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DAS ONDAS

Zhijia Wu

Dezembro/2019
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A tese investiga o conceito de sistema de rigidez não linear na melhoria da con-

versão de energia das ondas para um conversor de energia das ondas do tipo absorve-

dor de ponto (PA). Uma esfera semi-submerśıvel é adotada juntamente com as abor-

dagens anaĺıticas e de mesclagem no cálculo da força não linear de Froude-Krylov. A

abordagem anaĺıtica é aprimorada para resolver a força não linear de Froude-Krylov

na superf́ıcie molhada instantânea em condições regulares e irregulares de ondas

com mais eficiência, ajustando a função de Bessel e a função exponencial com séries

polinomiais adequadas de acordo com várias frequências de ondas.

A análise estática de uma sistema de rigidez não linear clássico com molas de

compressão mecânica (NSMc) descreve três tipos de configurações: biestável, QZS

(rigidez quase zero) e configuração monoestável. A resposta em condições de onda

regulares indica que, com a abordagem não linear, a resposta de ressonância é em-

purrada até um peŕıodo mais longo, além de ampliar a largura de banda da resposta.

Um procedimento é estabelecido para determinar a região viável dos parâmetros do

NSMc. Devido à consideração prática, as posśıveis melhorias na conversão de energia

das ondas associadas às vantagens do NSMc são dramaticamente enfraquecidas.

Em seguida, a sistema de rigidez não linear alternativo com cilindros pneumáticos

(NSPn) é investigado na sequência, mostrando que em sua região viável, a produção

anual de energia não reduz muito. Para o clima de ondas com um longo peŕıodo

na região costeira do Rio de Janeiro, Brasil, a PA poderia colher mais energia das

ondas com o NSPn do que com o controle de trava. Além disso, a menor taxa de

potência pico/média mostra que, usando o NSPn, o processo de absorção de energia

é mais suave.
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The thesis investigates the nonlinear stiffness system (NSS) concept in improv-

ing wave energy conversion for a point absorber (PA) type wave energy converter

(WEC). One semi-submersible sphere is adopted together with the meshing and an-

alytical approaches in calculating the nonlinear Froude-Krylov force. The analytical

approach is improved to solve the nonlinear Froude-Krylov force at the instanta-

neous wetted surface in both regular and irregular wave conditions more efficiently

through fitting Bessel function and exponential function with suitable polynomial

series according to various wave frequencies.

The static analysis of one classical NSS with mechanical compression springs

(NSMc) describes three types of configurations: bi-stable, QZS (quasi-zero stiffness),

and mono-stable configuration. The response in regular wave conditions indicates

that with the nonlinear approach the resonance response is pushed even to a longer

period range, besides broadening the response bandwidth. One procedure is estab-

lished to determine the feasible region of NSMc parameters. Due to the practical

consideration, the potential improvements in wave energy conversion associated with

the NSMc’s advantages are dramatically weakened.

Then the alternative NSS with pneumatic cylinders (NSPn) is investigated in

the sequence, showing that in its feasible region, the annual energy production

(AEP) does not reduce too much. For the wave climate featuring a long period in

the nearshore region of Rio de Janeiro, Brazil, PA could harvest more wave energy

with the NSPn, than with the latching control. Moreover, the lower peak-to-average

power ratio shows that using the NSPn, the process of power absorption is smoother.
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Chapter 1

Introduction

1.1 Overview

In 2018, the world electricity consumption was rated at 22,964 TWh with production

reaching 26,590 TWh. In the global power generation matrix, since the end of 2000,

the share of renewable energy sources has increased from 0.8% to 25.60%. The

contribution from wind and solar energy sources has reached 7.47%, mostly due to

the dramatic and continuous fall of their costs over recent years [1].

Ocean waves also can be thought, as a generous, sustainable and clean source of

energy. They feature even higher density than wind and solar energies, and contain

a tremendous amount of potential. The theoretical annual wave energy potential is

estimated at around 29,500 TWh, even if one excludes regions where wave energy

density is lower than 5 kW/m [2].

Nevertheless, the present research and development stage still cannot be consid-

ered sufficiently mature, as the technical potential related to the ocean wave energy

is rather small – only about 146 TWh. It means that only almost 0.5% of the

theoretical potential can be extracted from areas near coastlines with wave climate

> 30 kW/m and, also due to technological bottlenecks, wave energy converters still

operate below 40% operational efficiency [3, 4].

In such a context, the wave energy conversion technology still presents great

potential for possible developments to be worked on, looking forward to innovative

and competitive solutions still to come.

Due to its location – in the ocean – wave energy conversion presents difficulties

but also some unique advantages. One of these positive characteristics would be

that it is suitable for power supplying to remote islands. Furthermore, it would

be a rather promising choice as potential power supplies for many applications in

the offshore industry, e.g., complementary power supplies in the oil&gas offshore

industry and fish farm industry.
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In the literature, there are many different types and concepts of Wave Energy

Converters – WEC. Typically, based on its geometry, the WEC adopts the following

classification: Terminator, Attenuator and Point Absorber (PA) [5].

On the other hand, depending on its physical concept, they can be classified

as Oscillating Water Column (OWC), Oscillating-Body System(OB) and Overtop-

ping Device [2]. In Figure 1.1, the schematic conceptual classification of WECs are

described but not necessarily limited to the above-mentioned situations.

Figure 1.1: Schematic conceptual classification of wave energy converters (adapted
from [6])

(a) Fixed OWC; (b) Floating OWC; (c) Terminator; (d) Attenuator;
(e) Point Absorber; (f) Submerged Pressure Differential; (g) Overtopping Device.

In the last two decades, the PA type WEC has been attracting a great deal

of attention from the wave energy technological community. The simplicity of its

geometry and mechanical apparatus, and relatively small dimensions lead to lower

investments and maintenance costs. Further, the vertical axisymmetry allows for

extracting energy from any wave propagation direction. Moreover, small bodies are

also more convenient to work in arrays, as used in offshore parks. Such characteristics

indicate PAs as a highly promising alternative to be considered as a competitive

commercial solution to the electricity market in the coming future.

1.2 Motivation and objectives

Due to its small characteristic length, the PA’s operational bandwidth is much

narrower than other WEC concepts (e.g., terminator and attenuator devices). In

that case, PA will be able to extract a significant amount of wave energy only from
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wave components lying within a quite narrow band close to the resonance. Therefore,

if its natural frequency is out of the range of the predominant sea wave frequency,

it will cause an abrupt drop in efficiency. By considering real sea conditions, typical

PA tends to operate mostly out of the resonance conditions.

To overcome the aforementioned costly drawbacks, one possible approach is to

work with optimal control or sub-optimal control if the fully optimal control is not

attainable [7]. The complex conjugate control [8], damping control [9–11], latching

control [12–17], Model Predictive Control (MPC)/MPC-like control [7, 10, 18–22]

and Proportion Integration (PI)/Proportion Integration Differentiation (PID) con-

trol [23–26], Reinforcement Learning (RL) [27, 28] represent some of the most widely

studied schemes.

Figure 1.2: Possible approaches to improve wave energy conversion

Some of the control strategies, such as complex conjugate control, MPC/MPC-

like control, PI/PID control, and RL, require an accurate prediction of wave ex-

citation force which is one major obstacle for real applications. In addition, Bi-

directional reactive power flow increases the complexity of the PTO system, as well

as the cost. To avoid such difficulties, the focus has been transferred to the control

strategy based on the non-reactive approach [29].

In the case of damping control [8], selecting the positive damping, no matter

it is constant [9, 10] or time-varying [11], the reactive power flow disappears. One

pre-calculates the optimal damping according to wave conditions and then updates

online based on the estimation of wave conditions [25]. Thus such a simple ap-

proach is usually merged with other strategies to investigate the PTO damping

influence for better integration. For instance, when applying latching control, the

PTO damping should be updated online based on the optimal damping look-up
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table pre-calculated.

Latching control does not feature reactive power flow inherently [29]. However,

though the non-predictive approach [13–15] eliminates the demand of wave excita-

tion force prediction, the determination of proper latching duration that affects the

performance of latching control strictly, still requires the estimation of the deploy-

ment wave climate.

Another possible alternative approach changes the intrinsic inertial or stiffness

characteristics that are associated with the natural frequency (period) of the system.

A two-body system [30, 31] or a nonlinear stiffness system (NSS) [32, 33] can achieve

such a goal. Among other possible engineering applications, the NSS has been widely

applied in the vibration isolation problem and vibration energy harvesting, and has

started attracting attention as a promising concept to be applied as a feasible,

efficient, and simple solution for wave energy conversion [34, 35], while most of the

two-body systems demand large supplement mass which inherently increases the

cost of WEC construction.

Based on these above observations, the present thesis focuses on improving the

understanding and evaluating the application of NSS concept on wave energy con-

version.The main objectives of the investigations presented in the thesis may be

summarized as:

• To derive the accurate and efficient nonlinear Froude-Krylov force model in

analytical approach;

• To investigate novel characteristics of NSS concept with nonlinear Froude-

Krylov force model;

• To establish the NSS practical constraint conditions;

• To investigate the alternative NSS solution featuring fewer constraints.

1.3 Outline of the thesis

To comply with the objectives listed in Section 1.2, the thesis content is structured

as follows:

Chapter 2 – Literature review

A comprehensive review of the main aspects related to the novel approach to

improve the performance of PA type WEC aims at presenting some of its historical

backgrounds and recent outcomes including discussions about the reactive and non-

reactive control strategies, and the approaches that can change the intrinsic inertial

or stiffness characteristics associated with the natural frequency (period) of the

dynamic system.
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Figure 1.3: Thesis organization

Especially, the non-reactive latching control alternative deserves some deeper

attention in the review since it is chosen to be compared with the following mentioned

NSS due to its simple logic and high efficiency.

NSS applications in vibration isolation, vibration energy harvesting and so on

bring some inspirations to be initially considered into wave energy conversion. But

some other relevant researches on NSS engineering applications still need to be done.

Some authors have discussed the weakly nonlinear Froude-Krylov force model,

provided by the non-uniform waterplane area of the PA buoy. Such a nonlinear

characteristic will be investigated together with the NSS in this thesis.

Chapter 3 – Mathematical model

The fundamental mathematical model to deal with the ocean wave excited prob-

lems is based on Newton’s second law. The well-known linear model adopts the

linear potential flow theory to evaluate the hydrodynamic forces, and usually sim-

plifies the PTO force with a linear damping term, where the state-space model is

utilized to approximate the convolution integral that appears in the radiation force

calculation.

In the weakly nonlinear model, only the nonlinearity of Froude-Krylov is consid-

ered due to the non-uniform waterplane area of the sphere through both the direct

meshing and analytical approaches. In addition, the analytical approach is further

improved to handle the regular wave and irregular wave situations more accurately

and efficiently, especially for the latter one. Finally, the drag force correction is also

mentioned as its effect deserves further investigation when the motion response is
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amplified by NSS.

To verify the code set up based on the above theory, a code-to-code verification

compares results to those from the International Energy Agency (IEA) Ocean Energy

Systems (OES) Task 10 project [36], including the free-decay tests, regular wave

situations, and irregular wave situations.

Chapter 4 – Nonlinear stiffness system in WEC

In this chapter, the mathematical model of NSS with mechanical compression

springs (NSMc) is set up. The static analysis helps to better understand the NSMc

system.

In the dynamic analysis, both situations with/without NSMc in linear and non-

linear approaches first validate the mathematical model. Then the unique motion

characteristics of a sphere with NSMc under the regular wave conditions, allow for

identifying the distinct motion behaviors. In addition, Chapter 4 simultaneously

explores the influence of some relevant factors on motion behavior and power ab-

sorption.

Chapter 5 – NSMc in WEC: practical considerations

Continually, this chapter concentrates the investigation on the NSMc practical

application. Thus it discusses the NSMc performance in irregular wave conditions,

with the necessary validation first.

According to the design process of mechanical compression springs, the practical

constraint conditions in designing the NSMc system are proposed. Hereafter, the

theoretical annual energy production (AEP) in a given sea site is evaluated within

the feasible NSMc configurations.

Chapter 6 – Alternative NSS in WEC

To overcome the strict practical limitations imposed by the mechanical charac-

teristics of springs on the NSMc performance, Chapter 6 discusses an alternative

NSS with pneumatic cylinders (NSPn) and sets up the corresponding novel model.

Following the static and dynamic analysis of the novel system, this chapter ex-

plores the practical feasibility of the pneumatic cylinder solution, which can explain

the advantage of NSPn relative to NSMc. The further performance analysis on the

influencing factors is conducted, together with the drag correction.

Finally, the chapter performs comprehensive comparisons between the lathing

control method with constant latching duration and different NSPn configurations

to evaluate their functions on improving the wave energy conversion.

Chapter 7 – Conclusions and future work

The final chapter resumes the main conclusions drawn during the thesis prepa-

ration and points out some meaningful work that exceeds its scope, indicating them

as possible future investigations.
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Chapter 2

Literature Review

An extensive and fruitful review of the control strategies for improving the wave

energy conversion of WECs can be found in [7, 8, 18, 22, 37, 38]. Most of the

optimal and sub-optimal control strategies depend on the accurate wave information,

as well as generate reactive power flow in the PTO system. One exception is the

latching/declutching control, which is non-reactive inherently [29].

Except for the aforementioned schemes, an alternative approach could be ob-

tained by adjusting the intrinsic inertial or stiffness characteristics associated with

the natural frequency (period) of the dynamic system. In a two-body system, a

supplementary mass may reduce the natural frequency [30, 31], while the two-

degree-of-freedom motion of the WEC buoy and the reaction mass may broaden

the frequency range of the response [39–41] due to multiple resonance states. An

additional bi-table system featuring negative stiffness reduces the natural frequency

in a distinctive way [32, 42]. In the same way, hydrodynamic negative stiffness and

compressible volume concepts can also decrease the resonance frequency[43–47].

The consequent discussions will cover the non-reactive latching and declutching

control, two-body system and nonlinear stiffness system as their relatively simple

logics do not require complex optimization computation and no reactive PTO flow

exists.

2.1 Latching and declutching control

Latching control, as proposed originally by Budal and Falnes [12], has been applied

to the pioneering wave-power buoy project in the 1980s [48, 49]. It works as a

kind of discrete control strategy, therefore, different from the reactive control, which

works as a continuous process. As shown in Figure 2.1, at the time t1 when the

buoy reaches its upmost position and velocity zero, a clamping mechanism keeps

the buoy position fixed. Then it releases the buoy after a certain latching duration

TL at the time t2. When it reaches the lowest position at the time t3, the clamping
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mechanism works again. In this case, the buoy velocity has always the same sign

or in phase with the wave excitation force, implying that power will be transferred

from the wave to the buoy. Hereafter, latching control is referred to as phase control.

To achieve the velocity and wave excitation force synchronization, the latching

duration TL is one key factor to determine the releasing time instance – t2 or t4. In

regular wave conditions, the constant latching duration [15] can be defined as,

TL =
T − Tn

2
(2.1)

where: T – wave period;

Tn – oscillating buoy natural period.

Figure 2.1: Illustration of latching control with constant latching duration

(i): wave elevation; (ii): displacement with latching; (iii): displacement without latching;
(iv) wave excitation force; (v): velocity with latching; (vi): velocity without latching.

Note that, the latching control method works only if wave period (T ) is longer

than the buoy natural period (Tn). In irregular wave conditions, Sheng et al. [15]

have proposed a simple expression of TL through using the characteristic period Tc.

It may be the energy period (Te), mean wave period (T01) or peak period (TP ).

TL =
Tc − Tn

2
(2.2)

Peñalba Retes et al. [50] have found that the constant latching duration strategy

might not be the best strategy when using the weakly nonlinear Froude-Krylov

force model. They consequently defined an adaptive latching strategy, allowing for

adaptive changes in the latching duration to obtain the largest motion amplitude,
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regardless of the hydrodynamic model (linear or nonlinear).

Alternatively, Falcão [13] proposed one threshold latching control and applied it

to a PA with hydraulic PTO system. The PA remains fixed after its velocity reaches

zero until the hydrodynamic force exceeds a pre-set threshold value. Such techniques

do not require any prediction of wave information but utilize only the measurement

of wave elevation as controller input. Then, Lopes et al. [14] transferred the force

threshold into the wave elevation threshold (ζth) and adopted this type of control

strategy to conduct experimental work featuring an OWC. In regular wave con-

ditions, the wave elevation threshold latching is equivalent to the aforementioned

constant duration latching. For the irregular wave, the threshold is calculated in the

same way as for the regular wave using the same energy period and an equivalent

power level. The expression of ζth is given by,

ζth =


H

2
sin

[
π

2
(1− Tn

T
)

]
regular wave

HS

2
√

2
sin

[
π

2
(1− Tn

Te
)

]
irregular wave

(2.3)

where: H – wave height of a regular wave;

HS – significant wave height of an irregular wave.

Due to the randomness of wave elevations in irregular waves, two latching strate-

gies behave differently. The power output depends only moderately on the threshold

value and loading damping. Consequently, it makes the threshold unlatching strat-

egy a promising candidate for the development of a simple and high-yield controller

for latching control operation in real-sea conditions [14].

Besides the above non-predictive strategies, there are some other predictive ap-

proaches to conduct latching control. In such an approach, not only one powerful

and accurate mechanical or electromagnetic clamping mechanism needs to execute

the latching and releasing commands, but also it requires the prediction of wave

excitation force. Budal and Falnes [48, 49] indicated that the unlatching should

take place Tn/4 before the maximum force occurs. Thus, the wave should be pre-

dicted at least at time Tn/4 in advance. This prediction can be done by measuring

the local wave pressure or by means of Kalman filter technique. According to the

similar strategy of determining the unlatching time, Babarit et al. [16] proposed

a predictive latching control aiming at keeping the velocity and excitation force in

phase, together with the other two strategies – maximizing the power absorption

and maximizing the heave amplitude. Feng and Kerrigan [51] proposed a latch-

ing control algorithm to maximize power absorption in irregular wave conditions

using the Derivative-Free Optimization (DFO) method that featured relatively low

computational burden and significant improvement in energy absorption. Their al-
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gorithm considered two receding horizon closed-loop strategies: the non-predictive

one took the past wave information to estimate the optimal latching duration; the

predictive one defined the optimal time by predicting the future waves.

When applying the latching control on a two-body point absorber, Falcão et al.

[52] found out that the substantial increase in the energy absorption of a single-body

converter did not occur in the two-body buoy case, except for the very impractical

large value of the mass of the submerged body against which the floater was reacting.

The similar conclusion was also drawn by Eidsmoen [53].

In 2011, Todalshaug et al. [18] conducted comparisons of more real-time control

strategies for a heaving buoy in a set of irregular wave conditions and addressed that

though less power was produced, with latching control, the peak-to-average power

ratio was less than half of that with the reactive control – MPC. In their earlier

work [54], the comparisons in regular waves also depicted the similar result.

Besides the need for a very powerful mechanical or electromagnetic clamping

mechanism, the predictive approach requires the prediction of wave excitation force.

On the contrary, declutching control is suitable for the case when the WEC

resonant period is longer than the wave period. Babarit et al. [17] implemented

the declutching control on a PA with hydraulic PTO system using a simple by-pass

valve and draw the conclusion that declutching control can lead a higher energy

absorption in both regular and irregular waves. However, as it is more common that

the predominant wave period is longer than the PA type WEC natural period, the

latching control is more widely implemented than the declutching control.

2.2 Two-body WEC

To avoid expensive and vulnerable control system and clamping mechanism, one

alternative strategy would be a passive system to change the frequency response of

the PA so as to be in resonance with the dominant sea states at the chosen location.

According to the well-known un-damped natural frequency (ωn) expression,

ωn =

√
C

m+ma

(2.4)

where: C – system stiffness;

m, ma – mass and added mass (system inertia).

one way of shifting the frequency response of the dynamic system is by increasing

the inertia of the moving parts. Engström et al. [30] studied the influence of the

submerged depth on the power capture as shown in Figure 2.2 (a). They found that

in order to achieve good power absorption for a two-body system, the lower body

should be placed at a sufficient depth. In that case, both the excitation force on
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and radiation from the lower body are very low so that the lower body can act as

a passive energy storage mechanism that adds additional inertia into the system.

Using the Taguchi method, Al Shami et al. [31] distinguished the effects of seven

different parameters and discovered that: (i) the shape (cylinder vs. sphere) of the

lower body had the largest effect on both the power absorption and bandwidth; (ii)

the volume of the lower body affected the resonant frequency most heavily. Thus,

the lower body is the most important factor to improve the two-body WEC system

performance.

Figure 2.2: Schematics of two-body WECs

The other type of reaction mass strategy was investigated by Kode [39], French

[40] and Chen et al. [41]. As shown in Figure 2.2 (b), only one body is floating in the

water. Another reaction mass is placed inside and connected with the floating body

through a spring and/or a damper. Owing to the coupled effects between the two sets

of mass-spring-damper, the response of motions and power feature double response

peaks. The corresponding resonance frequencies form a range covering each one of

the single-body resonance frequencies. Herein, varying the internal mass and spring

can broaden the bandwidth, and adjusting the damping can achieve the optimal

power capture.

2.3 Nonlinear stiffness system

On the contrary to the shifting of the frequency response by changing the inertia

of the moving buoy, another approach is to decrease the stiffness of the dynamic

system by adding one “negative stiffness”.

The bi-stable system is such a classical system that provides nonlinear restoring

force through some special configurations of mechanical compression springs, pneu-
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matic actuators, buckling beams, or magnets, etc. It exhibits two statically stable

configurations and one unstable state. Sometimes it is also called by snap-through

mechanism or negative stiffness system. In many engineering applications, the char-

acteristic of snap-through from one equilibrium to another is a problem, because it

may cause instability and affect the performance of the overall system. Recently,

however, researchers have reconsidered it and started investigating the potential

benefits related to the NSS, not limited to the bi-stable system [35].

Benefiting from the resonance frequency reduction, the bi-stable system has been

widely applied in seismic protection of buildings [55, 56] and vibration isolation

[57, 58]. On the other hand, when the excitation frequency is less than the natural

frequency, the bi-stable system can assist the vibration energy harvester absorbing

more power [59]. In addition, involving the nonlinear stiffness characteristic may

broaden the frequency response bandwidth effectively which is beneficial for harvest-

ing different types of excitations [34, 60]. Higher outputs can be obtained from a

spring-assisted adaptive bi-stable energy harvester, compared to those from conven-

tional bi-stable energy harvester, due to its unique adaptive potential characteristic

[61].

Figure 2.3: Schematics of NSS

Over recent years, NSS has also attracted increasing attention from researchers

on wave energy conversion technology because its natural frequency-shifting charac-

teristic may increase the efficiency of a PA type WEC with a lower natural period.

The bandwidth broadening characteristic is particularly beneficial for the applica-

tion in random sea conditions. Both numerical and experimental investigations have

been carried out to explore the implementation of NSS in PA.

Zhang et al. [32, 62] proposed a nonlinear snap-through PTO system consisting

of two symmetrically oblique springs and featuring a bi-stable mechanism. Through

extensive analysis and comparisons in both regular and irregular waves, the authors

have found that the nonlinear WEC could capture a larger amount of power for

lower geometry parameter γ under low peak frequency condition. Moreover, the

increase of wave amplitude contributed less to the power than for the linear WEC.

However, one drawback of the conventional bi-stable mechanism is that it is difficult
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to overcome the potential barrier under relatively small-amplitude wave excitations.

Consequently, they continued to develop a novel adaptive bi-stable mechanism [63,

64] by adopting two additional auxiliary springs that could adjust the potential

function automatically to lower the potential barrier near the unstable equilibrium

position. Hence the “adaptive” feature helped to solve the low energy absorption

problem of conventional bi-stable wave energy converter. In addition, the adaptive

bi-stable WEC had a wider frequency bandwidth with suitable system parameters

that could overcome the low-efficiency drawback of traditional linear PAs due to

off-resonance operation in realistic sea states.

Almost in the same period, Todalshaug patented a wave energy converter with a

negative stiffness device [33]. The device could feature either mechanical springs

or pneumatic cylinders. The pneumatic configuration was then patented as a

“WaveSpring” technique and used in the CorPower buoy prototype [65]. To ver-

ify such an innovative concept, the CorPower conducted a 1/16 scale model test

[42]. The experimental results have shown that the WEC could be tuned to provide

both resonant behavior and broad response bandwidth. Continually, they completed

the prior dry testing and ocean deployment using a 1/2 scale WEC, through which

the industrial solution of the “WaveSpring” concept was verified.

Figure 2.4: CorPower buoy (adapted from [65])

Since then, much research has extended the application of a bi-stable snap-

through mechanism to the pitching and surging WECs [66–69]. Younesian and

Alam [70], and Li et al. [71] adopted the application of a multi-stable mechanism
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through more complex geometric configurations and demonstrated similar benefits

on the wave energy conversion.

Through the above review of NSS implementations in WEC, it can be observed

that all the concepts are still at an early stage of development: either under numer-

ical simulation or small scale tests, except for the “WaveSpring” of CorPower buoy

but without much published detail about its performance. Most of the applications

feature mechanical compression springs. To gain more significant improvement for

WEC with NSS, the geometry parameter γ in terms of spring lengths should be

assigned as a quite small value, as mentioned by Zhang et al. [32, 62], requiring

both long free length (exceeding several meters) and extremely large compressible

length. It is difficult to satisfy such geometry characteristics in the practical design

of mechanical compression springs, not to mention that high stiffness should be sat-

isfied simultaneously. Other factors, such as the buckling due to longer lengths and

fatigue load due to wave excitations, may also introduce some negative effects on

the NSS performance with mechanical compression springs. Theoretically, it would

be possible to design even one but the dimensions (e.g., nominal diameter, wire di-

ameter, etc.) and mass would be too big, scaling up the investment and installation

costs. As shown in [69], there exists a successful implementation, of an 1/20 model

scale, but in the prototype scale, the corresponding stiffness is not feasible. It is

difficult to find suitable springs in the prototype scale. Such a practical limitation

gives grounds for the necessity to build up a scientific methodology to identify the

restrictions and propose the potential solutions for the implementation of NSS.

Within the author’s knowledge, there has not existed any research featuring the

feasibility of NSS application in WEC, especially considering large scale devices.

The present thesis focuses on such a subject, pursuing an engineering approach to

explore the benefits and evaluate NSS performance in ocean wave energy conversion.

There have been studies addressing the replacement of mechanical springs for

the application of magnets to play the role of the bi-stable mechanism – see Harne

et al. [72], Xiao et al. [73], and Zhang et al. [74]. An alternative multi-stable chain

concept was developed for a mobile WEC with a small dimension compared with

the dimension of a conventional WEC deployed in the ocean [72]. Considering the

interaction between the two magnets, it weakens dramatically when their distance

apart is large. The effective stroke may be restricted seriously by the magnetizations

and magnets dimensions.

Unlike the mechanical springs, pneumatic cylinders or magnet arrangements, the

WETFEET project [43–45]: features another alternative, namely, negative stiffness

concepts applied on the OWC spar buoys:

• Hydrodynamic Negative Stiffness (HNS);
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• Immersed Varying Volume (IVV).

Instead of controlling the PTO mechanism, these alternative methods act directly

on the hydrodynamic properties of the buoy. For instance, the HNS method applied

on the floating OWC involves widening the floater internal chamber, and filling the

space with seawater on the downward cycle, and transferring the water back to the

sea on the upward cycle. By doing so, the buoyancy is reduced along the downward

cycle because less seawater is displaced, and increased on the upward cycle.

A similar compressible volume concept may also feature lower stiffness on a rigid

body, as proposed by Kurniawan et al. [46, 47] – Compressible Degree Of Freedom

(CDOF), which features a lower stiffness than a rigid body. However, the auxiliary

compressible volume storage units would increase the CAPEX and OPEX costs,

potentially reducing the aforementioned benefits gained by CDOF as mentioned by

Bacelli et al. [75].

Inspired by the above concepts associated with the hydrodynamic characteristics

of the WEC, a PA with a non-uniform waterplane area, such as a sphere, is able to

achieve the objective of changing the natural period directly, that deserves further

investigation.

2.4 Nonlinear Froude-Krylov force

According to the idea of adopting a non-uniform waterplane PA to change the nat-

ural period of WEC, as inspired by the HNS and compressible volume concepts

shown in the above review, the corresponding nonlinear hydrodynamic characteris-

tics should then be considered carefully as well.

Gilloteaux et al. [76, 77] have applied the nonlinear Froude-Krylov force model to

predict large-amplitude motion of a WEC through developing an automatic remesh-

ing routine. The instantaneous wetted surface is represented by an appropriate

number of panels. The instantaneous free surface and the new WEC position de-

fine the changing wetted surface at each time step. The wetted panels are updated

simultaneously. Then Mérigaud et al. [78] used the same method to conduct the

comparisons between the linear model and two nonlinear models. They concluded

that there was a clear tendency showing that the linear model overestimated the

buoy motion and, consequently, overestimated the power production. Simultane-

ously, the Froude-Krylov force was identified as the principal nonlinearity source.

Peñalba Retes et al. [50] simplified the nonlinear model, considering only the

linear terms of the radiation and diffraction forces. They used the remeshing ap-

proach to calculate the instantaneous Froude-Krylov. The nonlinear effects were

amplified if the control strategy was applied, especially, in the case of the buoy with
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a non-uniform waterplane area. Moreover, nonlinearity also affects the design of

the control strategy significantly, such as the latching control with constant latching

duration.

Important to notice that the remeshing approach demands extremely high com-

putational effort. The WEC-Sim [79], an open-source code for WEC simulations,

utilizes a weakly nonlinear Froude-Krylov force model with a fine mesh prepared in

advance, but the processing time is still considerable.

To overcome the meshing approach inefficiencies, Giorgi and Ringwood [80–83]

came up with the analytical approach for some simple axisymmetric body, like sphere

and cylinder, systematically. Cong et al. [84] derived the analytical expression of

nonlinear Froude-Krylov force in finite water depth.

All the work above has been developed for regular wave conditions. In the ir-

regular waves, the computation efforts also depend on the number of frequency

components considered in the sea state representation. Usually, to generate one

irregular wave record correctly, several hundred or more than one thousand frequen-

cies are required. Thus, Mérigaud and Ringwood [85] used the Taylor expansion

to separate the frequency-dependent terms from the displacement. it means that a

significantly time-consuming calculation can be prepared in advance outside of the

time updating loop

Practically, the Taylor series can only give an accurate approximation around

the expansion point. Out of the range, the residual error will be quite large. Thus

the analytical approach demands an accurate approximation method of some special

functions, especially when the motion is large or the corresponding frequency is high.

Such a subject is another focus of this thesis.

2.5 Summary

A comprehensive review of the approaches that can achieve the goal of increasing

wave energy conversion efficiency discussed the relevant reactive and non-reactive

control strategies and the methods of changing the intrinsic inertial or stiffness char-

acteristics associated with the natural frequency (period) of the dynamic system. It

highlights that the feasibility problem of the NSS concept deserves further investi-

gation, as well as the proposal for better alternatives.

As one supplement of the NSS approach, the buoy with nonlinear hydrostatic

stiffness due to its non-uniform waterplane area will be adopted according to the

above investigation. The relevant subjects of the nonlinear Froude-Krylov force

model in the numerical simulation were also indicated based on the review conducted

in this chapter.
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Chapter 3

Mathematical Model

This chapter introduces the fundamental mathematical model of the problem dis-

cussed in the thesis, including the linear model based on the linear potential flow

theory adopting the Cummins equation [86], and the nonlinear model considering

the Froude-Krylov force induced by the instantaneous wet surface. In addition, the

external drag force incorporates some degree of correction.

An in-house code, developed to solve the above model, validates its results in

comparisons with the results published by the International Energy Agency (IEA)

Ocean Energy Systems (OES) Task 10 project [36]. The verification process includes

different numerical evaluations, i.e., the heaving decay test, WEC response in regular

wave conditions, and power absorption in irregular wave conditions.

3.1 Equation of motion

The single-degree-of-freedom equation of motion (EOM) of a floating buoy in waves

is set up according to Newton’s second law – Eq. 3.1:

m · z̈(t) = ftotal(t) (3.1)

where: m – floating buoy mass;

z̈(t) – buoy vertical acceleration at time instant t;

ftotal(t) – total vertical external force acting on the buoy.

In the wave energy application, the ftotal(t) usually consists of gravity force – fg,

hydro-mechanic reaction force – fhydro(t), and machinery force – fmach(t).

ftotal(t) = fg + fhydro(t) + fmach(t)

= fg + fb(t) + frad(t) + fw(t) + fdrag(t) + fPTO(t) (3.2)

where, fhydro(t) is the integral of fluid pressure on the wetted surface, including both
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static and dynamic components. The static component indicates the buoyancy –

fb(t); the dynamic component can be decomposed into radiation force – frad(t) and

wave excitation force – fw(t).

The Potential Flow (PF) theory evaluates these force components and additional

correction corporates the viscous drag effect. Such a correction may be reasonable,

though viscous influences are not quite significant in some practical cases [87]. Mori-

son equation[79, 88] is one alternative to calculate the drag force – fdrag(t).

fmach(t) is predominantly associated with the reaction force from the so-called

Power Take-Off (PTO) system – fPTO(t). According to the different principles of the

PTO system, its mathematical model may vary widely. Sometimes, if some control

strategies are adopted to enhance the WEC’s wave energy conversion performance,

the corresponding acting force could be treated separately or incorporated into the

fPTO(t) accordingly.

3.1.1 Linear model

The well-known linear model gives an efficient approach to deal with the ocean wave

excited problems, being largely discussed in the technical literature [26, 88, 89].

m · z̈(t) = frad(t) + fh(t) + fw(t) + fPTO(t)

= −A∞ · z̈(t)−
∫ t

0

KI(t− τ) · ż(t) · dτ − CWL · z(t) + fw(t) + fPTO(t)

(3.3)

where: A∞ – infinite-frequency added mass;

KI(t) – Radiation Impulse Response Function (RIRF) in time domain;

ż(t) – buoy vertical velocity at time instant t;

z(t) – buoy vertical displacement at time instant t;

CWL – linear hydrostatic restoring coefficient.

The gravity force fg and linear buoyancy force fb(t) of buoy are the linear hy-

drostatic restoring force – fh(t) components. In the “memory effect” term which

appears in Cummins’ equation [86], KI(t) calculates the radiation force frad(t), that

is related with the hydrodynamic coefficients – added mass A(ω) and radiation

damping B(ω). The popular Boundary Element Method (BEM) [90–92] obtains

A(ω) and B(ω). For some simple geometries, such as the sphere [93] and cylinder

[94], some specific analytical approaches provide those hydrodynamic coefficients.

Due to the inefficiencies and inconveniences involved in the use of the direct

integral method to calculate KI(t) with A(ω) or/and B(ω), an alternative approach

based on the state-space model [95, 96] provides a better choice.
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The linear wave excitation force fw(t) is separated into the incident wave com-

ponent fI(t), also named as Froude-Krylov force fFK(t); and the part due to the

diffraction wave – fD(t).

The dynamic of WEC may incorporate different kinds of nonlinear effects, such

as, from the buoy non-uniform waterplane area generating the nonlinear Froude-

Krylov force; the nonlinear drag correction due to the viscous effect, and so on.

This chapter focuses more on the nonlinear model as discussed in the following.

3.1.2 Nonlinear model

For the heave point absorber, one relevant nonlinear component comes from the

Froude-Krylov effect [78]. The vertical sidewall and the fixed body assumptions used

to calculate the Froude-Krylov effect are not suitable in some cases, for instance:

• buoy featuring non-uniform waterplane area;

• buoy response motion with large amplitude;

• under high wave steepness conditions.

The weakly nonlinear model, in the case of the Froude-Krylov force being the

main component of the hydrodynamic force for a heaving PA [78], accounts only for

the nonlinear Froude-Krylov force over the instantaneous wetted surface associated

with the water surface elevation, body position, and geometry of the floating body.

This section assumes that the nonlinear Froude-Krylov force consists of both non-

linear hydrostatic restoring force – fFKst(t) and nonlinear dynamic part – fFKdy(t).

The remaining frad(t) and fD(t) are still solved by the PF theory.

m · z̈(t) = frad(t) + fh(t) + fw(t) + fPTO(t) + fdrag(t)

= −A∞ · z̈(t)−
∫ t

0

KI(t− τ) · ż(t) · dτ + fD(t) + fPTO(t)

+ fFKst(t) + fFKdy(t) + fdrag(t) (3.4)

Nonlinear Froude-Krylov force

Two different approaches, i.e., meshing and analytical approaches may be applied

in the nonlinear Froude-Krylov force calculation.

A. Meshing approach

The buoy surface is discretized with fine meshes. As the blue gridded region

shown in Figure 3.1 (b), the instantaneous wetted surface S(t) is the collection of

meshes satisfying:
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zi(t) = zcenti + zg(t) ≤ η(xi; t) (3.5)

where: zi(t) – the ith element vertical position;

zcenti – vertical coordinate of the ith element centroid of area on the mean

wetted surface, as shown in Figure 3.1 (a);

zg(t) – buoy vertical displacement;

η(xi; t) – wave elevation at the ith element with the horizontal coordinate xi

with respect to the mean water level.

Figure 3.1: Schematics of wetted surface

According to the linear Airy wave theory, the complex velocity potential associ-

ated with propagating incident wave in deep water can be expressed as [91]:

ΦI(x, y, z; t) = −igηa
ω

ekzeik(x cosχ+y sinχ)+iεe−iωt (3.6)

where: (x, y, z) – position vector in fixed reference coordinate;

ηa – wave amplitude;

k – wave number;

χ – wave propagation direction;

ε – wave phase (in rad).

Note that one can set the wave propagation direction as the x direction for an

axisymmetric body. Thus, while χ is equal to zero, the wave elevation η(x; t) is

η(x; t) = Re

{
−1

g

∂ΦI

∂t
|z=0

}
= ηa cos(ωt− kx− ε) (3.7)

Furthermore, according to the Bernoulli’s equation, the static pressure on the

instantaneous wetted surface is:

pst = −ρgz (3.8)

and adding the gravity force, the static part of nonlinear Froude-Krylov force is:
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fFKst(t) = fg(t) +

∫∫
S(t)

pstnzdS ≈ fg(t) +
Nm∑
i=1

−ρgzinzi4Si (3.9)

where: nzi – the ith element vertical component of vector normal n;

4Si – the ith element area;

Nm – the number of elements.

Similarly, the dynamic pressure on the instantaneous wetted surface is

pdy = Re

{
−ρ∂ΦI

∂t

}
= ρgηae

kz cos(ωt− kx− ε) (3.10)

in order to make the pressure on the free surface equal to zero, Wheeler stretching

approximation is adopted with z′ = z − η substituting z in Eq. 3.10. Then, the

dynamic term of the Froude-Krylov force can be expressed as:

fFKdy(t) =

∫∫
S(t)

ρgηae
k(z−η) cos(ωt− kx− α)nzdS

≈
Nm∑
i=1

ρgηae
k(zi−η) cos(ωt− kxi − α)nzi4Si (3.11)

The above derivations hold for monochromatic waves. Under irregular wave con-

ditions, the linear wave superposition theory can also be adopted as that in the

linear model. The present work defines it through the nonlinear Froude-Krylov

force meshing approach.

B. Analytical approach

The actualization of wetted surface elements requires the real-time wave elevation

and buoy displacement, imposing extensive calculations. Therefore, the nonlinear

model requires greater computational efforts compared with the linear model. More-

over, as the zi changes at each time step, the pressure on the wetted elements in the

whole frequency range needs to be updated correspondingly. Not to mention the

remeshing approach proposed by Gilloteaux [76, 77], Mérigaud et al. [78] and Retes

et al. [50] that updates the mesh automatically.

To overcome the disadvantages of inefficiency of meshing approach, Giorgi and

Ringwood [80–83], Mérigaud and Ringwood [85], Cong et al. [84] came up with

analytical approaches for some axisymmetric bodies, such as sphere and cylinder.

B.1. Static part

Figure 3.2 shows the sphere constrained to move in the vertical direction. In the

cylindrical coordinate, (r, θ, ζ), the origin o – fixed on the still water level, with ζ

axis pointing upward,
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x = r cos θ

y = r sin θ

z = ζ

(3.12)

The radius r(ζ), presented in Figure 3.2 (b), changes with the buoy motion as,

r(ζ) =
√
R2 − (zg − ζ)2 (3.13)

the corresponding derivative is,

dr(ζ) =
zg − ζ√

R2 − (zg − ζ)2
dζ (3.14)

where: R – sphere radius.

Simultaneously, the vertical projection of the instantaneous wet surface is ex-

pressed in the cylindrical coordinate as follows,

nzdS = nzrdθdl = rdθdr = (zg − ζ)dζdθ (3.15)

Figure 3.2: Schematics of a heaving sphere under 3 different situations

Then, in the normal situation (|zg − η| < R), ζ satisfies the following condition,

ζ ∈ [zg − d0, η] (3.16)

the full expression of fFKst(t) in the cylindrical coordinate is,

fFKst(t) = fg +

∫ 2π

0

∫ η

zg−R
−ρgζ(zg − ζ)dζdθ

= ρgπ

[
−R2(zg − η) +

1

3
(zg − η)3 − η

(
R2 − (zg − η)2

)]
(3.17)
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where, η – wave elevation at x = 0, instead of the real elevation changing with the

position across the sphere. Such a simplification is due to the very small change of

wave elevation that forms the instantaneous wet surface changes for a point absorber.

Besides, as shown in Figure 3.2 (a), the sphere is totally submerged into the

water (zg − η ≤ −R or zg +R ≤ η). There will be no waterline, thus

fFKst(t) = fg +
4

3
πρgR3 =

2

3
πρgR3 (3.18)

When the sphere is totally out of the water (zg−η ≥ R or zg−R ≥ η), as shown

in Figure 3.2 (c), only the gravity force fg is exerted on the buoy, thus

fFKst(t) = −2

3
πρgR3 (3.19)

For convenience of expression, it unifies all three above equations,

fFKst(t) = fg + ρgπ

[
2

3
R3 −R2Z +

1

3
Z3 − η(R2 − Z2)

]
(3.20)

where: Z = sign(zg − η) ·min(|zg − η|, R), sign(·) is the Sign function,

sign(x) =


1 x > 0

0 x = 0

−1 x < 0

(3.21)

and min(A, B) is the minimum value function.

B.2. Dynamic part

Similarly, in the normal situation (|zg − η| < R), as shown in Figure 3.2 (b), the

dynamic part of Froude-Krylov force is,

fFKdy(t) =

∫ 2π

0

∫ η

zg−R
ρgηae

k(ζ−η) cos(ωt− kx− α)(zg − ζ)dζdθ

=

∫ η

zg−R
ρgηae

k(ζ−η)(zg − ζ)

∫ 2π

0

cos(ωt− kr cos θ − α)dθdζ (3.22)

Through simple derivation, the internal integral can be expressed with the first

kind zero-order Bessel function J0 [97],
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∫ 2π

0

cos(ωt− kr cos θ − α)dθ

=

∫ 2π

0

[cos(ωt− α) cos(kr cos θ) + sin(ωt− α) sin(kr cos θ)] dθ

= 2πJ0(kr) cos(ωt− α) (3.23)

Here, substituting Eq. 3.13, the new series expression of J0(kr) is proposed,

J0

(
kR

√
1− (

zg − ζ
R

)2

)
≈

NJ∑
n=0

cn

(
zg − ζ
R

)n
(3.24)

where: cn – coefficients obtained through polynomial fitting J0(kR
√

1− x2) within

−1 < x < 1.

In such an approach, the small parameters assumption the Taylor expansion can

be avoided as x = (zg − ζ)/R satisfies the above condition automatically,

zg −R < ζ < η < zg +R (3.25)

However, cn should be calculated accordingly for different kR values. By the in-

tegration by parts, the dynamic part of nonlinear Froude-Krylov force is derived

as,

fFKdy(t) = 2πρgηa cos(ωt− α)

NJ∑
n=0

cn

∫ η

zg−R
ek(ζ−η)(zg − ζ)

(
zg − ζ
R

)n
dζ

= 2πρgηa cos(ωt− α)

NJ∑
n=0

cn

[
−(n+ 1)!

kn+2Rn

n+1∑
m=0

km(zg − ζ)m

m!
ek(ζ−η)

∣∣∣∣η
zg−R

]

= −2πρgηa cos(ωt− α)

NJ∑
n=0

cn

[
−(n+ 1)!

kn+2Rn

n+1∑
m=0

kmRm

m!
e−kRek(zg−η)

]

+ 2πρgηa cos(ωt− α)

NJ∑
n=0

cn

[
−(n+ 1)!

kn+2Rn

n+1∑
m=0

km

m!
(zg − η)m

]
(3.26)

To simplify the expression, some variables are adopted,
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Czg−R(t) = −2πρgηa cos(ωt− α)

NJ∑
n=0

cn

[
−(n+ 1)!

kn+2Rn

n+1∑
m=0

kmRm

m!
e−kR

]
(3.27)

Cη
0 (t) = +2πρgηa cos(ωt− α)

NJ∑
n=0

cn

[
−(n+ 1)!

kn+2Rn

]
(3.28)

Cη
m(t) = +2πρgηa cos(ωt− α)

NJ∑
n=m−1

cn

[
−(n+ 1)!

kn+2Rn

km

m!

]
, (m ≥ 1) (3.29)

Thus,

fFKdy(t) = Czg−R(t)ek(zg−η) +

NJ+1∑
m=0

Cη
m(t)(zg − η)m (3.30)

Note that the Czg−R(t), Cη
0 (t) and Cη

m(t) are only related with the wave elevation

η(t), wave number k and polynomial fitting coefficient cn. Thus they can be prepared

in advance before solving the EOM and then substituted into fFKdy(t) at each time

step.

Considering that the above expression is written in terms of each single frequency,

in other words, it is an expression to describe the dynamic part of the nonlinear

Froude-Krylov force in regular wave condition.

As wave number k and real-time displacement zg are still coupled in the expo-

nential term ek(zg−η), the summation of a set of frequency components in the case

of irregular wave conditions consumes considerable computational efforts. Thus,

one approximation of the exponential term is adopted with the adaptive polynomial

fitting as that defined by the Bessel function,

e
kR

(zg − η
R

)
= e0 +

e1
R

(zg − η) +
e2
R2

(zg − η)2 + · · ·+ el
Rl

(zg − η)l + · · ·

≈
NE∑
l=0

el
Rl

(zg − η)l (3.31)

Then, substituting it into Eq. 3.30, and defining

C
zg−R
l (t) = Czg−R(t)

el
Rl

(3.32)

One can obtain the expression in terms of the ith wave frequency component,
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f iFKdy(t) =

NE∑
l=0

C
zg−R
li (t)(zg − η)l +

NJ+1∑
m=0

Cη
mi(t)(zg − η)m (3.33)

Considering two similar power terms on the right hand side, Eq. 3.33 can be

further expressed as,

fFKdy(t) =
Nω∑
i=1

f iFKdy(t) =
N∑
p=0

Cp1(t)(zg − η)p (3.34)

N = max(NJ + 1, NE) (3.35)

Cp1(t) =



∑Nω
i=1

[
C
zg−R
li (t) + Cη

mi(t)
]

p = l = m ≤ min(NJ + 1, NE)

∑Nω
i=1

[
C
zg−R
li (t)

]
NJ + 1 < p = l ≤ NE

∑Nω
i=1 [Cη

mi(t)] NE < p = m ≤ NJ + 1

(3.36)

Note that the superscript and subscript i indicate the corresponding variables

in terms of the ith frequency component. Through the above arrangements, and

using the superposition principle, the dynamic part of the nonlinear Froude-Krylov

force fFKdy(t) in irregular wave conditions is obtained. At this point, it is possible

to separate the frequency-dependent term Cp1(t) from the real-time displacement

zg. Thus Cp1(t) can be pre-calculated so that the computational efforts in irregular

wave conditions are dramatically reduced.

When the sphere is totally submerged into the water (zg−η ≤ −R or zg+R ≤ η),

the upper limit of the integration in Eqs. 3.22 and 3.26 – η, is replaced with zg +R,

thus

fFKdy(t) = 2πρgηa cos(ωt− α)

NJ∑
n=0

cn

∫ zg+R

zg−R
ek(ζ−η)(zg − ζ)

(
zg − ζ
R

)n
dζ

= 2πρgηa cos(ωt− α)

NJ∑
n=0

cn

[
−(n+ 1)!

kn+2Rn

n+1∑
m=0

km(zg − ζ)m

m!
ek(ζ−η)

∣∣∣∣zg+R
zg−R

]

= −2πρgηa cos(ωt− α)

NJ∑
n=0

cn

[
−(n+ 1)!

kn+2Rn

n+1∑
m=0

kmRm

m!
e−kRek(zg−η)

]

+ 2πρgηa cos(ωt− α)

NJ∑
n=0

cn

[
−(n+ 1)!

kn+2Rn

n+1∑
m=0

km(−R)m

m!
e+kRek(zg−η)

]
(3.37)
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Similarly, through defining an additional variable,

Czg+R(t) = 2πρgηa cos(ωt− α)

NJ∑
n=0

cn

[
−(n+ 1)!

kn+2Rn

n+1∑
m=0

km(−R)m

m!
e+kR

]
(3.38)

together with Eq. 3.27, the new expression of Eq. 3.37 is,

fFKdy(t) =
[
Czg−R(t) + Czg+R(t)

]
ek(zg−η) (3.39)

Then, adopting the polynomial approximation of exponential term, a new coefficient

is defined as,

C
zg+R
l (t) = Czg+R(t)

el
Rl

(3.40)

In irregular waves, the ith wave frequency component expression is

f iFKdy(t) =
[
C
zg−R
li (t) + C

zg+R
li (t)

]
(zg − η)l (3.41)

the expression of the superposition of different frequency components is,

fFKdy(t) =
Nω∑
i=1

f iFKdy(t) =
N∑
l=0

Cl2(t)(zg − η)l (3.42)

N = NE (3.43)

Cl2(t) =
Nω∑
i=1

[
C
zg−R
li (t) + C

zg+R
li (t)

]
(3.44)

Finally, when the sphere is totally out of the wave, there is no wet surface, so

fFKdy(t) = 0 (3.45)

Other authors [85] approximate the relevant exponential function with the Taylor

expansion to decouple the wave number and real-time displacement terms,

ek(zg−η) ≈
N∑
n=0

1

n!
kn(zg − η)n (3.46)

Figure 3.3 depicts the corresponding 4th order and 5th order Taylor expansions

with different kR values. It is possible to observe that when x > 0, the higher

order expansion gives better accuracy; when x < 0, both the two expansions cannot

approximate the function correctly.

However, through adjusting the number of truncated terms depending on the kR

values for both exponential function ekRx and Bessel function J0(kR
√

1− x2), the

present adaptive polynomial fitting technique can ensure better adaptability even
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(a) (b)

Figure 3.3: Taylor expansions of ekRx with different kR values

for higher wave steepness conditions as shown in Figure 3.4.

Note that, the above kR values are selected according to the frequencies consid-

ered in the irregular wave representation. Chapter 5 presents further details.

(a) (b)

Figure 3.4: Polynomial fittings of J0(kR
√

1− x2) and ekRx with different kR values

Table 3.1 summarizes sphere results obtained for the nonlinear static and dy-

namic Froude-Krylov force as fully described above.

Table 3.2 compares the normalized computational time of both linear and nonlin-

ear Froude-Krylov force models for a sphere (diameter D = 5.0m, discretized surface

mesh with 1344 triangular elements) in both regular and irregular wave conditions

(500 frequency components used to generate the irregular wave). The meshing ap-

proach takes into account the sphere symmetry to reduce the computational efforts.

All the simulations are performed by a desktop computer with a processor Intel(R)

Core(TM) i7-4790 CPU @ 3.60 Hz.

Note that nonlinear models’ CPU time is normalized by the linear model’s CPU
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Table 3.1: Analytical expressions of the nonlinear Froude-Krylov force for sphere

Static part

Regular/Irregular wave

fFKst(t) = fg + ρgπ
[
2
3
R3 −R2Z + 1

3
Z3 − ζ(R2 − Z2)

]
where: Z = sign(zg − η) ·min(|zg − η| , R)

Dynamic part

Regular wave

|zg − η| < R

fFKdy(t) = Czg−R(t)ek(zg−η) +
∑NJ+1

m=0 Cη
m(t)(zg − η)m

zg − η ≤ −R
fFKdy(t) = [Czg−R(t) + Czg+R(t)]ek(zg−η)

zg − η ≥ R

fFKdy(t) = 0

Irregular wave

|zg − η| < R

fFKdy(t) =
∑N

p=0Cp1(t)(zg − η)p

zg − η ≤ −R
fFKdy(t) =

∑N
l=0Cl2(t)(zg − η)l

zg − η ≥ R

fFKdy(t) = 0

Table 3.2: Nonlinear models’ normalization CPU time

Linear
Nonlinear

(meshing)

Nonlinear

(analytical)

Regular wave 1.0 55.8 1.8

Irregular wave 1.0 150.6 3.8

time. The averaged CPU time taken for the regular wave situation is 0.022 s, while

it takes 0.051 s for the irregular wave condition. Moreover, the above comparisons

have shown that the analytical approach features higher efficiency than the meshing

approach. Such an advantage is more evident for the irregular wave case.

Drag force

Drag force acting on the floating buoy mainly originates from the vortex shedding

flow [88]. In general, fdrag(t) increases by a quadratic factor of the relative fluid

velocity and is included in the equation of motion by means of a Morison-like term

as [98]:

fdrag(t) = −1

2
ρCdAd |ż − V0| (ż − V0) (3.47)
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where: Cd – drag coefficient;

Ad – projection area of instantaneous wet surface onto water plane;

V0 – vertical component of undisturbed flow velocity.

Cd is usually derived through minimizing the error between the model simulation

and test data in the least-square approach. Such tests contain: free-decay test [99],

forced oscillation test and wave excited oscillation test [98] in physical wave tank

or/and numerical wave tank. Giorgi et al. [98] have indicated that the estimated

drag coefficient obtained through least-square was actually a descriptor of all the

nonlinearities not modeled, modeling errors and other possible inaccuracies. Thus,

Cd is an equivalent drag coefficient which can fill the gap between the mathematical

model and physical/CFD test, other than limited to the viscous effect only. The

authors, through the sensitivity studies, also stated that it was preferable to choose

a larger drag coefficient, since overestimations caused lower errors than underestima-

tions. Babarit et al. [100]conducted sensitive analysis of the wave energy absorption

varying Cd from one quarter to twice their nominal values.

The focus of the present work is not on the nature of drag/viscous effect. The

drag force correction used intends to increase modeling accuracy. Hence, it is pos-

sible to estimate a nominal Cd value based on the data available in the literature

for some simple geometries, such as the sphere, following the necessary sensitive

analysis as proposed by [98, 100].

Note that Ad changes if the buoy features a non-uniform waterplane area. When

the buoy is completely out of the water, Ad and fdrag are obviously null; if the buoy

is fully submerged, Ad reaches its maximum value [80].

Ad =



πR2 z(t)− η < 0

π [R2 − (z(t)− η)2] 0 ≤ z(t)− η < R

0 z(t)− η ≥ R

(3.48)

Additionally, in wave conditions, the vertical component of the fluid particle

velocity usually replaces V0 in Eq. 3.47.

3.1.3 Performance evaluation

For a WEC, the PTO is one system that transforms the energy absorbed by the

primary converter, such as the OWC chamber or a PA buoy vertical motion, into

usable electricity. Such a system can be categorized into air turbine, hydro turbine,

hydraulic system, direct mechanical drive system and direct electrical drive system

[88].
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Each one of them behaves in a complicated way due to its practical interdisci-

plinary applications. To work with a simplified model before a real PTO system

is defined/designed, a very common approach adopts the linearized damping to de-

scribe the PTO characteristics equivalently. In that case, the force is proportional

to the velocity,

fPTO(t) = −BPTO · ż(t) (3.49)

where: BPTO – linearized PTO damping.

Consequently, the mean power absorbed by the PTO in one long period of time

gives the ideal performance evaluation,

Pm = − 1

T

∫ T

0

fPTO · ż(t)dt (3.50)

Note that, the PTO force works as a coupled load with the WEC buoy dynamic as

well.

Usually, the Capture Width Ratio (CWR) is another non-dimensional parameter

which depicts the WEC performance,

CWR =
Pm
J ·D

(3.51)

where: D – characteristic WEC dimension (usually the diameter in the water plane);

J – wave energy transport [W/m] (energy per unit time and unit width of

the wave front) [89]. For a progressive, plane, harmonic wave with the wave

height H and period T , in deep water [101]

cg =
gT

4π
(3.52)

E =
1

8
ρgH2 (3.53)

J = cg · E =
ρg2

32π
·H2T (3.54)

where: cg – wave group velocity, that is exactly half the phase velocity;

E – energy of the waves per unit area, including both kinetic energy and

potential energy.

In irregular waves, using the linear wave superposition assumption, the average

wave energy transport for a sea state is expressed as [88, 102],

J = ρg

∫ ∞
0

cgSζ(ω)dω =
ρg2

64π
·H2

STe (3.55)
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where: Sζ(ω) – wave power spectral density;

HS – significant wave height (HS =
√
m0);

Te – energy period (Te = m−1/m0);

mn – the nth order moment of spectrum:

mn =

∫ ∞
0

Sζ(ω)ωndω (3.56)

In many sea site data, the peak period TP is given, instead of Te, to represent

the wave characteristic period, the relationships between these two parameters for

different wave spectrum are given,

• for Pierson-Moskowitz spectrum, Te = 0.8577TP [103];

• for JONSWAP spectrum with peak shape parameter γ = 3.3, Te = 0.9TP

[104].

3.2 Code-to-code verification

Based on the previous mathematical model, one in-house code has been developed

to simulate and analyze the WEC. To verify the code, a series of numerical tests

are conducted and their results are compared to the data from International Energy

Agency (IEA) Ocean Energy Systems (OES) Task 10 project [105, 106].

The IEA OES Task 10 project is aimed at assessing the codes to be used in

WEC analysis. It focuses on the accuracy and code validation process of the codes

by comparing code to code and code to experimental results [36]. The first phase

investigates a 10 m diameter floating sphere. The sphere is restrained to the heave

motion only, initially with its origin located on the mean water level and the reso-

nance period around 4.4 s.

Most of the project participant codes use the Cummins equation with/without

the weakly nonlinear model. These codes simulate free decay test, responses in

regular wave conditions and power absorption in irregular wave conditions numeri-

cally. The following sub-sections presents and discuss the results and comparisons

featuring each case of the referenced cases.

3.2.1 Free-decay test

Three free decay tests featured three different initial vertical displacements of the

buoy: 1 m, 3 m, 5 m. The numerical simulations considered both linear and weakly

nonlinear model using the meshing approach. Figure 3.5 presents the displacements

for all three cases.
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The results for z0 = 1 m indicate good agreement with the in-house code results.

There is no significant difference between the linear (WEC LIN) and nonlinear (WEC

NLIN) models. When it goes to the case with z0 = 3 m, a heave response phase lag

starts appearing between the two models. There is an even noticeable difference at

z0 = 5 m. The results also show good consistency with those from NREL SNL (LIN

& NLIN), one participant of the IEA OES Task 10 project. The sphere waterplane

area changes much for larger amplitude motion due to its geometric nonlinearity.

The hydrostatic restoring force taking into account the instantaneous wetted surface

in the weakly nonlinear model behaves in a quite different way from that of the linear

model.

Figure 3.5: Free decay response in heave

The free decay test comparisons allow for validating the hydrostatic restoring

forces using both linear and weakly nonlinear model codes.

3.2.2 Regular wave situations

This section analyzes both heave response and mean power in a broad range of wave

periods (T ) – from 3.0s to 11.0s. For each period, simulations include three different

levels of wave steepness (S) values. In deep water, the wave steepness is defined as:

S =
H

gT 2
(3.57)

Based on the linear theory, the optimal PTO damping BPTO for each wave period

is [89]:

BPTO = B(ω)

√
1 +

(
CWL − ω2(m+ A(ω))

ωB(ω)

)2

(3.58)

where: CWL – linear hydrostatic restoring coefficient (sphere: CWL = ρgπD2/4).
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Table 3.3 lists the relevant wave conditions involved in the problem, and corre-

sponding optimal PTO damping.

Table 3.3: Regular wave conditions and optimal PTO damping

T [s] f [Hz] λ [m]
H1 [m]

S = 0.005
H2 [m]

S = 0.002
H3 [m]
S = 0.01

Optimal BPTO

[kNs/m]

3.0 0.333 14.052 0.044 0.177 0.883 398.736

4.0 0.250 24.981 0.078 0.314 1.570 118.150

4.4 0.227 30.227 0.095 0.380 1.899 90.081

5.0 0.200 39.033 0.123 0.491 2.453 161.049

6.0 0.167 56.207 0.177 0.706 3.532 322.292

7.0 0.143 76.504 0.240 0.961 4.807 479.669

8.0 0.125 99.924 0.314 1.256 6.278 633.980

9.0 0.111 126.466 0.397 1.589 7.946 784.083

10.0 0.100 156.131 0.491 1.962 9.810 932.118

11.0 0.091 188.919 0.594 2.374 11.870 1077.123

Note: f – wave frequency; λ – wave length.

Since it is rather difficult to determine the heaving amplitude directly from using

the weakly nonlinear model, the heave RAO for each regular wave case was defined

as:

RAO =
√
mpeak/ζpeak (3.59)

where: mpeak – the first order peak of the heave motion power spectral density;

ζpeak – the first order peak of the wave elevation power spectral density.

In Figure 3.6, for the configuration without PTO damping, comparing all dif-

ferent code results no major differences are observed for three steepnesses among

different codes. It is easier to understand the phenomenon for the first two lower

steepnesses. However, for the larger steepness, only a small decrease in the peak ap-

pears with the weakly nonlinear model. For the free-floating sphere, short waves are

not strong enough to excite large heave motion. In long waves, the sphere behaves

like a wave follower, which mitigates the nonlinearities induced by the instantaneous

wetted surface.

The heave RAO adopting the optimal PTO damping still behaves in the same

way as for the first two lower wave steepnesses with both linear and nonlinear models

(see Figure 3.7). For the larger steepness case illustrated in the third sub-graph in

Figure 3.7, the WEC NLIN code predicts a smaller RAO starting from T = 6s. The
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Figure 3.6: Heave RAO, no PTO damping

present reduction is caused by the nonlinearity of both static and dynamic parts

of the Froude-Krylov force that comes into effect when wave height increases in

comparison with the sphere diameter. The similar patterns appear in the simulations

conducted by NREL SNL NLIN from the IEA OES Task 10 project as well.

Figure 3.7: Heave RAO with optimal PTO damping

In Figure 3.8, comparing the mean power normalized by wave height squared

(H2) for optimal BPTO, both linear and nonlinear codes present similar variation

trends as observed for the heave response in Figure 3.7. Especially, in the weakly

nonlinear model prediction, there is a drastic drop after T = 7 s for the steepness

S = 0.01.

In summary, the curve tendencies and key points of both heave motion and

power absorption responses calculated by linear and nonlinear models present good

consistency with the reference results of the IEA OES Task 10 project.
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Figure 3.8: Normalized mean power with optimal PTO damping

3.2.3 Irregular wave situations

This section analyzes three groups of typical irregular waves. Table 3.4 summarizes

the corresponding optimal BPTO. Note that the prescribed BPTO computed from

Eq. 3.58 are not the exact optimal value for the selected wave conditions. However,

they could provide realistic, close-to-optimal damping for the sphere motion [105].

The discussion adopts the Bretschneider spectrum.

Table 3.4: Mean power with irregular wave conditions (adapted from [105])

TP [s] HS [m] S [−]
Optimal BPTO

[kNs/m]
Pm [kW]

WEC LIN
Pm [kW]

WEC NLIN
Differences

4.0 0.5 0.0026 90.081 1.174 1.177 0.171%

6.2 1.0 0.0026 354.083 7.438 7.451 0.259%

15.4 11.0 0.0047 1688.247 1139.607 802.203 29.607%

Note: WEC LIN – code with linear model; WEC NLIN – code with weakly nonlinear model.

Table 3.4 presents the mean power Pm obtained with both linear model (WEC

LIN) and nonlinear model (WEC NLIN), and the corresponding relative differences

are also presented. For the lower steepness cases, the differences are quite limited.

However, for the larger steepness one, the WEC NLIN predicts a drop of Pm around

30% relative to that of WEC LIN. The bar plotting in Figure 3.9 features a consistent

mean power level compared to that of codes in IEA OES Task 10 validating the WEC

LIN and WEC NLIN results in irregular waves.

Table 3.5 presents the annual average absorbed power (AAP) calculated by using

six sea states and corresponding weight factors at a selected North Sea location [60].

Figure 3.10 presents the AAP compared with the IEA OES Task 10 project.

The reduction predicted by the WEC NLIN is smaller than the drop appearing in
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Figure 3.9: Mean power for the irregular wave case, with HS = 11.0 m, TP = 15.4 s,
optimal PTO damping (adapted from [105])

Table 3.5: Irregular sea states and PTO damping (adapted from [106])

HS [m] TP [s] SP [−] Weight [%]
Optimal BPTO

[kNs/m]

1 6.6260 0.002322 36.95 424

2 7.5020 0.003622 31.43 558

3 8.3780 0.004357 16.96 690

4 9.2540 0.004761 7.23 819

5 10.1300 0.004967 2.91 947

6.1 11.0936 0.005053 1.41 1090

Note: SP – average wave steepness in irregular wave conditions.

Figure 3.9. The reason is the lower steepness sea states observed in the majority

of the selected sea sites which mitigates the effect of large steepness waves on the

reduction predicted by the nonlinear model.

3.3 Summary

The chapter discussed the fundamental mathematical models for both linear and

weakly nonlinear models. Especially, this chapter fully described the analytical

expressions of the nonlinear Froude-Krylov force (static and dynamic part) for a

sphere.
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Figure 3.10: Annual average absorbed power AAP, with optimal PTO damping
(adapted from [106])

Comparisons between results obtained by an in-house code developed for the lin-

ear (WEC LIN) and nonlinear (WEC NLIN) models and as obtained by other codes

available in the IEA OES Task 10 project featuring a floating heaving sphere pre-

sented good consistencies in the free decay test simulations, regular wave situations

and irregular wave situations. The present verification is an important procedure

for the accreditation of the results carried out in the following chapters.
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Chapter 4

Nonlinear Stiffness System (NSS)

in WEC

Nonlinear stiffness system (NSS) can supply additional nonlinear stiffness, prefer-

ably negative stiffness, to the original system through some special configurations

of mechanical springs, pneumatic cylinders, cantilever beams, magnets, etc. The

present chapter investigates a classical NSS with mechanical compression springs

(NSMc), including the static analysis which defines three types of system behaviors;

the dynamics in regular wave conditions for different system configurations; and the

effects of wave height and PTO damping.

4.1 NSS with mechanical compression springs

(NSMc)

4.1.1 Description

The classical NSS comprises several mechanical compression springs, supports, and

strut. The springs, configured symmetrically, satisfy the requirement of no net

horizontal force. In the schematic illustration shown in Figure 4.1, there are only

two symmetrical springs. One end of the spring hinges from a support structure fixed

or anchored on the sea bottom. The other end hinges from the strut connected to

the WEC buoy (sphere in present discussion) following the buoy heave motion, as

shown in Figure 4.2. Except for the WEC’s heave motion, the other degree-of-

freedom motion is restricted.

At the equilibrium position, the springs lie on the horizontal plane where the

maximum compressions occur. The total forces are zero in both horizontal and

vertical directions. When the buoy leaves out from the equilibrium position as-

suming either a positive or negative displacement, the springs incline resulting in
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Figure 4.1: Schematic view of NSS with mechanical compression springs (NSMc)

Figure 4.2: Schematic view of PA type WEC with the NSS

a net vertical force acting on the buoy. In addition, the force direction follows the

buoy displacement, meaning that the NSMc behaves as a spring pushing the buoy

away from the equilibrium. Such a characteristic behavior is the opposite of the

hydrostatic restoring force, which pulls the buoy back to the equilibrium. Thus, the

special spring geometry configuration supplies an additional “negative stiffness” to

the buoy dynamic system.

Figure 4.1 also presents some relevant parameters considered in the analysis. To

develop the “negative stiffness” characteristic, the free length (L0) of the unstressed

spring should be longer than the horizontal distance (L) between support and strut.

Before the length of the compressed spring recovers to its free length, the NSMc
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always supplies some “negative stiffness”.

The expression below defines a corresponding limit of the buoy heave displace-

ment,

zf0 = ±
√
L2
0 − L2 (4.1)

Note that stretching one mechanical compression spring is rather difficult. Thus,

in practice, NSMc cannot work normally if the buoy exceeds the above limit – Eq.

4.1, as a further discussion described in the following section.

By considering n springs, the NSMc characteristic stiffness (nK0) will be the

summation of all the spring stiffness (K0), equivalent to the total stiffness of n

paralleled springs.

4.1.2 Mathematical model

Based on simple geometry derivation, one can obtain the expression of fNSMc acting

on the buoy,

fNSMc(z) =


−nK0 · z(t) ·

(
1− L0√

z2 + L2

)
|z| ≤

√
L2
0 − L2

0 |z| >
√
L2
0 − L2

(4.2)

For the sake of simplicity, the term t variable will no longer be used in the following

descriptions without causing any additional confusion.

The second expression on the right-hand side corresponds exactly to the practical

restriction imposed by mechanical compression springs, as mentioned in the previous

section. Consequently, based on the expression of the force, the integral of fNSMc

describes the NSMc potential energy [107],

eNSMc(z) = −
∫ z

0

fNSMc(ζ)dζ + eNSMc(0)

=


1

2
nK0 ·

(√
z2 + L2 − L0

)2 |z| ≤
√
L2
0 − L2

0 |z| >
√
L2
0 − L2

(4.3)

Here, only the elastic potential energy is taken into account as the NSMc gravity

force is small compared with fNSMc. Obviously, the highest potential energy appears

at the position z = 0. It decreasing gradually until the excursion reaches the limit

zf0.

Additionally, for convenience, one may define two non-dimensional parameters
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as follows:

Stiffness ratio: α =
CWL

nK0

(4.4)

Geometry ratio: γ =
L

L0

(always less than 1.0) (4.5)

The stiffness ratio describes the level of NSMc stiffness, while the geometry ratio

measures the compressible length of each spring.

Figure 4.3 depicts one possible example of NSMc static characteristics. The

blue solid and red dashed curves correspond to fNSMc and eNSMc values respectively.

The additional black dotted curves describe the characteristics without displacement

restriction. In the region between the peak and trough of the force curve, the slope

is positive, imposing “negative stiffness”. At the limiting position zf0, fNSMc is zero

and the corresponding eNSMc reaches its troughs, working like two wells. In nonlinear

dynamics, they are called “potential wells” and the corresponding system is said to

behave like a bi-stable system [35].

Figure 4.3: NSMc force and potential energy (α = 1.0, γ = 0.6, L = 2.0 m)

The next section investigates the static characteristics of the combined system

to provide a further understanding of the NSMc complex characteristics and its

influence on the buoy dynamic system.

4.2 Static characteristic analysis

First, this section analyzes the sphere hydrostatic characteristics. The nonlinear

model evaluates the static restoring force fhs and potential energy ehs. Figure 4.4

describes the corresponding characteristic curves of a sphere (diameter D = 5.0 m)

using the linear hydrostatic force (black dash-dot curve) as the reference. Different
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from the NSMc case, only one “potential well” would appear in the potential energy

curve.

fhs(z) =



−mg z ≥ +D/2

−ρgπD
2

4

(
1− 4z2

3D2

)
· z |z| < D/2

mg z ≤ −D/2

(4.6)

ehs(z) =



mg

(
z − D

2

)
+

5ρgπD4

192
z ≥ +D/2

1

2

ρgπD2

4
· z2 ·

(
1− 2z2

3D2

)
|z| < D/2

−mg
(
z +

D

2

)
+

5ρgπD4

192
z ≤ −D/2

(4.7)

Figure 4.4: Sphere hydrostatic restoring force and potential energy

Figures 4.5 and 4.6 present the corresponding static characteristics, combining

NSMc and WEC buoy individual characteristics. The blue dash-dot curves describe

the sphere nonlinear hydrostatic force; the blue solid curves depict the static force

of the combined system; the red dashed curves show the corresponding potential

energy. The corresponding subgraphs (left, middle and right) define three types of

possible behaviors: bi-stable, Quasi-Zero Stiffness (QZS), and mono-stable charac-

teristics depending on different NSMc configurations defined by α, γ and L. To

illustrate the information in Figures 4.5 and 4.6, one may define the critical value
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γcr and the corresponding ratio Cγ,

γcr =
1

1 + α
(4.8)

Cγ =
γ

γcr
= γ(1 + α) (4.9)

Figure 4.5: Sphere static characteristics with NSMc (α = 1.0, L = 2.0 m)

Figure 4.6: Sphere static characteristics with NSMc (γ = 0.5, L = 2.0 m)

• Bi-stable (Figures 4.5 and 4.6, left subgraphs, with Cγ < 1)

The potential energy curve features three extreme points: one maximum and

the other two minimum points. The solid dots illustrate the positions and

characteristics corresponding to the minimum potential energy. If the system

is displaced at an arbitrarily small distance away from the minimum potential

energy positions, the force restores the buoy to its equilibrium. Such a system

is, therefore, stable.

In contrast, if a small perturbation occurs at the local extremum potential

position (circle makers, in Figures 4.5 and 4.6), the force drives the system

even further away from its equilibrium. Such a system is, therefore, unstable
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[108]. That is the reason why the system containing two “potential wells” is

named bi-stable.

In the case of a sphere, due to the nonlinearity of its hydrostatic potential

energy, there are no analytical expressions relating to its positions with the two

minimum points. On the other hand, with linear hydrostatic potential energy,

it would not be difficult to obtain such analytical solutions for the positions

[109]. However, depending on the relation between force and potential energy,

the positions corresponding to the extreme points of the potential energy are

the zeros of the static force function. They can be defined graphically as shown

in Figures 4.5 and 4.6.

• QZS (Figures 4.5 and 4.6, middle subgraphs, with Cγ = 1)

One local minimum point appears at the equilibrium position of the potential

energy curve. However, the corresponding potential energy second derivative

is zero. Therefore, it presents a different characteristic from the bi-stable

system (greater than zero) discussed earlier; and also different from the mono-

stable system (less than zero) to be discussed next. In this case, the single

minimum defines a neutral stable state. Furthermore, the potential energy

second derivative defines the system stiffness which is equal to zero at z = 0,

in the present case. Thus, QZS identifies the characteristic of this type of

system.

• Mono-stable (Figures 4.5 and 4.6, right subgraphs, with Cγ > 1)

If only one stable point appears at the origin and the corresponding stiffness

is positive, the system will be mono-stable.

The above analysis would impose a convenient way to consider the ratio Cγ to

distinguish the system behavior. Fixing α and increasing γ, the force of the combined

system approaches the single buoy dynamic system (as shown in Figure 4.5); and

vice versa (as shown in Figure 4.6). In other words, the greater the α the lower

the stiffness; as well as the larger γ corresponds to the smaller compressible length,

weakening the role of the NSMc effect. Thus, the characteristic of the combined

system tends to approach the single buoy dynamic behavior.

The additional negative stiffness supplied by NSMc reduces the stiffness (force

curves slope) in the region around the equilibrium position (z = 0). The negative

stiffness even appears in the bi-stable combined system. Together with the sphere

hydrostatic nonlinearity due to its non-uniform waterplane area, it would be possible

to add to these two kinds of nonlinearities as they both act to decrease the system

stiffness. Such a configuration may benefit the point absorber efficiency to extract
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energy from ocean waves. The next section discusses and investigates these effects

under regular wave conditions.

4.3 Response in regular wave

The present section evaluates the dynamic performance for both cases: the system

working without NSMc and the combined system respectively.

4.3.1 Case without NSMc

Figure 4.7 presents the sphere linear hydrodynamic characteristics (sphere: D =

5.0 m). The sphere surface discretized into 1344 triangles, as shown in Figure 4.7

(a), allows for the nonlinear Froude-Krylov force calculation adopting the meshing

approach mentioned in Chapter 3. In the following sections, the analytical approach

validated by the meshing approach is also used to calculate the nonlinear Froude-

Krylov force.

In Figure 4.7 (b), the hydrodynamic coefficients derived from the Hulme [93]

non-dimensional data using asymptotic expression show the added mass A(ω) and

damping coefficient B(ω) values; while FDI method [110] calculates the constant

coefficient matrices AR, BR, CR for the use by the state-space model. Table 4.1

presents the coefficient of determinations (R2) of A(ω) and B(ω) obtained by a

fourth-order model (note: accuracy increases if R2 approaches unity [111]).

Table 4.1: R2 of hydrodynamic coefficients approximations

R2(A) 0.999982193365857

R2(B) 0.999946466287517

In addition, the RIRF also compares to the result obtained by the direct Filon’s

integral approach [97] as shown in Figure 4.7 (c). The two comparisons confirm the

good accuracy of the state-space model.

Finally, Figure 4.7 (d) depicts the amplitude and phase shift responses of the

linear wave excitation force adopted from the data published by Chen [112] with the

BEM.

The buoy undamped natural period, based on the well-known expression,

Tn = 2π

√
m+ A∞
CWL

(4.10)

for the sphere (D = 5.0 m) will be 3.2 s.
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(a) (b)

(c) (d)

Figure 4.7: Sphere (D = 5.0 m) hydrodynamic characteristics

To avoid strongly nonlinear wave acting on the buoy, the wave heights are re-

stricted in according to the wave steepness (S)

S = 2π
H

gT 2
(4.11)

given in Table 4.2. Here, S = 0.018 is the limit value for the linear wave theory[81].

Note that the wave steepness definition in Eq. 3.57 lacks one term of 2π compared

with the present definition. Simultaneously, following the conversion, the largest

wave steepnesses for both regular and irregular wave conditions appearing in the IEA

OES Task 10 project exceed the corresponding S = 0.025. Thus, when investigating

the nonlinear Froude-Krylov force, higher steepness (S = 0.025) is allowed to verify

the analytical approach accuracy.

Figure 4.8 to Figure 4.10, present the CWR−BPTO patterns and the correspond-

ing differences obtained by distinct approaches under the wave steepness defined in

Table 4.2:
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Table 4.2: Regular wave conditions

T [s] 2.0 3.0 3.2 3.5 5.0 7.0

S = 0.010 H[m] 0.06 0.14 0.16 0.19 0.39 0.77

S = 0.018 H[m] 0.11 0.25 0.29 0.34 0.70 1.38

S = 0.025 H[m] 0.16 0.35 0.40 0.48 0.98 1.91

• linear (FD) – linear model in frequency-domain;

• linear (TD) – linear model in time-domain;

• nonlinear (meshing) – using the meshing approach to calculate the nonlinear

Froude-Krylov force in time-domain;

• nonlinear (analytical) – using the analytical approach to calculate the nonlin-

ear Froude-Krylov force in time-domain.

In these figures, the curves depicting the linear (FD) and linear (TD) results present

quite good agreements, confirming the adequate accuracy of the adopted basic time-

domain model.

Additionally, the figures feature the relative difference (Diff1) between the linear

(TD) and nonlinear (analytical) models, and the relative difference (Diff2) between

the nonlinear (meshing) and nonlinear (analytical) models.

Diff1 =
CWRlinear − CWRnonlinear

CWRlinear

× 100% (4.12)

Diff2 =
CWRmeshing − CWRanalytical

CWRmeshing

× 100% (4.13)

The improved analytical approach to calculate the nonlinear Froude-Krylov force

in regular wave conditions also shows differences not greater than 2% if compared

with the reliable meshing approach results (blue solid curves, from Figure 4.8 to

Figure 4.10). Increasing the wave steepness, the differences between linear and

nonlinear approaches (red dashed curves, from Figure 4.8 to Figure 4.10) become

more significant, within the whole wave period range. It means that that the sphere

nonlinear Froude-Krylov force plays an important role even for a relatively steep

wave. Simultaneously, larger differences in longer waves, as well as higher waves,

feature greater nonlinear effects even for the same wave steepness.
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Figure 4.8: CWR calculated by different approaches (S = 0.010)

Figure 4.9: CWR calculated by different approaches (S = 0.018)

Figure 4.10: CWR calculated by different approaches (S = 0.025)

On the other hand, there exists one optimal BPTO for each wave condition, that

becomes larger as the wave period increases but does not change much with the

wave steepness.
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To better understand the difference between the linear and nonlinear models,

Figures 4.11 and 4.12 present the buoy displacement, phase portraits and ampli-

tude spectrum corresponding to three different wave steepnesses for the case with

BPTO = 170 kNs/m, wave period T = 7.0 s (f = 0.143 Hz) respectively. Note

that the amplitude spectrum use a logarithm scale to distinguish different frequency

components that appear in the spectrum obviously.

The displacement responses present well defined periodic orbits, and all the phase

portraits (v velocity versus z displacement) describe regular rings around z = 0

and v = 0 (in the present section without NSMc). However, using the nonlinear

approach, two additional amplitude peaks appear in the spectral curves (see Figure

4.12) about two orders of magnitude smaller than the primary amplitude at the

regular wave frequency. They correspond twice and three times wave frequencies

respectively. Thus, the response in a regular wave condition is no longer exactly

“regular”. In other words, in the case of a non-uniform waterplane buoy, it would

be necessary to consider the nonlinear model.

Figure 4.11: Linear model results (T = 7.0 s): displacements, phase portraits, and
spectrum

It should be noticed that the Fast Fourier Transform (FFT) (using the Hanning

window) used to calculate the spectrum, may incorporate some minor numerical

errors on the magnitudes, but they would not affect multiple peak frequencies shown

in Figure 4.12.

For the sake of convenience, Figures 4.13 and 4.14 present comparisons of the

sphere CWR response curves featuring the model without NSMc under different

wave heights. From these figures, it is possible to see that the peak response increases

for the sphere without NSMc if BPTO increases from 10 kNs/m to 30 kNs/m, and

continually decreases for higher BPTO. Simultaneously, the period corresponding to

the CWR peak is always shifted further ahead if BPTO increases.

The areas between T = 3 s and T = 5 s in Figures 4.13 and 4.14, show that if
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Figure 4.12: Analytical nonlinear model model results (T = 7.0 s): displacements,
phase portraits, and spectrum

the wave height increases, the CWR response from the linear model (green dash-dot

curves) does not change much. But the nonlinear model in the meshing approach

makes the response curve shift to larger periods (red solid curves). Still, more

importantly, the differences between meshing and analytical approaches become

more significant, indicating that the analytical approach is not so accurate for wave

height higher than H = 2.0m and wave period T close to the natural period of 3.2s.

Note that the resonant wave condition for the linear model features higher steepness

mostly due to its small natural period.

Figure 4.13: Sphere CWR without NSMc (H = 1.0 m)

4.3.2 Case with NSMc

Section 4.2, showed that through the combination of the heaving sphere and NSMc,

it would be possible to build a different dynamic system presenting either bi-stable,

QZS or mono-stable characteristics, depending on the configuration defined by (α,
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Figure 4.14: Sphere CWR without NSMc (H = 2.0 m)

γ) parameters. The following discussions feature the possible configurations of the

sphere buoy with NSMc.

Bi-stable configuration

To define a bi-stable system, one may select the parameters: α = 1.0, γ = 0.4, and

L = 2.0 m as Cγ = 0.8 < 1.0.

Firstly, Figure 4.15 shows the CWR response considering a relatively small BPTO

(10kNs/m) case. The results correspond to the different approaches discussed above:

linear, nonlinear (meshing) and nonlinear (analytical). Each item in Figure 4.15

describes results for 50 sets of different initial conditions (z0, v0). For the most

of the cases, the agreement confirms the good quality of the analytical approach

(empty blue circles) to be used in further NSMc investigations.

The linear approach with NSMc (green dots, in Figure 4.15) shows that the

period corresponding to the CWR peak equals T = 5.8 s, which is much higher than

the original natural period (T = 3.2 s). However, in the nonlinear approach results,

two branches appear in the curves: one with a local maximum value around the

natural period; and the other branch very close to the linear solution. Responses

are now more complex than without NSMc, but the results obtained for all sets of

different initial conditions converge to fall around only three values at most.

To better understand such a response behavior, the next discussion features

details for a selection of typical cases. The cases P1, P2 and P3 correspond to wave

period T = 3.1 s, while P4, P5 and P6 adopt T = 10.1 s.

In Figures 4.16 and 4.17, the two blue dashed lines, describe two stable equilib-

rium positions (at z = ±1.92 m) of the bi-stable dynamic behavior. The displace-

ments are always periodic: the motions of P1, P2, P3, P5 and P6 are all around either

stable equilibrium position (usually called “intra-well” motion in nonlinear dynam-
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Figure 4.15: Sphere CWR with NSMc: bi-stable configuration (H = 1.0 m, BPTO =
10 kNs/m)

ics). Such a phenomenon is physically similar to a ball trapped in a well with a high

potential obstacle hard to overcome. Thus, the displacement amplitude will be also

small. In the case of P3 (black thick solid curve in Figure 4.16), the amplitude seems

to be bigger than the others, not only due to additional frequency components, but

also the wave excites half of the wave frequency component response (as shown in

the spectral curve in Figure 4.16).

Figure 4.16: Analytical nonlinear model results (T = 3.1 s, BPTO = 10 kNs/m):
displacements, phase portraits, and spectrum

For the P6 case (black thick solid curve in Figure 4.17), the phase portrait covers

both two existing stable equilibrium positions. It means that the motion overcomes

the potential barrier from one potential well to the other one, making the correspond-

ing amplitude much larger. Such a type of motion is defined as an “inter-well” type

of motion accordingly. In that case, a powerful wave will be able to supply enough

energy to make the buoy to overcome the potential well obstacle relative to the other

“intra-well” points which may happen in some specific initial conditions.
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Figure 4.17: Analytical nonlinear model results (T = 10.1 s, BPTO = 10 kNs/m):
displacements, phase portraits, and spectrum

Between T = 4.1 s and T = 5.7 s, a special case occurs and needs to be further

considered: the “chaotic” motion with the linear model – P7, as shown in Figure

4.18. Sometimes the buoy motion is trapped within one potential well or goes across

the potential well obstacle. Such a motion is a random combination of the “intra-

well” and “inter-well” motions. It could happen even in regular wave conditions,

and it is rather difficult to be predicted.

Figure 4.18: Linear model results (T = 5.8 s, BPTO = 10 kNs/m): displacement,
phase portrait, and spectrum

Surprisingly, the “chaotic” motion did not appear in the nonlinear model. It

could be attributed to the joint action of two different types of nonlinearities: the

nonlinear Froude-Krylov force and NSMc effect, which increases the difficulties to

escape from the potential well.

The nonlinear model CWR with NSMc becomes more regular (as shown in Figure

4.19) for large BPTO (> 30 kNs/m). In such a case, there is no special point P3 as

shown in Figure 4.15. The large damping effect imposed some more difficulties.
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Furthermore, around the stable equilibrium points (in Figures 4.20 and 4.21) the

buoy can only experience small amplitude “intra-well” motions. On the other hand,

the transition region of the linear model shifts the responses to longer wave period

ranges.

Figure 4.19: Sphere CWR with NSMc: bi-stable configuration (H = 1.0 m, BPTO =
30 kNs/m)

Figure 4.20: Analytical nonlinear model results (H = 1.0 m, T = 3.1 s, BPTO =
30 kNs/m): displacements, phase portraits, and spectrum

The continuous increase of wave height up to H = 2.0 m, improved the conver-

gence of the linear model in the region with high CWR values (as in the case P15,

Figure 4.22). However, larger errors between meshing and analytical approaches

appear in the short wave region where the wave steepness is high.

Despite the higher wave height increases the probability of occurrence of the

“inter-well” motion, most of the motion behaves as they are in the “intra-well”

mode.

As the buoy moves around stable equilibrium positions for the “intra-well” cases,

the hydrodynamic characteristics evaluated at the fixed position (z = 0) are no
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Figure 4.21: Analytical nonlinear model results (H = 1.0 m, T = 10.1 s, BPTO =
30 kNs/m): displacements, phase portraits, and spectrum

Figure 4.22: Sphere CWR with NSMc: bi-stable configuration (H = 2.0 m, BPTO =
30 kNs/m)

Figure 4.23: Analytical nonlinear model results (H = 2.0 m, T = 4.9 s, BPTO =
30 kNs/m): displacements, phase portraits, and spectrum
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Figure 4.24: Analytical nonlinear model results (H = 2.0 m, T = 10.1 s, BPTO =
30 kNs/m): displacements, phase portraits, and spectrum

longer valid. Not to mention that there exist two or more different motion behaviors

for one wave condition.

More importantly, the present bi-stable configuration simulated with the non-

linear Froude-Krylov force model does not show any significant improvements when

compared with the model without NSMc also simulated using the the nonlinear ap-

proach (see Figures 4.13 and 4.14). It imposes that such bi-stable configurations

are not an as attractive choice for WEC applications even considering additional

nonlinear Froude-Krylov force. Thus, the attention should move towards the other

two types of systems as discussed in the following sections.

QZS configuration

The QZS configuration is imposed by defining the parameters: α = 1.0, γ = 0.5 and

L = 2.0 m. Figure 4.25 presents the corresponding CWR results. They are more

regular than those obtained for the bi-stable system, especially, for the nonlinear

model with a relatively small BPTO (10 kNs/m). At the same time, the responses

calculated by the nonlinear model (red dots and blue circles) are also closer to

the linear model responses (green dots). Therefore, it would be more suitable to

compare the influence of the nonlinear model versus the linear model than the bi-

stable situation.

Due to the non-uniform waterplane area of the sphere, the nonlinear static restor-

ing force pushes the CWR peak period further away from its natural period than

the linear model; while the corresponding peak value becomes a little smaller.

In Figure 4.25, there is an evident change of CWR as obtained from the linear

model at T = 5.2 s and from the nonlinear model at T = 5.8 s. Such a “jump”

phenomenon breaks the CWR curve into a low-energy branch (left) and a high-

energy branch (right). To check the corresponding motion behavior, two points
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Figure 4.25: Sphere CWR with NSMc: QZS configuration (H = 1.0 m, BPTO =
10 kNs/m)

on each branch are selected for further investigation as shown from Figure 4.26 to

Figure 4.28.

For P16 and P17 (see Figure 4.26), the displacement and amplitude spectrum

show that the period of motion will be twice the wave period. Such a motion is

defined as period-2 motion, while the motion periods of P18 (see Figure 4.27) and

P19 (see Figure 4.28), namely period-1 motion, are both equal to the wave period.

From the phase portraits, diagram, the period-1 motion features a relatively broader

range of motion if compared to the period-2 motion; correspondingly, the CWR is

much larger as well.

Figure 4.26: Analytical nonlinear model results (H = 1.0 m, T = 4.9 s, BPTO =
10 kNs/m): displacements, phase portraits, and spectrum

Furthermore, one similar period-3 motion is observed on the lower branch for

H = 2.0 m (see Figure 4.30). In the present QZS analysis, fewer multiple solutions

appear, simultaneously, around T = 5.2 s.

On the other hand, continuously BPTO increasing (from 30 to 90 kNs/m with
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Figure 4.27: Analytical nonlinear model results (H = 1.0 m, T = 6.1 s, BPTO =
10 kNs/m): displacement, phase portrait, and spectrum

Figure 4.28: Analytical nonlinear model results (H = 1.0 m, T = 8.1 s, BPTO =
10 kNs/m): displacement, phase portrait, and spectrum

Figure 4.29: Sphere CWR with NSMc: QZS configuration (H = 2.0 m, BPTO =
10 kNs/m)
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Figure 4.30: Analytical nonlinear approach results (H = 2.0 m, T = 4.9 s, BPTO =
10 kNs/m): displacement, phase portrait and spectrum

20 kNs/m interval), the corresponding CWR curves becomes single-valued (see Fig-

ures 4.31 and 4.32), meaning that the random choice of initial conditions does not

affect the motion behavior. Due to the consistency observed between meshing and

analytical approaches, only the analytical approach results of the nonlinear model

are presented (blue solid curves).

The corresponding CWR peak reaches the highest value at BPTO = 30 kNs/m.

Consequently, CWR decreases gradually as BPTO increases, while broadening the

bandwidth and the CWR peak period becomes longer. Such characteristics are

very beneficial for small PA working in wave conditions with longer periods than its

own natural period. Additionally, the CWR in the downward branch calculated by

the nonlinear model is a little higher than that from the linear model. Due to the

nonlinear Froude-Krylov force, the period of the optimal CWR peak value increases

if compared to those calculated by the linear model, whereas is not significant for

the previously discussed bi-stable configuration.

Figure 4.31: Sphere CWR with NSMc: QZS configuration (H = 1.0 m)
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Figure 4.32: Sphere CWR with NSMc: QZS configuration (H = 2.0 m)

For the QZS configuration, increasing the wave height lowers the optimal CWR

and shortens the corresponding period. It means that the QZS configuration plays

a better role for the relatively small wave height, as the peak CWR value and

corresponding period shown in Figure 4.33.

(a) (b)

Figure 4.33: NSMc effects on the peak CWR and period for different wave heights:
QZS configuration

The QZS configuration shows some practical advantages as it broadens the re-

sponse bandwidth, pushes the resonant response to longer wave ranges and improves

the final optimal response. The next section presents a similar analysis featuring

the mono-stable behavior.

Mono-stable configuration

Increasing the geometry ratio to γ = 0.6 adjusts a mono-stable configuration (α =

1.0, γ = 0.6 and L = 2.0 m) is obtained. The CWR patterns are quite similar to

the QZS configuration. Therefore, only Figure 4.34 will be necessary to describe its
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most relevant characteristics. The mono-stable configuration reduces the differences

in the results between linear and nonlinear models. In addition, the CWR peak from

the nonlinear model decreases, moving towards longer waves. However, the final

performance is still better than for the buoy without NSMc in long wave conditions.

Figure 4.34: Sphere CWR with NSMc: mono-stable configuration I (H = 1.0 m)

For another mono-stable configuration (α = 1.1, γ = 0.5 and L = 2.0 m) which

leads to Cγ = 1.05, being smaller than for the previous configuration, the CWR

patterns (in Figure 4.35) are much closer to the QZS configuration under the same

wave height. From those observations, one may draw the following conclusions for

the mono-stable configuration:

• the smaller is Cγ, the closer to the QZS performance it behaves;

• increasing Cγ weakens the role of NSMc.

Figure 4.35: Sphere CWR with NSMc: mono-stable configuration II (H = 1.0 m)
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4.4 Summary

The present chapter discussed the fundamental characteristics of the classical NSS

with mechanical compression springs (NSMc) and investigated comprehensively its

complex dynamic behavior. The NSMc model set up considered the additional con-

straint of the effective excursion. The static analysis explored the specific charac-

teristics involved in bi-stable, QZS and mono-stable configurations. Further motion

investigations considering different configurations attempted to bring some light on

the advantages and specific benefits from applying NSMc into the WEC buoy dy-

namics, such as:

• increasing the resonance period;

• broadening the frequency response bandwidth;

• improving the optimal wave energy capturing performance.

Compared with the bi-stable system, the QZS and mono-stable configurations

performed much better motion stability and wave energy capturing characteristics,

becoming potential choices for the applications in wave energy conversion. In the

next chapter, deeper discussions focus on the QZS and mono-stable configurations.

Comparisons with each other showed the relative merits and accuracy related to

the linear and nonlinear model results. Especially, the results obtained by applying

the very efficient analytical approach showed a great deal of consistency if compared

to the more reliable meshing approach, when waves are too steep. The nonlinear

model indeed presented significant differences with respect to the linear model, such

as,

• motion behavior of the bi-stable configuration presented difficulties to escape

from the potential wells;

• optimal CWR decreased, however, the corresponding wave period increased.

The research in the present chapter attempted to establish solid foundations for

further investigations to be developed in the following chapters.
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Chapter 5

NSMc in WEC: Practical

Considerations

Based on the analysis of the combined system of the WEC buoy and NSMc in

Chapter 4, NSMc presents three distinct types of special behaviors. Especially,

the QZS and mono-stable configurations can broaden the response bandwidth and

increase the natural period in a relatively stable way. It follows that the performance

of the combined system could be well explored in irregular wave conditions. This

chapter also investigates important aspects related to the feasibility of NSMc based

on some practical considerations of the physical characteristics of the mechanical

compression springs.

5.1 Irregular wave conditions

This section introduces the characteristics related to the irregular wave spectrum

adopted in the present analysis. In irregular wave conditions, the analytical ap-

proach used to calculate the nonlinear Froude-Krylov force deserves further special

considerations.

5.1.1 spectrum

In according to the DNV-RP-C205 standard [113], the following expression describes

the well-known JONSWAP sea spectrum,

SJ(ω) = AγSPM(ω)γ
exp
(
− 1

2
(
ω−ωP
σωP

)2
)

(5.1)

SPM(ω) =
5

16
H2
Sω

4
Pω
−5exp

(
−5

4
(
ω

ωP
)−4
)

(5.2)

where: SJ(ω) – JONSWAP spectrum;
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SPM(ω) – Pierson-Moskowitz spectrum;

γ – non-dimensional peak shape parameter (Note: γ represents the peak

shape parameter only in the present sub-section), with average value γ = 3.3;

σ – spectral width parameter, with average values:

σ =


0.07 ω ≤ ωP

0.09 ω > ωP

(5.3)

Aγ – normalizing factor, defined as:

Aγ = 1− 0.287 ln(γ) (5.4)

The JONSWAP spectrum based on the averaged parameters is expected to provide

a reasonable representation if,

3.6 <
TP√
HS

< 5.0 (5.5)

or 0.02562 < SP = 2π
HS

gT 2
P

< 0.04942 (5.6)

where: SP – average wave steepness in irregular wave conditions.

And outside of this interval, if,

TP√
HS

≥ 5.0 (5.7)

or SP = 2π
HS

gT 2
P

≤ 0.02562 (5.8)

the JONSWAP spectrum reduces to the Pierson-Moskowitz spectrum with γ =

1.0. Thus, the Pierson-Moskowitz spectrum is considered as one special case of the

JONSWAP spectrum.

The JONSWAP spectrum discretized by Nω = 500 equidistant frequencies, rang-

ing from 0.4ωP to 3.4ωP , defines the times series representing the irregular wave

records. The cut-off frequency in the high-frequency side truncates only less than

1% of the total energy covered by the spectrum. To avoid the undesirable period

2π/4ω, the representative circular frequency is defined as [114]:

ωi = ω̂i − 0.54ω · rand (5.9)

where: ω̂i – intermediate circular frequency at each frequency interval;

rand – one of the random numbers uniformly distributed in the range between

0 and 1.
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Table 5.1 lists all irregular wave conditions considered for the corresponding three

different average steepness SP = 0.010, 0.018, 0.025.

Table 5.1: Irregular wave conditions

TP [s] 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0

SP = 0.010 HS [m] 0.25 0.39 0.56 0.77 1.00 1.26 1.56 1.89 2.25

SP = 0.018 HS [m] 0.45 0.70 1.01 1.38 1.80 2.28 2.81 3.40 4.05

SP = 0.025 HS [m] 0.62 0.98 1.41 1.91 2.50 3.16 3.90 4.72 5.62

As shown in Figure 5.1, the irregular wave condition, HS = 2.5m and TP = 8.0s,

with a given target Power Spectrum Density (PSD), wave elevation records and the

corresponding PSD generated through the Fast Fourier Transform – FFT. The total

length of the record is 2300 s (with sampling frequency: fS = 100 Hz) with the

first 300 s (tr) truncated and excluded from the analysis due to the initial transient

phenomenon expected in the numerical simulation. The next section describes the

corresponding convergence analysis that supports the truncation length choice.

Figure 5.1: Irregular wave spectrum and wave elevation (HS = 2.5 m, TP = 8.0 s)

5.1.2 Nonlinear Froude-Krylov force

In irregular wave conditions, the nonlinear Froude-Krylov force model should be

considered carefully. Applying the linear superposition theory to generate one ir-

regular wave condition requires a great number of frequency components. As the

nonlinear Froude-Krylov force changes with the buoy relative displacement, the lin-

ear wave superposition method directly applied to the analytical approach at each

time step increases the computational efforts tremendously. The meshing approach

which incorporates one additional dimension to the mesh would be even worse.
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Following the derivations of nonlinear Froude-Krylov force in Chapter 3, the

parameters – NJ and NE, adopted in the present work, are listed in Table 5.2 by

splitting the peak period TP (or peak frequency ωP ) range into four regions.

Table 5.2: Polynomial fittings of J0(kR
√

1− x2) and ekRx

TP [s] ω [rad/s] kR [−] NJth order NEth order

≥ 7.0 3.05 2.37 4 5

≥ 6.0 3.56 2.23 6 7

≥ 5.0 4.27 4.65 8 9

≥ 4.0 5.34 7.27 10 11

Note: ω = 3.4 · ωP , corresponds to the highest frequency component con-
sidered in generating irregular wave series.

5.2 Convergence analysis in irregular waves

This section conducts the convergence analysis of the relevant parameters adopted

in the simulation for irregular wave conditions. The analysis ensures adequate con-

vergence for both cases: without and with NSMc.

5.2.1 Case without NSMc

First, the convergence analysis at the simulation time tS features an irregular wave

condition with a high steepness SP = 0.025 when more significant nonlinearity is

expected.

Figure 5.2 (a) shows the patterns of CWR with BPTO under short, medium

and long wave conditions (with effective simulation time tS = 2000 s and sampling

frequency fS = 100 Hz). The solid curves represent the mean values of CWR for

50 different irregular waves defined by the same sea spectrum (therefore, with the

same statistic properties) but distinct sets of random phases. Actually, there exists

a shaded area defined by a given standard deviation range above and below each

solid curve. However, in the present case, it is not noticeable because the solid

curves overlapping the small differences. Note that as the wave period increases,

the CWR changes with BPTO become moderate and the corresponding optimal

damping increases. The peaks of the solid curves, marked by three red points,

represent points for different wave conditions. Figure 5.2 (b) depicts their changes

with tS where three solid curves show the patterns of mean CWR with respect to

tS and the colorful dashed curves describe the corresponding coefficient of variation

(COV) for the maximum CWR.
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(a) (b)

Figure 5.2: Convergence analysis of the simulation length (tS) for sea state: SP =
0.025, TP = 4.0, 8.0, 12.0 s

COV defines the ratio of standard deviation to the mean value. Values smaller

than 3% for tS = 2000s indicate that the data obtained from the 50 different irregular

wave conditions defined by different random phase angles are stable and their mean

values could be taken as the representative values to evaluate the corresponding

system performance.

Based on the results from the convergence analysis, the WEC without NSMc

could be submitted to a comprehensive simulation program. From Figure 5.3 to

Figure 5.5, they describe the CWR obtained in both linear (black curves) and non-

linear (blue circles) models. The red curves present the differences (Diff3) between

two models.

Diff3 =
CWRlinear − CWRnonlinear

CWRlinear

× 100% (5.10)

Figure 5.3: Linear and nonlinear models: CWR for wave steepness SP = 0.010
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Figure 5.4: Linear and nonlinear models: CWR for wave steepness SP = 0.018

Figure 5.5: Linear and nonlinear models: CWR for wave steepness SP = 0.025

In each figure, the differences become more evident as the wave period increases,

as well as the wave height increases. In general, the results from the nonlinear model

are smaller than from the linear model in the higher damping range.

Comparing the three figures, the CWR from the linear model (black curves)

almost does not change with wave steepness complying with the fundamental prop-

erties of the linear model. Moreover, in the nonlinear model, the CWR decreases

with wave steepness increasing.

The above simulation conditions do not cover the sphere natural period. The

occurrence probability for short wave in real seas is quite low. Following the re-

sults from Chapter 4, one infers that the differences in short wave conditions are

not significantly. On the other hand, to keep the accuracy of the analytical nonlin-

ear model, short wave conditions require extra terms, increasing the computational

efforts significantly. Thus, the present section avoids considering very short wave

simulations.

To distinguish the results for the three different wave steepness conditions, the
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mean power absorption Pm replaces the CWR when comparing meshing and ana-

lytical results for the optimal BPTO (see Figure 5.6). The good agreement validates

the use of the analytical approach in irregular wave conditions. Simultaneously,

Figures 5.7 and 5.8 also confirm the consistency of the predicted motion using both

approaches.

Figure 5.6: Meshing and analytical nonlinear models: mean power comparison

Figure 5.7: Meshing and analytical nonlinear models: displacement and amplitude
spectrum(SP = 0.025, TP = 5.0 s)

In Figures 5.9 and 5.10, they describe the comparisons of wave excitation force

series under two different wave conditions in detail. The relatively evident differ-

ence between the linear and nonlinear wave excitation force can be found in the

peak/trough regions, especially for the case with a longer wave (in Figure 5.10).

Thus, the CWR difference can be expected to become more obvious. Such a phe-

nomenon is also consistent with the discoveries in Figure 5.5, which can be attributed

to the amplification of nonlinearity excited by the high wave.
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Figure 5.8: Meshing and analytical nonlinear models: displacement and amplitude
spectrum (SP = 0.025, TP = 12.0 s)

Figure 5.9: Linear, meshing and analytical nonlinear models: wave excitation force
(SP = 0.025, TP = 5.0 s)

Figure 5.10: Linear, meshing and analytical nonlinear models: wave excitation force
(SP = 0.025, TP = 12.0 s)
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5.2.2 Case with NSMc

Similar to the discussion presented in sub-section 5.2.1, this sub-section discusses

the convergence analysis of the time length tS for different NSMc configurations.

First, Figure 5.11 shows the pattern of CWR with BPTO for the bi-stable system

(α = 1.0, γ = 0.4, L = 2.0 m). The solid curves and shaded area follow a similar

definition as in Figure 5.2 (a). In addition, the scatters show the CWR data related

to the 50 different irregular waves generated by different random phase angles. Their

distributions show two distinct clusters of CWR appearing for most of the BPTO

ranges in the shorter wave condition (blue scatters). A similar phenomenon also

appears in the medium length wave condition (red scatters). As analyzed in Chapter

4, the unique characteristic of the bi-stable system explains it. Such a behavior

occurs even in irregular wave conditions, causing a larger standard deviation – more

evident shaded area.

Figure 5.11: Sphere CWR with NSMc: bi-stable configuration (α = 1.0, γ = 0.4,
L = 2.0 m) for sea state: SP = 0.025, TP = 4.0, 8.0, 12.0 s

The above multiple solution phenomenon is not adequate for the real sea ap-

plications as the randomness makes it difficult to determine when the high-energy

branch appears. In other words, the bi-stable system cannot provide the WEC with

a reliable solution. Thus, the following simulations for the bi-stable system (based

on the mean values) play the role of reference only, but not being considered into

the power conversion estimation.

On the contrary, Figures 5.12 and 5.13 show that tS = 2000 s is suitable enough

to evaluate the QZS and mono-stable NSMc cases (Cγ ≥ 1.0). Such stable outputs

in irregular wave conditions indicate that they deserve further investigations.

Note that the above simulations are all conducted with respect to 50 different

groups of random phase angles and fixed initial condition (z0 = 0 and v0 = 0). To

investigate the influence of initial conditions on the simulations in irregular wave
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(a) (b)

Figure 5.12: Convergence analysis of the simulation length (tS) with QZS NSMc
(α = 1.0, γ = 0.5, L = 2.0 m) for sea states: SP = 0.025, TP = 4.0, 8.0, 12.0 s

(a) (b)

Figure 5.13: Convergence analysis of the simulation length (tS) with mono-stable
NSMc (α = 1.0, γ = 0.6, L = 2.0 m) for sea states: SP = 0.025, TP = 4.0, 8.0, 12.0 s

conditions, Figure 5.14 compares results from the previous simulation approach –

Case I, with the simulation corresponding to 50 different groups of initial conditions

(z0, v0) – Case II. Three different sea states (SP = 0.025, TP = 4.0, 8.0, 12.0 s)

are selected in the comparison for both QZS (α = 1.0, γ = 0.5, L = 2.0 m) and

mono-stable (α = 1.0, γ = 0.6, L = 2.0 m) configurations. The sub-groups – “1”,

“2” and “3” appearing in the legends correspond to three different wave conditions

defined respectively.

The comparisons between Case I and Case II show that considering the random

phase effect in irregular wave conditions can cover the influence of initial conditions

which lead to distinct motion behavior, in a similar way as observed in the regular

wave discussion (see the analysis of QZS and mono-stable configurations in Section

4.3.2). Thus, the following simulations with NSMc in irregular wave conditions

73



(a) QZS configuration (b) mono-stable configuration

Figure 5.14: Case I and Case II comparisons: QZS and mono-stable configurations

adopt the same initial condition z0 = 0 and v0 = 0 but now considering 50 different

groups of random phase angles.

5.3 Mechanical compression spring constraints

5.3.1 NSMc Feasibility

The conventional design procedure of mechanical springs defines a suitable group of

variables (for both geometrical and physical properties) according to some special

requirements. The present section discusses the practical limitations and physical

constraints of mechanical compression springs, exploring the feasible region of both

geometrical and physical variables associated with NSMc. Figure 5.15 presents an

illustrative scheme and main dimensions of a typical compression spring.

The following steps describe the sequence to determine the feasible region of the

mechanical compression spring design:

Step 1: Define the parameters ranges to be explored – horizontal length of NSMc

L; the number of adopted springs n; geometry ratio γ and stiffness ratio α;

wire diameter d; and spring index C, as listed in Table 5.3.

The L, γ and α ranges are adjusted according to the analysis presented

in the previous section. The d and C ranges are determined based on the

characteristics of the material (e.g., hard drawn wire A227) in the fatigue

loading [116] considering that the PA oscillates in waves;

Step 2: Derive the basic parameters – stiffness K0 (in N/m), free length L0 (in

m), coil diameter D (in mm), and curvature correction factor – Bergsträsser
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Figure 5.15: Schematic and dimensions of mechanical compression springs (adapted
from [115])

Table 5.3: Mechanical compression spring parameters

Parameters Units/Expressions Values

L [m] /1.0, 1.5, 2.0, 2.5/

n [-] /3, 4, 6, 9, 12/

γ L/L0 0.02 ∼ 0.98

α CWL/nK0 1.0 ∼ 6.0

d [mm] 3.2 ∼ 10.0

C D/d 4.0 ∼ 12.0

factor KB [116];

K0 =
CWL

nα
(5.11)

L0 =
L

γ
(5.12)

D = C · d (5.13)

KB =
4C + 2

4C − 3
(5.14)

Step 3: Derive the axial load amplitude Fa (in kN), and the number of active coils

Na.
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Fa is the average value of the maximum and minimum values of axial load

[116]. The NSMc maximum load happens when the spring is at the hori-

zontal equilibrium position and the minimum load is zero, then,

Fa =
10−3K0(L0 − L)

2
(5.15)

The number of active coils Na can be obtained according to the expression

of stiffness,

K0 =
103Gd

8C3Na

(5.16)

where: shear modulus G = 78603.0 MPa.

Step 4: The above variables allowing for calculating the parameters: shear stress

amplitude τa (in MPa), solid length LS (in mm), and pitch p (in mm) for

the squared and ground end.

Maximum stress: τa = KB ·
8FaC

πd2
· 103 (5.17)

Solid length: LS = (Na + 2)d (5.18)

pitch: p =
103L0 − 2d

Na

(5.19)

The conditions of stability and critical frequency are not considered. Be-

cause buckling can be avoided for long springs if guided by a sleeve or over

an arbor [117].

Step 5: Constraints: first, the maximum stress τa should satisfy the strength condi-

tion:

τa ≤
Ssa
nf

(5.20)

where, Ssa is the torsional endurance strength for infinite life. For the peened

spring, Ssa = 398 MPa [116], and the safety factor nf = 1.5.

Accordingly, the minimum total axial gap should be taken as 15% (cgap) of

the maximum deflection (δmax) [117],

L0 = LS × 10−3 + total gap + δmax (5.21)

total gap = cgap · δmax (5.22)

L0 − L ≤ δmax (5.23)

the solid length LS should satisfy the following relationship,
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LS + (1 + cgap) · (L0 − L) · 103 ≤ L0 · 103 (5.24)

Finally, the preferable pitch p should not be greater than half of the coil

diameter,

d < p ≤ 0.5D (5.25)

The feasible parameters corresponding to the solution that simultaneously satisfy

all the constraints defined in Step 5 – Eqs. 5.20, 5.24 and 5.25.

Figure 5.16 presents the feasible regions of (α, γ) with different (L, n) config-

urations, defined by following the recommendations described in the above steps.

Each sub-graph corresponds to one group of (L, n) configuration, and defines the

horizontal axis as α and the vertical axis as γ respectively. The black curve divides

the (α, γ) domain into feasible (green) and unfeasible (white) regions. The blue and

red dashed curves divide each sub-graph at Cγ = 1 and Cγ = 2. The parameters

around Cγ = 1 or a least Cγ < 2 define the QZS or mono-stable configurations that

are attractive for the wave energy conversion based on the previous analysis.

Figure 5.16: NSMc feasible regions

From the results observed in Figure 5.16, one may conclude that,

• In the lower range of α and γ for a fixed L,the larger the number of springs n,

the broader the feasible region;

• For a fixed n, the shorter the horizontal length L, the lower the bound limit

of γ and the broader the feasible region.
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In other words, more springs and shorter horizontal length lead to more feasible

configurations. Sub-graphs sub-16 and sub-8, or sub-18 and sub-10 allow for another

interesting conclusion: the same feasible regions there exist if L/n for different

configurations is kept constant,

L16

n16

=
L8

n8

=
1

3
or

L18

n18

=
L10

n10

=
1

6
(5.26)

where: subscript number defines the corresponding sub-graph.

The practical selection of mechanical compression springs may benefit from using

the constant values defined by the above relationship.

In addition, the feasible values for the parameters (α, γ) occupy the top-right

region of each sub-graph, meaning that

• determination of (α, γ) indeed requires to observe the constraints limitation;

• in practice, it is rather difficult to obtain a feasible configuration for lower α

and γ values.

The present distribution characteristics of the feasible NSMc configurations im-

poses a significant limitation in the enhancement of power capture with NSMc. The

next sub-section consequently will investigate such a limitation in detail.

5.3.2 Feasible NSMc performance

To work in a realistic scenario, the evaluation of the sphere performance with NSMc

considers the sea site in the nearshore region of Rio de Janeiro, Brazil. Table 5.4 lists

the occurrence probability of each local sea state, together with the corresponding

significant wave height HS, average peak period TP and steepness SP . According to

the simplified methodology proposed by Nielsen and Pontes [103], the AEP can be

predicted by:

AEP = 8760 ·
N∑
i=1

Pmi · wi (5.27)

N∑
i=1

wi = 1 (5.28)

where, Pmi – mean power in the ith sea state;

wi – occurrence probability;

N – total number of sea states considered (assumed to be equal to 9).
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Table 5.4: Sea states selected in the nearshore region of Rio de Janeiro

HS TP [s] Occurrence TP [s]
SP No.

[m] 4 6 8 10 12 14 16 [%] Average

0.25 0.0 0.5 1.7 0.6 0.1 0.1 0.0 3.0 8.40 0.002 SS1

0.75 0.2 3.7 17.3 8.5 3.5 1.1 0.1 34.4 8.88 0.006 SS2

1.25 0.0 1.6 9.5 11.3 5.6 1.6 0.2 29.8 9.78 0.007 SS3

1.75 0.0 0.5 3.1 7.1 4.8 1.5 0.1 17.1 10.47 0.010 SS4

2.25 0.0 0.0 1.4 3.4 3.3 0.7 0.2 9.0 10.87 0.012 SS5

2.75 0.0 0.0 0.3 1.2 1.9 0.8 0.1 4.3 11.63 0.013 SS6

3.25 0.0 0.0 0.0 0.3 0.7 0.6 0.1 1.7 12.59 0.013 SS7

3.75 0.0 0.0 0.0 0.1 0.2 0.1 0.0 0.4 12.00 0.017 SS8

4.25 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.1 12.00 0.019 SS9

Figure 5.17 presents results from the linear model (NSMc1). The sub-graphs

(a), (b), (c) and (d) correspond to different configurations, all defined with the same

n = 6 but different L = 1.0, 1.5, 2.0, 2.5 m respectively.

The bar lengths in each sub-graph depict the AEPs obtained with one global

optimal BPTO for all sea states in the given sea site. The region with lower values

of α and γ (satisfying the condition Cγ close to 1.0) concentrates the configurations

with better performance in all sub-graphs. In that region, larger L enhances the

maximum AEP, as indicated by hollow inverted markers. As the values of α and γ

increase, the AEP approaches a stable value, whatever L and n are. Actually, the

reference value happens to be close to the value obtained from WEC without NSMc

(LnMd1, 62.25 MWh).

The color scale diagram presents the AEPs for feasible configurations considering

the constraints. The optimal performance is marked by red solid inverted triangles

in each sub-graph. As L increases, the feasible region becomes smaller and the

optimal value also approaches the above reference value accordingly.

Furthermore, Table 5.5 presents the optimal AEP and the relative increase with

respect to the reference value (AEP0) for a more comprehensive number of configu-

rations.

Percentage Increase =
AEP− AEP0

AEP0

× 100% (5.29)

For situations without constraints, the relative increase reaches values around at

least 170%. Larger L leads to an even improved increase. However, if one considers

the practical constraints, such improvements dramatically decrease to percentages
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(a) (b)

(c) (d)

Figure 5.17: AEP: sphere buoy with NSMc1 (n = 6) in the nearshore region of Rio
de Janeiro

as small as 10%. Observing the data in Table 5.5, one may draw the following

conclusions:

• for the configurations in the same feasible region (in Figure 5.16, cells within

the same background color areas), larger L induces higher improvement;

• for a given fixed L, the larger the number of springs n, the better the WEC

performance.

Figure 5.18 shows that adopting more springs can increase the percentage in-

crease. In general, for a fixed number of springs, the larger the length L is, the

smaller the percentage increase. The exceptions would be the cases where fewer

springs restrict the feasible regions.

By considering the more practical nonlinear model of the spherical WEC

(NSMc3), the estimated AEP is a little smaller than that with NSMc1 as shown

in Figure 5.19. The non-uniform waterplane area of the sphere makes the nonlinear
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Table 5.5: AEP: sphere buoy with NSMc1 (LnMd1, AEP0 = 62.25 MWh)

n No

3 4 6 9 12 constraints

L [m]

1.0 63.84 64.24 65.79 66.69 68.78 167.57

AEP
[MWh]

1.5 63.14 63.44 65.17 66.96 68.23 210.73

2.0 63.20 63.44 65.04 65.75 67.66 246.90

2.5 – 63.37 64.13 66.11 67.48 276.67

L [m]

1.0 2.55% 3.20% 5.69% 7.13% 10.49% 169.19%

Percentage
Increase

1.5 1.43% 1.91% 4.69% 7.57% 9.61% 238.52%

2.0 1.53% 1.91% 4.48% 5.62% 8.69% 296.63%

2.5 – 1.80% 3.02% 6.20% 8.40% 344.45%

Figure 5.18: AEP percentage increase: sphere buoy with NSMc1

Froude-Krylov force acting on the buoy surface decreases if compared with the linear

Froude-Krylov force.

Especially, the AEPs for bi-stable configurations decreases heavily compared

with the QZS and mono-stable configurations (see Figure 5.17) with, α = 1.0 and

γ = 0.3). Further, it indicates that the bi-stable system with the nonlinear Froude-

Krylov force model is not suitable for the applications in irregular wave conditions.

Other tendencies for NSMc3 (see Table 5.6 and Figure 5.20) are similar to that

for NSMc1 analyzed previously. However, it is also evident that both NSMc1 and

NSMc3 cannot improve the wave energy conversion significantly when considering

the practical constraints imposed on the mechanical compression springs adopted

in NSMc system, no matter if taking account of the nonlinear Froude-Krylov force

model.
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(a) (b)

(c) (d)

Figure 5.19: AEP: sphere buoy with NSMc3 (n = 6) in the nearshore region of Rio
de Janeiro

Table 5.6: AEP: sphere buoy with NSMc3 (LnMd3, AEP0 = 60.82 MWh)

n No

3 4 6 9 12 constraints

L [m]

1.0 62.38 62.79 64.39 65.32 67.43 161.48

AEP
[MWh]

1.5 61.70 61.99 63.76 65.62 66.88 192.48

2.0 61.75 61.98 63.64 64.37 66.29 188.48

2.5 – 61.91 62.69 64.74 66.12 206.81

L [m]

1.0 2.56% 3.24% 5.87% 7.40% 10.87% 165.50%

Percentage
Increase

1.5 1.45% 1.92% 4.83% 7.89% 9.96% 216.47%

2.0 1.53% 1.91% 4.64% 5.84% 8.99% 209.90%

2.5 – 1.79% 3.07% 6.45% 8.71% 240.04%
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Figure 5.20: AEP percentage increase: sphere buoy with NSMc3

5.4 Summary

The present chapter started validating the analytical approach to calculate the non-

linear Froude-Krylov force for both cases without and with the NSMc system. Then,

the convergence analysis defined a reliable simulation time.

Simulations for the case with NSMc showed that the bi-stable NSMc cannot

improve the WEC performance in a stable way if compared with the other two

types of configurations: QZS and mono-stable.

The designing process of the mechanical compression springs imposed practical

constraints on the NSMc. Further investigations of the wave energy conversion in the

feasible region demonstrated that the NSMc was not suitable to enhance the WEC

performance. In practice, it is the mechanical constraint that restricts dramatically

its feasibility.

The above conclusions consequently inspired additional investigations to identify

other feasible ways to apply the NSS concept, which will be the subject in the next

chapter.
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Chapter 6

Alternative NSS in WEC

The practical consideration in Chapter 5 imposed the limitation of the WEC perfor-

mance with NSMc due to some realistic mechanical compression springs constraints.

To overcome such NSMc practical restrictions, one possible approach substitutes

the mechanical compression springs by equivalent pneumatic cylinders working like

springs.

6.1 NSS with pneumatic cylinders (NSPn)

6.1.1 Description

As shown in Figure 6.1, pneumatic cylinders filled with pressurized gas (blue area)

replace the conventional mechanical compression springs. The cylinder rods hinges

from one of their ends to follow the buoy heave motion. An additional gas tank

is necessary to feed all cylinders, composing the whole pneumatic system. The gas

tank plays two primary functions: first, it equalizes the gas pressure in all cylinders

to balance the force on the horizontal plane; second, the additional volume broadens

the optional range of pressure and volume. Figure 4.1 (in Chapter 4) shows other

schematic explanations valid for the pneumatic cylinders as well. The following

sub-section describes further explanations of the relevant parameters.

6.1.2 Mathematical model

In the NSPn device, n cylinders (each piston area is A0) are axisymmetrically con-

nected. At the equilibrium position, each cylinder length is L, the total gas volume

is V0, and the pressure is P0. A simple geometry derivation provides the gas volume

V calculation for a given displacement of z,

V = V0 + nA0 · (
√
z2 + L2 − L) (6.1)
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Figure 6.1: Schematic view of NSS with pneumatic cylinders (NSPn)

Assuming the adiabatic process, the corresponding pressure P satisfies the fol-

lowing relationship,

PV µ = P0V
µ
0 (6.2)

where: µ is the specific heat ratio (1.4 in the case of nitrogen). Thus, the net vertical

force supplied by the NSPn device acting on the buoy can be expressed as,

fNSPn(z) = nP0A0 ·
z√

z2 + L2
·
(
V0
V

)µ
(6.3)

Many researchers have proposed different models to simulate the friction effect

of the pneumatic cylinder. For instance, both Tustin [118] and Palomares et al.

[119] involved Coulomb friction and additional velocity-dependent friction into the

model; reference [120] provides some other simplified models. Nevertheless, in most

cases, the friction forces are much smaller than the forces supplied by the cylinder.

Some manufacturers even defined the cylinder efficiency ηP by:

ηP =
fNSPn

P · A0

(6.4)

suggesting values between 0.85 and 0.90 for ηP which might be larger for a cylinder

with larger piston area A0 [120]. Therefore, ignoring friction force completely will

not affect much the results.

Furthermore, for the sake of simplicity, two variables define the equivalent stiff-
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ness nK0 and the equivalent length L0:

nK0 =
nP0A0

L
(6.5)

L0 =
V0
nA0

(6.6)

Substituting the above two equations into Eq. 6.3 reduces the expression of fNSPn

dimension from (n, L, P0, A0, V0) to (n, L, L0, K0),

fNSPn(z) = nK0 ·
z√

z2 + L2
· L ·

(
L0

L0 +
√
z2 + L2 − L

)µ
(6.7)

Consequently, defining two non-dimensional parameters (in a similar way as defined

for the NSMc case),

α =
CWL

nK0

=
CWLL

nP0A0

(6.8)

γ =
nA0L

V0
(6.9)

For the NSPn, α is a ratio to describe the relative stiffness, and γ is an equivalent

volume ratio.

Based on the Eqs. 6.1 and 6.2, the change of pressure P inside of the pneumatic

system with the displacement of the buoy is expressed as,

P

P0

=

(
V0
V

)µ
=

(
V0

V0 + nA0 · (
√
z2 + L2 − L)

)µ
=

1[
1 + γ(

√
(z/L)2 + 1− 1)

]µ
(6.10)

Figure 6.2 depicts P/P0 patterns for different γ values with L = 2.5 m. At the

equilibrium position (z = 0), P = P0; as the buoy leaves out from the equilibrium

position, the pressure decreases. The curves with different colors also show that the

larger the γ value, the faster P changes.

Similar to zf0 mentioned earlier in the NSMc discussion, there is a limit (zlim)

for the NSPn excursion as well. Such a limit is actually related to the allowable

piston stroke (4L) from the equilibrium position.

zlim = ±
√

(L+4L)2 − L2 (6.11)

β = arctan
(zlim
L

)
(6.12)

where, β is the maximum pneumatic cylinder rotational angle. The present work
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Figure 6.2: P/P0 patterns for different γ values (L = 2.5 m)

selects β = 45◦ referred to the application of “WaveSpring” technology in CorPower

buoy [42]. Thus,

zlim = ±L (6.13)

4L = (
√

2− 1)L ≈ 0.4L (6.14)

After the piston reaches its limiting stroke, as well as the buoy’s displacement is

zlim, if it has a further tendency to exceed the limit, the NSPn disconnects from the

buoy, otherwise, the NSPn force acts on the buoy. Herein, the complete expression

of fNSPn(z) is,

fNSPn(z) =


nK0 ·

z√
z2 + L2

· L ·
[

L0

L0 +
√
z2 + L2 − L

]µ
|z| ≤ L

0 |z| > L

(6.15)

Figure 6.3: Pneumatic cylinder schematic view

However, differently from the NSMc, fNSPn (zlim) is not zero (as the red curve
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shown in Figure 6.4) because of the remaining pressure inside of the pneumatic

cylinder chambers.

Figure 6.4: Hydrostatic force and NSPn force (α = 1.0, γ = 1.0, L = 2.5 m)

The potential energy curve eNSPn(z) is also described as,

eNSPn(z) = −
∫ z

0

fNSPn(ζ)dζ + eNSPn(0)

= −nK0LL0

µ− 1
·

[
1−

(
L0

L0 +
√
z2 + L2 − L

)µ−1]
, when |z| ≤ L (6.16)

where, potential energy eNSPn(0) = 0, not affecting the practical static analysis.

6.2 Static characteristic analysis

Furthermore, the analysis of the parameter effects on the NSPn characteristics

adopts a similar approach as used for the NSMc case. It should be noticed that

adjusting piston area A0 and gas volume V0 provides a corresponding suitable L0.

Thus, the γ value can be either larger or smaller than 1.0, which is another obvious

difference compared with the NSMc system.

Figure 6.5 presents the patterns of the sphere restoring force in terms of dis-

placement (z), with different NSPn configurations. Obviously, the system behavior

definition is only related to α, and different values of α define three distinct behav-

iors:

• α < 1.0, bi-stable behavior, leading to three zero points of restoring force;

• α = 1.0, QZS behavior, leading to only one zero point of restoring force and

zero stiffness at the equilibrium position;
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• α > 1.0, mono-stable behavior,leading to only one zero point of restoring force

but non-zero stiffness at equilibrium position.

The above features also indicate that α plays a more important role than γ in

determining the NSPn characteristics.

Figure 6.5: Sphere static restoring force with NSPn (L = 2.5 m)

In Figure 6.6, the bi-stable configuration still features two stable equilibrium

points. For the cases, γ = 0.5 and 1.0, the corresponding stable equilibrium positions

with respect to the bi-stable configurations exceed the displacement limit zlim, thus

they are not presented on the corresponding curves (blue and red curves).

Figure 6.6: Sphere potential energy with NSPn (L = 2.5 m)

Figures 6.5 and 6.6 also show that, if either α or γ increases, both the restoring

force and potential energy curves further approach the corresponding original non-

linear hydrostatic restoring force and potential energy. The direct conclusion would

be that the NSPn system with too large α and γ values cannot significantly change

the characteristics of the sphere buoy dynamics. Thus, no significant improvements

would be obtained.
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6.3 Validation and convergence analysis

6.3.1 Response for regular wave conditions

Figure 6.7 presents the CWR contours for the NSPn with QZS (α = 1.0, γ = 1.0) and

mono-stable (α = 1.2, γ = 1.0) configurations using linear (NSPn1) and nonlinear

models (meshing – NSPn2 and analytical – NSPn3) acted by different wave heights.

In each contour, the dark red color area depicts higher CWR values, while the dark

blue color area depicts lower CWR values. The white dot indicates the maximum

CWR value for each contour. The contour line for the level of CWR = 0.45, that

is equal to the CWR peak value of the model without NSPn, is defined by the

black dashed curve. Thus within the region under the curve, it determines the wave

period and PTO damping values which extract more wave energy than that in the

resonant state of LnMd can be extracted. Note that all the simulations in regular

wave conditions are conducted considering the drag correction with a drag coefficient

Cd = 0.6 (as recommended by Giorgi and Ringwood [98] for the same sphere buoy).

The following section continues to analyze the Cd influence.

Figure 6.7 compares four groups of contours for meshing and analytical nonlinear

models and they present very good consistencies. Thus, the analytical nonlinear

model confirms further validation for applications in NSPn analysis.

Moreover, the mono-table configuration produces broader (T,BPTO) region fea-

turing higher CWR than for the QZS configuration. The wave period with respect to

the maximum CWR decreases period around 1.0 s from the QZS to the mono-stable

configuration. However, the CWR peak presents an increase for the nonlinear model

which is the opposite in the NSMc case analyzed in Chapter 4. Such a characteristic

is also different from the linear model in Figure 6.7, though the linear model induces

broader and higher CWR response. In another aspect, applying the NSPn system,

the nonlinear model requires to handle the nonlinear Froude-Krylov force due to the

sphere waterplane area variation.

In addition, considering the multiple solutions characteristic of the NSPn with bi-

stable configuration, the CWR responses are described by the scatters corresponding

to different BPTO values instead of the contour, as shown from Figure 6.8 to Figure

6.9. The bi-stable configuration features α = 0.8, γ = 1.0, L = 2.5 m, and three

different BPTO values (BPTO = 20, 70, 120 kNs/m). In each figure, the blue dots

depict the solutions featuring the intra-well motion (as defined in Chapter 4), while

the red dots represent the inter-well and chaotic solutions (actually only in the low

damping conditions the chaotic behavior appears).

When using the linear model (see Figure 6.8, multiple solutions only appear

under high wave and large damping conditions besides the chaos. However, with

the analytical nonlinear model (in Figure 6.9), the multiple solutions ranges become
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(a) linear (b) linear

(c) meshing (d) meshing

(e) analytical (f) analytical

Figure 6.7: CWR comparisons between linear and nonlinear models (H = 1.0 m)

much larger, increasing with the damping. Almost all the multiple solutions feature

intra-well motion. The reason is the contribution from the nonlinear Froude-Krylov

force model strengthening the nonlinear effects of the system with NSPn and the

potential energy obstacle. In addition, due to the large damping, the buoy experi-

ences more difficulties to escape from the local “potential well” around either of the
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stable equilibrium positions. Not only the multiple solutions increase the system

instability, but also the responses are weakened.

Figure 6.8: CWR with bi-stable configuration (α = 0.8, γ = 1.0, L = 2.5 m) using
linear approach

Though increasing γ can reduce the appearance of multiple solutions under the

long wave conditions with bi-stable configuration, the optimal CWR is not an at-

tractive solution as that associated with both QZS and mono-stable configurations.

Thus only the latter two configurations are investigated more emphatically in the

following analysis.

6.3.2 Convergence analysis for irregular wave conditions

Based on the previous analysis, the convergence analysis for the QZS and mono-

stable systems is conducted following the same simulation parameters as those used

in the NSMc case. Figures 6.10 and 6.11 validate the effective simulation period

tS = 2000 s and sampling frequency fS = 100 Hz used for the NSPn case in irregular

wave analysis.

6.4 NSPn Feasibility

Following the preliminary investigations, this section analyzes the NSPn feasibility.

First, Table 6.1 presents the main parameters of the NSPn. Here, D0 is the piston
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Figure 6.9: CWR with bi-stable configuration (α = 0.8, γ = 1.0, L = 2.5 m) using
analytical nonlinear approach

(a) (b)

Figure 6.10: Convergence analysis of the simulation length (tS) with QZS configu-
ration (α = 1.0, γ = 1.0, L = 2.5 m) for sea states: SP = 0.025, TP = 4.0, 8.0, 12.0 s

diameter (piston area A0 = πD2
0/4). The geometric parameters are not strongly

restricted. However, the pressure cannot be too high in the industrial applications

[33]. At present, the only prototype application known is the 1/2 model scale Cor-

Power buoy. It works with pressure around 21.5 bar according to the parameter

published by Todalshaug et al. [42].

For a pneumatic cylinder, the buckling of the rod is an important effect that has

to be avoided during the operation. To prevent buckling, the maximum permissible
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(a) (b)

Figure 6.11: Convergence analysis on the simulation length (tS) with mono-stable
configuration (α = 1.2, γ = 1.0, L = 2.5 m) for sea states: SP = 0.025, TP =
4.0, 8.0, 12.0 s

Table 6.1: NSPn main parameters

Parameters Units Min Max

D0 [cm] 2 30

P0

[bar]

(1 bar = 105 Pa)
1 20

V0 [m3] 0.001 1

compressive axial load on a piston rod is [120],

Fk =
π3 · E ·D4

rod

64l2kS
(6.17)

where, Fk – permissible buckling force in N;

E – modulus of elasticity of rod material (e.g., 210, 000N/mm2 for steel);

Drod – rod diameter in mm;

lk – effective length in mm;

S – safety factor, often used value is 5.

Here, the effective length lk is the distance between the free-end and support.

Actually, its maximum value equals the length of cylinder when it reaches the stroke

limit
√

2L · 103.

This permissible value should be higher than the value suggested by the maxi-

mum working pressure P0 and the piston area A0, which is related with α.

Fk > Fk0 = P0A0 =
CWLL

nα
(6.18)
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The corresponding permissible rod diameter should satisfy,

Drod >

(
64l2kSFk0
π3E

)0.25

(6.19)

Certainly, Drod is not larger than D0 at most. The condition below supplies more

redundancy for the design,

Drod ≤ 0.5D0 · 10 (6.20)

Combining Eqs. 6.19 and 6.20, the condition related with D0 is defined,(
64l2kSFk0
π3E

)0.25

< 0.5D0 · 10 (6.21)

Finally, the parameters in the space of (D0, P0, V0) as shown in Table 6.1 should

satisfy the Eq. 6.21 to define one feasible set of (α, γ). Thence, Figure 6.12 presents

the NSPn feasible regions (α, γ) under different combinations of (L, n).

One of the most evident features resulting from the present analysis indicates that

the feasible region occupies a broader area, meaning that the constraints’ influences

are quite limited. Similar to the NSMc feasible region as shown in Figure 5.16,

decreasing L or increasing n induces the feasible region covering (α, γ) with smaller

values where the better performance is expected to appear. However, when the L/n

values are the same, the feasible regions are no longer the same as can be observed

in the NSMc feasible analysis.

Figure 6.12: NSPn feasible regions

Continually, Figure 6.13 presents the NSPn1 AEP in the nearshore region of Rio

de Janeiro, where the range of (α, γ) can cover bi-stable, QZS and mono-stable
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configurations.

Not considering the (α, γ) constraints, the maximum AEP appears at the small-

est α and γ for each L configuration as the bars shown in Figure 6.13. Simul-

taneously, it increases as L also increases. Compared with the previous NSMc1,

the present AEP features a decline, but not more than 10%. However, consider-

ing the performance under the feasible (α, γ) parameters as shown in Figure 6.12,

the corresponding maximum AEP does not decrease dramatically as it happens for

NSMc1 basically because of its broader feasible region. Furthermore, the number of

pneumatic cylinders adopted is less than the necessary springs in the NSMc case.

(a) (b)

(c) (d)

Figure 6.13: AEP: sphere buoy with NSPn1 (n = 4) in the nearshore region of Rio
de Janeiro

The Table 6.2 and Figure 6.14 present a far more comprehensive comparison

considering different number of pneumatic cylinders. For all groups of pneumatic

cylinders, the longer L, the larger the percentage of increasing, except that if n = 3,

the feasible (α, γ) with L = 2.5 m is more heavily restricted than any other cases.

The least increase is greater than 150%, even considering the feasible configuration.

It indicates the great advantage of NSPn1 if compared with NSMc1.
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Table 6.2: AEP: sphere buoy with NSPn1 (LnMd1, AEP0 = 62.25 MWh)

n No

3 4 6 9 12 constraints

L [m]

1.0 154.79 154.79 154.79 154.79 154.79 154.79

AEP
[MWh]

1.5 197.09 197.09 197.09 197.09 197.09 197.09

2.0 212.88 212.92 212.92 212.92 212.92 231.24

2.5 186.83 218.98 240.01 240.01 240.01 259.29

L [m]

1.0 148.67% 148.67% 148.67% 148.67% 148.67% 148.67%

Percentage
Increase

1.5 216.62% 216.62% 216.62% 216.62% 216.62% 216.62%

2.0 241.97% 242.05% 242.05% 242.05% 242.05% 271.47%

2.5 200.13% 251.77% 285.56% 285.56% 285.56% 316.53%

Figure 6.14: AEP percentage increase: sphere buoy with NSPn1

Consequently, Figure 6.15 presents the results for the NSPn3 model analysis.

One obvious difference from the NSPn1 results is the maximum AEP without con-

sidering the practical constraints not appearing at the smallest α and γ for the cases

L = 2.0, 2.5 m. The instability of bi-stable NSPn as explained in Section 6.3 would

be the reason for such a difference. An even smaller γ value can further weaken the

output (see Figure 6.15 (c) and (d)). Thus, it confirms that the configurations for

α ≥ 1 with more reliable outputs are better options for practical applications.

Besides, if compared with the NSMc, considering the feasible (α, γ) configu-

rations, the NSPn3 presents more AEP decreasing with respect to the NSPn1. It

is because the role of the NSMc is dramatically weakened by imposing practical

constraints. The system behaves more like a linear model with a small amplitude

motion. Thus, the influence of nonlinear Froude-Krylov force is not too significant,

while the feasibility restriction on the NSPn will be so limited that the nonlinear

Froude-Krylov force still plays a non-negligible role.
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(a) (b)

(c) (d)

Figure 6.15: AEP: sphere buoy with NSPn3 (n = 4) in the nearshore region of Rio
de Janeiro

Table 6.3: AEP: sphere buoy with NSPn3 (LnMd3, AEP0 = 60.82 MWh)

n No

3 4 6 9 12 constraints

L [m]

1.0 147.27 147.27 147.27 147.27 147.27 147.27

AEP
[MWh]

1.5 173.68 173.68 173.68 173.68 173.68 173.68

2.0 199.87 199.87 199.87 199.87 199.87 199.87

2.5 185.05 205.88 205.88 205.88 205.88 205.88

L [m]

1.0 142.14% 142.14% 142.14% 142.14% 142.14% 142.14%

Percentage
Increase

1.5 185.56% 185.56% 185.56% 185.56% 185.56% 185.56%

2.0 228.63% 228.63% 228.63% 228.63% 228.63% 228.63%

2.5 204.26% 238.51% 238.51% 238.51% 238.51% 238.51%

Figure 6.16 depicts the limited influence of the feasible consideration in a more

obvious way. Almost all the cases with different amounts of pneumatic cylinders
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behave in a similar manner as they were not considering the feasibility restriction.

Figure 6.16: AEP percentage increase: sphere buoy with NSPn3

6.5 Performance analysis

Based on the previous feasibility analysis, the constraints on the NSPn performance

is not as significant as for the NSMc case. The effects of the relevant parameters

– α and γ on the performance can be explored in a broad feasible region inher-

ently. Besides, the drag correction effect makes the analysis more comprehensive

and qualified. As the effect of L and n discussed in the previous section, the present

investigation takes one example with L = 2.5 m, n = 4 into consideration to focus

more on the influences of other factors.

6.5.1 The α effect

With L = 2.5m, n = 4, the feasible α range is defined by α ≥ 1.0 as shown in Figure

6.15 (d). Figure 6.17 describes the influence of α on the CWR for nine different sea

states in the nearshore region of Rio de Janeiro (see Table. 5.4). The investigation

also includes the CWR changes as a function of BPTO. The colorful solid curves

represent the average results with respect to 50 different irregular waves defined by

the same statistic properties but distinct random phase angles. The black dashed

curves depict the reference results of LnMd3. The shaded bars correspond to the

occurrence probability of the nine sea states.

For the sea state SS1 (H = 0.25 m), the configurations with α = 1.2 and 1.5

perform better than that with α = 1.0. In other words, some of the mono-stable

configurations can achieve better performance than the QZS configuration. Such a

phenomenon occurs because sea state SS1 is not energetic enough to force the QZS

system to “jump” from the low-energy branch to the high-energy branch. However,
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considering the smaller occurrence probability and lower energy density of SS1, it

will not affect the global AEP significantly.

For the other sea states investigated, the optimal CWR in terms of BPTO with the

QZS configuration is always larger than that with the mono-stable configuration.

It decreases with increasing α, while the corresponding optimal BPTO increases.

It features one approaching tendency to the LnMd3 if α increases continually. It

further indicates that the NSPn configuration with α equal to or close to 1.0 is more

preferable even in random sea states.

Note that the red dots depict the cases featuring the average maximum excursion

exceeding the zlim with respect to the 50 different irregular waves defined by the

same statistic properties but distinct random phase angles. For the sea states with

medium energy level, such as from SS2 to SS5, the suitable BPTO around the optimal

value can force the motion not to exceed the excursion limit. Moreover, for the other

more energetic sea states, even larger BPTO are required to restrict the buoy motion.

Figure 6.17: CWR: sphere buoy with NSPn (γ = 1.0, L = 2.5 m and n = 4) for
different sea states

6.5.2 The γ effect

Similarly, with smaller α, such as in the QZS configuration shown in Figure 6.18,

increasing γ slightly reduces the optimal CWR. For larger α (as shown in Figure

6.19), the curves for distinct γ are almost overlapped with each other, meaning that

the influence of γ on the CWR becomes weaker as α increases.

Compared with the significant changes observed when α was varied in the previ-

ous analysis, γ has only a minor effect on selecting the NSPn configuration. Herein,

the NSPn parameter related with α, such as P0, requires more careful considerations

in the design process.
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Figure 6.18: CWR: sphere buoy with NSPn (α = 1.0, L = 2.5 m and n = 4) for
different sea states

Figure 6.19: CWR: sphere buoy with NSPn (α = 2.0, L = 2.5 m and n = 4) for
different sea states

6.5.3 The Cd effect

To evaluate the Cd effect on AEP, a series of values are adopted with the reference

value Cd = 0.6 recommended in [98]. In Figure 6.20, blue bars corresponding to the

left axis depict the percentage difference between the reference Cd and other values,

while the red curve describes the corresponding AEP pattern. Relative to the case

without Cd, only 11% decrease is induced with Cd = 0.6. As the Cd increases, the

descending becomes more moderate. Similar phenomenon appears in [98] as well.

Here, the AEP computation does not consider the excursion limit mentioned in

the previous two sections. The large motion occurrence amplifies the drag effect.

More robust analysis conducted in the comparisons among LnMd, LtCt, and NSPn

will consider such a factor further.
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Figure 6.20: Cd influence on AEP (L = 2.5 m, n = 4)

6.6 Comparisons

Based on the understanding of the NSPn characteristics and from the analysis of

the influence factors, it would be reasonable to select several typical configurations

featuring better performance in wave energy conversion, such as the QZS and mono-

stable configurations with α around 1.0. Four configurations are listed in Table 6.4.

Table 6.4: NSPn configurations

NSPn α γ L [m] n

I 1.0 1.0 2.5 4

II 1.0 3.0 2.5 4

III 1.2 1.0 2.5 4

IV 1.2 3.0 2.5 4

6.6.1 Frequency response contour

In addition, the present section adopts latching control (LtCt) with constant latch-

ing duration [15, 121] to conduct the comparison as it is easy to be implemented

practically and no reactive power flow increases the cost of the PTO system. Figures

6.21 and 6.22 present the CWR responses in regular wave conditions for both LnMd

and LtCt using linear (LnMd1, LtCt1) and analytical nonlinear (LnMd3, LtCt3)

models respectively. Drag coefficient Cd = 0.6 is still taken as the reference value.

As LnMd cannot generate large amplitude motion, the effect of nonlinear model

is not significant. Herein, for LnMd1 and LnMd3, the CWR contours do not change

too much, even increasing wave height H from 1.0 m to 2.0 m (see Figure 6.21). The

optimal CWR appears around the natural period T0 = 3.2 s.

102



Moreover, the peak value CWR = 0.45 works as a reference value featuring the

range of contour in which better wave energy conversion can be achieved for both

NSPn and LtCt.

(a) linear (H = 1.0 m) (b) linear (H = 2.0 m)

(c) nonlinear (H = 1.0 m) (d) nonlinear (H = 2.0 m)

Figure 6.21: LnMd CWR using linear and nonlinear models (H = 1.0, 2.0 m)

In the LtCt cases, together with BPTO, latching duration also affects the CWR.

The conventional analytical formula of constant latching duration is based on the

undamped natural period. Therefore it does not work correctly if PTO damping is

included, not to mention the nonlinear Froude-Krylov force effect. Thus, the optimal

latching duration is evaluated for each BPTO from a series of latching durations

smaller than the values provided by the analytical formula. The corresponding

CWR is defined as the tuned CWR.

Similar to the NSPn case investigated in the previous section, the response con-

tours of LtCt also capture a large area featuring higher CWR than that of LnMd

(see Figure 6.22). The core region shape features a triangle-like form with a broad

“bottom” and narrow “top”, while the previous NSPn features a broader “top” than

the “bottom” as shown in Figure 6.7. In other words, the wave period range where

LtCt could capture competitive wave energy becomes narrow as BPTO increasing.
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Under small BPTO conditions, though, the LtCt case captures in a broader range

than the NSPn case.

(a) linear (H = 1.0 m) (b) linear (H = 2.0 m)

(c) nonlinear (H = 1.0 m) (d) nonlinear (H = 2.0 m)

Figure 6.22: LtCt CWR using linear and nonlinear models (H = 1.0, 2.0 m)

Figure 6.23 presents the optimal CWR (the optimal result in the tuned CWR

contour) and the corresponding latching duration (LD) with optimal BPTO under

wave conditions with three different wave steepnesses. The black dashed curve

depicts the LD calculated analytically based on the formula (Eq. 2.1). Due to

the nonlinear Froude-Krylov force model, the real optimal LD is smaller than the

analytical one. Besides, such a tendency becomes more significant as both wave

period and wave steepness increase. It means the nonlinear effect gets stronger. It

is also shown that the present LtCt is far more suitable for the wave with a moderate

period, such as from 4.0 to 8.0 s according to the CWR curves.

Moreover, not only the wave period with respect to the CWR peak in the NSPn

contours is larger than that of LtCt (as shown in Figure 6.24), increasing BPTO also

shifts the optimal wave period to an even large value. In Figure 6.24 one observes

that, using the nonlinear Froude-Krylov force model, the peak period for LtCt does

not change too much though latching control increases the resonance period, while
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Figure 6.23: Optimal CWR and LD for different wave conditions

for NSPn it increases significantly, especially for cases with small α and γ values.

(a) H = 1.0 m (b) H = 2.0 m

Figure 6.24: Peak period comparisons of different models in regular wave conditions

In Figure 6.25, it is shown that the linear model obviously overestimates the

CWR, especially for the NSPn case. Therefore, it indicates that the nonlinear

model would be necessary for the prediction of wave energy conversion with NSPn.

Besides, it should be noticed that the QZS configuration does not always perform

better than mono-stable ones.

In summary, the above comparisons indicate that the NSPn achieves competitive

wave energy harvest under a relatively long wave condition, even outperforms LtCt

if it involves large BPTO.

6.6.2 Performance in a given sea site

Continually, the performance comparisons in the nearshore region of Rio de Janeiro

include four situations :
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(a) H = 1.0 m (b) H = 2.0 m

Figure 6.25: Peak CWR comparisons of different models in regular wave conditions

• Non-constrained & untuned – no displacement limit and applies one optimal

BPTO for all the sea states;

• Non-constrained & tuned – no displacement limit, however, applies different

optimal BPTO for each sea state;

• Constrained & untuned – considers the displacement limit (zlim = 2.5 m) and

applies one optimal BPTO for all the sea states;

• Constrained & tuned – considers the displacement limit (zlim = 2.5 m), how-

ever, applies different optimal BPTO for each sea state.

Both cases without drag correction and with Cd = 0.6 considered in the comparisons.

Figure 6.26 depicts the AEP.

First, the most evident phenomenon is that the AEPs in Figure 6.26 (c) present

great decreasing compared with the other three cases, especially, for the four items

of NSPn. It is because that for LtCt and NSPn, the motion is amplified, so larger

probability exceeding the excursion limit appears. Thus in the constrained & un-

tuned condition, a very large damping makes the motion satisfy all the sea states.

For instance, in the SS9, the damping larger than 300kNs/m is required. Therefore,

the system is forced to work in an overdamped situation for those less energetic sea

states.

Consequently, from the dramatic increase of AEP for the NSPn items in Figure

6.26 (d) one can conclude that NSPn can achieve around twice increase relative

to LnMd and one time increase compared with LtCt if the system can be tuned

for distinct sea states. For the sea states form SS1 to SS6, which occupy 97.2%

of the occurrence and 86.7% power density, the maximum BPTO that satisfies the

constrained condition is around 150 kNs/m in SS6 which is almost half of that in

SS9.
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(a) Non-constrained & untuned (b) Non-constrained & tuned

(c) Constrained & untuned (d) Constrained & tuned

Figure 6.26: AEPs for four cases

Besides, due to larger damping is adopted to satisfy the motion constraint, the

effect of Cd on the constrained & tuned case becomes weaker, even less than 10%.

In the four items of NSPn, I, II and III can capture a little more energy than

IV in Figure 6.26 (d), however, item I presents the largest decrease in Figure 6.26

(c). It means that item I depends more on the large motion to increase the power

absorption. To release the stress of exceeding motion limit, item III with a larger α

in mono-stable configuration is more suitable.

Figure 6.27 presents another important parameter that can evaluate the quality

of power absorption: peak-to-average power ratio (Pmax/Pm). The vacuum circles

depict the case without drag correction, while the solid dots describe the case with

Cd = 0.6.

Obviously, all the NSPn items feature a less Pmax/Pm value than LtCt until SS7,

which means that NSPn can achieve smoother power capture. However, for the

highly energetic sea states, SS8 and SS9, the items I and II of NSPn cannot absorb

wave energy as smoothly as LtCt and LnMd.

107



(a) (b)

(c) (d)

Figure 6.27: Ratio of peak power to mean power for four cases

Finally, considering both quantity and quality of power absorption, a mono-

stable NSPn with α close to 1.0 and not too large γ, such as item III, is the best

choice, even outperforms LtCt.

6.7 Summary

This chapter investigates both static and dynamic characteristics of the NSPn com-

prehensively, as an alternative substitution for the NSMc. Through the feasibility

analysis, it is observed that the effect of constraints on NSPn configurations is not

as significant as that on NSMc.

The consequent comparisons with LnMd and LtCt also verify that NSPn can

outperform LtCt with constant latching duration in both quantity and quality as-

pects.

Furthermore, a mono-stable NSPn with α close to 1.0 and not too large γ is

recommended in the wave energy conversion applications.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

The thesis investigates the nonlinear stiffness concept in improving wave energy

conversion for a point absorber type wave energy converter, as the original narrow

bandwidth and short natural period cannot achieve efficient wave energy conversion

when the wave period is out of the resonance period, not to mention that the real

sea states are random naturally.

The WEC is featured in one widely studied shape – sphere. Due to its non-

uniform waterplane area, the weakly nonlinear Froude-Krylov force model is imple-

mented to conduct more accurate simulations.

Two types of nonlinear stiffness systems are investigated, including the system

composed of mechanical compression springs – NSMc; and the system composed of

pneumatic cylinders – NSPn.

One set of in-house code is established to simulate and analyze the WEC dy-

namics. To verify the code, a series of numerical tests are conducted and compared

with the results from the International Energy Agency (IEA) Ocean Energy Systems

(OES) Task 10 project.

7.1.1 Nonlinear Froude-Krylov force model

Both the meshing and analytical approaches are included:

• The meshing approach is one direct method to use Bernoulli’s equation to

calculate the Froude-Krylov force over the meshes by discretizing the instan-

taneous wetted surface. In the code-to-code verifications – free decay tests,

simulations in regular wave conditions and irregular wave conditions, the good

consistency determines that it can be taken as a reference for the verification

of the analytical nonlinear Froude-Krylov force model;

109



• The present work also improves the analytical nonlinear model. Through

adopting the Bessel function, more comprehensive expression of nonlinear

Froude-Krylov force is proposed. Using the adaptive polynomial fitting tech-

nique, instead of Taylor’s series expansion, both the Bessel function and ex-

ponential function could be approximated with higher accuracy under a wider

wave frequency domain. Simultaneously, the separation of the frequency-

dependent term from the relative real-time updated relative displacement im-

proves the computational efficiency, especially in irregular wave conditions

with multiple frequency components. In the extensive numerical simulations,

the accuracy and efficiency of the analytical approach are validated through

comparisons with the meshing approach.

In addition, the nonlinear effect of the non-uniform waterplane area also interacts

with the NSS to change both static and dynamic characteristics of PA type WEC.

7.1.2 NSS characteristics

The static analysis of the classical NSMc describes three types of configurations: bi-

stable, QZS (Quasi-Zero Stiffness), and mono-stable, which are determined by both

stiffness and geometry ratios. However, for the NSPn, though two novel equivalent

non-dimensional parameters are defined similarly to that in NSMc analysis, only the

equivalent stiffness ratio determines the system behavior. In addition, the dynamic

analysis presents that the equivalent stiffness ratio plays a more important role than

the equivalent geometry ratio in affecting the system response. Consequently, the

gas pressure inside of the pneumatic system P0 affects the characteristics most.

In the feasibility analysis, this thesis sets up one procedure of determining the

feasible region of NSMc parameters according to the conventional design proce-

dure of mechanical compression springs. While, the NSPn feasible region is set

up according to the parameters’ range in the industry application, together with

the consideration fo rod buckling condition. Considering such practical limitations,

most parts of the attractive configurations that can improve the wave absorption for

the NSMc are not feasible anymore. Thus, the NSMc advantages are dramatically

weakened. However, these constraints do not restrict the NSPn’s attractive (α, γ)

area dramatically. Thus its annual energy production (AEP) is not reduced too

much. Such a discovery inherently verifies that the NSPn features better feasibility

than NSMc.

7.1.3 NSS with nonlinear Froude-Krylov force model

Not considering the nonlinear Froude-Krylov force model, the NSS function is over-

estimated, when implementing the NSS in the PA type WEC with non-uniform
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waterplane area. With the nonlinear Froude-Krylov force model, the resonance re-

sponse is even pushed to the larger period range, as well as the response bandwidth

is broadened.

The combination of the NSS concept with nonlinear Froude-Krylov force model

makes the bi-stable configurations produce multiple solutions more easily. Such a

more significant motion instability reduces the WEC’s power absorption in both

regular and irregular conditions. However, the QZS and mono-stable configurations

still feature stable enough motion. Especially, some mono-stable configurations close

to the QZS perform even better.

The comparison with latching control method conducted under the wave climate

in the nearshore region of Rio de Janeiro, Brazil, imposes that PA could harvest more

power with the NSPn, than with latching control, featuring almost once increase.

Moreover, the lower peak-to-average power ratio verifies that the process of power

absorption is smoother with the NSPn. Thus, the NSPn outperforms latching control

in both quantity and quality of wave energy conversion.

7.2 Future work

Besides the thesis work, the nonlinear stiffness concept deserves deeper investigation.

The following work will continue to strengthen the understanding of NSPn char-

acteristics and promote its application in wave energy conversion, such as,

• Setting up a finer mathematical model of NSPn through the scaled model

test. It may be a set of dry tests to emulate the NSPn static and dynamic

characteristics;

• Conducting more comparisons with other approaches, e.g., threshold latching,

MPC, etc. and with different sea states. Thus, the NSPn adaptability would

be investigated comprehensively;

• Investigating better approaches to handle the motion limit problem, for in-

stance, adopting minor adjust of the pneumatic system to restrict the excessive

motion, or designing a suitable end-stop system, etc.

In addition, not limited to the NSPn, the interactions of NSS with other relevant

concepts will be an alternative approach to give full play to the advantages individ-

ually and overcome their limitations.

• Searching for the optimal geometric dimension and shape with the non-uniform

waterplane area by using the analytical approach to solve the hydrodynamic

problem. For instance, to protect the device in high sea states, increasing the
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waterplane area around the motion stroke limit would behave as a moderate

end-stop mechanism. Together with NSS, these two types of nonlinear effects

interactions may bring more benefits to WEC;

• In the WEC offshore applications, combining NSS with the two-body system

is one hopeful approach. Moreover, the broad bandwidth characteristic of

the NSS concept and the multiple resonances of the two-body system would

enhance the performance of WEC in different sea states together.
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[23] SÁNCHEZ, E. V., HANSEN, R. H., KRAMER, M. M. “Control performance

assessment and design of optimal control to harvest ocean energy”, IEEE

Journal of Oceanic Engineering, v. 40, n. 1, pp. 15–26, 2014.

[24] NGUYEN, H.-N., TONA, P. “Continuously adaptive PI control of wave energy

converters under irregular sea-state conditions”. 2017.

[25] NGUYEN, H.-N., TONA, P. “An efficiency-aware continuous adaptive

proportional-integral velocity-feedback control for wave energy convert-

ers”, Renewable Energy, v. 146, pp. 1596–1608, 2020.

[26] FOLLEY, M. Numerical modelling of wave energy converters: state-of-the-art

techniques for single devices and arrays. Academic Press, 2016.

[27] ANDERLINI, E., FOREHAND, D. I., STANSELL, P., et al. “Control of a

point absorber using reinforcement learning”, IEEE Transactions on Sus-

tainable Energy, v. 7, n. 4, pp. 1681–1690, 2016.

[28] ANDERLINI, E., FOREHAND, D. I., BANNON, E., et al. “Reactive con-

trol of a two-body point absorber using reinforcement learning”, Ocean

Engineering, v. 148, pp. 650–658, 2018.

[29] KORDE, U. A., RINGWOOD, J. Hydrodynamic control of wave energy devices.

Cambridge University Press, 2016.

115
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[87] PEÑALBA RETES, M., GIORGI, G., RINGWOOD, J. V. “Mathematical

modelling of wave energy converters: a review of nonlinear approaches”,

Renewable and Sustainable Energy Reviews, v. 78, pp. 1188–1207, 2017.

[88] PECHER, A., KOFOED, J. P. Handbook of ocean wave energy. Springer

London, 2017.

[89] FALNES, J. Ocean waves and oscillating systems: linear interactions including

wave-energy extraction. Cambridge university press, 2002.

[90] LEE, C.-H. WAMIT Theory Manual, 1995.

[91] ANSYS INC. Aqwa Theory Manual, 2015.

[92] BABARIT, A., DELHOMMEAU, G. “Theoretical and numerical aspects of

the open source BEM solver NEMOH”. 2015.

121



[93] HULME, A. “The wave forces acting on a floating hemisphere undergoing forced

periodic oscillations”, Journal of Fluid Mechanics, v. 121, pp. 443–463,

1982.

[94] YEUNG, R. W. “Added mass and damping of a vertical cylinder in finite-depth

waters”, Applied Ocean Research, v. 3, n. 3, pp. 119–133, 1981.
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