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Recent studies have shown, using numerical simulation of viscoelastic turbulent flows, the presence of flow regimes called active and hibernating turbulence, which alternate in time and present high and low presence of turbulent structures, respec-tively. The present work aims to study the main di↵erences between these states, and to analyze their behaviour. Also, we show that this oscillatory behaviour presents itself very similarly in viscoelastic turbulent flows and Newtonian flows in transi-tion to turbulence. These similarities are shown through various physical quantities profiles as well as through the visualization of turbulent structures in the flow, and indicate the existence of an underlying mechanism common to both cases. In ad-dition this work verifies the wall tension criteria used to identify the occurrence of these active and hibernating states, and propose a local approach capable to identify sub-regimes of activation or hibernation in the flow.
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Chapter 1

Introduction

Drag reduction induced by polymer addition was observed for the first time in 1948

[1] and has been studied extensively ever since. However, it has not been fully understood until today.

In the last decades, a great number of attempts were made trying to explain or to model the influence of the polymeric particles and their interaction with the turbulent structures of flow. These attempts led to progress that made possible to relate the onset of drag reduction and its intensity, with parameters as the molecular weight of the polymer, or its concentration.

Recently [2], studies have shown the existence of two distinct intervals in nu-merical simulation of polymeric solution’s turbulent flows. The first one, known as active turbulence interval, show turbulent structures that remain practically unal-tered with relation to those present in the Newtonian flow of the solvent on its own, and the drag reduction is small. In the second interval, called hibernating turbulence interval, the turbulent structures are drastically reduced, with a significant increase of drag reduction. These intervals repeat in a cycle. An interesting observation is that these intervals are also present in the Newtonian limit, and their duration are influenced by the polymer concentration in the fluid.

These discoveries raise new possibilities of explanations for the mechanism that generates drag reduction by polymer addition. Also, studying the hibernating and active turbulence intervals may also lead to a better understanding of Newtonian flows, both turbulent and in transition to turbulence.

1.1
Motivation

The utilization of polymer addition in fluids to reduce drag, and therefore reduce the energy cost to induce flows, have a wide range of practical applications. A few examples are its utilization in firehoses [3], in the transportation of crude oils like in

1

the Trans-Alaska Pipeline System [4], or in reducing the drag in ships by injecting polymers in the external environment [5].
Therefore, it is clear the importance of a deeper study of this phenomenon, since a better understanding of the drag reduction mechanism may lead to a more eﬃcient utilization of this great number of application.

Also, after the recent observation of the similarities between turbulent flows of polymeric solutions and Newtonian flows in transtion to turbulence, the study of these cyclic intervals of active and hibernating turbulence may shed light on the mechanisms of turbulence itself, which is of great interest both in an Engineering or in a Physics point of view.

1.2
Objectives

The physical mechanisms that conduct this cyclic behaviour between the intervals of active and hibernating turbulence are not yet well established, so is the exact way they interact with the presence of polymeric particles in the fluid.

The criteria that identify a certain configuration of the flow as being in an active or hibernating regime are also not well defined. Also, in all studies published until now, only spatial-averaged quantities over the whole domain were used, which makes impossible to identify local sub-regimes that could bring new information to the matter.

The main goal of this work is therefore to analyze DNS results of both viscoelastic turbulent flows and Newtonian flows in transition to turbulence to show the main similarities between both cases. This should be achieved by showing the presence of cycling intervals of active and hibernating turbulence in both simulations, and the similarities in the physical quantities of both flows when they are in the same regime. Also, it is desired to utilize criteria that allow us to analyze not only global regimes of active and hibernating turbulence, but also local sub-regime.

2

Chapter 2

Literature Review

The addition of polymers in fluids in turbulent flows induces a reduction in the energy needed to maintain the flow, or an increase of flow rate for the same energy. This e↵ect has been reproduced in a wide range of studies since its first observation

[1] and has a great number of practical applications. The phenomenom can be observed in the figure 2.1 where the flow rate is represented as a function of the wall tension for a pure solvent and for polymeric solutions with di↵erent concentrations of W301 [6].
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Figure 2.1: Flow rate diagram in a circular duct. D = 3,21 cm. Source: Virk et al.

(1967).

In the last decades, many works tried to explain this phenomenon and to develop criteria to identify its onset, but many questions are still unanswered. One of the characteristics of the polymer addition induced drag reduction that isn’t fully under-stood yet is the existence of a maximum drag reduction asymptote (usually known

3

as MDR) which independs of polymer’s type, molecular weight or concentration [6]. Recently, studies have observed similarities on the behaviour of polymeric solu-

tion’s turbulent flow and Newtonian flow in turbulent transition.

This chapter aims to summarize a few of the main works on this subjects and its contributions, to provide context to the present work.

2.1
Onset of Drag Reduction

Virk et al. [7] have shown the existence of a certain value of wall tension for which the drag reduction starts abruptly. This may be observed in figure 2.1.
A hypothesis was then proposed, defining a criteria that must be satisfied for the drag reduction to occur. The theory presented was based in relating characteristic spatial scales of the turbulent flow, such as the length scale in which the turbulent energy dissipation is at its peak, and scales that come from the polymeric molecules responsible for the drag reduction, such as its radius of gyration.

Subsequent studies [8][9] argue that the scales used in a criteria that makes possible the identification of the onset of drag reduction should be temporal and not spatial. One of the main arguments for this hypothesis is that experiments have shown [10] that the spatial scales related to the polymers are approximately 10−3 the size of the spatial scales from the turbulent flow, while both time scales have the same order of magnitude.

According to the temporal criteria, the onset of drag reduction occurs when the ratio between the polymer relaxation time and the turbulent time scale given by

⌫/u2⌧ approaches 1. This ratio is called Weissemberg number and is denoted by W i⌧ [11]. It’s important to notice that this criteria does not take into account the solution’s polymer concentration.

The subsequent attempts of explaning the influence of the polymer molecules in the flow, as well as utilize its concentration in a criteria for the onset of drag reduction, are divided in two categories: one of them describes the polymer influence in the flow as a viscous e↵ect, while the other describes it as an elastic e↵ect.

The viscous theory argues that the stretch of the polymers during the turbulent flow generates an increase in the solution’s e↵ective viscosity. This increase would be responsible for the suppression of the turbulent fluctuations and would therefore reduce the wall tension [9]. An expression the relates the increase in the e↵ective viscosity caused by the stretch of the polymers was proposed [12] as a function of the solution’s polymer concentration and the maximum stretch of the polymeric molecule. Other models were proposed [13], arguing that the solution’s e↵ective viscosity would have a spatial dependency, increasing away from the wall.

The elastic theory argues that, in high frequencies, the polymers behave elasti-

4

cally, and utilize as a criteria for the onset of drag reduction that the elastic energy stored in the stretched polymers has the same order of magnitude as the energy of some scale r⇤ greater than the Kolmogorov scale. This way, the turbulent scales which are smaller than r⇤ would be supressed, and the wall tension would be re-duced [14]. In this criteria, the polymer concentration is important, since the total amount of energy is proportional to it.

2.2
Maximum Drag Reduction Asymptote

The existence of a maximum drag reduction asymptote is one the more characteristic aspects of the polymer addition induced drag reduction. This existence does not have yet a definitive and satisfactory explanation.

When the criteria for the onset of drag reduction is satisfied, the increase of the solution’s polymer concentration leads to a larger percentual drag reduction [15], which can be observed in figure 2.2. At low polymer concentrations, this variation behaves linearly [9].
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Figure 2.2:  Drag reduction as a function of polymer concentration for di↵erent

polymers. Source: Kenis and Hoyt (1971).

However, when the polymer concentration keeps increasing, the drag reduction reaches a maximum value. In the same manner, when the polymer concentration is fixed, higher drag reduction levels can be achieved as the Reynolds number increases, until a limit where the curve’s trajectory changes abruptly [11]. Both these cases can be observed in the schematic illustration in figure 2.3.
5

The existence of the maximum drag reduction asymptote was first observed by Virk et al [6]. It was also noticed that the MDR asymptote not only doesn’t depend on the polymer concentration but is also independent of the molecular weight or type of polymer used, as well as the problem’s geometry.
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Figure 2.3:
Schematic illustration of the maximum drag reduction asymptote.

Source: White and Mungal (2008).

2.3
LDR and HDR

Experimental work [16][17] have identified important di↵erences in the statistics of turbulence and velocity fields between flows which are said to be at low drag reduction (LDR) and high drag reduction (HDR). This distinction, in general, is made when the flow presents DR < 40% or DR > 40%, respectively [11].
These studies have show that for LDR flows the profile for both velocity and flow statistics are similar to the Newtonian flow, but shifted away from the wall, increasing with the drag reduction. This can be observed in figure 2.4a, which shows the velocity profile for polymeric solutions with multiple polymer concentrations. Notice that the velocity profiles are parallel to the Newtonian case and the turbulence log-law. However, for HDR flows the velocity profile changes considerably, with its slope increasing with the drag reduction and approaching the MDR profile. Figure 2.4b shows this behaviour.
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(a) LDR
(b) HDR

Figure 2.4:
Velocity profiles for polymeric solutions in the LDR and HDR range.

Source: Warholic et al. (1999).

Another important distinction between the LDR and HDR flows is the balance between Reynolds stress and polymer stress contribution, specially in the near-wall region of the flow. For LDR flows the Reynolds stress profile is again similar to the Newtonian case, dictating the turbulence dynamics, while the polymer stress is shown to play a lesser role. But, for HDR flows, the situation is inverted. The Reynolds stress is vastly reduced and the polymer stress increase, which leads to the conclusion that, for this type of flow, the near-wall turbulence is mostly sustained by the polymer stresses. Figures 2.5 and 2.6 show this distinction between both cases.
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Figure 2.5:
Reynolds shear stress profiles for polymeric solutions in the LDR and
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Figure 2.6:
Polymer stress profiles for polymeric solutions in the LDR and HDR

range. Source: Warholic et al. (1999).
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2.4
Laminar Flow

Laminar flows don’t present drag reduction related to the addition of polymers, which can be easily shown by experiments [6]. This fact is used as evidence that drag reduction is in fact caused by the interaction between the polymeric particles and the turbulent structures, which led to the theories presented in section 2.1.
The usual arguments for the absence of polymeric influence in drag in laminar flows is based in the fact that most laminar flows of interest are predominantly shear flows. In a turbulent flow, the vast number of combinations of deformation and vorticity would create subregions that are predominantly extensional, which is a necessary condition for the polymer particles to stretch [8] and to influence the drag.

2.5
Active and Hibernating Turbulence

Numerical simulations of viscoelastic turbulent flows described by the FENE-P model [18] have shown a temporally oscillatory behaviour of wall tension, and con-sequently, drag reduction [2].
The periods of time in which the flow presents a reduction in the average wall tension were called hibernating turbulence periods. The criteria used to identify these periods include the decrease in the wall tension until below 90% of the time-averaged value, and the permanence below this limit for a predetermined time. It has also been observed the same oscillatory behaviour in Newtonian fluids. The figure 2.7 shows the temporal oscillations of the wall tension in both bottom and top wall, and the bulk velocity, for both viscoelastic and Newtonian flow. The hibernating turbulence periods are highlighted in the central panel.

The hibernating turbulence periods are also characterized by a turbulent struc-tures’ suppression. Figure 2.8 shows results obtained by a DNS simulation of vis-coelastic fluids in a Couette turbulent flow [19]. The structures in the figure are isosurfaces given by the Q criteria. The colors represent the relative stretch of the polymeric molecules. In active turbulence periods, a wide number of turbulent struc-tures can be observed and the drag reduction percentage drops. In other hand, in the hibernating turbulence periods the turbulent structures are almost absent and there is an increase on the drag reduction percentage.

Figure 2.9 shows the influence of W i in the average time of each period. The Weissemberg number is a measure of the importance of the polymer’s elastic e↵ects in the flow. The average time of the hibernating turbulence period TH doesn’t su↵er a great influence, while the average time of the active turbulence period TA is drastically reduced, causing an increase in FH , the fraction of total time in which

9
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Figure 2.7: Temporal oscillations of wall tension. Source: Xi and Graham (2010).

the flow is in the hibernating regime.

This increase on the total time spent in the hibernating turbulence regime is then said to be responsible for the drag reduction. When taking a time average, it is clear that the drag reduction percentage will be greater in a flow which hibernating turbulence period is more frequent.

Recent results [19] can also be used in an attempt to describe the active and hibernating turbulence regimes. Figure 2.10 shows the velocity profile in active and hibernating moments for di↵erent values of W i. Its possible to notice that, for lower values of W i, both profiles are similar. However, when the viscoelastic e↵ects are increased the profiles become more di↵erent. The hibernating period profile moves towards the MDR profile as described by Virk [6] and the active period profile moves towards the traditional log-law for turbulent flow. Results also show that in the hibernating turbulence regime the Reynolds stress tensor components increase in the principal direction and decrease in the others [19].
Initially [2][20], the active-hibernating turbulence cycle was described as follows. The presence of active turbulence causes the severe stretch of polymeric particles. The resulting tensions act suppressing the turbulence and leading to a hibernating period. During this period, the polymeric molecules relax towards equilibrium. Eventually, new fluctuations grow leading the flow to another active turbulence period. This cycle is schematically represented in figure 2.11. The maximum drag reduction asymptote would then be reached when the hibernating turbulence regime became temporally predominant in the flow.

Recent studies [19] have made possible a more detailed explanation for the active-

10
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Figure 2.8: Isosurfaces of Q criteria representing the turbulent structures. Source:

Pereira et al. (2017)
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Figure 2.9: Average time of each regime and fraction of total time spent in the

hibernating turbulence regime. Source: Xi and Graham (2010).

hibernating turbulence cycle using an energy transfer analysis between the balance equation terms, and an energy spectrum analysis. It has been observed that, dur-ing hibernating periods, the turbulent kinetical energy dissipates mainly on high frequencies, which indicates that the polymeric particles a↵ect mostly the smaller turbulent scales. Additionally, when the polymeric particles relax they release a sig-nificant amount of energy, increasing the flow bulk velocity. This release of energy also inject energy in the velocity’s fluctuation field, contributing for the return of the active turbulence period.
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Figure 2.10: Velocity profiles in active and hibernating turbulence regimes for dif-

ferent values of W i. Source: Pereira et al. (2017).

2.6
Newtonian Flow in Transition to Turbulence

The transition between laminar and turbulent flows is not yet fully understood, even for Newtonian fluids. In laminar flows, perturbations introducted in the domain are damped and disappear after some time, while in turbulent flows these perturbations are amplified until the whole domain behaves in a chaotic manner. However, in transitional flows it is possible to observe both states coexisting [21], and the un-derstanding of how these perturbations propagate is of great interest. Figure 2.12 illustrate the three possibilites of perturbation behaviour in flows.

Recent studies [22][23] model the transition to turbulence as a bistable sys-tem with nonlinear advectives propagation fronts. With a relatively simple one-dimensional model where the variable of interest is the turbulent intensity, it is demonstrated the existence of two critical Reynolds numbers.
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Figure 2.11: Schematical representation of the active-hibernating turbulence cycle.

Source: Graham (2014).
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Figure 2.12: Schematic illustration of the perturbation behaviour in laminar, tur-

bulent and transitional flows. Source: Graham (2015).

The model predicts, in a simplified manner, that for Reynolds numbers below the first critical Reynolds number, only the laminar solution exists for the flow. Above this value, this stable laminar solution coexist with turbulent solutions which are both instable and metastable. After the second critical Reynolds number, the situation is inverted and the turbulent solution for the flow becomes stable, while the laminar solution becomes metastable.

Figure 2.13 illustrates this behaviour by showing the bifurcation diagram for this simplified model. In the figure, r is a parameter playing the role of Reynolds number, q0 is the laminar flow solution and q+ and q− are the turbulent solutions. It can be observed that, for lower values of r, the laminar solution is unique and any perturbations introduced in the flow will be suppressed. When r increases, the turbulent solutions appear. The dashed line used for the q− solution indicates that this solution is unstable. The figure also shows the potential V (q) for the di↵erent
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regions of the diagram. Notice that, while in region II the laminar equilibrium has a lower potential than the turbulent solution, in region III the situation is reversed and the laminar solution becomes metastable.

[image: image63.png]



Figure 2.13:  Bifurcation diagram for a simplified model describing transition to

turbulence. Source: Barkley (2016).

The predicted behaviour by this model for perturbations introducted at the domain includes their dampening, for low Reynolds numbers, the bifurcation of a contained turbulent region, for intermediate values, and the expansion of them to the whole domain, for elevated values of Re. These di↵erent behaviours can be visualized in figure 2.14. The parameter r represents a normalized Reynolds number and the cases (b) (g) show the evolution of a perturbation in time and space, for increasing values of r.

The active-hibernating turbulence cycle present in viscoelastic turbulent flows, explained in section 2.5 is also present in Newtonian flows in transition to turbu-lence. However, the explanations for its mechanisms don’t apply. Therefore, new explanations are necessary for the presence of this behaviour in Newtonian flows.
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Figure 2.14: Evolution of perturbations in time and space for di↵erent values of Re.

Source: Barkley (2016).
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Chapter 3

Methodology

All analysis made in the present work are based on data coming from DNS simu-lations of viscoelastic turbulent flows and Newtonian flows both turbulent and in transition to turbulence.

3.1
Simulations Specification

The DNS simulations were made using a Poiseuille channel-flow geometry, as rep-resented in figure 3.1. The parallel walls that define the simulation domain are at rest, and flow is induced by a pressure gradient on the streamwise direction x.
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Figure 3.1: Channel flow geometry used for the simulations.

The simulated geometry dimensions are given by (Lx ⇥ Ly ⇥ Lz = 8⇡ ⇥ 3⇡/2 ⇥ 2) and the number of points in each direction by (Nx ⇥ Ny ⇥ Nz = 512 ⇥ 128 ⇥ 129). These were the same through all simulations.

Usual no-slip and no-penetration conditions were used for the wall-normal z direction. In both streamwise and spanwise directions, periodic boundary conditions were used.

16

The equations that model the problem are the continuity equation (or mass conservation equation) and the linear-momentum equation. For a viscoelastic flow:
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The Reynolds number is given by Re = ⇢Ubh/⌫, where h is the channel half-gap and ⌫ is the solution viscosity; and β = ⌫s/⌫ is a viscosity ratio where ⌫s is the pure solvent viscosity. These equations assume an uniform polymer concentration. Notice that when there are no polymeric particles, β = 1 and the Navier-Stokes equations are recovered. Finally, ⌧ij represents a non-newtonian stress tensor, responsible for the polymers’ contribution to the flow.

The non-newtonian stress tensor ⌧ij is modeled by the FENE-P single spring-dumbbell model. This choice is mostly due to the model’s physically realistic finite extensibility of the polymer molecules. ⌧ij is therefore represented as a function of the polymeric conformation tensor given by cij = hqiqj i where qi is the end-to-end vector of the polymer molecules. Then, the non-newtonian stress tensor ⌧ij is given by
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where W i = λUb/h is the Weissemberg number, λ is the relaxation time and
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with L being the maximum polymer molecule extensibility.

Finally, the transport equation for the polymeric conformation tensor is
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The time discretization of the momentum equation were made using a high-order semi-implicit step method. The polymeric conformation tensor equation uses

a similar approach, with artificial di↵usion playing the role of molecular di↵usion. The spatial discretization is Fourier spectral in the x and y directions and uses high order compact finite di↵erences in the wall-normal z direction which permit Dirichlet boundary conditions at the channel walls. The overall accuracy of the scheme is at

least of O(h4).

In the present work, 3 simulations were analyzed: a turbulent Newtonian flow (Re = 2830), a Newtonian flow in transition to turbulence (Re = 1000) and a
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turbulent viscoelastic flow (Re = 2830, W i = 20, L = 100).

The DNS simulations were realized in a supercomputer at the Institute for Devel-opment and Resources in Intensive Scientific Computing (IDRIS), located in France.

3.2
Post-processing

All post-processing were realized by programs written in Fortran. The binary files containing the simulations results had to be read and processed before they could be used to extract the desired data. All the profiles in this work were plotted using the command-line graphing application gnuplot. The 3d visualizations of turbulent structures were produced using the data visualization software Paraview.

For each case, the wall tension time evolution was calculated using the velocity field near the wall with a second-order finite di↵erence. The spatial-average values of the wall tensions were then used to select the time instants for which the quantities profiles would be calculated. To analyze the di↵erences between the hibernating and active states, the instants selected were those with the lowest and highest spatial average wall tensions values, respectively. To verify the validity of the wall tension criteria, multiple time instants with the same wall tension value were selected. The same process was used for the local approach analysis, but with all spatial averages being calculated only in a reduced domain. The velocity and Reynolds stress com-ponents profiles were then exported in a format that could be read and plotted by the graphing software.

The 3d turbulent structures visualizations were made for the same time instants selected before. The Q-criterion[24] values for each point were exported to a VTK file which could be read by Paraview. The isosurfaces were calculated by the data visualization software.
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Chapter 4

Results and Discussion

4.1
Global Approach

The alternation between the active and hibernating turbulence regimes can be ob-served by watching the oscilations of the channel’s wall tension over time.

For this work, flow is considered to be in the hibernating turbulence state when the space-averaged wall tension goes below 90% of its time average, that is h⌧wi < 0.9h⌧w imean. Conversely, the flow is said to be in the strong-active turbulence state when the same quantity goes above 110% of its time average, h⌧wi > 1.1h⌧wimean . That leaves a period, when the space-averaged wall tension remains near its average value, 0.9h⌧wimean < h⌧wi < 1.1h⌧wimean that we will call moderate-active turbulence state.

Figures 4.1 show the time evolution of the ratio between h⌧wi and its time av-eraged value for di↵erent cases. The mean value is calculated for 1000 < t < 2500 since, for lower values of t, the flow is still in development. The wall tension h⌧wi is an space average computed at both walls in the whole domain.

It can be observed in figure 4.1a that, for the Newtonian turbulent flow, only the moderate-active turbulence state is present, and the wall tension remains close to its mean. However, by introducing elastic e↵ects, translated as an increase in W i, an oscilation between hibernating and active turbulence states can be observed. Inter-estingly, the same behaviour can also be achieved by reducing the Reynolds number of the Newtonian flow until the turbulence transition range. These oscillatory be-haviours are shown in figures 4.1b and 4.1c.
19
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(a) Newtonian flow, Re = 2830.
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(b) Newtonian flow, Re = 1000.
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	(c)
	Viscoelastic flow, Re = 2830, W i = 20.
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Figure 4.1: Evolution in time for the wall tension.

The di↵erences between the hibernating and strong-active turbulence state can be shown not only based in the wall tension. The observation of turbulent struc-tures can serve as a qualitative criteria to di↵erentiate both cases. Figures 4.2 and 4.3 show the turbulent vortices in the flow domain given by isosurfaces of the Q-criterion. Notice that, for the moments where the wall-tension criterion points an strong-active turbulent state, the turbulent structures are present in a great number. However, when the wall tension drops and the flow enters a hibernating turbulence state, the turbulent structures are suppressed. It can be seen that the Newtonian flow in transition to turbulence and the viscoelastic turbulent flow share the same behaviour.
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(a) t = 2045 (Strong-Active). Q = 0.01.
(b) t = 2045 (Strong-Active). Q =
0.01.
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(c) t = 2185 (Hibernating). Q = 0.01.
(d) t = 2185 (Hibernating). Q =
0.01.

Figure 4.2: Vortices given by isosurfaces of the Q-criterion. Re = 2800, W i = 20.
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(a) t = 1710 (Strong-Active). Q = 0.01.
(b) t = 1710 (Strong-Active). Q =
0.01.
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(c) t = 1590 (Hibernating). Q = 0.01.
(d) t = 1590 (Hibernating). Q =
0.01.

Figure 4.3: Vortices given by isosurfaces of the Q-criterion. Re = 1000.
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Both Newtonian and viscoelastic flow also behaviour similarly in respect with their velocity profile in active and hibernating turbulence regimes. Previous works

[2] have theorized that, in polymer solutions flow, the amount of time spent in hibernating turbulence state is responsible for the drag reduction. Therefore, it is expected that the velocity profile increases in this regime, for viscoelastic turbulent flows.

Figure 4.4a show that this is indeed the case. Notice, in figure 4.4b, that the same behaviour can be observed in the Newtonian transitional flow. For the viscoelastic case, velocity profiles are shown for a strong-active state (t = 2045), a hibernating state (t = 2185) as well as for a moderate-active state (t = 1360). As for the Newtonian case, we also have velocity profiles for a strong-active state (t = 1710), a hibernating state (t = 1590) and a moderate-active state (t = 2180). The profile

is shown using the traditional wall units, and for each z+ the velocity is calculated as an average taken in the whole x-y plane.
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(b) Re = 1000.

Figure 4.4: Velocity profiles in strong-active, moderate-active and hibernating tur-bulence states.

The Reynolds stress tensor is a quantity that captures the influence of the velocity field fluctuations in the flow. When the Reynolds stress components approach 0, the turbulence disappears and the flow becames laminar. Therefore, it is expected that, in the hibernating turbulence state, the Reynolds stress components are smaller than those in the active states.

Figures 4.5 and 4.6 show that this is indeed the fact. In both Newtonian and viscoelastic cases, hibernating states present lower values for the Reynolds stress components than its respective strong-active states. Once again, the profiles are represented using wall units and were calculated as an average taken in the whole x-y plane for each z+, at the same time instants that the velocity profile.
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(a) Streamwise Reynolds stress component.
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(b) Cross Reynolds stress component.
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(c) Wall-normal Reynolds stress component.

Figure 4.5: Reynolds stress components profiles in strong-active, moderate-active and hibernating turbulence states. Re = 2830, W i = 20.
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(a) Streamwise Reynolds stress component.
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(b) Cross Reynolds stress component.
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(c) Wall-normal Reynolds stress component.

Figure 4.6: Reynolds stress components profiles in strong-active, moderate-active and hibernating turbulence states. Re = 1000.

24

All results shown point to the similarities between the Newtonian flow in tur-bulence transition and the viscoelastic turbulent flow, and how they behave when in active or hibernating states. Since these states are identified by a criterion that is based in the wall tension, it is important to verify if the wall tension is in fact a good enough measure to be able to predict the correct flow behaviour.

Figure 4.7 show the velocity profiles for multiple instants of time that share the same wall tension value. For the hibernating state it has been chosen the limiting value h⌧wi/h⌧wimean = 0.9, and for the strong and moderate active turbulence states, h⌧wi/h⌧wimean = 1.1 and h⌧wi/h⌧wimean = 1.0 respectively.

Notice that in fact the profiles from the instants that are in the same state (i.e. with the same wall tension) are very similar. Also, they are very similar to the profiles in the same state shown in figure 4.4, even though those don’t share the same wall tension. This happens for both the Newtonian and viscoelastic cases.
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	(a)
	Re = 2830, W i = 20.
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(b) Re = 1000.

Figure 4.7: Velocity profiles for fixed wall tensions.

A similar result can be observed with respect to the Reynolds stress components. Figures 4.8 and 4.9 show profiles for the Reynolds stress components for multiple instants of time with the same wall tension values. Once again, the profiles are similar to each other and to the profiles previously presented for hibernating and active states in figures 4.5 and 4.6, in both Newtonian and viscoelastic flows. These results indicate that, for a global approach, the wall tension value in a time instant can predict accurately the turbulence state for that instant.

25

	
	40
	M-Act
	

	
	
	
	

	
	
	S-Act
	

	
	
	Hib
	

	
	30
	
	

	i
	
	
	

	x
	
	
	

	u
	20
	
	

	x
	
	
	

	hu
	
	
	

	
	10
	
	

	
	0
	
	

	
	1
	10
	100

	
	
	z+
	


[image: image83.png]|||=.





(a) Streamwise Reynolds stress component.
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(b) Cross Reynolds stress component.
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(c) Wall-normal Reynolds stress component.

Figure 4.8: Reynolds stress components profiles for fixed wall tensions. Re = 2830, W i = 20.
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(a) Streamwise Reynolds stress component.
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(b) Cross Reynolds stress component.
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(c) Wall-normal Reynolds stress component.

Figure 4.9: Reynolds stress components profiles for fixed wall tensions. Re = 1000.

27

4.2
Local approach

The results shown in section 4.1 allow us to predict if a flow is, on average, in a active or hibernating state. However, it may be interesting for specific applications to have information about the turbulence state locally. Also, since the wall tension used as a criterion is itself a space average, taking it in a large domain will smoothen the curve and hide the highest activation and lowest hibernation points.

For this section, all wall tension, velocity or Reynolds stress components averages are taken in a reduced domain with 1/8 of the channel’s length. Since the simulations use periodic boundary conditions, all pieces of the domain will behave the same statistically, and therefore the interval 4Lx/8 x 5Lx/8 was chosen arbitrarily. Figure 4.10 show the wall tension evolution in time in this reduced domain for the viscoelastic turbulent flow and the Newtonian transitional flow. Notice that it behaves similarly to the average taken in the whole domain, but its peaks and valleys are more pronounced.

Flow is considered to be in hibernating, moderate-active and strong-active states by the same criteria as in section 4.1. Again, the mean value is calculated for 1000 < t < 2500, and the space average for the wall tension is taken in both walls.
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(a) Newtonian flow, Re = 1000.
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	(b)
	Viscoelastic flow, Re = 2830, W i = 20.
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Figure 4.10: Evolution in time for the wall tension taken in a reduced domain.

Figures 4.11 and 4.12 show the turbulence structures given by isosurfaces of the Q-criterion. The qualitative observation doesn’t present much di↵erence between the behaviour in the restricted domain (box shown in the figures) and the full domain. However, in the hibernating state of the Newtonian case (figures 4.12c and 4.12d) it is possible to notice that while the full domain show some turbulent structures, in the reduced domain used for the wall tension criterion they are mostly suppressed.
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(a) t = 1635 (Strong-Active). Q = 0.01.
(b) t = 1635 (Strong-Active). Q =
0.01.

[image: image92.png]



(c) t = 2190 (Hibernating). Q = 0.01.
(d) t = 2190 (Hibernating). Q =
0.01.

Figure 4.11: Vortices given by isosurfaces of the Q-criterion with focus on the re-duced domain. Re = 2800, W i = 20.
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(a) t = 1700 (Strong-Active). Q = 0.01.
(b) t = 1700 (Strong-Active). Q =
0.01.
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(c) t = 1600 (Hibernating). Q = 0.01.
(d) t = 1600 (Hibernating). Q =
0.01.

Figure 4.12: Vortices given by isosurfaces of the Q-criterion with focus on the re-duced domain. Re = 1000.
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Figure 4.13 show velocity profiles for active and hibernating cases in the reduced domain. For the viscoelastic case, velocity profiles are shown for a strong-active state (t = 1635), a hibernating state (t = 2190) as well as for a moderate-active state (t = 1425). As for the Newtonian case, we also have velocity profiles for a strong-active state (t = 1700), a hibernating state (t = 1600) and a moderate-active state (t = 1330).

The profiles are similar to the ones resulting of the global approach, with the hibernating state profiles showing larger values for velocity than the other states, in both cases studied. For the Newtonian case, the velocity profiles for the active and hibernating states are even more separated from each other when comparing to the global approach results. This is expected, since the nature of the local approach permits to identify instants that are more active (or hibernated) without them being smoothed by the domain average.
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	(a)
	Re = 2830, W i = 20.
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(b) Re = 1000.

Figure 4.13: Velocity profiles in strong-active, moderate-active and hibernating tur-bulence states for the reduced domain.

The Reynolds stress tensor profiles for the same time instants enables us to ob-serve the same behaviour. The local approach presents profiles similar to those re-sulting from the global approach, with the turbulent e↵ects captured by the Reynolds stress tensor being more prominent in the active states. However, for both Newto-nian and viscoelastic cases, the hibernating and strong-active profiles given by the local approach are more distant from each other. This means that the di↵erence be-tween the states where the turbulence e↵ects are or not suppressed are even larger. This can be observed in figures 4.14 and 4.15.
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(a) Streamwise Reynolds stress component.
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(b) Cross Reynolds stress component.
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(c) Wall-normal Reynolds stress component.

Figure 4.14: Reynolds stress components profiles in strong-active, moderate-active and hibernating turbulence states for the reduced domain. Re = 2830, W i = 20.
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(a) Streamwise Reynolds stress component.
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(b) Cross Reynolds stress component.
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(c) Wall-normal Reynolds stress component.

Figure 4.15: Reynolds stress components profiles in strong-active, moderate-active and hibernating turbulence states for the reduced domain. Re = 1000.
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In a similar way to the global approach, it is important to analyze if the value of wall tension in a time instant is a good enough measure to predict the turbulence state and overall flow behaviour in this instant.

Figure 4.16 show the velocity profiles for multiple instants of time that share the same wall tension value. Similarly to the global approach, the values of h⌧wi/h⌧wimean chosen were 0.9, 1.0 and 1.1 for the hibernating, moderate active and strong active turbulence states, respectively.

For both cases it can be observed that the profiles follow the expected pattern, with hibernating state profiles presenting higher values of velocity. However, while the Newtonian case present very similar profiles for the instants that are in the same state, the viscoelastic case profiles are more spread out despite the same wall tension value.
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	(a)
	Re = 2830, W i = 20.
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(b) Re = 1000.

Figure 4.16: Velocity profiles in the reduced domain for fixed wall tensions.

In the Newtonian case, the Reynolds stress components profiles for instants with the same wall tension have good agreement with each other, the previous results for di↵erent wall tensions and with the results coming from the local approach. These results are shown in figure 4.18 and indicate that the local approach using the wall tension is e↵ective in revealing information on specific parts of the domain. However, for the viscoelastic case, the local Reynolds stress components profiles shown in figure 4.17 don’t seem to show relation with the wall tension, at least for these prefixated values. This may mean that for this case, larger deviation from the mean wall tension is needed to ensure a strong-active or hibernating state, or even that the wall tension is not a good measure to predict these states locally, unlike the global approach that has been shown to work.
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(a) Streamwise Reynolds stress component.
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(b) Cross Reynolds stress component.
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(c) Wall-normal Reynolds stress component.

Figure 4.17: Reynolds stress components profiles in the reduced domain for fixed wall tensions. Re = 2830, W i = 20.
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(a) Streamwise Reynolds stress component.
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(b) Cross Reynolds stress component.
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(c) Wall-normal Reynolds stress component.

Figure 4.18: Reynolds stress components profiles in the reduced domain for fixed wall tensions. Re = 1000.
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Chapter 5

Conclusions and Future Works

This study highlighted the interesting similarities between two seemingly unrelated problems: Newtonian flows in transition to turbulence and turbulent viscoelastic flows such as polymeric solutions flows.

It has been shown that both these types of flow present an oscillatory behaviour between a highly turbulent state and another in which the turbulence is suppressed. This behaviour is not present in usual Newtonian turbulent flow, and can be achieved both by reducing the Reynolds number until the transitional range, or by introduc-ing elastic e↵ects adding polymers to the fluid (computationally represented by increasing the Weissemberg number). It has been shown that while in hibernating state, the flow presents significantly less turbulent structures and lower values for the Reynolds stresses while increasing its velocity, for both studied cases.

The similarities that both types of flow share when in the same turbulence state have been shown through velocity and Reynolds stress profiles, as well as through the visualization of turbulent structures in the flow. These similarities indicate the existence of an underlying mechanism common to both cases. The further explo-ration of the problems may be important in understanding drag-reducing polymeric solution flows as well as transition to turbulence in Newtonian fluids, both subjects extremely important and yet not fully understood.

In future works we will analyze other physical quantities that can help under-standing these similarities. Recent works [19] have studied the energy spectrum in active and hibernating states in viscoelastic flows to understand the frequencies in which energy transfer from the turbulent scales to the mean flow in each of these states. This approach should be used for both cases studied in this work in a fu-ture analysis. Also, the percentage of drag reduction present in the viscoelastic cases for each state, and the fraction of total time spent in strong active and hi-bernating states are analysis that may bring new interesting information. These approaches may allow us to observe di↵erences and similarities in the oscillatory active-hibernating behaviour for flows in LDR and MDR range.
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Parallely, this study verified that the wall tension criteria is a good measure for predicting the current active or hibernating state of the flow, bearing satisfac-tory results. Also, the local approach for identifying local active and hibernating states that was proposed showed results as good as the global approach and, in the Newtonian case, enabled to di↵erentiate even more between the cases. However, for the viscoelastic case the analysis with fixed wall tension values did not present agreement between the profiles, which needs yet to be explained in future works.

It is also expected in future works to propose a local approach with a further reduced domain. Following the logic that when reducing the domain we prevent losing information through an average induced smoothness, we intend to analyze results taken at a single vertical line with fixed x and y, the smallest possible domain in which profiles can still be calculated.

Another di↵erent approach that can be explored in future works is the utilization of the minimal flow unit approach (MFU) [25], which identify the smallest flow domain at a given Reynolds number in which turbulence can be sustained.

Finally, we intend to use the information gathered with the analysis in the present work and the future analysis in an attempt to explain the mechanisms that control this oscillatory behaviour in these two important problems as well as to contribute in the understanding of open problems such as the MDR existence and the transition from LDR to MDR in polymeric flows.
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