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Abstract: This work solves a real-world multi-depot vehicle routing problem 
(MDVRP) with a homogeneous fleet and capacitated depots. A pipeline 
company wants to establish a vehicle policy in order to own part of its fleet and 
serve its customers for a period of one year. The company also wants to know 
the schedule of the visits for collecting ethanol from 261 producers and taking 
it to their three terminals located in Brazil. This problem presents uncertain 
demand, since weather conditions impact the final crop and uncertain depot 
capacity. Due to the vagueness of managers’ speech, this problem also presents 
uncertain travel time. In this paper, fuzzy logic is used to model uncertainty and 
vagueness and to split the initial instance into smaller ones. Besides solving a 
real-world problem with fuzzy demand, fuzzy depot capacity and fuzzy travel 
time, this paper contributes with a decision making tool that reports different 
solutions for different uncertainty levels. 
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1 Introduction 

The vehicle routing problem (VRP) has been studied for more than fifty years and it still 
presents many challenges especially regarding logistic systems (Laporte, 2009). It was 
first introduced by Dantzig and Ramser (1959) as a generalisation of the travelling 
salesman problem (TSP) presented by Flood (1956). The VRP consists of designing a 
number of vehicle routes so that each route starts and ends at the depot, the total demand 
of a route does not exceed a limit Q, and each customer is visited exactly once by a single 
vehicle (Juan et al., 2010). 

Due to its combinatorial nature, VRP solutions are continuously studied because the 
personal computers that companies have access to still cannot viably solve exactly 
complex problems with more than 50 customers (Laporte et al., 2014). Heuristics have 
been proposed to solve VRP, such as route-first cluster-second (Willemse and Joubert, 
2016; Todosijević et al., 2017), cluster-first route-second (Küçükdeniz et al., 2012; 
Ewbank et al., 2016), nature inspired algorithms (Prins, 2009; Mavrovouniotis and Yang, 
2015; Teymourian et al., 2016) among others. Usually one of them overcomes the others 
for specific characteristics of the instances. 

Real-world problems present several challenges and usually authors try different 
approaches to solve them (Liao, 2005). Some application examples are agriculture 
planning (Cohen and Shoshany, 2002; Edrees et al., 2003; Thomson and Willoughby, 
2004), assembly task planning (Zha and Lim, 2000), transport terminal design 
(Abacoumkin and Ballis, 2004), and medical diagnosis (Kai and Hui-ping, 2009; 
Karabatak and Ince, 2009). 
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This paper presents a real-world problem with its several particularities and 
complexities. An ethanol pipeline company serves a wide area where it must collect 
ethanol and bring it to its terminals, which are inputs to their pipeline. The problem 
presented had to be solved in two parts. The first one is a multi-depot vehicle routing 
problem (MDVRP) with a homogeneous fleet and capacitated depots. The second one is 
that the company wanted to know how many vehicles it should have in order to attend all 
customers. The paper presents a final solution with which routes should be covered first 
for vehicles with multi routes. The approach chosen was to cluster-first route-second in 
order to simplify the model without giving up complexities such as demand uncertainties, 
uncertain depot capacity, and uncertain travel time. 

This paper is organised as follows: Section 2 presents a contextual setting of the 
ethanol industry in Brazil. In Section 3, we present a literature review while in Section 4 
the methodology is detailed. Section 5 presents the results of the algorithm which in turn 
are analysed in Section 6. Conclusions follow in Section 7. 

2 Contextual setting 

Investments in ethanol producers in Brazil were initiated in the early eighties when oil 
reserves were becoming scarce around the world (Brownstein, 1976). In the early 2000s, 
the Brazilian Government encouraged producers to develop alternative fuels to gasoline 
such as biogas and ethanol. Those incentives remained until recently when pre-salt oil 
reservoirs were found under several Brazilian offshore sites. Brazil is currently the 
second largest producer of ethanol in the world (Industry Statistics: 2015 World Fuel 
Ethanol Production, 2015), the ninth largest economy in 2015 (The World Bank, 2017) 
and the fifth largest country in world in area. Almost 90% of the Brazilian car fleet are 
hybrid, which means that vehicles can be fuelled with ethanol and or gasoline in any 
proportion. This represents more than 38 million cars (DENATRAN, 2017). Ethanol 
represented 33% of the overall fuel consumption of light vehicles (cars and small utility 
vehicles) in 2013 (Nascimento and Petraglia, 2016). 

The north and northeast regions’ producers distribute their ethanol output locally. The 
midwest, southeast, and south regions together account for 3.1 million square kilometres, 
which is equivalent to the eighth largest country in the world (The World Factbook, 
2015; IBGE: Official Territorial Area, 2017). A single pipeline serves said area. 

The midwest, southeast, and south regions have261 ethanol producers that send fuel 
to the pipeline mainly by truck. Figure 1 shows a schematic of the current pipeline, which 
is still under construction. Out of the many sections depicted in Figure 1, only the  
dark-painted ones are already built. Several companies run different sections of the 
pipeline. In this paper, we focus on three terminals operated by a single company: 
Uberaba, Ribeirão Preto, and Paulínia; these are currently the only inputs of ethanol to 
the pipeline system. 

The terminals also act as depots since the company receives ethanol from local 
producers. Ethanol production is influenced by sugar cane’s seasonality since the latter is 
ethanol’s main raw material. The most efficient production season is from May to 
November (dry season). 

The pipeline company would like to know which producers would be best served by 
which terminal and how. This problem comprises several sub-problems such as closed 
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VRP with homogeneous fleet and multi-depots with known location and uncertain 
demand (ethanol produced). In addition, each one of the three terminals had a different 
and uncertain capacity constraint because their storage tanks can undergo maintenance 
during periods of time. Another challenge was to determine which truck should run 
which routes. Finally, for each truck with multiple routes, the sequence to serve the 
routes should be determined, by solving a fuzzy scheduling problem based on subjective 
criteria. 

This paper contributes to knowledge by solving a real-world problem with several 
approaches that consider uncertainty indifferent levels. The solution is not a ‘single 
number’, but a range of solutions for different levels of uncertainty by using Zadeh’s 
extension principle. 

Figure 1 Brazilian pipeline and the company’s three terminals: Uberaba, Ribeirão Preto, and 
Paulínia 

 

3 Literature review 

Studies on MDVRP began in the early seventies (Tillman and Cain, 1972; Wren and 
Holliday, 1972) as a problem where customers must be served by more than one depot 
and not necessarily by the closest one. Vehicles must leave and return to the same depot 
and customers must be visited a single time by only one vehicle (Seidgar et al., 2016). 
This problem has been widely studied with a heterogeneous fleet (Salhi and Sari, 1997; 
Dondo and Cerdá, 2007; Salhi et al., 2014), but due to the nature of trucks used in the 
ethanol industry, this study considered a homogeneous fleet (Crevier et al., 2007; 
Pisinger and Ropke, 2007). Often MDVRP deals with the decision of where to locate 
depots, also known as the location-routing problem. In the present case, the locations of 
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the terminals were already determined. Readers may refer to Drexl and Schneider (2013) 
for a broad literature review of the location-routing problem. 

A variation of MDVRP is to consider time windows (Polacek et al., 2004), backhaul 
customers (Javad and Karimi, 2017) or uncertain demand (Solano-Charris et al., 2016). 
Samanta and Jha (2011) considered stochastic demand in MDVRP with a time window, 
solved by using a genetic algorithm. Hong and Xu (2008) used fuzzy logic to model 
MDVRP with a time window and fuzzy travel time. Juan et al. (2012) analysed MDVRP 
combining methods, including meta-heuristics, but considering unlimited depot capacity. 
Contardo and Martinelli (2014) considered MDVRP with capacitated depots and a 
homogeneous fleet. Rajmohan and Shahabudeen (2009) studied MDVRP with time 
windows by applying a two-phase solution. Initially they assigned customers to depots by 
using partitioning around medoids (PAM) and then solved each remaining VRP using ant 
colony optimisation. Seidgar et al. (2016) combined a hybrid solution of genetic and 
simulated algorithms with an imperialist competitive algorithm to solve the MDVRP. 

Our ethanol real-world problem can be modelled as a MDVRP even though ethanol 
had to be collected from producers. Because this is a real-world situation, it presents 
simultaneously uncertain demand, uncertain travel time, and depots with uncertain 
capacity. In our literature review, we did not find reports of any similar problem with the 
same constraints and uncertainties. 

Several authors modelled uncertainty into VRP using different techniques (Gounaris, 
2013; Zhang et al., 2013; Cao et al., 2014; Jaillet et al., 2016), but few of them used fuzzy 
logic to model uncertainty on some constraints (Zheng and Liu, 2006; El-Sherbeny, 2011; 
Kuo et al., 2012). MDVRP has been widely studied in recent years, but studies modelling 
uncertain constraints remain scarce, especially using fuzzy logic (Montoya-Torres et al., 
2015). Asl et al. (2012) used fuzzy logic to model a time window in order to minimise 
servicing time and distance travelled and to maximise service levels of a multi-objective 
MDVRP. Recently, Lau et al. (2009) used fuzzy adapted genetic algorithm to solve 
MDVRP, but with hard constraints. 

A way to model uncertainty in any problem is applying the extension principle 
proposed by Zadeh (1978). Such principle allows for modelling uncertainty with fuzzy 
logic, by splitting input variables in different levels of uncertainty using alpha-cuts 
(Yager, 1986). The extension principle allows that the same modelling can be applied to 
over perform different approaches and combine results. This became very useful for our 
problem since it allowed us to analyse different levels of uncertainty while solving 
MDVRP and the job scheduling problem (JSP); this deals with the order of routes to be 
served by the vehicles assigned with multiple routes. 

A JSP is an NP-hard problem and it is among the most difficult problems to solve 
(Jones et al., 1999; Behnamian et al., 2010). Nouri et al. (2016) performed literature 
review mainly focusing on job scheduling with transportation resources. Many authors 
used fuzzy logic to solve JSP (Behnamian, 2016). The problem presented in this paper 
refers to several JSP s with a single machine (the vehicle). We approached JSP using a 
fuzzy inference system (FIS). 

FIS is a decision making tool that allows to incorporate the judgement of experts into 
the model (Crockett et al., 2006; Öztürk, 2009). It accepts vague inputs that are subjected 
to a set of rules based on a previously defined expert’s decision process and presents a 
single final result. Fahmy (2010) used FIS for scheduling a processor’s tasks while Paul 
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and Azeem (2010) applied FIS to minimise work-in-process inventory. Readers can find 
more details about FIS mathematical procedure in Takagi and Sugeno (1985). 

Specifically about FIS applied to JSP, Caprihan et al. (1997) used Mamdani’s method 
to analyse confidence levels and later Sun (1998) suggested a fuzzy ranking method to 
solve JSP using an original defuzzifier method. Lee et al. (2002) used fuzzy logic to 
model linguistic variables and solve fuzzy JSP. 

4 Methodology 

Due to a large number of customers and their distance to terminals, we initially classified 
ethanol producers according to the trip length and hence duration to serve each one based 
on an average speed of 40 km/h. Figure 2 presents the distribution of the distances from 
each producer to the closest terminal. 

Figure 2 Distance from ethanol producers to closest terminal (see online version for colours) 

 

Ethanol producers were classified into three groups: those that should receive daily visits, 
those receiving visits every two days, and finally those that should receive visits every 
three days. The same procedure presented in Figure 3 was applied for each group. We 
considered uncertain demand and depot (terminal) capacity by applying triangular fuzzy 
numbers (TFN) and allocated customers to depots. Then a capacitated vehicle routing 
problem (CVRP) was solved for each depot K determining the number of routes needed. 
A multiple knapsack 0–1 problem determined the number of vehicles that would serve 
which route and their assignment. Finally, the total number of vehicles was consolidated 
under Zadeh’s extension principle and a job scheduling was solved for each vehicle with 
multiple routes. 
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Figure 3 Schematic of methodology applied to solve real-world problem (see online version  
for colours) 

 

4.1 Customers’ classification 

The classification considered two criteria: visit frequency and travel time in days. Travel 
time is how long a single visit to the producer would last when returning to the closest 
terminal while visit frequency represents how many visits a single producer could receive 
per day considering distance to the closest terminal and the average speed. Three groups 
arose from this classification, and they are represented in Figure 4: daily visits, visits 
every two days, and visits every three days. 

Figure 4 Classification of customers by frequency of visits 
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4.2 Triangular fuzzy numbers 

Yu and Jin (2011) modelled uncertain demand with fuzzy logic using TFN to describe 
demand possibilities. 

Let a TFN ‘a’ be represented by (a, –, a, a + ) where  and  correspond, 

respectively, to the spread to the left and to the right from a. If M  is a TFN expressed as 

, , ,M a    its membership function is given by: 

0
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1( )

   1

0
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for x d

d x
for m x d

for x dμ x

d x
for m x d

for x d

 
     

  
 

   

  













 (1) 

The membership function is 1 when x is equal to the mean value m. In this paper, we 
assume that  =  = 0.20 d, which means that the TFN is symmetric around its mean and 
has a margin of error of 20%. 

Different values of the membership function will provide two other demand values: 
lower and upper demand. Those different membership values are the alpha-cuts and each 
one presented different ranges of demand. Figure 5 shows how an alpha-cut presents 
lower and upper demands. For mapping uncertainty, the authors considered seven 
different values of alpha-cut, cut  {0, 0.2, 0.4, 0.6, 0.8, 1.0}. 

Figure 5 Triangular fuzzy number 

 

4.3 Fuzzy allocation with TFN 

Fuzzy allocation was solved with fuzzy mathematical programming to minimise the total 
distance from producer to the terminal; equation (2) presents the mathematical 
formulation. The problem considered fuzzy producer’s demand and fuzzy depot capacity 
and also, that each producer should be assigned to only one depot, respectively. 
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where n is the number of producers, m is the number of depots, Dik is the distance from 

producer i to depot k, ikK  is the demand from producer i, kP  is the capacity of depot k, 
and Xik are decision variables stating if a producer i is assigned to a depot k (1) or not (0). 

Substituting , , and , ,i ij ij ij k ij ij ijK s l r P t u v    and expanding fuzzy constraint 

into three inequalities, equation (2) evolves to equation (3): 
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4.4 CVRP (fuzzy clustering + TSP) 

The resulting instance from the fuzzy allocation consists of a CVRP. For each visit group 
and each depot, it is necessary to determine the routes that minimise the total distance 
travelled. The nature of the problem studied considered a homogeneous fleet of truck 
with capacity of 45 m3. 

Wolsey (1998) presented a mathematical formulation using subtour elimination 
constraints for the following CVRP: 
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where dij is the distance between customers i and j, qi is the customer’s demand, b is the 
constant for homogeneous fleet capacity, S is a subset of customers, and xij are the 
decision variables. 

Equation (4) is the objective function that minimises the distance between nodes i and 
j, (5) and (6) are flow constraints, and (7) is the subtour elimination constraint. It enforces 
only one cycle with all n nodes. Equation (8) defines that the entire demand of a cycle 
that cannot exceed the truck’s capacity. 

As VRP is NP-hard (Karp, 1972), its solution computing time increases exponentially 
as the number of customers increase. To solve this problem while also considering 
uncertain demand, Ewbank et al. (2016) proposed to split the initial instance into smaller 
ones and solving them using an unsupervised fuzzy clustering approach. The fuzzy  
m-parameter adopted was equal to 2.02 as suggested by Ewbank et al. (2016). 

4.5 Fuzzy multiple knapsack 0–1 problem 

The fuzzy multiple knapsack problem is a development of the multiple knapsack problem 
considering fuzzy variables. In this case, the authors considered uncertainty average 
speed and uncertainty demand, fuzzifying those variables. The available time to perform 
the routes (limit time) can vary depending on day-by-day circumstances. To consider this 
uncertainty, the time limit was represented as a fuzzy number. Equation (9) presents the 
fuzzy mathematical formulation: 
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where p is the number of routes to be minimised, jD  is the distance travelled of route r, 

H  is the time limit for using each vehicle, Yv are binary decision variables stating if a 
vehicle v exists (1) or not (0), and Xvr are binary decision variables stating if a route r is 
assigned to a vehicle v (1) or not (0). 
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The development and solution of this linear programming problem is similar to the 
fuzzy allocation problem presented in Subsection 4.3. 

4.6 Zadeh’s extension principle 

Zadeh’s principle of extension is one of the most important tools in fuzzy set theory that 
allows transforming crisp mathematical concepts into fuzzy variables. It allows slicing 
the analysis into different levels of uncertainty. The description of Zadeh’s extension 
principle (Niroomand et al., 2016) follows. 

Let X be a Cartesian product of some universes X = X1 × … × Xn and 1, ..., nA A   be n 

fuzzy sets in X1, …, Xn, respectively. f is a mapping function from X to a universe Y such 

that y = f(x1, …, xn). Then the extension principle allows us to define a fuzzy set B  in Y 
by 

      1 1, ( ) , ..., , , ...,n nBB y μ y y f x x x x X     
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where sup is a set of elements in  that result in positive value of the minimisation of 

memberships and f–1 is the inverse form of f. 

4.7 Fuzzy scheduling 

Scheduling is allocating limited existing resources for tasks with specific performance 
measures and targets (Behnamian, 2016). Fuzzy set theory provides better results in 
environments where the decision maker’s judgement and experience may be used to 
improve models and where the information required to formulate those models are 
imprecise and vague (Schründer et al., 1994; Guiffrida and Nagi, 1998). 

The fuzzy input variables used were the processing time of each route (procTime) and 
the distance from depot to the centroid of each route. The fuzzy output variable was 
‘priority’, ranging from 1 to 10. The bending points where first and third quartile for each 
fuzzy variable. The t-norm and t-conorm methods used were ‘minimum’ and ‘maximum’, 
respectively. The defuzzifier method was the centroid method. For instance, Figure 6 
presents fuzzy variables for visits that occur every two days, terminal Paulínia, lower 
demand, and alpha-cut 0.8. It also presents a three-dimensional surface summarising the 
FIS model. The same analysis can be done for any combination of those parameters. 

Experts defined rules for this decision model, prioritising shortest processing time. 
They are listed below: 

 IF procTime short AND distance short THEN priority high. 

 IF procTime short AND distance long THEN priority low. 

 IF procTime long AND distance short THEN priority low. 
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 IF procTime long AND distance long THEN priority low. 

Figure 6 Fuzzy input and output variables and surface graphic about FIS model 

 

Table 1 Ethanol producers split by depot (terminal) and frequency of visit 

Frequency of visit Uberaba (TTUBE) Ribeirão Preto (TTRB) Paulínia (REPLAN) 

Every day 34-37-41-46-58-61-73-80-
81-82-90-92-93-99-104-

105-106-112-117-118-124-
154-168-169-171-180-205-
215-218-249-253-254-259 

2-8-9-11-12-15-17-22-
29-32-49-50-65-85-88-
89-103-107-113-115-
116-134-155-156-162-
167-173-174-175-178-
185-186-191-192-193-
197-198-202-203-216-
217-224-233-235-236-
237-238-239-241-252-

256 

13-14-18-19-21-30-
33-44-51-54-62-94-
95-96-109-126-127-
136-160-170-182-
183-184-206-208-
214-223-226-248 

Every two days 6-7-10-20-28-36-42-43-45-
52-53-60-63-67-70-74-75-
76-77-78-79-83-98-110-

114-119-129-130-143-144-
145-153-172-177-189-194-
195-199-204-209-211-213-
219-229-232-234-240-242-

250-251-260 

1-3-4-5-16-25-26-27-
31-35-47-48-55-56-57-
64-66-69-71-72-84-86-
91-108-120-121-122-
123-132-133-137-138-
139-140-141-142-146-
147-149-150-151-152-
157-158-159-161-163-
164-166-176-179-181-
187-188-190-200-201-
207-210-212-220-221-
222-230-231-243-244-
245-246-247-255-257-

258-261 

23-39-40-68-87-97-
100-101-102-111-
128-131-135-227-

228 

Every three days 24-38-59-125-148-165-225 NA 196 
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5 Results 

All data used in this paper refer to 261 ethanol producers during the period of 2012/2013. 
Figure 7 presents how producers were classified considering frequency of visit and 
terminals. Table 1 identifies those producers. 

Figure 7 Producers attended by each terminal for different visit periods: visits every day, every 
two days, and every three days 

 

Each combination of parameters visit frequency, depot k, level of demand 
(minimal/lower or maximal/upper), and alpha-cut resulted in a CVRP. Each CVRP was 
then solved by using a two-step algorithm, splitting a larger instance into smaller ones 
and then rapidly solving them. FIS solved the JSP, attending different routes with the 
same vehicle. Its solution presented different results about the amount and composition of 
routes. This happened due to the variation of demand, representing its uncertainty. Due to 
space restriction, from now on we exemplify results for visits every two days, Paulínia 
terminal (k = 3), lower demand (minimal demand scenario), and alpha-cut 0.8 presented 
in Table 2. 
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Table 2 Aggregated routes for visits every two days, Paulínia terminal; lower demand, and 
alpha-cut 0.8 

Vehicle # Routes 

1 120-58-121 

2 71-65 

55 

35 

3 68 

4 54-51-49-10 

5 18-19-53 

6 Discussion 

Classification of producers by attending distance was a step that turned an initially 
infeasible problem into a feasible one. The assignment of each customer to each terminal 
considered uncertain customer demand and uncertain terminal capacity, because of 
capacity fluctuations along the year. Results presented non-overlapped clusters with an 
elongated form, not necessarily an ellipse. 

Results presented in Figure 8 show that scenarios with lower demand requested a 
higher number of vehicles than scenarios with higher demand after merging routes. 
Therefore, routes containing customers with large demands can be more easily merged 
into single vehicles than routes containing customers with lower demands. One reason for 
that could be that less than truckload (LTL) shipping takes more time to attend a larger 
number of customers. Although we might think that it is easier to group smaller demands, 
it also takes more time to attend said customers. 

When analysing the frequency of visits, scenarios of visits every three days presented 
very different results when compared with other frequencies. This could be explained by 
the number of customers in each scenario. Terminals that would be visited every three 
days had only seven, none, and one customers respectively and large distances between 
them. Scenarios with daily visits and visits every two days presented more ‘expected’ 
results in terms of the shape of the figures. The latter presented a smaller number of 
vehicles as uncertainty decreases. 

The nature of those instances provided longer time routes for high levels of 
uncertainty, which did not allow few vehicles as what happened with lower levels of 
uncertainty. Meanwhile, daily visit scenarios presented a higher discrepancy of results for 
intermediary levels of uncertainty. This could be explained by the increasing number of 
routes with a high level of vehicle usage for high and low levels of uncertainty. Those 
routes can be easily merged into a smaller number of vehicles. 

Figure 8 is an important tool for decision makers since it allows for the determination 
of the size of a fleet, depending on a level of uncertainty. In other words, managers do not 
need to simulate different economic or political scenarios. Based on their experience, 
they simply have to estimate the level of uncertainty to get information about fleet size. 
In addition, they may quickly visualise different levels of uncertainty, allowing them to 
take strategic decisions based on how fast a scenario might change. 
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Figure 8 Quantity of vehicles per alpha-cut values 

 

Note: The lines correspond to visit frequency (visits every one, two, or three days) and 
the columns correspond to each terminal. 

A manager may decide the level of uncertainty to use based on the quality of the 
available information and on the experience of his contributors. With uncertainty in mind, 
managers can develop fleet policies such as how many vehicles a company must own and 
how many to contract. The idea of frequency of visits also contributes to the discussion 
about how many drivers to hire and the shift policy to use, which is limited to eight hours 
by Federal Brazilian law. We believe that the results presented here can be used in 
different but similar situations, not only in the ethanol distribution market. 

 



   

 

   

   
 

   

   

 

   

   80 H. Ewbank et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

7 Conclusions 

This paper solved a real-world problem by breaking it into several optimisation problems 
as MDVRP, fuzzy knapsack problem, and fuzzy JSP. A large MDVRP instance was 
broken down into several smaller feasible ones with fuzzy demand, fuzzy travel time, and 
fuzzy capacitated depots. 

The methodology proposed here was used to analyse several levels of uncertainty, 
providing a decision tool for decision makers and managers that handle distribution and 
fleet policies in their companies. 

Future research could consider collecting anhydrous and hydrous ethanol from 
producers with a heterogeneous fleet or with vehicles that can carry both ethanol types 
simultaneously. 
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