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A B S T R A C T   

This study focuses on the sustainability efficiency of the Chinese transportation system by investigating the 
relationship between CO2 emission levels and the respective freight and passenger turnovers for each trans-
portation mode from January 1999 to December 2017. A novel Robust Bayesian Stochastic Frontier Analysis 
(RBSFA) is developed by taking carbon inequality into account. In this model, the aggregated variance/ 
covariance matrix for the three classical distributional assumptions of the inefficiency term—Gamma, Expo-
nential, and Half-Normal—is minimized, yielding lower Deviance Information Criteria when compared to each 
classical assumption separately. Results are controlled for the impact of major macro-economic variables related 
to fiscal policy, monetary policy, inflationary pressure, and economic activity. Results indicate that the Chinese 
transportation system shows high sustainability efficiency with relatively small random fluctuations explained by 
macro-economic policies. Waterway, railway, and roadway transportation modes improved sustainability effi-
ciency of freight traffic while only the railway transportation mode improved sustainability efficiency of pas-
senger traffic. However, the air transportation mode decreased sustainability efficiency of both freight and 
passenger traffic. The present research helps in reaching governmental policies based not only on the internal 
dynamics of carbon inequality among different transportation modes, but also in terms of macro-economic 
impacts on the Chinese transportation sector.   

1. Introduction 

Sustainable transport has made significant contributions to address 
climate change and maintain the sustainable development of countries. 
As the global climate has changed dramatically, sustainable transport 
has become a major concern for the entire world (Greene and Wegener, 
1997; Tolley, 2003; Litman and Burwell, 2006; Feng et al., 2013; Labib 
et al., 2018; Li et al., 2019). The World Energy Council (WEC) pointed 
out that 20%–25% of the global energy consumption and carbon dioxide 
emissions were attributed to transport based on the 2007 Global Energy 
Survey. Sustainable transport will effectively reduce carbon emissions 
caused by transportation, bringing about positive effects to further 
optimize transport distribution and promote sustainable economic 
development. The Global Sustainable Transport Conference held in 
December 2016 discussed the relationship between sustainable trans-
port, climate change, and energy, pointing out that sustainable transport 

played a critically important role in improving transportation efficiency 
and reducing emissions in general. 

In the past four decades, with China’s rapid economic growth, its 
population has more disposable income to travel and visit relatives more 
frequently. Meanwhile, with urbanization gaining momentum, people 
have to commute to work by subway and automobile. Furthermore, 
freight transport has witnessed obvious increases in the last few years, 
mainly because of the fast-growing express-delivery demand driven by 
the emergence of e-commerce. The above-mentioned economic activ-
ities have elevated the demands for transport, which has led to the 
dramatic rise in pollutant emissions by transport. Referring to the IEA 
(International Energy Agency) statistics, carbon dioxide emissions 
increased from 6.15% in 1999 to 8.60% in 2014. Aiming at reducing CO2 
emissions per unit of GDP by 40%–50% by 2020, the Chinese govern-
ment has launched policies to enhance managing energy emissions in 
the transport industry to alleviate environmental pollution and 

* Corresponding author. 
E-mail address: hongyeczf@163.com (Z. Chen).  

Contents lists available at ScienceDirect 

Journal of Environmental Management 

journal homepage: http://www.elsevier.com/locate/jenvman 

https://doi.org/10.1016/j.jenvman.2020.110163 
Received 16 September 2019; Received in revised form 17 January 2020; Accepted 18 January 2020   

mailto:hongyeczf@163.com
www.sciencedirect.com/science/journal/03014797
https://http://www.elsevier.com/locate/jenvman
https://doi.org/10.1016/j.jenvman.2020.110163
https://doi.org/10.1016/j.jenvman.2020.110163
https://doi.org/10.1016/j.jenvman.2020.110163
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jenvman.2020.110163&domain=pdf


Journal of Environmental Management 260 (2020) 110163

2

encourage “green commuting” (Zhang et al., 2017; Chen et al., 2019; 
Feng, 2019; Wang et al., 2019). China’s policies have given top priority 
to promoting new-energy transportation vehicles in the private sector 
(Hu et al., 2010; Liu et al., 2013; Lin et al., 2017), but have failed to pay 
enough attention to traditional freight and passenger transport. Most 
policies have merely set stricter limits on exhaust emissions and fuel 
specifications to meet targets by limiting total emissions to the detriment 
of improving sustainability efficiency, so they have not managed to 
strike a balance between freight and passenger transport and sustain-
ability efficiency. 

This study examines the sustainability efficiency of the Chinese 
transportation system encompassing the modes of air, water, rail, and 
road transportation in terms of CO2 emission levels per unit of energy 
based on monthly data from January 1999 to December 2017. Within 
the broader scope of the transportation sustainability research stream, 
‘sustainable transportation efficiency’ deals with the productive struc-
ture of the transportation sector considering the technological specifics 
of each mode in moving passengers and cargo in terms of the required 
amount of energy to perform such a task to the detriment of fuel-burn 
and CO2 emissions. Efficiency studies and transportation sustainability 
studies require a number of assumptions on the production frontier, or 
the limit of best practices, that impose technological constraints on the 
conversion of energy into passenger and cargo turnovers. Previous 
research has regarded the transportation sector as a whole, neither 
differentiating passenger from freight traffic nor the four distinct 
transportation modes. In another words, the previous body of work has 
ignored the inequality among different transportation modes in carbon 
emissions. This paper will fill the literature gap and shed some light on 
the potential for curbing carbon emissions for China’s transportation 
industries, since existing research has rarely differentiated these distinct 
kinds of transportation modes when analyzing the entire transportation 
system and has failed to take into account the heterogeneity of the 
models. Differently from previous studies where sustainability efficiency 
is analyzed under traditional parametric and non-parametric efficiency 
models (Centobelli et al., 2017; Wanke et al., 2018a; Rashidi and Cull-
inane, 2019), this research proposes a novel Robust Bayesian Stochastic 

Frontier Analysis (RBSFA) computational model to relate the trans-
portation sustainability efficiency in China to its turnovers in terms of 
freight and passenger traffic. 

This novel RBSFA, differently from previous approaches, addresses 
epistemic uncertainty in sustainability efficiency studies by deriving a 
combined distributional assumption—free from collinearity—for the 
residual and inefficiency terms. Instead of handling four individual 
distribution assumptions at a time in order to decompose total error 
variance into its major constituents, a prior robust testing on distribu-
tional assumptions for the sustainability inefficiency is implemented, 
thus avoiding model misspecification by choosing one particular 
assumption to the detriment of the other. 

Compared to traditional SFA models, the estimated sustainable ef-
ficiency is unbiased when employing the RBSFA model even with a small 
sample. As a matter of fact, while reducing bias, the proposed approach 
improves sustainable efficiency predictability in several variance 
reduction metrics such as R-squared, RMSE, and MAPE, as a direct 
consequence of mitigating epistemic uncertainty by combining different 
distributional assumptions. Meanwhile, our approach takes into account 
heterogeneity and ensures that efficiency is correctly estimated rather 
than assuming that all the Decision Making Units (DMUs) have the same 
technology (Chen et al., 2015, 2017a, b). Another distinctive feature of 
this paper is that major macro-economic variables are jointly taken into 
account for assessing sustainability efficiency levels in a given transport 
activity. In fact, transportation activity is strongly related to 
macro-economic conditions (Beyzatlar et al., 2014; Cui and Li, 2015). 

Previous research on transportation freight and passenger sustain-
ability efficiency is rather scarce (Richardson, 2005; Kelle et al., 2019). 
Alonso et al. (2015) developed composite indicators to evaluate the 
sustainability of the passenger transportation sector for 23 different 
cities in the European countries. They found distinct sustainability 
performance for medium and small cities. Wei et al. (2013) applied data 
envelopment analysis (DEA) to compare urban transportation systems in 
34 different cities of China and found significant differences between the 
sustainability efficiency and the capacity efficiency for these cities, 
which suggests strong regional variations in transportation 

Table 1 
Descriptive statistics of the variable vectors used in the RSBM under six different combinations of distributional assumptions.  

Variable Units Min Max Mean SD CV 

Input y Total Transport CO2 Emission/Total Energy 
Use 

100 million HP/tons 46.62 63.91 54.28 6.09 0.11 

Outputs x1 Railway Turnover of Passenger Traffic/ 
Railway Energy Use 

100 million person*kilometers/100 
million HP 

8.40 54.73 25.63 6.96 0.27 

x2 Railway Turnover of Freight Traffic/Railway 
Energy Use 

100 million tons*kilometers/100 
million HP 

76.53 80.01 78.72 0.52 0.01 

x3 Roadway Turnover of Passenger Traffic/ 
Roadway Energy Use 

100 million person*kilometers/100 
million HP 

7.76 98.89 45.52 26.83 0.59 

x4 Roadway Turnover of Freight Traffic/ 
Roadway Energy Use 

100 million tons*kilometers/100 
million HP 

65.67 72.53 69.69 2.02 0.03 

x5 Waterway Turnover of Passenger Traffic/ 
Waterway Energy Use 

100 million person*kilometers/100 
million HP 

0.28 4.40 0.90 0.72 0.80 

x6 Waterway Turnover of Freight Traffic/ 
Waterway Energy Use 

100 million tons*kilometers/100 
million HP 

537.30 537.61 537.57 0.05 0.00 

x7 Air Transport Turnover of Passenger Traffic/ 
Airway Energy Use 

100 million person*kilometers/100 
million HP 

13.48 34.06 28.09 2.29 0.08 

x8 Air Transport Turnover of Freight Traffic/ 
Airway Energy Use 

100 million tons*kilometers/100 
million HP 

0.66 2.21 1.11 0.17 0.15 

Contextual Trend – 1.00 228.00 114.50 65.96 0.58 
Exchange rate (RMB/USD) 6.10 8.28 7.30 0.86 0.12 
Loan rate (%) 4.35 7.47 5.68 0.74 0.13 
Deposit rate (%) 1.50 4.14 2.49 0.69 0.28 
CPI (%) � 1.80 2.60 0.18 0.68 3.85 
Total trade (100 million USD) 196.99 4089.08 1964.35 1202.97 0.61 
M2 (100 million yuan) 105500.00 1676768.54 632779.18 483581.81 0.76 
Fiscal Expenditure (1 billion yuan) 52.98 2701.59 688.32 610.87 0.89 
Consumer Confidence Index – 97.00 123.90 107.84 4.85 0.04 
Fixed Assets Investment (1 million yuan) 84519.00 63168396.00 11101454.12 14282428.94 1.29 

Log applied in inputs, outputs, Total trade, M2, Fiscal Expenditure and Fixed Assets Investment variables. 
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development. In any case, what emerges from the above literature is that 
the innovative RBSFA computational model proposed here is being 
applied for the first time in relation to transportation sustainability ef-
ficiency and its roots in major macro-economic variables. Among the 
few studies in this research field that have adopted Bayesian SFA models 
on sustainability efficiency of transport activity are Llorca et al. (2017), 
who applied a random parameters stochastic frontier analysis (SFA) to 
estimate energy demand and efficiency of transport industry in the Latin 
American and Caribbean regions. Their results indicated that some of 
the countries that successfully improved public transport are efficient in 
energy consumption. Assaf (2011) also applied a Bayesian random co-
efficient stochastic frontier model that took into account the techno-
logical difference to estimate UK airport efficiency. He found that the 
new model could overcome the shortcomings of traditional SFA models 

and could correct the bias by allowing for heterogeneity. 
Departing from previous studies, our conclusions indicate that sus-

tainability efficiency levels would be improved when waterway, rail-
way, and roadway are more intensively used in freight traffic. As for 
passenger traffic, sustainability efficiency will increase when roadway 
and railway are prioritized. The air transportation mode would decrease 
sustainability efficiency both in freight traffic and passenger traffic. 
Moreover, we find that certain macro-economic variables are signifi-
cantly associated with sustainability efficiency. 

The remainder of the paper is structured as follows: part two presents 
the literature review, part three introduces the methodology, part four 
describes the analysis and discusses the empirical results with the fifth 
and final part summarizing the paper’s conclusions. 

Fig. 1. Time series plots for the outputs and inputs.  
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2. Literature review 

How to effectively lower CO2 emissions and improve energy effi-
ciency to increase the overall sustainability efficiency of the trans-
portation sector has always been a hot topic in the respective academic 
fields. There are two main streams of literature for estimating sustain-
able efficiency: Data Envelopment Analysis (DEA) (Yu et al., 2017; Chen 
et al., 2017b; Park et al., 2018) and SFA (Chen et al., 2017a; Tsionas 
et al., 2017; Llorca et al., 2017). Furthermore, most studies thus far have 
only focused on one of the transportation modes separately, evaluating 
their sustainability efficiency for different countries or areas including 
road transportation (L�eonardi and Baumgartner, 2004; Kuosmanen and 
Kortelainen, 2005; Liu et al., 2019), railway transportation (Song et al., 
2016; Wanke et al., 2018b), shipping transportation (Cullinane et al., 
2004; Mansouri et al., 2015; Wanke et al., 2018a), and air transportation 
(Li et al., 2015; Chen et al., 2017a, b; Cui, 2019). 

To enhance sustainable transportation, it is important to examine 
which transportation mode contributes the most greenhouse gas emis-
sions (GHGs). Hence, researchers have also conducted plenty of studies 
to differentiate the carbon emissions of different transportation modes 

and have found that they differ in terms of the respective CO2 emissions 
and energy use. Among such studies, McKinnon (2007), observing UK 
freight data, investigated four modes of transportation: road, railway, 
shipping, and air. He found that 92% of the CO2 emissions from freight 
transportation in the UK were caused by road transportation in 2004, 
while the relative environmental benefits of railway transportation were 
significantly underestimated. Mor�an and del Rio Gonzalez (2007) 
developed an input–output model to examine the CO2 emission struc-
ture of road transportation in EU countries. The results indicate that the 
relationship between production departments and the terminal demand 
structure has a significant impact on the CO2 emissions of road trans-
portation. Lakshmanan and Han (1997) found that freight trans-
portation rather than passenger transportation had led to the increase in 
energy use and carbon emissions during 1970–1991 in the U.S. trans-
portation industry. In recent years, researchers have paid increasing 
attention to this issue in China. For example, Li et al. (2017) combined 
autoregressive distributed lag bounds testing and the vector error 
correction model to investigate the relationship between the trans-
portation scale of different transportation modes and carbon emissions 
in the short and long term. The results indicated that the scaling up of 

Fig. 2. RBSFA (combined model) results: differential optimization weights (top-left), lambda (top-right), sigma square (bottom-left), and time series for the efficiency 
scores (bottom-right). 
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railway transportation, road transportation, shipping, and air trans-
portation significantly increased carbon emissions in China during 
1985–2013. The shipping mode had the greatest effect compared to the 
other two, and the expansion of the railway transportation saw the 
opposite effect on carbon emissions but during a different time range. In 
another words, the railway transportation will increase the emissions in 
the short term while reducing them in the long term. Meanwhile, Wang 
et al. (2011) employed the Logarithmic Mean Divisia Index and found 
that road transportation contributes the most to CO2 emissions. 
Although a large strand of literature has been accumulated on this 
theme, results are inconsistent and this may be due to the different 
characteristics of transportation sectors in different countries. Different 
measurement methods may also lead to different results. 

Existing studies have also paid a lot of attention to the relationship 
between CO2 emissions and the macro-economic factors. Lakshmanan 
and Han (1997) found that the increase in travel intention, population, 
and GDP growth promoted an increase in energy consumption and CO2 
emissions in the US transportation sector. Meanwhile, Timilsina and 
Shrestha (2009) and Chandran and Tang (2013) also observed a similar 
situation in Asian countries. Scholl et al. (1996) noticed that an increase 
in tourism demand contributed to a significant raise in CO2 emissions in 
the OECD countries. Some scholars have employed the co-integration 
test and Granger causality test to examine feedback effects between 
carbon dioxide emissions and macro-economic variables in the trans-
portation sector (Huo et al., 2015; Saboori et al., 2014). Moreover, 
Halkos and Paizanos (2016) used the Vector autoregression (VAR) 
model to detect the influence of fiscal policy on CO2 emissions in the 
United States and found that expansionary fiscal policies were helpful to 
reduce CO2 emissions. Cui and Li (2015) applied a virtual frontier DEA 
model to calculate environmental efficiency of the transportation sector 
in 19 countries and then applied a Tobit model to identify the driving 
factors of carbon emission efficiency. They found that the proportion of 
transportation technology and low-carbon technology input in GDP is an 
important influencing factor. Based on the Global Change Assessment 
Model (GCAM), Yin et al. (2015) analyzed both China’s long-term en-
ergy consumption and the country’s carbon emissions and they 
concluded that it is more difficult for the transportation industry, which 
is highly dependent on fossil fuels, to curb energy consumption and CO2 
emissions compared to other industries. 

A vast amount of research focuses on the sustainability efficiency of 
transportation industries, but a gap still remains. First of all, most 

studies forgo a systemic analysis and fail to break down the contribution 
to carbon emissions or sustainability efficiency of China’s different 
transportation sectors. Meanwhile, the existing literature has tended to 
concentrate on freight transport and deemphasize passenger transport. 

3. Methodology 

3.1. Background on SFA 

SFA, first proposed by Aigner et al. (1977) and Meeusen and van Den 
Broeck (1977), is a method of parametric efficiency analysis. It is used to 
estimate the boundary functions for a given production technology and 
to gauge the inherent productive or cost efficiency. There has been an 
increase in recent years in the number of applications of SFA models in 
the energy sector, although SFA applications for CO2 emissions and 
other sustainable issues related to the intensive use of energy such as 
transportation still remain scarce (Herrala and Goel, 2012; Llorca et al., 
2017). For example, Huntington (1994) estimated and compared energy 
efficiency and productive efficiency by employing the SFA model. Buck 
and Young (2007) used a parametric approach to estimate a stochastic 
frontier function for energy use in Canadian commercial buildings. Boyd 
(2008) applied the stochastic frontier function to energy use in wet corn 
milling plants. Additionally, Filippini and Hunt (2011) and Herrala and 
Goel (2012) discussed global carbon dioxide efficiency with a stochastic 
frontier analysis. Wang et al. (2013) used SFA to estimate the directional 
distance function and the total factor carbon emission performance of 28 
Chinese provinces during the period from 1995 to 2009. Lin and Du 
(2015) adopted a fixed-effect panel stochastic frontier model and 
applied it to investigate the regional heterogeneity of carbon emission in 
30 Chinese provinces. 

In simpler SFA models, the maximum likelihood method is usually 
employed to compute the required parameter estimates. In recent years, 
as the complexity of stochastic frontiers has increased, an uptick in the 
use of Bayesian analysis has been evident (Liu et al., 2017; Assaf et al., 
2017). In spite of its many advantages, the joint use of SFA and Bayesian 
analysis is still a growing field, as discussed next. 

3.2. Bayesian analysis and markov-chain Monte Carlo methods 

When accounting for heterogeneity in stochastic frontier models, the 
common method is no longer suitable for estimating the production 

Fig. 3. Results for DIC  
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frontier. With Koop et al. (1992), the Markov Chain Monte Carlo Method 
(MCMC) was adopted to estimate the SFA model and has frequently been 
used in related literature such as Tsionas (2002), Kurkalova and Carri-
quiry (2002), Kumbhakar and Tsionas (2005), Goto and Makhija (2009), 
Souza et al. (2009), Chen et al. (2015), Chaabouni and Abednnadher 
(2016), and Cengiz et al. (2018). As a matter of fact, MCMC methods 

have become the cornerstone of Bayesian analysis. 
Kim and Schmidt (2000), Huang (2004), and Ennsfellner et al. 

(2004) presented current developments in Bayesian SFA (BSFA) models. 
Griffin and Steel (2007) described MCMC methods for Bayesian esti-
mation within the ambit of SFA model using the WinBUGS package. 
Tsionas and Papadakis (2010) employed a Bayesian analysis to the SFA 

Fig. 4. Other metrics of explanatory power.  
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in terms of alternative simulation techniques. Using BSFA for industry 
applications has been widespread. For instance, Tabak and Tecles 
(2010) used a BSFA model to evaluate cost and profit efficiency of the 
banking sector in India. Tonini (2012) estimated TFP (total-factor pro-
ductivity) growth in the agricultural industry for the European Union 
and candidate countries using SFA models with a Bayesian approach. 
Feng and Zhang (2012) compared the efficiency of large community 
banks in the US from 1997 to 2006 using BSFA. Assaf and Josiassen 
(2012) estimated the efficiency of health-care food-service operations 
with BSFA. Assaf et al. (2013) estimated the efficiency of Turkish banks 
during the period of 2002–2010 using BSFA. Barros (2014) used BSFA to 
analyze the cost efficiency of Mozambique’s airports taking into account 

random and fixed effects. 
In this related literature there is no explicit criterion when selecting 

the assumption on distribution for the inefficiency term in the (B)SFA 
model. Meeusen and van Den Broeck (1977) adopted the Exponential 
distribution, while Aigner et al. (1977) used the Half-Normal distribu-
tion. Gamma distributions were used by Greene (1990) and Log-normal 
distributions were studied by Medrano and Migon (2007). Griffin and 
Steel (2007) described a semiparametric modelling technique to esti-
mate the inefficiency distribution. Alghalith (2011) described an alter-
native method for specifying the distribution of the inefficiency term. In 
fact, there are no apparent reasons for choosing one over the other of the 
three different forms of distributions, which all have their own pros and 
cons. 

The major contribution of this paper is to develop a RBSFA compu-
tational model where the variances and covariances of different distri-
butional assumptions for the sustainability inefficiency term (u) are 
minimized by the joint use of MCMC methods and differential optimi-
zation. As stated in the introduction, this minimization occurs against a 
technological frontier of best practices where fuel is burnt to generate 
the required amount of energy to move people and goods while polluting 
the environment. The goal is to minimize DIC (Deviance Information 
Criteria) for the combined BSFA model based on determining the 
optimal weights for each one of the inefficiency distributional assump-
tions. The RBSFA computational model is then applied to examine the 
sustainability efficiency of the Chinese transportation industry in terms 
of CO2 emissions. Three different distributional assumptions have been 
considered for the inefficiency term (u), which are Half-Normal, 
Gamma, and Exponential and two for the error term (v): Normal and 
t-Student. 

Fig. 5. Efficiency correlogram for the six distributional assumptions.  

Fig. 6. Boxplots for.α  
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3.3. The RBSFA proposed 

This paper implements MCMC methods for an RBSFA computational 
model using codes developed in R and WinBUGS, both free statistical 
software. The codes developed in this paper are available to readers 
upon request. The basic SFA model relates the sustainability factors of 
pollution, energy, and cargo to a stochastic frontier of minimal pro-
duction costs. Considering a panel data analysis of CO2 emissions, en-
ergy use, and freight turnovers, one possible stochastic linear model 
would regress the cost logarithm yt - associated with the logarithmic 
ratio between CO2 emissions and energy use at time t onto different 
produced quantities Qt , that is, the xtregressors. These regressors could 
be expressed as logarithm ratios for each transportation mode between 
the respective aggregate freight/passenger turnovers and the required 
energy used over the course of time t ðt ¼ 1; …;TÞ: 

yt
ind
� N

�
αþ x�tβþ ut; σ2�; (1)  

where Nðμ; σ2Þ represents a normal distribution with a unitary mean. 
The differences between transportation benchmarks and current CO2 
emission levels, the inefficiencies, are stochastically modelled by ut 
terms that observe the one-side distribution assumption commonly used 
as exponential (Meeusen and van Den Broeck, 1977). Priors are required 
to be assigned for each one of the model’s parameter vectors. Next, 
truncated normal distributions may be assigned to regression parame-
ters to represent regularity conditions (β � Nð0;

P
Þ), gamma distribu-

tions may be assigned to residuals to assure the prior median efficiency 
is r� (σ� 2 � Gða0; a1Þ with shape parameter a0 and mean a0

a1
), and an 

exponential distribution may be assigned to model inefficiencies based 
on median efficiency λ � Expð � logr�Þ. Particularly the sustainability 
efficiency at time t can be computed as follows: rt ¼ expð � utÞ:

Efficiencies observed for each modal at a given month can be 
straightforwardly generated based on these prior distributional as-
sumptions. Their full posterior distributions are then readily available, 
and variations on median efficiency levels over the course of time for 
each transportation mode can be captured by ut, which are the in-
efficiencies of a given observation in t. Lee and Schmidt (1993) proposed 
a strong assumption for modelling time-dependent inefficiency by 
assigning a linking function between inefficiency and trend where ut ¼

βðtÞut . Although this linking function can be expressed by several forms, 
the one proposed by Battese and Coelli (1992) has always been used so 
that the computations do not become cumbersome: βðtÞ ¼ expfnðt �
TÞ}. 

The stochastic frontier can also be extended to handle the impact of 
covariates, which represent non-productive contextual variables sur-
rounding the cost function, by further assuming that each observation 
can be attached to a vector of covariates, wt for the tth observation, such 
as Koop et al. (1997): 

ut � Exp
�
exp
�

w’
t γ
��

(2)  

where γ are coefficients of contextual variables w. These wt covariates 
can both represent binary and non-binary variables. Under the former 
case, we can assume a priori that the distribution of inefficiency levels 
for each category or group should fluctuate around the same overall 
median efficiency r�, that is, expfγjg � Expð � logr*). 

A certain distributional assumption on u is needed. Three distribu-
tional assumptions are made here from the literature on efficiency 
estimation: Exponential, Half-normal, and Gamma (Meeusen and van 
Den Broeck, 1977; Aigner et al., 1977; and Greene, 1990, respectively). 
We considered six alternative models based on three different in-
efficiency components—Half-Normal, Exponential, and Gamma 

Fig. 7. Boxplots for the coefficients of the inputs and outputs.  
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distributions—as well as based on two distinct distributional assump-
tions for the error term: t-Student and Normal. The model proposed is 
specified below, regardless of the distributional assumptions in v: 

yt ¼ αþ x�tβþ βðtÞþw’
t γþ vt � ut (3)  

ut�
i:i:dExpðλÞ (3a)  

ut�
i:i:d Nþð0; λÞ (3b)  

ut�
i:i:dGð∅ ; λÞ (3c) 

The prior distributions for the parameters depicted in (3) follow the 
procedures presented in Griffin and Steel (2007) where all parameters 
are assumed to be independent. The MCMC algorithm was based on 200, 
000 iterations of which the first 100,000 were disregarded for a burn-in 
phase. 

The DIC model comparison criterion for different distributional as-
sumptions and functional specifications (Spiegelhalter et al., 2002) 
trades off goodness-of-fit against a penalty that should be imposed by 
overfitting. In hierarchical models, the method estimates the “effective 
number of parameter,” which is denoted by pD. D is the posterior mean 
of the deviance ð � 2xloglikelihoodÞ, while bD is a plug-in estimate of the 
latter with the posterior mean of the parameters. The statistics DIC is 
calculated as DIC ¼ Dþ pD ¼

bDþ 2pD. Better fitting models are those 
where DIC values are lower. 

The relative importance of each distributional assumption for the 
inefficiency term u in explaining the sustainability efficiency in the 
Chinese transport system was explored by a robust approach where the 

variances of each model and the covariances between models were 
minimized. Variances and covariances of the inefficiency terms (uit) of 
these six models are simultaneously minimized by a non-linear sto-
chastic optimization problem, as presented in Eq. (4). The parameter pi 
denotes the weights, which range from 0 to 1, and are assigned 
respectively to the inefficiency vectors of each one of the six models 
previously described. The model maximizes the value of p in order to 
minimize the variance (Var) and covariance (Covar) of the combined 
inefficiencies. Model (4) is solved through the differential evolution 
technique, which is one of several kinds of genetic algorithms mimicking 
the natural selection process in an evolutionary manner (Ardia et al., 
2011; Mullen et al., 2011). Results are discussed in the next section. 

min
h
Var
�X6

i¼1
pi* uit

�
þ
�X6

i;j¼1
Covar

�
pi*pj* uit*ujt

�
; i 6¼ j; j < i; 8t

�i

s:t:
X6

i¼1
pi ¼ 1

0 � pi � 1 8i
(4)  

3.4. The data 

The original variables used in this research are the following Chinese 
monthly data: (i) passenger traffic turnover (in 100 million person*km) 
and freight traffic turnover (in 100 million tons*km) per transport mode; 
(ii) energy used (in 100 million HP) and CO2 emission (in tons) per 
transport mode; (iii) exchange rate at a given month (in RMB per USD); 
(iv) loan rate at a given month (%); (v) deposit rate at a given month 

Fig. 8. Boxplots for the coefficients of the contextual variables.  
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(%); (vi) inflation rate at a given month (or CPI – Consumer Price Index – 
in %); (vii) total foreign trade at a given month (in 100 million USD); 
(viii) total money supply in economy at a given month (or M2 monetary 
aggregate – in 100 million RMB); (ix) fiscal expenditure at a given month 
(in 1 billion RMB); (x) consumer confidence index (in 100 base points); 
(xi) fixed asset investment at a given month (in 1 million RMB); and (xii) 
imported crude oil price index at a given month (in RMB per barrel).This 
information was obtained from various sources. Variables (i) and (ii) 
were collected from China’s National Statistics Bureau and the yearbook 
of China’s transportation, while the other macro-economic variables 
were obtained from the Wind database (www.wind.com.cn). The 
computation of energy levels used and CO2 emissions for each trans-
portation mode observed average conversion factors with respect to 
transportation efficiency and pollutant characteristics for each mode 
(Zhang and Wei, 2015; Achour and Belloumi, 2016). Furthermore, an 
average weight of 70 kg was assigned to each passenger so that cargo 
and passenger freights could be set on common ground. All observations 
ran from January 1999 to December 2017. The descriptive statistics of 
the transformed variables adopted in the research (y, x, and w) are given 
in Table 1. 

Time series plots for the outputs (log of the ratio between carbon 
emissions and energy use) and the inputs (logs of the freight and pas-
senger turnovers for different transport modes) reveal a substantial in-
crease of CO2 emissions per energy use rate in parallel to the decline of 
freight transportation by rail and the corresponding increase by road. 
Also noteworthy is the steady increase in the airway turnover of pas-
senger traffic as an additional driver of increased CO2 emissions per 
energy use. Due to the cyclic nature of economic and transportation 
activities, a moving average of 12 months was also plotted in each graph 
in Fig. 1 to help illustrate their overall long-term trend. Structural 
transformations in the Chinese economy over the last 20 years may help 
in explaining these phenomena, including the sharply higher carbon 
emissions that came with the acceleration of urbanization around 2010. 
Meanwhile, the turnover of freight traffic by road also experienced a 
surge during the same period. As for the convenience of other modes of 
transportation, the turnover of passenger traffic via roadway and 
waterway has followed a falling trend over the last decades. On the other 
hand, the turnover for railway and airway modes saw robust growth 
resulting from the development of high-speed railways and airports 
(Wanke et al., 2017; Chen et al., 2016). Compared to roadway and 
waterway transportation, the freight traffic turnover of railway and 
airway gradually declined. Overall, with the country of China taking on 
the role of the “world’s factory,” the phenomenal volume of interna-
tional trade has driven waterway transportation, which has the highest 
turnover, to be the busiest mode. 

4. Analysis and discussion of empirical results 

Estimated by the RBSFA computational model, the results are 
depicted in Fig. 2. Although efficiency levels appear high (bottom-right), 
this is due to slight inefficiency variations against the benchmark 
months for each transportation mode. As a matter of fact, the perfor-
mance of combustion engines in terms of the amount of fuel required to 
generate a given amount of physical work in different transportation 
modes is a topic that has been continuously and exhaustively studied 
over the course of decades since the creation of the first modern internal 
combustion engine in 1876 by Nicklaus Otto. This being the case, it is 
worth noting that the relative performance of combustion engines is a 
well-established mechanical engineering discipline. Nonetheless, as a 
consequence of the increased interest in all things environmental, the 
performance of combustion engines in terms of pollutant emissions has 
also undergone a rigorous scrutiny over the last four decades, which 
enabled a better understanding of the average pollutant emissions of 
each transportation mode or engine design for generating the same 
amount of physical work. Although somewhat random variations in the 
performance of combustion engines may be expected at the individual 

level, at more aggregate levels of analysis, such as at the country level, 
the pooled individual impacts of random fluctuations on the perfor-
mance of combustion engines can be translated into a broader sustain-
able efficiency analysis of the transportation sector where the 
technology/business specifics of each mode can be related to macro- 
economic variables, economic development levels, and customer pref-
erences. Put differently, this carry-over of slightly random fluctuations 
against well-established combustion engine performance benchmarks, 
from bottom-individual levels to top-industry levels, may help in 
explaining why sustainability efficiency also presents small, however 
significant, fluctuations around higher levels of efficiency. Besides, it is 
interesting to note a slight downward trend to sustainability efficiency, 
which may be explained by the increased use of roads for freight 
transportation and airlines for passenger transportation, as previously 
discussed. The impact of this modal shift in terms of policy formulations 
is further elaborated below. 

The differential optimization procedure yielded higher weights for 
the Exponential and Gamma distributional assumptions for the in-
efficiency term u regardless of the distributional assumption for the 
random term v, whether Normal or t-Student, and to the detriment of the 
Half-Normal distributional assumption (top-left). Although the variance 
for efficiency is substantially larger than the one for random errors in 
each one of the six combinations tested (top-right), the Half-Normal 
assumption presented a higher imbalance between the total variance 
(sigma square) and the proportion of it explained by the inefficiency 
term u. In other words, the Half-Normal assumption was yielding a 
comparative lower total variance while assigning the larger portion to 
the inefficiency term u, eventually capturing some random noise v into 
it. Fig. 3 corroborates this fact by presenting the results for the DIC 
criterion for each individual model and its RBSFA computational com-
bination. In fact, the Gamma and Exponential distributional assump-
tions for the inefficiency term u presented a better fit in comparison to 
the Half-Normal one. The RBSFA presented a fit-performance in be-
tween the Normal and t-Student v error assumptions when putting the 
Gamma and Exponential assumptions for inefficiency u into perspective. 

As regards the well-known auxiliary metrics of explanatory power 
such as R-square, MAPE (Mean Average Percent Error), and RMSE (Root 
Mean Squared Error), the RBSFA computational model yielded superior 
results as expected due to the effect of pooling variances and covariances 
into the optimization model (See Fig. 4). In fact, although the efficiency 
results for the six individual models are strongly and positively corre-
lated (cf. Fig. 5), readers should observe that optimal weights were 
assigned to almost zero in the extreme correlated case obtained for the 
Half-Normal assumptions. 

Results for the RBSFA computational model are displayed in 
Figs. 6–8. The linear coefficient presented non-significant results for all 
individual models with the exception of the Gama t-Student distribu-
tional assumption combination. The RBSFA computational model not 
only yielded significant results for the linear coefficient, but also found 
the smallest dispersion during the simulation trials (cf. Fig. 6). 

As regards the coefficients for the inputs, significant results were 
found with the exception of passenger turnovers for roadway and 
waterway transportation modes (cf. Fig. 7). As for the freight traffic, the 
results suggest that efficiency levels increase and as a consequence CO2 
emissions per energy use are lower when waterway, railway, and 
roadway transportation modes are more intensively used, respectively 
in that order. On the other hand, increased freight traffic via the air 
transportation mode reduces overall sustainability efficiency levels. 
Waterway freight transportation is a relatively clean method (Hjelle and 
Fridell, 2012) and has a better performance in energy combustion effi-
ciency. Besides, the lower navigation speed of waterway freight trans-
portation translates into lower fuel consumption (Buhaug et al., 2008; 
Chen et al., 2019), which enables waterway freight transportation to 
obtain better performance in sustainability efficiency. In recent years, 
the gradual improvement of the waterway network along the Yantze 
River Delta and Pearl River Delta has improved waterway transportation 
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efficiency in China bringing not only lower energy consumption and CO2 
emissions, but it has also improved the sustainability efficiency of this 
specific transportation mode. Moreover, the recent improvements of rail 
and road transportation infrastructures in China have also helped 
explain the positive effects on the sustainability efficiency. As a matter of 
fact, there was a higher ratio of diesel locomotives being replaced with 
electric locomotives when the high-speed railways were developed 
(Wanke et al., 2018a,b). Different from the other three transportation 
modes, air transportation has the obvious advantage of time efficiency, 
but the higher energy consumption and CO2 emissions bring negative 
impacts on the sustainability efficiency levels of this particular trans-
portation mode (Lee et al., 2004; Chen et al., 2017b). These results are 
consistent with the well-consecrated literature on transportation and 
logistics with respect to energy efficiency and the transportation foot-
print of the different modes (McKinnon, 2007; Li et al., 2017). 

As for passenger traffic, sustainability efficiency levels increase 
especially when using railway modes and present a slight decrease with 
air transport, which contrasts with the outcomes of several previous 
studies such as Dalla Chiara et al. (2017) and Qiu et al. (2017). These 
results are also justified by the different nature of passengers and freight 
traffic where the former tends to be lighter than the latter. The co-
efficients of the passenger turnovers for roadway and waterway trans-
portation modes, while not significant, are negative, probably due to the 
continued increase of private vehicles in China, which has already led to 
the problems of congestion and low efficiency of energy use (Peng et al., 
2016). Regardless, the number of private vehicles per capita is still low 
in China compared to other countries. On the other hand, waterways are 
rarely the passengers’ first choice as waterway transportation for pas-
senger traffic is too time consuming and therefore most useful in tourism 
or short-distance commuting situations, especially with the airline and 
railway transportation modes currently experiencing rapid develop-
ment. Vis-�a-vis the opposite extreme, air transportation is always linked 
with the shortest travel times, although this benefit is obtained to the 
detriment of higher carbon emissions in terms of the low passenger load 
factor (Papatheodorou and Lei, 2006; Bieger and Wittmer, 2006). 
Nonetheless, the energy consumption of the civil aviation sector has 
seen an annual increase of 6% during the last decade (Chen et al., 
2017b). 

Lastly, as regards the contextual variables (cf. Fig. 8), all were found 
to be significant. Higher levels of loan rate and CPI imply higher sus-
tainability efficiency levels in Chinese transportation provided that 
economic activity continues to decrease due to the higher cost of money 
and inflationary pressures, which also diminishes the use of more 
expensive transportation modes such as road and air. These results may 
suggest the establishment of preemptive policies to keep stimulating the 
use of more sustainable efficiency modes when economic growth 
returns. As a matter of fact, cross-subsidies between air/road and rail/ 
water tariffs could be implemented in times of accelerated economic 
growth to induce more investment and capital allocation in less 
polluting means of transportation. Similarly, total trade and fiscal 
expenditure also present a positive influence on the sustainability effi-
ciency of China’s transportation industry provided the supply and 
transport of goods inside the country diminishes to support foreign trade 
while inflationary pressures remain high due to higher expenditure 
levels. Again, countercyclical macro-economic policies based on higher 
sustainable transportation infrastructure investments in times of lower 
or decelerated economic growth could be considered to boom economic 
activity by means of physical capital expansion of railways and water-
ways. On the other hand, because inflationary pressures are high and 
fiscal policy should be restricted, cross-subsidies, as previously 
described, could be implemented to impose an economic growth soft 
landing while still complying with environmental issues. 

On the other hand, we observe a negative impact on the trend of 
sustainability transportation efficiency, thus indicating a slight but 
continuous decrease over the course of the last two decades. Macro- 
economic indicators related to the improvement of economic activity 

such as fixed asset investment, consumer confidence index, and mone-
tary base supply M2 may help in understanding the use of more 
expensive and less sustainable transportation modes to meet the needs of 
an increased demand for goods and services in the short and medium 
term. Furthermore, with the growth of China’s middle class in the last 
two decades—lifting hundreds of millions out of poverty—we expect to 
see a greater preference for faster and more comfortable transportation 
modes. State media campaigns on the environmental impacts of faster 
transportation modes on sustainability efficiency linked to educational 
measures in schools and universities on the importance of saving the 
“last mile” of the fastest, most polluting and most expensive trans-
portation modes, could prepare the next generation to understand why 
cross-subsidies among transportation modes have been implemented. 
Similarly, higher exchange rates and savings mean new business op-
portunities for investment and consumption in the Chinese economy. 
Meantime, foreign investments have also poured into China. With this as 
a backdrop, the derived demand on different modes of transportation 
will significantly increase. Moreover, the pursuit of time efficiency may 
increase the use of high-cost and unsustainable transportation methods 
and thus reduce sustainability efficiency. Foreign investor partners 
could, therefore, be attracted to tackle small, low-risk, transportation 
infrastructure projects to foster multi-modal passenger and freight 
traffic. Transshipment facilities and commuter stations are common 
examples of such investments to bridge the gaps between two near-by 
and complementary transportation modes. 

5. Conclusions 

In this study we proposed a novel RBSFA computational model to 
determine the sustainability efficiency of the Chinese transportation 
system. We presented a Bayesian estimator for a SFA model with a 
different inefficiency distribution. In contrast with the methods used in 
previous research, we considered three distributions of inefficiency 
terms in BSFA and two distributions of residual terms. By MCMC and 
optimizing the differences, this study determined the optimal weights of 
inefficiency terms in different distribution assumptions in order to find 
out the inefficiency terms with the lowest variance and covariance. 
Based on the RBSFA model and monthly data between January 1999 and 
December 2017 in China, our model results show that in terms of freight 
transportation, waterway, railway, and roadway modes would improve 
sustainability efficiency with waterway ranking highest, roadway sec-
ond, and railway ranking third. In terms of passenger transportation, the 
roadway and railway modes would fundamentally improve sustain-
ability efficiency. Meanwhile, no matter whether handling freight or 
passenger traffic, the air transportation mode would decrease sustain-
ability efficiency. Moreover, macro contextual variables also have sig-
nificant effects on the sustainability efficiency of the Chinese 
transportation system. These results indicated that the sustainability 
efficiency of China’s transportation sector fluctuated significantly in the 
past two decades. The cost of credit, CPI, total trade volume, and total 
fiscal expenditure all played a positive role in enhancing sustainability 
efficiency when they increased. Macro-economic variables such as the 
RMB/USD exchange rate, deposit interest rates, money supply M2, 
consumer confidence index, and fixed asset investment all posed a 
negative influence on sustainability efficiency of the transportation 
system in China. 

These findings will help us understand the internal dynamics of 
carbon inequality within the transportation sector of China and how it 
has been affected by different factors. Rather than using Lorenz curves to 
illustrate carbon inequality from the consumption side, we offer the 
evidence from the supply side, or from inside the transportation sector. 
More work needs to be done to estimate and explain carbon inequality 
around the world, especially for a situation without a global consensus 
on this term and its measurement. Moreover, whereas most existing 
research emphasizes carbon inequality within different provinces and 
industries of China, we offer a more detailed breakdown and evidence in 
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the transportation industry. Meanwhile, it is in the interest of the gov-
ernment authorities in China to facilitate sustainable development. This 
they can achieve by designing alternative policies that encompass cross- 
subsidies in transportation mode tariffs, educational campaigns in 
media and schools/universities on the importance of transportation 
sustainability, a closer link between transportation infrastructure in-
vestments and counter-cyclical macro-economic measure, and by 
building partnerships with foreign investors to boost multi-modal 
commutation of passengers and/or transshipment of cargoes. 

Additionally, although air transportation is more time-saving and 
can raise the turnover efficiency of freight and passenger traffic, the 
carbon emission problem should be given more attention especially after 
IATA (the International Air Transport Association) proposed Carbon- 
Neutral-Growth for the civil airline industry. This is particularly rele-
vant because the Chinese population has become richer over the last two 
decades and now prefers faster and more comfortable modes of trans-
portation. Policymakers need to strike a balance between transportation 
efficiency and sustainability efficiency. In addition, we also noted that 
the transportation modes with the highest sustainability efficiency for 
freight and passenger traffic are different, suggesting that different 
policies should be adopted for freight and passenger traffic to effectively 
reduce carbon emissions and energy consumption and raise the overall 
sustainability efficiency of the transportation sector. As a matter of fact, 
these differences indicate that while a better link between macro- 
economic fiscal/monetary policy and transportation infrastructure 
should be established as regards cargo transportation expansion prior-
ities, the locus of passenger transport consciousness on sustainability 
should be educational campaigns, cross-subsidies, and multi-modal 
commutation stations. 

In summary, from a macro prospective, the sustainability efficiency 
of the transportation sector has been continuously reshaped by macro- 
variables, which may explain the variation of sustainability efficiency 
scores. In other words, the government authorities should pay attention 
to sustainability efficiency scores when proposing and implementing 
transportation policies. More importantly, with the development of new 
transportation infrastructures and structural changes in society and the 
economy, preferences for different transportation modes have also been 
re-ordered by a population with ever-higher purchasing power. 

Research limitations of the proposed RBSFA approach are related to 
the fact that transportation turnovers and pollutant emissions may be 
temporally correlated. Future studies should address how this impacts 
on the inertia of transportation sustainability efficiency measurements 
and the respective policies for sector improvement over the course of 
time, as long as the beneficial impacts of such policies may take longer 
than expected by government and society to mature. 
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