν

1 + ν
+

32ξ3

π5

1

1 + ν

)
cos 2φi

]
(3.86)

where ν is the poisson’s ratio.
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Chapter 4

Discussions

In this section, case studies are presented considering an armor wire with cross-

sectional area 10 mm × 3 mm (width × thickness), radius 0.1 m and initial lay angle

30◦ in the inner armor wire layer of a flexible pipe in the wet annulus condition. The

friction coefficient between the armor wire and the anti-friction tape is set to 0.1.

The Young’s modulus and Poisson’s ratio are respectively 210 GPa and 0.3. Using

Eqs. 3.35b and 3.71, the constants P2 and P3 for this armor wire can be calculated

respectively as -2182 N and -2576 N . The armor wire is considered subjected to a

constant axial compressive load, which is smaller than the estimated lateral stability

limit P3, combined to a significant number of bending cycles, so that the armor wire

has reached the equilibrium path.

4.1 Equilibrium path

Consider that the minimum and maximum bending curvatures of the flexible pipe

are respectively κmin = 0.0 m−1 and κmax = 0.5 m−1. Fig. 4.1 shows the plots of

Eq. 3.70 with different axial compressive loads for half armor wire pitch 0 ≤ θ ≤ π.

It is interesting to note that ∆ue (θ) equals zero when P̄t = P2 = −2182 N . In

other words, the armor wire tends to stay at the helix path in cyclic bending when

P̄t = P2. When P̄t is larger or smaller than P2, the armor wire tends to migrate

in opposite directions. Fig. 4.2 depicts the equilibrium paths in the cylindrical

coordinate system when P̄t = −1500 N,−2182 N,−2500 N , illustrating that the

armor wire tends to migrate in the direction towards the intrados when
∣∣P̄t∣∣ < |P2|

and migrate in the direction towards the extrados when
∣∣P̄t∣∣ > |P2|.

Thereafter, employing the equilibrium path with P̄t = −2500 N , considering that

the armor wire layer are constituted of 20 armor wires and assuming the deflection

of each armor wire is the same, the armor wire layer configuration in the equilibrium

state when the axial compressive load is close to the predicted lateral stability limit

P3 = −2576 N can be approximately illustrated in Fig. 4.3 (left). It can be
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Figure 4.1: Equilibrium paths of the inner armor wire in different axial compressive loads.

Figure 4.2: Equilibrium paths of the inner armor wire when P̄t = −1500 N,−2182 N,−2500 N .

observed that the armor wires tend to be squeezed in the extrados and loosened in

the intrados, which is in accordance with a typical S-shape instability configuration

as depicted in Fig. 4.3 (right).

Figure 4.3: The predicted configuration in the stable state when the compressive load is close to
the stability limit (left) and a typical S-shape instability configuration (right) (CALEYRON

et al. [1]).

Moreover, note that the maximum displacements are found at the neutral plane

as depicted in Fig. 4.1. To illustrate the equilibrium path variation tendency, Fig.

4.4 shows the results of Eq. 3.70 using θ = 0.5π with different axial compressive
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loads and bending curvatures. It can be seen that the equilibrium path changes

monotonically with increasing axial compressive loads. In all the cases, the equilib-

rium paths coincide with the helix path when P̄t = P2 and change asymptotically

and suddenly when P̄t approaches P3. As a result, large curvatures and displace-

ments will be generated in the armor wire when P̄t is close to P3, which may result

in large bending stresses and, eventually, the lateral contact between the adjacent

armor wires.
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Figure 4.4: ∆ue at the neutral plane with different P̄t and bending curvatures.

4.2 Frictional forces

It needs to be emphasized that the present analytical model is based on an as-

sumption that the armor wire sliding direction in cyclic bending is primarily axial.

Nevertheless, in which conditions this assumption is valid needs to be carefully dis-

cussed. Note that frictional force acts in the opposite direction of relative sliding.

Thus, according to Eq. 3.41, the question is equivalent to that in which conditions

it is reasonable to consider the frictional force component in the tangential direction

much larger than that in the bi-normal direction.

Using Eqs. 3.59, 3.75, Fig. 4.5 and Fig. 4.6 show respectively the frictional forces

on the inner armor wire in the tangential and bi-normal directions for half armor

wire pitch 0 ≤ θ ≤ π when P̄t = −2500 N and P̄t = −1000 N , where
_
pt and

_
pb

represent respectively the frictional forces in the tangential and bi-normal directions

when the bending curvature increases,
^
pt and

^
pb represent that when the bending

curvature decreases. It can be observed that the frictional force in the tangential
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direction is much larger than that in the bi-normal direction when P̄t = −2500 N . It

is thus reasonable to consider that the armor wire sliding is primarily axial under this

circumstance. Nevertheless, for the case with P̄t = −1000 N , the frictional force in

the bi-normal direction is approximately half of that in the tangential direction at the

neutral plane when the bending curvature approaches the minimum or maximum

values. Consequently, under this circumstance, the armor wire sliding cannot be

considered primarily axial.
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Figure 4.5: Frictional forces on the inner armor wire in the wet annulus condition in the
equilibrium state when P̄t = −2500 N .

Based on the discussion above, it can be noted that the armor wire sliding direc-

tion in cyclic bending depends on the axial compressive load. To reveal the effect

of axial compression on the armor wire sliding direction, Fig. 4.7 shows the ratio of

the frictional force in the bi-normal direction to that in the tangential direction with

different axial compressive loads. Since the frictional forces are symmetric when the

bending curvature reaches the maximum and minimum values as depicted in Figs.

4.5-4.6, Fig. 4.7 only shows the results when the bending curvature approaches the

maximum value. It can be observed that the frictional force in the bi-normal direc-

tion is much smaller than that in the tangential direction when the axial compressive

load is close to P2. This is easy to understand since the armor wire tends to remain

in the helix path when P̄t = P2 so that its sliding tendency in the bi-normal direction

is small. Besides, note that the estimated lateral stability limit P3 is close to P2.

Thus, it can be concluded that the present analytical model for a single armor wire

is applicable when the axial compressive load is close to P2 and smaller than P3.

Note that, for engineering application, the flexible pipe design should always be

conservative. Thus, instead of using P3, the limit axial load that can be carried by a
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Figure 4.6: Frictional forces on the inner armor wire in the wet annulus condition in the
equilibrium state when P̄t = −1000 N .

single armor wire can be considered as P2 for flexible pipe analysis since it represents

the condition that the armor wire changes sliding direction.
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Figure 4.7: Effect of axial compressive loads on the ratio of frictional force components on the
inner armor wire in the wet annulus condition in the equilibrium state when the bending

curvature approaches the maximum value.
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4.3 Longitudinal shortening

Since large transverse deflection is generated in the armor wire when the axial com-

pressive load is close to the estimated lateral stability limit P3 as illustrated in

section 4.1, intuitively, large longitudinal shortening should thus be generated. Fig.

4.8 shows the results of Eq. 3.80 with different axial compressive loads and bending

curvatures. Evidently, large longitudinal shortenings are observed when the axial

compressive load is close to P3 in all the cases. Besides, it is also interesting to

note that the longitudinal shortenings of those four cases coincide when P̄t = P2.

As previously stated, the armor wire tends to stay in the helix path when P̄t = P2.

Thus, according to Eq. 3.80, the effect of armor wire transverse displacement is

ignorable under this circumstance, and the longitudinal shortening is solely due to

the armor wire axial strain which is the same for those four cases.
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Figure 4.8: Longitudinal shortening with different axial compression and bending curvatures.

4.4 Curvatures and moments

Using Eqs. 3.19a-3.19c, 3.72a-3.72c, Fig. 4.9 shows the variations of the geodesic

curvature, normal curvature and torsion of the armor wire in the equilibrium path

subjected to axial compression P̄t= −2500 N and cyclic bending with the minimum

and maximum bending curvatures κmin = 0.0 m−1 and κmax = 0.2 m−1, where

the dotted and solid lines represent respectively the conditions when the bending

curvature equals the minimum and maximum bending curvatures. It can be seen

that when the bending curvature increases from the minimum bending curvature
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to the maximum bending curvature the geodesic curvature and torsion increase but

the normal curvature decreases.
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Figure 4.9: Curvature components of the armor wire in the equilibrium path.
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Figure 4.10: Cross-sectional moments in the armor wire in the equilibrium path.

Subsequently, using Eqs. 3.73a-3.73c, the corresponding cross-sectional moments

are illustrated in Fig. 4.10. Clearly, the bending moment in the normal direction

is much larger than the bending moment in the bi-normal and the torque, since

the normal inertia is much larger than the transverse inertia and the stiffness of

torsion. Moreover, Fig. 4.11 shows the external moment on the armor wire in the
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Figure 4.11: Distributed torques on the armor wire in the equilibrium path.

axial direction using Eq. 3.74. It can be seen that maximum torques locate at the

neutral plane. Due to symmetry, the armor wire has no tendency to rotate axially

in the intrados and extrados, the torques in the intrados and extrados are thus zero.

4.5 Stress analysis

Moreover, it should be emphasized that the present analytical model is only ap-

plicable to the elastic condition. Thus, the stress analysis is needed to illustrate

when the armor wire reaches the yield limit. The most critical yielding positions

on an armor wire cross-section are one of the four corners, see Fig. 4.12. Ignoring

the shear stress, the maximum compressive stress in each cross-section of the armor

wire can be approximately evaluated by:

σmax (θ) =
Pt (θ)

A
−
∣∣∣∣aMn (θ)

2In

∣∣∣∣− ∣∣∣∣bMb (θ)

2Ib

∣∣∣∣ (4.1)

Consider that the minimum and maximum bending curvatures of the flexible

pipe are respectively κmin = 0.0 m−1 and κmax = 0.2 m−1 and the average axial

compressive load on the armor wire is P̄t= −2500 N. The maximum compressive

stress on each cross-section of the armor wire can be evaluated by Eq. 4.1 with Pt,

Mn, Mb substituted by Eqs. 3.60, 3.73b, 3.73c, which are illustrated in Fig. 4.13.

The solid and dashed lines represent respectively the conditions when the bending

curvature increases and decreases. It can be seen that the maximum compressive

stresses locate at the positions above and below the neutral plane when the flexible
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Figure 4.12: Critical yielding positions on an armor wire cross-section.

pipe is bent to the maximum bending curvature. Such maximum compressive stress

can be easily identified numerically.
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Figure 4.13: Maximum compressive stresses in the cross-sections of the inner armor wire in the
equilibrium state in repeated bending.

Consequently, applying κ=κmax in Eq. 4.1 and searching the maximum value

numerically, the maximum compressive stresses in the armor wire with different

axial compressive loads and bending curvatures are illustrated in Fig. 4.14, in which

the red dashed line represents the yield stress σs = −1350 MPa. It is very clear

that the maximum compressive stresses grow suddenly and exceed the yield stress

when P̄t is close to P3 for all the cases.

4.6 Lateral contact

Additionally, it needs to be noted that the present analytical model is based on the

assumption that the adjacent armor wires do not contact each other. Nevertheless,

since large transverse deflections are generated in the armor wires when the axial
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Figure 4.14: Maximum compressive stresses in the inner armor wire in the equilibrium state with
different axial compressive loads and bending curvatures.

compressive load is close to the lateral stability limit, they may be in contact before

the lateral instability takes place.

Figure 4.15: Schematic of the adjacent armor wire segments in the initial (left) and contact
(right) conditions.

Fig. 4.15 shows configurations of the adjacent armor wire segments in the initial

and contact conditions, where g denotes the gap between the adjacent armor wires

in the initial straight pipe condition and ∆φc represents the lay angle variation when

the armor wires are in contact. Since the deflections of the armor wires within the

same layer are deemed identical, the distance between the central lines of adjacent

armor wires in the longitudinal direction should satisfy the following relation:

W + g

sinφi
‖∂X/∂u‖ =

W

sin (φi + ∆φc)
(4.2)
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Applying Eq. 3.1 into Eq. 4.2 and ignoring the higher order small terms, the lay

angle variation in the contact section can be approximately evaluated by:

∆φc (θ) =
W

W + g

tanφi

1 + κr cos θ
− tanφi (4.3)

In other words, the armor wire equilibrium path given by Eq. 3.70 is not valid

if the armor wire lay angle variations surpass ∆φc.

Using Eqs. 3.78-3.79, Fig. 4.16 shows the lay angle variations of the armor

wire in the equilibrium paths with different cyclic bending amplitudes. Evidently,

the minimum armor wire lay angle locates at the extrados (θ = 0, 2π) when the

bending curvature reaches the maximum bending curvature. Thus, if the adjacent

armor wires are in contact, the first contact locations are the extrados.
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Figure 4.16: Armor wire lay angle variations in equilibrium paths with different bending
curvatures.

Subsequently, Fig. 4.17 shows the lay angle variation at the extrados when

the bending curvature reaches the maximum value with different axial compressive

loads and bending amplitudes. Substituting θ = 0 and κ = κmax into Eq. 4.3

and considering that the filling factor of the armor wire layer in a flexible pipe

is generally around 90%, i.e.: W/(W + g) ≈ 0.9, the lay angle variations causing

lateral contact at the extrados when the bending curvature reaches the maximum

value for those four cases with κmax = 1/20 m−1, 1/15 m−1, 1/10 m−1, 1/5 m−1

are obtained respectively as ∆φc = −0.060 rad,−0.061 rad,−0.063 rad,−0.068 rad

and marked by the dots in Fig. 4.17. Accordingly, the critical axial compressive

loads resulting in the armor wire lateral contact for those four cases are obtained

respectively as -2544 N , -2534 N , -2516 N , -2473 N . Substituting those critical
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axial compressive loads into Eq. 3.80, the longitudinal shortenings corresponding

to the first contact condition of those cases are all approximately 0.17%. Besides,

substituting those critical axial compressive loads into Eq. 4.1, applying κ=κmax and

searching the maximum value numerically, the corresponding maximum compressive

stresses for each case can be obtained respectively as -484 MPa, -501 MPa, -536

MPa, -644 MPa, which are much smaller than the yielding stress. Thus, it can be

concluded that the armor wire is in the elastic stage when the first lateral contact

takes place. Nevertheless, how much more compressive load the armor wires are

capable of carrying after the lateral contact takes place is still unknown.
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Figure 4.17: Armor wire lay angle variation at the extrados with different axial compression and
bending curvatures.

Figure 4.18: Schematic of the armor wire lateral contact with a small gap (left) and a big gap
(right).

Consider that the radial constraint is very strong so that the gap between the

armor wire and the inner core formed by axial compressive loads is very small. Under

this circumstance, the armor wire has nearly no space to rotate axially and move

laterally in the contact sections as depicted in Fig. 4.18 (left). Thus, the armor
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wire lateral stabilization may thus be increased due to the lateral contact, and the

lateral stability limit estimated by Eq. 3.83 may not be applicable in this case.

In contrary, if the radial constraint is not very strong so that the gap is relatively

big, the lateral contact may push the armor wire to rotate axially, which generates

some spaces for the armor wire to continue to move laterally, see Fig. 4.18 (right).

Thus, the effect of the lateral contact on the armor wire lateral stabilization may

thus not be significant. Under this circumstance, the lateral stability limit may be

approximately estimated by Eq. 3.83.
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Chapter 5

Experimental reconstruction of

the armor wire lateral instability

To obtain a better understanding of the flexible pipe armor wire lateral instability

mechanism, as well as to validate the developed analytical model, a bending hyper-

baric chamber was constructed in the laboratory Núcleo de Estruturas Oceânicas

(NEO) of the Federal University of Rio de Janeiro, see Fig. 5.1. The hyperbaric

chamber was made of a 16-inch flexible pipe which is capable of applying pressures

up to 2500 psi with bending radius up to 6.53 m. The bending curvature was applied

in the horizontal plane since no out-of-plane bending needs to be worried. Using

this rig, a 6-inch flexible riser sample and a 6-inch flexible flowline sample have been

tested, whose armor wire characteristics are presented in Table 5.1, where the last

row shows the lengths of the flexible pipe samples in terms of the number of the

pitches of the inner armor wire.

Figure 5.1: Schematic drawings of the test setup.
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Table 5.1: Armor wire layers characteristics of the flexible pipe samples.

Parameters 6” riser 6” flowline

Outer armor

Outer diameter (mm) 242.5 203.4
Lay angle (deg) -30 -30
Wire size (mm) 6.2×14.1 2.5×7
Number of wires 44 73

Inner armor

Outer diameter (mm) 230.1 198.4
Lay angle (deg) 30 30
Wire size (mm) 6.2×14.1 2.5×7
Number of wires 41 71

Fluid barrier Outer diameter (mm) 182.5 193.4
Pitch number of inner armor 4.12 5.88

5.1 Test of the 6” flexible riser sample

The original sample of the 6” flexible riser has a total length of 5.725 m, which is

smaller than the required length for the flex-compression test. To make full use of the

sample length, the connectors were prepared as short as possible as depicted in Fig.

5.2. The armor annulus was not sealed by the connectors so that it was flooded dur-

ing the test. Thus, the equivalent longitudinal compressive loads generated by the

hydrostatic end-cap effect can be calculated by multiplying the hydrostatic pres-

sure by the cross-sectional area of the fluid barrier. After the assembly of both

connectors, the sample has a total length of 5.020 m (flange to flange). Besides,

to compensate for the length of the sample, an adaptation piece was constructed

which consists of a suitably dimensioned steel tube. One side of the steel tube was

connected to one flange of the sample through a steel stud and the other side was

connected to the chamber cover.

Figure 5.2: Preparation of the connectors for the 6-inch flexible riser sample.
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Since the large axial rotation is an important sign for the armor wire lateral

instability, a straight line was marked on the sample surface so that the sample axial

rotation after the test can be easily observed. Moreover, note that the outer diameter

of the sample is smaller than the inner diameter of the hyperbaric chamber so that

they may not deflect in the same manner during the test. To transfer the bending

curvature of the chamber to the sample, several centralizers, which are constituted

of several layers of rubber tapes, were installed on the sample. The outer diameters

of those centralizers are slightly smaller than the inner diameter of the chamber so

that the bending loads can be efficiently transferred to the sample. To facilitate the

sample installation into the chamber as well as releasing the sample longitudinal

degree of freedom during cyclic bending, the outer surfaces of the centralizers were

lubricated with solid petroleum grease. Fig. 5.3 shows the layout of the centralizers,

connectors and adaption piece.

Figure 5.3: Schematic of sample preparation.

Additionally, few pairs of strain gauges were installed along the sample in the

intrados and extrados correspondingly. Using the strain difference measured by

the strain gauges in the intrados and extrados of each cross-section, the bending

curvature of the corresponding cross-section can be calculated. Meanwhile, to verify

if the hyperbaric chamber and the sample experience similar bending curvatures, the

curvatures of the hyperbaric chamber during the test were measured as well through

an optical system. After all the preparations finished, the sample was installed into

the chamber with one end fixed on the chamber cover and the other end free to

move. The cables of the strain gauges exit the chamber through the penetrators

installed in the chamber cover in the movable side.

After the accomplishment of the sample installation, the pressure in the chamber

was increased to 2500 psi and cyclic bending was applied in the horizontal plane be-

tween the straight and the maximum bent positions. According to the measurements

of the strain gauges and the optical system, the bending curvatures experienced by

the sample and the hyperbaric chamber are very close and the maximum bending

curvature is approximately 1/10 m−1 which locates near the fixed end. After the

accomplishment of 1500 bending cycles, the sample was removed from the hyper-

baric chamber and no obvious twist nor radial deformation were observed in the

sample, indicating that neither the armor wire lateral instability nor the birdcage

took place.
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5.2 Test of the 6” flexible flowline sample

Similar to the previous test, the connectors installed on the previous sample were

reutilized on the 6” flexible flowline sample and six centralizers were placed to trans-

fer the bending curvature of the chamber to the sample. A series of strain gauges

were installed on this sample in the same manner as the previous sample. Since this

sample has the required length for the flex-compression test, the adaption piece was

not needed. It needs to be noted that, at the beginning of the test, the datasheet

of the 6” flexible flowline was not received and it was supposed that the collapse

pressure is higher than 2500 psi as the previously tested 6” flexible riser sample.

Thereafter, the sample was installed in the hyperbaric chamber and a trial test was

carried out with 2500 psi. However, before the hydrostatic pressure reached 2500

psi, a sudden drop in the pressure was detected. Then, the sample was removed

from the chamber and the collapse was observed close to one sample end as depicted

in Fig. 5.4. After the occurrence of collapse, the datasheet was obtained showing

that the collapse pressure is 2420 psi, which is lower than the applied hydrostatic

pressure.

Figure 5.4: Collapse of the carcass.

Since the collapse was located at one end of the sample, it was then decided to

cut the collapsed section and re-terminate the sample. After the cut, the sample has

a total length of 6.264 m (flange to flange). The previously constructed adaption

piece was reutilized to compensate for the sample length. Thereafter, the sample

was installed into the hyperbaric chamber again and pressurized with 1000 psi, and

1000 bending cycles were applied in the same manner as the previous test. After

the test, the sample was removed from the chamber. While no obvious dislocations

were found in the radial direction of the sample, a significant twist was observed in

the sample close to the fixed end, see the marked line in Fig. 5.5, indicating that

the armor wire lateral instability may have taken place.

Subsequently, to check the deflections of the armor wires, the sample was dis-

sected. To preserve the instability shape of the armor wires as much as possible, a
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Figure 5.5: Sample appearance after the test (close to the fixed end).

number of steel straps were installed on the sample which evenly divides the sample

into 9 sections. After the dissection of the outer sheath and the anti-birdcage tapes,

the outer armor wire layer was exposed where no significant dislocations were ob-

served. Thereafter, the outer armor layer was measured and removed and the inner

armor layer was exposed. As expected, severe transverse deflections were observed

in the inner armor wire layer, evidencing that the flexible flowline sample had failed

due to the lateral instability in this layer. Fig. 5.6 shows the inner armor wire layer

configuration of each section where the up and down directions are respectively the

intrados and extrados during the test.

Figure 5.6: Configuration of the inner armor layer in the 6” flowline sample after the test.
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5.3 Discussions

5.3.1 Deflection shape

Despite the fact that the present analytical model is not capable of describing the

armor wire layer configuration after the formation of the lateral instability failure,

it is conceivable that the armor wire deflection in the post-instability stage should

follow the deflection tendency in the equilibrium state when the axial compressive

load is close to the stability limit. Comparing Fig. 5.6 and Fig. 4.3, however, it

seems that the armor wire lateral instability of the 6” flexible flowline sample does

not follow the S-shape failure mode as shown in Fig. 4.3. For instance, the armor

wires are squeezed in the intrados and loosened in the extrados in section 3 of Fig.

5.6, which is contrary to the analytical prediction. Nevertheless, in fact, the lateral

instability modes depicted in Fig. 5.6 and Fig. 4.3 are the same. The configuration

difference is due to the reason that they reveal different stages after the formation

of S-shape failure. In Fig. 4.3 (right), the armor wires were in the initial stage of

post-instability that the deflections of the armor wires and the pipe axial rotation

were relatively small. Thus, a good correlation was obtained between the analytical

prediction and the experimental observation. In contrast, severe deflections were

generated in the inner armor wires in sections 1-4 of Fig. 5.6 and a large axial

rotation along the helix direction of the inner armor wires had thus been triggered

as illustrated in Fig. 5.5, indicating that the armor wire deflection had been fully

developed in the post-instability stage. Due to the large axial rotation, the locations

of squeezed and loosened regions were thus transferred as shown in section 3 of Fig.

5.6. However, in the section close to the fixed end, see section 1 in Fig. 5.6, it

is very clear that the armor wires were squeezed in the extrados and loosened in

the intrados, which agrees with the deflection tendency revealed by the present

analytical model.

Besides, it is also interesting to observe from Fig. 5.6 that severe armor wire

deflections were concentrated in sections 1-4 while the armor wire deflections in the

other sections were relatively small. This is due to the fact that the hyperbaric

chamber was not uniformly bent and the maximum bending curvature located near

the fixed end. This is corresponding to a state that the armor wires slide faster

when experiencing larger bending curvatures.

5.3.2 Lateral contact

Since large deflections were generated in the inner armor wires in the post-instability

stage, as expected, lateral contacts between the neighboring armor wires were gen-

erated. Fig. 5.7 (left) and (right) show respectively the partial enlargements of the
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inner armor wire configurations in sections 1 and 3 of Fig. 5.6, which correspond

respectively to the conditions depicted in Fig. 4.18 (left) and (right). Section 1 is

close to the connector so that the radial expansions of the armor wires are strongly

restricted. Consequently, the armor wires have no sufficient space to rotate around

their own axes when reaching in contact, see Fig. 5.7 (left). On the other hand,

section 3 is far from the connector so that the radial restriction from the connector

was negligible. Also, the radial stiffness of the anti-birdcage tapes in this sample

was not sufficiently big so that a relatively big gap between the armor wires and the

pipe core was generated in this section when the sample was subjected to large axial

compressive loads. This gap allows the armor wires to twist and thus results in the

overlap of the armor wires as depicted in Fig. 5.7 (right). Thus, the armor wires

were still able to move laterally when they were in contact. Since the connectors

only affect the sections close to the ends, the majority of the sample sections were in

a similar condition as section 3. As discussed in section 4.6, under this circumstance,

the effect of the lateral contact on the armor wire lateral stabilization may not be

significant. Thus, the lateral stability limit may be approximately estimated by Eq.

3.83, which will be verified in the following section.

Figure 5.7: Lateral contact of armor wires in section 1 (left) and section 3 (right).

5.3.3 Lateral stability limit

Hereafter, the analytical prediction of the flexible pipe armor wire lateral stability

limit given by Eq. 3.83 will be compared with the results from the present tests

and other existing tests available in the literature. BRAGA [52] conducted a series

of tests using mechanical rigs concerning flexible pipe armor wire lateral instability

in three different loading conditions: monotonic longitudinal compression without

bending, cyclic longitudinal compression without bending, and constant longitudinal

compression combined to cyclic bending. Since the present analytical model concerns

the last loading condition, only the results of the tests in the last loading condition
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are used for the analytical model verification. Similar tests were also conducted by

ØSTERGAARD [22] through mechanical rigs at atmospheric pressure. The armor

layers characteristics of the flexible pipe samples tested by them are presented in

Table 5.2. Their test conditions and results, together with that of the present tests,

are presented in Table 5.3, in which the axial compressive loads for the present tests

are calculated by multiplying the hydrostatic pressure by the cross-sectional area of

the fluid barrier.

Using Eq. 3.83, the lateral stability limits for each sample are evaluated and

listed in Table 5.3 and compared with the test results as shown in Fig. 5.8, where

the area above the dashed line represents the conditions for which the longitudinal

compressive loads are larger than the predicted lateral stability limits. Fig. 5.8

shows excellent agreement between the analytical predictions and the test data as

all the cases above the dashed line failed while no failures were observed in the cases

below the dashed line.

Table 5.2: Tensile armors characteristics.

Parameters 4” flowline
[52]

6” riser [22] 8” riser [22] 14” jumper
[22]

Inner armor

Outer diameter (mm) 141 201 276 442
Lay angle (deg) 35 26.2 30 31.5
Wire size (mm) 2.5×7 3×10 5×12.5 4×15
Number of wires 49 52 54 70

Outer armor

Outer diameter (mm) 146 209 289 452
Lay angle (deg) -35 -26.2 -30.3 -31
Wire size (mm) 2.5×7 3×10 5×12.5 4×15
Number of wires 50 54 56 72

Steel properties
Young’s Modulus (GPa) 210 210 210 210
Yield stress (MPa) 1350 650 1350 1350
Poisson’s ratio 0.3 0.3 0.3 0.3

Pitch number
of inner armor

3.74-3.91 3.96 3.39 3.34
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Table 5.3: Tests conditions and results.

Pipe ID Case
number

κmax× r
(10−2)

Applied
compression
Ptest (kN)

Results |PLI | (kN)

4” flowline [52]

1 1.4 243 Failure 164
2 1.6 242 Failure
3 2.6 242 Failure
4 2.6 174 Failure

6” riser (Li et al.) 5 1.1 451 No failure 993
6” flowline (Li et al.) 6 1.0 203 Failure 100

6” riser [22]

7 2.0 265 Failure 201
8 0.9 265 Failure
9 0.9 80 No failure
10 0.9 210 Failure
11 0.9 160 No failure
12 1.2 265 Failure

8” riser [22]
13 1.1 700 Failure 474
14 1.1 300 No failure
15 1.1 400 No failure

14” jumper [22]

16 1.2 277 No failure 308
17 3.1 269 No failure
18 2.4 411 Failure
19 1.8 950 Failure
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Figure 5.8: Analytical predictions versus test data.
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Chapter 6

Design recommendations

Based on the present analytical model, measures to improve the flexible pipe design

against the armor wire lateral instability failure are discussed in this chapter.

Note that armor wires in flexible pipes are made of steel and the radii of armor

wires depend on the flexible pipe functional design. Thus, except for the armor wire

radius and material property, the remaining factors that we can play with include the

armor wire lay angle, cross-sectional dimension and the number of armor wires. Note

that the armor wire layer filling factor is generally around 90%. Thus, the armor wire

width, lay angle and the number of armor wires within a layer are related. Besides,

solely increasing the armor wire thickness without modifying the filling factor will

increase the flexible pipe weight and outer diameter, which will in return raise the

costs and operational difficulty. Based on the discussion above, to modify the armor

wire layer design without increasing the flexible pipe weight and outer diameter, a

feasible method can be employed by fixing the armor wire thickness, modifying the

armor wire lay angle and width and correspondingly adjusting the number of armor

wires to keep the armor wire layer filling factor approximately fixed.

Firstly, the effect of the armor wire lay angle on the lateral stability limit is

discussed. It is considered that the inner and outer armor wires have opposite lay

angles. Using the armor wire layer properties of those six flexible pipes presented

in Table 5.1 and Table 5.2, varying the lay angle of the inner armor wire from 20◦

to 60◦ and adjusting the number of armor wires in both inner and outer armor

wire layers to keep the filling factors approximately fixed, the corresponding lateral

stability limit variations are shown in Fig. 6.1. It can be observed that, for all those

six flexible pipes, the maximum lateral stability limits are obtained when the armor

wire lay angle is approximately 40◦. Either increasing or decreasing the armor wire

lay angle from 40◦ reduces the lateral stability limit.

Subsequently, the effect of the armor wire width on the lateral stability limit is

investigated. Still using the armor wire layer properties of those six flexible pipes

presented in Table 5.1 and Table 5.2, modifying the armor wire widths and adjusting
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Figure 6.1: Effect of armor wire lay angle on the lateral stability limit.

the number of armor wires in both inner and outer armor wire layers to keep the

filling factors approximately fixed, the lateral stability limit variations are shown in

Fig. 6.2. It can be seen that, for all those six flexible pipes, the lateral stability

limits increase monotonically as the armor wire widths increase. However, it needs

to be noted that the armor wire width cannot be too large as it would be difficult

to fit the armor wires into the toroidal wall formed by the neighboring layers.
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Figure 6.2: Effect of armor wire width on the lateral stability limit.

Based on the discussions above, it can be concluded that the flexible pipe ar-
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mor wire lateral stability limit can, to some extent, be improved by adjusting the

armor wire lay angle and increasing its width. Meanwhile, the number of armor

wires needs to be adjusted correspondingly to keep the filling factor approximately

fixed. Besides, it needs to be noted that modifying the design of the armor wire

layers affects the responses of flexible pipes in bending and tension which should be

carefully counterbalanced.
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Chapter 7

Concluding remarks

The goal of this Ph.D. thesis has been to improve the understanding of the armor

wire lateral instability mechanism in unbonded flexible pipes, as well as to evaluate

the critical loading conditions that may cause the armor wire lateral instability, and

most importantly, to provide the guidance for flexible pipe design against the armor

wire lateral instability.

In the present context, a flexible pipe in the wet annulus condition subjected to a

constant axial compressive load combined to cyclic bending with uniform curvatures

has been investigated. A single armor wire within the wall of the flexible pipe has

been modeled as a thin curved beam within a frictional toroidal wall through six

coupled Love’s differential equations. Thereafter, a perturbation technique has been

proposed to approximately linearize this coupled differential equation system based

on the following observations and assumptions:

(i) The bending radius of a flexible pipe is usually much larger than the flexible

pipe radius;

(ii) The deflection of the armor wire, as well as the flexible pipe axial rotation and

shortening, are small when no lateral instability takes place;

(iii) The deflection of the armor wire is deemed periodical in the section far away

from the pipe ends;

(iv) The lateral contact of neighboring armor wires is ignored;

(v) The shear deformation of the underlying polyamide anti-wear tape is ignored;

(vi) The entire armor wire is assumed sliding immediately when bending is applied.

This is equivalent to an assumption that full dynamic frictional forces are

applied on the entire armor wire;

(vii) The armor wire sliding is assumed primarily axial in dynamic bending.
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Through this perturbation technique, the frictional force components in the tan-

gential and bi-normal directions on each section of the armor wire are identified.

Based on the geometrical relation between the armor wire and the underlying toroid,

and considering the sliding direction is opposite to the direction of frictional force,

the armor wire instantaneous sliding directions and rates with respect to the bending

curvature are approximately evaluated. Instead of describing the armor wire path

evolution in cyclic bending, the present study focuses on the armor wire ultimate

state, stable or unstable, after a significant number of bending cycles. By discussing

the convergence of the recursive formula of the armor wire paths after each bend-

ing cycle, the armor wire ultimate equilibrium path after numerous bending cycles

in the converged state, as well as the critical axial compressive load causing the

non-converged state, both are obtained. If the axial compressive load surpasses this

critical load, the armor wire would migrate in the lateral direction constantly after

each bending cycle, and eventually, develop into a lateral instability failure due to

material yielding. Thereafter, considering that the axial compressive load carried

by each armor wire is approximately the same due to symmetry, the critical axial

compressive load on a flexible pipe that may cause the armor wire lateral instability

has been evaluated by multiplying the limit load for a single armor wire by the total

number of armor wires.

According to the present analytical model, it is interesting to note that, despite

the fact that the magnitudes of frictional forces and cyclic bending curvatures may

have significant effects on the armor wire marching towards the ultimate state, their

effects on the lateral stability limit are negligible. The armor wire lateral stability

limit depends solely on the geometrical and material properties of the armor wire

layers.

To calibrate and validate the present analytical model, two 6-inch flexible pipe

samples were tested through a hyperbaric chamber where high hydrostatic pressure

and numerous bending cycles were applied. While no failure was observed in the

pipe sample constituted of relatively bigger armor wires, the lateral instability failure

was successfully reconstructed in another sample constituted of smaller armor wires.

Excellent agreement was observed when comparing the analytical estimation of the

lateral stability limit with the present test data, as well as the available test data in

the literature.

Additionally, on the basis of the present analytical model, some useful suggestions

for improving the armor wire layer design against the lateral instability failure have

been proposed, including adjusting the armor wire lay angle, increasing the armor

wire width, and correspondingly adjusting the number of armor wires to keep the

filling factor approximately fixed.
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7.1 Recommendations for future research

To extend and improve the understanding of the armor wire lateral instability mech-

anism in unbonded flexible pipes, the following proposals are suggested for future

research:

• The present model is only applicable for a flexible pipe subjected to a constant

axial compressive load combined to cyclic bending with uniform curvatures.

Nevertheless, in practical applications of flexible pipes, cyclic axial compres-

sion and bending with non-uniform curvatures are usually experienced in the

touchdown zone, which may affect the armor wire progression towards the ul-

timate state as well as the critical conditions that may cause the armor wire

lateral instability failure. Thus, further research is needed to investigate flex-

ible pipe armor wire lateral instability mechanism in such a general loading

condition;

• Besides, the number of bending cycles for the triggering of armor wire lat-

eral instability also deserves further investigations. In practical applications

of flexible pipes, the varying amplitudes of the cyclic bending curvatures in the

touchdown zone are usually very small. Thus, even though the axial compres-

sive load is larger than the critical load, the lateral instability failure may not

take place after a limited number of bending cycles. For a flexible pipe sub-

jected to an axial compressive load larger than the critical load, the evaluation

of the necessary bending cycles for the triggering of lateral instability would

be useful for the estimation of the safe installation/operation time based on

the sea condition;

• Moreover, note that the neighboring armor wires within the same layer may be

in contact due to large displacements before reaching the yielding limit. Such

lateral contact may, to some extent, increase the armor wire stabilization,

especially when the anti-birdcage tapes are significant stiff since it prevents

the overlap of the armor wires in the contact sections and thus retards them

to continuously move in the lateral direction. Further research is needed to

investigate the effect of lateral contact on the armor wire stabilization.
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