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MODELAGEM DE PROBLEMAS DE MÁQUINAS DE PROCESSAMENTO EM
LOTE UTILIZANDO FORMULAÇÕES COM QUEBRA DE SIMETRIAS E

FLUXO EM ARCO
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Olinto César Bassi de Araújo
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Problemas de minimização do makespan no escalonamento de bateladas em
máquinas de processamento são extensamente explorados pela literatura acadêmica,
motivados principalmente por testes burn-in na indústria de semicondutores. Os
problemas considerados neste trabalho consistem em agrupar tarefas em bateladas
e escalonar o processamento em uma ou mais máquinas em paralelo. As tarefas
possuem tempos de processamento e tamanhos não idênticos e o tamanho total
da batelada não pode exceder a capacidade da máquina. Para cada batelada é
definido um tempo de processamento que será igual ao maior tempo de processa-
mento das tarefas que foram alocadas a ela. O problema pode considerar também
tempos de liberação das tarefas não idênticos e, neste caso, as bateladas só poderão
ser processadas depois que a tarefa com o maior tempo de liberação for disponi-
bilizada. Este trabalho aborda quatro diferentes problemas de escalonamento de
bateladas, que consideram diferentes características: máquina de processamento
única 1|sj, B|Cmax, máquinas de processamento paralelas idênticas Pm|sj, B|Cmax,
máquina de processamento única e tarefas com tempos de liberação não idênti-
cos 1|rj, sj, B|Cmax, máquinas de processamento paralelas idênticas e tarefas com
tempos de liberação não idênticos Pm|rj, sj, B|Cmax. São propostos novos modelos
matemáticos com formulações que exploram o tratamento de simetria para estes
problemas. Além disso, é apresentado um modelo baseado em fluxo em arco para
os problemas 1|sj, B|Cmax e Pm|sj, B|Cmax. Os modelos matemáticos são resolvi-
dos utilizando CPLEX e os resultados computacionais comprovam que os modelos
propostos possuem um desempenho melhor do que outros modelos da literatura.
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Problems of minimizing makespan in scheduling batch processing machines are
widely exploited by academic literature, mainly motivated by burn-in tests in the
semiconductor industry. The problems addressed in this work consist of grouping
jobs in batches and scheduling this in parallel machines. The jobs have non-identical
size and processing times. The total size of the batch cannot exceed the capacity
of the machine. The processing time of each batch will be equal to the higher
processing time of all the jobs assigned to it. Jobs can also consider non-identical
release times; in this case, the batch can only be processed after the job with the
longest release time is available. This thesis discusses four different batch schedul-
ing problems, which consider different characteristics: single processing machine
1|sj, B|Cmax, parallel processing machines Pm|sj, B|Cmax, single processing machine
and non-identical release times 1|rj, sj, B|Cmax, parallel processing machines and
non-identical release times Pm|rj, sj, B|Cmax. New mathematical formulations are
proposed exploiting the treatment of symmetry for these problems. In addition, an
arc-flow-based model is presented for problems 1|sj, B|Cmax and Pm|sj, B|Cmax. The
mathematical models are solved using CPLEX, and computational results show that
the proposed models have a better performance than other models in the literature.
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Chapter 1

Introduction

In the competitive environment of the manufacturing and service industries, compa-
nies need to be efficient in meeting deadlines with customers and reducing unneces-
sary operating costs. For this, sequencing and scheduling play a key role for compa-
nies to perform well in the marketplace. Scheduling is a widely used decision-making
process in resource allocation and allows optimization in most production systems,
information processing, transport, and distribution configurations, and other several
real-world environments. To date, thousands of these problems have been modeled
and studied, and machine scheduling configures an essential class of problems, where
a collection of jobs require processing in a given environment.

This thesis focuses on scheduling problems in Batch Processing Machines (BPM),
that have been extensively explored in the literature, motivated by a large number of
applications in industries and also by the challenging solution of real world problems.
The main goal in these problems is to group jobs in batches and process them
simultaneously in a machine, to facilitate the tasks and to reduce the time spent in
handling the material. Although there are many variations of the problem involving
BPM, the versions addressed in this work are more suitable to model the scheduling
problems that arise in reliability tests in the semiconductor industry, in operations
called burn-in, presented in Uzsoy [2].

The burn-in operation is used to test electronic circuits and consists of designat-
ing them to industrial ovens, submitting them to thermal stress for a long period.
The test of each circuit is considered here as a job and requires a minimum time
inside the oven, which is referred to as the processing machine. The jobs cannot
be processed directly on the machine, they need to be placed on a tray, respecting
the capacity of the machine. Each group of jobs assigned to a tray is considered a
batch. The minimum time of the circuit inside the oven is set a priori, based on
the supplier requirements. It is possible to keep the circuit in the oven longer than
necessary, with no prejudice, but it cannot be removed before its required process-
ing time is fulfilled. Therefore, the processing time of a batch is determined by the
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longest processing time among all jobs assigned to it.
The burn-in tests are a bottleneck in final testing operations, and the efficient

scheduling of these operations aims to maximize productivity and reduce flow time
in the stock, which is a major concern for management. The processing time to test
an electronic circuit can reach up to 120 hours in a constant temperature around
120◦C, as presented in Lee et al. [3]. Tests reported in Tai [4] and Chung et al. [5],
a liquid crystal display usually take 6 hours to complete the reliability test, which
reinforces the importance of an efficient scheduling.

1.1 Problems description

For the BPM problems addressed in this paper, we are given a set J of jobs and a
set K of batches. Each job j ∈ J has a size sj, a minimum processing time pj, and
must be assigned to a batch k ∈ K. The sum of the sizes of the jobs assigned to
a batch cannot exceed the capacity limit B of the processing machine. The time
Pk required to process a batch k is equal to the longest processing time of all jobs
in the batch. In Figure 1.1 a graphical representation of a batch with three jobs,
where the axes represent the time and the machine size, is presented.

0

Size

B

0 Time p1

1

2

3

P1

p1
s1

Figure 1.1: Graphical representation of a batch.

The batches must be scheduled on a machine, which can process only one batch at
a time. For the case of parallel machines, the machines may be identical. Preemption
is not allowed, which means that you can not interrupt the operation after it has
started. The goal is to design and schedule the batches on the machines so that the
completion time of the last job processed, called makespan and denoted by Cmax,
is minimized. Finally, it is also possible that each job j ∈ J has a different release
time rj, which is when the job becomes available to be processed. In this case, a
batch can only be processed when all the jobs assigned to it are available.
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We address four different versions of this BPM scheduling problem. On the
two first, denoted by 1|sj, B|Cmax and Pm|sj, B|Cmax, we do not consider different
release times for the jobs. On problem 1|sj, B|Cmax, only a single processing machine
is used, and on Pm|sj, B|Cmax, m parallel identical machines are used. The two other
problems, denoted by 1|rj, sj, B|Cmax and Pm|rj, sj, B|Cmax, are defined equivalently
to the two first ones, but with non-identical release times considered for the jobs.

1.2 Objective and Methodology

In this thesis, the approach address to the problems is twofold:
First, we present Mixed Integer Linear Programming (MILP) formulations for

the four problems addressed, which were proposed in Melouk et al. [6], Chang et al.
[7], Xu et al. [8] and Vélez Gallego [9]. We point out that all the four formulations
present a large number of symmetric solutions in their feasible sets. Two types of
symmetries are considered in our analysis. On the first one, two solutions are said
to be symmetric if the designs of the batches are equal on both solutions and the
batches assigned to a machine are processed in the same order. On the second, two
solutions are said to be symmetric if the designs of the batches are still equal in both
solutions, but the batches assigned to at least one machine are processed in a different
order. Nevertheless, the modification in the order in which the batches are processed
does not affect the makespan, and therefore also generates equivalent solutions.
The existence of symmetric solutions in the feasible set of the problems leads to
a very inefficient application of Branch-and-Bound (B&B) algorithms. Treatment
of symmetry in integer programs is an intense area of research, where different
strategies are suggested to mitigate the effect of symmetric solutions during the
B&B execution (see, for example, Margot [10]). We present different strategies to
deal with the symmetry observed on the MILP formulations from the literature.

On the second, we present two MILP formulations with an arc-flow approach for
the problems that do not consider different release times for the jobs. This strategy
has been applied to other problems, such as the cutting-stock problem in Valério
de Carvalho [11], and the bin-packing problem in Valério de Carvalho [12] and
Brandão and Pedroso [13]. The idea is to formulate 1|sj, B|Cmax and Pm|sj, B|Cmax

as problems of determining flows in graphs. In this approach, each physical space of
the batch with capacity B is represented by a node, i.e., V = {0, . . . , B} and each
arc (i, j) of the subset AJ represents the existence of at least one job k of size sk,
such that sk = j − i. An important feature of the new model is that the number
of variables does not change when the number of jobs increases. The respective
formulations are compared with the solver CPLEX [14]. Table 1.1 shows the two
different approaches to the four problems developed for this research.
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1|sj, B|Cmax Pm|sj, B|Cmax 1|rj, sj, B|Cmax Pm|rj, sj, B|Cmax

Symmetry
breaking
approach

MILP+
1 ,

pg. 16
MILP+

2 ,
pg. 44

MILP+
3 ,

pg. 65
MILP+

4 ,
pg. 69

Arc-flow
approach

FLOW,
pg. 24

FLOW2,
pg. 45

Table 1.1: Methodology overview.

1.3 Thesis Statement and Contributions

To date, most of the work done for the problems addressed in this thesis uses heuris-
tic and meta-heuristic approaches. The great contribution of this thesis is to present
MILP formulations to find optimal solutions in a good computational time for the
instances suggested in the literature. In this work, several sets of symmetric so-
lutions for the problem addressed are pointed out, as well as symmetry breaking
constraints to deal with them. These constraints motivated the study of symme-
try breaking for the scheduling problems addressed in this paper. Furthermore, we
take into account specific properties of the problems and their optimal solutions to
propose new stronger formulations for them and avoid undesirable symmetric so-
lutions in their feasible sets. We show the correctness of our models and explain
how our different indexing choices for each problem allow a more efficient model-
ing. Our approach is currently the most recent work published in the literature in
Trindade et al. [15]. We also present Arc-flow formulations that present even better
computational results for two problems addressed in this thesis. We consider some
properties to made possible a complete reformulation of the problems that do not
involve times of releases. Thus, it is possible to increase the number of jobs of the
instances without increasing the number of variables. It is only necessary to change
the upper bound of the existing variables to representing new jobs in the Arc-flow
graph. We can prove the optimality of instances with a large number of jobs, never
considered before in the literature.

1.4 Outline

This thesis is organized as follows: In Chapter 2, we give an overview of the main
results that we found in the literature, on the problems addressed and the similar
approaches used.

In Chapter 3, we consider the 1|sj, B|Cmax problem and present the MILP for-
mulation from the literature, analyze symmetric solutions to these formulations and

4



propose symmetry breaking constraints and a new formulation for the problem. We
also present an Arc-flow formulation for this problem.

In Chapter 4, we consider the Pm|sj, B|Cmax problem, witch consider parallel
machines. We also present the MILP formulation from the literature and propose
symmetry breaking constraints and a new formulation for the problem. The Arc-flow
approach is also applied.

In Chapter 5, we consider the 1|rj, sj, B|Cmax problem, witch consider jobs with
different release times. We present the MILP formulations from the literature and
we point out the differences for the symmetry breaking approach.

In Chapter 6, we consider the Pm|rj, sj, B|Cmax problem, witch consider parallel
machines and release times. We also applied symmetry breaking approach with the
differences pointed out in Chapter 5 and present the new MILP formulation.

The computational results comparing the respective formulations are presented
at the end of Chapters 3–6. In Chapter 7, we present some concluding remarks.
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Chapter 2

Literature Review

In this chapter, we present a review of papers found in the scientific literature that
address each of the problems discussed in this research, as well as the approaches
adopted in our methodology. Since the 1950s, many works have been performed
related to deterministic scheduling machine theory, opening up problems that are
still under study today. To classify these numerous scheduling problems, the α|β|γ
notation is commonly used, suggested by Graham et al. [16]. We use this notation,
which describes the particular characteristic of each problem addressed, the α field
describes the machine environment, the β field represents different processing char-
acteristics and constraints, and the γ field describes the objective to be minimized.
An extensive study of scheduling theories and applications appear in Pinedo [17].

In this work, four scheduling problems are treated in batch processing machines.
All consider machine(s) with limited capacity B, and jobs with non-identical sizes sj,
in order to minimize the makespan Cmax. We consider also the processing time (pj)
but this reference is omitted in α|β|γ notation. The distinction between problems
is whether or not to consider non-identical release times rj or to consider single
machines (1) or parallel machines (Pm). The problems are listed below:

1|sj, B|Cmax : Minimizing makespan for single batch processing machine with
non-identical job sizes.

Pm|sj, B|Cmax : Minimizing makespan for parallel batch processing machines
with non-identical job sizes.

1|rj, sj, B|Cmax : Minimizing makespan for single batch processing machine with
release times and non-identical job sizes.

Pm|rj, sj, B|Cmax : Minimizing makespan for parallel batch processing machines
with release times and non-identical job sizes.
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2.1 Batch Processing Machines problem

The research on BPM is recent, compared to the history of the semiconductor man-
ufacturing, and consists of grouping the jobs into batches. These batches can be
processed either in serial (named s-batching) or in parallel (named p-batching). In
our problems, we focus only on p-batching problems. The paper Potts and Kovalyov
[18] reviews research on scheduling models considering batch processing machines
and point out that the research effort in designing algorithms for these problems is
worthwhile. A survey related to BPM problems research founded in Mathirajan and
Sivakumar [19], analyzing publications between 1986 and 2004 (part of 2004 only).
Another survey that focus on BPM problems is published in Mönch et al. [20] and
reveals that p-batching is much more important in semiconductor manufacturing
comparing with s-batching.

2.1.1 A review of 1|sj, B|Cmax problem

Problem 1|sj, B|Cmax was addressed for the first time in Uzsoy [2], where this NP-
hard complexity is proved and a heuristic approach to solve it is proposed. Heuristics
are also proposed for this problem in Ghazvini and Dupont [21], where instances
with up to 100 jobs are considered. Two approximation algorithms are presented in
[22] with approximation ratios of 3/2 and 7/4 of the optimal solution, in the worst
case. In Melouk et al. [6], the simulated annealing meta-heuristic was applied to
1|sj, B|Cmax and an MILP formulation was presented for the problem. This work
also proposes configurations for test instances that were widely used in later works.
Computational results are shown for instances with up to 100 jobs, comparing the
heuristic solutions to the solutions obtained with the MILP formulation. Other
meta-heuristics are also applied to problem 1|sj, B|Cmax in the literature, namely,
genetic algorithm (Damodaran et al. [23] and Kashan et al. [24]), tabu search (Meng
and Tang [25]), and GRASP (Damodaran et al. [26]). These four papers consider
instances with up to 100 jobs as well. In addition, the bee colony meta-heuristic
is also applied to the problem in Al-Salamah [27], where results for instances with
up to 200 jobs are shown. In Chen et al. [1], a heuristic based on a special case
of the clustering problem is proposed, and test instances with up to 500 jobs are
considered. In Li et al. [28], an enumeration scheme for heuristics is proposed.
The work uses First Fit Longest Processing Time (FFLPT) and Best Fit Longest
Processing Time (BFLPT) considering identical job sizes, and instances with up to
500 jobs are considered. In Lee and Lee [29], two heuristics are proposed based on a
decomposition of the original problem, where relaxations of the problem are solved.
Instances with up to 100 jobs are considered in this work. An exact approach is used
in Rafiee Parsa et al. [30], where a formulation for problem 1|sj, B|Cmax is presented,
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using a partition problem in the context of Dantzig-Wolfe decomposition. In this
work, the branch-and-price method is applied to solve the problem to optimality.
Instances with up to 500 jobs are considered in the computational experiments.

2.1.2 A review of Pm|sj, B|Cmax problem

Concerning problem Pm|sj, B|Cmax, the papers that address it, are mostly extensions
of the works published for problem 1|sj, B|Cmax. In Chang et al. [7], the simulated
annealing meta-heuristic is applied, and an MILP formulation is presented for the
problem. This work also proves the NP-hard complexity of the problem, and show
results for instances with up to 50 jobs. In Kashan et al. [31], a hybrid genetic
algorithm is used to compute solutions for instances with up to 100 jobs, considering
2 and 4 parallel machines. In Damodaran et al. [32] a new application of the genetic
algorithm is proposed, which solves instances with up to 100 tasks, also on 2 and
4 parallel machines. In Cheng et al. [33] an approximation algorithm is presented
for the problem, with the approximation factor of 2. Finally, two other works that
apply meta-heuristics (Cheng et al. [34] and Jia and Leung [35]), use the ant colony
method and a meta-heuristic based on a max-min ant system for this problem.
In Cheng et al. [34], results for instances with up to 500 jobs on 4 and 8 parallel
machines are shown, whereas, in Jia and Leung [35], instances are solved with up
to 100 jobs, on 2, 3, and 4 parallel machines.

2.1.3 A review of 1|rj, sj, B|Cmax problem

There are only a few papers investigating problem 1|rj, sj, B|Cmax in the literature.
To our knowledge, only three papers have been published. Solution approaches based
on meta-heuristics are presented in Chou et al. [36] and Xu et al. [8], which apply
hybrid genetic algorithms and the ant colony meta-heuristic, respectively. In both
works, test instances with up to 100 jobs are considered. In Zhou et al. [37], three
heuristics are proposed for this problem and computational results for instances with
up to 300 jobs are shown. In Xu et al. [8], we can also find an MILP formulation
for the problem.

2.1.4 A review of Pm|rj, sj, B|Cmax problem

Problem Pm|rj, sj, B|Cmax was firstly addressed in Chung et al. [5]. In this paper, the
authors propose an MILP formulation to solve the problem to optimality and three
heuristics to handle instances with 7 and 15 jobs. In Vélez Gallego [9], the problem
is proved to be NP-hard. The authors addressed the problem with the use of an
MILP formulation and a column generation method. Also, five heuristics and two
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meta-heuristics are tested, including simulated annealing, and GRASP. Numerical
experiments with instances with up to 50 jobs, and with 3 and 5 parallel machines,
are presented. The results of this work are also published in Damodaran et al. [38].

2.2 Symmetry breaking

An integer linear program is symmetric if its variables can be permuted without
changing the problem structure and all these solutions have the same value in the
objective function. The B&B method becomes very inefficient when applied to
formulations containing a large set of symmetric solutions because it solve several
subproblems unnecessarily. In this case, the B&B is not efficient to prune branches
of the enumeration tree with symmetric global optimum, since the the upper bound
is not tight enough.

All formulations found in the literature, for the problems dealt with in this
work, fit in this case. The difficulties related to symmetries in integer programming
are depicted in Margot [10], where several strategies are cited for their treatment.
The impact of symmetry breaking constraints on a particular software engineering
application is also investigated in Köhler et al. [39]. In this work, several sets of
symmetric solutions for the problem addressed are pointed out, as well as symmetry
breaking constraints to deal with them. These constraints motivated the study of
symmetry breaking for the scheduling problems addressed in this paper.

2.3 Arc Flow formulation

The arc flow approach has been used recently in classical optimization problems
and allows modeling with a pseudo-polynomial number of variables and constraints.
For a cutting-stock problem, Valério de Carvalho [11] proposes a branch-and-price
approach for an arc-flow formulation. Next, it was extended for the bin-packing
problem in Valério de Carvalho [12]. An alternative arc-flow formulation for the
cutting-stock problem is proposed in Brandão and Pedroso [13] and Brandão [40],
which uses a graph compression technique. These formulations were recently tested
and compared in Delorme et al. [41] against several other models and problem-
specific algorithms on one-dimensional bin packing and cutting stock problems.
The results show that the arc-flow formulation outperforms all other models. In
Martinovic et al. [42] the arc-flow model and the one-cut model are compared for
the one-dimensional cutting-stock problem, and reduction techniques for both ap-
proaches are presented.

For the scheduling area, we are aware only two works that consider the arc-flow
approach. In Kramer et al. [43] the problem of scheduling a set of jobs on a set
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of identical parallel machines, with the aim of minimizing the total weighted com-
pletion time, P ||

∑
WjCj is considered. In Mrad and Souayah [44] the makespan

minimization problem on identical parallel machines, P ||Cmax is considered. It is im-
portant to note that these works do not consider more complex features in scheduling
problems, such as batching machines, non-identical job sizes, and machine capacity.

2.4 Discussion

We can conclude from our literature review on the problems addressed in this work,
that most of the effort made by researchers to solve them, concentrated in heuristic
procedures. The MILP formulations presented for them were mostly used as a
baseline to give a formal definition of the problems, and provide some evaluation for
the heuristic solutions on small instances. As mentioned before, B&B algorithms
become very inefficient when applied to these formulations due to the presence of
symmetric solutions in their feasible sets. We take into account specific properties
of the problems and their optimal solutions to propose new stronger formulations
for them. Applying our models we are able to prove optimality of instances with
sizes considered for the first time in the literature to be solved by exact methods.
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Chapter 3

The 1|sj, B|Cmax problem

Problem 1|sj, B|Cmax is the simplest job scheduling problem addressed in this work.
It can be formally defined as follows. Given a set J := {1, . . . , nJ} of jobs, each job
j ∈ J has a processing time pj and a size sj. Each of them must be assigned to a
batch k ∈ K := {1, . . . , nK}, not exceeding a given capacity limit B of the processing
machine, i.e., the sum of the sizes of the jobs assigned to a single batch cannot exceed
B. We assume that sj ≤ B, for all j ∈ J . The batches must be all processed in a
single machine, one at a time, and all the jobs assigned to a single batch are processed
simultaneously. The processing time Pk of each batch k ∈ K is defined as longest
processing time among all jobs assigned to it, i.e., Pk := max{pj : j is assigned to k}.
Jobs cannot be split between batches. It is also not possible to add or remove jobs
from the machine while the batches are being processed. The goal is to design and
schedule the batches so that the makespan (Cmax) is minimized, where the design of
a batch is defined as the set of jobs assigned to it, to schedule the batches means to
define the ordering in which they are processed in the machine, and the makespan
is defined as the time required to finish processing the last batch.

The number of batches used on the solution is not fixed and should be optimized.
It will depend on the number of jobs, their sizes, and the machine capacity. In
the worst case, the number of batches nK will be equal to the number of jobs nJ .
Although it is possible to find feasible solutions with nK smaller than nJ , we can not
ensure that the model continues to represent the optimal solution. It is necessary to
consider the case in which creating an additional batch in the solution can improve
the makespan. We can illustrate in the Figure 3.1 an example where nK in 3.1.(a)
is smaller than in 3.1.(b), but the C ′max in 3.1.(b) is better than the solution Cmax
in 3.1.(a). Therefore, to assure the correctness of the formulations presented, it is
assumed that nK = nJ .
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Figure 3.1: Example of solutions with nk = 2 and nk = 3.

3.1 Literature formulation

Let us consider then the following decision variables for all j ∈ J , k ∈ K:

xjk =

{
1, if job j is assigned to batch k;

0, otherwise.
(3.1)

yk =

{
1, if batch k is used;

0, otherwise.
(3.2)

Pk : processing time of batch k. (3.3)

In Melouk et al. [6] the following MILP formulation is proposed for problem
1|sj, B|Cmax. Other very similar formulations and sometimes this exactly same one,
are used in other papers as a comparative basis in computational experiments.
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(MILP1) min
∑
k∈K

Pk, (3.4)∑
k∈K

xjk = 1, ∀j ∈ J, (3.5)∑
j∈J

sjxjk ≤ Byk, ∀k ∈ K, (3.6)

Pk ≥ pjxjk, ∀j ∈ J,∀k ∈ K, (3.7)

xjk ≤ yk, ∀j ∈ J,∀k ∈ K, (3.8)

yk ∈ {0, 1}, ∀k ∈ K, (3.9)

xjk ∈ {0, 1}, ∀j ∈ J,∀k ∈ K. (3.10)

The objective function (3.4) minimizes the makespan, given by the sum of the
processing times of all batches. Constraints (3.5) determine that each job is assigned
to a single batch. Constraints (3.6) determine that each batch if used does not exceed
the capacity of the machine. Constraints (3.7) determine the processing times of
the batches. Note that constraints (3.8) are redundant together with (3.6), but are
added to strengthen the linear relaxation of the formulation.

3.2 Symmetry breaking approach

The formulation MILP1 presented in the Section 3.1 allows a large number of sym-
metric solutions in the feasible sets of problems, which makes it difficult to solve
using the traditional B&B algorithm. The trouble comes from the fact that many
subproblems in the enumeration tree are isomorphic, forcing a wasteful duplication
of effort. Our symmetry breaking approach is performed before running the solution
algorithm, i.e., as a pre-solve procedure, we call such strategy as a Static Symmetry
Breaking (SSB), and this approach is performed twofold: First, in the symmetry
analysis, we distinguish two types of symmetry that may occur in this formulation.
Second, we propose symmetry breaking constraints and a new reformulation to the
problem.

3.2.1 Symmetry analysis

The first symmetry analyzed occurs when changing the processing order of the
batches assigned to a machine does not affect the makespan. In this case, the
processing time of a machine is given by the sum of the processing times of the
batches assigned to it, the machine is never idle during their processing, and any
permutation in the order in which those batches are processed lead to equivalent
solutions, with the same makespan. This situation is exemplified in Figure 3.2,
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which depicts two equivalent solutions, 3.2(a) and 3.2(b), for an instance of the
problem with 10 jobs. On both solutions all batches are equally designed, having
the same jobs assigned to them. The makespan is consequently also the same for
both solutions. The only difference between them is the sequence in which the
batches are processed in the machine. Note that any other permutation would lead
to another equivalent solution.
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Figure 3.2: Symmetric solutions for problem 1|sj, B|Cmax.

The second symmetry analyzed occurs when the solutions where the batches
are all equally designed and processed in the machine in the same order, may be
represented as different solutions and coexist in the feasible set. This happens
whenever the number of batches actually used or processed in a given machine is
smaller than the number of batches available nK . Clearly, this allows the solutions
to be represented by different indexing of the batches, as illustrated in Figure 3.3,
where three symmetric solutions for a problem with six jobs, equally grouped in
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Figure 3.3: Symmetric solutions in which batches are represented by different in-
dexes.

three batches, are depicted. Note that the only difference between the solutions is
the indexing of the batch with jobs 1,3, and 5. Its index could be k2, k3, or k4. The
formulation presented allows this type of symmetry.

3.2.2 Symmetry breaking formulation

We deal with the symmetry of problem 1|sj, B|Cmax with a threefold procedure.
Firstly, we set the indexes of the jobs, ordering them by their processing time. More
specifically, we consider:

p1 ≤ p2 ≤ . . . ≤ pnJ
. (3.11)

15



Secondly, we set nK := nJ and determine that batch k can only be used if job k is
assigned to it, for all k ∈ K. Thirdly, we determine that job j can only be assigned
to batch k if j ≤ k.

Note that with the assumptions made, we may only define variables xjk in (3.1),
for j ≤ k, reducing the number of binary variables from n2

J to nJ(nJ + 1)/2. More
importantly, the assumptions lead to solutions where the processing time of batch
k, if used, is equal to pk, as job k is certainly assigned to it, and is also the job
with longest processing time assigned to the batch. Consequently, there is no need
to define the variables Pk (3.3), for all k ∈ K, in order to represent the processing
times of the batches, or impose constraints (3.7) to determine them.

Besides reducing the number of variables, when compared to (MILP1), the strat-
egy described leaves only one possible processing ordering for the batches in a given
solution, where the batches are ordered by non-decreasing processing time. Fur-
thermore, there is only one possible way of idexing the batches on a given solution,
where the index of the batch is equal to the largest index among the jobs assigned
to it. Several equivalent solutions are therefore, eliminated from the feasible set of
(MILP1).

Considering the above, we propose next a new formulation for 1|sj, B|Cmax:

(MILP+
1 ) min

∑
k∈K

pkxkk, (3.12)∑
k∈K:k≥j

xjk = 1, ∀j ∈ J, (3.13)∑
j∈J :j≤k

sjxjk ≤ Bxkk, ∀k ∈ K, (3.14)

xjk ≤ xkk, ∀j ∈ J,∀k ∈ K : j ≤ k, (3.15)

xjk ∈ {0, 1}, ∀j ∈ J,∀k ∈ K : j ≤ k. (3.16)

The objective function (3.12) minimizes the makespan, given by the sum of the
processing times of the batches used. Constraints (3.13) determine that each job
j is assigned to a single batch k, such that k ≥ j. Constraints (3.14) determine
that the batches do not exceed the capacity of the machine. They also ensure that
each batch k is used if and only if job k is assigned to it. Constraints (3.15) are
redundant together with (3.14), but are included to strengthen the linear relaxation
of the model.

It is straightforward to verify that the minimum makespan of (MILP1) and
(MILP+

1 ) are the same. The following proposition formalizes this result.

Proposition 1. The optimal makespan of problems (MILP1) and (MILP+
1 ) are the

same.
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Proof. Let us consider w.l.o.g. that the indexes of jobs in J satisfy (3.11). Clearly,
any feasible solution of (MILP+

1 ) is also a feasible solution to (MILP1) with the
same objective function value. Therefore, it suffices to show that given any feasible
solution to (MILP1), with objective function value C̄max, there is a feasible solution
to (MILP+

1 ) also with objective function value C̄max. For that, let us first reset, if
necessary, the indexes of the batches on the given solution of (MILP1), determining
them as the largest index among the ones of all jobs assigned to it. The solution
is now a feasible to solution to (MILP+

1 ), with the batches designed as in the given
feasible solution to (MILP1), but possibly processed in a different order. As this re-
ordering of the batches does not affect the makespan in this problem, both solutions
have the same objective function value.

Remark. We also consider a new set of constraints to treat some equivalent so-
lutions remaining in the model (MILP+

1 ). We have adapted the lexical ordering
constraints proposed by Margot [10] to eliminate equivalent solutions in case where
there are jobs with the same size and belonging to batches with the same processing
time. At first glance, the set of constraints improved the computational times in
instances with few jobs. However, in instances with more than 100 jobs, the num-
ber of constraints added was very large, and the computational results show that the
computational times have increased in this situation.

3.3 Arc Flow approach

The idea in this section is to formulate problem 1|sj, B|Cmax as a problem of de-
termining flows in graphs. With this goal, we initially define a directed graph
G = (V,A), in which each physical space of the batch with capacity B is repre-
sented by a node, i.e., V = {0, . . . , B}. The set of directed arcs A is divided into
three subsets: the set of job arcs AJ , the set of loss arcs AL, and the set with a
feedback arc AF . Therefore, A = AJ ∪ AL ∪ AF . Each arc (i, j) of the subset AJ

represents the existence of at least one job k of size sk, such that sk = j − i. The
subset AJ is more specifically defined as:

AJ := {(i, j) : ∃k ∈ J, sk = j − i ∧ i, j ∈ V ∧ i < j}. (3.17)

To compose valid paths and represent all possible solutions, it is necessary to
include the loss arcs in G, which represent empty spaces at the end of a batch. The
subset of arcs AL is more specifically defined as:

AL := {(i, B) : i ∈ V ∧ 0 < i < B}. (3.18)

17



Finally, the feedback arc is used to connect the last node to the first one, defined
as:

AF := {(B, 0)}. (3.19)

Figure 3.4 shows the graph G for a machine with processing capacity B = 5,
and a set of jobs {j1, j2, j3, j4, j5} with respective sizes {s1 = 3, s2 = 2, s3 = 2, s4 =

1, s5 = 1}.

Figure 3.4: Example of the graph G representing the arc-flow structure used to
model problem 1|sj, B|Cmax.

0 1 2 3 4 5

s=1
>

s=2
>

s=3
>

s=1
>

s=2
>

s=3
>

s=1
>

s=2
>

s=3
>

s=1
>

s=2
>

s=1
>

loss
>

loss
>

loss
>

loss
>

feedback
<

In our modeling approach, each unit flow in graph G, going from node 0 to node
B, represents the configuration of a batch in the solution of the problem. Moreover,
a unit flow from node B to node 0, going through the feedback arc, represents a
solution using a single batch, and flows with more than one unit on the feedback arc,
represent the use of several batches.

As all flows are non-negative and G is acyclic once the feedback arc is excluded,
it is possible to decompose the multiple flow on the feedback arc into several unit
flows, each corresponding to an oriented path from node 0 to node B. Each unit
flow represents the configuration of a different batch and the flow on the feedback
arc indicates the number of batches used in the solution.

Figure 3.5 depicts a solution for the problem represented by the graph G shown in
Figure 3.4, and illustrates the decomposition of the flows on the multiple-flow graph
of two units, that is shown in Figure 3.5(a). The multiple-flow graph is decomposed
into two other graphs, each with a unit flow, in Figures 3.5(b) and 3.5(c). They
represent two batches k1 and k2, such that jobs {j1, j4, j5} are assigned to batch k1
and jobs {j2, j3} are assigned to batch k2. Arcs with null value are not shown in
Figure 3.5.

The graph G defined above, is then replicated for each different processing time
of the problem in our modeling approach. Each replicated graph will be referred to
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(a) Example of a solution for the arc-flow structure in Figure 3.4 with respective arcs’
values, decomposed to 3.5(b) and 3.5(c).
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Figure 3.5: Example of a solution obtained by the arc-flow approach for problem
1|sj, B|Cmax.

as an arc-flow structure for our problem. We consider P := {P1, . . . , Pδ} as the set
with all the different processing times among all jobs, and T := {1, . . . , δ} as the
set of indexes corresponding to the arc-flow structures in the problem formulation.
The arc-flow structure t ∈ T , will have the corresponding processing time fixed at
Pt, which is the tth shortest processing time in P , and only jobs j with processing
time pj ≤ Pt will be allowed to be assignment to this arc-flow structure. Moreover,
if any job is assigned to this arc-flow structure, then at least one job with processing
time Pt will also be assigned. The number of batches corresponding to each arc-flow
structure is indicated by the value of the feedback arc. As each arc-flow structure
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can represent as many batches as needed, it is possible to represent all solutions
of problem 1|sj, B|Cmax with our arc-flow structures. Finally, we note that the
maximum number of batches represented by the arc-flow structure t is given by the
number of jobs with processing time Pt. This bound will only be attained when
each job with processing time Pt is assigned to a different batch.

The Figure 3.7 shows an arc-flow representation of a solution presented in the
Figure 3.6. The solution contains only jobs with processing times 3, 4, and 5 which
are grouped in six batches, i.e., two with processing time 3, two with processing
times 4 and two with processing time 5. In this case, the arc-flow approach needs
only three structures to represent this solution, P1 = 3, P2 = 4, and P3 = 5.

We note that the solution represented with our arc-flow structure does not specify
exactly which are the jobs assigned to each batch, but only number of jobs with each
size that are assigned to it. For example, the flow in Figure 3.7(a) represents two
different batches in the solution. The first one has one job with size s = 2 and two
jobs of size s = 1 and the second has two jobs with size s = 2. The mapping of arcs
into jobs in the arc-flow solution is easily performed in polynomial time, since each
job arc (i, j) in the arc-flow structure corresponding to processing time Pt, can be
mapped to any job with size j − i and processing time not greater that Pt.

A set of variables and constraints is required to ensure that all jobs are assigned
to a batch, and that each arc-flow structure considers the correct number of jobs of
each size that are available to be assigned to it. Our approach requires the jobs to
be sorted by non-decreasing processing time. Let us then consider that the arc-flow
structure t corresponding to a processing time Pt, has n jobs of size c still available
to be assigned to it, i.e., these are the jobs with size c and processing time smaller
than or equal to Pt, that have not already been assigned to an arc-flow structure
with corresponding processing time smaller than Pt. A variable zc,t is defined in
our model to represent how many of these n jobs of size c were not assigned to the
arc-flow structure t. As n is the total number of jobs available and assuming that s
is the number of jobs that were assigned to the structure t, the variable zc,t assumes
value n − s. This variable will offer the remaining n − s jobs to the next arc-flow
structure, t+ 1, corresponding to next processing time of the problem, greater than
Pt. In the end, all jobs should be assigned to a structure, and, therefore, we should
have zc,δ = 0, where δ := |T | is the index of the last arc-flow structure corresponding
to the longest processing time.

3.3.1 Arc reduction and upper bounds

Some rules can be set to decrease the number of arcs in graph G and the number of
variables in the problem. The set AL of loss arcs defined in (3.18), represent empty
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Figure 3.6: Example of solution with Cmax = 24 and six batches.
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(c) Arc-flow structure with P3 = 5

Figure 3.7: Example of a solution for the arc-flow approach in Figure 3.6.
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spaces that occur at the end of the batch. We first note that our modeling does
not represent empty spaces between jobs or at the beginning of the batch, which
avoids symmetric solutions on the feasible set of the problem. Because of that, two
rules can be created to eliminate arcs that will never be used in the solution of the
problem: Rule 1 eliminates job arcs that cannot be used in a valid flow starting at
node 0, and Rule 2 eliminates loss arcs incident to nodes that are not incident to
any job arc.

Rule 1. Only job arcs (i, j) ∈ AJ that belong to at least one continuous flow
starting at node 0 can have a positive flow in the solution of the problem, and
therefore, all the others may be eliminated from graph G. The job arcs that belong
to at least one continuous flow can be selected by the following steps:

1. arc (0, j) is selected, for all j, such that (0, j) ∈ AJ ;

2. arc (i, j) ∈ AJ is selected, if an arc (k, i) has been previously selected for some
node k;

3. repeat step (2) until no arc is selected.

Rule 2. Only loss arcs (i, B) ∈ AL that are incident to a node i, which is incident
to a remaining job arc after the application of Rule 1, can have a positive flow in the
solution of the problem, and therefore, all the others may be eliminated from graph
G.

Figure 3.8 illustrates the application of Rules 1–2, where 2 job arcs and 1 loss
arc are removed from graph G.

0 1 2 3 4 5

>

>

5

5

>

>

>

loss
5

loss
>

loss
>

loss
>

feedback
<

Figure 3.8: Example of arc reduction.

A second group of rules can be defined to bound the values of the flows in each
arc of the arc-flow structures, and therefore bound the variables, strengthening our
formulation.
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Rule 3. The flow on each arc (i, j) ∈ A that belongs to the arc-flow structure
corresponding to processing time p cannot be greater than the number of jobs with
processing time p. This upper bound is more specifically given by∑

k∈J :pk=p

1.

Rule 4. The flow on each job arc (i, j) ∈ AJ that belongs to the arc-flow structure
corresponding to processing time p cannot be greater than the number of jobs with size
j − i and processing time not greater than p. This upper bound is more specifically
given by ∑

k∈J :sk=j−i,
pk≤p

1.

3.3.2 Arc Flow formulation

Problem 1|sj, B|Cmax is formulated as the problem of determining the minimum
flow from node 0 to node B, for all the arc-flow structures. Our new formulation is
presented below:
Sets and parameters

Maxp : maximum processing time among all jobs, max{pj,∀j ∈ J}.
Minp : minimum processing time among all jobs, min{pj,∀j ∈ J}.
P : set with the range of processing times, {P1, . . . , Pδ}, where P1 := Minp,

Pδ := Maxp, and δ is the number of different processing times among all jobs.
T : set of indexes of the arc-flow structures, {1, . . . , δ}
NTc,t : number of jobs with size c and processing time Pt,

NTc,t :=
∑

j∈J :sj=c,
pj=Pt

1;

NT+
c,t : number of jobs with size c and processing time ≤ Pt.

NT+
c,t :=

∑
j∈J :sj=c,
pj≤Pt

1;
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NJt : number of jobs with processing time Pt,

NJt :=
∑
j∈J :
pj=Pt

1.

Decision variables
fi,j,t : flow on job arc (i, j) ∈ AJ in arc-flow structure t. The variable indicates

the quantity of batches created with position i occupied by jobs with size j − i.
yi,j,t : flow on the loss arc (i, B) ∈ AL in arc-flow structure t.
vt : flow on the feedback arc in arc-flow structure t. The variable indicates the

number of batches required with processing time Pt.
zc,t : number of jobs with size c, not allocated in the batches with processing

time smaller than or equal to Pt. Theses jobs are allowed to be allocated in the
batches with processing time Pt+1.

(FLOW) min
∑
∀t∈T

Pt.vt (3.20) ∑
(i,j)∈AJ

fi,j,t +
∑

(i,j)∈AL

yi,j,t

−
 ∑

(j,i)∈AJ

fj,i,t +
∑

(j,i)∈AL

yj,i,t

 =


−vt if j = 0;

vt if j = B;

0 if 0 < j < B.

t ∈ T (3.21)

NTc,t −
∑

(i,j)∈AJ :
j−i=c

fi,j,t =


zc,t if t = 1;

−zc,t−1 if t = δ;

zc,t − zc,t−1 if 1 < t < δ.

c ∈ {1..B} (3.22)

fi,j,t ≤ min(NJt, NT
+
j−i,t), fi,j,t ∈ Z t ∈ T, (i, j) ∈ AJ (3.23)

vt ≤ NJt, vt ∈ Z t ∈ T (3.24)

yi,j,t ≤ NJt, yi,j,t ∈ Z t ∈ T, (i, j) ∈ AL (3.25)

zc,t ≤ NT+
c,t, zc,t ∈ Z t ∈ T : t < δ, c ∈ {1..B} (3.26)

The objective function (3.20) minimizes the makespan. The set of flow con-
servation constraints are defined by (3.21). Constraints (3.22) ensure that all jobs
are assigned and also control the number of jobs to be assigned to each arc-flow
structure. Constraints (3.23), (3.24), (3.25) and (3.26) define the domains of the
variables and their respective upper bounds, defined by Rules 3–4.
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3.4 Computational results

The models presented in this chapter were compared through computational tests
performed with two sets of instances. The first set was created by the authors
of the paper Chen et al. [1], who kindly sent it to us to use in our work. The
second set is proposed in this thesis with parameters that make the instances more
difficult. In all tests, we use the CPLEX version 12.7.1.0, configured to run in only
one thread to not benefit from the processor parallelism. We used a computer with
a 2.70GHz Intel Quad-Core Xeon E5-2697 v2 processor and 64GB of RAM. The
computational time to solve each instance was limited in 1800 seconds.

3.4.1 Instances from the literature

The first set of test instances for problem 1|sj, B|Cmax is the same one considered
in Chen et al. [1]. For each job j, an integer processing time pj and an integer job
size sj were generated from the respective uniform distribution depicted in Table
3.1. In total, there were generated 4200 instances, 100 for each of the 42 different
combinations of number and size of the jobs.

Table 3.1: Parameter settings for set of test instances for 1|sj, B|Cmax, made avail-
able by the authors Chen et al. [1].

Number of jobs Processing time Jobs size Machine capacity
(nJ) (pj) (sj) (B)

10, 20, 50, 100, p1: [1, 10] s1: [1, 10] B = 10
300, 500 p2: [1, 20] s2: [2, 4]

s3: [4, 8]

The following statistics were considered in our analysis for the problem: The
computational time of CPLEX in seconds (T (s)). We represent the time by the
symbol "-" in our tables when CPLEX reaches the time limit of 1800 seconds on all
instances of a given configuration. The makespan corresponding to the best solution
obtained by CPLEX (Cmax). The duality gap of CPLEX at the end of its execution
(Gap). The number of instances that the CPLEX ensure the optimal solution (#O).

We present in Table 3.2 comparison results among two models proposed in this
work and the other model from the literature. All values presented in the Table 3.2
are the average results computed over the instances of the same configuration, as
described in Table 3.1. Therefore, we note that it is possible to have the computa-
tional times of CPLEX for solving problems of a given configuration less than 1800
seconds while the gaps are non-zero. This happens when some of the instances in
the group could be solved to optimality in 1800 seconds, and others could not.
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Table 3.2: Computational results for the instances available by Chen et al. [1] for
the 1|sj.B|Cmax problem.
Instance (MILP1) (MILP+

1 ) (FLOW)

Jobs Type T (s) Cmax Gap #O T (s) Cmax Gap #O T (s) Cmax Gap #O

Instances with p1 = [1.10]

10 p1s1 0.08 36.86 0.00 100 0.00 36.86 0.00 100 0.01 36.86 0.00 100
10 p1s2 0.04 20.38 0.00 100 0.01 20.38 0.00 100 0.02 20.38 0.00 100
10 p1s3 0.1 43.79 0.00 100 0.00 43.79 0.00 100 0.00 43.79 0.00 100
20 p1s1 42.62 68.07 0.06 99 0.01 68.07 0.00 100 0.03 68.07 0.00 100
20 p1s2 300.49 37.13 1.17 92 0.09 37.13 0.00 100 0.06 37.13 0.00 100
20 p1s3 24.37 83.69 0.03 99 0.00 83.69 0.00 100 0.01 83.69 0.00 100
50 p1s1 1618.35 164.17 7.83 15 0.84 164.08 0.00 100 0.18 164.08 0.00 100
50 p1s2 - 87.94 66.65 0 317.12 87.39 0.2 88 0.36 87.39 0.00 100
50 p1s3 1649.45 202.03 14.17 13 0.02 202.03 0.00 100 0.01 202.03 0.00 100
100 p1s1 - 325.38 73.99 0 70.24 318.99 0.02 97 0.17 318.99 0.00 100
100 p1s2 - 183.78 88.82 0 1689.67 170.58 1.41 7 0.61 170.58 0.00 100
100 p1s3 - 401.7 83.99 0 0.11 396.96 0.00 100 0.01 396.96 0.00 100
300 p1s1 - 1832.31 99.38 0 467.18 928.64 0.05 76 0.23 928.63 0.00 100
300 p1s2 - 2508.79 99.53 0 - 496.07 0.86 0 1.04 495.66 0.00 100
300 p1s3 - 1999.85 99.44 0 20.4 1174.46 0.0009 99 0.09 1174.46 0.00 100
500 p1s1 - 3112.85 99.77 0 825.1 1544.31 0.05 59 0.17 1544.30 0.00 100
500 p1s2 - 4970.07 99.8 0 - 832.43 0.72 0 0.97 831.04 0.00 100
500 p1s3 - 3347.23 99.88 0 34.39 1949.76 0.0005 99 0.02 1949.76 0.00 100

Instances with p2 = [1.20]

10 p2s1 0.07 67.62 0.00 100 0.00 67.62 0.00 100 0.02 67.62 0.00 100
10 p2s2 0.04 40.22 0.00 100 0.02 40.22 0.00 100 0.03 40.22 0.00 100
10 p2s3 0.09 81.05 0.00 100 0.00 81.05 0.00 100 0.01 81.05 0.00 100
20 p2s1 22.35 133.09 0.01 99 0.01 133.09 0.00 100 0.08 133.09 0.00 100
20 p2s2 215.7 72.88 0.96 94 0.09 72.88 0.00 100 0.13 72.88 0.00 100
20 p2s3 16.49 159.11 0.00 100 0.00 159.11 0.00 100 0.01 159.11 0.00 100
50 p2s1 1596.95 314.76 9.4 15 0.38 314.57 0.00 100 0.62 314.57 0.00 100
50 p2s2 - 169.93 65.57 0 178.7 168.11 0.06 94 1.81 168.11 0.00 100
50 p2s3 1701.53 384.15 15.56 8 0.02 384.13 0.00 100 0.02 384.13 0.00 100
100 p2s1 - 622.84 76.62 0 33.35 610.64 0.01 99 0.86 610.64 0.00 100
100 p2s2 - 357.69 89.35 0 1717.84 326.14 0.99 6 4.71 326.11 0.00 100
100 p2s3 - 775.5 83.96 0 0.1 766.91 0.00 100 0.04 766.91 0.00 100
300 p2s1 - 3979.09 99.42 0 329.03 1793.54 0.02 83 0.96 1793.52 0.00 100
300 p2s2 - 5925.99 99.66 0 - 965.42 1.08 0 6.55 962.77 0.00 100
300 p2s3 - 3983.88 99.43 0 21.78 2247.39 0.0005 99 0.17 2247.39 0.00 100
500 p2s1 - 6264.18 99.92 0 780.62 2964.62 0.03 63 0.89 2964.57 0.00 100
500 p2s2 - 9937.42 99.94 0 - 1592.72 0.86 0 5.66 1587.50 0.00 100
500 p2s3 - 6822.02 99.92 0 97.16 3701.79 0.0013 96 0.13 3701.79 0.00 100
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The comparative tests clearly show that formulation (FLOW) is superior to
(MILP1) and (MILP+

1 ) especially when the number of jobs increases. This is the
first work that presents the proved optimal solution of all instances with up to 500
jobs in a fixed computational time. For instances with 50 jobs or less, formulation
(MILP+

1 ) can solve some instances in less computational time than (FLOW), but the
difference between times is always a fraction of a second. Additionally, the duality
gaps shown for (MILP1) reveal the difficulty in obtaining good lower bounds. This
difficulty is reduced with the use of (MILP+

1 ), but only (FLOW) can show results
with no-gap for any instances with more than 50 jobs. With formulation (FLOW),
we were able to prove the optimality for 86% of the instances in less than 1 second,
while with models (MILP+

1 ) and (MILP1), we prove optimality for 56.75% and
17.28% of the instances, respectively.

The total computational time spent on our 3600 test instances, when using model
(FLOW), was 44 minutes and 29 seconds, while it was 15 days, 22 hours, 53 minutes
and 56 seconds when using (MILP+

1 ), and 49 days, 23 hours, 41 minutes and 13
seconds, when using (MILP1).

Unlike what we have with models (MILP1) and (MILP+
1 ), the number of variables

in (FLOW) does not grow when the number of jobs increases. Moreover, the flow
graph does not change in this case. Only the bounds on the variables change.
The flow graphs of two distinct instances will be the same if the settings in the
parameters Processing Time, Job Size, and Machine Capacity are the same. In fact,
this is a very important characteristic of the flow approach. We finally note that
the computational time to construct the graphs for the flow formulation was not
considered in these times. However, the maximum time to construct a graph for
any instance in our experiments was 0.008 second.

Table 3.3 shows the solutions of the linear relaxations of models (MILP+
1 ) and

(FLOW). The following statistics were considered: the makespan corresponding
to the optimal solution of the instance previous calculated (Cmax∗), the makespan
corresponding to the solution of the relaxations (Cmax), the gap given by: gap =
(Cmax∗ - Cmax)/Cmax, the number of simplex iterations (Iter.), and the computational
time in seconds (T (s)). We can notice that the linear relaxation of (FLOW) is
better than the linear relaxation of (MILP+

1 ) for most instances, especially when
the number of jobs increases. For instances of type s2, the solutions of the linear
relaxations are very close to each other, but (FLOW) is slightly better in this case.
Another critical point is that (FLOW) presents lower computational time for solving
the linear relaxations. With the number of jobs 500 in instances of type p2s2, the
time for linear relaxation of (FLOW) is 0.66% of the time for the linear relaxation
of (MILP+

1 ). This time difference tends to increase with the increase in the number
of jobs. These tests help us understand why (FLOW) overcomes (MILP+

1 ).
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Table 3.3: Comparison between the linear relaxations for (MILP+
1 ) and (FLOW) for

the 1|sj, B|Cmax problem.
Instance (MILP+

1 ) - Relax (FLOW) - Relax

Jobs Type Cmax∗ Cmax Gap Iter. T (s) Cmax Gap Iter. T (s)

Instances with p1 = [1, 10]

10 p1s1 36.86 32.34 12.26 29.41 0.00 34.41 6.66 79.52 0.00
10 p1s2 20.38 18.61 8.70 36.66 0.00 16.79 17.61 82.88 0.00
10 p1s3 43.79 34.82 20.49 34.09 0.00 41.72 4.74 14.77 0.00
20 p1s1 68.07 61.42 9.77 80.21 0.00 65.34 4.02 181.54 0.00
20 p1s2 37.13 34.54 6.99 103.60 0.00 33.38 10.11 133.90 0.00
20 p1s3 83.69 66.80 20.18 96.61 0.00 81.49 2.63 26.04 0.00
50 p1s1 164.08 151.94 7.40 330.65 0.01 161.03 1.86 318.89 0.01
50 p1s2 87.39 83.07 4.94 341.59 0.01 83.15 4.85 168.99 0.00
50 p1s3 202.03 165.65 18.01 385.43 0.01 199.71 1.15 42.95 0.00
100 p1s1 318.99 302.63 5.13 675.16 0.04 315.98 0.94 386.88 0.01
100 p1s2 170.58 165.68 2.87 720.13 0.05 165.99 2.69 178.51 0.00
100 p1s3 396.96 328.82 17.17 742.44 0.05 394.65 0.58 56.13 0.00
300 p1s1 928.63 902.86 2.77 2729.99 0.36 925.87 0.30 467.62 0.01
300 p1s2 495.66 490.81 0.98 3186.63 0.44 490.85 0.97 180.92 0.01
300 p1s3 1174.46 988.13 15.87 3043.30 0.40 1172.12 0.20 62.20 0.00
500 p1s1 1544.30 1513.43 2.00 4673.94 1.19 1541.61 0.17 480.35 0.01
500 p1s2 831.04 826.12 0.59 5387.19 1.64 826.12 0.59 180.45 0.01
500 p1s3 1949.76 1645.82 15.59 5354.30 1.47 1947.47 0.12 61.54 0.00

Instances with p2 = [1, 20]

10 p2s1 67.62 59.67 11.75 30.16 0.00 62.33 7.82 109.14 0.00
10 p2s2 40.22 36.55 9.14 37.14 0.00 32.69 18.72 101.74 0.00
10 p2s3 81.05 64.90 19.93 33.71 0.00 77.00 5.00 18.71 0.00
20 p2s1 133.09 119.97 9.86 84.59 0.00 128.09 3.75 253.47 0.01
20 p2s2 72.88 68.24 6.37 105.44 0.00 65.23 10.50 181.63 0.00
20 p2s3 159.11 129.26 18.76 97.66 0.00 154.68 2.78 38.11 0.00
50 p2s1 314.57 291.85 7.22 331.51 0.01 309.22 1.70 566.30 0.02
50 p2s2 168.11 161.19 4.12 352.33 0.01 159.89 4.89 295.78 0.00
50 p2s3 384.13 313.80 18.31 374.71 0.01 379.53 1.20 73.38 0.00
100 p2s1 610.64 579.74 5.06 693.34 0.05 605.19 0.89 782.51 0.02
100 p2s2 326.11 316.77 2.86 742.66 0.05 317.20 2.73 335.60 0.01
100 p2s3 766.91 633.63 17.38 783.24 0.05 762.26 0.61 102.42 0.00
300 p2s1 1793.52 1737.65 3.11 2786.36 0.36 1788.23 0.29 963.18 0.03
300 p2s2 962.77 952.38 1.08 3181.75 0.41 952.79 1.04 357.50 0.01
300 p2s3 2247.39 1892.29 15.80 3161.54 0.41 2242.72 0.21 135.67 0.00
500 p2s1 2964.57 2895.60 2.33 4966.34 1.25 2959.25 0.18 1017.03 0.04
500 p2s2 1587.50 1577.43 0.63 5496.04 1.51 1577.56 0.63 360.63 0.01
500 p2s3 3701.79 3138.60 15.21 5664.89 1.52 3697.31 0.12 136.55 0.00
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All the results show that instances of configuration s2 require more computational
time and are more difficult when compared to the other instances for all formulations.
The reason for this is the small sizes of the jobs when compared to the machine
capacity, which allows more combinations of assignment to a batch. In this way, the
number of feasible solutions for instances of type s2 is higher than others instances.

With (FLOW), it is possible to find the optimal solution of all the instances
proposed by Chen et al. [1] with good computational times. Therefore, we created
new instances with the number of jobs up to 100 million of type p2s2, since they are
the instances with higher computational times. Table 3.4 shows the computational
results obtained. (FLOW) can find the optimum solution of instances with up to
100 million jobs with computational times between 3.25s and 6.05s, the same time
frame the model needs to find the optimal solution of instances with 100 jobs. We
emphasize that the column Construction Time considers the reading of the instance
file, the sorting of the jobs and the creation of the parameters to the model. The
construction of the model is a polynomial time method according to the number of
jobs and can be longer than the resolution time when the number of jobs increases,
which demonstrates the efficiency of (FLOW).

Table 3.4: Computational results for the instances available by Chen et al. [1] for
the 1|sj, B|Cmax problem.

Instance (FLOW)

Jobs Type T (s) Cmax Gap Nodes Construction Time

1000 p2s2 4.90 3241 0.00 8043 0.03
10000 p2s2 3.66 31719 0.00 3625 0.16
100000 p2s2 3.22 314945 0.00 4668 1.44
1000000 p2s2 2.80 3152697 0.00 3011 14.24
10000000 p2s2 6.05 31495193 0.00 17111 145.07

100000000 p2s2 3.25 314996812 0.00 4325 886.14

3.4.2 New instances proposed

The computational results from the last section shows that the instances proposed by
Chen et al. [1] are not challenging enough, especially when using (FLOW). Therefore,
a second set of test instances for problem 1|sj, B|Cmax is proposed in this work,
generated from the respective uniform distribution depicted in Table 3.5. The main
idea is to generate more difficult instances that can be used in future work. For
this, we explore the increase of the values of the parameters B, pj and sj, which
directly affect the number of variables of (FLOW) model. The set considers three
different values for the machine capacity, and the job sizes are generated by a uniform
distribution in a range proportional to the size of the machine, i.e., the s2 has the
range [0.2B, 0.4B], which means that for instances where the capacity of the machine
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is equal to 100, the distribution is between [20, 40]. This setting allows instances to
maintain the characteristics of instances from Chen et al. [1] in terms of scale. Also,
the range of p2 varies according to the number of jobs in the instance and allows
creating instances with a higher number of different processing times. In total there
were generated 540 instances, 5 for each of the 108 different combinations of number
of jobs, processing time, job size and machine capacity.

Table 3.5: Parameter settings for set of new instances proposed for 1|sj, B|Cmax.
Number of jobs Processing time Jobs size Machine capacity

(nJ) (pj) (sj) (B)

10, 50, 100, 500, p1: [1, 20] s1: [1, B] 20, 50, 100
1000, 5000 p2: [1, nJ ] s2: [0.2B, 0.4B]

s3: [0.4B, 0.8B]

We present in Tables 3.6–3.8 comparison results among the two models proposed
in this work for the instances proposed in this section. When CPLEX cannot find an
integer solution of a given configuration, we represent the Cmax by "No solution"
and the gap by "Infinite" in our tables.

The comparative tests show that new instances are more difficult for (FLOW),
especially with processing time p2 because the processing times of the jobs are very
different, i.e., there are few jobs with the same processing time. In this way, (FLOW)
needs to generate many flow structures, one for each processing time. The difference
between the instances p1 and p2, however, are not influencing the number of variables
in (MILP+

1 ), and the computational results show that this model is more stable when
the range of the processing time changes.

(MILP+
1 ) is superior in instances of type p2 especially when the capacity of the

machine increases. Table 3.7 shows that (FLOW) was not able to find even a single
integer solution in some cases. This behavior occurs in the worst case scenario for
(FLOW), where a high value for machine capacity is combined with the type of
instances p2. When B = 100 the (FLOW) model is generated with many nodes in
the arc-flow structures, which reflects in the computational performance. Another
difference between this new set of instances and the instances tested in the previous
section is that the range of jobs sizes varies with the number of jobs. The number
of arcs in (FLOW) increases as the number of jobs increases.

Even with the difficulties of this new set, the (FLOW) model obtained superior
results for instances of type p1, especially when the number of jobs increases. In
instances of type p1 with B up to 20, it was possible to find the optimal solution for
all instances. These tests show that both models are complementary, that is, there
are clearly situations in which each model is superior to the other.
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Table 3.6: Computational results for the new instances proposed for the 1|sj, B|Cmax

problem, with B = 20.
Instance (MILP+

1 ) (FLOW)

Jobs Capacity Type T (s) Cmax Gap #O T (s) Cmax Gap #O

Instances with p1 = [1, 20] and B = 20

10 20 p1s1 0.01 62.20 0.00 5 0.03 62.20 0.00 5
10 20 p1s2 0.01 45.40 0.00 5 0.12 45.40 0.00 5
10 20 p1s3 0.00 71.80 0.00 5 0.01 71.80 0.00 5
50 20 p1s1 0.63 316.20 0.00 5 1.23 316.20 0.00 5
50 20 p1s2 276.05 181.00 0.00 5 13.67 181.00 0.00 5
50 20 p1s3 0.01 373.80 0.00 5 0.02 373.80 0.00 5
100 20 p1s1 0.87 629.60 0.00 5 1.20 629.60 0.00 5
100 20 p1s2 1468.32 326.80 0.90 2 20.91 326.40 0.00 5
100 20 p1s3 0.05 791.00 0.00 5 0.02 791.00 0.00 5
500 20 p1s1 1145.40 2805.40 0.03 2 2.52 2805.20 0.00 5
500 20 p1s2 - 1613.60 1.80 0 39.35 1595.20 0.00 5
500 20 p1s3 2.48 3869.80 0.00 5 0.07 3869.80 0.00 5
1000 20 p1s1 1570.94 5675.20 0.04 1 3.16 5674.80 0.00 5
1000 20 p1s2 - 3193.60 1.75 0 23.58 3148.60 0.00 5
1000 20 p1s3 25.31 7693.80 0.00 5 0.09 7693.80 0.00 5
5000 20 p1s1 - 52548.60 522.43 0 1.56 28037.80 0.00 5
5000 20 p1s2 - 52520.40 100.00 0 31.32 15735.40 0.00 5
5000 20 p1s3 - 41035.60 6400.14 0 0.07 38108.60 0.00 5

Instances with p2 = [1, nJ ] and B = 20

10 20 p2s1 0.01 36.20 0.00 5 0.05 36.20 0.00 5
10 20 p2s2 0.02 24.20 0.00 5 0.07 24.20 0.00 5
10 20 p2s3 0.00 42.00 0.00 5 0.00 42.00 0.00 5
50 20 p2s1 0.14 690.20 0.00 5 2.52 690.20 0.00 5
50 20 p2s2 47.90 423.40 0.00 5 110.56 423.40 0.00 5
50 20 p2s3 0.02 1044.60 0.00 5 0.06 1044.60 0.00 5
100 20 p2s1 1.82 2849.40 0.00 5 24.15 2849.40 0.00 5
100 20 p2s2 - 1617.60 0.52 0 - 1617.60 0.64 0
100 20 p2s3 0.08 3889.40 0.00 5 0.13 3889.40 0.00 5
500 20 p2s1 504.40 69070.20 0.02 4 994.67 69071.00 0.02 3
500 20 p2s2 - 38695.00 1.50 0 - 38433.20 0.86 0
500 20 p2s3 6.18 91883.00 0.00 5 30.57 91883.00 0.00 5
1000 20 p2s1 - 272294.40 0.06 0 1423.96 272187.80 0.01 3
1000 20 p2s2 - 155075.60 2.58 0 - 153297.40 1.46 0
1000 20 p2s3 32.09 371483.00 0.00 5 65.80 371483.00 0.00 5
5000 20 p2s1 - 12503592.80 421.05 0 - 6659163.00 0.16 0
5000 20 p2s2 - 12495060.40 100.00 0 - 4175411.50 9.47 0
5000 20 p2s3 - 8993880.00 0.00 0 - 8994409.60 0.01 0
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Table 3.7: Computational results for the new instances proposed for the 1|sj, B|Cmax

problem, with B = 50.
Instance (MILP+

1 ) (FLOW)

Jobs Capacity Type T (s) Cmax Gap #O T (s) Cmax Gap #O

Instances with p1 = [1, 20] and B = 50

10 50 p1s1 0.01 65.80 0.00 5 0.13 65.80 0.00 5
10 50 p1s2 0.02 40.60 0.00 5 0.18 40.60 0.00 5
10 50 p1s3 0.00 109.20 0.00 5 0.00 109.20 0.00 5
50 50 p1s1 0.22 299.80 0.00 5 7.79 299.80 0.00 5
50 50 p1s2 72.71 169.00 0.00 5 53.15 169.00 0.00 5
50 50 p1s3 0.01 429.00 0.00 5 0.05 429.00 0.00 5
100 50 p1s1 1.01 560.40 0.00 5 11.33 560.40 0.00 5
100 50 p1s2 - 317.80 0.93 0 654.39 317.80 0.08 4
100 50 p1s3 0.05 746.60 0.00 5 0.08 746.60 0.00 5
500 50 p1s1 1465.28 2741.20 0.06 2 84.02 2740.60 0.00 5
500 50 p1s2 - 1602.40 2.77 0 1625.40 1572.80 0.25 1
500 50 p1s3 1.24 4036.60 0.00 5 0.25 4036.60 0.00 5
1000 50 p1s1 - 5519.80 26.27 0 34.75 5517.00 0.00 5
1000 50 p1s2 - 3219.60 3.80 0 1654.71 3113.60 0.21 1
1000 50 p1s3 9.58 7901.00 0.00 5 0.14 7901.00 0.00 5
5000 50 p1s1 - 52744.20 186.78 0 57.91 27336.00 0.00 5
5000 50 p1s2 - 52553.40 100.00 0 1581.85 15769.60 0.03 1
5000 50 p1s3 1766.61 38921.60 3400.02 1 0.24 38914.80 0.00 5

Instances with p2 = [1, nJ ] and B = 50

10 50 p2s1 0.00 46.80 0.00 5 0.04 46.80 0.00 5
10 50 p2s2 0.04 23.20 0.00 5 0.13 23.20 0.00 5
10 50 p2s3 0.00 48.80 0.00 5 0.00 48.80 0.00 5
50 50 p2s1 0.22 780.60 0.00 5 20.29 780.60 0.00 5
50 50 p2s2 89.05 411.40 0.00 5 740.47 411.40 0.00 5
50 50 p2s3 0.01 1010.40 0.00 5 0.09 1010.40 0.00 5
100 50 p2s1 4.58 2640.00 0.00 5 1028.85 2640.20 0.10 3
100 50 p2s2 1698.37 1636.00 0.68 1 - 1634.00 1.06 0
100 50 p2s3 0.05 4251.00 0.00 5 0.21 4251.00 0.00 5
500 50 p2s1 899.33 65347.80 0.03 3 - 65388.80 0.13 0
500 50 p2s2 - 39222.40 2.71 0 - 38819.00 1.37 0
500 50 p2s3 1.23 94798.00 0.00 5 10.94 94798.00 0.00 5
1000 50 p2s1 1555.41 262289.20 0.26 1 1711.02 261181.50 0.16 1
1000 50 p2s2 - 157692.20 4.07 0 - No solution Infinite 0
1000 50 p2s3 7.95 371115.80 0.00 5 48.52 371115.80 0.00 5
5000 50 p2s1 - 12573122.60 161.91 0 - No solution Infinite 0
5000 50 p2s2 - 12546134.00 100.00 0 - No solution Infinite 0
5000 50 p2s3 797.53 9291848.20 0.00 4 524.10 9291858.80 0.00 4
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Table 3.8: Computational results for the new instances proposed for the 1|sj, B|Cmax

problem, with B = 100.
Instance (MILP+

1 ) (FLOW)

Jobs Capacity Type T (s) Cmax Gap #O T (s) Cmax Gap #O

Instances with p1 = [1, 20] and B = 100

10 100 p1s1 0.01 77.20 0.00 5 0.06 77.20 0.00 5
10 100 p1s2 0.01 44.00 0.00 5 0.24 44.00 0.00 5
10 100 p1s3 0.00 94.80 0.00 5 0.01 94.80 0.00 5
50 100 p1s1 0.07 316.00 0.00 5 3.39 316.00 0.00 5
50 100 p1s2 9.49 180.60 0.00 5 189.28 180.60 0.00 5
50 100 p1s3 0.01 411.20 0.00 5 0.07 411.20 0.00 5
100 100 p1s1 2.05 586.80 0.00 5 82.86 586.80 0.00 5
100 100 p1s2 1372.59 329.00 0.74 2 1588.41 328.60 0.47 2
100 100 p1s3 0.05 811.20 0.00 5 0.16 811.20 0.00 5
500 100 p1s1 877.55 2715.40 0.07 3 664.78 2714.40 0.01 4
500 100 p1s2 - 1601.60 3.09 0 - 1595.20 2.26 0
500 100 p1s3 1.71 4096.20 0.00 5 1.06 4096.20 0.00 5
1000 100 p1s1 - 5591.40 0.63 0 902.17 5569.40 0.02 3
1000 100 p1s2 - 3282.00 4.51 0 - 3196.80 1.72 0
1000 100 p1s3 13.43 8094.80 0.00 5 1.46 8094.80 0.00 5
5000 100 p1s1 - 52416.60 123.69 0 883.92 26898.60 0.00 3
5000 100 p1s2 - 52518.60 100.00 0 - 15879.40 0.62 0
5000 100 p1s3 1481.01 39307.40 0.00 5 0.62 39307.40 0.00 5

Instances with p2 = [1, nJ ] and B = 100

10 100 p2s1 0.00 32.60 0.00 5 0.10 32.60 0.00 5
10 100 p2s2 0.02 21.40 0.00 5 0.18 21.40 0.00 5
10 100 p2s3 0.00 49.40 0.00 5 0.00 49.40 0.00 5
50 100 p2s1 0.16 823.60 0.00 5 281.80 823.60 0.00 5
50 100 p2s2 40.72 441.60 0.00 5 778.21 441.60 0.40 4
50 100 p2s3 0.01 1041.40 0.00 5 0.13 1041.40 0.00 5
100 100 p2s1 0.63 3092.20 0.00 5 654.44 3092.40 0.02 4
100 100 p2s2 - 1631.60 0.59 0 - 1636.40 1.59 0
100 100 p2s3 0.06 4090.20 0.00 5 0.68 4090.20 0.00 5
500 100 p2s1 1207.01 65728.00 0.02 2 - 69647.00 1.32 0
500 100 p2s2 - 39355.60 3.43 0 - 41833.00 9.15 0
500 100 p2s3 0.76 98099.00 0.00 5 6.06 98099.00 0.00 5
1000 100 p2s1 - 262033.20 0.32 0 - No solution Infinite 0
1000 100 p2s2 - 168105.40 9.53 0 - 178472.20 14.76 0
1000 100 p2s3 6.72 381506.40 0.00 5 46.58 381506.40 0.00 5
5000 100 p2s1 - 12529354.80 107.49 0 - No solution Infinite 0
5000 100 p2s2 - 12488031.00 100.00 0 - No solution Infinite 0
5000 100 p2s3 891.11 9404104.80 0.00 4 1493.59 9404178.20 0.00 1
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3.5 A Column Generation Approach

Another approaches have been tested for this problem, besides those presented,
including a column generation for this problem proposed in Rafiee Parsa et al. [30].
Also, we propose a new set of sub-problems that allows adding more than one
column to the master problem in a single interaction. Both sub-problems and the
column generation approach are presented next. We have concluded that the column
generation presented was not efficient because it presents computational times that
are not competitive with the (FLOW) model. That is, the computational times of
the generation of columns are worse than the times presented by the (FLOW) model.
Also, the column generation provides only a bound for the problem and should be
combined with some approach to finding the integer optimal solution, such as the
branch-and-price.

We review in this section the Column Generation approach proposed by Rafiee
Parsa et al. [30] for problem 1|sj, B|Cmax, and then a new sub-problem formulation
is presented. Both approaches are tested and compared with the (FLOW) model,
presented in Section 3.3.

Column Generation (CG) is a technique usually used when a problem has a large
number of decision variables. The best reduced cost of a nonbasic variable is found
through a new optimization problem, in order to avoid the explicit calculation of the
reduced cost for all nonbasic variables. From the Dantzig-Wolfe decomposition [45],
the original problem is partitioned into Master Problem (MP) and Sub-Problem
(SP).

For the MP below, each column corresponding to the binary variable xk repre-
sents a batch k ∈ 1..N , where N is the number of batches generated by SP. In a
given solution, if xk = 1 the batch is used, and xk = 0 otherwise. The constant
ajk determines whether a job j is assigned (ajk = 1) or not (ajk = 0) to the batch
generated by SP. Coefficient Pk indicates the respective processing time of batch.
The MP model can be formalized as follows:

(MP) min
∑
k∈N

Pkxk (3.27)∑
k∈N

ajkxk = 1 ∀j ∈ J (3.28)

xk ∈ {0, 1} ∀k ∈ K (3.29)

The objective function (3.27) minimizes the total time required by the machine
processing (makespan). Constraints (3.28) ensure that each job is assigned to a single
batch. Constraint (3.29) guarantees the binary domain of the decision variable.

Through the linear relaxation of the binary variable xk, a Relaxed Master Prob-
lem (RMP) is defined. The iterative process of Column Generation is described by
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the following steps:
1 - Determine an initial set of columns for the Master Problem;
2 - Solve the linear relaxation of the master problem (RMP);
3 - Solve the Sub-Problem using the dual values πj of the solution obtained by

the previous step;
4 - If the optimal solution of the previous step has negative reduced cost, insert

a new column in RMP from this solution and repeat step 2. Otherwise, the optimal
solution was found.

3.5.1 Sub-Problem from the literature

In Rafiee Parsa et al. [30] a Sub-Problem to generate a single column by iteration is
presented. Each column can contain any batch design that can improve the solution
to the master RMP problem. In this formulation, the variable yj indicates whether
the job j belongs or not to the batch. The variable Pk defines the processing time
of the batch. The SP is formally defined as follows:

(SP) min Pk −
∑
j∈J

πjyj (3.30)∑
j∈J

sjyj ≤ B ∀j ∈ J (3.31)

pjyj ≤ Pk ∀j ∈ J (3.32)

Pk ∈ {0, 1} (3.33)

yj ∈ {0, 1} ∀j ∈ J (3.34)

The objective function (3.30) minimizes the reduced cost corresponding to the
xk variable of MP. Constraints (3.31) ensure that the capacity of the machine is not
exceeded. Constraints (3.32) define the batch processing time. Constraints (3.33)
and (3.34) define the domains of the decision variables.

The first step of Column Generation is the creation of a initial solution. In Rafiee
Parsa et al. [30] an initial solution is suggested, using solutions of two heuristics
widely used in the literature: Batch first-fit (BFF) and Batch best-fit (BBF) [2]
[21]. Each heuristic is executed by sorting the instance into four different modes, as:
increasing by processing times; decreasing by processing times; decreasing by jobs
sizes; increasing by the ratio of pj/sj.

The procedure adds to model MP all the solutions found by the heuristics. Model
MP is solved only once to find an initial solution of better quality, which will be
used in the first iteration of CG.
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3.5.2 Sub-Problem proposed

In this section we propose a new set of sub-problems for Column Generation, inspired
by the symmetry breaking method presented in Section 3.2.1.

We decomposed the model SP into nK different sub-problems, where nK = nJ ,
and it is required to sort the jobs by non-decreasing processing time. Batch k ∈ K
can only have the jobs 1 . . . k, with job k mandatory, with a fixed processing time
pk. Therefore, each sub-problem is designed to generate different batches, that is, a
sub-problem k never creates a batch equal to that produced by sub-problem l, for
k 6= l.

A new set of subproblems is formulated as follows:

(SP2) min pk − πk −
∑

j∈J,j<k

πjyj (3.35)∑
j∈J,j<k

sjyj ≤ B − sk ∀j ∈ J (3.36)

yj ∈ {0, 1} ∀j ∈ J, j < k (3.37)

for ∀k ∈ K.
Set SP2 corresponds to nK different knapsack sub-problems, one for each batch

k. In this case, the solutions of nK sub-problems correspond to a single iteration
of CG. The objective function (3.35) minimizes the reduced cost that corresponds
to the new solution, where pk is a constant resulting from yk = 1. Constraints
(3.36) ensure that the new solution respects the remaining capacity of the machine.
Constraints (3.37) guarantee the binary domain of the variable yk.

Each sub-problem k generates a solution that may have a negative cost. In
this approach, not only the most cost-effective solution is included in RMP, but all
solutions that present a negative reduced cost in each iteration. In this case, SP2

includes more columns in RMP than SP, to better exploit the computational effort
and try to promote a decrease in the convergence time.

3.5.3 Dynamic Programming

To solve SP, Rafiee Parsa et al. [30] use an exact Dynamic Programming (DP)
algorithm, which has a pseudo-polynomial time complexity of O(n2B). Let G(j, d, t)

be the minimum objective value of SP for the first j ∈ J jobs, with the capacity
limitation d ∈ {0 . . . B}, and the batch processing time t ∈ T , where T is a set of
distinct processing times among all job processing times. The recursive Dynamic
Programming to solve SP is defined as follows:
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G(j, d, t) =


G
(
j − 1, d, t

)
, if d < sj,

min

(
G
(
j − 1, d, t

)
,

G
(
j − 1, d− sj,max(pj, t)

)
+ max(pj − t, 0)− πj

)
if d ≥ sj,

for ∀j ∈ J , ∀d ∈ {0 . . . B}, and ∀t ∈ T .
Some initials conditions are defined as:

G(j, 0, t) = 0, ∀d ∈ {0 . . . B},∀t ∈ T, (3.38)

G(0, d, t) = 0, ∀j ∈ J,∀t ∈ T, (3.39)

if d = B, then t = 0, ∀j ∈ J,∀t ∈ T. (3.40)

There are two cases to be considered to define the structure of G(j, d, t) for every
job: If d < sj, the job cannot be added in the solution because the machine does
not have the necessary capacity in iteration d. Otherwise, it is required to choose
the minimum solution between two situations: (1) the job is not included in the set;
(2) the job is added to the optimal subset. Conditions (3.38) and (3.39) define the
first row and column of the DP, where there are not jobs or capacity available, so
the solution is 0.

3.5.4 Dynamic Programming proposed

We propose a different conception of Dynamic Programming for SP2, using the
classic implementation of 0–1 knapsack problem from Martello and Toth [46]. The
formulation has a pseudo-polynomial time complexity of O(nB). Let G2(j, d) is the
minimum objective value of SP2 for the first j ∈ J jobs, with the capacity limitation
d ∈ {0 . . . B}. The recursive Dynamic Programming to solve SP2 is defined as
follows:

G2(j, d) =


G2

(
j − 1, d

)
, if d < sj,

min

(
G2

(
j − 1, d

)
,

G2

(
j − 1, d− sj

)
− πj

)
if d ≥ sj,

for ∀j ∈ J and ∀d ∈ {0 . . . B}.
Some initials conditions are defined as:

G2(j, 0) = 0, ∀d ∈ {0 . . . B}, (3.41)

G2(0, d) = 0, ∀j ∈ J. (3.42)

Structure G2(j, d) works with the same logical of G(j, d, t). The difference is
that in this formulation, the solution obtained by G2(j, d) is only

∑
πj of jobs that

belong to the final solution. The reduced cost must be calculated by (3.43), after
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the Dynamic Programming runs. This allows us to use all the optimal subsets
from G2(j, B), ∀j ∈ J . Through the solution reconstruction method from Dynamic
Programming, all the solutions that present negative reduced cost, RC < 0, are
added to the MP of the Column Generation procedure. It is important to make
sure that ∀j ∈ J , a new column is only added if job j belongs to the solution.

RC = G2(j, B) + pj ∀j ∈ J. (3.43)

3.5.5 Computational results

Both CG approaches presented in this chapter were compared with model (FLOW)
through computational tests performed with the same set of instances presented in
Section 3.4.1, proposed by Chen et al. [1]. In all tests, we use the CPLEX version
12.7.1.0, configured to run in only one thread to not benefit from the processor
parallelism. We used a computer with a 2.70GHz Intel Quad-Core Xeon E5-2697

v2 processor and 64GB of RAM.
The following statistics were considered in our analysis for the problem: the

computational time in seconds (T (s)), the makespan corresponding to the solution
obtained (Cmax), the gap given by: gap = (Cmax∗ - Cmax)/Cmax, and the number of
instances for which CPLEX ensures the optimal solution (#O).

Table 3.9 shows the computational results. Set SP2 of sub-problems shows an
improvement in computational times compared to SP. This difference can be justified
through the insertion of a larger number of columns in the master problem using
SP2. In all cases, the Cmax values using SP are identical to the ones found by SP2.

The results show that the column generation method spend more computational
time than FLOW, in all instances tested. Thus, the FLOW model overcomes the
Branch-and-Price method proposed in Rafiee Parsa et al. [30], because the solu-
tions obtained through the Column Generation correspond to the initial node of the
Branch-and-Price method, that need to run at least once node to find the optimal
integer solution.
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Table 3.9: Computational results for the instances available by Chen et al. [1] for
1|sj.B|Cmax using Column Generation approach.

Instance (CG with SP) (CG with SP2) (FLOW)

Jobs Type T (s) Cmax Gap T (s) Cmax Gap T (s) Cmax Gap #O

Instances with p1 = [1.10]

10 p1s1 1.65 36.49 1.02 0.75 36.49 1.02 0.01 36.86 0.00 100
10 p1s2 1.65 19.52 4.20 0.45 19.52 4.20 0.02 20.38 0.00 100
10 p1s3 1.05 43.52 0.63 0.60 43.52 0.63 0.00 43.79 0.00 100
20 p1s1 5.30 67.50 0.83 0.90 67.50 0.83 0.03 68.07 0.00 100
20 p1s2 12.23 35.83 3.49 2.70 35.83 3.49 0.06 37.13 0.00 100
20 p1s3 2.85 83.25 0.53 1.05 83.25 0.53 0.01 83.69 0.00 100
50 p1s1 39.59 162.92 0.70 3.90 162.92 0.70 0.18 164.08 0.00 100
50 p1s2 69.90 84.47 3.34 8.72 84.47 3.34 0.36 87.39 0.00 100
50 p1s3 19.52 201.14 0.44 4.69 201.14 0.44 0.01 202.03 0.00 100
100 p1s1 180.11 317.46 0.48 15.74 317.46 0.48 0.17 318.99 0.00 100
100 p1s2 236.52 166.37 2.47 40.90 166.37 2.47 0.61 170.58 0.00 100
100 p1s3 64.80 395.55 0.36 5.42 395.55 0.36 0.01 396.96 0.00 100
300 p1s1 1808.50 926.45 0.24 244.58 926.45 0.24 0.23 928.63 0.00 100
300 p1s2 1422.25 490.85 0.97 611.00 490.85 0.97 1.04 495.66 0.00 100
300 p1s3 543.01 1172.15 0.20 52.52 1172.15 0.20 0.09 1174.46 0.00 100
500 p1s1 5797.22 1541.76 0.16 1190.42 1541.76 0.16 0.17 1544.30 0.00 100
500 p1s2 3500.45 826.12 0.59 3161.47 826.12 0.59 0.97 831.04 0.00 100
500 p1s3 1523.24 1947.47 0.12 196.03 1947.47 0.12 0.02 1949.76 0.00 100

Instances with p2 = [1.20]

10 p2s1 1.50 66.72 1.33 0.30 66.72 1.33 0.02 67.62 0.00 100
10 p2s2 1.05 38.24 4.92 1.50 38.24 4.92 0.03 40.22 0.00 100
10 p2s3 0.90 80.52 0.66 0.60 80.52 0.66 0.01 81.05 0.00 100
20 p2s1 6.60 132.02 0.80 2.00 132.02 0.80 0.08 133.09 0.00 100
20 p2s2 11.82 70.50 3.27 3.20 70.50 3.27 0.13 72.88 0.00 100
20 p2s3 4.20 158.30 0.51 0.90 158.30 0.51 0.01 159.11 0.00 100
50 p2s1 76.81 312.99 0.50 4.50 312.99 0.50 0.62 314.57 0.00 100
50 p2s2 132.47 164.07 2.41 10.27 164.07 2.41 1.81 168.11 0.00 100
50 p2s3 34.39 382.90 0.32 2.55 382.90 0.32 0.02 384.13 0.00 100
100 p2s1 362.50 608.82 0.30 15.75 608.82 0.30 0.86 610.64 0.00 100
100 p2s2 555.26 319.70 1.97 35.42 319.70 1.97 4.71 326.11 0.00 100
100 p2s3 142.42 765.08 0.24 5.55 765.08 0.24 0.04 766.91 0.00 100
300 p2s1 3497.57 1790.61 0.16 186.79 1790.61 0.16 0.96 1793.52 0.00 100
300 p2s2 3915.99 952.99 1.02 424.83 952.99 1.02 6.55 962.77 0.00 100
300 p2s3 1303.26 2243.85 0.16 48.61 2243.85 0.16 0.17 2247.39 0.00 100
500 p2s1 10829.96 2960.65 0.13 803.56 2960.65 0.13 0.89 2964.57 0.00 100
500 p2s2 9463.63 1577.57 0.63 1899.40 1577.57 0.63 5.66 1587.50 0.00 100
500 p2s3 3551.90 3697.54 0.11 158.00 3697.54 0.11 0.13 3701.79 0.00 100
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Chapter 4

The Pm|sj, B|Cmax problem

Problem Pm|sj, B|Cmax is very similar to problem 1|sj, B|Cmax. The only difference is
the possibility of using more than one machine to process the batches. When defining
problem Pm|sj, B|Cmax, we consider all aspect presented for 1|sj, B|Cmax, where the
j ∈ J have non-identical processing times pj and sizes sj. This problem also assumes
that the batches must be assigned to a specific machine M := {1, . . . , nM}. All
machines are identical, and each one has its own processing time, defined by the
time of the last batch processed on the machine. The objective is again to minimize
the makespan (Cmax), now defined as the time required to finish processing the last
machine.

The Figure 4.1 shows an example of a solution of problem Pm|sj, B|Cmax with
three parallel machines. This is the same instance used in Figure 3.2, but now
considering the case of parallel machines. If a new machine M4 is made available
in this example, the solution will stay with the same makespan, defined by j1, i.e.,
the availability of new parallel machines does not always lead to the improvement
of the optimal solution. This occurs when the value of Cmax is equal to the longest
processing time max{pj}.

The decision-making for the problem Pm|sj, B|Cmax consists of two parts: design
of the batches and their scheduling in the processing machines. An approach to solve
the problem could suggest the division of this problem into two distinct phases, in
which the first one finds the optimal solution for the dimensioning of the batches
without considering the parallel machines and the second allocates these batches
in the parallel processing machines. However, this approach does not ensure the
optimal solution to problem Pm|sj, B|Cmax. Figure 4.2 shows an example in which
4.2(a) uses the, the two-phases approach described above. The Figure 4.2(b) shows
that the solution found in 4.2(a) is not optimal, since it is possible to modify the
batches and find a better solution.
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Figure 4.1: An example of solution for Pm|sj, B|Cmax with three parallel machines.
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(a) A solution for problem Pm|sj , B|Cmax obtained by the two-
phase approach, where the first one finds the optimal solution∑

Pi = 29 for the design of the batches without considering
the parallel machines. Then the optimal allocation of these
batches in the processing machines is made. This solution has
Cmax = 19.
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(b) The solution found in 4.2(a) is not optimal, since it is
possible to modify the batches and get the optimal makepan
Cmax = 17.

Figure 4.2: Example of solutions for the Pm|sj, B|Cmax problem with two-phase
approach.
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4.1 Literature formulation

Consider the following decision variables, for all j ∈ J , k ∈ K, and m ∈M :

xjkm =

{
1, if job j is assigned to batch k processed in machine m;

0, otherwise.
(4.1)

Pkm : time to process batch k in machine m. (4.2)

Cmax : the makespan. (4.3)

In Chang et al. [7] the following MILP formulation is proposed for Pm|sj, B|Cmax:

(MILP2) min Cmax, (4.4)∑
k∈K

∑
m∈M

xjkm = 1, ∀j ∈ J, (4.5)∑
j∈J

∑
m∈M

sjxjkm ≤ B, ∀k ∈ K, (4.6)

Pkm ≥ pjxjkm, ∀j ∈ J,∀k ∈ K, ∀m ∈M, (4.7)

Cmax ≥
∑
k∈K

Pkm, ∀m ∈M, (4.8)

xjkm ∈ {0, 1}, ∀j ∈ J,∀k ∈ K, ∀m ∈M. (4.9)

The objective function (4.4) minimizes the makespan. Constraints (4.5) and (4.6)
ensure that each job is assigned to a single batch and a single machine, respecting the
capacity of the machine. Constraints (4.7) determine the processing time of batch
k in machine m. Constraints (4.8) determine the makespan, which is given by the
longest sum of the processing times of all batches, among all machines. Note that
formulation (MILP2) takes into account that nK = nJ , and therefore, all batches
assigned to all machines on a given solution can be indexed by distinct indexes.

Note that constraints (4.6) take into account the fact that, although we have
batches indexed by a given k, corresponding to all machines, a job can only be
assigned to one of them, because of constraints (4.5). Therefore, a job j is only
assigned to a unique pair (k,m).

Similar to model (MILP1) for problem 1|sj, B|Cmax, (MILP2) can be considered
highly symmetrical concerning the order in which the batches are scheduled in each
one of the parallel machines. This is because the same solution can be represented
in different ways, just by changing the sequence order of the batches, as well as
the case explored in Section 3.2.1. Also, (MILP2) presents the variable xjkm with
index m that represents the allocation of batches to the processing machines. This
condition replicates all variables nM times when compared to the variables xjk of
(MILP1), which increases the number of symmetric solutions.
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4.2 Symmetry breaking approach

Considering now problem Pm|sj, B|Cmax, we note that the same symmetry men-
tioned above for problem 1|sj, B|Cmax is also present in this problem, and we can
use a similar symmetry breaking procedure to the one described above. For model-
ing problem Pm|sj, B|Cmax, we initially note that variables xjkm in (6.1) determine
the design of the batches and also assign them to a specific machine. We propose the
replacement of these variables with the binary variables xjk, which determine only
the design of the batches, as defined in (3.1), and the binary variables ykm, which
determine whether or not batch k is processed in machine m, for all j and m. This
replacement significantly reduces the number of binary variables. In (MILP2), the
number of variables xjkm is equal to (n2

J)(nM). In our proposed model, we will have
nJ(nJ + 1)/2 variables xjk, as in (MILP+

1 ), plus nJnM variables ykm. Furthermore,
using the same procedure described for 1|sj, B|Cmax to eliminate equivalent solutions
from the feasible set of the Pm|sj, B|Cmax, we next propose a new formulation for
this problem.

(MILP+
2 ) min Cmax, (4.10)∑

k∈K:k≥j

xjk = 1, ∀j ∈ J, (4.11)∑
j∈J :j≤k

sjxjk ≤ Bxkk, ∀k ∈ K, (4.12)

xjk ≤ xkk, ∀j ∈ J,∀k ∈ K, (4.13)

xkk ≤
∑
m∈M

ykm, ∀k ∈ K, (4.14)

Cm ≥
∑
k∈K

pkykm. ∀m ∈M, (4.15)

Cmax ≥ Cm ∀m ∈M, (4.16)

xjk ∈ {0, 1} ∀j ∈ J,∀k ∈ K : j ≤ k. (4.17)

The objective function (4.10) minimizes the makespan given by the latest time
to finish processing all batches in all machines. Constraints (4.11)–(4.13) are exactly
the same as (3.13)–(3.15) used in the model (MILP+

1 ). Therefore, constraints (4.11)
determine that each job j is assigned to a single batch k, such that k ≥ j. Constraints
(4.12) determine that the batches do not exceed the capacity of the machine. They
also ensure that each batch k is used if and only if job k is assigned to it. Constraints
(4.13) are redundant together with (4.12), but are included to strengthen the linear
relaxation of the model. Constraints (4.14) ensure that each used batch is assigned
to a machine. Constraints (4.15) and (4.16) determine the makespan.

This approach eliminates many of the symmetries found in the model (MILP2),
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but we are aware that we are not dealing with the symmetries in the allocation of
batches in parallel machines, i.e., the model considers all the permutations of batches
between parallel machines as different solutions. These symmetries were investigated
but until the present moment no approaches have been found that bring satisfactory
computational results.

4.3 Arc Flow approach

We apply to problem Pm|sj, B|Cmax the same arc-flow model proposed for problem
1|sj, B|Cmax in the Section 3.3. This problem is also formulated as the problem of
determining the minimum flow from node 0 to node B, for all the arc-flow structures.
However, two new sets of constraints were added to satisfy batch allocation on
parallel machines. A new variable wt,m is created to determine the number of batches
with processing time Pt that will be allocated on the machine m. Also, the objective
function has been reformulated.

Our new formulation is presented below:
fi,j,t : flow on job arc (i, j) ∈ AJ in arc-flow structure t. The variable indicates

the quantity of batches created with position i occupied by jobs with size j − i.
yi,j,t : flow on the loss arc (i, B) ∈ AL in arc-flow structure t.
vt : flow on the feedback arc in arc-flow structure t. The variable indicates the

number of batches required with processing time Pt.
zc,t : number of jobs with size c, not allocated in the batches with processing

time smaller than or equal to Pt. Theses jobs are allowed to be allocated in the
batches with processing time Pt+1.

wt,m : number of batches with processing time Pt, allocated to machine m.

(FLOW2) min Cmax (4.18) ∑
(i,j)∈AJ

fi,j,t +
∑

(i,j)∈AL

yi,j,t

−
 ∑

(j,i)∈AJ

fj,i,t +
∑

(j,i)∈AL

yj,i,t

 =


−vt if j = 0;

vt if j = B;

0 if 0 < j < B.

t ∈ T (4.19)

NTc,t −
∑

(i,j)∈AJ :
j−i=c

fi,j,t =


zc,t if t = 1;

−zc,t−1 if t = δ;

zc,t − zc,t−1 if 1 < t < δ.

c ∈ {1..B} (4.20)
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∑
m∈M

wt,m ≥ vt t ∈ T (4.21)∑
t∈T

Ptwt,m ≤ Cmax m ∈M (4.22)

fi,j,t ≤ min(NJt, NT
+
j−i,t), fi,j,t ∈ Z t ∈ T, (i, j) ∈ AJ (4.23)

vt ≤ NJt, vt ∈ Z t ∈ T (4.24)

yi,j,t ≤ NJt, yi,j,t ∈ Z t ∈ T, (i, j) ∈ AL (4.25)

zc,t ≤ NT+
c,t, zc,t ∈ Z t ∈ T : t < δ, c ∈ {1..B} (4.26)

wt,m ∈ Z t ∈ T,m ∈M (4.27)

The objective function (4.18) minimizes the makespan. The set of flow conserva-
tion constraints are defined by constraints (4.19). Constraints (4.20) ensure that all
jobs are assigned and also control the number of jobs to be assigned to each arc-flow
structure. Constraints (4.21) ensure that all batches used are assigned to a machine.
Constraints (4.22) determine the makespan as the time required to finish processing
the last batch on all machines. Constraints (4.23–4.27) define the domains of the
variables and their respective upper bounds. We emphasize that (4.21) and (4.22)
are the constraints that make it possible for the arc-flow model to handle batch
allocation on parallel machines.

4.4 Computational results

The models presented in this chapter were compared through computational tests
performed with two sets of instances. The first set was created by the authors of
the paper Chen et al. [1], which kindly sent us to use in our work. The second
set is proposed in this thesis with parameters that make the instances more diffi-
cult. In all tests, we use the CPLEX version 12.7.1.0, configured to run in only one
thread to not benefit from the processor parallelism. We used a computer with a
2.70GHz Intel Quad-Core Xeon E5-2697 v2 processor and 64GB of RAM. The
computational time to solve each instance was limited in 1800 seconds.

4.4.1 Instances from the literature

The set of test instances for problem Pm|sj, B|Cmax is the same considered in Chen
et al. [1] for the 1|sj, B|Cmax problem. For each job j, an integer processing time pj
and an integer job size sj were generated from the respective uniform distribution
depicted in Table 4.1. In total, 4200 instances were generated, 100 for each of the 42
different combinations of number and size of the jobs. We test each instance with
three different numbers of parallel machines.
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Table 4.1: Parameter settings.
Number

of jobs (nJ)
Processing
time (pJ)

Jobs size Machine
capacity (B)

Parallel
machines (nM)

10, 20, 50, 100 p1: [1, 10] s1: [1, 10] B = 10 2, 4, 8
200, 300, 500 p2: [1, 20] s2: [2, 4]

s3: [4, 8]

We present in Table 4.2–4.4 comparison results among the two models proposed
in this work and another one from the literature included in this thesis. All values
presented are the average results computed over the instances of the same configu-
ration, as described in Table 4.1.

The comparative tests clearly show that formulation (FLOW) is superior to
(MILP) and (MILP+), especially when the number of jobs increases. Model (FLOW)
did not prove the optimality of only one instance from the set of test problems. For
instances with 20 jobs or less, (MILP+) can solve some instances in less computa-
tional time than (FLOW), but the difference between times is always a fraction of
a second. Additionally, the duality gaps shown for (MILP) reveal the difficulty in
obtaining good lower bounds.

Unlike what we have with models (MILP) and (MILP+), the number of variables
in (FLOW) does not grow when the number of jobs increases. Moreover, the flow
graph does not change in this case. Only the bounds on the variables change.
The flow graphs of two distinct instances will be the same if the settings in the
parameters Processing Time, Job Size and Machine Capacity are the same. In fact,
this is a very important characteristic of the flow approach. We finally note that
the computational time to construct the graphs for the flow formulation was not
considered in these times. However, the maximum time to construct a graph for
any instance in our experiments was 0.008 second.

The results show that instances of configuration s2 require more computational
time and are more difficult compared to the other instances for all formulations.
The reason for this is the small sizes of the jobs when compared to the machine
capacity, which allows more combinations of assignment to a batch.

4.4.2 New instances proposed

For the computational experiments on problem Pm|sj, B|Cmax, we used the same set
of instances tested in the Section 3.4.2 for problem 1|sj, B|Cmax. In addition, three
new categories were included corresponding to the numbers of parallel machines: 2,
4 and 8 machines, and each instance was tested for the three different numbers of
parallel machines. The sizes, the processing times and the release times of the jobs
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Table 4.2: Computational results for Pm|sj.B|Cmax - 2 parallel machines.
Instance (MILP) (MILP+) (FLOW)

Jobs Type Cmax T (s) Gap Cmax T (s) Gap Cmax T (s) Gap

2 parallel machines

10 p1s1 18.76 0.13 0.00 18.76 0.01 0.00 18.76 0.02 0.00
10 p1s2 11.03 0.05 0.00 11.03 0.02 0.00 11.03 0.02 0.00
10 p1s3 22.13 0.19 0.00 22.13 0.01 0.00 22.13 0.00 0.00
10 p2s1 34.50 0.12 0.00 34.50 0.01 0.00 34.50 0.03 0.00
10 p2s2 21.71 0.05 0.00 21.71 0.02 0.00 21.71 0.03 0.00
10 p2s3 40.87 0.17 0.00 40.87 0.01 0.00 40.87 0.01 0.00
20 p1s1 34.27 1308.41 5.54 34.27 0.03 0.00 34.27 0.04 0.00
20 p1s2 18.83 884.08 8.16 18.83 0.11 0.00 18.83 0.04 0.00
20 p1s3 42.13 1412.74 6.27 42.13 0.02 0.00 42.13 0.01 0.00
20 p2s1 66.79 1287.70 4.35 66.79 0.03 0.00 66.79 0.09 0.00
20 p2s2 36.87 651.70 7.05 36.87 0.15 0.00 36.87 0.09 0.00
20 p2s3 79.82 1395.83 5.60 79.82 0.02 0.00 79.82 0.01 0.00
50 p1s1 83.07 - 58.36 82.30 2.48 0.00 82.30 0.08 0.00
50 p1s2 46.56 - 59.68 43.94 529.33 0.52 43.94 0.07 0.00
50 p1s3 101.74 - 60.69 101.30 0.02 0.00 101.30 0.01 0.00
50 p2s1 159.08 - 61.30 157.52 5.12 0.00 157.52 0.33 0.00
50 p2s2 88.96 - 62.44 84.32 478.37 0.19 84.32 0.55 0.00
50 p2s3 192.95 - 64.02 192.34 0.03 0.00 192.34 0.02 0.00
100 p1s1 171.60 - 87.71 159.78 192.10 0.07 159.78 0.11 0.00
100 p1s2 98.19 - 86.49 85.56 1743.59 1.73 85.56 0.10 0.00
100 p1s3 206.66 - 86.52 198.75 0.15 0.00 198.75 0.01 0.00
100 p2s1 328.38 - 89.47 305.58 84.36 0.02 305.58 0.42 0.00
100 p2s2 188.69 - 88.60 163.39 1770.79 1.21 163.31 1.58 0.00
100 p2s3 398.94 - 89.28 383.73 0.20 0.00 383.73 0.03 0.00

200 p1s1

Unperformed

314.93 332.53 0.05 314.92 0.07 0.00
200 p1s2 167.44 - 1.58 166.97 0.15 0.00
200 p1s3 393.36 79.14 0.01 393.36 0.02 0.00
200 p2s1 599.00 495.03 0.05 598.96 0.67 0.00
200 p2s2 320.16 - 1.52 318.85 3.43 0.00
200 p2s3 752.78 42.39 0.00 752.78 0.05 0.00
300 p1s1 464.59 639.71 0.08 464.54 0.10 0.00
300 p1s2 250.62 - 1.89 248.06 0.14 0.00
300 p1s3 587.49 241.24 0.02 587.49 0.02 0.00
300 p2s1 897.09 764.46 0.05 897.00 0.57 0.00
300 p2s2 487.55 - 2.09 481.61 3.25 0.00
300 p2s3 1123.96 274.67 0.02 1123.96 0.09 0.00
500 p1s1 772.54 1084.33 0.11 772.38 0.11 0.00
500 p1s2 421.92 - 1.98 415.76 0.17 0.00
500 p1s3 975.15 382.95 0.02 975.15 0.01 0.00
500 p2s1 1483.02 1365.87 0.09 1482.58 0.59 0.00
500 p2s2 806.24 - 2.10 794.00 2.78 0.00
500 p2s3 1851.16 488.38 0.01 1851.16 0.06 0.00
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Table 4.3: Computational results for Pm|sj.B|Cmax - 4 parallel machines.
Instance (MILP) (MILP+) (FLOW)

jobs type Cmax T (s) Gap Cmax T (s) Gap Cmax T (s) Gap

4 parallel machines

10 p1s1 10.87 0.16 0.00 10.87 0.02 0.00 10.87 0.02 0.00
10 p1s2 9.49 0.10 0.00 9.49 0.01 0.00 9.49 0.01 0.00
10 p1s3 12.18 0.25 0.00 12.18 0.02 0.00 12.18 0.01 0.00
10 p2s1 20.26 0.16 0.00 20.26 0.02 0.00 20.26 0.03 0.00
10 p2s2 18.68 0.11 0.00 18.68 0.01 0.00 18.68 0.02 0.00
10 p2s3 22.67 0.23 0.00 22.67 0.02 0.00 22.67 0.01 0.00
20 p1s1 17.47 1316.19 8.11 17.47 0.05 0.00 17.47 0.06 0.00
20 p1s2 10.43 56.14 0.49 10.43 0.32 0.00 10.43 0.05 0.00
20 p1s3 21.29 1629.93 11.78 21.29 0.03 0.00 21.29 0.01 0.00
20 p2s1 33.95 1122.49 5.29 33.95 0.07 0.00 33.95 0.14 0.00
20 p2s2 20.51 92.62 0.64 20.51 0.35 0.00 20.51 0.14 0.00
20 p2s3 40.21 1731.24 12.27 40.21 0.05 0.00 40.21 0.02 0.00
50 p1s1 42.69 - 70.03 41.43 2.54 0.00 41.43 0.11 0.00
50 p1s2 23.76 - 58.83 22.18 269.31 0.56 22.18 0.26 0.00
50 p1s3 51.85 - 71.91 50.90 0.05 0.00 50.90 0.01 0.00
50 p2s1 81.23 - 71.19 78.97 0.90 0.00 78.97 0.80 0.00
50 p2s2 45.55 - 57.37 42.38 283.70 0.19 42.38 1.41 0.00
50 p2s3 97.89 - 73.39 96.40 0.07 0.00 96.40 0.04 0.00
100 p1s1 93.06 - 93.44 80.09 82.33 0.05 80.09 0.18 0.00
100 p1s2 50.26 - 81.80 43.06 1409.33 1.67 43.04 0.26 0.00
100 p1s3 110.60 - 92.94 99.64 0.55 0.00 99.64 0.02 0.00
100 p2s1 177.17 - 93.54 153.03 51.98 0.02 153.03 1.83 0.00
100 p2s2 96.18 - 86.63 82.03 1679.11 1.32 81.88 3.12 0.00
100 p2s3 213.47 - 93.38 192.11 0.52 0.00 192.11 0.05 0.00

200 p1s1

Unperformed

157.71 209.19 0.06 157.70 0.16 0.00
200 p1s2 84.05 1788.54 1.69 83.67 0.53 0.00
200 p1s3 196.93 38.03 0.01 196.93 0.02 0.00
200 p2s1 299.78 396.85 0.06 299.75 21.23 0.00
200 p2s2 160.95 - 1.94 159.68 31.02 0.01
200 p2s3 376.64 59.36 0.01 376.64 0.07 0.00
300 p1s1 232.56 422.79 0.09 232.52 0.17 0.00
300 p1s2 126.22 - 2.40 124.28 0.33 0.00
300 p1s3 293.99 146.32 0.03 293.99 0.02 0.00
300 p2s1 448.84 568.62 0.06 448.79 1.19 0.00
300 p2s2 244.96 - 2.49 241.07 21.59 0.00
300 p2s3 562.24 230.89 0.02 562.24 0.11 0.00
500 p1s1 386.62 1009.64 0.15 386.47 0.17 0.00
500 p1s2 211.91 - 2.31 208.12 0.40 0.00
500 p1s3 487.84 266.44 0.03 487.84 0.02 0.00
500 p2s1 741.93 1306.98 0.12 741.56 1.91 0.00
500 p2s2 405.30 - 2.58 397.30 134.68 0.01
500 p2s3 925.84 345.92 0.02 925.84 0.07 0.00
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Table 4.4: Computational results for Pm|sj.B|Cmax - 8 parallel machines.
Instance (MILP) (MILP+) (FLOW)

jobs type Cmax T (s) Gap Cmax T (s) Gap Cmax T (s) Gap

8 parallel machines

10 p1s1 9.54 0.23 0.00 9.54 0.01 0.00 9.54 0.02 0.00
10 p1s2 9.49 0.25 0.00 9.49 0.01 0.00 9.49 0.02 0.00
10 p1s3 9.42 0.33 0.00 9.42 0.01 0.00 9.42 0.01 0.00
10 p2s1 18.55 0.21 0.00 18.55 0.01 0.00 18.55 0.02 0.00
10 p2s2 18.68 0.24 0.00 18.68 0.01 0.00 18.68 0.02 0.00
10 p2s3 18.27 0.34 0.00 18.27 0.01 0.00 18.27 0.01 0.00
20 p1s1 10.51 276.62 2.44 10.51 0.09 0.00 10.51 0.06 0.00
20 p1s2 9.81 2.76 0.00 9.81 0.07 0.00 9.81 0.03 0.00
20 p1s3 11.61 760.27 7.24 11.60 0.15 0.00 11.60 0.01 0.00
20 p2s1 20.76 328.01 3.34 20.76 0.13 0.00 20.76 0.18 0.00
20 p2s2 19.52 2.80 0.00 19.52 0.08 0.00 19.52 0.04 0.00
20 p2s3 22.31 958.29 8.28 22.30 0.26 0.00 22.30 0.04 0.00
50 p1s1 22.30 - 55.90 20.96 2.99 0.00 20.96 0.25 0.00
50 p1s2 12.83 1783.20 27.02 11.77 850.12 4.12 11.77 0.39 0.00
50 p1s3 26.78 - 62.67 25.71 0.10 0.00 25.71 0.02 0.00
50 p2s1 42.41 - 55.68 39.72 1.25 0.00 39.72 2.47 0.00
50 p2s2 24.41 1775.39 28.90 22.46 1198.77 3.91 22.45 11.60 0.00
50 p2s3 50.33 - 61.21 48.45 0.17 0.00 48.45 0.08 0.00
100 p1s1 59.57 - 96.84 40.34 51.78 0.05 40.34 0.19 0.00
100 p1s2 28.80 - 84.72 21.82 872.63 2.04 21.75 1.49 0.00
100 p1s3 69.72 - 98.03 50.07 0.22 0.00 50.07 0.03 0.00
100 p2s1 123.38 - 97.70 76.81 59.45 0.01 76.81 10.88 0.00
100 p2s2 57.82 - 94.95 41.34 1251.21 1.45 41.23 37.99 0.03
100 p2s3 139.99 - 98.19 96.34 0.81 0.00 96.34 0.11 0.00

200 p1s1

Unperformed

79.13 213.02 0.12 79.10 0.15 0.00
200 p1s2 42.41 1599.90 1.97 42.10 0.95 0.00
200 p1s3 98.74 2.72 0.00 98.74 0.02 0.00
200 p2s1 150.18 341.94 0.08 150.14 54.67 0.01
200 p2s2 81.27 1796.74 2.64 80.08 141.71 0.04
200 p2s3 188.53 21.83 0.01 188.53 0.14 0.00
300 p1s1 116.58 480.57 0.16 116.51 18.20 0.01
300 p1s2 63.40 1779.89 2.44 62.39 0.57 0.00
300 p1s3 147.25 94.40 0.03 147.25 0.02 0.00
300 p2s1 224.76 641.81 0.12 224.61 2.84 0.00
300 p2s2 123.61 - 3.20 120.78 358.94 0.13
300 p2s3 281.31 115.95 0.02 281.31 0.31 0.00
500 p1s1 193.74 1067.41 0.29 193.53 0.24 0.00
500 p1s2 106.63 1787.69 2.72 104.38 1.67 0.00
500 p1s3 244.11 134.96 0.03 244.11 0.04 0.00
500 p2s1 371.50 1136.26 0.20 371.03 2.08 0.00
500 p2s2 203.42 - 2.83 198.96 376.70 0.09
500 p2s3 463.16 189.74 0.02 463.16 0.24 0.00
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were randomly selected in the ranges shown in Table 4.5.

Table 4.5: Parameter settings for set of new instances proposed for Pm|sj, B|Cmax.
Number of Processing Jobs size Machine Parallel
jobs (nJ) time (pj) (sj) capacity (B) machines (nM)

10, 50, 100, 500, p1: [1, 20] s1: [1, B] 20, 50, 100 2, 4, 8
1000, 5000 p2: [1, nJ ] s2: [0.2B, 0.4B]

s3: [0.4B, 0.8B]

The comparative tests presented in Tables 4.6 – 4.14 maintain the patterns ob-
served in Section 3.4.2 for the problem that does not consider parallel machines.
Instances of type p2 are more difficult for (FLOW), especially when B and the num-
ber of parallel machines increases. In the most difficult instances, presented in Table
4.14, (FLOW) was not able to find a single integer solution for most of the p2 in-
stances with more than 500 jobs. Model (MILP+

2 ) presents better results for this
type of instance, even if they have a gap close to 100% in some cases.

The FLOW model is superior for most instances of type p1, even though no
integer solution is found in some extreme cases. In easier instances presented in
Table 4.14, with 2 parallel machines and B = 20, (FLOW) is able to find the
optimal solution of all instances of type p1. The tests show that increasing the
number of parallel machines makes the instances more difficult for both models, as
expected.

4.5 Considerations

Even if some symmetries have not been treated, the tests with the model (MILP+
2 )

present good computational results. The symmetries relating to exchange batches
between machines are not treated, i.e., if all batches processed in machine mj are
processed in machine mk and vice versa, we will have a symmetric solution that
is not treated in this model. We have tested some approaches to eliminate these
symmetries, especially with lexical ordering proposed by Margot [10] and adapted
to this problem, but the computational effort was not satisfactory. This is because
the instances for this problem generally consider a very small number of parallel
machines in comparison to the number of jobs.
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Table 4.6: Computational results for the new instances proposed for the
Pm|sj, B|Cmax problem, with B = 20.

Instance (MILP+
2 ) (FLOW)

Jobs Machines Capacity Type T (s) Cmax Gap #O T (s) Cmax Gap #O

Instances with p1 = [1, 20], nM = 2, and B = 20

10 2 20 p1s1 0.01 31.60 0.00 5 0.04 31.60 0.00 5
10 2 20 p1s2 0.02 25.00 0.00 5 0.07 25.00 0.00 5
10 2 20 p1s3 0.00 36.00 0.00 5 0.01 36.00 0.00 5
50 2 20 p1s1 5.87 158.40 0.00 5 1.54 158.40 0.00 5
50 2 20 p1s2 196.31 90.60 0.00 5 4.46 90.60 0.00 5
50 2 20 p1s3 0.02 187.00 0.00 5 0.03 187.00 0.00 5
100 2 20 p1s1 0.90 315.20 0.00 5 1.45 315.20 0.00 5
100 2 20 p1s2 - 163.80 1.46 0 13.71 163.40 0.00 5
100 2 20 p1s3 0.09 395.60 0.00 5 0.03 395.60 0.00 5
500 2 20 p1s1 1455.63 1404.00 0.14 1 2.20 1402.80 0.00 5
500 2 20 p1s2 - 823.40 3.75 0 53.49 797.60 0.00 5
500 2 20 p1s3 4.61 1935.20 0.00 5 0.21 1935.20 0.00 5
1000 2 20 p1s1 - 2841.60 0.24 0 2.28 2837.80 0.00 5
1000 2 20 p1s2 - 10411.80 84.93 0 23.05 1574.40 0.00 5
1000 2 20 p1s3 372.40 3847.00 0.01 4 0.09 3847.00 0.00 5
5000 2 20 p1s1 - 52548.60 100.00 0 1.61 14019.00 0.00 5
5000 2 20 p1s2 - 52520.40 100.00 0 41.34 7867.80 0.00 5
5000 2 20 p1s3 - 45738.60 50.97 0 0.14 19054.40 0.00 5

Instances with p2 = [1, nJ ], nM = 2, and B = 20

10 2 20 p2s1 0.00 18.60 0.00 5 0.06 18.60 0.00 5
10 2 20 p2s2 0.03 13.00 0.00 5 0.08 13.00 0.00 5
10 2 20 p2s3 0.01 21.40 0.00 5 0.01 21.40 0.00 5
50 2 20 p2s1 0.29 345.20 0.00 5 3.41 345.20 0.00 5
50 2 20 p2s2 356.27 212.00 0.00 5 85.10 212.00 0.00 5
50 2 20 p2s3 0.04 522.40 0.00 5 0.07 522.40 0.00 5
100 2 20 p2s1 4.20 1425.00 0.00 5 100.63 1425.00 0.00 5
100 2 20 p2s2 - 810.40 0.87 0 - 809.00 0.62 0
100 2 20 p2s3 0.17 1945.00 0.00 5 0.23 1945.00 0.00 5
500 2 20 p2s1 1558.70 34550.00 0.08 1 1299.25 34582.00 0.18 2
500 2 20 p2s2 - 20191.40 5.65 0 - 19334.80 1.48 0
500 2 20 p2s3 53.90 45941.80 0.00 5 258.84 45941.80 0.00 5
1000 2 20 p2s1 - 136245.00 0.19 0 1600.48 136243.40 0.12 1
1000 2 20 p2s2 - 502970.20 85.00 0 - 83794.33 9.20 0
1000 2 20 p2s3 110.80 185741.80 0.00 5 257.97 185741.80 0.00 5
5000 2 20 p2s1 - 12503592.80 100.00 0 - No solution Infinite 0
5000 2 20 p2s2 - 12495060.40 100.00 0 - No solution Infinite 0
5000 2 20 p2s3 - 4497072.80 0.00 0 - 4497712.20 0.02 0
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Table 4.7: Computational results for the new instances proposed for the
Pm|sj, B|Cmax problem, with B = 20.

Instance (MILP+
2 ) (FLOW)

Jobs Machines Capacity Type T (s) Cmax Gap #O T (s) Cmax Gap #O

Instances with p1 = [1, 20], nM = 4, and B = 20

10 4 20 p1s1 0.01 19.00 0.00 5 0.03 19.00 0.00 5
10 4 20 p1s2 0.01 18.60 0.00 5 0.04 18.60 0.00 5
10 4 20 p1s3 0.01 19.60 0.00 5 0.02 19.60 0.00 5
50 4 20 p1s1 6.04 79.60 0.00 5 27.46 79.60 0.00 5
50 4 20 p1s2 410.08 45.60 0.47 4 8.37 45.60 0.00 5
50 4 20 p1s3 0.08 93.80 0.00 5 0.06 93.80 0.00 5
100 4 20 p1s1 2.41 157.80 0.00 5 119.07 157.80 0.00 5
100 4 20 p1s2 1455.20 82.20 1.22 2 24.13 81.80 0.00 5
100 4 20 p1s3 0.20 198.00 0.00 5 0.10 198.00 0.00 5
500 4 20 p1s1 1464.10 702.60 0.20 1 6.63 701.60 0.00 5
500 4 20 p1s2 - 411.20 3.60 0 97.22 399.20 0.00 5
500 4 20 p1s3 6.43 967.80 0.00 5 0.26 967.80 0.00 5
1000 4 20 p1s1 - 1421.20 0.28 0 6.78 1419.40 0.00 5
1000 4 20 p1s2 - 10411.80 92.47 0 765.81 787.60 0.06 3
1000 4 20 p1s3 43.12 1923.80 0.00 5 0.15 1923.80 0.00 5
5000 4 20 p1s1 - 52548.60 100.00 0 3.25 7009.80 0.00 5
5000 4 20 p1s2 - 52520.40 100.00 0 775.28 3934.20 0.01 3
5000 4 20 p1s3 - 52524.60 81.86 0 0.17 9527.60 0.00 5

Instances with p2 = [1, nJ ], nM = 4, and B = 20

10 4 20 p2s1 0.01 10.80 0.00 5 0.04 10.80 0.00 5
10 4 20 p2s2 0.00 10.00 0.00 5 0.05 10.00 0.00 5
10 4 20 p2s3 0.01 11.40 0.00 5 0.01 11.40 0.00 5
50 4 20 p2s1 0.43 172.80 0.00 5 8.81 172.80 0.00 5
50 4 20 p2s2 510.57 106.20 0.00 5 261.78 106.20 0.00 5
50 4 20 p2s3 0.09 261.40 0.00 5 0.11 261.40 0.00 5
100 4 20 p2s1 20.20 713.00 0.00 5 510.37 713.00 0.03 4
100 4 20 p2s2 - 405.60 0.99 0 - 405.60 1.12 0
100 4 20 p2s3 0.57 972.80 0.00 5 0.41 972.80 0.00 5
500 4 20 p2s1 1709.31 17285.80 0.14 1 1658.60 17357.20 0.56 1
500 4 20 p2s2 - 10079.40 5.50 0 - 9906.60 3.82 0
500 4 20 p2s3 493.26 22971.00 0.00 4 402.28 22971.00 0.00 5
1000 4 20 p2s1 - 68180.60 0.27 0 - 69855.00 0.13 0
1000 4 20 p2s2 - 502970.20 92.50 0 - 38502.50 2.28 0
1000 4 20 p2s3 465.01 92871.20 0.00 5 885.58 92872.60 0.00 3
5000 4 20 p2s1 - 12503592.80 100.00 0 - No solution Infinite 0
5000 4 20 p2s2 - 12495060.40 100.00 0 - No solution Infinite 0
5000 4 20 p2s3 - 2248781.80 0.02 0 - 2249805.80 0.06 0
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Table 4.8: Computational results for the new instances proposed for the
Pm|sj, B|Cmax problem, with B = 20.

Instance (MILP+
2 ) (FLOW)

Jobs Machines Capacity Type T (s) Cmax Gap #O T (s) Cmax Gap #O

Instances with p1 = [1, 20], nM = 8, and B = 20

10 8 20 p1s1 0.00 17.60 0.00 5 0.05 17.60 0.00 5
10 8 20 p1s2 0.01 18.60 0.00 5 0.05 18.60 0.00 5
10 8 20 p1s3 0.00 18.60 0.00 5 0.02 18.60 0.00 5
50 8 20 p1s1 0.75 40.00 0.00 5 12.95 40.00 0.00 5
50 8 20 p1s2 371.22 23.80 0.87 4 30.08 23.80 0.00 5
50 8 20 p1s3 0.15 47.20 0.00 5 0.15 47.20 0.00 5
100 8 20 p1s1 2.23 79.20 0.00 5 170.59 79.20 0.00 5
100 8 20 p1s2 1756.47 41.60 2.38 1 499.59 41.20 0.45 4
100 8 20 p1s3 0.34 99.20 0.00 5 0.17 99.20 0.00 5
500 8 20 p1s1 1517.25 351.80 0.34 1 704.92 351.20 0.06 4
500 8 20 p1s2 - 208.00 4.70 0 1542.16 200.20 0.40 1
500 8 20 p1s3 8.40 484.40 0.00 5 0.33 484.40 0.00 5
1000 8 20 p1s1 - 711.40 0.34 0 6.66 709.80 0.00 5
1000 8 20 p1s2 - 10411.80 96.23 0 1094.20 394.20 0.15 2
1000 8 20 p1s3 125.75 962.00 0.00 5 0.26 962.00 0.00 5
5000 8 20 p1s1 - 52548.60 100.00 0 368.80 3505.40 0.01 4
5000 8 20 p1s2 - 52520.40 100.00 0 1201.02 1967.60 0.03 2
5000 8 20 p1s3 - 33457.40 54.56 0 0.32 4764.00 0.00 5

Instances with p2 = [1, nJ ], nM = 8, and B = 20

10 8 20 p2s1 0.00 9.40 0.00 5 0.02 9.40 0.00 5
10 8 20 p2s2 0.00 10.00 0.00 5 0.04 10.00 0.00 5
10 8 20 p2s3 0.00 9.20 0.00 5 0.02 9.20 0.00 5
50 8 20 p2s1 78.78 86.80 0.00 5 496.99 86.80 0.25 4
50 8 20 p2s2 768.31 56.20 0.74 4 1008.26 56.20 0.73 4
50 8 20 p2s3 0.32 131.00 0.00 5 1.06 131.00 0.00 5
100 8 20 p2s1 76.61 356.80 0.00 5 797.35 358.60 0.58 3
100 8 20 p2s2 - 208.40 3.54 0 - 206.60 2.95 0
100 8 20 p2s3 10.89 486.60 0.00 5 14.64 486.60 0.00 5
500 8 20 p2s1 - 8657.60 0.32 0 - 8675.80 0.53 0
500 8 20 p2s2 - 5063.40 5.93 0 - 4972.25 4.66 0
500 8 20 p2s3 1023.62 11487.20 0.02 3 1261.86 11494.20 0.08 2
1000 8 20 p2s1 - 34193.20 0.58 0 - No solution Infinite 0
1000 8 20 p2s2 - 502970.20 96.25 0 - 20346.50 6.47 0
1000 8 20 p2s3 1520.26 46446.80 0.03 1 1566.09 46452.40 0.04 1
5000 8 20 p2s1 - 12503592.80 100.00 0 - No solution Infinite 0
5000 8 20 p2s2 - 12495060.40 100.00 0 - No solution Infinite 0
5000 8 20 p2s3 - 1124676.40 0.04 0 - 1124219.50 0.07 0
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Table 4.9: Computational results for the new instances proposed for the
Pm|sj, B|Cmax problem, with B = 50.

Instance (MILP+
2 ) (FLOW)

Jobs Machines Capacity Type T (s) Cmax Gap #O T (s) Cmax Gap #O

Instances with p1 = [1, 20], nM = 2, and B = 50

10 2 50 p1s1 0.01 34.40 0.00 5 0.13 34.40 0.00 5
10 2 50 p1s2 0.02 22.20 0.00 5 0.11 22.20 0.00 5
10 2 50 p1s3 0.00 55.20 0.00 5 0.01 55.20 0.00 5
50 2 50 p1s1 0.27 150.20 0.00 5 9.07 150.20 0.00 5
50 2 50 p1s2 370.42 84.60 0.22 4 48.46 84.60 0.00 5
50 2 50 p1s3 0.02 214.80 0.00 5 0.07 214.80 0.00 5
100 2 50 p1s1 2.49 280.40 0.00 5 10.81 280.40 0.00 5
100 2 50 p1s2 - 159.80 1.62 0 776.96 159.20 0.27 3
100 2 50 p1s3 0.09 373.60 0.00 5 0.12 373.60 0.00 5
500 2 50 p1s1 - 1373.60 0.32 0 94.69 1370.80 0.00 5
500 2 50 p1s2 - 830.40 6.07 0 1579.70 786.20 0.22 2
500 2 50 p1s3 3.28 2018.40 0.00 5 0.23 2018.40 0.00 5
1000 2 50 p1s1 - 2767.80 0.53 0 28.09 2758.80 0.00 5
1000 2 50 p1s2 - 10332.20 85.01 0 1623.97 1560.80 0.48 1
1000 2 50 p1s3 47.25 3950.80 0.00 5 0.18 3950.80 0.00 5
5000 2 50 p1s1 - 52744.20 100.00 0 182.83 13668.20 0.00 5
5000 2 50 p1s2 - 52553.40 100.00 0 1567.58 7899.80 0.22 1
5000 2 50 p1s3 1561.67 19458.20 0.01 1 1.01 19457.80 0.00 5

Instances with p2 = [1, nJ ], nM = 2, and B = 50

10 2 50 p2s1 0.00 23.80 0.00 5 0.04 23.80 0.00 5
10 2 50 p2s2 0.02 13.00 0.00 5 0.09 13.00 0.00 5
10 2 50 p2s3 0.00 24.80 0.00 5 0.00 24.80 0.00 5
50 2 50 p2s1 0.46 390.60 0.00 5 77.14 390.60 0.00 5
50 2 50 p2s2 393.20 206.20 0.10 4 1150.07 206.40 0.76 2
50 2 50 p2s3 0.03 505.60 0.00 5 0.09 505.60 0.00 5
100 2 50 p2s1 21.79 1320.20 0.00 5 1054.65 1320.20 0.13 3
100 2 50 p2s2 - 820.20 1.22 0 - 820.80 1.58 0
100 2 50 p2s3 0.09 2125.60 0.00 5 0.28 2125.60 0.00 5
500 2 50 p2s1 1295.58 32706.80 0.14 2 - 32843.50 0.29 0
500 2 50 p2s2 - 20240.00 5.78 0 - 19788.25 3.85 0
500 2 50 p2s3 3.96 47399.40 0.00 5 29.17 47399.40 0.00 5
1000 2 50 p2s1 1700.55 131697.20 0.69 1 1716.32 132847.50 0.07 1
1000 2 50 p2s2 - 504224.40 85.04 0 - 98230.00 21.94 0
1000 2 50 p2s3 38.93 185558.20 0.00 5 448.30 185558.20 0.00 4
5000 2 50 p2s1 - 12573122.60 100.00 0 - No solution Infinite 0
5000 2 50 p2s2 - 12546134.00 100.00 0 - No solution Infinite 0
5000 2 50 p2s3 1302.20 4645926.20 0.00 3 1011.89 4646106.80 0.00 3
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Table 4.10: Computational results for the new instances proposed for the
Pm|sj, B|Cmax problem, with B = 50.

Instance (MILP+
2 ) (FLOW)

Jobs Machines Capacity Type T (s) Cmax Gap #O T (s) Cmax Gap #O

Instances with p1 = [1, 20], nM = 4, and B = 50

10 4 50 p1s1 0.00 21.20 0.00 5 0.15 21.20 0.00 5
10 4 50 p1s2 0.00 19.80 0.00 5 0.12 19.80 0.00 5
10 4 50 p1s3 0.02 29.80 0.00 5 0.02 29.80 0.00 5
50 4 50 p1s1 0.46 75.40 0.00 5 376.28 75.40 0.29 4
50 4 50 p1s2 429.56 42.60 0.44 4 1167.93 42.80 1.54 2
50 4 50 p1s3 0.06 107.60 0.00 5 0.10 107.60 0.00 5
100 4 50 p1s1 1.29 140.40 0.00 5 49.86 140.40 0.00 5
100 4 50 p1s2 - 80.20 1.76 0 1433.91 80.00 1.24 2
100 4 50 p1s3 0.19 187.00 0.00 5 0.14 187.00 0.00 5
500 4 50 p1s1 - 687.20 0.32 0 1725.22 686.20 0.12 1
500 4 50 p1s2 - 408.40 4.50 0 - 394.60 0.83 0
500 4 50 p1s3 8.76 1009.40 0.00 5 0.35 1009.40 0.00 5
1000 4 50 p1s1 - 1383.80 0.52 0 234.11 1379.60 0.00 5
1000 4 50 p1s2 - 10332.20 92.51 0 - 786.80 1.35 0
1000 4 50 p1s3 79.96 1975.80 0.00 5 0.37 1975.80 0.00 5
5000 4 50 p1s1 - 52744.20 100.00 0 1103.19 6834.80 0.01 2
5000 4 50 p1s2 - 52553.40 100.00 0 - 3978.40 0.94 0
5000 4 50 p1s3 1790.96 18218.40 16.28 1 0.88 9729.20 0.00 5

Instances with p2 = [1, nJ ], nM = 4, and B = 50

10 4 50 p2s1 0.01 13.00 0.00 5 0.06 13.00 0.00 5
10 4 50 p2s2 0.00 10.00 0.00 5 0.10 10.00 0.00 5
10 4 50 p2s3 0.01 13.00 0.00 5 0.01 13.00 0.00 5
50 4 50 p2s1 1.35 195.40 0.00 5 461.05 195.40 0.10 4
50 4 50 p2s2 431.81 103.40 0.19 4 1505.28 103.80 1.97 1
50 4 50 p2s3 0.08 253.00 0.00 5 0.17 253.00 0.00 5
100 4 50 p2s1 63.97 660.20 0.00 5 1506.97 663.20 0.71 1
100 4 50 p2s2 - 414.60 2.31 0 - 419.00 3.68 0
100 4 50 p2s3 0.24 1062.80 0.00 5 0.59 1062.80 0.00 5
500 4 50 p2s1 1524.31 16358.00 0.17 1 - 16472.00 0.59 0
500 4 50 p2s2 - 10126.60 5.84 0 - 10601.33 10.70 0
500 4 50 p2s3 11.93 23699.80 0.00 5 87.02 23699.80 0.00 5
1000 4 50 p2s1 - 66165.00 1.16 0 - No solution Infinite 0
1000 4 50 p2s2 - 504224.40 92.52 0 - No solution Infinite 0
1000 4 50 p2s3 315.94 92779.40 0.00 5 1368.75 92823.00 0.05 2
5000 4 50 p2s1 - 12573122.60 100.00 0 - No solution Infinite 0
5000 4 50 p2s2 - 12546134.00 100.00 0 - No solution Infinite 0
5000 4 50 p2s3 - 2323120.80 0.01 0 1662.90 2314720.00 0.01 1
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Table 4.11: Computational results for the new instances proposed for the
Pm|sj, B|Cmax problem, with B = 50.

Instance (MILP+
2 ) (FLOW)

Jobs Machines Capacity Type T (s) Cmax Gap #O T (s) Cmax Gap #O

Instances with p1 = [1, 20], nM = 8, and B = 50

10 8 50 p1s1 0.00 19.00 0.00 5 0.11 19.00 0.00 5
10 8 50 p1s2 0.00 19.80 0.00 5 0.10 19.80 0.00 5
10 8 50 p1s3 0.00 19.20 0.00 5 0.01 19.20 0.00 5
50 8 50 p1s1 1.39 38.00 0.00 5 419.18 38.20 0.61 4
50 8 50 p1s2 504.58 22.80 0.00 5 400.76 22.80 0.95 4
50 8 50 p1s3 0.12 54.20 0.00 5 0.17 54.20 0.00 5
100 8 50 p1s1 3.01 70.60 0.00 5 323.91 70.60 0.00 5
100 8 50 p1s2 - 40.60 2.47 0 1561.40 40.60 1.98 1
100 8 50 p1s3 0.24 93.80 0.00 5 0.28 93.80 0.00 5
500 8 50 p1s1 - 344.40 0.53 0 1194.22 343.60 0.18 2
500 8 50 p1s2 - 206.40 5.41 0 - 198.20 1.22 0
500 8 50 p1s3 9.48 505.00 0.00 5 0.58 505.00 0.00 5
1000 8 50 p1s1 - 696.20 1.17 0 1027.20 690.40 0.06 3
1000 8 50 p1s2 - 10332.20 96.25 0 - 392.40 1.06 0
1000 8 50 p1s3 140.24 988.00 0.00 5 0.66 988.00 0.00 5
5000 8 50 p1s1 - 52744.20 100.00 0 1661.61 3418.40 0.02 1
5000 8 50 p1s2 - 52553.40 100.00 0 - 1975.40 0.24 0
5000 8 50 p1s3 1736.05 23832.40 36.30 1 1.04 4865.00 0.00 5

Instances with p2 = [1, nJ ], nM = 8, and B = 50

10 8 50 p2s1 0.00 10.00 0.00 5 0.06 10.00 0.00 5
10 8 50 p2s2 0.00 10.00 0.00 5 0.09 10.00 0.00 5
10 8 50 p2s3 0.00 9.80 0.00 5 0.01 9.80 0.00 5
50 8 50 p2s1 11.43 98.00 0.00 5 1110.82 98.00 0.43 3
50 8 50 p2s2 641.64 54.40 0.39 4 1423.61 55.20 3.00 2
50 8 50 p2s3 0.41 126.60 0.00 5 0.45 126.60 0.00 5
100 8 50 p2s1 131.77 330.20 0.00 5 - 337.20 2.37 0
100 8 50 p2s2 - 210.60 3.72 0 - 216.00 6.38 0
100 8 50 p2s3 1.29 531.60 0.00 5 5.31 531.60 0.00 5
500 8 50 p2s1 - 8196.40 0.39 0 - 8258.50 0.88 0
500 8 50 p2s2 - 5085.00 6.26 0 - 5727.00 17.92 0
500 8 50 p2s3 429.71 11850.60 0.00 4 841.71 11854.00 0.03 3
1000 8 50 p2s1 - 33137.00 1.34 0 - No solution Infinite 0
1000 8 50 p2s2 - 504224.40 96.26 0 - No solution Infinite 0
1000 8 50 p2s3 1063.52 46393.60 0.01 3 - 46448.60 0.13 0
5000 8 50 p2s1 - 12573122.60 100.00 0 - No solution Infinite 0
5000 8 50 p2s2 - 12546134.00 100.00 0 - No solution Infinite 0
5000 8 50 p2s3 - 1161601.00 0.01 0 - 1157414.50 0.01 0
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Table 4.12: Computational results for the new instances proposed for the
Pm|sj, B|Cmax problem, with B = 100.

Instance (MILP+
2 ) (FLOW)

Jobs Machines Capacity Type T (s) Cmax Gap #O T (s) Cmax Gap #O

Instances with p1 = [1, 20], nM = 2, and B = 100

10 2 100 p1s1 0.01 39.00 0.00 5 0.06 39.00 0.00 5
10 2 100 p1s2 0.01 23.20 0.00 5 0.24 23.20 0.00 5
10 2 100 p1s3 0.00 47.60 0.00 5 0.01 47.60 0.00 5
50 2 100 p1s1 0.12 158.20 0.00 5 3.54 158.20 0.00 5
50 2 100 p1s2 193.32 90.60 0.00 5 52.28 90.60 0.00 5
50 2 100 p1s3 0.02 205.80 0.00 5 0.09 205.80 0.00 5
100 2 100 p1s1 16.74 293.80 0.00 5 29.84 293.80 0.00 5
100 2 100 p1s2 1587.80 165.20 1.31 1 976.67 164.60 0.63 3
100 2 100 p1s3 0.10 406.00 0.00 5 0.21 406.00 0.00 5
500 2 100 p1s1 1646.86 1360.60 0.31 1 413.61 1357.40 0.00 5
500 2 100 p1s2 - 823.60 5.72 0 - 805.60 3.25 0
500 2 100 p1s3 4.92 2048.40 0.00 5 0.93 2048.40 0.00 5
1000 2 100 p1s1 - 2806.60 1.11 0 348.53 2784.60 0.00 5
1000 2 100 p1s2 - 10531.40 85.12 0 - 1613.40 2.65 0
1000 2 100 p1s3 742.17 4047.60 0.01 3 0.73 4047.60 0.00 5
5000 2 100 p1s1 - 52416.60 100.00 0 1214.55 13449.40 0.00 4
5000 2 100 p1s2 - 52518.60 100.00 0 - 8078.67 2.30 0
5000 2 100 p1s3 1239.39 19654.40 0.00 4 0.67 19653.80 0.00 5

Instances with p2 = [1, nJ ], nM = 2, and B = 100

10 2 100 p2s1 0.01 17.00 0.00 5 0.10 17.00 0.00 5
10 2 100 p2s2 0.03 11.20 0.00 5 0.22 11.20 0.00 5
10 2 100 p2s3 0.00 25.00 0.00 5 0.00 25.00 0.00 5
50 2 100 p2s1 0.34 412.00 0.00 5 436.22 412.00 0.10 4
50 2 100 p2s2 224.77 221.00 0.00 5 1579.39 221.20 0.85 2
50 2 100 p2s3 0.04 521.00 0.00 5 0.16 521.00 0.00 5
100 2 100 p2s1 1.18 1546.40 0.00 5 669.74 1546.60 0.04 4
100 2 100 p2s2 - 817.80 1.05 0 - 843.40 4.58 0
100 2 100 p2s3 0.15 2045.40 0.00 5 0.95 2045.40 0.00 5
500 2 100 p2s1 1607.79 32894.40 0.13 1 - No solution Infinite 0
500 2 100 p2s2 - 20471.20 7.23 0 - No solution Infinite 0
500 2 100 p2s3 1.33 49049.60 0.00 5 19.92 49049.60 0.00 5
1000 2 100 p2s1 - 280458.40 30.87 0 - No solution Infinite 0
1000 2 100 p2s2 - 501531.00 84.89 0 - 127916.00 39.51 0
1000 2 100 p2s3 11.29 190753.40 0.00 5 546.25 190753.40 0.00 5
5000 2 100 p2s1 - 12529354.80 100.00 0 - No solution Infinite 0
5000 2 100 p2s2 - 12488031.00 100.00 0 - No solution Infinite 0
5000 2 100 p2s3 1191.10 4702054.40 0.00 3 - 4702357.60 0.00 0
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Table 4.13: Computational results for the new instances proposed for the
Pm|sj, B|Cmax problem, with B = 100.

Instance (MILP+
2 ) (FLOW)

Jobs Machines Capacity Type T (s) Cmax Gap #O T (s) Cmax Gap #O

Instances with p1 = [1, 20], nM = 4, and B = 100

10 4 100 p1s1 0.01 22.80 0.00 5 0.07 22.80 0.00 5
10 4 100 p1s2 0.00 18.60 0.00 5 0.17 18.60 0.00 5
10 4 100 p1s3 0.01 26.40 0.00 5 0.02 26.40 0.00 5
50 4 100 p1s1 0.19 79.20 0.00 5 14.14 79.20 0.00 5
50 4 100 p1s2 366.68 45.60 0.38 4 1453.81 45.80 2.16 1
50 4 100 p1s3 0.05 103.20 0.00 5 0.11 103.20 0.00 5
100 4 100 p1s1 9.98 147.00 0.00 5 645.74 147.20 0.13 4
100 4 100 p1s2 1688.92 83.00 1.40 1 - 82.80 1.93 0
100 4 100 p1s3 0.19 203.40 0.00 5 0.30 203.40 0.00 5
500 4 100 p1s1 1459.27 680.80 0.33 1 1349.94 682.60 0.59 2
500 4 100 p1s2 - 409.80 5.17 0 - 396.00 1.62 0
500 4 100 p1s3 2.18 1024.60 0.00 5 1.70 1024.60 0.00 5
1000 4 100 p1s1 - 1406.20 1.30 0 1691.34 1419.33 0.05 1
1000 4 100 p1s2 - 10531.40 92.56 0 - 804.75 1.65 0
1000 4 100 p1s3 466.31 2024.00 0.01 4 1.70 2024.00 0.00 5
5000 4 100 p1s1 - 52416.60 100.00 0 - No solution Infinite 0
5000 4 100 p1s2 - 52518.60 100.00 0 - 3965.20 0.52 0
5000 4 100 p1s3 1696.55 26826.40 32.51 1 2.01 9827.00 0.00 5

Instances with p2 = [1, nJ ], nM = 4, and B = 100

10 4 100 p2s1 0.02 9.60 0.00 5 0.11 9.60 0.00 5
10 4 100 p2s2 0.00 9.80 0.00 5 0.17 9.80 0.00 5
10 4 100 p2s3 0.01 13.20 0.00 5 0.01 13.20 0.00 5
50 4 100 p2s1 0.82 206.20 0.00 5 930.97 206.40 0.32 4
50 4 100 p2s2 282.99 110.60 0.00 5 - 112.20 3.10 0
50 4 100 p2s3 0.07 260.80 0.00 5 0.21 260.80 0.00 5
100 4 100 p2s1 2.90 773.40 0.00 5 1197.72 775.00 0.26 4
100 4 100 p2s2 - 412.80 2.04 0 - 425.40 5.41 0
100 4 100 p2s3 0.35 1022.80 0.00 5 1.93 1022.80 0.00 5
500 4 100 p2s1 1659.26 16471.00 0.28 1 - No solution Infinite 0
500 4 100 p2s2 - 10143.80 6.41 0 - No solution Infinite 0
500 4 100 p2s3 4.19 24525.00 0.00 5 153.57 24525.00 0.00 5
1000 4 100 p2s1 - 239423.80 36.16 0 - No solution Infinite 0
1000 4 100 p2s2 - 501531.00 92.45 0 - No solution Infinite 0
1000 4 100 p2s3 46.37 95377.00 0.00 5 1326.33 94294.00 0.01 2
5000 4 100 p2s1 - 12529354.80 100.00 0 - No solution Infinite 0
5000 4 100 p2s2 - 12488031.00 100.00 0 - No solution Infinite 0
5000 4 100 p2s3 - 2351119.80 0.00 0 - No solution Infinite 0
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Table 4.14: Computational results for the new instances proposed for the
Pm|sj, B|Cmax problem, with B = 100.

Instance (MILP+
2 ) (FLOW)

Jobs Machines Capacity Type T (s) Cmax Gap #O T (s) Cmax Gap #O

Instances with p1 = [1, 20], nM = 8, and B = 100

10 8 100 p1s1 0.00 18.40 0.00 5 0.06 18.40 0.00 5
10 8 100 p1s2 0.00 18.60 0.00 5 0.20 18.60 0.00 5
10 8 100 p1s3 0.00 19.80 0.00 5 0.01 19.80 0.00 5
50 8 100 p1s1 0.41 39.80 0.00 5 52.65 39.80 0.00 5
50 8 100 p1s2 486.87 23.80 0.71 4 1474.00 24.20 3.34 1
50 8 100 p1s3 0.10 51.80 0.00 5 0.18 51.80 0.00 5
100 8 100 p1s1 18.64 73.60 0.00 5 689.92 73.80 0.26 4
100 8 100 p1s2 1494.83 42.00 1.87 1 1590.99 42.20 2.80 1
100 8 100 p1s3 0.20 102.20 0.00 5 0.49 102.20 0.00 5
500 8 100 p1s1 1485.79 341.20 0.41 1 1478.52 344.00 0.69 2
500 8 100 p1s2 - 208.40 6.68 0 - 199.40 2.11 0
500 8 100 p1s3 5.42 512.40 0.00 5 1.96 512.40 0.00 5
1000 8 100 p1s1 - 702.20 1.20 0 1127.93 708.25 0.04 3
1000 8 100 p1s2 - 10531.40 96.28 0 - 400.60 1.96 0
1000 8 100 p1s3 85.57 1012.00 0.00 5 26.01 1012.00 0.00 5
5000 8 100 p1s1 - 52416.60 100.00 0 - No solution Infinite 0
5000 8 100 p1s2 - 52518.60 100.00 0 - 1983.60 0.54 0
5000 8 100 p1s3 1376.08 4914.40 0.01 2 1.28 4914.00 0.00 5

Instances with p2 = [1, nJ ], nM = 8, and B = 100

10 8 100 p2s1 0.01 9.00 0.00 5 0.14 9.00 0.00 5
10 8 100 p2s2 0.01 9.80 0.00 5 0.18 9.80 0.00 5
10 8 100 p2s3 0.00 9.40 0.00 5 0.01 9.40 0.00 5
50 8 100 p2s1 1.84 103.20 0.00 5 1091.00 104.20 1.44 2
50 8 100 p2s2 610.75 59.20 0.36 4 - 59.80 5.14 0
50 8 100 p2s3 0.18 130.60 0.00 5 1.25 130.60 0.00 5
100 8 100 p2s1 26.48 387.00 0.00 5 - 400.80 3.79 0
100 8 100 p2s2 - 212.80 4.88 0 - 219.60 8.23 0
100 8 100 p2s3 2.76 511.60 0.00 5 16.50 511.60 0.00 5
500 8 100 p2s1 - 8242.00 0.35 0 - No solution Infinite 0
500 8 100 p2s2 - 5104.20 6.98 0 - No solution Infinite 0
500 8 100 p2s3 39.32 12262.80 0.00 5 1131.33 32756.60 18.03 2
1000 8 100 p2s1 - 407140.20 75.02 0 - No solution Infinite 0
1000 8 100 p2s2 - 501531.00 96.22 0 - No solution Infinite 0
1000 8 100 p2s3 934.07 47689.20 0.00 4 - 47167.33 0.05 0
5000 8 100 p2s1 - 12529354.80 100.00 0 - No solution Infinite 0
5000 8 100 p2s2 - 12488031.00 100.00 0 - No solution Infinite 0
5000 8 100 p2s3 - 1175647.80 0.01 0 - No solution Infinite 0
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Chapter 5

The 1|rj, sj, B|Cmax problem

Problem 1|rj, sj, B|Cmax is also very similar to problem 1|sj, B|Cmax, the only differ-
ence is that in this problem jobs have non-identical release times. All other defini-
tions are similar to the ones presented for problem 1|sj, B|Cmax. The 1|rj, sj, B|Cmax

problem admits that each job j ∈ J has a release time rj in addition to the
processing time pj and the size sj. The jobs can only be processed after re-
leased, and consequently, each batch can only be processed when all jobs as-
signed to it have been released. The release time of batch k is then defined as
Rk := max{rj : j is assigned to k}.

An analysis of how release times variation affects the difficulty of the problem
is reported in Xu et al. [8]. If the distribution of release times is short, jobs will be
available at a similar time, and release times will have little effect on the solution,
making this problem similar to 1|sj, B|Cmax. On the other hand, if this variation
of release times is large, the jobs will be distributed at long intervals, reducing the
solution space of the problem. In extreme situations, the optimal solution may
determine that each job is assigned to a different batch.

5.1 Literature formulation

Let us consider now the following decision variables:

xjk =

{
1, if job j is assigned to batch k;

0, otherwise.
(5.1)

Pk : processing time of batch k. (5.2)

Sk : time when batch k starts to be processed, (5.3)

for all j ∈ J , k ∈ K.
In Xu et al. [8] the following MILP formulation is proposed for 1|rj, sj, B|Cmax.
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(MILP3) min SnK
+ PnK

, (5.4)∑
k∈K

xjk = 1 ∀j ∈ J (5.5)∑
j∈J

sjxjk ≤ B, ∀k ∈ K, (5.6)

Pk ≥ pjxjk ∀j ∈ J,∀k ∈ K (5.7)

Sk ≥ rjxjk, ∀j ∈ J,∀k ∈ K, (5.8)

Sk ≥ Sk−1 + Pk−1, ∀k ∈ K : k > 1, (5.9)

xjk ∈ {0, 1} ∀j ∈ J,∀k ∈ K (5.10)

The objective function (5.4) minimizes the makespan, given by the starting time
of the last batch processed added to its processing time. Constraints (5.5) determine
that each job is assigned to a single batch. Constraints (5.6) ensure that each batch
respects the capacity of the machine. Constraints (5.7) determine the processing
times of the batches. Constraints (5.8)-(5.9) determine the time when each batch
starts to be processed. The constraints (5.5), (5.7), and (5.10) are the same as the
constraints used in the model (MILP1) (3.5), (3.7), and (3.10) respectively. Note
that the binary variables yk, defined in (3.2), and previously used to strengthen the
linear relaxation of problem 1|sj, B|Cmax, are not used in this formulation.

5.2 Symmetry breaking approach

Unlike the previous case where jobs have identical release times, when the jobs have
different release times, the order in which the batches are processed in a machine
may modify the resulting makespan. The reason for this is the possible modification
on the amount of time in which the machine stays idle, when permutations on the
processing order are made.

Figure 5.1 depicts two different solutions for a problem, where a permutation on
the processing order of the batches leads to a different makespan. In the example,
batches k1 and k2 shown in Figure 5.1(a) switch places in the processing order.
The modification, shown in Figure 5.1(b), increases the idle time of the processing
machine leading to an increase on the makespan.

Nevertheless, although a modification in the processing order of the batches
leads in general, to nonequivalent solutions, symmetric solutions may still occur.
Two cases are illustrated in Figure 5.2. In Case 1, two consecutive batches k and
k′ have the same release time. Thus, switching their indexes clearly does not affect
the value of the makespan. In Case 2, batch k is released before k′, but the machine
is not idle at this time, due to the processing of the previously scheduled batch k′′.
In this configuration, switching k and k′ does not affect the value of the makespan
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(a) Solution for 1|rj , sj , B|Cmax with batch k1 processed before k2.
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(b) Solution for 1|rj , sj , B|Cmax with batch k1 processed after k2.

Figure 5.1: An example of solution for 1|rj, sj, B|Cmax.

as well.
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Figure 5.2: Cases where switching batches in the processing order does not modify
the makespan.

5.2.1 Symmetry breaking formulation

To deal with the symmetry of problem 1|rj, sj, B|Cmax, we use a similar approach to
the one proposed for problems where jobs have identical release times. However, now
the jobs must be ordered by non-decreasing release times, and not by non-decreasing
processing times as before. More specifically, we consider that the jobs are indexed
satisfying:

r1 ≤ r2 ≤ . . . ≤ rnJ
. (5.11)

As done for problems 1|sj, B|Cmax and Pm|sj, B|Cmax, the symmetry of problem
1|rj, sj, B|Cmax can be addressed by considering the variables xjk in (5.1), only for
j ≤ k, together with the constraints (3.13)-(3.15), that assure that each job j is
assigned to a single batch k, such that j ≤ k. Once more, if batch k is used, we
enforce job k to be the job with the highest index assigned to it. In this case,
however, job k determines the release time of batch k, given by rk, and not the
processing time. Thus, the solutions presented by the formulation proposed, also
present a specific ordering for the batches scheduled in the processing machine. The
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batches that are used, are processed in a non-decreasing order of their release times.
Clearly, for a given set of designed batches, no other processing order for them would
lead to a smaller makespan. Finally, for a given solution, the procedure allows only
one possible way of indexing the batches, where the index of each batch is again
given by the largest index among the jobs assigned to it.

We propose the following formulation for 1|rj, sj, B|Cmax:

(MILP+
3 ) min SnK

+ PnK
, (5.12)∑

k∈K:j≤k

xj,k = 1 ∀j ∈ J (5.13)∑
j∈J :j≤k

sjxj,k ≤ Bxk,k ∀k ∈ K (5.14)

xj,k ≤ xk,k ∀j ∈ J,∀k ∈ K : j < k (5.15)

Pk ≥ pjxjk, ∀j ∈ J,∀k ∈ K : j ≤ k, (5.16)

Sk ≥ rkxkk, ∀k ∈ K, (5.17)

Sk ≥ Sk−1 + Pk−1, ∀k ∈ K : k > 1, (5.18)

xj,k ∈ {0, 1} ∀j ∈ J,∀k ∈ K : j ≤ k (5.19)

The objective function (5.12) minimizes the makespan, given by the time required
to finish processing the last batch. Constraints (5.13) determine that each job j is
assigned to a single batch k, such that k ≥ j. Constraints (5.14) determine that
the batches do not exceed the capacity of the machine. They also ensure that
each batch k is used if and only if job k is assigned to it. Constraints (5.15) are
redundant together with (5.14), but are included to strengthen the linear relaxation
of the model. Constraints (5.16) determine the processing time of the batches.
Constraints (5.17)-(5.18) determine when each batch starts to be processed. The
constraints (5.13), (5.14), (5.15), (5.19) are the same as the constraints (3.13), (3.14),
(3.15), and (3.16) respectively, used in the model (MILP1).

The following proposition certifies that our formulation is equivalent to formu-
lation (MILP3), concerning the optimal solution value.

Proposition 2. The optimal makespan of problems (MILP3) and (MILP+
3 ) are the

same.

Proof. Let us consider w.l.o.g. that the indexes of jobs in J satisfy (5.11). Clearly,
any feasible solution of (MILP+

3 ) is also a feasible solution to (MILP3) with the
same objective function value. Therefore, it suffices to show that given an optimal
solution to (MILP3), with objective function value C̄max, there is a feasible solution
to (MILP+

3 ) also with objective function value C̄max. For that, let us first reset, if
necessary, the indexes of the batches on the given solution of (MILP3), determining
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them as the largest index among the ones of all jobs assigned to it. The solution
is now a feasible to solution to (MILP+

3 ), with the batches designed as in the given
feasible solution to (MILP3), but possibly processed in a different order. Note that as
the batches are now ordered by non-decreasing release times, the reordering cannot
increase the idle time of the machine and, thus, cannot increase the makespan.
Therefore the feasible solution to (MILP+

3 ) also has the minimum makespan Cmax,
as the objective function value.

5.3 Computational results

The set of instances considered for problem 1|rj, sj, B|Cmax was generated according
to the methodology proposed in Xu et al. [8] and Chou et al. [36]. For each job
j, a processing time pj, a release time rj, and a size sj are randomly selected as
described in Table 5.1. In total, 280 instances were generated, 20 for each of the 14
combinations of number and size of jobs.

Table 5.1: Parameter settings for set of test instances for 1|rj, sj, B|Cmax.
Number of jobs Processing time Jobs size Release time Machine capacity

(nJ) (pj) (sj) (rj) (B)

10, 20, 50, 100, p1: [8, 48] s1: [1, 15] r1: [0,C] B = 40
300, 500 s2: [15, 35]

The following steps were considered to generate the release times of the jobs:

1. For each instance, the size and processing time of each job, are randomly
selected in the intervals presented in Table 5.1.

2. A lower bound C on the optimal makespan for each instance is computed. This
bound does not consider the release times of the jobs, which have not been
defined yet. For this computation, a simple batch-first-fit heuristic, proposed
in [2], is applied generating a feasible solution for the problem with no release
times.

3. Finally, the job release times for each instance, are randomly generated in the
interval [0, C], where C is the value of the lower bound found in the previous
step.

In all tests, we use the CPLEX version 12.5, configured to run in only one thread
to not benefit from the processor parallelism. We used a computer with a 2.83 GHz
Intel Quad-Core Xeon X3360 processor, and 8GB of RAM. The computational
time to solve each instance was limited in 1800 seconds.
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Table 5.2 presents the average computational results for the 20 instances tested
with each configuration. The two first columns show the instances configuration,
now specified by the pair of parameters nJ , si, for i = 1, 2, according to Table 5.1.
The other columns show the statistics analyzed for both formulations (MILP3) and
(MILP+

3 ). The time required by CPLEX to obtain the best solution, in seconds Tb(s).

Table 5.2: Computational results for 1|rj, sj, B|Cmax.
Instance (MILP3) (MILP+

3 )

jobs type Cmax T (s) Tb(s) Gap Cmax T (s) Tb(s) Gap

10 s1 117.80 0.16 0.09 0.00 117.80 0.02 0.02 0.00
10 s2 316.95 0.57 0.20 0.00 316.95 0.01 0.00 0.00
20 s1 193.80 192.34 27.78 0.03 193.80 0.33 0.32 0.00
20 s2 560.70 270.13 7.97 0.44 560.70 0.01 0.01 0.00
50 s1 396.50 - 1674.20 40.64 389.45 456.99 129.53 0.63
50 s2 1351.80 - 1725.32 75.01 1298.55 0.06 0.06 0.00
100 s1 920.05 - 1744.30 94.50 760.45 1744.24 327.94 5.51
100 s2 3368.70 - 1640.57 94.90 2578.35 0.39 0.36 0.00
200 s1 2884.10 - 177.67 98.33 1576.75 - 1761.36 15.38
200 s2 9257.15 - 82.61 99.40 5049.35 1.19 1.17 0.00
300 s1 4355.70 - 1785.86 99.94 2526.05 - 1388.04 21.49
300 s2 13707.75 - 1754.98 99.86 7483.25 1.99 1.93 0.00
500 s1 7152.60 - - 100.00 5805.50 - 1179.36 43.76
500 s2 23320.85 - - 100.00 12589.80 3.50 3.43 0.00

Both formulations (MILP3) and (MILP+
3 ) are efficient for solving instances of

reduced size and have proved optimality for all instances with 10 jobs. However, the
remaining results show that (MILP+

3 ) overcomes (MILP3), both in computational
time and in the quality of the solutions obtained. Formulation (MILP3) cannot prove
optimality of any instance with more than 20 jobs, while (MILP+

3 ) proves optimality
for all instances with 10 and 20 jobs in no more than 0.32 seconds. Considering
instances with 50 and 100 jobs, (MILP+

3 ) continues to outperform (MILP3) in every
respect.

Table 5.2 also shows that instances of type s1 are more difficult than than in-
stances of type s2 for both formulations, which was already verified in previous
computational experiments. As before, the reduced size of the jobs generates a
larger number of combinations in the batch configuration. Formulation (MILP+

3 )
finds all optimal solutions for instances of type s2, with average computational time
less than 3.5 seconds. For instances of type s1, with more than 50 jobs, (MILP+

3 )
cannot prove optimality for all instances, but obtains much better solutions and
lower bounds than (MILP3).
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Chapter 6

The Pm|rj, sj, B|Cmax problem

Pm|rj, sj, B|Cmax is the last problem considered in this work and gathers char-
acteristics of all the problems presented previously. When defining problem
Pm|rj, sj, B|Cmax, we consider all aspects presented to 1|sj, B|Cmax, where each job
j ∈ J have non-identical processing times pj and sizes sj. This problem consid-
ers that the jobs can only be processed after released as in 1|rj, sj, B|Cmax, and
also assumes that the batches must be assigned to a specific identical-machine
M := {1, . . . , nM}, as in Pm|sj, B|Cmax. The objective is again to minimize the
makespan (Cmax), defined as the time required to finish processing the last batch in
all machines.

6.1 Literature formulation

Let us consider now the following decision variables:

xjkm =

{
1, if job j is assigned to batch k processed in machine m;

0, otherwise.
(6.1)

Skm : time when batch k starts to be processed in machine m, , (6.2)

Cmax : the makespan (6.3)

for all j ∈ J , k ∈ K, and m ∈M .
In Vélez Gallego [9] the following MILP formulation is proposed for

Pm|rj, sj, B|Cmax.
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(MILP4) min Cmax, (6.4)∑
k∈K

∑
m∈M

xj,k,m = 1 ∀j ∈ J (6.5)∑
j∈J

sjxjkm ≤ B, ∀k ∈ K, ∀m ∈M (6.6)

Skm ≥ rjxjkm, ∀j ∈ J,∀k ∈ K, ∀m ∈M, (6.7)

Skm ≥ S(k−1)m + pjxj(k−1)m, ∀j ∈ J,∀k ∈ K : k > 1, ∀m ∈M, (6.8)

Cmax ≥ SnKm + pjxjnKm, ∀m ∈M, (6.9)

xj,k,m ∈ {0, 1} ∀j ∈ J,∀k ∈ K, ∀m ∈M (6.10)

The objective function (6.4) minimizes the makespan. Constraints (6.5) and (6.6)
ensure that each job is assigned to a single batch and a single machine, respecting
the capacity of the machine. Constraints (6.7)-(6.8) determine the time when each
batch k starts to be processed in each machine m. Constraints (6.9) determine the
makespan. The constraints (6.5), and (6.10) are the same as the constraints (4.5),
and (4.9) respectively, used in the (MILP2) model.

6.2 Symmetry breaking approach

As we did for problem Pm|sj, B|Cmax, we will now replace the variable xjkm in
(MILP4) with the binary variables xjk and ykm. By doing so, we can apply to
Pm|rj, sj, B|Cmax, the same symmetry breaking strategy used for 1|rj, sj, B|Cmax.
Considering that the indexes of the jobs satisfy the relation (5.11), we propose the
following formulation for Pm|rj, sj, B|Cmax.

(MILP+
4 ) min Cmax, (6.11)∑

k∈K,j≤k

xjk = 1, ∀j ∈ J, (6.12)∑
j∈J :j≤k

sjxjk ≤ Bxk,k, ∀k ∈ K, (6.13)

xjk ≤ xkk, ∀j ∈ J,∀k ∈ K : j < k, (6.14)

xkk ≤
∑
m∈M

ykm, ∀k ∈ K, ∀m ∈M, (6.15)

Pkm ≥ pj(xjk + ykm − 1), ∀j ∈ J,∀k ∈ K : j ≤ k, ∀m ∈M, (6.16)

Skm ≥ rkykm, ∀k ∈ K, ∀m ∈M, (6.17)

Skm ≥ S(k−1)m + P(k−1)m, ∀k ∈ K : k > 1,∀m ∈M, (6.18)
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Cmax ≥ SnKm + PnKm, ∀m ∈M, (6.19)

xjk ∈ {0, 1}, ∀j ∈ J,∀k ∈ K : j ≤ k. (6.20)

The objective function (6.11) minimizes the makespan. Constraints (6.12) ensure
that all batches used are assigned to a machine. Constraints (6.16) determine the
processing time of each batch in each machine. Constraints (6.17)-(6.18) determine
when each batch starts to be processed on the machine to which it is assigned.
Constraints (6.19) determine the makespan as the time required to finish processing
the last batch on all machines. The constraints (6.12), (6.13), (6.14) and (6.20) are
the same as the constraints (3.13), (3.14), (3.15), and (3.16) respectively, used in
the model (MILP+

1 ).

6.3 Computational results

For the computational experiments on problem Pm|rj, sj, B|Cmax, we used the same
set of instances used for problem 1|rj, sj, B|Cmax. In addition, three new categories
were included corresponding to the numbers of parallel machines: 2, 4 and 8 ma-
chines, and each instance was tested for the three different numbers of parallel
machines. The sizes, the processing times and the release times of the jobs were
randomly selected in the ranges shown in Table 6.1.

Table 6.1: Parameter settings for set of test instances for 1|rj, sj, B|Cmax.
Number of Processing Jobs size Release Machine Parallel
jobs (nJ) time (pj) (sj) time (rj) cap.(B) machines (nM)

10, 20, p1: [8, 48] s1: [1, 15] r1: [0,C] B = 40 2, 4, 8
50, 100 s2: [15, 35]

s3: [4, 8]

According to Table 6.1, 8 instance configurations were generated, defined by the
combination of four different number of jobs, and two ranges for the job sizes. For
each configuration, 20 instances were generated, summing up to 160 instances. Each
instance was tested for the three numbers of parallel machine, leading to 480 tests
performed. The release times generation following the same procedure described in
the Section 5.3, for problem 1|rj, sj, B|Cmax.

In all tests, we use the CPLEX version 12.5, configured to run in only one thread
to not benefit from the processor parallelism. We used a computer with a 2.83 GHz
Intel Quad-Core Xeon X3360 processor, and 8GB of RAM. The computational
time to solve each instance was limited in 1800 seconds.

Table 6.2 show average computational results for each group of 100 instances with
each configuration. The two first columns show the configuration of the instance,
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according to Table 6.1. The other columns show the statistics analyzed for both
formulations (MILP4) and (MILP+

4 ).

Table 6.2: Computational results for Pm|rj, sj, B|Cmax - 2-8 parallel machines.
Instance (MILP4) (MILP+

4 )

jobs type Cmax T (s) Tb(s) Gap Cmax T (s) Tb(s) Gap

2 parallel machines

10 s1 106.80 0.03 0.03 0.00 106.80 0.03 0.03 0.00
10 s2 281.15 0.06 0.04 0.00 281.15 0.01 0.01 0.00
20 s1 177.05 1.28 0.48 0.00 177.05 0.13 0.11 0.00
20 s2 521.25 10.28 1.09 0.00 521.25 0.02 0.02 0.00
50 s1 362.15 706.72 47.89 0.74 362.15 2.29 2.01 0.00
50 s2 1254.05 1653.55 182.58 40.69 1253.40 0.06 0.06 0.00
100 s1 707.40 - 1659.15 94.79 691.00 53.53 28.30 0.00
100 s2 2666.95 - 1558.00 90.79 2501.45 0.18 0.18 0.00

4 parallel machines

10 s1 106.60 0.02 0.02 0.00 106.60 0.03 0.03 0.00
10 s2 278.10 0.03 0.03 0.00 278.10 0.01 0.01 0.00
20 s1 176.70 0.67 0.15 0.00 176.70 0.28 0.13 0.00
20 s2 518.35 0.89 0.23 0.00 518.35 0.03 0.03 0.00
50 s1 361.55 367.34 10.23 0.00 361.55 2.54 1.11 0.00
50 s2 1251.40 1624.65 12.46 8.23 1251.40 0.19 0.13 0.00
100 s1 690.05 - 451.21 73.25 690.05 28.76 9.31 0.00
100 s2 2498.55 1636.68 599.11 74.42 2498.55 1.32 0.66 0.00

8 parallel machines

10 s1 106.60 0.09 0.08 0.00 106.60 0.07 0.06 0.00
10 s2 278.10 0.04 0.03 0.00 278.10 0.02 0.02 0.00
20 s1 176.70 0.47 0.13 0.00 176.70 1.39 0.23 0.00
20 s2 518.35 0.99 0.13 0.00 518.35 0.04 0.04 0.00
50 s1 361.55 336.81 7.95 0.01 361.55 6.46 1.92 0.00
50 s2 1251.40 950.79 7.75 1.45 1251.40 0.47 0.25 0.00
100 s1 690.05 1653.79 108.07 30.62 690.05 45.43 12.39 0.00
100 s2 2498.55 1657.19 322.27 83.48 2498.55 4.13 1.46 0.00

The results shown in this subsection indicate that, in general, (MILP+
4 ) obtain

better solutions than (MILP4) in less computational time. (MILP+
4 ) proves opti-

mality for all instances with up to 50 jobs, while (MILP4) can only prove optimality
for all instances with up to 20 jobs. Furthermore, even for these instances, it takes
more time to run than (MILP+

4 ).
For instances with 50 jobs, the superiority of (MILP+

4 ) over (MILP4) is even
clearer. It can prove optimality for all instances in reduced times, while (MILP4)
has difficulty and does not prove optimality for the majority of the instances. The
computational times and the duality gaps for (MILP4) are big, especially when
compared to (MILP+

4 ), which solves the instances in less than 6.46 seconds on aver-
age. Following the pattern of the previous tests, instances of type s2 consume more
computational effort and are more difficult than those of type s1.
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Chapter 7

Conclusions and Future Work

In this thesis, we address four different versions of batch scheduling problems, which
have been identified in the literature as suited models for problems that appear
in reliability tests in the semiconductor industry. The economic importance of the
problems have motivated the investigation of good solution approaches for them,
and their NP-hardness have led the majority of this research to focus on heuristic
approaches. We show that applying good MILP formulations for these scheduling
problems we can go a step further in the exact resolution of applied problems,
having presented optimal solutions for test instances with sizes never considered
in the literature by exact methods. Even for instances which we could not solve
to optimality in our time limit of 1800 seconds, we were able to present much
better average results with the formulations proposed than the ones obtained with
formulations previously presented in the literature.

The enhancement in the models was mainly based on the idea of eliminating
symmetric solutions from the feasible sets of the problems. The development of
symmetry breaking cuts is widely pursued in the MILP literature and some general
approaches can certainly be applied to scheduling problems. Nevertheless, using
some well-known properties of the optimal solutions of the problems addressed,
we propose a specific indexing of the jobs to be processed, for each version of the
problem. The indexing not only allows the reduction of the feasible sets by elim-
inating symmetric solutions but also significantly reduces the number of variables
and constraints in the models, when compared to the ones in the literature, leading
to simplified and stronger formulations. Finally, the referred properties of optimal
solutions are the backbone to the proof of correctness of the models presented in
this paper.

We also propose arc-flow formulations to problems that do not consider release
times. In the new models, the number of variables does not change when the number
of jobs increases, which enabled us to find the optimum solution of instances with
100 million jobs in 3.25 seconds. These results define a new threshold for the size
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of the instances, because the maximum number of jobs previously treated by the
works in the literature was 500, using heuristic approaches in instances with the
same parameters.

As future research, we would like to investigate if the good performance of the
models presented can be replicated when symmetry breaking constraints and the
arc-flow approach are applied to other problems in the vast area of scheduling appli-
cations as, for example, the problem of scheduling a batch processing machine with
incompatible job families.
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