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"Fear tends to come from
ignorance. Once I knew what the

problem was, it was just a
problem, nothing to fear."

Patrick Rothfuss

iv



Acknowledgments

I would like to thank the following people, without whom I would not have been
able to complete this research, and without whom I would not have come this far!

To the low-level BRDrilling team, Daniel, Fabían, Lucas, Raphael and the out-
sider Rodrigo, which made every day to-dos enjoyable and challenging.

To Prof. Thiago Ritto, who was in charge of the team, and constantly kept up
with the work and discussions.

To my mentor, Prof. Fernando Castro Pinto, who provided important insights,
and guide lines.

To Petrobras, specially to Emílio, which provided all the means to make this
research possible.

To all the special friends made in my experience through this university.
And to the most important ones, my parents, who provided full support in the

whole process, gave important advice, and had a lot of patience.
You all were awesome companions.

v



Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos
necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

ESTIMAÇÃO DA SEVERIDADE DE VIBRAÇÃO TORCIONAL DE COLUNA
DE PERFURAÇÃO VIA DADOS DE CAMPO E APRENDIZADO DE

MAQUINA

Matheus Vera Di Vaio

Novembro/2019

Orientador: Fernando Augusto de Noronha Castro Pinto

Programa: Engenharia Mecânica

Este trabalho tem como objetivo desenvolver um método para estimar em tempo
real a vibração torcional da coluna de perfuração. Essa estimativa durante a oper-
ação de perfuração fornece informação importante ao operador para que ele possa
controlar os parâmetros de perfuração de forma assertiva. Para isso, é feita uma
apresentação dos poços e dos dados possuídos. Uma adaptação do PCA é proposta
para fazer o pré-processamento dos dados que alimentam uma rede neural profunda
proposta. Por fim, o método é testado em quatro casos distintos, cada um com
suas características singulares, com ou sem extrapolação de domínio. A ferramenta
de pré-processamento proposta e o uso dos dados brutos têm seus resultados com-
parados e avaliados. A conclusão fornece um resumo e algumas discussões sobre os
resultados, suas limitações e características.
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Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the
requirements for the degree of Master of Science (M.Sc.)

ESTIMATION OF DRILL-STRING TORSIONAL VIBRATION SEVERITY
USING FIELD DATA AND MACHINE LEARNING

Matheus Vera Di Vaio

November/2019

Advisor: Fernando Augusto de Noronha Castro Pinto

Department: Mechanical Engineering

This work aims to develop a method for real-time estimation of the drill string
torsional vibration. This estimation during the drilling operation gives important
information to the operator so that he can control the drilling parameters assertively.
For that, it is made a presentation of the wells, and the possessed data. An adap-
tation of the PCA is proposed to make the preprocessing of the data that feeds a
proposed deep neural network. Finally, the method is tested through four distinct
cases, each one with its singular characteristics, with or not domain extrapolation.
The proposed preprocessing tool and the use of the raw data have its results com-
pared and evaluated. The conclusion provides a resume and some discussions of the
results, its limitations, and its characteristics.
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Chapter 1

Introduction

1.1 Motivation

The exploration of oil and gas is increasingly being done in ultra-deep waters and
ultra-deep wells. As a result of this, the difficulty involved in drilling is increasing
and making necessary the use of new technologies and more sophisticated analysis.

One of the principal complications involved in the drilling operations is caused
by the vibrations and amplified by the increased length of the drill-pipe, harder
formations, bore-hole instabilities and so on. Vibrations steal energy from the system
and reduce efficiency, leading to a low rate of penetration and may even cause the
failure of downhole equipment. These vibrations are unavoidable because of the
non-predictability of the external forces acting on it, mainly the one caused by the
drill-bit cutting interaction.

Real-time information of downhole vibration scenario would be of great help for
the drilling operator. More assertive decisions about the drilling parameters could
be taken and the operation could be led to better states, increasing the rate of
penetration (ROP) and diminishing the vibration intensities. The uncertainties and
variations in environmental factors, like lithology, for example, make the interactions
of the drill-string with the borehole extremely difficult to model and computationally
expensive. Another complicating factor is caused by the difficulty in measuring and
transmitting data from the drill-bit. All these factors lead to a lack of information
in real-time of what is happening downhole for the surface, making it even harder
for the drilling operator to take assertive actions.

On the other hand, with the advances in computational power and the storage
capacity of great amounts of data, techniques in the machine learning field are
currently of great interest in a vast amount of areas. It has shown significant results
in complex problems, such as medicine [9, 10], engineering [11], in extreme difficult
games like Go [12] and even in oils exploration industry as shown in Chapter 2.
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1.2 Dissertation Objective and Organization

The objective of this work is to explore the drilling data from two ultra-deep oil
wells provided by Petrobras then apply Machine Learning techniques to estimate
the torsional vibration severity factor (SS) only with surface data. Traditional data
processing tools were applied to better understand the properties of the data and
prepare for the Neural Network implementation. The dissertation aims to create a
method to estimate the torsional vibration severity factor (SS) while drilling based
just on surface data. With this information, the drilling operator would have impor-
tant information about the severity of the SS to better adjust the drilling parameters
during the operation.

The torsional vibration severity estimation is going to be the main focus of this
work for two reasons. First, axial and lateral vibrations were very low in magnitude
on one well and secondly in other well the provided data from downhole did not
contain the tool necessary to measure axial and lateral vibrations.

The SS is calculated with the recorded data from the downhole measurement
tools. It is proposed a method based on a deep neural network (DNN) to estimate
the SS.

The preprocessing of the data that will serve as input to the neural network is
of extreme importance. When poorly done may cause the method to give not the
optimal results. To be able to better understand the nature of the data and, at
first, choose the best preprocessing approach, some traditional tools were applied
and the results were commented. Next, two different preprocessing approaches were
compared minding the DNN results.

In Chapter 1, is presented an introduction about the drilling operation and vibra-
tions, a brief introduction to machine learning is made and there is the bibliography
review. Where the most relevant works in the literature that deals with sequential
data and are explored. Works in the oil exploration industry that use machine learn-
ing techniques are also reviewed. Chapter 2 presents an introduction to the data, to
the data preprocessing, and indexes creation. It also contains the explanation of the
developed preprocessing method. In Chapter 3, the deep neural network developed
for this work is explained. In Chapter 4, the results obtained by the whole proposed
method are discussed. In Chapter 5 is the conclusion of this work with discussions
of the results obtained and the proposal of next steps. Appendix A contains the
tests made in the definition of the architeture of the ANN. Appendix B contains an
evaluation of the ANN’s output distribution in two different scenarios.
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1.3 Overview of a drilling rig

To make possible the exploration of fossil fuel out of the natural reservoirs, it
is necessary to have a rotary machine called drilling rig. A common schematic of
a drilling rig is shown in Fig. 1.1 and its principal components are: Drill-string,
hoisting system, top rotary system, and the drilling mud. The drilling rig also
contains the equipment necessary for more conventional functions, such as power
generators and blow out preventers.

Figure 1.1: A schematic view of a drilling rig. Reproduced from [1].

The drill-string is the name given to a system that transmits the power from the
surface to the downhole. It is slender, with a length to diameter ratio much smaller
than a human hair. It is basically composed of two parts, the drill pipes, which
are a sequence of tubes and the Bottom Hole Assembly (BHA). This assembly is
composed of much thicker and heavier tubes, compared to the previous tubes and
is called the heavyweight drill pipe (HWDP), Measurement While Drilling (MWD)
equipment, the drill-bit and a variety of equipments used for many purposes like
deviation control, shocking subs and others. Nowadays this assembly of parts can
reach a depths of 9 kilometers which can lead to destructive vibrations if not well
controlled from the surface.

The hoisting system is responsible for controlling the hook load that is applied
at the top of the drill-string and is responsible to maintain it suspended and most
of it on traction. The drill-string final part is maintained on compression to reach
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desired Weight On Bit (WOB) on the rock.
The rotary system is responsible for generating the power necessary to drive the

drill-bit and an electric motor is more commonly used. This system can be of two
types, a rotary table or a top driver.

The drilling mud is a fluid substance that is pumped at the surface and goes
through the inside of the drill string down to the drill-bit. Its primary uses are to
remove the cutting rock, refrigerate and lubricate the drill-bit and assure pressure
in the borehole to guarantee its stability. Also, part of the data measured by the
MWD system can be transmitted through pressure pulse.

1.4 Vibrations in drill-string

During the drilling operations, vibrations are induced by the interaction of the
drill-string with the environment and can reach harmful levels. These interactions
are external forces that are caused by the interactions of the drill-string with the
borehole which are mainly the drill-bit with the rock, the restrictions imposed by
the stabilizers in the BHA and the forces and torques transmitted by the top driver.
High amplitude vibrations lead to a low Rate of Penetration (ROP) and potential
damage to the BHA.

The drill-string vibrations are normally classified based on the axis that they
occur. There are three main types of vibration, axial, lateral and torsional.

• Axial Vibration: In this type of vibration the drill-string moves along its axis
of rotation. Its most dangerous type is the Bit Bounce and happens when the
drill-bit impacts and get loose of the formation at a high speed. Usually, it
happens at frequencies ranging from 1-10 Hz [13].

• Lateral Vibration: This type of vibration occurs transversally to the drill
string’s axis of rotation in the annular gap. The most critical situation is
called whirl and it can be of three types, backward, forward and chaotic. The
whirl occurs when the rotation center moves laterally as it rotates. The forward
whirl is when the section rotates around its center in the same direction as the
drill-string. The backward is when the section rotates in the opposite direction
of the drill string’s rotation direction. The chaotic is when the section impacts
the borehole wall chaotically. Usually, it happens at frequencies ranging from
0.5 to tens of Hz [13].

• Torsional Vibration: This type of vibration happens when the drill-string ro-
tates regularly in the surface, but irregularly downhole. The most harmful
situation is when the drill-bit sticks to the rock formation while the surface
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remains rotating. When the stored energy is high enough the drill-bit slips
allowing the drill-bit to reach speeds of up to 10 times higher than top rotary
speed. This phenomenon usually happens at frequencies ranging from 0.05 –
0.5 Hz [13].

In real-world scenarios, the vibration modes described above happen simultane-
ously. Describing all the physical phenomena happening in the drilling operation
usually results in a lack of clarity of the parameters and high computational cost.

Figure 1.2: Drill-string vibration modes, adapted from [2].

1.5 Basic principles of machine learning

In this dissertation is going to be used a machine learning technique to predict
de SS, therefore this section gives a brief explanation of its basic concepts and its
main techniques.

Machine learning is a branch of artificial intelligence. It is a class of algorithms
that are able to learn from data. By “learn“ it is meant the capacity of the algorithm
to improve its performance measurement from gathering experience on doing a de-
termined task [14]. It shall be used when dealing with some conditions. Informally
speaking they are: there is a pattern; it is not possible or extremely expensive to
pin it down mathematically, and there are data available [15].
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Even though it is not completely agreed upon, the types of machine learning
algorithms are commonly divided into categories according to their purpose [15]. In
Fig. 1.3 these categories can be seen. There are several machine learning techniques
in each category, each method with its pros and cons.

Figure 1.3: Machine learning types.

Supervised Learning

In supervised learning, the algorithm receives the data as input and during the
training phase, it knows the output. The method’s objective is to adapt its internal
parameters to best match the inputs with the outputs, a way to see its task is as a
function approximation. The types of supervised learning are:

• Regression: In this type of task, the algorithm is asked to predict a
continuous-valued attribute based on the input. For example the prediction
of the intensity of the vibrations on the drill-string.

• Classification: In this type of task, the algorithm has to specify to which
category the input belongs to. For example the classification of the type of
vibration happening during the drilling or even the vibration intensity category
(low, medium, high).

Unsupervised Learning

In unsupervised learning the algorithm doesn’t receive the desired output, it "dis-
covers" it. Generally speaking, the objective is to obtain an output that preserves as
most information as possible of the input data, helping the extraction of meaningful
insights and features. These algorithms learn in the training stage to extract rules,
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patterns and to group the data points which helps in extracting meaningful insights
and better describe the data to users or even to other machine learning algorithms.
These kinds of learning algorithms can be divided into two tasks.

• Clustering: The algorithm autonomously separates the data into clusters
of similar features. For example, given a set of pet pictures, the algorithm
separates it in dogs and cats.

• Dimension Reduction; Feature Extraction: In this type of task, the
algorithm extract features from the input. Continuing the previous example,
it could learn that dogs have brown eyes and rounded ears as cats have blue
eyes and sharp ears.

Reinforcement Learning

In the reinforcement learning method, the algorithm aims at using the interac-
tion with the environment to learn to take actions that do what it’s intended to,
maximizing its reward function. With time, the algorithm explores all the possible
states and learn the best action on each. It is mostly used in control tasks.

1.6 Artificial neural networks

Among several machine learning techniques, artificial neural networks (ANN) are
a class of algorithms that have been gaining a great amount of attention. They are
algorithms based on the biological neural networks, with its synapses and neurons.
An ANN is an array of neurons (nodes) connected with synapse that transmits the
signal from a node to the next multiplied by a weight and summed by a bias. This
weight can be interpreted as the importance of that synapse and the bias as a mean
correction. The traditional ANN scheme, with one hidden layer, is demonstrated in
Fig. 1.4.
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Figure 1.4: ANN scheme.

A single neuron, works the following way, after receiving the signals multiplied
by its synapse’s weight, the respective node sums them all and process it with the
activation function as demonstrated in the Fig. 1.5.

Figure 1.5: Neuron scheme.

In the figure above, b represents the bias, X1 and X2 represents the inputs and
W1 and W2 it’s respective weights. y1 is the neuron’s output. The input to the
neuron’s activation function is z and is calculated as shown in Eq. 1.1:

z =
∑

[X1W1 +X2W2 + b] (1.1)

8



Once z is calculated, it is fed to the neuron’s activation function. There are
several different activation functions, the most traditional ones are the sigmoid and
tanh, as demonstrated in Eq. 1.2 and 1.3:

σ(x) = 1
1 + e−ax

, (1.2)

tanh(x) = eax − e−ax

eax + e−ax
1 (1.3)

The advantage of using one of these functions is that they are capable of mapping
an input that can have values from [−∞,∞] to a range that varies from [0, 1] or
[−1, 1] respectively as can be seen in Figs. 1.6a and 1.6b.

(a) Sigmoid function. (b) tanh function.

Figure 1.6: Traditional activation functions.

But for the ANN to learn, it has to be able to update it’s internal weights and
bias in order to best match the inputs with the outputs. This process is called
training.

In the training phase, one of the most important things one should be aware of
is when to stop it. If early stopped, an underfitting of the model Fig. 1.7a happens.
This can happen for two reasons, the model had not enough time to train or the
model is not complex enough to match the data. In Fig. 1.7b is represented the
overfitting. It happens for reasons opposed to the underfitting, model too much
complex or training time too long. It can be seen that the model memorizes all the
data noise. In Fig. 1.7c is a training process stopped at the proper time. It does
not oversimplify the data as in the underfitting nor it memorizes the data noise [3].
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(a) Underfitting (b) Overfitting (c) Proper fitting

Figure 1.7: Examples of underfitting, overfitting and proper fitting.
Source: Adapted from [3].

The method used to track the training progress is to divide the dataset in at
least 2. The training dataset and the test dataset. During the training phase, the
cost function is checked for the train and test datasets. In Fig. 1.8 can be seen a
traditional error curve of the training process. In red is represented the error of the
training dataset and in blue the error of the test dataset. It can also be seen how
after the point of lowest training dataset error (Proper fitting moment) it starts to
increase while the error of the training dataset continues to drop and overfits the
model.

Figure 1.8: Common error curve.

To train the model, some method to compute the error and the update shall
be chosen. There are several methods to do such a thing, the most common are
the Stochastic Gradient Descendant (SGD) and Adam. They are focused on the
Backpropagation [16] method to compute the weights and bias updates. The back-
propagation is the act of giving an input to the network and evaluate its output
with a cost function and then backpropagate the error information backward in the
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network. This way the internal parameters can have their influence on the error
individually evaluated and updated. The most common way to do this evaluation
is by Gradient Descendant. It derives the cost function in function of the weights
and bias. For that, it follows the chain rule and product rule in differential calculus:

∆W = −α∂F (W )
∂W

, (1.4)

where ∆W is the weight update, F (W ) is the cost function and W is the weight.
The network is trained in order to find the best possible value for the weights and
bias so that the output is as close as possible to the desired target, and the cost
function is minimized.

In [17] was proven that a traditional ANN with one hidden layer and using
non-linear activation functions is capable to approximate any given function. This
shows how robust this method is, when well developed and applied. Neural net-
works with their training methods and tasks are very versatile algorithms that can
be understood as a canvas. Several machine learning methods based on this tech-
nique were created. Long-Short-Term-Memory Neural Networks, Extreme Learning
Machine, and Deep Learning are some of the most used techniques when dealing
with estimation.

1.6.1 Long-Short-Term-Memory (LSTM) Neural Networks

The LSTM, originally developed by [18], is an architecture based in gated Recur-
rent Neural Networks (RNN) [19]. It is a technique developed to be applied specially
in long sequential data, gated RNNs are based on the idea of memory. LSTM creates
a kind of path throw time where it can store its memory based on the arriving data
sequence. For example, when a data arrives at the network, the internal gates au-
tonomously chose to the best memory to feed from. The data tend to be processed
by the most optimized block for that specific sequence. This architecture can be
used for classification, regression, and forecasting tasks.

1.6.2 Extreme learning machine (ELM)

ELM is a supervised learning technique for classification, regression, clustering,
data compression, and feature learning. This method consists of an ANN created
with one or more hidden layers with random weights, but here they are not trained
or changed. Just the output layer is trained and in most cases just a single step is
necessary. According to this technique’s creator [20], because of this, the ELM can
learn a thousand times faster than traditional networks that use the backpropagation
method to train.
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1.6.3 Deep Learning

This method can be used for both supervised or unsupervised learning [21, 22].
It is an ANN with more than 2 hidden layers between the input and the output [22].
These extra layers enable a characteristic that can be seen as feature extraction
from the previous layers requiring fewer neurons than a traditional shallow ANN.
In Fig. 1.9 a traditional schematic model of this technique is shown, but it is worth
mentioning that bein deep is the characteristic of having multilayers, so they can
be, for example, an adaptation of the LSTM layer which gains the name of Stacked
LSTM (S-LSTM), explored by [23], or even an ELM technique with multiple hidden
layers.

Figure 1.9: Traditional deep learning scheme.

1.7 Bibliographic Review

The data from the drilling operation treated in this work are a time series. This
means that the data points are sequential and indexed in order of observation. As
researching for bibliography in the oil exploration industry results mostly in shallow
articles that give a very brief explanation of the method used, this bibliographic
review was subdivided in two subsections: Machine learning applied to sequential
data, which provided richer articles and Machine learning applied to the fossil fuel
exploration industry, which could show whether the industry actually sees values in
machine learning techniques and is in deed exploration this field of approach.
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1.7.1 Machine learning applied to sequential data

The main purpose of [4] was to apply machine learning to forecast the traffic flow
in Porto, Portugal. For that, traffic data from the first tree weeks of each month
were used and the algorithms had to predict the fourth week’s traffic. The follow-
ing machine learning methods were tested: Linear Regression, Sequential Minimal
Optimization (SMO) regression; Multilayer Perceptron; M5Base Regression Tree;
Random Forrest.

The traffic data were measured in 21 different positions in the roads of Porto.
No details were given about the preprocessing of the data despite the exclusion of
one of the 23 attributes because it was a constant measurement. In Fig. 1.10 it can
be seen that the M5Base Regression method obtained the best results.

5
Figure 1.10: The prediction of traffic flow with different regression analysis.
Source: [4].

In [5] a an online sequential extreme learning machine (OS-SLM) is proposed
with one hidden layer to forecast the solar radiation. By OS is meant the capacity
of the algorithm to read in real time the sequential data, make the necessary calculus,
give the predicted solar radiation and continuously recalibrate it to be as accurate
as possible in the course of time. In Fig. 1.11 a scheme of the algorithm is presented.
The data history is given to the algorithm in the offline training phase, than it is
tested and continuously appropriated during the online phase. The final result was
very promising, gave results very similar to simpler SLM method but with the plus
that it is online and continuously retrained.
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Figure 1.11: Main Framework of Real-Time Prediction of Solar Radiation.
Source: [5].

Despite the field of application, the task of this OS-SLM is very similar to the
one proposed in this dissertation and the fact that the author obtained good results
is a good indicator of the applicability of this technique. [24] also applied OS-ELM
in sequential data for prediction task and obtained good results forecasting gas
utilization ratio of blast furnaces.

A comparison between three NN based machine learning methods were made in
[6] with the purpose to predict the water quality. The author compared the obtained
forecast results of a simple ANN, LSTM NN and OS-ELM in three time steps, 3, 4
and 5 days ahead. In Fig. 1.12 can be seen that the LSTM technique obtained the
lowest root-mean-square deviation (RMSE) of the predicted dissolved oxygen (DP)
value been by this the most indicated technique for this specific problem.

Figure 1.12: RMSE of DO with different time steps.
Source: [6].

An architecture based on S-LSTM layers was proposed by [7] in order to make
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bearing fault diagnosis. The S-LSTM is a traditional LSTM but with multiple hid-
den layers. This gives the benefit of the deep neural networks associated with the
recurrent networks of the LSTM. The idea behind this multi layering is that higher
LSTM layers can capture abstract concepts in the sequences, which should help for
the desired task. And in deed helped, the network obtained 99% accuracy, out-
performing other techniques. The author outlined some important points inherited
to this approach: No need for handcrafted features or advanced signal processing
techniques which are essential for other method; the higher potential for mining in-
herent characteristics because of the deep layers; the higher computation cost for the
training stage compared to other techniques; the dimension of the input is chosen
by trial and error, no better method is found in literature.

In Fig. 1.13 is presented an accuracy comparison of the Stacked LSTM (Hier-
archical LSTM/S-LSTM) proposed by [7] and some other ANN based techniques,
traditional LSTM (1-layer LSTM), suport vector machine (SVM), backpropagation
neural network (BP-NN) and convolutional neural network (CNN).

Figure 1.13: Accuracy of different methods in 10 trails.
Source [7]

An ensemble of extreme learning machine (Ens-ELM) was proposed by [25] in
order to predict the daily wave height. The core characteristic of the ELM is the
randomness of its internal parameters. Each of the ELM of the ensemble started with
parameters in distinct regions, allowing with this a possible better generalization.
The work compared Ens-ELM, simple ELM, OS-ELM and support vector regression
(SVR) techniques and inferred that the Ens-ELM outperformed the other techniques
for this application. It also gave better results than the ANN applied to the same
problem by [26].
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1.7.2 Machine learning applied to the fossil fuel exploration
industry

In the drilling area there is still no reported use of machine learning techniques
to estimate, in real time, with just surface data streamed with mud pulse, the
torsional vibration severity factor. However, this section is going to explore the
most important ones in the field.

Drilling dynamics and vibration

A drilling dynamics simulator was proposed by [27] where was utilized data from
the surface and from downhole. This paper presented an approach based on Neural
Networks (NN) to model the non-linear behavior of the multi-input/output drilling
system for predictive control. In the author’s opinion, the objective of demonstrating
the method feasibility was achieved despite the fact that data from just one well
was used.

In [28] was modeled the ROP using the vibration data from a fully automated
laboratory drilling rig. A technique that combines neural networks with a sequen-
tial forward selection was used, which is a method that tests increasingly complex
networks until it finds the best. The author concluded that utilizing the proposed
model enhanced the quality and precision of the model.

Lithology estimation

In [29], field data from wired drill-strings were utilized. It compared different
Support Vector Machine (SVM) techniques, one-versus-rest and one-versus-one, and
a Random Forrest (RF) approach to classify in real time the logged lithology data.
It succeeded and obtained great results, the non-linear nature of the problem was
well dealt with the chosen techniques. Others have worked in the identification of
reservoir lithology [30–34] and obtained good results.

Mud pulse data processing

A deep neural network strategy was implemented by [35] in order to process,
in real-time, the low Signal do Noise Ratio (SNR) data transmitted by mud pulse
received at the surface at a frequency of 0.5 Hz. Different recognition methods were
tested with different SNR signal in this paper, the deep neural network obtained a
final result ranging from 2 to 3% better than the traditional methods.
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Drilling control

A neural network was used to improve the ROP by predicting and managing
the drill-bit wear at [36]. It used data from other wells to, in real-time, optimize
the drilling parameters that usually are controlled by the drill operator, like RPM,
weight on bit (WOB) and mud pressure. With this method, the drilling control
actions that the drilling operator take actions based on his personal experience and
algorithm input

In [8] a combination of supervised and unsupervised techniques, PCA to compress
and filter the data, K-means was utilized to create the operational clusters and the
decision tree to choose the best way to leave the unstable zone. Pure surface data
from 6 different wells were used to train the model. A drilling energy efficiency
coefficient approach to infer the drilling conditions and choose the best ones was
utilized. In Fig. 1.14 an overview of the proposed method is shown.

Figure 1.14: Scheme of the data processing tool created by [8] to optimize drilling.

1.7.3 Considerations

After a series of tests trying to process the data as a sequence, it was not obtained
any significant results. After some reflection about this issue, the conclusion was
that, despite the fact that the data being recorded in sequence, two facts disturb
the neural network and they are:

• As will be shown in Chapter 2.3.2 in the creation of the indexes, once a window
of data is given, the SS information is there, not depending on the sequence
itself.

• The acquisition rate of 5 seconds for the surface data is extremely low so when
analyzed in sequence it becomes too noisy.

Therefore, even though most of the literature aims in interpreting sequential
data by RNNs, in the case of this work it showed poor results. For this reason, the
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RNN approach was abandoned. The pure maintenance of the data position in the
input vector was enough for the interpretations.
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Chapter 2

Data preparation

This work was made in partnership with Petrobras, therefore the company pro-
vided data from two ultra-deep wells located at a hydrographic basin in Brazil. This
chapter aims to explain the nature of the data and the wells. The calculation of
the SS and other indexes with the intention to extract information of the data is
made. For confidentiality purposes and to make it easier to follow, the wells and
rock formations are going to be refered to as Well A, Well Br1, Well Br2, Rock A
and Rock B.

2.1 Overview of the field drilling data

In these drilling operations, there were measurement tools in the surface, in the
BHA and the drill-bit. For the equipment located downhole, there are two major
ways to transmit the data to the surface. It can be through the utilization of wired
drill-pipes which provides a very high transmission rate with a high signal to noise
ratio, but unfortunately, this technology is very expensive and was not used in the
wells treated in this work. The other main alternative is through the utilization of
mud pulses, it is a restraint valve located at the BHA that restrains the passage of
the drilling mud. This restriction leads to pressure variations noted in the surface by
the drilling mud pump that are interpreted. The transmission rate of this technology
is very low, bits per second, and it has a very low signal to noise raise ratio.

In Table 2.1 all the data that the surface has access to during the drilling are
described. The measurements labeled as LAS-(name of the measurement) are done
in the surface and saved at intervals of 5 seconds. The file index is Elapsed Time
with steps of 5 seconds. TELE950-IWOB and ARC9 are measurement tools located
downhole in the BHA. The data measured by them are transmitted through the mud
pulse streaming method, and because of its limitations, the data from downhole
arrives within a period of five minutes, one at a time, at the best scenario, and
there are some moments where data simply do not arrive at all. Furthermore,
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there is no information about the meaning of the following variables: DWOB_EU,
DTOR_EU, CRPM, VIB_LAT, VIB_TOR, VIB_X. Because of these limitations,
these data were not used in the analysis made in this work.

Table 2.1: Data Description.

NAME UNIT DATA SOURCE DESCRIPTION
TIME .s : Time (hh mm ss / dd-MMM-yyyy)
DEPTH .m DnMWorkflow Depth Index
BIT_DEPTH .m DRILLING SURFACE Bit Depth
COBTM . DRILLING SURFACE Composite On Botton Status
AZIM_CONT .deg TELE950-IWOB Continuous Hole Azumuth
INCL_CONT .deg TELE950-IWOB Continuous Inclination (Hole Deviation)
HKLA .1000 lbf DRILLING SURFACE Height of block above rig floor
SWOB .1000 lbf DRILLING SURFACE Surface Weight On Bit
DWOB_EU .1000 lbf TELE950-IWOB Uncorrected Downhole Weight on Bit
STOR .1000 ft.lbf DRILLING SURFACE Surface Torque
DTOR_EU .1000 ft.lbf TELE950-IWOB Uncorrected Downhole Torque
RPM .c/min DRILLING SURFACE Rotational Speed
CRPM .c/min TELE950-IWOB Collar Rotational Speed
TFLO .gal/min DRILLING SURFACE Total flow rate of all active pumps
SPPA .psi DRILLING SURFACE Standpipe Pressure
VIB_LAT .gn TELE950-IWOB Transverse RMS Vibration
VIB_TOR .1000 ft.lbf TELE950-IWOB Torsional RMS Vibration
VIB_X .gn TELE950-IWOB RMS Vibration, X-Axis
GR_CAL .gAPI ARC9 Calibrated Gamma Ray
ROP .m/h DRILLING SURFACE Rate of Penetration

At the end of the drilling, the drill-string is removed and the measured data can
be saved directly from the memory of two other sensors located downhole that don‘t
transmit anything to the surface. This generates two files and they are:

• R5K: This file is originated from the recorded memory of a measurement tool
named BlackBox Plug (BBPLUG) located at the BHA. The only measurement
this sensor makes is a radial acceleration at a frequency of 400 Hz. A moving
average is calculated with a 2.56 second window and saved at 2.56 seconds.

• R6K: This file is originated from the recorded memory of a measurement
tool named BlackBox HD (BBHD) located at the drill-bit. This sensor makes
measurements at a frequency of 800 Hz and saves the data with a period of 3.2
seconds for Well A and Well Br1 and within 115 seconds for Well Br2. These
wells are presented in the next section. The following variables are calculated
in 3.2 second windows between recordings (or 115s in the case of the Well
Br2): Min, Mean and Max RPM; Min, Mean and Max Lateral Vibration; Min,
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Mean and Max Axial Vibration; Stick-Slip, Whirl and Vibration indicators.
No information was provided about these indicators so they were ignored.

2.2 Introducing the wells

All the data treated in this work are relative to the 17,5” phase. This is
because of the lack of quality of the data from other phases. An overview of the
Well A, Well Br1 (well B run 1) and Well Br2 (well B run 2) main characteristics
are at the table 2.2. Well Br1 and Br2 are actually the same well, but during the
drilling in the run 1, the BHA broke. It was hooked and a similar BHA was used,
but this new one had tools to make change the direction during drilling.

Table 2.2: Overview of the drilling of the Well A and B at the 17,5" phase.

Well A 17,5" phase - PDC + SKH616S
Initial depth 3217 m Initial date 11/04/2014
Final depth 5028 m Final date 17/04/2014
Well type Vertical Global ROP 20.4 m/h
Formation 1
(3217 - 5020 m)

Ariri Rock type
Halita/Anidrita/

Carnalita/Taquidrita
Formation 2
(5020 - 5028 m)

Barra Velha Rock type Calcário / Anidrita

Well Br1 17,5" phase - Xceed + SKH616M
Initial depth 3078m Inicial date 16/04/2013
Final depth 3300m Final date 20/04/2013
Well type Vertical Global ROP 12.33 m/h

Formation Ariri Rock type
Halita/Anidrita/

Carnalita/Taquidrita

Well Br2 17,5" phase - Xceed + SKH616M
Initial depth 3300 m Inicial date 20/04/2013
Final depth 4263 m Final date 04/05/2013
Well type Build-up & tangent Global ROP 11,40 m/hr

Formation Ariri Rock type
Halita/Anidrita/

Carnalita/Taquidrita

It can be noted that Ariri (Rock A) formation is presented in all of these drilling
operations, but the Barra Velha (Rock B) is just presented on Well A. In Fig. 2.1
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the transition from Rock A to Rock B at approximately 121.1 h can be seen. It is
clear that the drilling scenario changed downhole.

Figure 2.1: Transition from Rock A to Rock B at Well A.

In Fig. 2.1, the "LAS - BitOnBot" data are 0 when the drilling is happening
and 1 when it’s not. LAS - RPM is the RPM of the drill-string measured at the
surface, LAS - Collar RPM is the RPM measured at the BHA, transmitted to the
surface by mud pulse. LAS - STOR is the torque applied to the drill-string in
the surface. LAS - SWOB is the weight on bit estimated at the surface, without
taking in consideration external forces acting on the drill-string. LAS - DEPTH is
the depth, measured at the surface, at which each measurement was made. R5K
- Accell. Cent. is the centripetal acceleration measured at the BHA. R6K - RPM
(Min, Mean and Max) are the RPMs measured at the bit.
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2.3 Data processing

The drilling data provided by Petrobras are completely raw, this means that the
entire operation, including all sorts of stops either for maintenance, for drill-pipe
increments or even when the surface torque exceeds the top-driver maximum load
and the operation has to stop are included in the data.

2.3.1 Data synchronization and cutting

In Fig. 2.2 a glimpse of the data can be seen. There are several measurements
been made and saved with different sensors which are completely unsynchronized.
The first main step was to correct it and make them all synchronized in order to
make them all compatible and turn possible further processing.

One of the measurements is the Composite On Botton Status (COBTM), which
represent if the drill-bit is touching the bottom (BitOnBotton), so there’s a way to
know if the drilling is happening or not. This BitOnBotton variable equals 1 if the
drill-bit is not touching the bottom and equal 0 if it is.

The Fig. 2.2 shows the start of a drilling operation. It can be subdivided into
seven parts represented in the figure as seven vertical lines that are better described
next. At 1 all the drill-string is at rest, hanging, so there is no WOB applied. The
top-driver start acting and all the drill-string gains rotational speed until the desired
operational level. The Blackbox Plug starts measuring the centrifugal acceleration
and the Blackbox HD starts measuring RPM. Between 2 and 3 there is the stabi-
lization of the downhole rotational speeds. After 3, the drill-string goes down until
it touches the bottom. At 4 it touches the bottom, the BitOnBotton measurement
switches to 0. At 5, finally the WOB appears on the readings, the STOR increases
because of the Bit-rock interaction and the downhole readings from the BlackBox
Plug and HD start to oscillate more vigorously indicating the start of the bit-rock
interaction. Between 6 and 7 the drilling operation actually started with the WOB
and RPM stabilized on the desired operational level.

This step by step also occurs at the end of each drilling, with a similar error
in the BitOnBotton variable. So, for safety purposes, all the data from the first 5
minutes and the last 5 minutes of drilling (BitOnBotton = 0) were ignored.
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Figure 2.2: Drilling start.

In Fig. 2.3 a whole drilling interval is shown, from the beginning to the end.
Some behavioral characteristics can be noted such as a direct correlation between a
variation of the RPM on the bit and the centripetal acceleration on the BHA with
the torque on the surface (LAS-STOR). It means that by increasing the torsional
vibration at the bit a direct change in the torque measured in the surface is noted
while almost nothing is noted in the surface RPM.
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Figure 2.3: One drilling interval characterization.

2.3.2 Creation of indexes

Another important factor is that the data measured on the surface have a time
index completely different from the downhole measurements. Because of this, as the
focus of this work is the estimation of the torsional vibration intensity, the index
was adapted. The industry uses the following expression to calculate this index:

SS = Θ̇max − Θ̇min

2Ω , (2.1)

where Θ̇max is the maximum torsional speed at the bit and Θ̇min is the minimum
torsional speed at the bit. Ω is the steady-state speed at the top-driver. In most
models, it is considered as a constant value, but for this work, it is going to be the
mean speed at the top-driver during operation.
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The SS is very important for the whole of this work. It is the attribute that will
be estimated by the neural network. Because of that, a series of intervals were tested
ranging from 15 seconds to minutes. The 30 second window represented very well
the drilling operation so it was the chosen one. This means 6 measurements from
the surface data (it has an acquisition period of 5 seconds), and 12 measurements
for the downhole data (it has an acquisition period of 2.56 seconds). Therefore the
SS is calculated as Equation 2.2. This index for now on is going to be called as
experimental SS because it came from field-data.

SS(τ) = max{Θ̇(t)} −min{Θ̇(t)}
2 mean{Ω(t)} , tε[τ−30segundos, τ ] . (2.2)

It was also observed that the surface torque increases its oscillation when the SS

increases. For this reason and better feed the ANN, a STORvar which measures the
oscillation severity of the surface torque was also calculated.

STORvar(τ) = max{STOR(t)} −min{STOR(t)}
2 mean{STOR(t)} , tε[τ−30segundos, τ ] . (2.3)

ROP is another important factor in drilling. Even though it is calculated on the
surface and should have a recording period of 5 seconds as the other data, it is saved
within a period of 5 minutes. Therefore, it was also calculated. Simply deriving the
DEPTH in time results in very explosive values for the ROP. Because of that, a
method similar do the calculation of the SS and STORvar was adopted.

ROP (τ) = max{DEPTH(t)} −min{DEPTH(t)}
max{ElapsedT ime(t)} −min{ElapsedT ime(t)} , tε[τ−30segundos, τ ] .

(2.4)
A window of the calculated values is demonstrated in Fig. 2.4. It is showing

the rock formation transition moment, where the parameters of SS, STORvar, and
ROP have a significant change.

26



Figure 2.4: Calculated values of SS, STORvar and ROP .

In Fig. 2.4, both the calculated SS value, the STORvar, and the ROP are
somehow correlated. But, if carefully analyzed, it can be seen some discrepancies.
In Fig. 2.5, at hour 118.8, for example, there is a peak in the STORvar and the
ROP diminishes almost 50% while the SS maintained the same level. Scenarios like
this are common along the drilling data.

Figure 2.5: Calculated values of SS, STORvar and ROP .
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2.3.3 Analysis in frequency domain

Even though the acquisition frequency of the surface data being very low, 0.2Hz,
in an attempt to better understand and extract information about the provided data
some analyses were done in the frequency domain. The method that shown better
results was the Discrete Wavelet Transform [37]. This transformation not even is able
to represent the data in the frequency domain but also preserves the correlation with
the time index. Because of this, its possible to make a direct comparison between
the Wavelet Transform and the temporal series. The Generalized Morse Wavelet
was used because of it’s better equivalence between time domain and frequency [38–
40] with the symmetry parameter of y = 3 and the product time-badwith β = 60,
which are the default ones.

The analysis shown here is from Well A at three different time intervals. The
Interval A belongs to Rock A and goes from t = 119.4h to t = 120.2h. The Interval
B belongs to Rock B, goes from t = 123.7h to t = 127h and was in a moment
with less torsional vibration than the Interval C. Interval C goes from t = 133.6h to
t = 135h and is from Rock B, having the highest torsional vibration. These three
intervals were specially chosen from almost the same depth so there are as few as a
possible changes in the drill-string length therefore in its mechanical properties.

Wavelets Transform of these three intervals from the surface torque and the RPM
on the bit were made. It is worth remembering that the surface torque only has a
frequency of acquisition of 0.2Hz while the RPM on the bit has a slightly higher
frequency of 0.32Hz. It means that both frequency scales analysis are very limited,
but with the one of the RPM on the bit being a bit larger. The analysis cutting
frequencies of the Wavelet Transform were of 0.2/2 = 0.1Hz or 100mHz for the
surface data and 0.32/2 = 0.16Hz or 160mHz for the data from the bit. In Fig.
2.6 the Wavelet Transform from all the three intervals from the surface torque is
presented and. in Fig. 2.7 is the Wavelet Transform of the RPM on the bit.

The white dashed line in all Wavelet Transform analysis made in this work
denotes the corner of influence. Above this line the results are reliable.
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(a) Interval A.
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(b) Interval B.
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(c) Interval C.

Figure 2.6: Wavelet Transform of the surface torque at the intervals A, B and C.

In Fig. 2.6 is presented a comparison of the behavior of the time series of the
surface torque and its wavelet transform from Intervals A, B, and C. In Fig. 2.6a the
surface torque’s wavelet does not show any remarkable periodic behavior minding
the limited frequency scale.

The Wavelet Transform of Interval B, Fig. 2.6b, presented an energy concentra-
tion at approximately 80mHz. When comparing to the Wavelet Transform made on
the same interval, but from the RPM on the bit, 2.7b, the same frequency appears
but with a much higher magnitude, indicating that some of the dynamics of the
torsional vibrations can be perceived at the surface.

In interval C, Fig. 2.6c and 2.7c, it is even clearer the appearance of the torsional
vibration on the Wavelet Transform, both on the surface and the data from the bit.
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(a) Interval A.
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(b) Interval B.
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(c) Interval C.

Figure 2.7: Wavelet Transform of the RPM on bit at the intervals A, B and C.

After comparing all the Wavelet Transforms made from the data coming both
from the surface and from the bit, even with a very limited frequency range, it can be
said that part of the dynamics occurring on the bit, regarding torsional vibrations,
can be perceived at surface. Unfortunately, it is just true when dealing with very
low-frequency dynamics because of the limited frequency analysis range.

Because of this limitation, the use of the Wavelet Transform or FFT response as
input to the DNN described in the further chapters were not considered. But it may
be right to think that having a higher measurement frequency on the surface data
would imply in more information on higher frequency torsional vibration dynamics,
therefore, being an information-rich input to the DNN itself.
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2.3.4 Torsional vibration severity map

The industry default way of visualization of the drilling operation is, as shown in
Fig. 2.8, the torsional vibration severity map. A map where the drilling RPM is the
X-axis and the WOB is the Y-axis. The color of each point is the SS intensity. One
main limitation of this map is that it can just be used for the drilling visualization
one rock at a time. When dealing with real drilling, the rock, despite still being in
the same rock formation, changes a lot, so as the bit rock interaction. Hereafter an
extrapolation of this map’s functionality is made and different data from both Well
A and Well B, both Rock A and Rock B are projected.

(a) Map of Well A formation A. (b) Map of Well A formation B.

(c) Map of Well A formation A and B. (d) Map of Well B run 1 and 2.

(e) Map of Well A and Well B.

Figure 2.8: Torsional vibration severity map.

In Fig. 2.8 the differentiation of formation or wells are very subtle, the clusters
are overlapping and the stability map does not behave as expected [2, 41], with the
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Figure 2.9: Torsional vibration severity map.
Adapted from [2]

SS distribution as in Fig. 2.9. In this map, the values above the blue line are at the
most intense type of torsional vibration, the Stick-Slip (SS >= 1), the values below
are with torsional vibration, but not with stick-slip and have SS < 1.

Another problem with this visualization method is that other variables that are
ignored and are also important to better understand the drilling operation scenario
like the ROP for example are ignored.

Applying PCA

Principal component analysis (PCA) is a tool that makes a vector orthogonal-
ization in a way that transforms a dataset with possibly correlated variables in a
linearly non-correlated one. These variables are called principal components (PC)
[42]. These PCs concentrates the information of the dataset in their first compo-
nents. The main idea behind the application of this tool is to reduce the dimension-
ality of the problem without losing a significant amount of information. Possibly
turning easier the training process for the future network.

This basis transformation consists of the creation the orthogonal basis in a way
that the first component is in the direction that has the highest variance. The
second component is in the second direction with a higher data variance and thus
subsequently.

In the process of the PCA calculation an input matrix XT that consists of n rows
representing different measurements in time and m columns representing different
types of measurements is used. This matrix is by default normalized and then a
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singular value decomposition (SVD) of X = WΣV T is made, where W is a square
matrix of eigenvectors of de covariance matrix XXT , Σ, is a diagonal, rectangular
matrix where its diagonal numbers are the eigenvalues of XXT and V is the matrix
of eigenvalues of XTX. The PCA transformation is given by:

Y T = XTW (2.5)
= V ΣTW TW

= V ΣT

By definition of the SV D, W is an orthogonal matrix, so each row of Y T is
a rotation of the respective row of XT . This way, the first row of Y T is of the
scores, by that is meant the projection of XT in the first principal component of
W . The second row of Y T is the score of the second principal component and thus
subsequently.

The formation of the matrix XT

All this work is meant to be used during the drilling operation, therefore, just
surface data and the calculated STORvar and ROP were used in this calculation.

Between all the surface data, some considerations were made when choosing
which one should be used. SRPM , SWOB and STOR, were chosen because they
are controlled parameters. STOR is limited by the top-driver, SRPM level and
SWOB are controlled in real-time by the operator. Beyond these variables, the
calculated STORvar and the ROP were also used. With these variables was formed
an input matrix XT with 5 columns:

XT =


SRPMt1 SWOBt1 STORt1 ROPt1 STORvar(t1)

SRPMt2 SWOBt2 STORt2 ROPt2 STORvar(t2)
... ... ... ... ...

SRPMtn SWOBtn STORtn ROPtn STORvar(tn)


The use of other variables such as SPPA and TFLO were also studied, but

they meant no significant alteration in the final result, minding the DNN output.
Therefore they were not used for the PCA analysis.

Data normalization

The default normalization method used in PCA is as demonstrated in equation
2.6:
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Xnorm = (X −mean(X))/std(X) . (2.6)

It removes the mean value of the distribution and divides it by the standard
deviation. By doing this, the new distributions become zero-mean and with unitary
standard deviation (std). Nevertheless, this work is idealized to be used during the
drilling operation. Because of this, two problems arrive.

The first is that both the mean value and the standard deviation are going to
change with time. Because of this, the two values would have to be recalculated
with each new reading and a new PCA would have to be calculated which would
change the already calculated principal components.

The second is that by removing the mean and standard deviation values of the
distribution, part of the drilling characteristics is removed. For example, if a drilling
operation had its RPM set at 150 RPM and a WOB of 50 klbf, it is an important
information, therefore the normalization method could not ignore it.

Because of these two reasons and taking into account that the different measure-
ments in the XT matrix have values with different orders of magnitude, a normal-
ization method that calculates de log of each value of XT was chosen as in [43] and
is demonstrated below:

XT =



log SRPMt1

RPM0
log SWOBt1

WOB0
log STORt1

TOR0
log ROPt1

ROP0
logSTORvar(t1)

log SRPMt2

den
log SWOBt2

WOB0
log STORt2

TOR0
log ROPt2

ROP0
logSTORvar(t2)

... ... ... ... ...

log SRPMtn

den
log SWOBtn

WOB0
log STORtn

TOR0
log ROPtn

ROP0
logSTORvar(tn)


,

where RPM0 = 1rpm, WOB0 = 1lbf , ROP0 = 1m/h were used to adimensionalize
the values before the log operation. STORvar already is admensionalized, so there
is no necessity to make this operation.

Standard PCA

Despite the fact that the purpose of this work is to deal with the data during
operation and, because of this, the principal components could not change over
time. This fact makes the Standard PCA unusable in a real-time processing because
at each new arrived data, new PCs would have to be calculated, therefore, new
projections would be obtained. This makes the network always untrained for the
arriving data. Even so, it was made to evaluate and compare the results with the
Adapted PCA.
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It was calculated the PCA over all matrix XT , composed of all the data from
Well A and B, both Rock A and B. At the end of the process, was obtained the W
matrix of eigenvector below, where each column represents one principal component.
The vector Ex is the representativity of each eigenvector respectively.

Ex =



73, 1%
13, 0%
10.1%
2.3%
1.5%


, W =



0.1089 −0.1234 0.0798 0.0001 0.9831
0.0856 0.8101 −0.2829 −0.4930 0.1153
0.1399 0.4751 −0.0813 0.8634 0.0506
0.9162 −0.0115 0.3646 −0.1000 −0.1325
−0.3491 0.3204 0.8798 −0.0374 0.0075


.

Once the PCs were obtained, a projection of XT was made in these principal
components as described in the following equations. The result of this projection is
the Score vectors.

[
Score1

]
=

[
XT

] [
PC1

]
,[

Score2
]

=
[
XT

] [
PC2

]
,[

Score3
]

=
[
XT

] [
PC3

]
,[

Score4
]

=
[
XT

] [
PC4

]
,[

Score5
]

=
[
XT

] [
PC5

]
.

By joining all the 5 Score vectors obtained in the projections made, it is possible
to obtain a newXT matrix with it’s data reorganized in a new linearly non-correlated
basis. When plotting the first two columns (Score1 and Score2) in a scatter map.
In Fig. 2.10 is the result of this map, where the color is the SS intensity.
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(a) Map of the Global PCA of the Well A. (b) Map of the Global PCA of the Well B

(c) Map of the Global PCA of the Well A and B

Figure 2.10: Map of the Global PCA of the Well

In Fig. 2.10a, referring just to the drilling of the Well A, a strong separation
between Rock A and B can be seen, where the cluster on the left and with the most
intense SS levels the Rock B and the cluster on the right, with the less intense SS

intensity the Rock B. In Fig. 2.10b that refers just to Well B can be seen just one
big cluster that refers to Rock A. This last cluster is slightly shifted from the cluster
from Well A Rock A but still partly superposed. By joining the projections from
both Wells, in Fig. 2.10c, it is possible to note that differently from the default map
used by industry, Fig. 2.8, this map separates rocks.

Adapted PCA

To make possible the online application of this tool, an adaptation of the PCA
is proposed as in [43]. Was created an input matrix XT that corresponds to a
cluster of data of the optimal drilling scenario minding the SS. For that, all the
data from the Well A, when drilling the Rock A and had SS <= 1 was chosen.
With this matrix XT of the optimal conditions created, the principal components
were calculated. The main idea behind this method is to observe discrepancies in
the drilling scenario.
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Once all the data of Well A when drilling Rock A and having SS < 1 were
extracted, the PCA was calculated. Below are shown the matrix W , where each
column represents one principal component with its importance decreasing from left
to right. The vector Ex comes by normalizing the Y T in a way that the sum of its
internal components equals one. The first term of Ex is the representativity of the
first principal component (PC1), the second term represents the second principal
components (PC2) and thus subsequently.

Ex =



57, 8%
28, 4%
10, 4%
2, 2%
1, 2%


, W =



0.0486 0.1674 −0.0750 0.7590 0.6228
−0.2564 0.2205 0.9392 0.0586 0.0024
−0.2610 0.3600 −0.1196 −0.6064 0.6483
−0.3160 0.7733 −0.2780 0.1816 −0.4380
0.8740 0.4425 0.1435 −0.1405 0.0013


.

Once the PCs were obtained, a projection of all the log-normalized dataset (XT )
was made in the PCs. The Score vectors was obtained as described below:

[
Score1

]
=

[
XT

] [
PC1

]
,[

Score2
]

=
[
XT

] [
PC2

]
,[

Score3
]

=
[
XT

] [
PC3

]
,[

Score4
]

=
[
XT

] [
PC4

]
,[

Score5
]

=
[
XT

] [
PC5

]
.

In Fig. 2.11 the result of this method can be seen when is made a graphic of
Score1 x Score2. The color of the dots are the SS calculated for each point with
the color scale on the right of each figure.

37



(a) Map of the Adapted PCA of Well A. (b) Map of the Adapted PCA of Well B.

(c) Map of the Adapted PCA of Wells A and B.

Figure 2.11: Adapted PCA map.

In Fig. 2.11a that refers just to Well A, it can be seen a separation between the
formations A and B. The left cluster that predominantly is blue, with lower levels
of SS refers to the formation A and the cluster at the right, which is reddish and
has higher levels of SS, refers to formation B. Fig. 2.11b refers to the Well B, run 1
and run 2. It can be seen one major cluster and that makes sense since all this well
had the same formation and same operational conditions. In Fig. 2.11c both Well
A and Well B are represented and still a separation between formations.

This map, when compared to the original torsional vibration severity map used
by the industry, Fig. 2.8, represents a better representativity of the drilling scenario
either for separating the formations or for compacting the dimension of the problem.
When compared with the map obtained by the Standard PCA, this adaptation
shown poorer results separating the Rock formations. Which makes feasible to infer
that when it is done a PCA with all the data (Standard PCA) more information
is carried in less vectors. However, the results obtained by this adaptation are still
promising. The application of the PCA can also be seen as feature extraction. In
other words, it could make easier for the network to train and obtain an estimation
as accurate as possible.

38



Chapter 3

Deep Neural Network Model

The problem this work handles is an evaluation of a sequential measured data
in order to estimate the SS during the drilling operation. Although it is a dynamic
problem where the data is measured sequentially, the history of the states does
not imply in any meaningful information about the current state that a window of
data can’t bring. In order to state such things, several tests with different types of
recurrent neural networks were made, and the results shown were invariably worse
than the ones obtained with a simpler DNN explained in this section, for reasons
that also will be further discussed.

All the neural network variations used in this work were developed in Python be-
cause it is widely used in the machine learning field and have some powerful libraries
such as Keras, Tensorflow, Scikit learn and Pythorch. Among all the possibilities, in
this dissertation was used Keras because of its large community, extensive number
of already implemented functions and GPU based processing. These characteristics
allow more time to be spent on actually idealizing and creating the Neural Network
itself.

3.1 The architecture

Following is the explanation of what was done in each part of the neural network
used in this work so as its training process.

3.1.1 Input layer

The focus of this work is the estimation of the SS. It, as demonstrated in Chapter
2, is an index that is calculated with data from a window of samples, therefore it is
very important to give different time samples to the network be able to make the
estimation.

Some tests were done with different sequence lengths that ranged from 1 (no
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sequence, just one-time sample) to 50 samples. Anything beyond 6 samples shown
no improvement in result. Therefore a sequence length of 6 was chosen as input
to the network. This means that a SS estimation to be made in t0 it is necessary
data measured at surface from t0, t−1, t−2, t−3, t−4 and t−5. As at each time instant
are given to the model 5 variables and it needs them from 6-time steps, the neural
network works with a total of 30 input variables in order to make one estimation of
one value of SS.

3.1.2 Hidden layers

The number of neurons and the total of hidden layers were chosen within a
method like the mesh convergence in finite element method. It was increased until
the results stopped getting significantly better. The final layout of the neural net-
work used were variable according to the dataset and will be explored in the Results
in Chapter 4.

Although sigmoid and tanh were very used and discussed in the later 1990s and
2000s, the saturation is a great problem with both. As can be seen in Fig. 1.6
the saturation of large values at 1 and of small values at 0 or -1 for sigmoid and
tanh respectively. And further, these functions are only really sensitive to changes
around input zero [44].

Because of the characteristic described above, the vanishing gradient problem
becomes a major one when dealing with deeper networks. The vanishing gradient
occurs when the partial derivative of the error function with respect to the current
weight in each iteration of training is very small, preventing the weight from up-
dating. It happens most when dealing with activation functions such as tanh and
sigmoid because they have gradients in the range (-1,1) and (0,1) respectively. Be-
cause of the chain rule, as the depth increases, the chance of vanishing the gradient
increases. This phenomenon makes difficult to know which direction the weights
should move in order to improve de cost function [44].

After around the 2010s, rectified linear activation unit (ReLU) started to be
discussed. They show a great improvement in overall performance and permitted
the development of very deep neural networks [44], page 226.

In 2015, a future derivation of the ReLU, the parametric ReLU (PReLU) was
developed [45]. In Fig. 3.1 the shape of these activation functions is shown.
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Figure 3.1: ReLU vs PReLU.

Even though ReLU normally shows results better than the traditional non-linear
activation functions when used in deeper neural networks, it still has a saturation
below zero. The PReLU comes with the purpose to mitigate this. Its methodology
was so successful when dealing with deep neural networks that for the first time,
an artificial intelligence algorithm surpassed the human level on identifying and
classifying images [45].

This new activation function works by learning the α parameter during training
with the backpropagation method as well. This allows the activation function to
continuously adapt to the weights and bias.

In this work a mix of PReLU and tanh functions was used. The fist layers were
all of PReLU functions in order to prevent the vanishing gradient problem. The last
layer was entirely of tanh.

3.1.3 Dropout layers

A deep neural network has a vast capacity to fit the training dataset, because of
this, overfit becomes a serious problem [46]. In order to deal with such characteristic,
each hidden layer was followed by a dropout layer [47] with a probability of 30%. The
dropout layer is responsible to "turn off", in this case, 30%, of the neurons randomly
and by doing this, changing the path of the internal operation. This technique
was originally thought to be used just during training as a method to prevent the
network to overfit and reducing the network generalization error [47, 48]. It is a
powerful regularizing technique because all the neurons from each layer have to be
equally important throughout all the possible networks [48].

In Fig. 3.2 a deep neural network with three hidden layers is represented. The
red X on the neurons represents the ones that were randomly suppressed by the
dropout layers.

This work used the dropout layer enabled in both training and testing phases as
proposed in [49]. In [49] is mathematically proved that calling the networks several
times with the dropout enabled is equivalent to Monte-Carlo sampling. Another way
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Figure 3.2: Example of Neural Network with dropout. Neurons randomly dropped.

to see this phenomenon is understanding the dropout layer as actually an ensemble
of networks by considering that each time the network is called a different sort
of neurons is used. Because of this, theoretically, the first and second moment
(mean and variance) of the output provides the network’s output and uncertainty
respectively [49].

In the case of this work, evaluating the proposed neural network variability is
a desirable feature because this method was developed to be used in during the
operation to inform the drilling operator the downhole torsional vibration scenario
so he can take the most worthy action. By evaluating the variability of the network‘s
output, the driller could see if the outputs are with small or big fluctuations.

3.1.4 Output layer

Although the SS value to be estimated is a continuous value, the sigmoid func-
tion, which is limited to a range of 0 an 1, was chosen in this layer. This was to
choice in order to limit the output to a certain range, limiting the appearance of
extreme values.

So the output layer consisted of a single neuron with a sigmoid activation func-
tion that mapped the multidimensional output from the non-linear previous layer
to a single continuous output value that ranges from 0 to 1, matching with the
normalized SS.
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The normalization of SS was as follows. After analyzing all calculated SS data
from all possible wells (Well A, Well Br1 and Well Br2), it was noted that the value
of 3.6 was the maximum.

After making a deep analisys in all the drilled lithology data and wells provided
by Petrobras, a maximum value of SS = 4 was entitled. Then all the calculated
SS values were divided by 4 so that they are invariably contained between 0 and 1
and the sigmoid function is then able to estimate its value. After the SS value is
estimated by the network, it is multiplied by 4 for viewing and tracking purposes.

The number of neurons in each layer so as the number of hidden layers were
carefully chosen in a way that the best possible result was obtained while maintaining
the network as simple as possible. A methodology similar to the mesh convergence
in Finite Element Methods was used. It was more deeply explored in the Chapter 4
and Appendix A.

3.1.5 Weights initialization

It is essential the search for a good weight initialization to not let the network
to reduce or magnify the layer input signals exponentially. With the traditional
backpropagation [16] with random and uniformly distributed assigned weights be-
tween -0.3 and 0.3, it becomes increasingly difficult to give good results as the depth
is increased because of the vanishing and exploding gradient problem. The last is
exactly when the opposite of the vanishing problem occurs, it happens when dealing
with activation functions that its derivative can take on larger values.

Therefore a method to choose the initial weight matrix has to be used. The
bias matrices start with value zero for all its parameters as this does not imply in
the previously described problem and shows good results. The chosen method to
initialize de weight matrices was the one proposed by Kaiming He [45]. It consisted
of a weight uniform distribution centered in zero with a limit of [−limit, limit]
where:

limit =
√

6
fanin

, (3.1)

where fanin is the number of input values in the input matrix. As discussed in [45],
this relatively simple measurement considerably improved the overall performance
of the network that used rectified linear units when compared with the standard
random uniform distribution of [16] or [50]. When compared with other techniques
like LeCun [51] or Orthogonal [52] initialization methods, the one proposed in [45]
shown the best results. This technique was also applied for the initialization of the
α values from the PReLU activation functions.
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3.1.6 Loss function

To the optimizer optimize, it is necessary to have a cost function. The cost
function used in this work was the mean square error (MSE) as in Eq. 3.2. This was
chosen because among the traditional cost functions in literature this represented the
one which gives the most importance to abrupt changes. As the problem this work
deals with has severe abrupt differences in SS estimation the MSE was the choice.
Other cost functions like mean absolute error, mean squared logarithmic and the
log(cosh) were tested by only decrement in the output accuracy were observed.

f = 1
n

n∑
i=0

(yi − ŷi(Θ))2 , (3.2)

where ŷ(Θ) is the output from the network regarding the respective weights and
bias and y is the value the output should be.

3.1.7 Optimizer

The optimizer is the method used to update the weight and bias matrix. In
this work was applied the Adam (adaptive moment estimation) [53], a first-order
gradient method developed for efficient stochastic optimization. The Adam was
designed in order to combine the advantages of other two optimization methods,
the AdaGrad [54] and RMSProp [47] which scales updates similarly across batches.
Below are the equations that show the internal process of the Adam optimization
method.

rt = (1− λ1)f ′(Θt) + λ1rt−1 (3.3)

pt = (1− λ2)f ′(Θt)2 + λ2pt−1 (3.4)

r̂t = rt

(1− (1− λ1)t) (3.5)

p̂t = pt

(1− (1− λ2)t) (3.6)

vt = β
r̂t√
p̂t

(3.7)

Θt+1 = Θt − vt (3.8)

where, β, λ1 and λ2 are hyperparameters; Θt can be both the weights or the bias;
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f ′(Θt) is the cost function derived in function of Θ.
In Eq. 3.3 is the momentum like update, with the hyperparameter λ1. In Eq.

3.4, is the RMSProp like update, with the hyperparameter λ2. In the Eqs. 3.5
and 3.6 is represented their "corrections" by the time (t). Finally in Eq. 3.7 is the
increment and in Eq. 3.8 is the weights and bias update.

Adam’s biggest advantages are the following: the magnitudes of the parameters
are invariant of rescaling of the gradient; the step size is strongly linked to the step
size setting; the method doesn’t require a stationary objective and, performs a form
of step size annealing.

The default hyperparameters proposed in [53] are β = 10−3, λ1 = 0.9 and
λ2 = 0.999, and they had shown a good result. But for this problem in specific,
decreasing the β to 10−4 significantly improved the network performance without
increasing the training time. So β = 10−4, λ1 = 0.9 and λ2 = 0.999 was used.

3.2 Training data equalization:

This step consisted of giving the same "importance" for all the SS domain in the
training phase. To better understand what it means, in Fig. 3.3a is a histogram of
all the SS values of the training data (explained in Chapter 4). It can be seen that
the distribution is far from a uniform one. This implies that the values in the bins
containing a higher population would train more times compared to the small ones.
This step randomly replicates the data from the lower population bins until they
are all the same size. Making the new distribution as uniform as possible. Some
times there are bins with zero population, if that happens nothing is done at that
determined bin.

(a) Original training data histogram. (b) Equalized training data histogram.

3.3 Batch size

Batch size is basically the number of training examples given to the network
simultaneously in order to compute a mean error and with that a mean gradient in
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order to compute the weights update. Determining the batch size of the training
is an important task. Too small batch sizes lead to longer training time and may
never let the network to converge because of the noisy updates, leading to the
convergence to flat minimizers. This phenomenon also happens with large batch
sizes [55]. Batches ranging from 32 to 512 samples tend to be a good starting point
as defended in [56]. Despite [57] advocating on batches between 2-32, it showed very
poor results in this problem, principally when dealing with the raw data, as will be
explained in Chapter 4.

As could be seen by the previous paragraph, the batch size is not a consensus
and may strongly depend on the data itself. Therefore, several different batch sizes
were tried during the development of this work. Batch sizes ranging from 128 to
2048 samples got similar results. Because of the fact that by increasing batch size,
due to the increased parallel processing, the computational cost got much smaller
so was finally chosen a batch size of 2048 data points for the whole of this work.
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Chapter 4

Results

In this Chapter the results obtained by the developed neural network are going to
be discussed, so as its complexity and the benefits obtained by the data preprocessing
proposed in Chapter 2.

The activation functions proposed in Chapter 3 were maintained so as the
dropout layer and batch characteristics. Because of this, all the change in results
obtained in this Chapter were due to increased neural network complexity and/or
better data preprocessing characteristics.

The training process was carried until the MSE error from the test cluster con-
sistently got worse or stopped showing improvement over the training. The best set
of weight and bias was saved. This set of weights and bias received the name of best
model. In other words, the best model is the set of weights and bias that combined
with the chosen architecture gave the output that best matched, following the MSE
criteria, the test cluster.

In Fig. 4.1 is a representation of the default error vs training epoch obtained
thorough the tests made in this chapter. One training epoch consists of a cycle where
all training data is provided to the network, error and gradients are calculated, and
weights and bias updated. It can be seen that the error starts at very high levels
and very fast arrives at low levels. After around the 50th epoch, the improvement
increment at each epoch becomes very subtle. The approach was to train until
epoch 150 and then pick the best model. With this model the output from both the
training and testing datasets was plotted in order to compare them.
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Figure 4.1: Default training error curve: train vs test error datasets.

In the figure above, the blue line represents the error from the training dataset
and the red line from the test dataset. The green vertical line represents the mo-
ment where the minimum error from the test dataset was obtained, in this case at
epoch 123. It is precisely from this moment which the best model is saved from.
Subsequently, the output of the training and test data sets are plotted in order to
compare them.

In Fig. 4.2 is all of the experimental SS from Well A containing 25897 samples
where 5489 are from Rock B, Well Br1 containing 5489 samples and Well Br2 con-
taining 6960 samples. In the blue areas are the SS for the Rock A and in the red
area are the ones from Rock B. It can be seen with ease that when in Well A and
happens the transition from Rock A to Rock B there is an abrupt change in the SS.
It also can be noted that the SS for the Well Br2 has a different appearance, with
the values being stagnated in some level for a long period of time. This happens
because this run has an incredibly low acquisition period of 115 seconds versus 3.2
seconds from the Well A and Well Br1 from the downhole data. This Well was
maintained in the test dataset in some tests in order to test how the model behaves
when dealing with abnormal circumstances such as extreme low data acquisition
rates.

48



Figure 4.2: Calculated SS for all the Wells.

In order to evaluate the ANN, the data were splited into two groups, train,
and test with a proportion of 75% and 25% respectively. It was done to evaluate
the capability of the ANN to estimate the value in different scenarios. Below are
the explication of the four variant datasets created. It was not used the validation
dataset because of the limited amount of data concerning different drilling scenarios.

1. Case 1: In this case, the training group was composed of 75% of data from
Rock A, either from Well A and Well Br1, without Well Br2. The Test dataset
was composed of 25% from data from Rock A and 100% from Rock B. The
data for each cluster were randomly picked. These datasets were idealized in
order to evaluate how the ANN behaves when a rock never saw before (Rock
B) is presented. This evaluation should be an important indicator of how this
network behaves when the drilling operation faces a completely new (to the
network) lithology.

2. Case 2: In this case, the training group was composed of 75% of data from
Rock A and B, either from Well A and Well Br1, without Well Br2. The Test
dataset was composed of Rock A and B, 25% of the data from Well A and
Br1 and nothing from Well Br2. The data for each cluster were randomly
picked. These datasets were idealized to evaluate how the ANN behaves when
it receives both Rock A and B. In other words, how it performs when it has
to "take in consideration" the lithology to estimate the SS.

3. Case 3: In this case, the training group was composed of 75% of data from

49



Rock A and B, either from Well A and Well Br1, without Well Br2. The
Test dataset was composed of Rock A and B, 25% of the data from Well A
and Br1 and 100% of the data from Well Br2. The data for each cluster were
randomly picked. These datasets were idealized in order to evaluate how the
ANN behaves when it receives both Rock A and B and data with different
properties (Well Br2) and presented in the testing phase.

4. Case 4: In this case, the training group was composed of 75% all data, from
all the Wells. The Test dataset was composed of the remaining 25% of the
data from all Wells. These datasets were idealized to evaluate how the ANN
behaves when it has data from all scenarios in the training phase.

For all the results shown below, two different neural networks were used. When
dealing with the Raw data, a more robust one had to be used. It contained 5 hidden
layers, with 400, 800, 800, 400 and 100 neurons respectively. Sequence length of 6
with 5 different measurements being a total of 30 inputs. When dealing with the
pre-processed data (Adapted PCA), the network was simpler, with 5 hidden layers,
with 200, 200, 200, 200 and 100 neurons respectively. The whole process to find the
best architecture is described in Appendix A. These layouts were sufficient to the
network converge its results to a scenario as better as possible. No noticeable gain
was obtained by increasing the complexity of the network. As can be seen, after the
Adapted PCA preprocessing, the network could became smaller.

Once the Neural Network’s architecture was chosen, in Appendix B the variabil-
ity of the output was evaluated. With this, a better understanding of the output’s
distribution could be acquired.

4.1 Case 1: Domain extrapolation at Rock B

Once the parameters described in Chapter 3 were chosen, the first step after
becoming familiar with the set of programming tools used was to test the neural
network with the raw data.

By raw data, it is meant the log of the data as it is. The measurements chosen
to be used were the same used in the matrix XT in Chapter 2 at the proposed PCA
analysis, with the SRPM , STOR, SWOB, STORvar, and the ROP . Was used the
log of them because of the high discrepancy in the different data magnitudes, and
as explained in Chapter 2, not to lose the information of the mean of the values.

In the Fig. 4.3 and at all similar ones (4.4, 4.6, 4.7, 4.9, 4.10, 4.12, 4.13), is
the output from the best model trained. In black is the experimental SS value, the
"right" output. In blue is the mean output value obtained from giving the same
input to the network 300 times. Because of the dropout layers, the output from
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the network is stochastic. In orange is the mean value plus 2 RMS deviations and
in green is the mean value subtracted from 2 RMS deviations. As the mean value,
the RMS was calculated at each point, with 300 simulations as well. Therefore the
interval comprehended between the orange and green lines is the interval with +/-
2 RMS deviations from the mean calculated for each input sample.

In Fig. 4.3 is shown the output from the network trained and tested with the
Raw data and in Fig. 4.4 is the output from the network trained and tested with
the data from the Adapted PCA. Both from the datasets from Case 1.
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Figure 4.3: Case 1: Raw data.
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Figure 4.4: Case 1: Adapted PCA.

In Fig. 4.3 is clear that despite the fact that the network follows the right answer
most of the time in the training phase (the left figure), the interval comprehended
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between the +/- 2 RMS deviations is wide and saturated around 0.3. Leading to an
output that brings little information to the drilling operator. When analyzing the
output from the test phase (figure from the right), it continues with similar behavior
as the training phase when tested with data from Rock A (the smaller SS values
comprehended between 0 to 4500 samples and from 10300 to 10600 samples).

When this network is presented with data from Rock B (values comprehended
between 4500 and 10300), the network completely misses. It gives results that are
misleading, with a very large RMS deviations and again with an almost constant
estimation of values around 0.3.

In Fig. 4.4 the results with both the train and test dataset get significantly
improved over the Raw data. The RMS deviations is smaller, did not show regions
with almost unchangeable estimations, and is overall more accurate. In the test
phase, when dealing with the Rock B (not presented in the training phase), the
network was able to acknowledge that something changed in the operation and the
SS value had increased. Although in Case 1 both networks completely mistaken the
estimation of an unknown lithology, the Adapted PCA network could at least note
that the SS had increased which could be an important indicator for the drilling
operator.

The Fig. 4.5a an approach to better comprehend and understand the training
error was created. In the upper left, there are three histograms. In dark blue is the
histogram from the SS of the training dataset, in light blue is the histogram from
the SS of the equalized training dataset approached at Chapter 3 and in red is the
histogram of the SS estimations that fluctuated more than 2 RMS deviations from
the correct value. This last histogram comprehends the errors obtained in the testing
phase from the training dataset. In the lower-left 2 histograms are represented. In
dark blue is the histogram of the SS of the test dataset and in red is the histogram
of the errors obtained in the testing phase with the test dataset. In the upper right
is a 2D histogram where the x-axis is the fluctuation in terms of RMS deviations
between the experimental SS value and the calculated mean from the network. The
y-axis is the "right" SS value. This histogram just shows fluctuations above 2 RMS
deviations because are the ones comprehended in the red histogram of the upper left.
Its title brings the information of how much of those mistaken values (larger than
2 RMS deviations) were smaller than 3. The lower right figure is a 2D histogram
identical to the upper one, but this one brings information about the test dataset.

When comparing the histograms from the training and testing dataset in Figs
4.5a and 4.5b respectively, the improvement from the Raw data to the Adapted
PCA data is made clear. The error rate went from 11% to 6% with the Adapted
PCA data in the training dataset and from 46% to 36% in the testing dataset. But
despite this, it is notorious how, in both cases, the vast amount of the mistakes
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happen in the new SS range. Although the SS in the range from 1.8 to 2.5 could be
equalized, there were very few data from these magnitudes. Because of this, very
few data were replicated giving little information to the network. As this region also
comprehends most of the Rock B, it is expected a poor result.

Comparing the 2D histogram of both cases, it can be seen that during the training
phase the error behavior was similar, but in the testing phase the scenario was
different. The network trained with the raw data had mistakes that fluctuated a lot
from the estimated mean, while the network trained with the data treated with the
Adapted PCA had its error much more concentrated in the range between RMS = 2
and SS = 4 which is much better than a mean of almost 7 as in the network trained
with the raw data.
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(a) Case 1 error evaluation: Raw data.

(b) Case 1 error evaluation: Adapted PCA.

Figure 4.5: Case 1 error evaluation.
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4.2 Case 2: No domain extrapolation, not using
Well Br2

Figure 4.6: Case 2: Raw data.
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Figure 4.7: Case 2: Adapted PCA.

In Figs. 4.6 and 4.7 are represented the SS estimation from the Case 2 from the
Raw data and the Adapted PCA data respectively.
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This case deals with the same scenario from both the training and testing phase.
It simulates a real approach where the drilling is happening in previously drilled
scenario. It perceives with ease the change of lithology so as subtle SS variations.

When comparing the output from both the Raw input, Fig. 4.6, with the
Adapted PCA, Fig. 4.7, the difference is subtle, but present. The error went from
13% in the raw data to 8% in the network trained with the Adapted PCA.

When comparing the 2D histograms, the ones from the Adapted PCA data shown
a slightly higher concentration in values within a range of 3 RMS deviations.

(a) Case 2 error evaluation: Raw data.

(b) Case 2 error evaluation: Adapted PCA.

Figure 4.8: Case 2 error evaluation.
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4.3 Case 3: Domain extrapolation at Well Br2

Figure 4.9: Case 3: Raw data.
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Figure 4.10: Case 3: Adapted PCA.

In Figs. 4.9 and 4.10 are represented the SS estimation from the Case 3 from
the Raw data and the PCA onine data respectively.
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For this case both the training and test datasets had data from rock A and B,
but this time, the Well Br2 which had a different SS was presented just in the testing
phase.

As seen in Figs. 4.9 and 4.10, the results obtained with both Raw data and
Adapted PCA were visually very similar in spite of the estimations made when
drilling Rock B and using Adapted PCA were more accurate. The one made with
the Raw data stood in the interval of 2 RMS deviations, but the mean does not
hit it for the most part. In the estimation made at Rock B with the Adapted PCA
data was more accurate, with considerably smaller RMS deviations and with the
estimation mean hitting the target.

When looking to the estimation for the Well Br2, for both cases it was not
very good. But again the Adapted PCA data showed better results, being able to
maintain for most of the time the SS estimation interval under the right SS.

By analyzing the histogram figures, Fig. 4.11, of this case, it can be clearly seen
the superiority of the model that used the Adapted PCA. The error rate dropped
from 12% to 10% while the concentration of mistaken estimations contained in a
range of 2 to 3 RMS deviations went from 59% to 73% with the training dataset. The
error rate dropped from 35% to 27% while the concentration of mistaken estimations
contained in a range of 2 to 3 RMS deviations went from 38% to 58% with the test
dataset. This means that the overall accuracy improved by using the Adapted PCA
approach.
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(a) Case 3 error evaluation: Raw data.

(b) Case 3 error evaluation: Adapted PCA.

Figure 4.11: Case 3 error evaluation.
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4.4 Case 4: No domain extrapolation, using Well
Br2

Figure 4.12: Case 4: Raw data.
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Figure 4.13: Case 4: Adapted PCA.

In Figs. 4.12 and 4.13 are represented the SS estimation from the Case 4 from
the Raw data and the PCA onine data respectively.
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Both estimations made with the Raw data and the Adapted PCA shown similar
results. The estimation, when the network is given the data from Well Br2 in the
training phase, become much better for this well.

By analyzing the Figs. 4.12 and 4.13 again can be noted that the network that
used the Adapted PCA overall shown a narrower interval with +/- 2 RMS from the
mean, with smaller RMS deviations. The estimations for the data from Well Br2
was a little better as well.

Although the error rate improved just a little, from 18% to 16%, the mistaken
estimations contained between a range of 2 and 3 RMS deviations became worse,
went from 64% to 57% with the training dataset and from 65% to 58% with the
test dataset. This negative effect can be assigned to the narrower interval. Finally,
taking this in consideration, both estimations were very similar, but the more precise
output from the Adapted PCA network may be a indicator of its superiority.
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(a) Case 4 error evaluation: Raw data.

(b) Case 4 error evaluation: Adapted PCA.

Figure 4.14: Case 4 error evaluation.
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Chapter 5

Conclusions

This dissertation made a exploration in the SS estimation using only surface
data with the use of Neural Networks. It also evaluated how the data preprocessing
by applying the Adapted PCA affected the results.

The main objective, to estimate the torsional vibration severity factor (SS) was
accomplished with accurate rate considering intervals of 2 and 3 RMS deviations as
shown in the table below:

Table 5.1: Training and testing errors obtained in each case, considering an interval
of 2 and 3 RMS deviations.

Case 1 Case 2 Case 3 Case 4
Error rate
< 2 RMS

Error rate
< 3 RMS

Error rate
< 2 RMS

Error rate
< 3 RMS

Error rate
< 2 RMS

Error rate
< 3 RMS

Acc. rate
< 2 RMS

Acc. rate
< 3 RMS

Raw
data

Training
dataset

11% 5% 13% 4% 12% 5% 18% 6%

Adapted
PCA

Training
dataset

6% 1% 8% 2% 10% 3% 16% 7%

Raw
data

Testing
dataset

46% 38% 13% 4% 35% 22% 18% 6%

Adapted
PCA

Testing
dataset

36% 19% 8% 2% 27% 11% 16% 7%

Among the 4 different cases that were studied, Case 2 and 4 showed the best
results in the testing phase. They represent a scenario in which situations the data
used to estimate SS had previously been seen by the neural network during the
training phase. It is feasible to assume that once the network has a large amount
of drilling data to perform its training and thus containing a greater number of
operating scenarios, it will obtain results similar to those obtained in Cases 2 and
4. The other cases, which require some extrapolation of the training domain by the
network, did not show such satisfactory results, with considerably high error rates,
especially for the network that used the raw data. These results tend to improve
substantially once the network has data from many wells to train, as the fluctuation
from this extrapolation would be shorter. Nevertheless, for the results obtained with
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the data preprocessed with the Adapted PCA, the interval and magnitude of the
estimated value provided information.

Although Cases 2 and 4 are in similar situations, trained with data from con-
ditions similar to those of the test, the error rate of Case 4 was, for the network
trained with the Adapted PCA, considerably higher than Case 2 and practically
the same as Case 4 trained with the raw data. This fact is due to the uncertainty
added to the model with data from Well Br2, which has different characteristics.
The network could not adapt to it with the same success as Case 2. Preprocessing
the data with the Adapted PCA, although it did not result in a lower error rate,
resulted in a smaller RMS deviation. Considering that the final result obtained has
the same error rate and narrower interval, the model improved.

It is noteworthy, once again, that these results were obtained only with the use
of data from 3 wells and, one of them, Well Br2, with a very low data recording
rate. The result obtained makes it quite promising to explore this technique with
new data in order to make the method more robust and reliable.

It also shown that a simpler neural network, once fed with the Adapted PCA
data proposed at Chapter 2, could obtain better results than a larger one fed with
raw data.

5.1 Future Steps

Once the methodology was developed, a crucial future step is to validate with
data from other wells. This step has the potential to create a robust tool that feeds
the drilling operator with trustworthy estimations of the downhole scenario.

Hopefully, these new wells are going to have usable measurements from lateral
and axial vibrations so the methodology could also be applied estimate them.

After presenting this work to Petrobras, they have shown great interest in the
developed method and proposed the creation of a patent out of this. Research in
patents was already made, and a similar one was found [58]. But it is constrained
to using data with a much higher frequency acquisition rate. Therefore, the writing
and legal process of creating a patent will be worked on in the next months. Latter,
an articled with the main achievements of this work will be written and submitted.
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Appendix A - Choosing the Neural Network di-
mension

Choosing the right number of neurons and hidden layers of a neural network is
a very difficult task. The final architecture greatly depends on the data that the
network will work with. Because of this, to find a good starting point, a method
that resembles the mesh convergence of the finite element method was used. All
the tests made in this process used Case 1 because its the one that has the greatest
domain extrapolation.

In the following tables are the convergence process made to find the neural
network architecture. The number of neurons and hidden layers were step by step
increased until no significant improvement could be observed. The column labeled
as "Output saturated" refers to when a great number of estimations became zero or
one, the limits of the sigmoid activation function of the output layer. The column
"Regions with constant estimation" refers to regions where the network estimated
almost the same SS. Both these columns happened most of the time when dealing
with the regions of the domain extrapolation.
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Table 5.2: Neural Network with Raw Data architecture convergence process

Hidden
Layer 1

Hidden
Layer 2

Hidden
Layer 3

Hidden
Layer 4

Hidden
Layer 5

Lowest
Loss

Output
saturated

Regions with
constant
estimation

Activation
Function

tanh

100 0 0 0 0 0.033 No Yes
400 0 0 0 0 0.030 No Yes
1000 0 0 0 0 0.028 No Yes
10.000 0 0 0 0 0.029 No Yes

Activation
Function

tanh tanh

100 100 0 0 0 0.27 No Yes
1000 1000 0 0 0 0.23 No Yes
2000 2000 0 0 0 0.017 No Yes

Activation
Function

PReLU PReLU PReLU PReLU

50 50 50 50 0 -
100 100 100 100 0 -
150 150 150 150 0 -
400 400 400 400 0 -
800 800 800 800 0 -

Activation
Function

PReLU PReLU PReLU PReLU tanh

50 50 50 50 25 - Yes Yes
100 100 100 100 50 - Yes Yes
150 150 150 150 75 - Yes Yes
400 400 400 400 100 0.22 Yes Yes
400 800 800 400 100 0.017 No Yes
800 1200 1200 800 100 0.0166 No Yes
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Table 5.3: Neural Network with Adapted PCA architecture convergence process

Hidden
Layer 1

Hidden
Layer 2

Hidden
Layer 3

Hidden
Layer 4

Hidden
Layer 5

Lowest
Loss

Output
saturated

Regions with
constant
estimation

Activation
Function

tanh

100 0 0 0 0 0.032 Yes No
400 0 0 0 0 0.029 Yes No
1000 0 0 0 0 0.029 Yes No
10.000 0 0 0 0 0.024 Yes No

Activation
Function

tanh tanh

100 100 0 0 0 0.16 No No
1000 1000 0 0 0 0.12 No No

Activation
Function

PReLU PReLU PReLU PReLU

50 50 50 50 0 0.015 No Yes
100 100 100 100 0 0.014 No Yes
150 150 150 150 0 0.015 No Yes
200 200 200 200 0 0.015 No Yes
400 400 400 400 0 0.014 No Yes

Activation
Function

PReLU PReLU PReLU PReLU tanh

50 50 50 50 10 0.022 No No
100 100 100 100 50 0.012 No No
150 150 150 150 75 0.012 No No
200 200 200 200 100 0.011 No No
400 400 400 400 200 0.011 No No

Marked with yellow are the architectures which shown the lowest losses. The
final choice was made to maintain the network as simple as possible. Because of this
was chosen the one with five hidden layers for both Raw Data and Adapted PCA.
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Appendix B - Evaluation of the distribution of the
output

To test the distribution of the output obtained by utilizing the dropout layers,
some histograms were made from the testing dataset of Case 1. 300 and 5000
simulations were made of two different moments, one at the testing sample number
1000 regarding Rock A, and other from the testing sample 7000 regarding the Rock
B, the domain extrapolation.

In Figs. 5.1 and 5.2 are the histograms obtained after 5000 simulations made
with the sample 1000 and 7000 of testing dataset.

Figure 5.1: Histogram with 5000 simulation of sample 1000 (Rock A) of the test
dataset of Case 1
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Figure 5.2: Histogram with 5000 simulation of sample 7000 (Rock B) of the test
dataset of Case 1

In all the results shown in Chapter 4, for each sample was made 300 simulations.
300 was the lowest number of simulations that presented a similar result as 5000
or more simulations, regarding the RMS and mean values. In Figs. 5.3 and 5.4
are the histograms obtained after 300 simulations made with the sample 1000 and
7000 of testing dataset. Even though histograms became noisier, the results in the
estimations, minding the calculated mean and the RMS, did not show a significant
difference.

Figure 5.3: Histogram with 300 simulation of sample 1000 (Rock A) of the test
dataset of Case 1
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Figure 5.4: Histogram with 300 simulation of sample 7000 (Rock B) of the test
dataset of Case 1

In all these histograms figures, it is clear that the distributions are not Gaussian.
Because of this, representing the distribution with standard deviations is not right.
Therefore, this work used RMS deviations to somehow quantify the variability of
the network‘s output.
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