
TRANSFER LEARNING BY MAPPING AND REVISING BOOSTED

RELATIONAL DEPENDENCY NETWORKS

Rodrigo Azevedo Santos

Dissertação de Mestrado apresentada ao

Programa de Pós-graduação em Engenharia

de Sistemas e Computação, COPPE, da

Universidade Federal do Rio de Janeiro, como

parte dos requisitos necessários à obtenção do

t́ıtulo de Mestre em Engenharia de Sistemas e

Computação.

Orientadores: Gerson Zaverucha

Aline Marins Paes Carvalho

Rio de Janeiro

Junho de 2019

Azevedo Santos, Rodrigo

Transfer Learning by Mapping and Revising Boosted

Relational Dependency Networks/Rodrigo Azevedo

Santos. – Rio de Janeiro: UFRJ/COPPE, 2019.

XIII, 74 p.: il.; 29, 7cm.

Orientadores: Gerson Zaverucha

Aline Marins Paes Carvalho

Dissertação (mestrado) – UFRJ/COPPE/Programa de

Engenharia de Sistemas e Computação, 2019.

Bibliography: p. 66 – 74.

1. Transfer learning. 2. Statistical relational

learning. 3. Theory revision. I. Zaverucha, Gerson

et al. II. Universidade Federal do Rio de Janeiro, COPPE,

Programa de Engenharia de Sistemas e Computação. III.

T́ıtulo.

iii

Dedico este trabalho a minha

mãe Lidia e a minha avó Ilma

pelo imenso orgulho e carinho

que sentiram por mim.

iv

Agradecimentos

Agradeço a minha amada mãe Lidia Azevedo (in memoriam) que me ensinou o gosto

pela leitura e aprendizado, e pelo imenso orgulho que sentiu ao me ver ingressar no

curso de mestrado. A você, que sempre compreendeu momentos de minha ausência

devido aos estudos, partilho este momento de alegria com muito amor e saudade.

Agradeço a minha avó Ilma Gonçalves (in memoriam) pelo apoio aos meus es-

tudos durante toda sua vida e todo o carinho e orgulho que sempre sentiu por mim.

O meu eterno amor e gratidão.

Ao meu pai Alexis de Souza pela educação que pôde me proporcionar e a todos

os meus familiares e amigos por todo apoio e dedicação.

Agradeço aos meus orientadores Gerson Zaverucha e Aline Paes que aceitaram

me orientar e foram essenciais para a realização deste trabalho. Agradeço a disponi-

bilidade para as reuniões e discussões acerca do desenvolvimento do trabalho e a

todo o conhecimento e suporte dado a mim durante este peŕıodo.

Aos professores Valmir Barbosa e Fábio Cozman pela participação da banca e

pela contribuição dada através dos comentários sobre o trabalho.

Aos professores do Programa de Engenharia de Sistemas e Computação, pois

foram essenciais para o aprendizado e minha formação. Assim como a equipe ad-

ministrativa e de suporte técnico que sempre foram muito soĺıcitos.

Aos meus colegas de curso, pelo bom conv́ıvio e troca de conhecimento durante

todo esse tempo.

À comunidade cient́ıfica e principalmente aos autores dos trabalhos relacionados

a esta dissertação que também contrúıram com a disponibilização de seus algoritmos.

À Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior (CAPES) pelo

suporte financeiro que viabilizou este trabalho.

v

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos

necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

TRANSFERÊNCIA DE APRENDIZADO AO MAPEAR E REVISAR REDES

DE DEPENDÊNCIA RELACIONAL COM BOOSTING

Rodrigo Azevedo Santos

Junho/2019

Orientadores: Gerson Zaverucha

Aline Marins Paes Carvalho

Programa: Engenharia de Sistemas e Computação

Algoritmos de aprendizado de máquina normalmente assumem que há dispońıvel

uma quantidade considerável de dados para a realização do treinamento de mode-

los. Com isso, as abordagens tradicionais falham em abordar domı́nios onde dados

são dif́ıceis ou custosos de se obter. A transferência de aprendizado surgiu para

abordar o problema de escassez de dados ao considerar um modelo aprendido em

um domı́nio de origem, onde dados são fáceis de se obter, como um ponto inicial

para o domı́nio alvo. Por outro lado, dados de um mundo real são compostos por

objetos e suas relações que normalmente advêm de ambientes com rúıdo. Encontrar

padrões em dados relacionais probabiĺısticos tem sido o foco da área de Aprendiza-

gem Estat́ıstica Relacional. Para abordar as questões de dados escassos, relacionais e

incertos, neste trabalho propusemos o TreeBoostler, um algoritmo que transfere Re-

des de Dependência Relacional com boosting aprendidas em um domı́nio de origem

para um domı́nio alvo. O algoritmo TreeBoostler primeiramente encontra um ma-

peamento entre pares de predicados para representar as árvores no vocabulário alvo.

Após, o algoritmo aplica dois operadores de revisão de teoria para modificar a árvore

de regressão relacional com o intuito de lidar com incorreções e melhorar o desem-

penho das árvores mapeadas. Os resultados mostraram que o TreeBoostler foi capaz

de transferir conhecimento entre diversos domı́nios distintos com sucesso, além de

ter mostrado um desempenho comparável ou melhor que os métodos de aprendizado

do zero em termos de acurácia e ter obtido um desempenho melhor em termos de

acurácia e tempo de execução comparado a um método de transferência de apren-

dizado dispońıvel na literatura.

vi

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Master of Science (M.Sc.)

TRANSFER LEARNING BY MAPPING AND REVISING BOOSTED

RELATIONAL DEPENDENCY NETWORKS

Rodrigo Azevedo Santos

June/2019

Advisors: Gerson Zaverucha

Aline Marins Paes Carvalho

Department: Systems Engineering and Computer Science

Statistical machine learning algorithms usually assume that there is considerably-

size data to train the models. However, traditional approaches fail to address do-

mains where data is difficult or expensive to obtain. Transfer learning has emerged

to address this problem of data scarcity by relying on a model learned in a source

domain where data is easy to obtain to be a starting point for the target domain.

On the other hand, real-world data is composed of objects and their relations usu-

ally disposed of in a noisy environment. Finding patterns through such uncertain

relational data has been the focus of the Statistical Relational Learning area. To

address these issues, scarce, relational, and uncertain data, in this work we propose

TreeBoostler, an algorithm that transfers Boosted Relational Dependency Networks

learned in a source domain to the target domain. TreeBoostler first finds a map-

ping between pairs of predicates to accommodate the trees in the target vocabulary.

Then, it employs two novel theory revision operators devised to change relational

regression trees to handle incorrectness and improve the performance of the mapped

trees. TreeBoostler has successfully transferred knowledge among several distinct

domains. It performs comparably or better than learning from scratch methods in

terms of accuracy and outperforms an existing transfer learning approach in terms

of accuracy and runtime.

vii

Contents

List of Figures x

List of Tables xii

1 Introduction 1

1.1 Contributions . 2

1.2 Outline . 3

2 Background 5

2.1 Relational Learning . 5

2.1.1 First-Order Logic . 6

2.1.2 Inductive Logic Programming 11

2.1.3 Statistical Relational Learning 18

2.2 Theory Revision . 20

2.2.1 Definition . 21

2.2.2 Revision Points . 22

2.2.3 Revision Operators . 23

2.2.4 FORTE Algorithm . 24

2.3 Transfer Learning . 25

2.3.1 Definition . 27

2.3.2 Research issues . 27

2.3.3 Scenarios . 28

2.3.4 Taxonomy . 29

2.3.5 Approaches . 30

2.4 RDN-Boost . 32

2.4.1 Relational Dependency Networks 32

2.4.2 Functional Gradient Boosting 34

2.4.3 Relational Regression Trees 36

2.4.4 Learning algorithm . 38

2.5 Related work . 39

2.6 Final remarks . 40

viii

3 TreeBoostler: The proposed algorithm 41

3.1 Transferring the structure . 41

3.1.1 Legal mappings . 42

3.1.2 Finding best mapping and transferring the structure 43

3.2 Revising the structure . 45

3.2.1 Pruning . 48

3.2.2 Expansion . 49

3.3 Final remarks . 50

4 Experiments and results 52

4.1 Research questions . 52

4.2 Datasets . 53

4.3 Methodology and results . 54

4.4 Final remarks . 63

5 Conclusion 64

5.1 Future work . 65

Bibliography 66

ix

List of Figures

2.1 SLD-Resolution tree for the query path(a,d) 12

2.2 Demonstration of completeness and consistencty of a hypothesis . . . 14

2.3 Taxonomy of theory refinement tasks 22

2.4 Traditional machine learning setup 26

2.5 Transfer learning setup . 26

2.6 Taxonomy of transfer learning settings 31

2.7 (a) An example of Bayesian network. (b) The corresponding depen-

dency network example . 33

2.8 Example of RDN for a university domain 34

2.9 Example of RPT . 34

2.10 Example of RRT . 37

3.1 One regression tree to be transferred from UW-CSE to Cora for query

predicate advisedby. Regression values are not considered for trans-

ference. They are relearned in the process. 45

3.2 The transfer learning process stages. The trees presented are the

following: obtained from source domain by learning from scratch (top-

left); transferred by mapping predicates (top-right); after the pruning

process (down-left) and after the expansion of nodes (down-right).

All trees are the first one learned in the iterations. The transference

is done from IMDB to UW-CSE and depth limits were reduced to

generate smaller trees. Regression values are not considered in the

pruning process and they are relearned when expanding nodes. 51

4.1 Learning curves for AUC ROC (left) and AUC PR (right) obtained

from IMDB → UW-CSE. 58

4.2 Learning curves for AUC ROC (left) and AUC PR (right) obtained

from NELL Sports → NELL Finances. 58

4.3 Learning curves for AUC ROC (left) and AUC PR (right) obtained

from Yeast → Twitter. 59

x

4.4 Learning curves for AUC ROC (left) and AUC PR (right) obtained

from Twitter → Yeast. 59

4.5 Learning curves for AUC ROC (left) and AUC PR (right) obtained

from IMDB → Cora. 59

4.6 Learning curves for AUC ROC (left) and AUC PR (right) obtained

from Cora → IMDB. 60

4.7 Learning curves from minimal target data for AUC ROC (left) and

AUC PR (right) obtained from IMDB → UW-CSE. 61

4.8 Learning curves from minimal target data for AUC ROC (left) and

AUC PR (right) obtained from NELL Sports → NELL Finances. . . 61

4.9 Learning curves from minimal target data for AUC ROC (left) and

AUC PR (right) obtained from Yeast → Twitter. 62

4.10 Learning curves from minimal target data for AUC ROC (left) and

AUC PR (right) obtained from Twitter → Yeast. 62

4.11 Learning curves from minimal target data for AUC ROC (left) and

AUC PR (right) obtained from IMDB → Cora. 62

4.12 Learning curves from minimal target data for AUC ROC (left) and

AUC PR (right) obtained from Cora → IMDB. 63

xi

List of Tables

2.1 Example of an ILP problem. The idea is to learn the predicate

daughter. Positive examples are denoted by ⊕ and negative by 	 . . 17

2.2 An example of MLN with two formulas and their respective weights . 20

2.3 Different settings of transfer learning 30

3.1 Found predicate mapping for transferring IMDB→UW-CSE 43

4.1 Statistics about datasets . 54

4.2 Results on IMDB and Cora dataset. We compare our algorithm,

RDN-B (that uses boosting), RDN and TODTLER. We present the

results for the area under curves for ROC and PR and the conditional

log-likelihood for test examples. We also present the training time. . . 57

4.3 Results on Yeast and Twitter dataset. We present the results for the

area under curves for ROC and PR, the conditional log-likelihood and

the trainig time. 57

4.4 Results on transference from IMDB to UW-CSE dataset and NELL

Sports domain to Finances domain considering area under the curves

for ROC and PR, the conditional log-likelihood and the training time. 57

xii

List of Algorithms

1 FORTE Algorithm . 24

2 RDN-Boost algorithm . 38

3 Finding legal mappings given source and target predicates 43

4 Top-Level Transfer Algorithm . 46

5 Top-Level Theory Revision Algorithm 49

6 Pruning Operator: Removes nodes recursively if they fit the definition

of Revision Point . 49

7 Expansion Operator: Performs expansion of nodes 50

xiii

Chapter 1

Introduction

Machine learning algorithms have been widely and successfully used in many areas

such as computer vision, robotics, social network analysis, and others [1, 2]. How-

ever, this success usually comes with the presence of large amounts of data. When

the number of examples is relatively small, learning good models can be a challeng-

ing task. This is often the case of several real-world problems where collecting data

is expensive or even impossible to obtain, such as collecting data from movements

of real-world robots [3], collecting WiFi signal data from a large number of locations

[4] and labeling data for sentiment classification [5]. To handle this issue, transfer

learning techniques [6] leverage a model learned from a source domain with more

examples to learn from another, related, domain where data is more scarce.

Transfer learning has been widely employed in classical machine learning settings,

such as ensembles [7] and decision trees [8]. However, most of them do not take into

account the relationships between entities of the domain and the fact that the ex-

amples may not be identically and independently distributed, which is the case of a

number of real-world data such as interaction between proteins [9] and interaction

between accounts in social media [10]. In addition, real-world data have noise and

are generally uncertain. This is the focus of the area called Statistical Relational

Learning (SRL) [11]. Transfer Learning algorithms have also been developed in the

context of SRL. Two of these algorithms [10, 12] transfer relational knowledge by

creating a second-order representation of formulas from learned Markov Logic Net-

works (MLN) [13]. Other three algorithms [14–16] find predicate mappings through

search methods to perform transference of clauses learned from MLNs by mapping

their predicates.

Although these methods showed better results compared to MLN models learned

from scratch, NATARAJAN et al. [17] have shown that applying a boosted approach

to learn Relational Dependency Networks (RDN) yielded superior performance over

traditional SRL approaches. Based on the predicate mapping algorithm presented

by MIHALKOVA et al. [14] to transfer MLN clauses, we developed a similar predi-

1

cate mapping approach to perform transference of Boosted RDNs, which are models

that have a higher expressiveness. We have opted for using Boosted RDNs as the

models to be transferred due to its efficiency in both training and inference time and

the capability of learning both the structure and the parameters of RDNs simulta-

neously, which is not the case of the MLN models used by related work. RDN-Boost

has been shown to have state-of-the-art results in learning RDNs and superior per-

formance over other SRL models in much less training time.

In this dissertation, motivated by the need of learning from scarce, relational

and uncertain data, we present a transfer learning algorithm called TreeBoostler

that transfers Boosted RDNs by mapping the predicates appearing in the trees. At

a higher level, the algorithm generates the possible predicate mappings as it tries

to recursively transfer nodes from the source regression trees. After finding such

mappings, they are propagated to the rest of the tree and the other trees of the next

iterations. To complement the process and better adjust the mapped trees to the

new, target domain, TreeBoostler also includes a theory revision [18] algorithm for

proposing modifications to the mapped models in order to handle incorrectness and

to improve the performance.

We evaluated TreeBoostler in several real-world datasets and simulated the sce-

nario where only a few data are available by training on one single fold and testing

on the remaining folds. Our results demonstrate that our method has successfully

transferred learned knowledge across different domains in a smaller time compared

to other transfer learning algorithms. In addition, transference showed to be very

useful in terms of accuracy compared to learning from scratch methods based on

RDNs. Additional experiments were performed to investigate the behavior of the

algorithm as the number of examples increases and when provided minimal target

data. The results demonstrate that our algorithm can be very competitive to tra-

ditional methods that learn from scratch even with the increase of the amount of

data, also when provided only a few examples.

1.1 Contributions

To sum up, the main contributions of this dissertation include:

• A method, namely TreeBoostler, that transfers learned boosted RDNs between

related domains.

We proposed the TreeBoostler, a transfer learning algorithm that constructs

a target set of relational regression trees biased by a predicate mapping found

through the transfer process given the structure of the source regression trees.

This predicate mapping is found by applying all legal mappings to a node and

2

selecting the one which gives the best split.

• A revision theory system that proposes modifications to boosted trees.

We proposed two revision operators to the revision theory system implemented

in TreeBoostler. These revision operators are: (1) pruning operator, which in-

creases the coverage of examples by deleting nodes from a tree and (2) expan-

sion operator, which decreases the coverage of examples by expanding nodes

in each tree.

• Extensive experiments to evaluate our proposed method.

We conducted three types of experiments to evaluate TreeBoostler against

baseline approaches. The experiments were conducted in the following way:

(1) simulating a transfer learning environment with limited target data, (2)

providing to the system a scenario with increasing amounts of target data and

(3) providing a scenario with learning from minimal target data, i.e. very few

examples.

1.2 Outline

The remainder of this dissertation is organized as follows:

In Chapter 2, we introduce the background information that is relevant in order

to understand the contents of this work. We review the fundamentals of relational

learning such as First-Order Logic, Inductive Logic Programming and Statistical Re-

lational Learning. Then, we define theory revision and transfer learning and present

a taxonomy for both concepts. We furthermore review the algorithm for boosting

RDNs and the concepts necessary for its understanding which are Relational De-

pendency Networks, Functional Gradient Boosting and Relational Regression Trees.

We then discuss related work and point out the similarities among the algorithms.

In Chapter 3, we present the algorithm TreeBoostler and its process of trans-

ference and revision. We propose two approaches to perform a complete transfer

system. The first approach performs mapping of predicates by founding the best

legal mapping for each node while the second approach proposes two modifications

to the mapped models which are pruning and expansion of nodes.

In Chapter 4, we provide the results of the proposed transfer learning algorithm

applied in several different datasets. We compare our results against related works

for transfer learning and traditional learning from scratch methods in an experiment

that simulates a transfer learning environment with limited target data. We also

compare the results of our algorithm against traditional learning from scratch meth-

ods in two experiments considering a scenario with increasing amounts of target data

3

and a scenario that represents learning from minimal target data.

Finally, in Chapter 5, we conclude with remarks and present possible directions

for future research.

4

Chapter 2

Background

In this chapter, first, we briefly introduce the reader about the problem of learning

from relational data and present the fundamentals of the research area. After that,

we outline the use of functional-gradient boosting to learn relational dependency

networks, which is the base algorithm for our proposed work. Third, we describe

the concepts related to theory revision. Finally, we give a comprehensive overview

of transfer learning and related works.

2.1 Relational Learning

The majority of machine learning algorithms assume data as points in a high-

dimensional space. For example, pictures are represented by pixels in the task of

classifying or detecting objects in images; words can be represented by its number

of occurrences in a text in the task of classifying web pages. The examples, in this

assumption, have a vector representation in which each feature has a corresponding

value.

These machine learning algorithms such as neural networks, decision trees and

linear models focus on the attribute-value representation and ignore relational as-

pects of data losing useful knowledge [11]. Such relational knowledge may help,

considering, for example, the recommendation task, to detect not only if a movie

should be recommended given its characteristics (e.g. duration, genre, etc) but also

given the information of how related people (i.e. friends) liked a particular movie

or how related people liked related movies. Thus, in relational data, we are also

interested in taking advantage of its logical structure, which contains crucial infor-

mation that determines how objects participate in relationships and events, in order

to solve more complex problems.

Roughly speaking, we may say that traditional learning is done given one single

table while relational learning algorithms may rely on multiple tables in a database.

In order to apply traditional learning algorithms to a data set consisting of multiple

5

tables, a preprocessing step is needed to integrate the data into a single table.

This process may produce very sparse datasets or cause loss of information due to

important relations that involve objects.

To deal with the object-relational structure of the data many algorithms have

been developed to learn first-order rules from relational data and reach conclusions

about related objects [19, 20]. Also, several approaches attempt to model complex

and probabilistic structure of relational domains, which basically differs from the

deterministic approaches by dealing with uncertainty in data. We will give the

details to understand these approaches in the following subsections.

2.1.1 First-Order Logic

A powerful way to describe and represent relationships among objects is with the

use of First-order logic (FOL). Relational data sets can be represented by logical

facts containing predicates and terms that describe how objects interact with each

other. With FOL, we allow variables to be bound to atomic symbols and because

of that we can construct very useful rules that describe a pattern in a domain, also

we can obtain answers regarding the data through queries.

The basic concepts include language (syntax), model (semantics) and proof the-

ory (deductive system). The syntax of logic programs is concerned with what are

the legal statements in the language. On the other hand, the semantics is concerned

with assigning meaning to such statements [11].

The syntax of FOL consists of the following symbols:

• Quantifiers

• Connectives

• Variables

• Constants

• Predicates

• Functions

Predicates represent relations between objects in the domain, such as a rela-

tion publishedby that may connect the entities paper and person (i.e. a paper is

published by a person). Commonly, when representing relational data using FOL,

arguments may be associated with a type, for efficiency, which are paper and person

in the previous example. A predicate is represented by a name and the number of

arguments a predicate takes is its arity. We usually refer to a predicate by name/n

6

where n is its arity. We call binary predicates those predicates that have an arity 2;

similarly, we call unary predicates those predicates that describe properties (arity

1). Predicates can also represent properties of objects which distinguish them from

each other (e.g. student, actor, blue, large, etc).

These objects (or entities) are represented by constants. They are individuals

in a specific world (e.g. persons, cars, papers, movies, teams, companies, etc).

Along with the predicates, we can say that John has a dog through the atom

haspet(john, dog) and that John is a tall person (property) through tall(john).

Variables can be assigned to quantified formulas in order to be substituted by con-

stants or function terms. The substitution of variables is very useful to answer

queries about the domain.

A function maps a set of inputs consisted of individuals to an output consisted of

one single individual. Function symbols are followed by a bracket n-tuple of terms

(e.g. f(X1, X2)). A term can be a variable, a constant or a function symbol applied

to a set of terms; for instance, X, f(X1, ..., Xn) and john are terms. A term with

no variables is a ground term. We adopt the Prolog [21] syntax and start variables

names with capital letters; constants are in lowercase.

An atom is a predicate applied to terms. It describes the relation between ob-

jects or describes a property of an object represented by a term. An atom can be

composed of a predicate symbol followed by a bracketed n-tuple of terms. For exam-

ple, mother(mary, john), father(X, Y) and married(john,X) are atoms. An atom

whose all terms are constants is called a ground atom (e.g. mother(mary, john)).

A literal can be either an atom or a negated atom. Thus, considering the seman-

tics, a literal can have true value if it can be proved; in the case of the negation of

an atom, a literal can have true value if it has failed to be proved.

The remaining syntax symbols, quantifiers and connectives, are used to form

more complex formulas. Formulas, also called sentence or statement, are either

atoms or one of the following forms: F , (F), ¬F , F ∨ G, F ∧ G, F ← G, F ↔ G,

∀X : F and ∃X : F , where F and G are formulas and X is a variable. The

connectives are the following:

• Negation

• Disjunction

• Conjunction

• Implication

• Equivalence

Considering the formulas F and G, we next describe each connective.

7

The negation (¬) describes the negation of a formula. For instance, the formula

¬F denotes the negation of F . Thus, ¬F is true whenever F is false. The disjunction

(or), denoted by ∨, states that a formula is true, for instance F ∨ G, if and only if

one or more of its operands is true. On the contrary, the conjunction (and), denoted

by ∧, states that a formula is true if and only if all of its operands are true. For

example, F ∧G is true only if both F and G are true.

The implication, denoted by an arrow, is used like the following formulas F ← G

or G → F . It describes that F if G, which is equivalent to the formula F ∨ ¬G.

Thus, the truth-value is false if and only if G is true and F is false. The statement

G→ F can be read as “G implies F” and means that if G is true, then F must also

be true. The statement can also be read as “if G then F”.

Equivalence is denoted by a bidirectional arrow and states that F ↔ G is true

whenever F and G have the same truth-value. In short, F if and only if G. The

equivalence connective is the formula (F → G) ∧ (G→ F).

Finally, we define the two following quantifiers:

• Universal quantifier

• Existential quantifier

These quantifiers are useful to quantify variables and therefore objects in a world.

They allow reasoning about multiple objects simultaneously.

The universal quantifier corresponds to the phrase “for all” and is denoted by ∀.
Thus, for a given formula F and a variable X, we say that for all X the formula F

holds. Example 2.1.1 shows two statements with this quantifier.

Example 2.1.1 Consider the following formulas. The first one states that every

dog is an animal. The second statement says that every even number is not an odd

number.

∀X dog(X)→ animal(X)

∀X even(X)→ ¬odd(X)

The existential quantifier corresponds to the phrase “there exists” and is denoted

by ∃. Thus, for a given formula F and a variable X, we say that there exists a X

which F is true. Example 2.1.2 shows two statements with this quantifier.

Example 2.1.2 Consider the following formulas. The first statement says that

exists at least one animal that is mammal and oviparous (animals that lay eggs).

The second statement says that some numbers are even and prime.

∃X mammal(X) ∧ oviparous(X)

8

∃X even(X) ∧ prime(X)

A clause is a disjunction of literals preceded by a universal quantifier for one

of each variable presented in the disjunction of literals. To sum up, a clause is a

formula of the following form ∀X1∀X2...∀Xm(L1 ∨ L2 ∨ ... ∨ Ln), where each Li is a

literal and each Xi is a variable occurring in the literals (L1 ∨ L2 ∨ ... ∨ Ln).

A clause can also be represented as a set of literals in the form {L1, L2, ..., Ln}
which stands for the clause L1 ∨ L2 ∨ ... ∨ Ln. We can also represent the clause in

a form of an implication formula. For example, {A1, A2, ..., An,¬B1,¬B2, ...,¬Bm}
can be represented with the equivalent clause A1∨A2∨ ...∨An ← B1∧B2∧ ...∧Bm.

The same clause is commonly written as A1, A2, ..., An ← B1, B2, ..., Bm by omitting

disjunctions and conjunctions. The literals B1, B2, ..., Bm are called the body and

A1, A2, ..., An the head of the clause.

A Horn clause is a clause that contains at most one positive literal and a definite

clause is a clause with exactly one positive literal. A definite clause is an expression

of the form H ← B1, ..., Bn where H is a literal (head) and B1, ..., Bn are literals

that forms the body of the clause. All variables are implicitly universally quantified.

A fact is a clause whose body is empty, thus a fact consists of a single positive literal

(e.g. parent(tom, peter)←). Arrows are generally omitted in facts.

Finally, a logic program is defined as a finite set of definite clauses. For more

details, please refer to [22]. We illustrate these concepts on an example.

Example 2.1.3 Consider the following example of logic program that represents

people of a particular family.

female(ilm)

female(lid)

parent(lid, rod)

parent(ilm, lid)

grandmother(A,B)← parent(A,C), parent(C,B), female(A)

In Example 2.1.3, the following is a definite clause:

grandmother(A,B)← parent(A,C), parent(C,B), female(A)

This definite clause represents the rule that expresses when a person A is grand-

mother of B.

In Example 2.1.3, the following is a fact:

parent(lid, rod)

9

This fact states that the person lid is parent of rod. Given these facts and the

rule, we can conclude that ilm is grandmother of rod.

A clause is called function-free if it contains no function symbols and constants

(e.g. the rule in Example 2.1.3). Commonly, in relational learning for simplicity,

only variables and constants are considered and can be used as predicate arguments.

A substitution θ = {V1/t1, ..., Vn/tn} is applied to terms, atoms or clauses in

order to replace simultaneously all occurrences of the variables Vi to their respective

terms ti. Example 2.1.4 demonstrates applying a substitution to a clause.

Example 2.1.4 Consider the last clause presented in Example 2.1.3. The substi-

tution θ = {A/ilm,B/rod, C/lid} applied to this clause results in the following:

grandmother(ilm, rod)← parent(ilm, lid), parent(lid, rod), female(ilm)

Two clauses or terms c1 and c2 can be unified if there exists a substitution θ1

applied to c1 and a substitution θ2 applied to c2 such that c1θ1 = c2θ2. A substitution

θ is called the most general unifier, denoted by mgu(c1, c2), of atoms (or clauses)

c1 and c2 if and only if c1θ = c2θ. In other words, the most general unifier is the

simplest substitution applied to make both atoms equal.

Applying these substitutions is very useful for reasoning which can be performed

by SLD-Resolution (Selective Linear Definite clause resolution). Considering the

knowledge as a logic program (composed of definite clauses), SLD-Resolution is a

feasible way of inferring whether a query holds. The task of inference is to determine

whether a query is true in the least Herbrand model of a logic program.

The Herbrand base of a logic program is the set of all ground atoms formed

through predicate symbols, functions and constants occurring in the program. Her-

brand interpretations are subsets of the Herbrand base. A Herbrand interpretation

is a model of a clause h ← b1, ..., bn if for every substitution θ such that all biθ are

in the interpretation, hθ is also in the interpretation. The least Herbrand model

is the set of all ground atomic logical consequences of the program. Example 2.1.5

demonstrates a Herbrand base of a logic program.

Example 2.1.5 Consider a simple logic program that contains the clauses f(0) and

f(s(X))← f(X). The following Herbrand base contains all atoms that can be built

from the predicate symbol f/1, function symbol s/1 and constant 0

hb = { f (0) , f (s (0)) , f (s (s (0))) , . . . }

In our example, the query ← f(0) has a true answer, while ← f(1) has a false

answer. In this case, we say the query fails. We can also query the data using

variables in the arguments. Suppose we would like to know rod’s parent in Example

2.1.3. This query could be represented by the following:

10

← parent(X, rod)

If a query is not ground, inference asks for the existence of a substitution that

grounds the query into an atom that is part of the least Herbrand model, i.e. infer-

ence asks which constant may replace the variable X in order to find a clause in a

logic program. In this example, θ = {X/lid} is a substitution for the query.

To answer such queries, resolution is performed in order to derive the empty

clause. More specifically, resolution starts a SLD-tree with a root that corresponds

to the query. The process continues until reaches the empty clause. Each branch

is considered a derivation and derivations that result in the empty clause are called

proofs.

Example 2.1.6 The following program represents a graph with four nodes and de-

fines paths between nodes in terms of edges.

c1 : path(X, Y)← edge(X, Y)

c2 : path(X, Y)← edge(X,Z), path(Z, Y)

c3 : edge(a, b)

c4 : edge(b, c)

c5 : edge(b, d)

c6 : edge(c, d)

In Figure 2.1 we can see the SLD-Resolution tree for the query ← edge(a, d)

regarding the program presented in Example 2.1.6. Each edge contains the clause

of the program used to derive. We omitted the substitutions θ for each derivation in

order to make the figure clear. The nodes with a square represents the solution, while

nodes without squares represents a failure. For instance, the substitution θ = {A/b}
was applied to edge(a,A), path(A, d) in order derive the clause to path(b, d) with

atom c3.

We say that a logic program P entails an atom a, denoted by P |= a, if and only

if the atom a is true in the least Herbrand model of P . For the Example 2.1.6, we

say that the knowledge in the program entails path(a, d), which is the query, and

also entails other possible paths in the graph such as path(a, b) and path(a, c).

For more details on First-Order logic and SLD-resolution we refer the readers to

[22, 23].

2.1.2 Inductive Logic Programming

Inductive Logic Programming (ILP) is a subset of first-order logic and a research

area of machine learning which is mainly concerned with inductive inference [11]. In

11

?-edge(a,d)

:-path(a,d)

c1

:-path(a,A),edge(A,d)

c2

:-edge(b,d)

c3

:-path(b,d)

c1

:-path(b,B),edge(B,d)

c2

c5

:-edge(c,d)

c4

:-edge(d,d)

c5

:-path(c,d)

c1

:-path(c,C),edge(C,d)

c2

:-path(d,d)

c1

:-path(d,E),edge(E,d)

c2

c6

:-edge(d,d)

c6

:-path(d,d)

c1

:-path(d,D),edge(D,d)

c2

Figure 2.1: SLD-Resolution tree for the query path(a,d)

12

the logic context, inductive inference means reasoning from particular cases to the

general case. Thus, the goal is to find a hypothesis from examples in the presence

of background knowledge in order to infer the truth-value of unseen examples. This

technique of inductive learning has been successfully applied to several real-world

problems such as finite element mesh design [24], satellite temporal fault diagnosis

[25], design of a qualitative physics [26], structure-activity prediction for drugs [27]

and protein secondary structure prediction [28].

The problem of inductive learning can be defined as learning concepts. Given U ,

a universal set of objects (or observations) and a concept C as a subset of objects

in U , i.e. C ⊆ U , the task of learning a concept C means learning how to recognize

objects in the set of objects C, i.e. to recognize whether x ∈ C for each x ∈ U [29].

For example, U may be the set of all patients in a particular hospital, and C the

set of all patients having pneumonia. Similarly, C may be the concept and set of all

actors working in a universe U of a particular movie, i.e. all people that work for a

particular movie such as directors, producers, screenwriters, etc.

In order to tell whether a given object belongs to a particular concept, a hy-

pothesis has to be learned. A hypothesis is defined as a concept description to be

learned from examples. Facts are defined as object descriptions and they are part

of the background knowledge. Examples are instances of the concept and can be

seen as labeled facts. The examples labeled as positives are instances of the concept

C, while the examples labeled as negatives are not. We denote the set of examples

by E, the set of positive examples by E+ and the set of negative examples by E−

which are both subsets of E = E+ ∪ E−.

In addition, if the object description satisfies the description of the concept, we

say that the concept description covers the objection description. In other words,

we say that the hypothesis covers the example or the example is covered by the

hypothesis. This coverage relation is denoted by covers(H, e) which tells if the

example e is considered to belong to the concept C learned by hypothesis H.

Thus, the problem of learning a concept from examples in ILP is defined as

follows:

Definition 2.1.1 Inductive learning Given a set E of positive E+ and negative

E− examples of a particular concept C, find a hypothesis H such that:

• completeness: H covers all positive examples E+ ∈ E

• consistency: H does not cover any negative example E− ∈ E

A desired hypothesis H is the one that covers all positive examples and none

of the negative ones. In this case, we say that the hypothesis H is complete and

consistent with respect to the examples E. A hypothesis H is complete with respect

13

+
+

+ + +
+

+

− −
− −

E+

E−

covers(H,E)

H : complete, consistent

+
+

+ + +
+

+

− −
− −

E+

E−

covers(H,E)

H : incomplete, consistent

+
+

+ + +
+

+

− −
− −

E+

E−

covers(H,E)

H : complete, inconsistent

+
+

+ + +
+

+

− −
− −

E+

E−

covers(H,E)

H : incomplete, inconsistent

Figure 2.2: Demonstration of completeness and consistencty of a hypothesis [19]

to the examples E if it covers all the positive examples, i.e. if covers(H,E+) = E+.

A hypothesis H is consistent with respect to the examples E if it does not cover

any negative example, i.e. if covers(H,E−) = ∅. Figure 2.2 demonstrates possible

scenarios regarding completeness and consistency of a hypothesis [19].

However, there is no guarantee that the hypothesis will satisfy both conditions

of completeness and consistency. Thus, the conditions are relaxed in order to find

a hypothesis as close as possible to correct (both complete and consistent). The

problem is then reduced to find a hypothesis considering a criteria referred to as

quality criterion. A hypothesis can also be seen as a classifier of new objects. Thus,

a possible quality criterion is the accuracy of classifying unseen examples and can

be measured as the percentage of correctly classified objects.

The notion of coverage in concept learning can be stated in three different for-

malizations [30] which are defined as follows.

Definition 2.1.2 Learning from entailment Given a clausal theory H and a

clause e, H covers e iff H |= e.

Definition 2.1.3 Learning from interpretations Given a clausal theory H and

a Herbrand interpretation e, H covers e iff e is a model of H.

14

Definition 2.1.4 Learning from satisfiability Given both clausal theories H

and e, H covers e iff H ∧ e 6|= ⊥.

In learning from entailment, the knowledge base, i.e. data and background

knowledge, is represented as a single logic program where each example is a clause

(systems usually considers ground atoms as examples).

On the other hand, learning from interpretations states examples as a set of

facts (interpretations) [31]. More specifically, in the learning from interpretations

setting each example e is a program that contains particular information about the

example, as well as its label. The interpretation is then the set of all ground facts

entailed by e ∧ B where B is a program representing the background knowledge.

This setting was proposed by De Raedt and Dzeroski [32].

Example 2.1.7 Suppose we have an example represented by the following program

rabbit

color(white)

likes(carrot)

and a background knowledge

eat(X)← likes(X)

Then, the interpretation of the example is {rabbit, color(white), likes(carrot), eat(carrot)}.

Example 2.1.8 shows how a Poker game data would be represented in the learn-

ing from interpretations setting. Each example is a Herbrand interpretation and

contains all facts that describe the example. The Poker data is a description of a

hand of five cards which represents the poker hand categories such as full house,

pair, flush, etc.

Example 2.1.8 The following example represents poker hands in the learning from

interpretations setting.

Positive examples (pairs)

{card(7, spades), card(8, hearts), card(king, clubs),

card(queen, hearts), card(7, hearts)}
{card(4, spades), card(2, spades), card(ace, spades),

card(ace, clubs), card(9, spades)}

and negative examples (not pairs)

{card(2, spades), card(5, clubs), card(ace, clubs),

card(4, spades), card(queen, diamonds)}
{card(3, hearts), card(3, clubs), card(8, clubs),

card(8, spades), card(8, hearts), }

15

Learning from entailment encodes all the data, including background knowledge,

in one single program. In this setting, the system has to learn from a set of examples

considering all clauses and facts presented as background knowledge. This setting

of learning is the most used and was introduced by Muggleton [20]. Example 2.1.9

shows how the same Poker data would be represented in the learning from entailment

setting.

Example 2.1.9 The following example represents poker hands in the learning from

entailment setting.

Ground facts

card(hand1, 7, spades)

card(hand1, 8, hearts)

card(hand1, king, clubs)

card(hand1, queen, hearts)

card(hand1, 7, hearts)

card(hand2, 4, spades)

card(hand2, 2, spades)

card(hand2, ace, spades)

card(hand2, ace, clubs)

card(hand2, 9, spades)

card(hand3, 2, spades)

card(hand3, 5, clubs)

card(hand3, ace, clubs)

card(hand3, 4, spades)

card(hand3, queen, diamonds)

card(hand4, 3, hearts)

card(hand4, 3, clubs)

card(hand4, 8, clubs)

card(hand4, 8, spades)

card(hand4, 8, hearts)

positive examples (pairs)

pair(hand1)

pair(hand2)

and negative examples (not pairs)

pair(hand3)

pair(hand4)

Whereas learning from entailment and learning from interpretations are well-

known in the literature and used in practice, learning from satisfiability, introduced

16

by Wrobel and Dzeroski [33], is the hardest one of the three settings and is rarely

used due to its computational cost. We refer the reader to [30] for further details

regarding the formalizations of concept learning.

Example 2.1.10 The following example represents parental relation among people

of a particular family. Two positive and two negative examples are given as training

examples. Seven facts are given as background knowledge.

Table 2.1: Example of an ILP problem. The idea is to learn the predicate daughter.
Positive examples are denoted by ⊕ and negative by 	
Training example Background knowledge
daughter(mary, ann) ⊕ parent(ann,mary) female(ann)
daughter(eve, tom) ⊕ parent(ann, tom) female(mary)
daughter(tom, ann) 	 parent(tom, eve) female(eve)
daughter(eve, ann) 	 parent(tom, ian)

We illustrate the ILP task on an example of learning a particular relation from

a family data. The example is given in Example 2.1.10. The target predicate

daughter(X, Y) defines the daughter relation which states that a person X is daugh-

ter of a person Y . The background knowledge contains facts about the family which

includes predicates as female(X) and parent(X, Y). The data provides two positive

and two negative examples of the target relation daughter.

From these examples, it is expected that the ILP system learns the following

rule of the target relation:

daughter(X, Y)← female(X), parent(Y,X)

This rule says that a person X is daughter of Y if X is female and Y is parent

of X. Moreover, this hypothesis is consistent and complete with respect to the

background knowledge and the training examples since it covers all positive examples

and none of the negative examples. For example, when substituting the variables

X and Y , we see that mary is daughter of ann, i.e. daughter(mary, ann) ←
female(mary), parent(ann,mary) with respect to the background knowledge. On

the other hand, the negative examples are not covered, as we expect. For example,

we see that tom is not daughter of ann because tom is not even a female.

Learning from entailment is the most frequently setting used in ILP learning

systems. A vast majority of systems uses it, e.g. FOIL [34], PROGOL [35], SRT

[36] and FORS [37]. The learning from interpretations setting is also implemented

in some systems, e.g. TILDE [38], SLIPCOVER [39] and LLPAD [40].

17

2.1.3 Statistical Relational Learning

One of the challenges in artificial intelligence is the combination of relational learn-

ing and reasoning under uncertainty. The traditional approach in relational learning

deals with deterministic data: examples and facts are either true or false; and rea-

soning proves or fails to prove a particular query. In real-world problems, data have

noise and are generally uncertain. Therefore, ILP systems do not formulate good

models under this circumstance since they do not consider probability of data.

A variety of such approaches and learning techniques have been developed in

the field known as Statistical Relational Learning (SRL) [41], Probabilistic Logic

Learning (PLL) [42] or Probabilistic Inductive Logic Programming (PILP) [43].

Many variants of this field have been studied differing in the logical and in the

probabilistic language.

One variant is the Probabilistic Logic Programming (PLP), which is a family

of languages that are usually based on Sato’s distribution semantics [44], a well-

known semantics for probabilistic logics which specifies a probability distribution

over possible worlds [45]. Some examples of languages based on Prolog [46], with

subtle differences, that uses this semantics are PRISM [47, 48], ICL [49, 50], LPAD

[51] and ProbLog [52].

Programs consists of a set R of definite clauses (also called rules) and a set

F of ground facts fi. Each ground fact is labeled with a probability pi and is

written as pi :: fi. These labeled ground facts are called probabilistic facts and the

random variables correspond directly to them. The random variables are true with

probability pi and false with probability 1−pi. Assuming all these random variables

are independent, the probability of a program F ′ is given by:

PF (F ′) =
∏
fi∈F ′

pi ·
∏

fi∈F\F ′

(1− pi) (2.1)

The set of ground facts F ′ ⊆ F corresponds to the random variables which were

assigned true values, i.e. ground facts that are true. For instance, consider the truth

value assignment burglary = true, earthquake = false, hears alarm(mary) =

true, hears alarm(john) = true of the program given in Example 2.1.11. The

set F ′ corresponds to the set of facts {burglary, hears alarm(mary)}. Thus, the

probability of this program F ′ is 0.1 · (1 − 0.2) · 0.7 · (1 − 0.6). A possible world is

then the set of rules added to the set of facts F ′.

Example 2.1.11 Example of a ProbLog program inspired by the alarm Bayesian

network [53].

0.1::burglary. 0.7::hears_alarm(mary).

0.2::earthquake. 0.4::hears_alarm(john).

18

alarm :- earthquake.

alarm :- burglary.

calls(X) :- alarm,hears_alarm(X).

call :- calls(X).

ProbLog is strongly related to the other mentioned PLP languages [54]. LPAD

mainly differs by allowing disjunctions in the head of clauses where each disjunct is

annotated with a probability. Example 2.1.12 shows a clause in LPAD language.

Example 2.1.12 LPAD

(heads(Coin) : 0.5) ∨ (tails(Coin) : 0.5)← toss(Coin),¬biased(Coin)

In order to learn probabilistic rules, the algorithm ProbFOIL [55, 56] was de-

veloped. It combines the principles of the rule learner FOIL with ProbLog. The

probabilistic rules are learned from a set of probabilistic examples and a background

knowledge in the form of a ProbLog program.

The algorithm LLPAD [40] learns a LPAD program from interpretations. The

algorithm finds all the disjunctive clauses that are true in all interpretations from a

given set of examples in the form (I, Pr(I)) where I is an interpretation and Pr(I)

is its probability.

Another well-known variant are the Probabilistic Graphical Models (PGM),

which use a graph-based representation to encode complex joint probability dis-

tributions in a compact way [57]. They combine uncertainty with logical structure

to compactly represent real-word complex problems. In this graph-based repre-

sentation, the nodes correspond to random variables in a domain, and the edges

correspond to direct probabilistic interactions between nodes.

A surge of interest in PGM due to its flexibility and effectively learning and

performing inference in large networks has led to the development of a number of

approaches. Two prominent approaches are Markov Logic Network and Relational

Dependency Network.

Markov Logic Network (MLN) [13] is a simple graph representation that com-

bines probability and fist-order logic. Each formula has a weight attached which

reflects the difference in log probability of a possible world that satisfies the formula

and one that does not.

It provides a template for constructing Markov networks with one node for each

ground predicate given a finite set of constants. The distribution probability is

induced by the following way:

P (X = x) =
1

Z
exp

(F∑
i=1

wini(x)

)
(2.2)

19

Where F is the number of formulas, wi is the weight of the respective clause, ni(x)

is the number of true groundings of Fi in possible world x and Z is a normalization

constant.

Algorithms have been proposed in order to learn the weights associated with

formulas (parameter learning) [58], and also in order to learn the formulas themselves

(structure learning) [59].

Example 2.1.13 Example of a MLN. Fr/2 is short for Friends/2, Sm/1 for

Smokes/1, and Ca/1 for Cancer/1. The first formula states that friends of friends

are friends. Second formula states that smoking causes cancer.

Table 2.2: An example of MLN with two formulas and their respective weights
Weight Clausal Form
0.7 ¬Fr(X, Y) ∨ ¬Fr(Y, Z) ∨ Fr(X,Z)
1.5 ¬Sm(X) ∨ Ca(X)

Since Relational Dependency Networks is the PGM used in the RDN-Boost

algorithm, we will introduce it in details in Section 2.4.1.

2.2 Theory Revision

As explained in Section 2.1.2, learning FOL theories from a set of examples and

background knowledge is a process known as ILP. Given the background knowledge,

represented as definite clauses, and a set of examples, represented as logical facts,

an ILP learner derives a hypothesis in the form of a logic program that covers as

many as possible positive examples and avoids covering negative examples. For the

reason that such systems start from an empty initial hypothesis, we say that they

learn from scratch.

Nevertheless, an incomplete or partially correct theory may exist and the system

may take advantage of it as a starting point in order to improve it, instead of

discarding it and learning a new theory from scratch. Such incomplete or partially

correct theory may exist due to different reasons: (1) it has been proposed by a

domain expert who has only partial knowledge about the domain; (2) it has become

incomplete due to new data available (outdated); (3) it has come from a different

yet related domain through transference; etc.

In such cases, the theory may contain important information that can still explain

some data and because of that should not be discarded. Thus, it is desirable to use

the given theory as a starting point in the learning process and take advantage of

its existing information. These important considerations have contributed to the

development of Theory Revision systems [60–62].

20

2.2.1 Definition

Theory revision is the process of repairing incorrect or incomplete theories from a

set of examples. It is a sub-task of a general problem known as theory refinement.

A theory revision task consists of proposing modifications to the theory resulting

in changes in the set of answers, i.e covering missing answers or fixing incorrect

answers made by the theory. On the other hand, theory restructuring task, which is

another sub-task of theory refinement, does not change the set of answers. Figure 2.3

shows an overview of the refinement tasks divided into revision and restructuring.

Restructuring is concerned with improving performance and understandability of a

theory.

Theory revision is then defined as follows [18]:

Definition 2.2.1 The task of theory revision is

Given

– an initial theory H

– a background knowledge BK

– a set of positive and negative examples E+ and E− composing the set of ex-

amples E

Find

– a revised theory H ′

– that covers all the positive examples (completeness), BK ∧H ′ |= E+

– and none of the negative examples (consistency), BK ∧H ′ 6|= E−

– and obeys a minimality criteria

The goal of a theory revision task is to use a given initial theory H, a background

knowledge BK written as definite clauses and a set of positive E+ and negative E−

examples written as ground definite clauses in order to find a revised theory H ′ that

covers all the positive examples and none of the negative examples, and also obeys

a minimality criteria which requires minimal revisions of the theory. However, it is

not always possible to find a complete and consistent theory, thus theory revision

systems find theories as close as possible to be complete and consistent. Basically,

theory revision systems differ from learning from scratch by starting with a given

theory as starting point and attending to minimality criteria.

Usually, theory revision is applied when new data have become available or

when an imprecise theory learned from scratch needs to be improved. It commonly

performs revision in four main steps:

21

Refinement

Revision

Restructuring

Specializing

Generalizing

Structure
Improving

Performance
Improving

Hard to understand
/Slow

Incorrect/Incomplete

Incorrect

Incomplete

Hard to understand

Slow

Figure 2.3: Taxonomy of theory refinement tasks [18]

1. Finding incorrectly classified examples by the theory.

2. Searching for clauses and literals responsible for incorrect classifications of

those examples.

3. Proposing modifications to such points through applying possible operations.

4. Scoring proposed revisions and selecting the best.

These points in the theory responsible for incorrect classifications are called

revision points and the possible operations are called revision operators. Next, we

briefly explain these concepts.

2.2.2 Revision Points

The initial theory is assumed to be partially correct and thus, only some points are

responsible for misclassifications or bad predictions of examples. These points are

called revision points and are detected according to misclassified examples. When

positive examples are not covered (i.e. false negatives), the theory is too specific.

On the other hand, when negative examples are covered (i.e. false positives), the

theory is too general. Usually, revision points are divided into two types:

• Specialization revision points

Clauses in the theory responsible for successfully proving negative examples,

22

i.e. false positives. It indicates that the theory is too general and, therefore,

needs to be specialized to avoid proving negative examples.

• Generalization revision points

Literals and clauses in the theory responsible for the failure of proving positive

examples, i.e. false negatives. It indicates that the theory is too specific

and, therefore, needs to be generalized to allow positive examples to become

provable.

Often, several clauses can be part of the proof of the negative examples. In

addition, several clauses could be generalized in order to make positive examples

covered. All such clauses can be marked as revision points together with literals

potentially responsible for misclassification. In the case of specialization revision

points, such clauses and literals can be obtained from the refutation path in the

SLD-tree, while generalization revision points can be obtained from a failure path.

After finding such revision points, the system proposes modifications by applying

the revision operators.

2.2.3 Revision Operators

As mentioned, only some points are responsible for misclassifications or bad predic-

tions. Therefore, a theory revision system needs only to propose modifications for

such points instead of discarding the initial theory or proposing modifications for

all its clauses [62]. Revision operators are responsible for proposing modifications

at each revision point and the type of the revision point determines which revision

operator will be applied. Commonly, two types of revision operators are considered:

(1) generalization operators; and (2) specialization operators [18]. Generalization

operators can be used to handle false negatives, i.e. applied to generalization points,

while specialization operators can be used to remove false positives, i.e. applied to

specialization points.

The most common used operators are the following [62] generalization operators,

• Delete-antecedents

This operator erases literals marked as revision points from clauses that pre-

vent proving positive examples.

• Add-rule

This operator inserts new clauses into the theory, either from existing clauses

or from scratch, in order to prove positive examples.

and the following specialization operators,

23

• Delete-rule

This operator removes a clause responsible for proving a negative example.

• Add-antecedents

This operator inserts literals to a clause marked as revision point in order to

avoid proving negative examples.

We refer the reader to [18] for further information about revision operators.

2.2.4 FORTE Algorithm

The first step of the theory revision process finds misclassified examples by applying

the SLD-Resolution where the root is an example e ∈ E. In the SLD-tree, nodes

are objective clauses while edges are composed of a θ-substitution and a clause from

BK or H ′. A path is a refutation path if its leaf is an empty clause represented

by a square and a failure path otherwise. As mentioned earlier, revision points can

be obtained from refutation or failure paths which is the second step. The size of

the search grows with the number of misclassified examples, number of clauses and

literals responsible for misclassification and the size of the knowledge base used to

propose modifications. The third step consists of applying the matching revision

operators at each revision point in order to generate new possible theories. Finally,

the system keeps the theory that yields the best performance, given an arbitrary

metric, among the generated revised theories. The algorithm repeats this process

until no revision improves the theory. An overview of the FORTE [60], a theory

revision algorithm, can be seen in Algorithm 1.

Algorithm 1 FORTE Algorithm
repeat

generate revision points
sort revision points by their potential
for each revision point do

generate revisions
update best revision found

until potential of next revision point is less than the score of the current best
revision

if best revision improves the theory then
implement best revision

end if
until no revision improves the theory

Potential is defined as the number of misclassified examples that could be cor-

rectly classified. As can be seen, FORTE performs hill-climbing search through a

space of revision operators in order to find a consistent revised theory [63].

24

2.3 Transfer Learning

Traditional machine learning algorithms work with the assumption that training

data and future data used for prediction must be in the same feature space and

must have the same distribution. However, this assumption may not hold in real-

world scenarios and traditional learned models may fail in these tasks. Then, when

the test distribution changes w.r.t. to the training data, the algorithms need to

relearn from scratch using the newly collected data and use these rebuilt models for

new predictions. The test distribution may change, for example, due to easily out

dating of data.

Arguably, a more efficient solution would be to adapt the previously learned

model to the new distribution of examples. Another situation that may benefit

from adaptability is when collecting data is quite expensive or even impossible for a

particular domain. However, it could be the case that, while we do not have sufficient

data for a specific domain, we may have plenty of data for a similar domain. While

obtaining real-world measures would be extremely expensive, generating data from

simulations, which have a different distribution comparing to reality, could be easier

(e.g. a physics engine mimicking movements of a robot).

Transfer learning [6] addresses the problem of lacking data by allowing that

domains used in training and testing be different. The advantage is to exploit the

knowledge learned in a source domain to improve the performance of a related target

domain. An example might be using the knowledge obtained to recognize a specific

kind of object to help to recognize a similar object, or equivalently, using knowledge

learned from Spanish and apply it to learn Portuguese. Indeed, transfer learning

is motivated by the fact that humans are able to take the knowledge learned in

a specific domain and apply it to a completely different domain. The difference

between traditional learning and transfer learning is that traditional learning ties

to learn a task from scratch regarding one specific domain, while transfer learning

tries to transfer knowledge learned from a previous source task to a target task.

25

Model

Different tasks / domains

Model Model

Figure 2.4: Traditional machine learning setup

Model

Source task / domain

Knowledge

Target task / domain

Figure 2.5: Transfer learning setup

To sum up, in the traditional machine learning scenario depicted in Figure 2.4, a

model is intended to be trained for a given task and domain and, thus, it is assumed

that the system is provided with labeled data for the same task and domain. Then,

a model is trained on this data and expected to perform reasonably well on unseen

data of the same task and domain. The transfer learning scenario, depicted in Figure

2.5, differs by allowing us to consider data from different tasks and domains known

as source and target task/domain. In this scenario, where we do not have sufficient

labeled data for the target task or domain, the knowledge gained in solving a source

task in a source domain is applied to obtain a model to this particular target task

and target domain.

26

2.3.1 Definition

A definition of transfer learning was presented by [6] as the following: a domain

D is consisted by a feature space X and a marginal probability distribution P (X)

where X = {x1, ..., xn} ∈ X . Considering the problem of document classification as

an example, then X is the space of all term vectors, xi is the i-th term of a vector of

a given document and X is a particular sample. Given a domain D = {X , P (X)},
a task T consists of a label space Y and a not observed conditional probability

distribution P (Y |X) which could be learned from training data. In the document

classification example, Y is the set of all labels which is either True or False. Finally,

given a source domain DS and a source task TS, also a target domain DT and a target

task TT , the purpose of transfer learning is to help to learn the target conditional

probability distribution P (YT |XT) in DT using the knowledge obtained from DS and

TS, where DS 6= DT , or TS 6= TT .

If two domains are different, they have either a different feature space or dif-

ferent marginal probability distributions due to the definition of the domain as a

pair D = {X , P (X)}. Thus, the condition DS 6= DT implies that XS 6= XT or

PS(X) 6= PT (X). In document classification, a different feature space may corre-

spond to domains of two different languages and different probability distribution

may correspond to domains in the same language but about different topics. Sim-

ilarly, for a definition of task as a pair T = {Y , P (Y |X)}, the condition TS 6= TT
implies that YS 6= YT or P (YS|XS) 6= P (YT |XT).

Definition 2.3.1 Transfer learning. Given a source domain DS, a source task TS,

a target domain DT and a target task TT , transfer learning aims to help learning

the target conditional probability distribution PT (YT |XT) in DT with the knowledge

extracted from DS and TS, where DS 6= DT , or TS 6= TT .

2.3.2 Research issues

There are three main important research issues regarding transfer learning: (1) what

to transfer, (2) how to transfer, and (3) when to transfer [6].

What to transfer decides what kind of knowledge to transfer between domains

or tasks. Some knowledge may be common between both the domains so that it

could help improving performance in a target domain. For relational domains, the

knowledge to be transferred may be represented by the structure of a theory and

a mapping from source predicates to target predicates must be found in order to

found which clauses to transfer to the target domain.

27

How to transfer concerns how to actually perform transfer needs to be consid-

ered and learning algorithms must be developed to accomplish this process. Most

of the work focus on these two issues and, thus, algorithms and techniques are de-

veloped considering what to transfer across domains and how to proceed with the

transference.

When to transfer corresponds to answering when transferring should be done or

not. In some situations, referred to as negative transfer, transference may hurt the

learning performance in the target domain resulting in worse accuracy than to not

transfer at all. Knowing when transference should not be done is also an interesting

issue in order to avoid struggling in a transference that would lead to an unsuccessful

or worse result.

2.3.3 Scenarios

In transfer learning, the source and target conditions may vary in different ways,

which is illustrated in 4 different scenarios [64]. The first two scenarios occur when

there is difference between the source and target domains, i.e. DS 6= DT , while

the last two scenarios occur when there is difference between the source and target

tasks, i.e. TS 6= TT .

1. XS 6= XT . The feature spaces of the source and target domains are different,

e.g. the documents are written in two different languages or students’ course

grades in two different academic specializations.

2. P (XS) 6= P (XT). The marginal probability distributions of the source and

target domains are different, e.g. the documents describe different topics but

in the same language, or food consumption in two different diets.

3. YS 6= YT . The label spaces of the source and target tasks are different. This

scenario usually occurs with scenario 4 since it is very rare to exist a case

where two different tasks have different labels spaces, but exactly the same

conditional probability distributions.

4. P (YS|XS) 6= P (YT |XT). The conditional probability distributions of the source

and target tasks are different, e.g. the approval of a particular product in

two different states, or the distribution of political positions in two different

countries.

The setting when the target task is different from source task, no matter if

the source and target domains are the same or not, is known as inductive transfer

learning. In contrast, when source and target tasks are the same, the setting is

28

known as transductive transfer learning. Such transfer learning settings we will

discuss below.

2.3.4 Taxonomy

Firstly, it is important to point the difference between transductive and inductive

learning in the context of traditional learning approach. Inductive learning attempts

to discover rules or generalizations from collected samples. In other words, it returns

a function learned from training samples in order to make generalizations that can

help classifying unseen instances in the future. It discards information potentially

conveyed by the unlabeled instances in the process of training. Conversely, the idea

of transductive is to use both labeled and unlabeled training data to classify only the

unlabeled data in one step. Since transductive learning does not learn a model, the

training data has to be used whenever new instances have to be classified. [65, 66].

Different from the traditional learning approach, transfer learning considers data

from both source and target domain. We now categorize transfer learning into three

different settings by adapting the taxonomy presented in [6, 64]. The different

settings are presented and described in Table 2.3 and Figure 2.6.

The transductive transfer learning, which term was first proposed by ARNOLD

et al. [67], requires that both source and target tasks be the same and labeled

data is presented only in the source domain. It can be divided into two cases:

(1) features spaces between source and target domains are different, i.e. the first

scenario where XS 6= XT , and (2) feature spaces are the same, i.e. XS = XT , but

the marginal probability distributions are different, i.e. the second scenario where

P (XS) 6= P (XT). These cases are related to domain adaption [68], sample selection

bias [69] or covariance shift [70]. The transductive transfer learning setting is defined

below.

Definition 2.3.2 Transductive transfer learning. Given a source domain DS, a

source task TS, a target domain DT and a target task TT , transductive transfer learn-

ing aims to help learning the target conditional probability distribution PT (YT |XT)

in DT with the knowledge extracted from DS and TS, where DS 6= DT and TS = TT ,

and also with some unlabeled target domain data available to use in training time.

The inductive transfer learning setting requires labeled data in target domain and

that source and target tasks are different, no matter if the source and target domain

are the same or not. This setting has two different cases: (1) labeled data in source

domain are available and (2) labeled data in source domain are not available. The

sequential transfer learning, a term introduced by RUDER [64] in order to highlight

the difference to multi-task learning, consists of two stages: a pretraining phase and

29

an adaptation phase. The model is trained in a source task in the pretraining phase

and then the knowledge of the model is transferred to a target task in the adaptation

phase [64]. This differs from multi-task learning [71] where source and target tasks

are learned at the same time. Multi-task learning specifically requires labeled data

in source domain, i.e. the first case. An instance of the sequential transfer learning

is the self-taught learning [72] which does not count with labeled data in source

domain, i.e. the second case. The inductive transfer learning setting is defined as

follows.

Definition 2.3.3 Inductive transfer learning. Given a source domain DS, a source

task TS, a target domain DT and a target task TT , inductive transfer learning aims

to help learning the target conditional probability distribution PT (YT |XT) in DT with

the knowledge extracted from DS and TS, where TS 6= TT .

The unsupervised transfer learning setting deals with the absence of labeled

data in both source and target domain. It focuses on solving unsupervised learning

tasks in target domain by using knowledge from source domain. Such tasks are (1)

clustering, such as the self-taught clustering [73], and (2) dimensionality reduction,

such as the transferred discriminative analysis [74].

Definition 2.3.4 Unsupervised transfer learning. Given a source domain DS, a

source task TS, a target domain DT and a target task TT , unsupervised transfer

learning aims to help learning the target predictive function fT (·) in DT with the

knowledge extracted from DS and TS, where TS 6= TT and both YS and YT are not

observable.

Table 2.3: Different settings of transfer learning
Setting Source domain labels Target domain labels
Inductive transfer learning Available/Unavailable Available
Transductive transfer learning Available Unavailable
Unsupervised transfer learning Unavailable Unavailable

2.3.5 Approaches

There exist different approaches in the literature that performs transfer learning

by transferring different kinds of knowledge from source to target domain. PAN

and YANG [6] described four distinct cases which includes instance-transfer [7,

75], feature-representation-transfer [72, 76] and parameter-transfer [77, 78].

We refer the reader to their work for more information. The case referred to as

relational-knowledge-transfer deals with transfer learning for relational data

30

Transfer learning

Transductive transfer
learning

Inductive transfer
learning

Domain adaptation

Sample selection bias/
Covariance shift

Multi-task learning

Sequential transfer
learning

Labeled data
in target domain

Labeled data
only in source
domain

Different domains

Different marginal
probability distributions

Tasks learned simultaneously

Tasks learned sequentially

Unsupervised transfer
learning

No labeled data
in source and
target domain

Figure 2.6: Taxonomy of transfer learning settings [6, 64]

31

scenario and is studied in the inductive transfer learning setting. Most of the current

work conducted in transfer learning assumes that the source and target domains are

related, i.e. there exists some relationship between both feature spaces [6]. In the

relational data scenario, it is assumed that the source and target data may share

similar relationships. If two domains are related to each other, there may exist two

similar relationships that connect entities in a domain and thus a mapping for these

relationships may be found. For example, a professor in a university domain can

be considered similar to a director in a cinematographic domain because they play

similar roles by teaching/leading students and actors. In addition, the relationship

between a professor and a student, as well as between a director and an actor can

be considered similar. Consequently, other relationships as ”professor publishing a

paper” and a director directing a film can also be considered similar. More examples

would be the relationship of a professor teaching students which is similar to a

football coach teaching football players, also a team playing a specific sport which

is similar to a company belonging to a specific economic sector. This case is the one

related to this work and the algorithms proposed for this problem will be introduced

in Section 2.5.

2.4 RDN-Boost

The following section introduces the base algorithm used for this work, namely RDN-

Boost. Whereas current learning approaches for relational dependency networks

learn only a single relational probability tree per predicate, RDN-Boost learns a set

of relational regression trees using gradient-based boosting. In this section, we will

first review the concept of relational dependency networks. Second, we review the

functional gradient boosting method. Then, we describe how relational regression

trees are learned. Finally, we describe the RDN-Boost algorithm.

2.4.1 Relational Dependency Networks

Bayesian networks (BN) are directed probabilistic models that have been used for

learning and inference. A disadvantage of this graphic model is that it cannot cap-

ture cyclic dependencies that might occur in data. Also, learning the structure of

BNs is a hard problem since the inference of BNs is NP-hard. HECKERMAN et al.

[79] introduced the Dependency networks (DN) which one of its advantages is al-

lowing cyclic dependencies by accepting bi-directional relationship between random

variables. Exploiting these cyclic dependencies has been shown to significantly im-

prove accuracy compared to graphic models that cannot model cyclic dependencies.

DNs approximate the joint distribution as a product of individual conditional proba-

32

Gender Age

Income

Gender Age

Income

(a) (b)

Figure 2.7: (a) An example of Bayesian network. (b) The corresponding dependency
network example

bility distributions (CPD) learned independently, i.e. P (y1, ..., yn|X) ≈
∏

i P (yi|X).

The main distinction of DNs to other graphic models such as Bayesian networks and

Markov networks is that DNs are an approximate model. HECKERMAN et al. [79]

introduced a Gibbs sampling method called ordered pseudo-Gibbs sampler that can

be used to recover the full joint distribution of DNs.

DNs are represented by directed graphs G = (V,E) which allows bi-directional

edges between variables. This representation combines the characteristics of both

directed and undirected models. In DNs, the edges between variables denotes the

relationship between them and the conditional probability distribution P (Vi|Pa(Vi))

that gives the probability of the feature vi given its parent Pa(Vi). Figure 2.7 shows

networks that describe the demographic characteristics of visitors to a website [79].

In Figure 2.7a, Income is predictive of Age and Gender, while in Figure 2.7b there

are cyclic dependencies among the variables.

On the other hand, Relational Dependency Networks (RDN) [80] extends DNs

to work with relational data. This is similarly done in the way RBNs [81] extend

Bayesian networks and RMNs [82] extend Markov networks. RDNs approximate the

joint distribution as a product of conditional probability distributions over ground

atoms. The fact that RDNs are approximate models is the primary difference be-

tween RDNs and other directed SRL models [17, 80]. RDNs consist of a set of

predicates that can be grounded given the instantiation of variables. In addition,

similarly to DNs, each predicate Yi is associated with a CPD P (Yi|Pa(Yi)). Figure

2.8 presents an example of RDN for a university domain. As can be seen, the objects

professor, student and course interact with each other through the relations takes

and taughtby. The edges in the graph denote probabilistic dependencies between

the predicates.

Since RDNs can be represented as a set of conditional distributions, learning

RDNs corresponds to learning these distributions independently. NEVILLE et al.

[83] used relational probability trees (RPT) and relational Bayesian classifiers (RBC)

[84] to learn these distributions. Of the two, RPTs have yielded better results and

33

professor(P) student(S)

taughtby(P,C) takes(S,C)

course(C)

Figure 2.8: Example of RDN for a university domain

Linked_From_Page
Exists(outlinks > 111)

226 : 2
99% : 1%

True

Linked_From_Page
Exists(~path)

False

5 : 206
2% : 98%

True

Linked_From_Page
Average(outlinks) > 21

False

92 : 22
81% : 19%

True

21 : 128
14% : 86%

False

Figure 2.9: Example of RPT

became more popular to represent CPDs in RDNs. An example of RPT is presented

in Figure 2.9. The leaves contain the probability distributions of the target label and

the proportion of positive and negative examples that reached the given leaf node.

RPTs are learned similarly to relational regression trees which will be introduced in

Section 2.4.3. We refer the readers to [83] for further details on RPTs.

2.4.2 Functional Gradient Boosting

Functional gradient methods were used to train conditional random fields (CRF)

[85], as well as their relational extension TILDE-CRF [86]. The assumption of

standard gradient ascent methods is that ψ can be parameterized as a linear function,

ψ =
∑

βifi (2.3)

The assumption of functional gradient ascent is more general. Instead of assum-

ing linear parameterization, it assumes that ψ is represented by a weighted sum of

34

functions,

ψm = ψ0 + ∆1 + ...+ ∆m (2.4)

Each functional gradient at episode m is given by,

ψm = ηmEx,y

[
∂

∂ψm−1
logP (y|x;ψm−1)

]
(2.5)

Where ηm is the learning rate, y denotes the grounding of the predicate and

x denotes the sets of groundings, i.e. the facts. It is important to mention that

when we learn a full RDN, each predicate becomes the query predicate successively.

DIETTERICH et al. [85] pointed out that the expectation Ex,y cannot be computed

since the joint distribution P (x, y) is unknown.

However, since we have training examples sampled from this joint distribution,

we can compute the functional gradients at each training example in the following

way,

∆m(yi,xi) =
∂

∂ψm−1

∑
i

logP (yi|xi;ψm−1) (2.6)

Then, DIETTERICH et al. [85] suggested to train a regression function hm(y,x)

on training examples ((xi, yi),∆m(yi,xi)) so that it approximates ∆m(yi,xi). This

regression function is trained in form of regression tree hm and fitted in order to

minimize,

∑
i

[hm(yi,xi)−∆m(yi,xi)]
2 (2.7)

In the RDN-Boost, these regression trees are relational as we will explain further.

DIETTERICH et al. [85] pointed out that although the fitted function hm and the

desired ∆m are not exactly the same, assuming there are enough training examples,

the function will point to the same general direction, i.e. ascent in the direction of

hm will approximate the true functional gradient ascent.

The benefits of a boosting approach are to RDNs are: (1) the number of pa-

rameters grows only with the number of training episodes. Interactions among

variables are introduced only as needed and the algorithm does not explicitly con-

sider the potentially large search space; (2) the algorithm is fast and straightforward

to implement. In addition, the algorithm may avoid overfitting due to the effect of

combining multiple regression trees [85]; and (3) allows learning both the structure

and the parameters of RDNs simultaneously, which is an attractive feature since

structure learning in SRL models is computationally expensive.

35

2.4.3 Relational Regression Trees

As mentioned earlier, to learn RDNs, each conditional probability distribution can

be represented as RPTs, as done by NEVILLE et al. [83]. However, following a

previous work [87], NATARAJAN et al. [17] replaced the RPT of each distribution

with a set of relational regression trees (RRT) [38] built sequentially, i.e. learning a

set of gradient boosted trees instead of a single tree. This approach resulted in the

algorithm called RDN-Boost which has been shown to have state-of-the-art results

in learning RDNs. An example of the first RRT is provided in Figure 2.10. Several

boosted trees are learned for a given relation and combined in ensemble.

The idea was to apply Friedman’s gradient boosting [88] to RDNs and represent

each conditional probability distribution as a weighted sum of regression models.

Specifically, each relation is represented as a set of RRTs [38]. A particular ad-

vantage of the boosting method is that it allows learning both the structure and

the parameters of RDNs simultaneously. RDN-Boost uses RRTs and computes

functional gradients for each training example. As explained earlier, the functional

gradient starts with an initial potential ψ0 and iteratively adds gradients ∆i result-

ing after m iterations in the potential described in Equation 2.4. After these m

steps, the current model will have m regression trees for a given query predicate.

The regression tree learner takes weighted examples and finds a regression tree hm

that minimizes Equation 2.7. The weight of an example corresponds to the gradient

presented to that example. For each tree, the probability and the gradient of an

example is computed based on its groundings. Then, the gradient serves as the

weight for the example at the next training step.

In RRTs, inner nodes (or test nodes) are conjunctions of literals, and a variable

presented in a node cannot appear in its right subtree (i.e. variables are bounded

along left-tree paths. This restriction is due to the fact that the right subtree is

only relevant when the conjunction of literals fails.) [86]. A RRT is learned as

the following: the learning algorithm starts with an empty tree and repeatedly

searches for the best test for a node according to some splitting criterion. Then,

the examples in the node are split into success and failure according to the test.

The examples covered by the left path reaches the success, while the examples not

covered reaches the failure (right path). The splitting criterion used by RDN-Boost,

and also this work, was weighted variance on success and failure. For each split, the

procedure is recursively applied further in order to obtain subtrees for the respective

splits. The procedure stops if the variance in one node is small enough, the tree

has reached a maximum depth defined in the procedure or has derived a maximum

number of leaves. Finally, the leaves are the computed average regression values

[17, 86]. An example is presented in Figure 2.10. This tree was learned for the

36

[student(A), professor(B)]

[publication(C, B), publication(C, A)]

True

-0,142

False

0,858

True

[publication(D, A), tempadvisedby(E, B)]

False

[publication(D, F), ta(G, F, H)]

True

[tempadvisedby(I, B), publication(J, I)]

False

0,658

True

-0,142

False

0,430

True

0,715

False

Figure 2.10: Example of RRT

query predicate advisedby, thus the goal is to predict if A is advised by B. In the

tree, if A is a student, B is a professor and both work in the same publication

(publication(C,B), publication(C,A), then the regression value is 0.858. On the

other hand, if the node student(A), professor(B) is not satisfied, then the regression

value is -0.142. Negative values indicate lower probabilities and, for this tree, the fact

that A is not student or B is not a professor indicate a lower probability of A being

advised by B. This regression tree learner also considers aggregation functions such

as count, max, average in the inner nodes, however we did not consider aggregation

functions in our work. For more details about aggregation functions, we refer the

reader to [17].

Note that each path between the root and leaf in the regression tree can be consid-

ered as a clause in a logic program. For the Figure 2.10, the left-most path in the tree

is the clause: student(A)∧professor(B)∧publication(C,B)∧publication(C,A)⇒
advisedby(A,B). The clauses are evaluated in order from left to right for a particu-

lar query and the corresponding regression value is returned. In the logical setting,

multiples ground clauses can be satisfied for a particular query. In the case of rela-

tional regression trees, this is avoided by considering only the first satisfied ground

clause (i.e. the first path that covered an example). This is equivalent to add a

cut to the end of each clause in a logic program. Then, the second clause to be

evaluated in the example if the first clause were not satisfied would be the clause

made by second left-most path.

37

2.4.4 Learning algorithm

The algorithm RDN-Boost presented by NATARAJAN et al. [17] is described in

Algorithm 2. The main algorithm TreeBoostForRDNs iterates over K predicates

and for each predicate it generates the examples for the regression tree learner,

which is called through FitRelRegressTree. The regression tree learner updates

the current model F k
m. This process is repeated for a number M of gradient steps,

i.e. number of boosted trees. After m steps, the current model F k
m will approximate

the corresponding gradient for the predicate k. The initial potential F 1
0 is usually

set to capture the uniform distribution. Then, ψk is obtained by grounding the trees

where each tree determines the branch that satisfies a particular grounding and their

corresponding regression values are added to the potential.

The function GenExamples provides the examples with their respective weights

to the regression tree learner. It takes as input the predicate k, the examples and the

current model F . Then, the function iterates over all examples and computes the

probability and the gradient for each example. The regression values are computed

for each tree based on the grounding of the examples and added to the potential.

Then, the gradient is set as the weight of the example. The set of RRTs com-

poses the structure of the conditional distribution while the set of leaves composes

the parameters of the conditional distribution. In this way, the gradient boosting

allows the algorithm to learn both the structure and the parameters of the RDN

simultaneously.

Algorithm 2 RDN-Boost algorithm

function TreeBoostForRDNs(Data)
for 1 ≤ k ≤ K do

for 1 ≤ m ≤M do
Sk ← GenExamples(k,Data, F k

m−1)
∆m(k)← FitRelRegressTree(Sk, L)
F k
m ← F k

m−1 + ∆m(k)
end for
P (Yk = yk|Pa(Xk)) ∝ ψk

end for
end function
function GenExamples(k, Data, F)

S ← ∅
for 1 ≤ i ≤ Nk do

Compute P (yik = 1|Pa(xik))
∆(yik, x

i
k)← I(yik = 1)− P (yik = 1|Pa(xik))

S ← S ∪ [(xik, y
i
k),∆(yik, x

i
k)]

end for
return S

end function

38

2.5 Related work

A number of transfer learning methods in the SRL context have been proposed

before. The TAMAR algorithm [14] is one of them. It maps predicates presented

in the clauses of an MLN learned from a source domain in order to transfer these

clauses to a target domain. The legal mapping that gives the best-weighted pseudo-

log-likelihood (WPLL) in the target domain is the mapping used for that clause. In

a second step, TAMAR performs theory revision for the mapped structure through

an algorithm similar to FORTE algorithm [60] to improve its accuracy.

In order to deal with minimal target data, the algorithm SR2LR [15] was pro-

posed as an extension of TAMAR. It considers the extreme case described as single-

entity-centered where one entity is available in the target domain, although they

are also generalized for more than one entity. Learning from scratch in the single-

entity-centered setting is infeasible, however, transfer learning approach may be very

effective if source and target domain are sufficiently related.

Another algorithm, DTM [12], uses second-order Markov Logic where formulas

contain predicate variables. The key idea is to discover second-order structure shared

by source and target domains by instantiating second-order formulas with predicates

from the target domain. It then refines the clauses to better fit the target domain.

This refinement may induce new clauses to the theory.

TODTLER algorithm [10] also creates a second-order representation. It uses pre-

vious useful second-order patterns learned in the source domain to bias the learn-

ing process in the target domain towards models that also have these patterns.

TODTLER has shown to be more accurate and considerably faster than DTM. The

reason which DTM is slower is basically due to the refinement step present which

improves accuracy but it is computationally costly.

Another work is LTL [16] which compares types between source and target pred-

icates and performs a matching. After that, it builds the first-order logic clauses

in the target domain by performing a type-based tree construction. LTL algorithm

also performs theory refinement in its clauses through the classic theory refinement

[89] where the idea is to add or delete predicates in the clauses.

Our algorithm differs from the algorithms presented above mostly on the models

used for transference. They rely on MLN models (i.e. set of clauses) for both

extracting knowledge from a source model and transferring to a target model. We

instead rely on models learned by the algorithm RDN-Boost that uses RRTs for its

representation and needs much less training time. We then consider the set of RRTs

structured learned from the source domain to bias the learning algorithm in order

to obtain a target model derived from the source model. The predicate mapping,

necessary for transferring tree structures and inner nodes, is motivated and similar

39

to TAMAR’s predicate mapping algorithm. Furthermore, a second contribution

important to transference is the process of theory revision which is different from

the other algorithms since we deal with RRTs instead of purely clauses. Thus,

proposing modifications in the theory affects how examples are covered in both the

left and the right path. We explain the functioning of the TreeBoostler, our proposed

algorithm, in the next chapter.

2.6 Final remarks

In this chapter, we have laid out background knowledge in relational learning, specif-

ically in ILP and SRL. We have also introduced the concept of theory revision and

transfer learning which are necessary for the understanding of our proposed al-

gorithm. Then, we introduced the RDN-Boost algorithm and explained its basic

concepts. Finally, we pointed out related work in the last section. The next chapter

will describe the functioning of the TreeBoostler, our proposed algorithm.

40

Chapter 3

TreeBoostler: The proposed

algorithm

In this chapter, we propose a method that transfers learned boosted trees from a

source domain to a target domain. The approach is divided into two major steps:

first, the source boosted trees structure is transferred to the target domain by find-

ing an adequate predicate mapping, and second, the algorithm revises its trees by

pruning and expanding nodes in order to better fit the target data. The regression

values are learned simultaneously in both steps. Next, we detail each of these steps.

3.1 Transferring the structure

A fundamental problem when tackling transfer learning on relational domains is to

automatically find how to map the source vocabulary to the target domain. In this

way, the first step of the overall process is to find this mapping, where we reduce

the overall vocabulary of both domains to their set of predicates, making our first

problem as to find the best mapping of source predicates to target predicates. With

that, the boosted trees learned from the source domain are transferred sequentially to

the target domain and the parameters relearned to fit the target data. MIHALKOVA

et al. [14] introduced two approaches for establishing a predicate mapping regarding

MLNs: (1) a global mapping, which finds a corresponding target predicate to each

source predicate and applies this mapping to the entire source structure (i.e. all

clauses) at once; and (2) a local mapping, which finds an independent predicate

mapping for each independent part of the entire structure (i.e. each clause). This

later case constructs a predicate mapping only for the predicates that appear in a

specific clause, separately, independently on how the predicates appearing in the

other clauses were mapped before. Generally, the local mapping approach is more

scalable since the number of predicates that appears in a clause is naturally smaller

41

than the total number of predicates of a source domain and more flexible, as the

mapping in one part of the structure does not necessarily hold or depends on all the

other rest of the structure.

In this work, we choose to follow the local approach, by finding the best local

predicate mapping for transferring the boosted trees. As we have mentioned earlier,

each path from the root to a leaf in the relational regression tree can be considered

as a clause in a logic program. However, these paths are not independent of each

other as they may share the same inner nodes with different paths in the relational

regression tree. In addition, trees cannot be interpreted individually since each one

depends on the previously handled trees. Thus, the algorithm translates the predi-

cates presented in the inner nodes according to the previously found translations in

order to keep the found predicates mapping through the entire process of learning

trees.

3.1.1 Legal mappings

A mapping is legal if each given source predicate is mapped to a compatible tar-

get predicate or to an ”empty” predicate. If the source and target predicates have

the same arity and their argument types agree with the current type constraints

they are considered compatible. Mapping is done following the current type con-

straints which each type mapped to at most one corresponding type in the target

domain. For example, the current type constraints are empty and the first predi-

cate to map is genre(person,genre), then the target domain predicate projectmem-

ber(project,person) is considered to be compatible. Therefore, the type constraints

are updated with the following constraints: person → project and genre → per-

son. Since all sequential predicates to be mapped need to conform to the current

type constraints, a mapping for the predicate advisedby(person,person) can only be

compatible with sameproject(project,project). A legal mapping is defined in Defi-

nition 3.1.1. Algorithm 3 finds legal mappings given the source predicates to be

mapped, possible target predicates to consider and current predicate mappings and

type constraints.

Definition 3.1.1 Let p(X1, . . . , Xn) be an atom in the source vocabulary with pred-

icate p and arity n. Let q(Z1, . . . , Zm) be an atom in the target domain with pred-

icate q and arity n. Let S = {types1 → typet1 . . . typesn → typetm} be the set of

constrained types, where the first term of each element is a type in the source do-

main and the second term is a type in the target domain. We say that p/n→ q/m

is a legal mapping when n = m (they have the same arity), and for each pair of

corresponding terms (Xi, Zi) where Xi is a term in p(X1, . . . , Xn) and Zi is a term

in q(Z1, . . . , Zm), if Xi is associated to the type typesk and Zi is associated to the

42

type typetj , then either typetj has not appeared before as the second term of an ele-

ment in S or typesk → typetj ∈ S. The set of compatible types starts empty and is

iteratively filled in with a type correspondence yielded from a predicate mapping.

Algorithm 3 Finding legal mappings given source and target predicates

function LegalMappings(srcPreds, tarPreds, predsMapping,
typeConstraints)

mappingsList ← []
Pick the first unmapped source predicate srcPred
for each tarPred ∈ tarPreds do

if isCompatible(srcPred, tarPred) then
Add this mapping to a copy of predsMapping
Update a copy of typeConstraints
Call LegalMappings with new parameters
Insert mappings to mappingsList

end if
end for
return mappingsList

end function

Note that the boosted trees are learned with respect to a query atom; because of

that, the transfer algorithm must receive as input the source and target query atoms

to start the transference. Hence, the predicate mapping starts with a mapping from

the source query predicate to the target query predicate. For example, considering

to transfer the source query atom workedunder(person,person) from IMDB dataset

to the target query atom advisedby(person,person) from UW-CSE dataset, where

person is the type of both arguments, in both target query domains. The algorithm

starts the type constraints set with the mapping person → person and the predicate

mapping set with workedunder(A,B) → advisedby(A,B). Table 3.1 shows the final

predicate mapping set, found after transferring the entire boosted tree structure.

Table 3.1: Found predicate mapping for transferring IMDB→UW-CSE

workedunder(A,B) → advisedby(A,B)
director(A) → professor(A)
actor(A) → student(A)
movie(A,B) → publication(A,B)

3.1.2 Finding best mapping and transferring the structure

To find the best predicate mapping for the entire structure, we perform an exhaustive

search through the space of all legal mappings of the predicates that are in the inner

node which have not been translated yet. The legal mapping that provides to the

43

node the best split is selected as the best node and mapped predicate. We defined

the weighted variance as the split criterion. Transference starts from the root node

of the first source tree and proceeds to find not-mapped predicates recursively in

order to update the current predicate mapping.

In case the algorithm does not find a compatible mapping, a predicate in the

source domain will be mapped to an ”empty” predicate. This is used to decide how

to map the nodes in the trees, encompassing three cases: (1) all the literals in an

inner node have a non-empty predicate mapping. This is the best scenario, as we can

keep the same number of literals in the transferred tree; (2) an inner node has some

predicate mapped to an ”empty” one, but there is at least one predicate mapped to

a non-empty, then the ones mapped to empty are discarded and the others remain;

(3) an inner node has all their literals mapped to an empty predicate. This is the

more complicated scenario, as discarding all the literals yields an empty node, which

affects the tree structure, leading to no structure transference in the worst case. For

example, the transference UW-CSE → Cora would result in a null theory as shown

in Figure 3.1 due to the fact that Cora dataset has no unary predicates and the root

nodes of learned source trees are conjunctions of unary predicates. To deal with

such scenarios the algorithm discards the ”empty” node, promotes its left child and

appends its right child to the right-most path of the subtree. If the left child is a leaf,

then the ”empty” node is discarded and the right child is promoted. It is important

to mention that the transfer process is also subject to the search bias growing tree

parameters, namely the maximum depth and the maximum number of leaves per

tree. It means that the nodes and the subtrees appended to the right-most path of

the tree may be ignored in the process. In some cases, the transference may result

in inner nodes that cover all the examples in their left or right path making the node

with no examples useless. To save tree depth, the algorithm discards such nodes and

promotes the child that covers all examples. The Algorithm 4 presents the transfer

mechanism described.

Our method includes three search bias to conduct the way the algorithm per-

forms the mapping. The first one, called here as searchArgPermutation, allows

searching for the permutation of all arguments in the target predicate to check if

one of them makes the source and target predicates compatible. It allows for exam-

ple, the mapping of a source predicate with the inverse relation of a target predicate

(e.g. wokedunder(A,B) → advises(B,A), which is the same as advisedby(A,B)). The

second search bias, named searchEmpty, allows generating an additional ”empty”

mapping even if there is a compatible target predicate to map the source predicate.

The last one, named allowSameTargetMap, allows mapping distinct source predi-

cates to the same target predicate. If this bias is not used, the algorithm finds a

one-to-one correspondence between source and target predicates (except for ”empty”

44

[student(A), professor(B)]

[publication(C, B), publication(C, A)]

True

leaf

False

[tempadvisedby(D, B), ta(E, A, F)]

True

[publication(I, A), tempadvisedby(J, B)]

False

[ta(G, D, H)]

True

leaf

False

[publication(I, K), ta(L, K, M)]

True

[publication(N, B)]

False

leaf

True

leaf

False

leaf

True

leaf

False

leaf

True

leaf

False

Figure 3.1: One regression tree to be transferred from UW-CSE to Cora for query
predicate advisedby. Regression values are not considered for transference. They
are relearned in the process.

mappings).

3.2 Revising the structure

When transferring learned theories from one domain to another it is usually not

enough to map the vocabularies from both domains to achieve a model representative

of the target domain [14]. Such theories may contain multiple faults that prevent

them to correctly predict examples due to the difference in the distribution of both

domains. These faults can be repaired through the process of theory revision [18].

The main idea of theory revision is to search for points in the theory that are

preventing the examples to be correctly classified and propose modifications to them.

In a transfer learning scenario, the revision process attempts to adjust the initial

mapped source theory to fit the target data. The goal is to achieve more accurate

theories due to the fact that the theory revision allows the learning algorithm to

build clauses from partial or incomplete theories that would otherwise not be found

in the constrained search space.

Our theory revision component follows the three major steps:

1. Searching for paths in the trees responsible for bad predictions of examples

45

Algorithm 4 Top-Level Transfer Algorithm

Require: theory, a set of regression trees
Ensure: transferred, the transferred regression tree

function Transfer(theory)
transferred← ∅
for each tree ∈ theory do

newTree ← ∅
TransferTree(tree, newTree)
Append newTree to transferred

end for
return transferred

end function
function TransferTree(node, transferNode)

if node is leaf then
Define transferNode as leaf
Stop procedure

end if
predicates ← Get set of predicates not mapped from node
if predicates is empty then

newNode ← Translates predicates in node
transferNode ← newNode

else
Call LegalMappings given predicates and current predicate mappings

and type constraints
Generate possible nodes by translating predicates in node according to legal

mappings
Find the node that gives the best split
Update the global variable predsMapping and typeConstraints
transferNode ← best node

end if
if transferNode is not empty then

Call TransferTree(node.left, transferNode.left)
Call TransferTree(node.right, transferNode.right)

else
if node.left is leaf then

Call TransferTree(node.right, transferNode)
else

Append node.right to to the right-most path of node.left
Call TransferTree(node.left, transferNode)

end if
end if

end function

46

and defining them as revision points.

2. Proposing possible modifications to the revision points by applying the revision

operators.

3. Scoring both transferred and revised theory and choosing to stay with the best

one.

In the traditional theory revision literature concerning ILP, the points to be

changed are defined according to a misclassified example defined according to the

proved examples, as explained in Section 2.2. However, this concept does not hold

for the SRL case which considers the uncertainty of the domain. Thus, we define

the points to be changed according to the bad predictions made by the trees. Here,

a node is marked as ”badly” predicting when its weighted variance is greater than

a given threshold δ, reflecting the fact that a node is not good enough to stop the

growth of its subtree.

Definition 3.2.1 Revision Point: Let v be a leaf node in a tree and let δv be the

weighted variance of examples being covered until v. Given a threshold δ, we say

that v is ”badly” predicting the examples when δv > δ. Hence, the leaf node v is

marked as a Revision Point.

The revision points need to be modified during the revision process in order

to increase accuracy. In the traditional ILP setting, examples incorrectly covered

determine the revision operator to be applied: a positive example not covered by

the theory indicates that the theory is too specific and needs to be generalized,

on the other hand, a negative example covered by the theory indicates that the

theory is too general and needs to be specialized. In the case of RRTs, positive and

negative examples are covered by the paths in the tree, with their respective weights

determining the weighted variance of the covered examples. In this way, instead of

determining the type of the revision point, as a specialization or a generalization

one, we only assume that some paths are responsible for harming the accuracy. To

make this matter simpler, we define as a revision point any leaf that has a ”bad”

weighted variance as defined before. Arguably, modifications on the paths ending

up on such leaves will change the way an example is covered resulting in a differently

weighted variance.

We considered two types of revision operators: (1) a pruning operator, which

increases the coverage of examples by deleting nodes from a tree (and in such a way,

it may be seen as a generalization operator); and (2) an expansion operator, which

decreases the coverage of examples by expanding nodes in each tree (in the same

way, it can be seen as a specialization operator). We describe them as follows:

47

• Pruning operator prunes the tree from the bottom to top by removing a node

whose children are leaves marked as revision points

• Expansion operator recursively adds nodes that give the best split in a leaf

considered as a revision point.

Our Top-Level Theory Revision Algorithm fully applies the pruning and expan-

sion operators in all the revision points at once. The first step is to call the Pruning

procedure for each tree in the model. The Pruning procedure receives a root node

of a given tree as input and recursively removes nodes that contain leaves marked as

revision points. However, this process may completely prune an entire tree eventu-

ally leading to the deletion of all the trees particularly because the threshold δ can

be very sensitive. If this happens, the revision algorithm would face the expansion

of nodes from an empty tree which is the same as learning from scratch. To avoid

that, if the pruning results in a null model, the effect of this operator is ignored as

if it was never applied.

Next, for each tree, the Expansion procedure is called and recursively expands

the revision points. The last step is done by scoring both the transferred theory

(before applying theory revision) and the revised theory. The revised theory is

implemented in case it has a scoring better than before. The scoring function is

the conditional log-likelihood (CLL) over the examples. The Algorithm 5 presents

the theory revision process after mapping the vocabulary of the source and target

domain.

Next, we provide more details about the revision operators devised in this work.

3.2.1 Pruning

Pruning is a technique that reduces the size of trees by removing nodes of the tree

where the bad predictions lie. The pruning operator has two major goals: (1) to

cover more examples along a path, which is the equivalent of generalizing clauses, by

removing nodes (literals) possibly responsible for bad predictions; and (2) to reduce

the size of the trees which may contribute to three additional benefits: (1) improve

the inference time, (2) make the trees more interpretable, and (3) help on the rest

of the revision process, since it is also subject to tree depth limitations.

The structure of our pruning algorithm is quite simple: it makes a bottom-up

pass through a given tree, and decides, for each node, whether to leave the node as

it is, or whether to delete this node and make its parent become a leaf. The decision

is made considering the successful or failure weighted variance of a path ending in

a node. Thus, the algorithm recursively attempts to remove nodes whose children

are leaves and revision points, from bottom to up, and keeps subtrees that contain

at least one path not marked as a revision point.

48

Algorithm 5 Top-Level Theory Revision Algorithm

Require: theory, a set of regression trees
Ensure: newTheory, the possibly revised trees

function Revision(theory)
newTheory ← ∅
for each tree ∈ theory do

newTree ← pruning(tree)
Append newTree to newTheory

end for
if newTheory is null then

newTheory ← theory
end if
for each tree ∈ newTheory do

tree ← ExpandNodes(tree)
end for
Compute score theory and newTheory
if scorenewTheory > scoretheory then

return newTheory
else

return theory
end if

end function

As mentioned earlier, a node is good enough to stop the growth of its subtree

when its weighted variance is less than a given δ. In the opposite way, we consider

a node not good enough to remain in the tree when its weighted variance is greater

than δ. By removing such a node, we are giving a chance for the algorithm to later

find a possible expansion of nodes that would result in better splits. The Pruning

operation is presented as Algorithm 6.

Algorithm 6 Pruning Operator: Removes nodes recursively if they fit the definition
of Revision Point

function Pruning(node)
left ← pruning(node.left)
right ← pruning(node.right)
if left and right child are leaves and both have variance greater than δ then

Remove node from node and put a leaf in its place
end if
return node

end function

3.2.2 Expansion

The Expansion operator proceeds by adding nodes in an initial theory. As the initial

theory is preferably nonempty, as required by the Algorithm 5, this process takes

49

advantage of a starting point, instead of learning from scratch. Adding new nodes

and performing splits from starting points may lead to paths that would otherwise

not be found in the constrained search space possibly resulting in better covering.

Thus, this process is important for two main reasons: (1) by adding nodes in existing

paths, it has the same effect of specializing clauses by adding literals to make them

more fit to target data; and (2) it takes advantage of the starting point obtained

by transference. The expansion is done similarly to the process of learning from

scratch; it considers leaves that still need to grow into subtrees as revision points

and searches for the node that gives the best split according to the weighted variance

as the splitting criterion. The leaves and their regression values are computed when

the path is good enough or the tree has reached the maximum depth or number of

clauses. Algorithm 7 presents the procedure used here to perform the expansion of

nodes.

Algorithm 7 Expansion Operator: Performs expansion of nodes

function ExpandNodes(node)
left← left child of node
if left is a leaf and it has variance greater than δ then

Find a new node that gives the best split
Add this best node to left
left ← ExpandNodes(left)

end if
right← right child of node
if right is a leaf and it has variance greater than δ then

Find the node that gives the best split
Add this best node to right
right ← ExpandNodes(right)

end if
return node

end function

3.3 Final remarks

In this chapter, we have proposed a transfer learning approach that transfers learned

boosted trees from a source domain to a target domain. We have pointed out the

contributions of this approach which includes a transfer system that maps source

predicates to target predicates and a revision theory system that proposes modi-

fications to the boosted trees in order to better fit the target data. In the next

chapter, we will introduce the experiments conducted in order to analyze our algo-

rithm against baseline approaches.

50

[actor(A), director(B)]

[movie(C, A), movie(C, B)]

True

[actor(A)]

False

0,858(0,702)

True

-0,142(0,465)

False

-0,142(0,465)

True

[actor(B)]

False

0,035(0,509)

True

-0,042(0,490)

False

[student(A), professor(B)]

[publication(C, A), publication(C, B)]

True

[student(A)]

False

0,791(0,688)

True

0,495(0,621)

False

0,208(0,552)

True

[student(B)]

False

0,428(0,605)

True

0,580(0,641)

False

[student(A), professor(B)]

[publication(C, A), publication(C, B)]

True

leaf

False

leaf

True

leaf

False

[student(A), professor(B)]

[publication(C, A), publication(C, B)]

True

[professor(B)]

False

0,791(0,688)

True

0,495(0,621)

False

0,066(0,517)

True

-0,142(0,465)

False

Figure 3.2: The transfer learning process stages. The trees presented are the follow-
ing: obtained from source domain by learning from scratch (top-left); transferred by
mapping predicates (top-right); after the pruning process (down-left) and after the
expansion of nodes (down-right). All trees are the first one learned in the iterations.
The transference is done from IMDB to UW-CSE and depth limits were reduced to
generate smaller trees. Regression values are not considered in the pruning process
and they are relearned when expanding nodes.

51

Chapter 4

Experiments and results

In this chapter, we present the experiments we conducted in this work in order to in-

vestigate the research questions presented in this chapter. We have performed three

types of experiments: (1) an approach simulating a transfer learning environment

with limited target data, (2) a scenario with increasing amounts of target data and

(3) a scenario that represents learning from minimal target data.

4.1 Research questions

We conducted the experiments in order to investigate the following research ques-

tions considering both transfer learning and learning from scratch baselines:

• Q1: Does TreeBoostler learn more accurate models than the baselines?

• Q2: Does theory revision improve the performance of the transfer process?

• Q3: Does TreeBoostler transfer well across domains?

• Q4: Is TreeBoostler faster than the baselines?

• Q5: Does TreeBoostler perform better than the baselines with increasing

amount of examples in the target data?

• Q6: Does TreeBoostler perform better than the baselines with minimal target

data?

The question Q1 addresses a common question when comparing different algo-

rithms. It is important to evaluate the algorithm and conclude if it performs better

than learning from scratch approaches and related transfer learning approaches.

Question Q2 is important to evaluate the effectiveness of a theory revision process

and demonstrates that the process is capable of improving the performance of the

transferred model in the target domain. This research question was also addressed

52

in [16]. The question Q3 addresses if the transfer process is capable of providing

good models while question Q4 asks if the algorithm is faster than related transfer

learning algorithms and learning from scratch algorithms. It would be desirable to

provide a transfer learning approach that could be faster than learning from scratch.

Since the transfer learning system is provided with a trained model from the source

domain, part of the time-consuming in the learning process is already done. The

question Q5 addresses how the algorithms behave with increasing amounts of data.

This question was also addressed in [10, 12, 14, 16] through learning curves describ-

ing the accuracy in different numbers of mega-examples. The question Q6 addresses

the problem of minimal target data where the learner is provided with only a few

examples. This problem was the motivation of SR2LR [15] which addressed the

single-entity-centered setting in which the learner is provided with information con-

cerning only a single entity, i.e. background knowledge contains only information

related to the single entity. Differently, in this work, we provided to the learner all

the background knowledge available but only a few positive and negative examples.

4.2 Datasets

Following previous literature, we present our results considering six different publicly

available datasets described as follows.

• The Cora dataset [90] is a database of Computer Science citations with 1295

different citations to 112 computer science research papers and has fields as au-

thor, venue, title and year. The goal in this dataset is to predict the samevenue

relation which determines if two venues represent the same conference. This

dataset is divided into 5 mega-examples.

• The UW-CSE dataset [91] consists of information about professors, students,

and courses from 5 different areas of computer science (artificial intelligence,

programming languages, theory, system, and graphics). Thus, this dataset

is divided into 5 mega-examples. It includes predicates that represent publi-

cations and their authors, projects and their members, level of courses, etc.

The goal is to predict the advisedby relation which identifies a student being

advised by a professor.

• IMDB [92] is a dataset that describes a movie domain and presents predicates

as director, actor, genre, movie, etc and the relationships between them. It

is divided into 5 mega-examples where each one contains information about 4

movies. The goal is to predict the workedunder relation which identifies an

actor that has worked for a director.

53

• The Yeast protein [9] dataset is obtained from MIPS 1 Comprehensive Yeast

Genome Database and includes information about proteins with their location,

function, phenotype, enzyme, etc. The goal in this dataset is to predict the

class of a protein. This dataset contains 4 folds independent of each other.

• Twitter [10] is a dataset that contains tweets about Belgian soccer matches.

The information is basically words that are tweeted, relations between accounts

(following relation) and the type of accounts (club, fan or news). The goal is

to predict the type of an account in 2 independent folds.

• NELL [93] is a machine learning system that extracts probabilistic knowl-

edge base from online text data. We consider only two domains from NELL

dataset, which are the Sports domain, extracted from the iteration 1070 and

the Finances domain, extracted from the iteration 1115. The goal in Sports

domain is to predict the relation that defines a team playing a sport and in the

Finances domain, the goal is to predict the relation that defines a company

belonging to an economic sector. In order to obtain different folds, we split the

data of the target predicate randomly into 3 parts. Thus, each fold consists of

parts of the target predicates and all facts (non-target predicates).

Table 4.1 provides additional statistics about these datasets. The number of true

ground literals is the number of true examples of the respective target predicate of

each dataset. The total number is the number of all ground literals formed by

grounding the predicates with constants of their respective types.

Table 4.1: Statistics about datasets

Dataset
Number of
Constants

Number of
Types

Number of
Predicates

Number of
true ground

literals

Total number
of ground

literals
Cora 2457 5 10 3017 152100
UW-CSE 919 9 14 113 16900
IMDB 297 3 6 382 71824
Yeast 2470 7 7 369 40128
Twitter 273 3 3 282 663
NELL Sports 4538 4 8 397 4323
NELL Finances 3340 5 10 778 51578

4.3 Methodology and results

We compared the performance of TreeBoostler against two baseline approaches that

learn from scratch from target data: RDN-B, which learns a set of regression trees

1Munich Information Center of Protein Sequence

54

using boosting method and RDN which learns a single large regression tree. In

this chapter, we will refer to RDN-Boost as RDN-B. We also compared it against

TODTLER [10], a transfer learning method that lifts a source structure to second-

order logic. We did not compare against the state-of-the-art algorithm LTL [16]

because only the system responsible for transferring the clauses was available. The

system for parameter learning using weighted-mean as the combination function of

rules and the system for performing local theory refinement are crucial to produce

competitive results for the algorithm LTL.

To observe if the revision stage improves the performance of the whole trans-

fer process, two stages of the algorithm are considered: transference considering

predicates mapping and parameter learning only, i.e. the first stage of the com-

plete algorithm (TreeBoostler*) and the complete transfer system using predicate

mapping and theory revision (pruning and expansions of trees) (TreeBoostler). For

TreeBoostler, we restricted the depth limit of the trees to be 3, the number of leaves

to be 8, the number of regression trees was 10, and the maximum number of literals

per node was restricted to 2. We used the same settings to learn from scratch using

the method RDN-B. For the single tree RDN method, we used 20 leaves. For the

threshold used in the theory revision step, we set its value as 2.5 × 10−3 which is

the same value used as default in the RDN and RDN-B algorithms to decide if a

variance of a node is small enough to become a leaf in the learning process. For

training all the RDN based algorithms, we subsampled the negatives examples in

a ratio of two negatives for one positive. Thus, following [17], we set the initial

potential to be -1.8. For testing, we presented all the negative examples. For the

MLN based approach TODTLER, we used Alchemy with default settings and MC-

SAT algorithm (option -ms) to compute the probabilities. Also, we kept the default

parameters and generated second-order templates containing at most three literals

and three object variables.

For all our experiments, we allowed TreeBoostler to search for all permutations

of arguments of a given predicate. This was very important for transferring among

NELL datasets since some source predicates can be considered as the inverse of a

possible mapped target predicate. Also, we did not allow more than one distinct

source predicate to be mapped to the same target predicate, as this bias does not

improve the results while still increases the training time. The option searchEmpty

was also set to false to avoid increasing the amount of training time.

The first experiment was done in order to simulate the learning process from very

limited data which is the more suitable scenario to transfer learning. We employed

the same methodology used in related works [10, 12, 16]: training is performed on 1

fold and testing on the remaining n− 1 folds. The results are then averaged over n

runs. For each run, a new learned source model is used for transference. Specifically

55

for TODTLER, the results were obtained from one single run due to extremely

time-consuming resources when computing scores for each first-order clause using

Alchemy. TODTLER was not able to finish computing scores for clauses in NELL

dataset after one week. We used the following measures to compare the performance:

conditional log-likelihood (CLL), the area under the ROC curve (AUC ROC), the

area under the PR curve (AUC PR) and training time. Note that in the training

time of transfer systems we did not consider the time necessary to learn from the

source domain.

The results are presented in the Tables 4.2, 4.3 and 4.4. The Tables 4.2, 4.3

present the transfer experiment for the pairs of datasets IMDB and Cora and also

Yeast and Twitter, respectively. Each dataset was treated as a source domain and

target domain in the experiments. The Table 4.4 presents the transfer experiments

IMDB→ UW-CSE and NELL Sports→ NELL Finances. We omitted the opposite

transfer experiments because transferring from UW-CSE to IMDB is too easy, in-

cluding learning from scratch from IMDB, and the transference from NELL Finances

to NELL Sports which resulted in negative transfer because it was unable to find

useful mappings. It can be observed that our algorithms are competitive or better

than TODTLER and learning from scratch methods. Our algorithms and learn-

ing from scratch methods outperform TODTLER in most of the results presented,

mostly due to the efficiency and expressiveness of the language used for representing

RDNs. Therefore, it is more interesting to compare our algorithms against learning

from scratch methods. The TreeBoostler algorithm performed comparably or bet-

ter than learning from scratch methods in all but one experiment for AUC ROC.

Even for the TreeBoostler*, which is restricted only for mapping, was able to learn

more accurate models than learning from scratch in 2 experiments for AUC ROC

and 3 for AUC PR. Then only mapping the predicates and learning the parame-

ters for the mapped trees may be very useful when target training data is scarce.

The most significant result can be observed in the transference from the real-world

dataset NELL Sports to NELL Finances. Bold results are significantly better than

the performance of all baselines (RDN, RDN-B and TODLTER) for at least one

TreeBostler algorithm. The statistical significance was measured using a paired t-

test at the 95% confidence level. Based on these experiments and observations, we

can positively answer the questions Q1 and Q3 posed before.

As can be seen, the training time consumed by TreeBoostler* is usually smaller

than RDN-B and equivalent to RDN. This is because the transfer algorithm only

needs to find the best split for those nodes that have not-mapped predicates, other-

wise it already knows which mapped node to consider in the split, avoiding searching

and evaluating other possible mappings. The first time a predicate appears in the

set of regression trees is the only time a mapping has to be found for this predi-

56

Table 4.2: Results on IMDB and Cora dataset. We compare our algorithm, RDN-
B (that uses boosting), RDN and TODTLER. We present the results for the area
under curves for ROC and PR and the conditional log-likelihood for test examples.
We also present the training time.

IMDB → Cora Cora → IMDB

Algorithm CLL
AUC
ROC

AUC
PR Time CLL

AUC
ROC

AUC
PR Time

RDN -0.192 0.641 0.074 16.70 s -0.166 0.994 0.813 1.17 s
RDN-B -0.277 0.842 0.270 237.47 s -0.073 1.000 1.000 3.29 s
TODTLER -5.213 0.519 0.371 17 min -0.923 0.885 0.537 195.77 s
TreeBoostler* -0.323 0.582 0.183 5.34 s -0.213 0.958 0.727 2.82 s
TreeBoostler -0.298 0.707 0.292 106.39 s -0.077 0.999 0.952 10.70 s

Table 4.3: Results on Yeast and Twitter dataset. We present the results for the area
under curves for ROC and PR, the conditional log-likelihood and the trainig time.

Yeast → Twitter Twitter → Yeast

Algorithm CLL
AUC
ROC

AUC
PR Time CLL

AUC
ROC

AUC
PR Time

RDN -0.155 0.964 0.271 4.08 s -0.182 0.695 0.081 4.46 s
RDN-B -0.118 0.993 0.382 24.42 s -0.257 0.919 0.231 18.80 s
TODTLER -1.259 0.520 0.368 13.42 s -0.023 0.497 0.002 39 min
TreeBoostler* -0.138 0.986 0.394 6.12 s -0.180 0.986 0.273 4.14 s
TreeBoostler -0.118 0.993 0.362 114.71 s -0.180 0.986 0.272 60.99 s

Table 4.4: Results on transference from IMDB to UW-CSE dataset and NELL
Sports domain to Finances domain considering area under the curves for ROC and
PR, the conditional log-likelihood and the training time.

IMDB → UW-CSE NELL Sports → NELL Finances

Algorithm CLL
AUC
ROC

AUC
PR Time CLL

AUC
ROC

AUC
PR Time

RDN -0.194 0.918 0.247 1.79 s -0.180 0.532 0.020 4.59 s
RDN-B -0.261 0.935 0.265 8.17 s -0.317 0.713 0.083 22.12 s
TODTLER -3.699 0.570 0.037 208 min NA NA NA NA
TreeBoostler* -0.274 0.926 0.275 1.16 s -0.164 0.978 0.062 46.63 s
TreeBoostler -0.241 0.940 0.305 9.20 s -0.161 0.979 0.074 229.36 s

57

0.2 0.4 0.6 0.8 1.0

Proportion of training data

0.92

0.93

0.94

0.95

0.96
A
U
C
 R
O
C

RDN
RDN-B
TreeBoostler*
TreeBoostler

0.2 0.4 0.6 0.8 1.0

Proportion of training data

0.30

0.35

0.40

0.45

0.50

0.55

A
U
C
 P
R

RDN
RDN-B
TreeBoostler*
TreeBoostler

Figure 4.1: Learning curves for AUC ROC (left) and AUC PR (right) obtained from
IMDB → UW-CSE.

0.2 0.4 0.6 0.8 1.0

Proportion of training data

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

A
U
C
 R
O
C

RDN
RDN-B
TreeBoostler*
TreeBoostler

0.2 0.4 0.6 0.8 1.0

Proportion of training data

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

A
U
C
 P
R

RDN
RDN-B
TreeBoostler*
TreeBoostler

Figure 4.2: Learning curves for AUC ROC (left) and AUC PR (right) obtained from
NELL Sports → NELL Finances.

cate. It saves time in the rest of the tree and the next iterations as the algorithm

knows how to transfer a source inner node. On the other hand, TreeBoostler, con-

sidering theory revision, improves accuracy but is computationally costly since it is

another search approach. This training time considers the time spent in the entire

process which includes the time taken for transference, the time taken for evalu-

ating both the transferred and the revised model, and the time taken for pruning

and expansion. In summary, we can answer Q4 affirmatively for TreeBoostler* and

affirmatively comparing to other transfer learning system for TreeBoostler. The re-

sults show that question Q2 can also be answered positively. The theory revision

process shows an improvement in the performance for all the metrics except for a

worse AUC PR in a single experiment.

In order to compare the performance of our method with increasing amounts of

58

0.2 0.4 0.6 0.8 1.0

Proportion of training data

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78
A
U
C
 R
O
C

RDN
RDN-B
TreeBoostler*
TreeBoostler

0.2 0.4 0.6 0.8 1.0

Proportion of training data

0.45

0.50

0.55

A
U
C
 P

R

RDN
RDN-B
TreeBoostler*
TreeBoostler

Figure 4.3: Learning curves for AUC ROC (left) and AUC PR (right) obtained from
Yeast → Twitter.

0.2 0.4 0.6 0.8 1.0

Proportion of training data

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
U
C
 R
O
C

RDN
RDN-B
TreeBoostler*
TreeBoostler

0.2 0.4 0.6 0.8 1.0

Proportion of training data

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

A
U
C
 P
R

RDN
RDN-B
TreeBoostler*
TreeBoostler

Figure 4.4: Learning curves for AUC ROC (left) and AUC PR (right) obtained from
Twitter → Yeast.

0.2 0.4 0.6 0.8 1.0

Proportion of training data

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

A
U
C
 R
O
C

RDN
RDN-B
TreeBoostler*
TreeBoostler

0.2 0.4 0.6 0.8 1.0

Proportion of training data

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

A
U
C
 P
R

RDN
RDN-B
TreeBoostler*
TreeBoostler

Figure 4.5: Learning curves for AUC ROC (left) and AUC PR (right) obtained from
IMDB → Cora.

59

0.2 0.4 0.6 0.8 1.0

Proportion of training data

0.96

0.97

0.98

0.99

1.00
A
U
C
 R

O
C

RDN
RDN-B
TreeBoostler*
TreeBoostler

0.2 0.4 0.6 0.8 1.0

Proportion of training data

0.75

0.80

0.85

0.90

0.95

1.00

1.05

A
U
C
 P

R

RDN
RDN-B
TreeBoostler*
TreeBoostler

Figure 4.6: Learning curves for AUC ROC (left) and AUC PR (right) obtained from
Cora → IMDB.

target data, we performed a learning curve experiment transferring the same pairs

of datasets. For these experiments, we employed the traditional cross-validation

methodology when training is performed on n-1 folds and testing on the remaining

1 fold. The data selected for training is then shuffled and divided into 5 sequence

parts. All systems observed the same sequence of these parts. The entire process is

done in n runs and the curves are obtained by averaging the results. The Figures 4.1,

4.2, 4.3, 4.4, 4.5 and 4.6 demonstrate this experiment. As can be seen, our algorithm

outperforms or equates learning from scratch RDN-B in most of the results, partic-

ularly with smaller amounts of data (about 40% of the target data). An exception is

the learning curve for the AUC ROC in Figure 4.6 which demonstrates a decreasing

in the performance as the target data increases. In this experiment, TreeBoostler

is outperformed by RDN-B until 80% of the target data, although it outperforms

RND-B in terms of AUC PR. Thus, question Q5 can be answered affirmatively.

A third experiment was conducted in order to address the problem of minimal

target data and investigate how the algorithms behave when learning from only a

few examples. We also performed a learning curve experiment with the same pairs

of datasets. We employed the traditional cross-validation methodology, then we

shuffled the data for training and selected 5 groups of 5 positive examples and 5

groups of 5 negative examples. All systems observed the same sequence of these

groups of examples, i.e. systems observed from 5 up to 25 examples for each label.

Similarly to the last experiment, the entire process is done in n runs and the curves

are obtained by averaging the results. The Figures 4.7, 4.8, 4.9, 4.10, 4.11 and

4.12 demonstrate this experiment. As indicated in the experiments, our algorithms

easily outperform the learning from scratch algorithms RDN-B and RDN in all the

presented results. The small amount of training data available was insufficient to

60

5 10 15 20 25

Number of examples in training data

0.84

0.86

0.88

0.90

0.92

0.94

A
U
C
 R
O
C

RDN
RDN-B
TreeBoostler*
TreeBoostler

5 10 15 20 25

Number of examples in training data

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

A
U
C
 P
R

RDN
RDN-B
TreeBoostler*
TreeBoostler

Figure 4.7: Learning curves from minimal target data for AUC ROC (left) and AUC
PR (right) obtained from IMDB → UW-CSE.

5 10 15 20 25

Number of examples in training data

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
U
C
 R
O
C

RDN
RDN-B
TreeBoostler*
TreeBoostler

5 10 15 20 25

Number of examples in training data

0.00

0.01

0.02

0.03

0.04

0.05

A
U
C
 P
R

RDN
RDN-B
TreeBoostler*
TreeBoostler

Figure 4.8: Learning curves from minimal target data for AUC ROC (left) and AUC
PR (right) obtained from NELL Sports → NELL Finances.

learn good models in learning from scratch approaches. Providing more examples

has shown to increase the performance of these approaches, however it was still

insufficient comparing to TreeBoostler which also increased its performance when

more examples are provided. As can be seen, the revision step also showed to slightly

decrease the performance in the experiments, except for the experiment in Figure

4.11 and 4.12. This may be basically due to difficulty of revising and simultaneously

relearning parameters of models given very few examples. Since the pruning and

expansion operators are subject to the threshold δ, very few examples may not be

sufficient to determine correctly when a node is ”badly” predicting. Thus, according

to these experiments, we can answer question Q6 positively.

61

5 10 15 20 25

Number of examples in training data

0.75

0.80

0.85

0.90

0.95

1.00
A
U
C
 R

O
C

RDN
RDN-B
TreeBoostler*
TreeBoostler

5 10 15 20 25

Number of examples in training data

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

0.38

A
U
C
 P
R

RDN
RDN-B
TreeBoostler*
TreeBoostler

Figure 4.9: Learning curves from minimal target data for AUC ROC (left) and AUC
PR (right) obtained from Yeast → Twitter.

5 10 15 20 25

Number of examples in training data

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
U
C
 R
O
C

RDN
RDN-B
TreeBoostler*
TreeBoostler

5 10 15 20 25

Number of examples in training data

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

A
U
C
 P

R

RDN
RDN-B
TreeBoostler*
TreeBoostler

Figure 4.10: Learning curves from minimal target data for AUC ROC (left) and
AUC PR (right) obtained from Twitter → Yeast.

5 10 15 20 25

Number of examples in training data

0.45

0.50

0.55

0.60

0.65

0.70

0.75

A
U
C
 R

O
C

RDN
RDN-B
TreeBoostler*
TreeBoostler

5 10 15 20 25

Number of examples in training data

0.00

0.05

0.10

0.15

0.20

0.25

A
U
C
 P
R

RDN
RDN-B
TreeBoostler*
TreeBoostler

Figure 4.11: Learning curves from minimal target data for AUC ROC (left) and
AUC PR (right) obtained from IMDB → Cora.

62

5 10 15 20 25

Number of examples in training data

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00
A
U
C
 R
O
C

RDN
RDN-B
TreeBoostler*
TreeBoostler

5 10 15 20 25

Number of examples in training data

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
U
C
 P
R

RDN
RDN-B
TreeBoostler*
TreeBoostler

Figure 4.12: Learning curves from minimal target data for AUC ROC (left) and
AUC PR (right) obtained from Cora → IMDB.

4.4 Final remarks

In this chapter, we have experimented and analyzed the proposed algorithm

against learning from scratch approaches and one related transfer learning algorithm

TODTLER. We have evaluated the algorithms simulating the learning process from

very limited data employing the same methodology used in related works. We also

performed experiments on a scenario with increasing amounts of target data and

a scenario that represents learning from minimal target data. Our TreeBoostler

algorithm outperformed the baselines introduced in this section.

In the following and final chapter, we will look back on the methods proposed in

this work and provide possible future research directions.

63

Chapter 5

Conclusion

In this work, we have proposed a novel transfer learning method, named as Tree-

Boostler, that transfers Boosted RDNs learned from a source domain to a desirable

target domain. TreeBoostler constructs a target set of regression trees biased by

a predicate mapping found through the transfer process given the structure of the

source regression trees. Then, it applies a second stage process relying on theory

revision, to propose modifications to the mapped model. These modifications are

done through two proposed revision operators for the regression trees which are the

pruning operator and the expansion operator. The pruning operator showed to be

important for deleting nodes in the tree and providing space for the expansion of

new nodes.

Through experimental results, we found out that even the first state of the entire

transfer process, which only maps predicates and learn the parameters of them, can

give better results than learning from scratch in a smaller amount of training time.

The application of theory revision in transfer learning approaches brings the benefit

of handling incorrectness that has come from a different yet related domain through

transference. Thus, a transference may not provide a good model due to differences

between domains. However, this incorrectness may be successfully handled by the

modifications proposed in the system.

Our experimental results demonstrate that this algorithm is effective compared

to the other transfer algorithm TODTLER mainly because of the efficiency and

expressiveness of the language used for representing RDNs. We have performed the

experiments by simulating a transfer learning scenario where only a few data are

available. We showed from experiments that transfer learning may result in much

more accurate models compared to learning from scratch methods, however, it may

also hurt the learning performance and result in less accurate models. Moreover,

the theory revision process improved the performance of the transferred models

showing the effectiveness of proposing modifications to fit the model to the target

data. However, the experiments also showed that theory revision is more time

64

consuming since it is another search approach. According to the experiments, our

algorithm demonstrated to be as much efficient as learning from scratch methods.

5.1 Future work

A possible future direction is to take advantage of stochastic search methods [62] in

the process of pruning, allowing the method to generate different pruning in the trees

at random and expand nodes from these candidates. This may help the algorithm

to escape from a local optimum since the pruning process follows a deterministic

criteria. Stochastic search methods can also benefit the process of expanding nodes

by allowing different possible expansions in the path instead of finding the best node

for split.

Another possible research direction is developing the transfer learning process to

regression trees that contain predicates with constants or numeric values, increasing

the expressiveness of the language used for transference. Our algorithm and related

work does not allow transfer when clauses contain either constants or numeric values.

This can be very beneficial since constants from different domains may also be

related, e.g. a particular movie genre may represent well a particular field of study.

Also, numeric values from different domains may represent different but related

measures.

In addition, the investigation and development of new revision operators for

boosted trees could lead to a possible research direction. New revision operators

may lead to improvements in performance of a model since it would increase the

number of modifications proposed. However, differently from revising separated

clauses as many works have proposed, the paths in the trees are not independent of

each other and they may share a same inner node. The trees are not independents

as well, since each one depends on the previously handled trees. Then, the research

direction has to consider this particularity of revising boosted trees.

Finally, it is also interesting to investigate how to compute the similarity between

domains beforehand to avoid negative transfer. The development of a measure may

help to avoid struggling when transferring knowledge between domains that may be

related or not.

65

Bibliography

[1] LEE, K., CAVERLEE, J., WEBB, S. “Uncovering social spammers: social

honeypots+ machine learning”. In: Proceedings of the 33rd international

ACM SIGIR conference on Research and development in information re-

trieval, pp. 435–442. ACM, 2010.

[2] SINAPOV, J., STOYTCHEV, A. “Object category recognition by a humanoid

robot using behavior-grounded relational learning”. In: Robotics and Au-

tomation (ICRA), 2011 IEEE International Conference on, pp. 184–190.

IEEE, 2011.

[3] RUSU, A. A., VECERIK, M., ROTHÖRL, T., etal. “Sim-to-Real Robot Learn-

ing from Pixels with Progressive Nets”, CoRR, v. abs/1610.04286, 2016.

[4] PAN, J., ZHENG, W., YANG, Q., etal. “Transfer learning for WiFi-based indoor

localization”. In: AAAI 2008, 2008.

[5] BLITZER, J., DREDZE, M., PEREIRA, F. “Biographies, bollywood, boom-

boxes and blenders: Domain adaptation for sentiment classification”. In:

In ACL, pp. 187–205, 2007.

[6] PAN, S. J., YANG, Q. “A Survey on Transfer Learning”, IEEE Trans. on Knowl.

and Data Eng., v. 22, n. 10, pp. 1345–1359, 2010.

[7] DAI, W., YANG, Q., XUE, G.-R., etal. “Boosting for Transfer Learning”. In:

Proceedings of the 24th International Conference on Machine Learning,

ICML ’07, pp. 193–200, New York, NY, USA, 2007. ACM. ISBN: 978-1-

59593-793-3.

[8] W. LEE, J., GIRAUD-CARRIER, C. “Transfer Learning in Decision Trees”. In:

2007 International Joint Conference on Neural Networks, pp. 726–731,

Aug 2007.

[9] MEWES, H. W., HEUMANN, K., KAPS, A., etal. “MIPS: a database for

genomes and protein sequences”, Nucleic Acids Research, v. 27, n. 1,

pp. 44–48, 1999.

66

[10] VAN HAAREN, J., KOLOBOV, A., DAVIS, J. “TODTLER: Two-order-deep

transfer learning”. In: Proceedings of the Twenty-Ninth AAAI Confer-

ence on Artificial Intelligence, AAAI Conference on Artificial Intelligence,

2015.

[11] GETOOR, L., TASKAR, B. Introduction to Statistical Relational Learning

(Adaptive Computation and Machine Learning). The MIT Press, 2007.

ISBN: 0262072882.

[12] DAVIS, J., DOMINGOS, P. “Deep Transfer via Second-Order Markov Logic”.

In: Proceedings of the 26th International Conference on Machine Learning

(ICML-09), 2009.

[13] RICHARDSON, M., DOMINGOS, P. “Markov Logic Networks”, Mach. Learn.,

v. 62, n. 1-2, pp. 107–136, fev. 2006. ISSN: 0885-6125.

[14] MIHALKOVA, L., HUYNH, T., MOONEY, R. J. “Mapping and Revising

Markov Logic Networks for Transfer Learning”. In: Proceedings of the

22Nd National Conference on Artificial Intelligence - Volume 1, AAAI’07,

pp. 608–614. AAAI Press, 2007.

[15] MIHALKOVA, L., MOONEY, R. “Transfer Learning from Minimal Target

Data by Mapping across Relational Domains”. In: Proceedings of the 21st

International Joint Conference on Artificial Intelligence (IJCAI-09), pp.

1163–1168, Pasadena, CA, July 2009.

[16] KUMARASWAMY, R., ODOM, P., KERSTING, K., etal. “Transfer Learning

via Relational Type Matching”. In: Proceedings of the 2015 IEEE Inter-

national Conference on Data Mining (ICDM), ICDM ’15, pp. 811–816.

IEEE Computer Society, 2015. ISBN: 978-1-4673-9504-5.

[17] NATARAJAN, S., KHOT, T., KERSTING, K., etal. “Gradient-based Boosting

for Statistical Relational Learning: The Relational Dependency Network

Case”, Mach. Learn., v. 86, n. 1, pp. 25–56, jan. 2012. ISSN: 0885-6125.

[18] WROBEL, S. “First Order Theory Refinement”. In: Advances in inductive

logic programming, IOS Press, 1996.

[19] LAVRAC, N., DZEROSKI, S. Inductive Logic Programming: Techniques and

Applications. New York, NY, 10001, Routledge, 1993. ISBN: 0134578708.

[20] MUGGLETON, S. “Inductive Logic Programming”, New Gen. Comput., v. 8,

n. 4, pp. 295–318, fev. 1991. ISSN: 0288-3635.

67

[21] BRATKO, I. Prolog Programming for Artificial Intelligence. 3 ed. Harlow,

England, Pearson Addison-Wesley, 2000. ISBN: 978-0-201-40375-6.

[22] LLOYD, J. W. Foundations of Logic Programming. Berlin, Heidelberg,

Springer-Verlag, 1984. ISBN: 0-387-13299-6.

[23] NIENHUYS-CHENG, S.-H., WOLF, R. D. Foundations of Inductive Logic Pro-

gramming. Berlin, Heidelberg, Springer-Verlag, 1997. ISBN: 3540629270.

[24] DOLSAK, B., MUGGLETON, S. “The Application of Inductive Logic Pro-

gramming to Finite Element Mesh Design”. In: Inductive Logic Program-

ming, pp. 453–472. Academic Press, 1992.

[25] FENG, C. “Inducing Temporal Fault Diagnostic Rules from a Qualitative

Model”. In: Proceedings of the Eighth International Conference on Ma-

chine Learning, ML’91, pp. 403–406, San Francisco, CA, USA, 1991. Mor-

gan Kaufmann Publishers Inc. ISBN: 1-55860-200-3.

[26] HAU, D. T., COIERA, E. W. “Learning Qualitative Models of Dynamic Sys-

tems”, Machine Learning, v. 26, n. 2, pp. 177–211, Feb 1997. ISSN:

1573-0565.

[27] KING, R., MUGGLETON, S., LEWIS, R., etal. “Drug Design by Ma-

chine Learning: The Use of Inductive Logic Programming to Model the

Structure-Activity Relationships of Trimethoprim Analogues Binding to

Dihydrofolate Reductase”, Proceedings of the National Academy of Sci-

ences of the United States of America, v. 89, pp. 11322–6, 01 1993.

[28] MUGGLETON, S., KING, R. D., STENBERG, M. J. “Protein secondary struc-

ture prediction using logic-based machine learning”, Protein Engineering,

Design and Selection, v. 5, n. 7, pp. 647–657, 10 1992. ISSN: 1741-0126.

[29] LAVRAC, N., DZEROSKI, S. Inductive logic programming - techniques and

applications. Ellis Horwood series in artificial intelligence. Ellis Horwood,

1994. ISBN: 978-0-13-457870-5.

[30] RAEDT, L. D. “Logical Settings for Concept-Learning”, Artif. Intell., v. 95,

n. 1, pp. 187–201, 1997.

[31] BLOCKEEL, H. Top-down Induction of First order Logical Decision Trees.

PhD thesis, Katholieke Universiteit Leuven.

[32] RAEDT, L. D., DZEROSKI, S. “First-Order jk-Clausal Theories are PAC-

Learnable”, Artif. Intell., v. 70, n. 1-2, pp. 375–392, 1994.

68

[33] WROBEL, S., DZEROSKI, S. “The ILP description learning problem: Towards

a general model-level definition of data mining in ILP”. 1995.

[34] QUINLAN, J. R. “Learning logical definitions from relations”, MACHINE

LEARNING, v. 5, pp. 239–266, 1990.

[35] MUGGLETON, S. “Inverse Entailment and Progol”, New Generation Comput-

ing, Special issue on Inductive Logic Programming, v. 13, n. 3-4, pp. 245–

286, 1995.

[36] KRAMER, S. “Structural Regression Trees”. In: Proceedings of the Thirteenth

National Conference on Artificial Intelligence - Volume 1, AAAI’96, pp.

812–819. AAAI Press, 1996. ISBN: 0-262-51091-X.

[37] KARALIČ, A., BRATKO, I. “First Order Regression”, Mach. Learn., v. 26, n.

2-3, pp. 147–176, mar. 1997. ISSN: 0885-6125.

[38] BLOCKEEL, H., DE RAEDT, L. “Top-down Induction of First-order Logical

Decision Trees”, Artif. Intell., v. 101, n. 1-2, pp. 285–297, maio 1998.

ISSN: 0004-3702.

[39] BELLODI, E., RIGUZZI, F. “Structure learning of probabilistic logic programs

by searching the clause space”, TPLP, v. 15, n. 2, pp. 169–212, 2015.

[40] RIGUZZI, F. “Learning Logic Programs with Annotated Disjunctions”. In:

ILP, v. 3194, Lecture Notes in Computer Science, pp. 270–287. Springer,

2004.

[41] KHOSRAVI, H., BINA, B. “A Survey on Statistical Relational Learning”.

In: Farzindar, A., Kešelj, V. (Eds.), Advances in Artificial Intelligence,

pp. 256–268, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg. ISBN:

978-3-642-13059-5.

[42] DE RAEDT, L., KERSTING, K. “Probabilistic Logic Learning”, SIGKDD

Explor. Newsl., v. 5, n. 1, pp. 31–48, jul. 2003. ISSN: 1931-0145.

[43] DE RAEDT, L., KERSTING, K. “Probabilistic Inductive Logic Program-

ming”. Springer-Verlag, cap. Probabilistic Inductive Logic Programming,

pp. 1–27, Berlin, Heidelberg, 2008. ISBN: 3-540-78651-1, 978-3-540-78651-

1.

[44] SATO, T. “A Statistical Learning Method for Logic Programs with Distri-

bution Semantics”. In: Logic Programming, Proceedings of the Twelfth

International Conference on Logic Programming, Tokyo, Japan, June 13-

16, 1995, pp. 715–729, 1995.

69

[45] FIERENS, D., DEN BROECK, G. V., RENKENS, J., etal. “Inference and

learning in probabilistic logic programs using weighted Boolean formulas”,

TPLP, v. 15, n. 3, pp. 358–401, 2015.

[46] WARREN, D. H. D., PEREIRA, L. M., PEREIRA, F. “Prolog - the Language

and Its Implementation Compared with Lisp”, SIGPLAN Not., v. 12, n. 8,

pp. 109–115, ago. 1977. ISSN: 0362-1340.

[47] SATO, T., KAMEYA, Y. “PRISM: a language for symbolic-statistical mod-

eling”. In: In Proceedings of the 15th International Joint Conference on

Artificial Intelligence (IJCAI’97, pp. 1330–1335, 1997.

[48] SATO, T., KAMEYA, Y. “Parameter Learning of Logic Programs for Symbolic-

statistical Modeling”, J. Artif. Int. Res., v. 15, n. 1, pp. 391–454, dez.

2001. ISSN: 1076-9757.

[49] POOLE, D. L. “Exploiting the Rule Structure for Decision Making within the

Independent Choice Logic”, CoRR, v. abs/1302.4978, 2013.

[50] POOLE, D. “The Independent Choice Logic and Beyond”. In: Probabilistic

Inductive Logic Programming - Theory and Applications, pp. 222–243,

2008.

[51] RIGUZZI, F. “SLGAD Resolution for Inference on Logic Programs with Anno-

tated Disjunctions”, Fundam. Inform., v. 102, n. 3-4, pp. 429–466, 2010.

[52] RAEDT, L. D., KIMMIG, A., TOIVONEN, H. “ProbLog: A Probabilistic

Prolog and Its Application in Link Discovery.” In: Veloso, M. M. (Ed.),

IJCAI, pp. 2462–2467, 2007.

[53] PEARL, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plau-

sible Inference. San Francisco, CA, USA, Morgan Kaufmann Publishers

Inc., 1988. ISBN: 0-934613-73-7.

[54] FIERENS, D., VAN DEN BROECK, G., RENKENS, J., etal. “Inference and

learning in probabilistic logic programs using weighted Boolean formulas”,

Theory and Practice of Logic Programming, v. 15, n. 3, pp. 358–401, 2015.

[55] DE RAEDT, L., THON, I. “Probabilistic rule learning”. v. 6489, pp. 47–58.

Paolo, Frasconi, Springer Verlag, 2010. ISBN: 978-3-642-21294-9.

[56] DE RAEDT, L., DRIES, A., THON, I., etal. “Inducing Probabilistic Rela-

tional Rules from Probabilistic Examples”. In: Proceedings of the 24th

International Conference on Artificial Intelligence, IJCAI’15, pp. 1835–

1843. AAAI Press, 2015. ISBN: 978-1-57735-738-4.

70

[57] KOLLER, D., FRIEDMAN, N. Probabilistic Graphical Models: Principles and

Techniques - Adaptive Computation and Machine Learning. The MIT

Press, 2009. ISBN: 0262013193, 9780262013192.

[58] LOWD, D., DOMINGOS, P. “Efficient Weight Learning for Markov Logic

Networks”. v. 4702, pp. 200–211, 09 2007.

[59] KOK, S., DOMINGOS, P. “Learning the Structure of Markov Logic Networks”.

In: Proceedings of the 22Nd International Conference on Machine Learn-

ing, ICML ’05, pp. 441–448, New York, NY, USA, 2005. ACM. ISBN:

1-59593-180-5.

[60] RICHARDS, B. L., MOONEY, R. J. “Automated Refinement of First-Order

Horn-Clause Domain Theories”, Machine Learning, v. 19, n. 2, pp. 95–

131, 1995.

[61] DUBOC, A. L., PAES, A., ZAVERUCHA, G. “Using the bottom clause

and mode declarations in FOL theory revision from examples”, Machine

Learning, v. 76, n. 1, pp. 73–107, 2009.

[62] PAES, A., ZAVERUCHA, G., COSTA, V. S. “On the use of stochastic lo-

cal search techniques to revise first-order logic theories from examples”,

Machine Learning, v. 106, n. 2, pp. 197–241, 2017.

[63] PAES, A., ZAVERUCHA, G., COSTA, V. S. “Revising First-Order Logic

Theories from Examples Through Stochastic Local Search”. In: Inductive

Logic Programming, 17th International Conference, ILP 2007, Corvallis,

OR, USA, June 19-21, 2007, Revised Selected Papers, pp. 200–210, 2007.

[64] RUDER, S. Neural Transfer Learning for Natural Language Processing. PhD

thesis, National University of Ireland, Galway, 2019.

[65] CECI, M., APPICE, A., BARILE, N., etal. “Transductive Learning from Re-

lational Data”. In: Proceedings of the 5th International Conference on

Machine Learning and Data Mining in Pattern Recognition, MLDM ’07,

pp. 324–338, Berlin, Heidelberg, 2007. Springer-Verlag. ISBN: 978-3-540-

73498-7.

[66] VAPNIK, V. N. Statistical Learning Theory. Wiley-Interscience, 1998.

[67] ARNOLD, A., NALLAPATI, R., COHEN, W. W. “A Comparative Study

of Methods for Transductive Transfer Learning”. In: Proceedings of

the Seventh IEEE International Conference on Data Mining Workshops,

71

ICDMW ’07, pp. 77–82, Washington, DC, USA, 2007. IEEE Computer

Society. ISBN: 0-7695-3033-8.

[68] III, H. D., MARCU, D. “Domain Adaptation for Statistical Classifiers.” J.

Artif. Intell. Res., v. 26, pp. 101–126, 2006.

[69] ZADROZNY, B. “Learning and Evaluating Classifiers Under Sample Selection

Bias”. In: Proceedings of the Twenty-first International Conference on

Machine Learning, ICML ’04, pp. 114–, New York, NY, USA, 2004. ACM.

ISBN: 1-58113-838-5.

[70] SHIMODAIRA, H. “Improving predictive inference under covariate shift by

weighting the log-likelihood function”, Journal of Statistical Planning and

Inference, v. 90, n. 2, pp. 227–244, out. 2000.

[71] CARUANA, R. “Multitask Learning”, Mach. Learn., v. 28, n. 1, pp. 41–75,

jul. 1997. ISSN: 0885-6125.

[72] RAINA, R., BATTLE, A., LEE, H., etal. “Self-taught Learning: Transfer

Learning from Unlabeled Data”. In: Proceedings of the 24th International

Conference on Machine Learning, ICML ’07, pp. 759–766, New York, NY,

USA, 2007. ACM. ISBN: 978-1-59593-793-3.

[73] DAI, W., YANG, Q., XUE, G.-R., etal. “Self-taught Clustering”. In: Proceed-

ings of the 25th International Conference on Machine Learning, ICML ’08,

pp. 200–207, New York, NY, USA, 2008. ACM. ISBN: 978-1-60558-205-4.

[74] WANG, Z., SONG, Y., ZHANG, C. “Transferred Dimensionality Reduction”.

In: ECML/PKDD, 2008.

[75] JIANG, J., ZHAI, C. “Instance Weighting for Domain Adaptation in NLP.”

In: Carroll, J. A., van den Bosch, A., Zaenen, A. (Eds.), ACL. The Asso-

ciation for Computational Linguistics, 2007.

[76] ARGYRIOU, A., EVGENIOU, T., PONTIL, M. “Multi-Task Feature Learn-

ing”. In: Schölkopf, B., Platt, J. C., Hoffman, T. (Eds.), Advances in

Neural Information Processing Systems 19, MIT Press, pp. 41–48, 2007.

[77] LAWRENCE, N. D., PLATT, J. C. “Learning to Learn with the Informative

Vector Machine”. In: Proceedings of the Twenty-first International Con-

ference on Machine Learning, ICML ’04, pp. 65–, New York, NY, USA,

2004. ACM. ISBN: 1-58113-838-5.

72

[78] BONILLA, E. V., CHAI, K. M., WILLIAMS, C. “Multi-task Gaussian Process

Prediction”. In: Platt, J. C., Koller, D., Singer, Y., etal. (Eds.), Advances

in Neural Information Processing Systems 20, Curran Associates, Inc.,

pp. 153–160, 2008.

[79] HECKERMAN, D., CHICKERING, D. M., MEEK, C., etal. “Dependency

Networks for Inference, Collaborative Filtering, and Data Visualization”,

J. Mach. Learn. Res., v. 1, pp. 49–75, set. 2001. ISSN: 1532-4435.

[80] NEVILLE, J., JENSEN, D. D. “Relational Dependency Networks”, Journal of

Machine Learning Research, v. 8, pp. 653–692, 2007.

[81] FRIEDMAN, N., GETOOR, L., KOLLER, D., etal. “Learning Probabilistic

Relational Models”. In: Proceedings of the 16th International Joint Con-

ference on Artificial Intelligence - Volume 2, IJCAI’99, pp. 1300–1307,

San Francisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc.

[82] TASKAR, B., ABBEEL, P., KOLLER, D. “Discriminative Probabilistic Models

for Relational Data”. In: Proceedings of the Eighteenth Conference on

Uncertainty in Artificial Intelligence, UAI’02, pp. 485–492, San Francisco,

CA, USA, 2002. Morgan Kaufmann Publishers Inc. ISBN: 1-55860-897-4.

[83] NEVILLE, J., JENSEN, D., FRIEDLAND, L., etal. “Learning Relational Prob-

ability Trees”. In: Proceedings of the Ninth ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, KDD ’03, pp. 625–

630, New York, NY, USA, 2003. ACM. ISBN: 1-58113-737-0.

[84] NEVILLE, J., JENSEN, D. D., GALLAGHER, B. “Simple Estimators for

Relational Bayesian Classifiers”. In: ICDM, pp. 609–612. IEEE Computer

Society, 2003.

[85] DIETTERICH, T. G., ASHENFELTER, A., BULATOV, Y. “Training Condi-

tional Random Fields via Gradient Tree Boosting”. In: Proceedings of the

Twenty-first International Conference on Machine Learning, ICML ’04,

pp. 28–, New York, NY, USA, 2004. ACM. ISBN: 1-58113-838-5.

[86] GUTMANN, B., KERSTING, K. “TildeCRF: Conditional Random Fields for

Logical Sequences”. In: Machine Learning: ECML 2006, 17th European

Conference on Machine Learning, Berlin, Germany, September 18-22,

2006, Proceedings, pp. 174–185, 2006.

[87] NATARAJAN, S., KHOT, T., KERSTING, K., etal. “Boosting Relational

Dependency networks”. In: In Inductive Logic Programming, 2010.

73

[88] FRIEDMAN, J. H. “Greedy Function Approximation: A Gradient Boosting

Machine”, Annals of Statistics, v. 29, pp. 1189–1232, 2000.

[89] OURSTON, D., MOONEY, R. J. “Changing the Rules: A Comprehensive

Approach to Theory Refinement”. In: Proceedings of the Eighth National

Conference on Artificial Intelligence (AAAI-90), pp. 815–820, Boston,

MA, July 1990.

[90] BILENKO, M., MOONEY, R. J. “Adaptive Duplicate Detection Using Learn-

able String Similarity Measures”. In: Proceedings of the Ninth ACM

SIGKDD International Conference on Knowledge Discovery and Data

Mining, KDD ’03, pp. 39–48. ACM, 2003.

[91] KHOSRAVI, H., SCHULTE, O., HU, J., etal. “Learning compact Markov logic

networks with decision trees”, Machine Learning, v. 89, n. 3, pp. 257–277,

2012. ISSN: 08856125.

[92] MIHALKOVA, L., MOONEY, R. J. “Bottom-Up Learning of Markov Logic

Network Structure”. In: Proceedings of 24th International Conference on

Machine Learning (ICML-2007), 2007.

[93] CARLSON, A., BETTERIDGE, J., KISIEL, B., etal. “Toward an Architecture

for Never-ending Language Learning”. In: Proceedings of the Twenty-

Fourth AAAI Conference on Artificial Intelligence, AAAI’10, pp. 1306–

1313. AAAI Press, 2010.

74

	List of Figures
	List of Tables
	Introduction
	Contributions
	Outline

	Background
	Relational Learning
	First-Order Logic
	Inductive Logic Programming
	Statistical Relational Learning

	Theory Revision
	Definition
	Revision Points
	Revision Operators
	FORTE Algorithm

	Transfer Learning
	Definition
	Research issues
	Scenarios
	Taxonomy
	Approaches

	RDN-Boost
	Relational Dependency Networks
	Functional Gradient Boosting
	Relational Regression Trees
	Learning algorithm

	Related work
	Final remarks

	TreeBoostler: The proposed algorithm
	Transferring the structure
	Legal mappings
	Finding best mapping and transferring the structure

	Revising the structure
	Pruning
	Expansion

	Final remarks

	Experiments and results
	Research questions
	Datasets
	Methodology and results
	Final remarks

	Conclusion
	Future work

	Bibliography

