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        Pontes estaiadas são estruturas complexas que possuem diversas vantagens tais 

como apelo estético, uso econômico de materiais e método construtivo eficiente. Devido 

a essas vantagens e aos conhecimentos adquiridos ao longo dos anos, pontes estaiadas 

cada vez mais longas estão sendo construídas. Com o aumento do comprimento dos 

vãos, as pontes se tornam mais flexíveis e uma análise cuidadosa das forças de vento se 

torna crucial para o projeto. O modelo numérico desenvolvido é baseado no Método dos 

Elementos Finitos (MEF), Real Coded Genetic Algorithm (RCGA) e Discrete-Phases 

Design Approach. As variáveis são divididas em duas categorias: (i) variáveis principais 

otimizadas diretamente pelo RCGA, (ii) variáveis secundárias otimizadas indiretamente 

por meio das fases discretas. Forças de vento devidas ao buffeting são consideradas 

como forças equivalentes estáticas, validadas através de correlação teórico-

experimental. Esta eficaz ferramenta é utilizada para avaliar a importância de se 

considerar as cargas caminhões juntamente com as cargas uniformemente distribuídas, 

forças de vento devidas ao buffeting e fenômenos aeroelásticos no processo de 

otimização de pontes estaiadas. Os resultados mostram que a combinação de carga 

crítica considera a ação do vento e que os fenômenos aeroelásticos exercem influência 

na otimização quando velocidades de vento mais elevadas são consideradas. 
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       Cable-stayed bridges are complex structures with several advantages such as 

aesthetical appeal, economic use of materials, and efficient construction method. Due to 

these advantages and the extensive knowledge gained from projects over the years, 

longer cable-stayed bridges are being constructed. As span lengths increase, structures 

become more flexible, which makes the accurate evaluation of wind loads critically 

important in the design of cable-stayed bridges. In this thesis, the developed numerical 

model is based on the Finite Element Method (FEM), the Real Coded Genetic 

Algorithm (RCGA), and the Discrete-Phases Design Approach. The latter classifies 

variables into two categories: (i) main variables are optimized directly by the RCGA, 

and (ii) secondary variables are indirectly optimized by the discrete phases. Buffeting 

wind loads are considered as equivalent static forces, which were validated through a 

theoretical-experimental correlation. This powerful tool is used to assess the importance 

of considering truck together with uniformly distributed live loads, as well as wind 

buffeting loads and various aeroelastic instabilities in the design optimization process. 

Results show that the most critical load combination include the wind effect, and that 

the critical wind velocities of aeroelastic phenomena play a significant role for high 

values of basic wind speeds. 



viii 

 

 TABLE OF CONTENTS 
 

 

LIST OF FIGURES ...................................................................................................... XI 

LIST OF TABLES ....................................................................................................... XV 

LIST OF SYMBOLS ................................................................................................XVII 

I. INTRODUCTION ....................................................................................................... 1 

I.1 CABLE-STAYED BRIDGES ............................................................................... 1 

I.1.1 A BRIEF HISTORY ....................................................................................... 1 

I.1.2 STRUCTURAL SYSTEM ............................................................................... 3 

I.1.3 STRUCTURAL COMPONENTS ................................................................... 4 

I.1.3.1 CABLE ARRANGEMENT SYSTEMS ................................................... 4 

I.1.3.2 TOWERS .................................................................................................. 6 

I.1.3.3 DECK CROSS-SECTIONS ...................................................................... 7 

I.1.4 MAIN CHARACTERISTICS ......................................................................... 9 

I.2 OPTIMIZATION OF CABLE-STAYED BRIDGES ....................................... 11 

I.2.1 SIGNIFICANCE ........................................................................................... 11 

I.2.2 LITERATURE REVIEW .............................................................................. 12 

I.2.2.1 LEVEL 1 OPTIMIZATION OF CABLE-STAYED BRIDGES ............ 12 

I.2.2.2 LEVEL 2 OPTIMIZATION OF CABLE-STAYED BRIDGES ............ 16 

I.2.2.3 OPTIMIZATION OF OTHER TYPES OF CABLE-SUPPORTED 

BRIDGES ........................................................................................................... 21 

I.3 RESEARCH OBJECTIVES .............................................................................. 22 

I.3.1 METHODOLOGY AND RELEVANCE ...................................................... 22 

I.3.2 ORGANIZATION OF THE THESIS .......................................................... 24 

II. STRUCTURAL OPTIMIZATION OF TWO I-GIRDER COMPOSITE 

CABLE-STAYED BRIDGES UNDER THE ACTION OF DEAD AND LIVE 

LOADS .......................................................................................................................... 26 

II.1 INTRODUCTION ............................................................................................. 26 

II.2 DESCRIPTION OF NUMERICAL TOOL ..................................................... 29 

II.2.1.1 PHASE 1 ................................................................................................ 34 

II.2.1.2 PHASE 2 ................................................................................................ 34 

II.2.1.3 PHASE 3 ................................................................................................ 35 

II.2.1.4 PHASE 4 ................................................................................................ 37 

II.2.1.5 PHASE 5 ................................................................................................ 37 

II.2.1 CASE STUDY .............................................................................................. 39 

II.2.2 NUMERICAL RESULTS FOR DESIGN OBJECTIVE-1 CONSIDERING 

DEAD LOAD AND TRUCK PLUS LANE LIVE LOAD..................................... 42 

II.2.3 NUMERICAL RESULTS FOR DESIGN OBJECTIVE-1 CONSIDERING 

DEAD LOAD AND LANE LIVE LOAD .............................................................. 47 

II.2.4 NUMERICAL RESULTS FOR DESIGN OBJECTIVE-1 CONSIDERING 

DEAD LOAD ONLY.............................................................................................. 48 

II.2.5 NUMERICAL RESULTS FOR DESIGN OBJECTIVE-2 ........................ 49 



ix 

 

II.2.6 COMPARISON OF COSTS FROM OBJECTIVE-1 AND OBJECTIVE-2 

CONSIDERING DEAD LOAD AND TRUCK PLUS LANE LIVE LOAD ........ 55 

II.3 VALIDATION OF THE DISCRETE PHASES DESIGN APPROACH....... 57 

II.4 CONCLUSIONS ................................................................................................ 59 

III. COMPARISON BETWEEN THE THEORETICAL AND EXPERIMENTAL 

WIND RESPONSES OF A FULL AEROELASTIC MODEL TEST OF A 

CABLE-STAYED BRIDGE ........................................................................................ 61 

III.1 INTRODUCTION ............................................................................................ 61 

III.2 WIND LOADS AND BRIDGE RESPONSES ................................................ 62 

III.3 METHODOLOGY ........................................................................................... 68 

III.4 CASE STUDY ................................................................................................... 69 

III.4.1 THEORETICAL APPROACH .................................................................. 71 

III.4.2 EXPERIMENTAL APPROACH ............................................................... 75 

III.4.3 RESULTS ................................................................................................... 75 

III.5 CONCLUSIONS .............................................................................................. 81 

IV. STRUCTURAL OPTIMIZATION OF TWO I-GIRDER COMPOSITE 

CABLE-STAYED BRIDGES UNDER THE ACTION OF DEAD, LIVE AND 

WIND LOADS .............................................................................................................. 83 

IV.1 INTRODUCTION ............................................................................................ 83 

IV.2 DESCRIPTION OF NUMERICAL TOOL .................................................... 86 

IV.2.1 DESIGN VARIABLES ............................................................................... 86 

IV.2.2 DESIGN CONSTRAINTS ......................................................................... 87 

IV.2.3 OBJECTIVE FUNCTION ......................................................................... 92 

IV.2.4 FINITE ELEMENT MODEL ................................................................... 93 

IV.2.5 DESIGN METHODOLOGY ...................................................................... 93 

IV.2.5.1 PHASES 1 TO 4 ................................................................................... 94 

IV.2.5.2 PHASE 5 .............................................................................................. 94 

IV.2.5.3 PHASE 6 .............................................................................................. 94 

IV.2.5.4 PHASE 7 .............................................................................................. 95 

IV.2.5.5 PHASE 8 .............................................................................................. 98 

IV.2.6 OPTIMIZATION TECHNIQUE ............................................................... 98 

IV.2.7 CABLE-STAYED BRIDGE OPTIMUM DESIGN ALGORITHM ......... 99 

IV.3 CASE OF STUDY ........................................................................................... 101 

IV.3.1 CABLE-STAYED BRIDGE OPTIMUM DESIGN ALGORITHM ....... 101 

IV.3.2 RESULTS AND DISCUSSION ............................................................... 104 

IV.4 CONCLUSIONS ............................................................................................. 110 

V. CONCLUSIONS AND RECOMMENDATIONS .............................................. 112 

V.1 STRUCTURAL OPTIMIZATION OF TWO I-GIRDER COMPOSITE 

CABLE-STAYED BRIDGES UNDER THE ACTION OF DEAD AND LIVE 

LOADS .................................................................................................................... 113 

V.2 COMPARISON BETWEEN THE THEORETICAL AND 

EXPERIMENTAL WIND RESPONSES OF A FULL AEROELASTIC MODEL 

TEST OF A CABLE-STAYED BRIDGE ............................................................. 114 



x 

 

V.3 STRUCTURAL OPTIMIZATION OF TWO I-GIRDER COMPOSITE 

CABLE-STAYED BRIDGES UNDER THE ACTION OF DEAD, LIVE AND 

WIND LOADS ........................................................................................................ 115 

V.4 RECOMMENDATIONS FOR FUTURE RESEARCH ............................... 117 

REFERENCES ........................................................................................................... 118 

APPENDICES ............................................................................................................. 126 

APPENDIX.1 : EXAMPLES OF CABLE-STAYED BRIDGES CONSTRUCTED 

IN THE LAST 40 YEARS. ..................................................................................... 126 

APPENDIX.2 I-GIRDER DIMENSIONS FOR WIDTH-TO-THICKNESS 

LIMIT RATIO OF CLASS 3 IN ORDER TO MINIMIZE THE CROSS-

SECTION AREA. ................................................................................................... 128 

APPENDIX.3 I-GIRDER DIMENSIONS FOR WIDTH-TO-THICKNESS 

LIMIT RATIO OF CLASS 2 IN ORDER TO MINIMIZE THE CROSS-

SECTION AREA. ................................................................................................... 129 

APPENDIX.4 FINITE ELEMENT MODELLING OF CONCRETE-STEEL 

COMPOSITE TWO I-GIRDERS DECK ............................................................. 130 

APPENDIX.5 AERODYNAMIC COEFFICIENTS AND FLUTTER 

DERIVATIVES ...................................................................................................... 131 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xi 

 

LIST OF FIGURES 
 

Figure I. 1: First bridges designed, but not constructed, with the concept of cable-stayed 

bridge: (a) Bridge designed by Verantius in 1617 (VERANTIUS, 1617 apud 

SVENSSON, 2012); (b) Bridge designed by Löscher in 1784 (LÖSCHER, 1784 apud 

SVENSSON, 2012). ......................................................................................................... 2 

Figure I. 2: First proven constructed cables-stayed bridge: Kings Meadow Bridge, 1817 

(STEPHENSON, 1821 apud SVENSSON, 2012)............................................................ 2 

Figure I. 3: First modern cable-stayed bridge: Strömsund, 1956 (WENK, 1954 and 

ERNST, 1956 apud SVENSSON, 2012). ......................................................................... 3 

Figure I. 4: Flow of forces in a cable-stayed bridge (SVENSSON, 2012). ...................... 4 

Figure I. 5: Longitudinal cable arrangement systems (SVENSSON, 2012). ................... 5 

Figure I. 6: Tower shapes for (a) double-plane and (b) single-plane cable arrangements 

(SVENSSON, 2012). ........................................................................................................ 6 

Figure I. 7: Concrete cross-sections: (a) thin concrete beams (KOPPEL, 1984 apud 

SVENSSON, 2012); (b) 2 concrete girders (LEONHARDT, 1980 apud SVENSSON, 

2012); (c) box girder (BATTISTA, 2011). ....................................................................... 8 

Figure I. 8: Composite steel-concrete cross-section: two main plate girders 

(BATTISTA, 2013). ......................................................................................................... 8 

Figure I. 9: Steel cross-section: box girder (YOU et al., 2008 apud SVENSSON, 2012); 

two box girders (MORGENTHAL, 2008 apud SVENSSON, 2012). .............................. 8 

Figure II. 1: Cable-stayed bridge geometry: (a) longitudinal view; (b) tower dimensions; 

(c) tower cross-section; (d) deck cross-section; (e) steel I-girder dimensions. 

Dimensions in meter. ...................................................................................................... 30 

Figure II. 2: Flow chart for the optimization scheme. .................................................... 33 

Figure II. 3: Finite element model. ................................................................................. 36 



xii 

 

Figure II. 4: Deck mass due to dead plus live loads as a function of Hb and tower 

dimensions TL1 x TL2..................................................................................................... 44 

Figure II. 5: Steel I-girder inertia about major axis due to dead plus live loads as a 

function of Hb and tower dimensions TL1 x TL2. ........................................................... 44 

Figure II. 6: Stay-cables mass as a function of Hb and tower dimensions TL1 x TL2. ... 45 

Figure II. 7: Relation between deck rigidity and tower longitudinal stiffness to obtain 

lightest deck mass. .......................................................................................................... 46 

Figure II. 8: Deck mass, stay-cables mass, and steel I-girder inertia due to dead and lane 

live loads as a function of tower dimensions TL1 x TL2. .............................................. 47 

Figure II. 9:  Deck mass, stay-cables mass, and steel I-girder inertia due to dead load as 

a function of tower dimensions TL1 x TL2. ................................................................... 48 

Figure II. 10: Comparison of material costs for the considered case study.................... 49 

Figure II. 11: Deflections, axial forces, and vertical bending moments at the deck spine 

due to dead loads for the considered case study. ............................................................ 52 

Figure II. 12: Deflections, axial forces and vertical bending moments at the deck spine 

due to dead and live loads for the considered case study. .............................................. 53 

Figure II. 13: Axial forces and longitudinal bending moments in one of the tower’s legs 

due to dead loads for the considered case study. ............................................................ 54 

Figure II. 14: Axial forces and longitudinal bending moments in one of the tower’s legs 

due to dead and live loads for the considered case study. .............................................. 54 

Figure II. 15: Cables areas and pre-tensioning forces for the considered case study. .... 55 

Figure III. 1: Scheme of deck cross-section dimensions, mean and turbulent wind 

speeds, and axis representation. ...................................................................................... 63 

Figure III. 2: Flowchart of the comparison between theoretical and experimental 

approaches. ..................................................................................................................... 69 



xiii 

 

Figure III. 3: Bridge geometry, cross-section of the side span, and finite element model 

of the cable-stayed bridge. .............................................................................................. 70 

Figure III. 4: Longitudinal turbulence intensity profile and mean wind speed profile 

obtained experimentally from the full aeroelastic model test and the ones used in the 

theoretical  approach. ...................................................................................................... 73 

Figure III. 5: Comparison of mean drag displacements: (a) at ½-point of main span; (b) 

at ¼-point of main span. ................................................................................................. 76 

Figure III. 6: Comparison of mean lift displacements: (a) at ½-point of main span; (b) at 

¼-point of main span. ..................................................................................................... 77 

Figure III. 7: Comparison of mean rotations: (a) at ½-point of main span; (b) at ¼-point 

of main span.................................................................................................................... 77 

Figure III. 8: Comparison of mean lateral displacements at the top of the 1st tower. .... 78 

Figure III. 9: Comparison of peak drag displacements: (a) at ½-point of main span; (b) 

at ¼-point of main span. ................................................................................................. 79 

Figure III. 10: Comparison of peak lift displacements: (a) at ½-point of main span; (b) at 

¼-point of main span. ..................................................................................................... 79 

Figure III. 11: Comparison of peak rotations: (a) at ½-point of main span; (b) at ¼-point 

of main span.................................................................................................................... 80 

Figure III. 12: Comparison of peak lateral displacements at the top of the 1st tower. ... 80 

Figure IV. 1: Main and secondary variables. .................................................................. 87 

Figure IV. 2: Deck mode shapes: (a) 1st symmetric vertical mode; (b) 1st antisymmetric 

vertical mode; (c) 1st symmetric lateral mode; (d) 1st antisymmetric lateral mode; (e) 

1st symmetric torsional mode; (f) 1st antisymmetric torsional mode. ........................... 96 

Figure IV. 3: Optimized material cost for distinct load combinations and different basic 

wind velocities. ............................................................................................................. 105 



xiv 

 

Figure IV. 4: (a) Relation between deck rigidity and tower longitudinal stiffness; (b), 

(c), (d) proportion of elements material cost for cases of analysis (A1), (B1), and (C1).

 ...................................................................................................................................... 107 

Figure IV. 5: Material total cost optimized for the six main cases of analysis: A1, B1, 

C1, A2, B2 and C2........................................................................................................ 108 

Figure A2.  1: I-girder depth as a function of the Class 3 I-girder inertia. ................... 128 

Figure A2.  2: Bottom flange width as a function of the Class 3 I-girder inertia. ........ 128 

Figure A2.  3: Web thickness as a function of the Class 3 I-girder inertia................... 128 

Figure A3.  1: I-girder depth as a function of the Class 2 I-girder inertia. ................... 129 

Figure A3.  2: Bottom flange width as a function of the Class 2 I-girder inertia. ........ 129 

Figure A3.  3: Web thickness as a function of the Class 2 I-girder inertia................... 129 

Figure A4. 1: Finite element modelling of concrete-steel composite two I-girders deck 

according to WILSON et al. (1991). ............................................................................ 130 

Figure A5. 1: Geometry of plate girder section model evaluated by LIN et al. (2005).

 ...................................................................................................................................... 131 

Figure A5. 2: Drag coefficients (LIN et al., 2005). ...................................................... 131 

Figure A5. 3: Lift coefficients (LIN et al., 2005). ........................................................ 132 

Figure A5. 4: Torsional coefficients (LIN et al., 2005). ............................................... 132 

Figure A5. 5: Flutter derivative H1* (LIN et al., 2005). .............................................. 133 

Figure A5. 6: Flutter derivative A2* (LIN et al., 2005). .............................................. 133 

 

 

 

 



xv 

 

LIST OF TABLES 
 

 

Table I. 1: Record main spans for cable-stayed bridges (SVENSSON, 2012; PEDRO & 

REIS, 2016). ..................................................................................................................... 7 

Table I. 2: Relation between main span length and cross-section material and geometry.

 .......................................................................................................................................... 9 

Table II. 1: Material costs used in the study. .................................................................. 41 

Table II. 2: Lower and upper bounds of the design variables. ....................................... 41 

Table II. 3: Deck masses obtained for Objective-1 normalized by the minimum mass. 43 

Table II. 4: Deck mass ratio (DL + lane LL)/(DL + truck and lane LL) obtained for 

Objective-1...................................................................................................................... 48 

Table II. 5: Deck mass ratio (DL)/(DL + truck and lane LL) obtained for Objective-1. 49 

Table II. 6: Design variables obtained for the considered case study. ........................... 50 

Table II. 7: Constraint values (Equations II.7 to II.18) obtained for the considered case 

study................................................................................................................................ 50 

Table II. 8: Maximum longitudinal displacements at the top of towers (SLS). ............. 51 

Table II. 9: Material costs for the optimal solutions with miminum deck mass (TL1=6m 

and TL2=3m)................................................................................................................... 56 

Table II. 10: Comparison of material costs for Objective-1(Hb=30m, Ha=50m, 

TL1=3.0m, and TL2=1.5m) and Objective-2 (Hb=30m) optimal solutions in London-ON.

 ........................................................................................................................................ 57 

Table II. 11: Comparison of material costs for Objective-1(Hb=30m, Ha=40m, 

TL1=3.0m, and TL2=1.5m) and Objective-2 (Hb=30m) optimal solutions in North Bay-

ON. ................................................................................................................................. 57 



xvi 

 

 

Table III. 1: Geometric properties of the structural elements......................................... 71 

Table III. 2: Frequencies and mode shapes. ................................................................... 72 

Table III. 3: Aerodynamic coefficients and theirs slopes for a wind attack of 0º. ......... 72 

Table IV. 1: Design variables: lower and upper bounds. ............................................. 101 

Table IV. 2: Hourly mean basic wind velocities adapted from CAN/CSA-S6-14. ...... 103 

Table IV. 3: Main cases of analysis. ............................................................................. 103 

Table IV. 4: Load factor combinations. ........................................................................ 103 

Table IV. 5: Deck limiting design constraint and material cost for cases A1, B1 and C1.

 ...................................................................................................................................... 107 

Table IV. 6: Design variables, frequencies and damping ratios for optimized cable-

stayed bridges considering critical wind velocity V0,2. ................................................ 109 

Table A1. 1: Concrete cross-section cable-stayed bridges (SVENSSON, 2012). ........ 126 

Table A1. 2: Steel cross-section cable-stayed bridges (SVENSSON, 2012). .............. 126 

Table A1. 3: Composite steel-concrete cross-section cable-stayed bridges (SVENSSON, 

2012; PEDRO & REIS, 2016) ...................................................................................... 127 

 

 

 

 

 

 

 

 

 

 

 

 

 



xvii 

 

LIST OF SYMBOLS 
 

 

 

 

[m] Influence matrix 

{x} vector of design variables 

{X} Vector of stay-cables pre-tensioning force corrections 

A Steel total cross-section area of stay-cable 

A1φ Steel nominal cross-section area for 1 strand 

A2
*
 Flutter derivative function of the torsional frequency 

B Deck width 

b1 Deck I-girder top flange width 

b2 Deck I-girder bottom flange width 

Cf Factored compressive force at ULS 

CFx, CFZ, CMθ Static force coefficients 

Ci 
Constants specified by the design for determining 

maximum displacements allowed 

Cr Factored compressive resistance 

D Deck I-girder depth 

 
𝑑𝐶𝐹𝑋
𝑑𝛼

,
𝑑𝐶𝐹𝑍
𝑑𝛼

,
𝑑𝐶𝐹𝜃
𝑑𝛼

 

 
Slopes of static force coefficients 

DL dead load 

Ecs Stay-cable  effective modulus of elasticity 

Eeq Stay-cable equivalent tangent modulus of elasticity 

f Frequency of vibration 

f* Reduced frequency 

𝐹′𝑋(𝜂, 𝑡) Quasi-steady horizontal force (wind direction) 

𝐹′𝑍(𝜂, 𝑡) Quasi-steady vertical force 

𝑀′𝜃(𝜂, 𝑡) Quasi-steady pitching moment  

F{x} Fitness value 

FB Breaking force of stay-cable 

fB First vertical bending mode frequency 

FB,1φ Steel nominal breaking load for 1 strand 

fmax 
Fitness value of the worst feasible solution that has been 

observed 

fT First torsional bending mode frequency 

g Design constraint 

G Shear modulus of the material 

GEN number of generations 

H Horizontal projection of the stay-cable 

Ha  Tower height above the deck level 



xviii 

 

Hb  Tower height below the deck level 

Ht  Tower total height 

|𝐻|2 Mechanical admittance 

I 
Moment of inertia of the deck steel I-girder about its major 

axis 

Iu Wind longitudinal turbulence intensity 

Iw Wind vertical turbulence intensity 

Im Deck mass moment of inertia 

Jt Torsional moment of inertia 

|𝐽|2 Joint acceptance function 

L Total length of the bridge  

L1 Main span length 

L2 Side span length 

LL live load 

𝑙𝑢 Turbulence length scale 

m Mass per length 

M0 Desired bending moments at deck control points 

MDL Bending moment at SLS due to dead load 

Mf Factored bending moment at ULS 

Mfx Factored bending moment at ULS about x-axis 

Mfy  Factored bending moment at ULS about y-axis 

MLL Bending moment at SLS due to live load 

Mp 

Bending moments at the control points due to dead and 

superimposed loads obtained from the cable-stayed bridge 

complete 3D FEM 

Mr Factored bending moment resistance 

Mrx Factored bending moment resistance about x-axis 

Mry  Factored bending moment resistance about y-axis 

MSL Bending moment at SLS due to superimposed load 

N 
Number of stay-cables in the side spans or in half of the 

main span, in one plane of cables. 

POP number of samples in the population 

𝑄′𝑋,𝑗
2̅̅ ̅̅ ̅̅  Mean-square fluctuating generalized horizontal force 

𝑄′𝑍,𝑗
2̅̅ ̅̅ ̅̅  Mean-square fluctuating generalized vertical force 

𝑄′𝜃,𝑗
2̅̅ ̅̅ ̅̅  Mean-square fluctuating generalized pitching moment 

R Vertical reaction of continuous beam FEM 

r Mass of gyration 

RF′1F′2 Cross spectrum of forces 

S Elastic section modulus of the steel section  
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I. INTRODUCTION 

 

I.1 CABLE-STAYED BRIDGES 

I.1.1 A BRIEF HISTORY 

One of the first projects designed with features that resemble a modern-day 

cable-stayed bridge was dated in 1617 and attributed to Faustus Verantius. The bridge 

consisted of a timber beam deck suspended by inclined eye bars and a suspended cable 

in the middle as shown in Figure I. 1(a) (VERANTIUS, 1617 apud SVENSSON, 2012). 

Over one-hundred and fifty years later, the concept of considering only inclined stays in 

a cable-stayed bridge was developed for the first time by the German carpenter 

Immanuel Löscher in 1784. As shown in Figure I. 1(b), the 44.3m cable-stayed bridge 

was conceived with all structural members – deck, stays and towers - constructed with 

timber. Although the structural designs for these two projects were completed, neither 

bridge was fully constructed as originally planned (LÖSCHER, 1784 apud 

SVENSSON, 2012).  

In 1817 two Scottish ironworkers, James Redpath and John Brown, designed 

the first constructed permanent cable-stayed bridge. The Kings Meadow Bridge was 

constructed as a pedestrian walkway over the River Thames with stays made of iron 

wires (Figure I. 2), and partially collapsed in the winter of 1822/1823 (STEPHENSON, 

1821 apud SVENSSON, 2012). It was later repaired by using an additional number of 

stays but failed again in 1954 due to flood waters. Also in 1817, John and William 

Smith constructed the first bridge over the Tweed River in Scotland. This bridge had 

similar geometry to the Kings Meadow Bridge and shared the same fate as serious 

dynamic problems led to its collapse in 1818 after a thunderstorm (STEPHENSON, 

1821 apud SVENSSON, 2012). 

The accidents and collapses described previously (and many others) were due 

to the lack of knowledge of the real behavior of cable-stayed bridges and the availability 

of adequate materials to build the structural components. For these reasons, the 

development of cable-stayed bridges was slow until the end of World War II when 

many bridges needed reconstruction following the war.  Advances in the technology of 

steel production made cable-stayed bridges ideal for many of these projects because 

they have the advantages of efficient use of materials and high-speed construction. 
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The Strömsund Bridge with central span of 182m, designed by the German 

engineer Franz Dischinger and constructed in Sweden in 1956, is considered by many 

authors as the first modern cable-stayed bridge. Although it contains a concrete 

roadway, the Strömsund Bridge is classified as steel bridge (rather than composite) 

because the concrete slab only distributes local wheel loads and is not integrated with 

the main steel girders (Figure I. 3) (WENK, 1954 and ERNST, 1956 apud SVENSSON, 

2012). 

 

        

(a)                                                                    (b) 

Figure I. 1: First bridges designed, but not constructed, with the concept of cable-stayed 

bridge: (a) Bridge designed by Verantius in 1617 (VERANTIUS, 1617 apud 

SVENSSON, 2012); (b) Bridge designed by Löscher in 1784 (LÖSCHER, 

1784 apud SVENSSON, 2012). 

 

 

Figure I. 2: First proven constructed cables-stayed bridge: Kings Meadow Bridge, 1817 

(STEPHENSON, 1821 apud SVENSSON, 2012). 
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Figure I. 3: First modern cable-stayed bridge: Strömsund, 1956 (WENK, 1954 and 

ERNST, 1956 apud SVENSSON, 2012). 

 

I.1.2 STRUCTURAL SYSTEM 

In a cable-stayed bridge, the deck is supported at numerous points along its 

length by pre-tensioning cables, in a way that the beam spans large distances without 

the need of intermediary rigid supports.  

The flow of forces in a cable-stayed bridge, in the static configuration due to 

dead loads and superimposed loads, is detailed in the Figure I. 4 and shows that stay 

cables transfer their forces directly to the deck. The horizontal components are 

introduced to the deck as compression forces on the girders achieving maximum value 

at the position of the tower. This is explained by the fact that compression forces in the 

deck produced by the pre-tensioned cables in the main and side spans act in opposite 

directions. The vertical components of the stay cable-forces are upward on the deck 

anchorages and downward on the towers anchorage, while the dead, superimposed and 

live loads act downward. 
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Figure I. 4: Flow of forces in a cable-stayed bridge (SVENSSON, 2012). 

 

 

I.1.3 STRUCTURAL COMPONENTS 

When a cable-stayed bridge is chosen to span over an obstacle, there is a vast 

number of possible geometric configurations that must be considered. These include, 

but are not limited to: (i) cable arrangement; (ii) type of deck cross-section; and (iii) 

shape of towers.  When these three parameters are defined it is then necessary to 

determine: (i) number of cables, their cross-section areas and pre-tensioning forces; (ii) 

dimensions of the girder; (iii) thickness of the roadway slab; (iv) height of the towers; 

and (v) cross-section dimensions of the tower components. In addition, other parameters 

must be carefully adopted such as proportion between the side span and main span that 

should be selected in accordance with the terrain topography, width of the deck required 

for number of traffic lanes, and the support conditions. 

I.1.3.1 CABLE ARRANGEMENT SYSTEMS 

Choosing a small number of stay-cables results in greater forces on the cables 

and consequently requires a complex anchorage system and robust beams to span the 

distance between anchorage points. A better and lighter structural system is achieved by 

increasing the number of stay-cables. This provides a uniform distribution of forces 

along the deck and eliminates the need for temporary cables during construction stages 

(PODOLNY, 1976). 

Bridge Beam 

 

Stay Cable 

 

Load 

 

Tower 

 

Tower 

Compression 
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There are three basic types of longitudinal cable arrangements for cable-stayed 

bridges: fan systems, harp systems, and semi-fan systems as illustrated in Figure I. 5. In 

the fan arrangement system, all the cables are attached to a single point at the top of the 

towers. This is not a practical option because damage in one of the cables may 

destabilize the structure. For this reason, all cables should have individual anchorage 

points and be able to withstand additional forces until the problem is solved. In the harp 

arrangement system, cables are parallel and anchored equally spaced to the towers to 

distribute the forces. However, this means that increasing the number of cables requires 

higher towers to accommodate all anchorages. Finally, the semi-fan arrangement is an 

intermediate system between the fan and harp arrangements, that does not present the 

disadvantages previously mentioned. 

 

(a) Fan system 

 

(b) Harp system 

 

(c) Semi-fan system 

Figure I. 5: Longitudinal cable arrangement systems (SVENSSON, 2012). 

 

The transversal cable arrangements can be single-plane or double-plane. In the 

single plane arrangement, cables are anchored under the roadway slab dividing it in the 

middle. This means they do not have transversal component forces and should only be 
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used with box girder cross sections. For cross-sections with low torsional rigidity, such 

as thin concrete beam cross-sections, double-plane arrangements are required to carry 

additional loads (ex. loads generated from asymmetric traffic of vehicles). 

I.1.3.2 TOWERS 

Given that towers are primarily subjected to compression forces, the most 

common and economic material to be used for their construction is concrete. The type 

of tower will depend mainly on the transversal arrangement systems as illustrated in 

Figure I. 6. In addition, short and medium spans may have towers with vertical legs 

connected with cross beams, while long spans should have tower legs connected at the 

top to increase torsional rigidity (PODOLNY, 1976 and SVENSSON, 2012). 

 

(a) 

 

(b) 

Figure I. 6: Tower shapes for (a) double-plane and (b) single-plane cable arrangements 

(SVENSSON, 2012). 
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I.1.3.3 DECK CROSS-SECTIONS 

Deck cross-sections are classified by the type of material used in the 

construction: concrete, steel, and composite steel-concrete (PODOLNY, 1976).  In 

addition, deck cross-sections may also be classified as a hybrid deck when the main and 

side spans have different materials. In this case, the main span is usually made of steel 

in order to be lighter in weight, and the side spans are in concrete and work as a 

counterweight to provide stability for the main span. Figure I. 7 to Figure I. 9 show 

some deck cross-section geometries that are used depending on the type of material. 

Besides the geometry, the value of the cable-stayed bridge main span has a 

direct relation to the type of material. SVENSSON (2012) compared deck costs for 

different main span lengths and concluded that concrete decks are the most economic 

for main span under 400m, composite decks for main spans between 400m and 900m, 

and steel decks for main spans over 900m. Essentially, concrete decks are for short 

spans, steel decks are for long spans and composite steel-concrete are used for 

intermediate spans. These guidelines are exemplified by the record of longest main span 

of cable-stayed bridges (Table I. 1) with 530m, 616m and 1104m for concrete, 

composite and steel deck cross-sections, respectively. 

Considering the example of over 40 cable-stayed bridges constructed in the last 

40 years, Table I. 2 shows the relation between type of cross-section and main span 

size. To develop this relation, it was assumed that short and medium main span lengths 

are under 200m and 450m, respectively, while long spans are over 450m. Importantly, it 

is necessary to emphasize that Table I. 2 represents the most common situations 

observed in the literature and so unique cable-stayed bridges would not be covered in 

these relations.  Details of the bridges used in Table I. 2 are presented in the Appendix 

1. 

Table I. 1: Record main spans for cable-stayed bridges (SVENSSON, 2012, PEDRO & 

REIS, 2016). 

 

Material Bridge Country Year Main Span (m) 

Concrete Skarnsundet Bridge Norway 1991 530 

Composite Erqi Yangtze River Bridge China 2011 616 

Steel Russky Island Bridge Russia 2012 1104 
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                                            (a)                                                    (b) 

 

(c) 

Figure I. 7: Concrete cross-sections: (a) thin concrete beams (KOPPEL, 1984 apud 

SVENSSON, 2012); (b) 2 concrete girders (LEONHARDT, 1980 apud 

SVENSSON, 2012); (c) box girder (BATTISTA, 2011). 

 

 

 

Figure I. 8: Composite steel-concrete cross-section: two main plate girders 

(BATTISTA, 2013). 

 

  

(a)                                                                    (b) 

Figure I. 9: Steel cross-section: box girder (YOU et al., 2008 apud SVENSSON, 2012); 

two box girders (MORGENTHAL, 2008 apud SVENSSON, 2012). 
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Table I. 2: Relation between main span length and cross-section material and geometry. 

 

 

 

 

 

 

 

 

I.1.4 MAIN CHARACTERISTICS 

The main goals in bridge design were listed in the following order of 

importance by MENN (1991): structural integrity and resilience, maintenance, 

economics, and aesthetics. While structural integrity, resilience, and maintenance are 

vital requisites for the design project, the costs and aesthetics are control criteria to 

define the geometry. In addition, the project must also consider the topography, 

geology, span length, clearance, design codes, and planned routes for the roadway or 

railway. 

After evaluating all the components of a cable-stayed bridge given in Section 

1.1.3, as well as their structural system behavior provided in Section 1.1.2, one may 

state the following (NAZMY, 1990; SVENSSON, 2012; TROITSKY, 1988; 

PODOLNY, 1976): 

 Cable-stayed bridges provide an efficient and economical use of materials 

because: (i) the cables subjected to tension are composed by multi-paralel 

strands formed by 5 or 7 helical wires of 5mm diameter made of low relaxation 

high strength steel; (ii) the towers subjected to compression and bending 

moments are generally constructed with reinforced or prestressed concrete; and 

(iii) there are many alternative design solutions for the deck cross-section.  

Material Geometry 
Main Span Length 

Short Medium Long 

Concrete 

Thin concrete beams ✓   

2 concrete girders ✓ ✓  

Box girder  ✓  

Composite 

2 plate girders ✓ ✓ ✓ 

3 plate girders  ✓  

4 plate girders  ✓  

Truss deck  ✓  

2 box girders   ✓ 

Hybrid   ✓ 

Steel 
Box girder  ✓ ✓ 

2 box girders  ✓ ✓ 
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 Cable-stayed bridges result in reduced bending moments on the deck because 

the girders work as a continuous supported beam and due to the flow of loads 

on the deck, bending moments along the girders are minimized. 

 

 Cable-stayed bridges have an efficient construction method. The balanced 

cantilever construction method widely used for cable-stayed bridges eliminates 

the need for temporary supports because the flow of loads is the same during 

construction and in the completed structure. Conversely, temporary supports 

may be needed in construction of long span arch bridges which are not stable 

during erection and also of suspension bridges. 

 

 Cable-stayed bridges have greater stiffness than suspension bridges. This is 

because the main cables of a suspended bridge find equilibrium by small 

increases in cable stress, while cable-stayed bridges always have cables 

stresses increased substantially to support the applied load. Consequently, the 

frequencies of cable-stayed bridges tend to be higher than suspension bridges. 

 

 Cable-stayed bridges have an aesthetical appeal due to the variety of cable 

arrangements and towers, slender decks and large spans with reduced number 

of supports. 

Despite all these advantages, the combination of long spans with light and 

slender decks increases the flexibility of cable-stayed bridges. Consequently, these 

bridges are highly susceptible to environmental loads (such as wind and rain) and traffic 

loads. 
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I.2 OPTIMIZATION OF CABLE-STAYED BRIDGES 

I.2.1 SIGNIFICANCE 

As detailed previously in Section 1.1, the construction of cable-stayed bridges 

involves choosing one of many deck cross-section options, towers shapes and cable 

arrangements. In this way, the optimization of cable-stayed bridge is important not only 

economically, but also to exploit new possibilities.  

Regarding the economical perspective, optimization aims to identify the 

optimum geometry to fulfill all the requisites from the Ultimate Limit State and 

Serviceability Limit State as well as to provide the lowest cost. Regarding the new 

possibilities, optimization offers the opportunity to fix certain parameters (ex. ratio 

between tower and main span, ratio between deck depth and main span length, etc.) to 

check if they result in feasible design solutions.  

The optimization of cable-stayed bridges may be classified into three different 

levels: 

1. Optimization of stay-cable pre-tensioning forces: The optimum distribution of 

cable pre-tensioning forces corresponding to the complete bridge affects the 

structure stiffness and is paramount to a successful project design.  

 

2. Optimization of some geometries together with cable pre-tensioning forces. At 

this level, general features of the bridge have already been defined, such as span 

lengths, deck material and cross-section type, shape of the towers, cable 

arrangements, etc. The remaining parameters to be optimized are:  thickness of 

slab, dimensions of main girders, dimension of tower cross-sections, number of 

stay cables, stay-cables cross-sectional areas, and pre-tensioning forces. 

 

3. Optimization of all bridge features: (i) number of spans and towers; (ii) 

constraints; (iii) material and type of deck cross-section; (iv) material, shape, 

and height of towers; (v) longitudinal and transversal arrangement of cable 

system; (vi) number of stay-cables; (vii) quantity of strands and pre-tensioning 

forces of each stay-cable. 
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I.2.2 LITERATURE REVIEW 

The main studies found during the literature review for this thesis are presented 

below according to the classifications levels introduced in Section 1.2.1. No example of 

cable-stayed bridge level 3 was found in the literature. 

I.2.2.1 LEVEL 1 OPTIMIZATION OF CABLE-STAYED BRIDGES 

 

 Shape Finding Procedure / Zero Displacement Method 

WANG et al. (1993) developed a procedure for calculating the pre-tensioning 

forces of cable-stayed bridges that attend deck displacements requirements. In this 

procedure, two-dimensional finite element models that consider cable-sag, beam-

column, and large displacement non-linear effects are were developed. All bridge 

materials were considered to behave linearly. The Newton Raphson Method was chosen 

to iteratively determine the equilibrium configuration of the cable-stayed bridge models 

under the action of deck dead loads and pre-tensioning stay-cable forces. 

In the first step, stay-cables pre-tensioning forces are set equal to zero, which 

results in very large displacements and bending moments values. The second step 

considers the deformed shape and cable pre-tensioning forces obtained in the first step. 

The deck displacements at control points (nodes of stay-cable anchorage at the deck) 

obtained from the second step are compared to the tolerance to check if convergence is 

achieved (Equation I.1). This procedure is repeated until the tolerance (ϵ) is attended. 

|
𝑑𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑡 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑝𝑜𝑖𝑛𝑡

𝑠𝑝𝑎𝑛 
| ≤ 𝜖                                    (I. 1) 

When convergence is achieved, the pre-tensioning forces of stay-cables for the 

deck self-weight are determined. The authors showed that the Shape Finding Procedure 

converted monotonously for three cable-stayed bridge examples: (i) unsymmetrical; (ii) 

symmetric harp; and (iii) symmetric radiating.  The Shape Finding Procedure is also 

called Zero Displacement Method because the objective of the problem is to minimize 

displacements at the control points. 

 

 Force Equilibrium Method 
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Instead of minimizing displacements, CHEN et al. (2000) minimized the 

bending moments diagram by considering a three-stage method. To establish the target 

bending moments vector {𝑴0} due to dead load, the first stage considers only the deck 

by substituting the tower and cables by rigid supports.  

In the second stage, bending moments vector {𝑴𝑑} due to dead loads are 

obtained considering a model of the deck and tower, whereas the cables are substituted 

by internal forces. The matrix [𝒎] of influence and initial pre-tensioning forces vector 

{𝑻0} were also calculated in this stage: 

{𝑴0} = [𝒎]{𝑻0} + {𝑴𝑑}                                         (I. 2) 

{𝑻0} = [𝒎]−𝟏({𝑴0} − {𝑴𝑑})                                    (I. 3) 

where {𝑴0} is the target bending moments vector obtained from the first stage; [𝒎] is a 

NxN matrix of 𝑚𝑖𝑗 coefficients; 𝑚𝑖𝑗 is the ith control section bending moment due to a 

unit force applied at the jth stay cable; {𝑴𝑑} is the bending moments vector due to dead 

loads from the second stage; {𝑻0} is the initial vector of pre-tensioning forces. 

In the third stage, the same second stage FEM is considered, and the initial 

estimate of cable forces {𝑻0} is used as input to calculate the new deck bending 

moments vector {𝑴1}. Adjustments of cable forces {𝜟𝑻1} are calculated as follow: 

{𝜟𝑻1} = [𝒎]−𝟏({𝑴1} − {𝑴0})                                    (I. 4) 

{𝑻1} = {𝑻0} + {𝜟𝑻1}                                             (I. 5) 

where {𝑻1} is the vector of pre-tensioning forces obtained from the first iteration of the 

third stage. This procedure is repeated until the updated deck bending moments vector 

{𝑴𝑘} of the kth iteration converge to the target bending moments {𝑴0} by the tolerance 

𝛿. 

‖{𝑴𝑘} − {𝑴0}‖ < 𝛿                                           (I. 6) 

CHEN et al. (2000) evaluated 2D linear-elastic structure behaviour of cable-

stayed bridges with three different deck vertical profiles and compared to the Zero 
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Displacement Method from WANG et al. (1993). The authors demonstrated that for 

bridge deck with a vertical slope the Force Equilibrium Method is preferred. 

 

 Unit Load Method 

JANJIC et al. (2003) developed the Unit Load Method with experience 

acquired in the Uddevalla cable-stayed bridge (Sweden) design project. Similar to the 

Force Equilibrium Method presented by CHEN et al. (2000), the Unit Load Method 

also considers bending moments as constraints. JANJIC et al. (2003) concisely 

described the method by the equation below: 

𝑀𝐾 = 𝑀𝑃
𝐾 + ∑ 𝑀𝑇𝑚

𝐾 . 𝑋𝑚
𝑛
𝑚=1                                         (I. 7) 

where 𝑀𝐾 is the desired moment distribution at the kth control point; 𝑛 is the total 

number of control points for which the desired bending moments are known;  𝑀𝑃
𝐾 is the 

bending moment due to dead loads at the kth control point;  𝑀𝑇𝑚
𝐾 is the bending moment 

at the kth control point due to a unit load applied to the mth stay-cable; 𝑋𝑚 is the 

unknown multiplication factor, i. e. the mth stay-cable pre-tensioning force. The 𝑀𝑃
𝐾 

and 𝑀𝑇𝑚
𝐾  variables are calculated through a FEM that includes deck, towers and stay-

cables. 

 

 Two-step Method 

LEE et al. (2008) applied the Unit Load Method to the Wando cable-stayed 

bridge (Korea). According to the authors, the cable forces and bending moments 

obtained were not well distributed due to the lack of symmetry in the structure. Besides 

that, the authors obtained stay-cables forces that were exceeding maximum working 

load values. To avoid increasing the cable cross-section areas, the authors added a new 

step to the Unit Load Method. In this new step, an additional constraint related to the 

lower and upper bound of stay-cable forces is added and the Unit Load Method 

becomes the Two-step Method. 
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 B-spline Method 

HASSAN et al. (2012) observed that the distribution of cable pre-tensioning 

forces along the spans, provided by SIMÕES & NEGRÃO (2000), CHEN et al.  (2000) 

and LEE et al. (2008), follow an arbitrary polynomial function. According to the 

authors, B-spline curves were chosen for representing the pre-tensioning forces 

distribution because they are able to represent complex curves with low degree 

polynomials. The pth degree B-spline curve were presented in HASSAN et al. (2012) 

work as follow: 

 𝐶(𝑢) = ∑ 𝑁𝑖,𝑝(𝑢)𝑃𝑖
𝑛
𝑖=0 ;    0 ≤ 𝑢 ≤ 1                                   (I. 8) 

𝑁𝑖,0(𝑢) = {
1 𝑖𝑓 𝑢𝑖 ≤ 𝑢 ≤ 𝑢𝑖+1
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

                                        (I. 9) 

𝑁𝑖,𝑝(𝑢) =
𝑢−𝑢𝑖

𝑢𝑖+𝑝−𝑢𝑖
𝑁𝑖,𝑝−1(𝑢) +

𝑢𝑖+𝑝+1−𝑢

𝑢𝑖+𝑝+1−𝑢𝑖+1
𝑁𝑖+1,𝑝−1(𝑢)                        (I. 10) 

𝑈 = {0, … ,0⏟  
𝑝+1

, 𝑢𝑝+1, … , 𝑢𝑚−𝑝−1, 1, … ,1⏟  
𝑝+1

}                                   (I. 11) 

𝑚 = 𝑛 + 𝑝 + 1                                                   (I. 12) 

where 𝐶(𝑢) is the B-spline curve; 𝑢 is the independent variable; (𝑛 + 1) is the number 

of control points; 𝑃𝑖 are the control points; 𝑝 is the basic function degree; 𝑁𝑖,𝑝(𝑢) are the 

pth degree B-spline basis functions; 𝑈 is the knot vector with (𝑚 + 1) elements. The 

horizontal coordinate (𝑥) of the control points represents a deck side span or half of the 

main span, while the vertical coordinate (𝑦) characterizes pre-tensioning forces.  

The optimization of pre-tensioning stay-cable forces was obtained by 

combining B-spline curves, finite element modelling and real coded genetic algorithm. 

The three-dimensional finite element models considered cable sag, the P-𝜟 and the large 

displacements nonlinear effects. The optimization of pre-tensioning forces was obtained 

under the self-weight of deck and towers, considering as constraints the vertical 

deflection of the deck and the horizontal deflection of the towers. The authors expressed 

the objective function by the equation below: 

𝐹 = √(𝛿1
2 + 𝛿2

2 +⋯)𝑑𝑒𝑐𝑘 + (𝛿1𝑡
2 + 𝛿2𝑡

2 +⋯)𝑡𝑜𝑤𝑒𝑟𝑠                  (I. 13) 
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where 𝐹 is the objective function; 𝛿𝑖is the vertical deflection of the ith deck node; 𝛿𝑗,𝑡is 

the longitudinal deflection of the jth tower node. 

HASSAN et al. (2012) considered the optimization of pre-tensioning stay-

cables forces for a symmetric cable-stayed bridge with composite steel-concrete two I-

girder deck, H-shape towers, and semi-fan double plane cables arrangement. An 

example with total number of stay-cables equal to 80, being 10 cables in one plane of 

the side span or half of the main span was evaluated. Among other solutions, two cases 

were compared: (i) optimization considering the concept of B-spline curves; (ii) direct 

optimization of pre-tensioning stay-cable forces. 

As the bridge is symmetrical, a total of 20 pre-tensioning forces were 

optimized in the second case. For the first case, the authors considered four control 

points (𝑛 + 1 = 4). The horizontal coordinate of the first and forth control points that 

represent the beginning and end of the side span or half of the main span are known. 

Again, considering symmetry, 12 variables were optimized. Results showed that the 

first case presented more uniform distribution of pre-tensioning forces and exemplified 

the efficacy of the B-spline curve method. The authors also conclude that cable sag 

effect was the only source of non-linearity that slightly contributed to the results. 

 

I.2.2.2 LEVEL 2 OPTIMIZATION OF CABLE-STAYED BRIDGES  

 

 Entropy Based Optimization Method 

SIMÕES & NEGRÃO (1994) developed a multi-objective optimization 

method for determining sizing and geometric variables of a cable-stayed bridge 

constituted by a steel box girder deck cross-section, H-shape towers with steel box 

section, and semi-fan cables arrangement. The vector of sizing variables (𝐱) included 

distance between pier and cable anchorages and height of the first stay-cable at the 

tower. The geometric variables vector (𝐲) consisted of equivalent plate thickness of 

tower elements, equivalent plate thickness of the upper and bottom flanges of main 

girder elements, and cross-sectional area of each stay-cable. The constraints included 
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stay-cables cost, lower limit of sizing variables, lower and upper limit of geometric 

variables, spacing between cables and strength requirements. 

In comparative analysis performed by the authors, they concluded that the P-𝜟 

and the large displacement nonlinear had less than 1% effect when compared to linear 

analysis and, thereby, they recommended disregarding these effects. The non-linear 

axial force elongation of the cables was expected to be very small and consequently 

disregarded. The material behavior of the structural steel was assumed linear elastic. 

The modelling of the cable-stayed bridges was accomplished through a two-

dimensional finite element model. Regarding the loads, dead loads were evaluated in the 

erection stage analysis, while dead and uniform live loads were considered in the 

service stage analysis. 

The method presented by SIMÕES & NEGRÃO (1994) determines the 

variables (𝐱 and 𝐲 vectors) that minimize all goals by using a minimax optimization 

problem. The minimax was solved indirectly by minimizing a continuously 

differentiable function based on entropy. This technique measures the amount of 

disorder in a system, with a small value indicating that the solution is in order. The 

unconstrained and differentiable equation solved by the optimization method is 

presented below. 

𝑀𝑖𝑛 (
1

𝜌
) 𝑙𝑛{∑ 𝑒𝜌[𝑔𝑗(𝐱,𝐲)]𝑗=1,𝐽 }                                          (I.14) 

where 𝑔 are constraint functions; and 𝜌 is the control parameter that has to be increased 

through the iterations. As stresses are obtained numerically throughout the analysis, the 

Taylor series is applied for providing explicit algebraic form. Pareto solution was also 

applied for determining the minimum solution that attends both objectives. 

SIMÕES & NEGRÃO (2000) used the Entropy Based Optimization Method 

for optimizing a steel box-girder deck cable-stayed bridge with goals of cost, strength 

requirements and displacements. The three-dimensional finite element model 

considered plate membrane elements for representing the deck. The variables included 

equivalent thickness of top, bottom and side plates of the box-girder in different parts of 

the bridge, length, width, and thickness of towers below and above the deck, cross-

sectional area of cables, pre-tensioning forces of cables, and cable anchorages 
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positioning at deck and towers. The completed bridge configuration was evaluated due 

to dead loads, uniform live loads, and uniform lateral wind loads at the deck. The sag 

effect of the cables was the only source of non-linearity considered in the optimization 

process, through the use of Ernst modulus of elasticity.  

 

 Power Search Optimization Methodology 

NEVES (1997) applied a multi-objective nonlinear programming optimization 

method to the design procedure of cable-stayed bridges. Power search routines to find 

optimal Pareto solutions were employed within the formulation of the multi-objective 

problem. A three-dimensional finite element modelling of the structural system was 

used within the framework to reach an optimized solution for the completed bridge 

structure as well for the construction stages. 

The optimization process considered cable sag, beam column and large 

displacements nonlinear effects and aimed to minimize: (i) displacements, shear and 

bending moments in towers and deck, (ii) stay-cable cross-section areas and stresses in 

all elements, (iii) geometric deviations of deck grade during construction stages, and 

(iv) overall weight. The variables optimized included: (i) stay-cables quantity, cross-

section areas, and pre-tensioning forces, (ii) I-girder composite deck or box girder deck 

dimensions, and (iii) height of towers and cross-section dimensions. 

 

 Powell’s Direct Search Method 

LONG et al. (1999) optimized composite box girder cable-stayed bridges to 

minimize cost of the structure by applying the Powell’s Direct Search Method, which 

does not make use of the functions derivatives. Two-dimensional finite element models 

considered non-linearity effects and optimized the final configuration of the structure 

under the action of dead and live loads. Optimized design variables included: (i) 

thickness of concrete slab, (ii) width and thickness of flanges and webs of the steel box 

girder, (iii) dimensions and spacing of stiffeners, (iv) area of stay-cables cross-sections, 

and (v) towers dimensions. 
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 Hybrid Genetic Algorithm (GA) and Support-vector Machine (SVM) Method 

Although the GA is very efficient for finding global optimum, it may require a 

large number of analyses. By considering the extra analysis due to the nonlinearities, the 

optimization becomes impractical due to the high computational cost. In order to 

consider the nonlinear effects in the cable-stayed bridge optimization process, and at the 

same time to avoid the massive number of analysis, LUTE et al. (1999) proposed a 

hybrid GA and SVM method.  

SVM is a supervised machine learning algorithm that generalizes the 

input/output relation of experiments (also called training set) in order to predict unseen 

examples. The inputs are the side to main span ratio, tower height to bridge length ratio, 

girder top and bottom flange widths, girder overall depth, tower box width and depth, 

and cables diameter. The corresponding outputs are maximum vertical girder deflection, 

maximum longitudinal tower deflection, maximum girder positive and negative bending 

moments, maximum girder compression force, maximum tower moment, and maximum 

stay-cable force. The authors evaluated around 4,000 FEM with different values of 

input, and the outputs were obtained through ANSYS analyses. The inputs described 

above are considered design variables, while the outputs are used for calculating 

constraint functions. These functions are related to the strength of cables, stiffness of 

deck and towers, and stability due to critical buckling load. The overall objective is to 

obtain the minimum material cost. 

The framework proposed by LUTE et al. (1999) has two main phases. In the 

first phase, training data is generated via ANSYS, and posteriorly SVM is used as a 

regression machine. In the second phase, GA and SVM are used together for the 

optimization. While GA generates random design variables, apply operators and 

calculate fitness values, the SVM predicts outputs based on the same probability 

distribution as the training data. Two-dimensional box-girder deck cross-section cables-

stayed bridges with fan cable arrangement were considered considering total length 

ranging from 300 and 500m. The comparisons between outputs obtained by SVM and 

ANSYS provided less than 5% error. According to the authors, results showed that the 

hybrid GA and SVM method is efficient computationally and can be used for 

preliminary design of cable-stayed bridges. 
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 Surrogate function Method 

HASSAN et al. (2013a), continuing their work described above as B-spline 

Method (HASSAN et al., 2012), developed surrogate polynomial functions for 

evaluating pre-tensioning cable-forces in semi-fan cable-stayed bridges under the action 

of dead loads. This way, during the optimization of bridge geometric variables, the pre-

tensioning forces are directly estimated through surrogate functions instead of being 

considered as design variables. 

In order to minimize the deflections at the deck and towers, HASSAN et al. 

(2013a) considered that the follow main variables for the optimization of pre-tensioning 

cable forces: the number of stay-cables, main span length, and height of the towers. The 

authors adopted the ordinary least square method (OLS) as the technique of fitting data, 

responsible for determining the regression coefficients that compose the surrogate 

polynomial function of the pre-tensioning stay-cable forces. The vector of stay-cable 

forces was defined as follow: 

𝐹𝑁×1 = 𝑋𝑁×𝑝𝛽𝑝×1 + 휀𝑁×1                                           (I.15) 

where 𝑁 is the number of stay-cables, 𝐹𝑁×1 is the vector of stay-cable pre-tensioning 

forces, 𝑝 is the number of constants that compose the surrogate function, 𝑋𝑁×𝑝 is the 

matrix of constants, 𝛽𝑝×1 is the vector of unknown parameters to be determined from 

the regression analysis, 휀𝑁×1 is the vector of independent random variables with 

expectation. The constants depend on the following parameters: (𝛾1) the ratio of main 

span length and the total length of bridge, (𝛾2) the ratio of the upper strut height of 

tower and the total length of bridge, (𝛾3) the total length of the bridge divided by 1000.  

A total of 1800 bridges covering different number of cables and parameters 

(𝛾1, 𝛾2 and 𝛾3) were analyzed in a parametric study performed by the authors. The stay-

cable pre-tensioning forces of each one of these bridges were optimized to minimize 

deck and towers deflections. The adequacy of the surrogate functions was proved by 

comparing the results with pre-tensioning forces obtained through surrogate functions to 

“exact solutions”. The latter solutions were obtained via finite element analysis and 

RCGA optimization as described by the B-spline Method (HASSAN et al., 2012). The 
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coefficients obtained through the parametric study were stored in a built-in library of the 

optimization program. 

HASSAN et al. (2013b) optimized two I-girder composite cable-stayed bridges 

with semi-fan cable arrangements. The considered design variables were: (i) number of 

stay-cables and their diameters, (ii) main span length, (iii) height of the tower upper 

strut, (iv) thickness of concrete slab and I-girder dimensions, (v) depth, width, and 

thickness of tower cross-section. The pre-tensioning forces were estimated using the 

surrogate polynomial functions developed by HASSAN et al. (2013a). Dead load, 

uniformly distributed live load, and mean wind loads at the deck were applied to the 

FEM. The structures were optimized using RCGA with the objective of minimizing the 

total cost of the structure. 

I.2.2.3 OPTIMIZATION OF OTHER TYPES OF CABLE-

SUPPORTED BRIDGES 

Studies have also been dedicated to the structural optimization of arch bridges 

and suspended bridges. LONETTI et al. (2014a) proposed a two-step interaction 

algorithm for the optimization of the cable system of hybrid cable-stayed suspension 

bridges with the objective of minimizing the amount of steel used in the cable system. 

The first iteration considers an initial configuration based in practical rules. In the first 

step, the FEM is assessed under the action of dead loads in order to evaluate the cables 

cross-sectional areas and post-tensioning forces. In the second step, live load analysis is 

performed and the maximum stresses of the cable elements are determined. If the 

tolerance conditions are not satisfied, a new iteration is performed considering the 

updated stresses. LONETTI et al. (2014b) performed a parametric study applying the 

two-step iteration algorithm verifying the convergent behaviour of the method.  

Regarding arch bridges, BRUNO et al. (2016) presented a Three-steps 

algorithm model for the optimization of hangers with multiple intersections (network) 

of arch bridges. The hanger post-tensioning forces are calculated in the first step, while 

in the second step the hangers, the arch and girder cross-sections are evaluated. In the 

third and last step, the tolerance conditions are checked. If these tolerances are not 

satisfied the variables are updated and a new iteration is performed. 
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I.3 RESEARCH OBJECTIVES 

The subject of this thesis is level 2 (stay-cables pre-tensioning forces and 

geometric variables) optimization of highway composite steel-concrete two I-girder 

cable-stayed bridges considering the action of dead, live and wind loads. 

Similarly to HASSAN et al. (2013b), the RCGA is used for the structural optimization 

of cable-stayed bridges. The aim objective is to develop an optimization procedure that 

performs truck moving load and buffeting wind forces evaluation with a reduced 

number of design variables in order to avoid excessive computational effort. The 

resulting procedure called Discrete Phases Approach is based on classifying the 

variables to be optimized into two categories; main and secondary variables. Instead of 

the secondary variables being considered as design variables for the RCGA, they are 

optimized indirectly by the discrete phases. 

 

 

I.3.1 METHODOLOGY AND RELEVANCE 

Optimization of cable-stayed bridges is a powerful tool for design because it 

provides the optimum solution from the structural and economic points of view. This 

optimization will focus on medium span cable-stayed bridges (rather than long span 

bridges) because longer bridges have challenges that may require unique solutions.  

Considering the background information presented in Section 1.1, composite 

steel-concrete cross section is one of the best options for medium span cable-stayed 

bridges.  This is because steel girders are lightweight and offer high strength, while the 

concrete slab improves deck resistance to axial loads and provides a proper platform for 

vehicles or trains. The record main span for this type of bridge was established in 2011 

by the Erqi Yangtze River Bridge in China, which has 616m of main span and two-plate 

girder cross-section. According to PEDRO et al. (2016), the competitiveness of 

composite cable-stayed bridges is explained by two facts: (i) the cost of the deck per 

square metre does not show great sensitivity to span increases, (ii) none of the bridge’s 

main components – deck, towers or cables – have reached their limit application. Given 
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these facts, the following work is focused on a two I-girder composite steel-concrete 

cable-stayed bridge with semi-fan double plane cable configuration and H tower shape.  

In the literature review presented in Section 1.2 for level 2 optimization of 

cable-stayed bridges, one may observe that previous efforts have considered live loads 

as a simple uniform distributed load and wind loads as basic mean wind loads. Given 

that engineers are adopting thinner and lighter decks, a deeper analysis of dynamic loads 

(specifically live and wind loads) is essential for the design and optimization of cable-

stayed bridges. 

In this study, live loads, truck and lane loads are evaluated according to the 

Canadian Highway Bridge Design Code. The envelope of displacements and internal 

forces are calculated by considering different configurations of loading on the main and 

side spans. For each configuration, several analyses will be done to consider the five 

truck axles moving along the roadway. 

For the wind loads, critical wind speeds for aeroelastic phenomena will be 

investigated. Once the structure is considered stable, emphasis is put in the buffeting 

phenomenon. According to DAVENPORT (1966), buffeting loads lead to the 

estimative of envelope of maximum bending moment and shear force, and, 

consequently have an important role in determining the dimensions of structural 

components in the optimization process. 

A Discrete Phases Approach is developed for performing the design and 

verification of finite element models in this study. The different phases that compose 

the approach are responsible for: (i) calculating deck I-girder dimensions, (ii) 

determining stray-cable cross-sectional areas, (iii) calculating pre-tensioning stay-cable 

forces, (iv) computing live loads, (v) performing free vibration analysis, (vi) estimating 

wind loads acting on the structure, (vii) assessing critical wind velocities due to 

aeroelastic phenomena such as flutter, torsional divergence and vortex shedding, (vii) 

and checking the design criteria to attend the Ultimate Limit State and Serviceability 

Limit State. The considerable advantage of the Discrete Phases Approach is the ability 

of adding new phases in the future for considering further effects. 
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I.3.2 ORGANIZATION OF THE THESIS 

Chapter 2 provides the optimization of composite concrete-steel two I-girder 

cable-stayed bridge considering the action of dead, superimposed and live loads. The 

structural optimizations are performed using RCGA to minimize the deck weight or the 

material cost of deck, towers and stay-cables. In this chapter, the methodology for 

design and verification denominated Discrete Phases Approach is introduced and 

explained in details. The following main design variables are directly optimized through 

the RCGA: (i) number of cables, (ii) deck I-girder inertia, (iii) deck concrete slab 

thickness, (iv) tower cross-section external dimensions, and (v) tower height above the 

deck. The following secondary variables are optimized by the discrete phases: (i) deck 

I-girder dimensions, (ii) stay-cable cross-section areas and pre-tensioning forces. The 

influence of considering truck concentrated loads together with lane uniformly 

distributed loads in the live loads analysis is assessed, and parametric studies are 

performed to evaluate the integrated behavior of number of cables, deck inertia, and 

tower height.  

The Chapter 2 analyzes were conducted by C.A.N. Santos under supervision of 

A.A. El Damatty and M.S. Pfeil. Drafts of Chapter 2 were written by C.A.N. Santos and 

modifications were done under supervision of A.A. El Damatty, M.S. Pfeil and R.C. 

Battista. A version of this work co-authored by C.A.N. Santos, A.A. El Damatty, M.S. 

Pfeil and R.C. Battista was submitted to the Canadian Journal of Civil Engineering and 

currently is under revisions. 

Chapter 3 presents a comparison between theoretical and experimental 

approaches to validate the mean and buffeting wind load analysis implemented in the 

numerical tool. The theoretical approach is mainly function of: (i) coefficients obtained 

from wind tunnel sectional model tests, (ii) equivalent static forces due to buffeting 

loads based on DAVENPORT & KING (1984) and implemented in the numerical tool, 

and (iii) a finite element model of the cable-stayed bridge. The experimental approach is 

based on the results from a full aeroelastic model, tested in wind tunnel, of the same 

bridge investigated in the numerical approach. The results show a good agreement 

between the theoretical and experimental approaches, allowing the validation of the 

theoretical approach that is later used in Chapter 4. 
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The Chapter 3 analyzes were conducted by C.A.N. Santos under supervision of 

A.A. El Damatty and M.S. Pfeil. Drafts of Chapter 3 were written by C.A.N. Santos and 

modifications were done under supervision of A.A. El Damatty and M.S. Pfeil. A 

preliminary version of this work co-authored by C.A.N. Santos, A.A. El Damatty and 

M.S. Pfeil was presented by C.A.N. Santos at the 4th American Association for Wind 

Engineering Workshop, Miami - USA, 2016. 

Chapter 4 provides the optimization of composite concrete-steel two I-girder 

cable-stayed bridge considering the action of dead, superimposed, live, and wind loads. 

Similar to Chapter 2, the structural optimizations are performed based on FEM, RCGA, 

and on the Discrete Phases Design Approach. For considering the action of mean and 

buffeting wind loads, three discrete phases are added to the numerical tool presented in 

Chapter 2. These discrete phases are responsible for: (i) determining the deck modes of 

vibration and their respective frequencies, (ii) performing the theoretical approach, 

validated in Chapter 3, for the calculation of  displacements and internal forces due to 

the mean and buffeting wind loads, (iii) checking the critical wind velocities for 

aerodynamic phenomena in order to assure that the structure is stable. Three different 

basic wind speeds are considered for studying the connected behavior of structural 

elements. The results show the importance of considering not only wind loads, but also 

of evaluating critical wind velocities in the structural optimization process of cable-

stayed bridges.  

The Chapter 4 analyzes were conducted by C.A.N. Santos under supervision of 

A.A. El Damatty and M.S. Pfeil. Drafts of Chapter 4 were written by C.A.N. Santos and 

modifications were done under supervision of A.A. El Damatty and M.S. Pfeil. A 

version of this work co-authored by C.A.N. Santos, A.A. El Damatty and M.S. Pfeil 

will be submitted to the journal Engineering Structures. 

Chapter 5 summarizes the main analyzes performed in the data chapters and 

the most significant conclusions drawn for the exploration of their results. With the 

intention of continuing and complementing the work presented in this thesis, 

suggestions for future works are presented. 
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II. STRUCTURAL OPTIMIZATION OF TWO I-

GIRDER COMPOSITE CABLE-STAYED BRIDGES 

UNDER THE ACTION OF DEAD AND LIVE LOADS 

 
II.1 INTRODUCTION 

Cable-stayed bridges have several advantages over comparable designs 

(PODOLNY et al. 1976; TROITSKY 1988; SVENSSON 2012; PEDRO & REIS 2016) 

as they (1) span large distances without the need of intermediary supports; (2) have 

reduced bending moments at the deck and superior rigidity compared to suspension 

bridges; (3) have an aesthetic appeal. In addition, their construction can be economical 

through the use of the free cantilever method. In particular, steel-concrete composite 

cable-stayed bridges offer an efficient use of materials. The concrete slab provides a 

good surface for the roadway and works well in resisting the axial compression imposed 

by the stay-cables, while the steel girders provide flexural strength.  

On the other hand, cable-stayed bridges are complex structures due to the 

distribution of forces among the structural elements; deck, stay-cables and towers. The 

stay-cable pre-tensioning forces play an important role in the behavior of the bridges. 

As such, many studies have been directed towards to the optimization of the stay-cable 

pre-tensioning forces. WANG et al. (1993) proposed a procedure for finding the initial 

shape of cable-stayed bridge due to dead loads of the deck and pre-tensioning forces of 

the cables. The procedure uses Newton-Raphson iteration method to obtain vertical 

displacements of deck control points that satisfy the convergence tolerance. CHEN et al. 

(2000) proposed the force equilibrium method, which considers bending moments as 

parameters to be controlled rather than the displacements. JANJIC et al. (2003) 

proposed the unit load method, which also considers bending moments as parameters of 

control, and the expanded unit load method that includes constructions stage analysis 

and time-dependent material behavior. LEE et al. (2008) proposed the two-step 

approach that is based on the unit load method. Beside the displacement constraints of 

the unit load method, there are also constraints for the cables forces to find the optimum 

pre-tensioning forces for asymmetrical bridges under construction. HASSAN et al. 

(2012, 2013a) proposed an approach that combines the finite element method, the B-

spline function, and the Real Code Genetic Algorithm to determine the optimum 

distribution of stay-cables forces for the final configuration of the bridge. The authors 
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noticed that the stay-cables pre-tensioning forces may be described by a high order 

polynomial function with a large number of coefficients. B-spline function which uses 

low-degree polynomials for representing complex functions is then applied to describe 

the pre-tensioning forces function (HASSAN et al., 2012). The same authors proposed 

surrogate polynomial functions to evaluate stay-cables forces that depend on the bridge 

geometry and the number of stay-cables. They stored those functions as a database in a 

design optimization Software. 

In relation to the optimization of the dimensions of the structural elements, 

SIMÕES & NEGRÃO (1994) and NEGRÃO & SIMÕES (1997) adopted an entropy-

based approach to solve a multi-objective problem, and to determine optimum variables 

like distance between cables anchorages and deck girder dimensions under dead and 

lane live load. HASSAN et al. (2013b, 2014) conducted optimization of composite 

steel-concrete cable stayed bridges. The independent variables considered were: (i) the 

six dimensions that define the deck I-girder geometry, (ii) number of stay-cables, (iii) 

cross-sectional area of stay-cables, (iv) tower height, and (v) tower cross-section 

dimensions. The pre-tensioning cable forces were determined by using surrogate 

polynomial functions developed by HASSAN et al. (2013a). Their numerical tool 

involved the use of the Finite Element Method (FEM) to discretize the structure and 

predict it structural performance and the Real Coded Genetic Algorithm (RCGA) 

technique as the optimization tool. The structural analysis/optimization numerical 

model accounted for the effects of dead load, lane live load, and mean wind load.  

Because of the large number of variables included in the optimization scheme 

adopted by HASSAN et al. (2013b), it is almost impossible to consider the moving 

traffic load as well as to conduct dynamic analysis under wind loads using this model. 

In this chapter, a procedure is developed to optimize the design of cable-stayed 

bridges and obtain optimum dimensions and cable pre-tensioning forces. The procedure 

developed in this chapter is also based on the FEM and RCGA methods. The design 

variables are divided to main and secondary variables and the optimization procedure is 

accomplished through five consecutive phases. 

The chapter starts by introducing the developed Finite Element/optimization 

procedure including a description of the five analysis phases. In order to illustrate the 
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procedure, a case study for the design optimization of a cable-stayed bridge is 

considered under two different objective functions. 

The research significance of this study and the main advantages of the 5-Phase 

approach compared to HASSAN et al. (2013b) can be stated as follows: 

1. The 5-Phase approach considers dead and live loads in the final configuration of 

the cable-stayed bridge. The way the numerical tool is structured, other phases 

can be easily added by considering construction stages or other loads such as 

wind and earthquake during the optimization process, to become a 6, 7, and/or 

8-Phase strategy.  

 

2. In Phase-1, the optimization of the steel I-girder is accomplished by using only 

one design variable (inertia about major axis) instead of optimizing all six 

dimensions that define its geometry. This and also the determination of the stay-

cables areas in Phase-2 reduce considerably the number of design variables, 

decrease the number of samples required to obtain a reliable optimal solution, 

and substantially reduce computational time required to perform the analyzes. 

 

3. In Phases-2 and 3, the unit force method (based on JANJIC et al. 2003) can be 

used to determine pre-tensioning forces for both the final configuration and 

different stages of construction (LEE et al. 2008). Although the unit force 

method requires computational time to generate an influence matrix, once the 

method is implemented in the numerical tool, it can be used for any 

configuration of bridge, and there is no need to generate a new database if the 

bridge characteristics are changed. 

 

4. A comparison between optimal solutions for the structural optimization 

considering dead plus live loads and dead load only is performed to estimate the 

significance of taking live loads into account in the optimization process of a 

cable-stayed bridge considered as a study case. 

 

5. A correlation between the optimal solutions considering truck plus lane live 

load, and lane live load only is executed to assess the importance of considering 

the truck in the analyses. 
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6. Two design objective functions are evaluated separately and then compared. 

Objective-1 obtains the lightest deck that attends all design constraints, while 

Objective-2 determines the lowest material cost of all structural elements. 

 

 

II.2 DESCRIPTION OF NUMERICAL TOOL 

The study considers composite steel concrete cable-stayed bridges with two 

steel I-girders deck, H-shaped towers, and intermediate fan-harp system arranged in two 

outer plans. Figure II. 1 shows all the dimensions that describe the bridge. The 

dimensions shown in bold are those considered as variables in the optimization scheme. 

The other dimensions are kept constant and are defined by the user. Those are the total 

length of the bridge (L), the middle span (L1), the side span (L2), and the tower height 

below the deck (Hb), which are governed by the topography and navigation conditions. 

The width of the deck including the distance between barriers are also kept constant as 

they are governed by the traffic requirements and the number of lanes. It should be 

mentioned that the number between parentheses in Figure II. 1 corresponds to the 

values of the fixed dimensions considered in the case study example reported later. The 

cross-section of the tower is assumed to be a hollow reinforced concrete box, with the 

thickness of the section taken as a ratio of the outer dimensions as shown in Figure II. 

1.c. 

The I-girder area depends on six dimensions (b1, t1, b2, t2, D, w) considered in 

this study as secondary variables. Instead of optimizing the six I-girder dimensions, the 

I-girder main inertia is optimized in order to minimize its area. The other secondary 

variables are the cables pre-tensioning forces and cross-sectional areas, which are easier 

to be determined when the deck and towers cross-sections are already defined. 

Otherwise, a great number of samples are necessary for obtaining the optimum area and 

pre-tensioning force for each one of the stay-cables. The accurate prediction of those 

pre-tensioning forces is important in order to achieve small displacements and well 

distributed moments at the deck and towers. As such, there are six main variables to be 

optimized, which are: 
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Figure II. 1: Cable-stayed bridge geometry: (a) longitudinal view; (b) tower dimensions; 

(c) tower cross-section; (d) deck cross-section; (e) steel I-girder dimensions. 

Dimensions in meter. 

(1) Total number of cables (2x4xN), where N is the number of cables in the 

side spans (or in half of the main span) in one plan of cables; 

(2) Moment of inertia (I) of the deck steel I-girder about its major axis; 

(3) Thickness of concrete slab (tc); 

(4) Height of the tower above the deck level (Ha); 
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(5) External dimension of the tower cross-section in the longitudinal 

direction (TL1); 

(6) External dimension of the tower cross-section in the transverse direction 

(TL2). 

While (2) and (3) define the deck total area and inertias, (1) and (6) define the 

towers total height that together with (4), (5) determine the towers longitudinal and 

transversal stiffnesses. For example, if the number of cables increases, the tower 

stiffness is changed and the deck inertia may be reduced. The complexity of cable-

stayed bridge can be attributed to the fact that all these parameters are strongly 

correlated and have significant importance on the final results. The procedure for 

obtaining the secondary variables from the main variables is explained in the next 

section. 

If the concept of main and secondary variables is not considered, the total 

number of design variables would vary between 23 and 35 variables for number of 

cables N=6 and N=12, respectively, when taking advantage of the bridge symmetry. For 

longer spans, and consequently greater number of stay-cables, the number of design 

variables is even higher. According to MICHALEWICZ et al. (2000), many efforts 

have been put towards determining the proper population size, but this parameter is 

highly dependent on the particularities of the problem to be solved, and is better defined 

by empirical trials. According to SIVANANDAM et al. (2008), the population should 

be large enough to be able to explore the whole search space and to avoid bad diversity 

and consequently difficulties for finding the global optimum. This way, it can be 

established by the considerations above that by reducing the number of variables from 

23(N=6) or 35(N=12) to 6 the number of samples to be analyzed will be significantly 

reduced. Compared to HASSAN et al. (2013b), the number of independent variables 

has been reduced from 14 to 6, making the process feasible to handle moving traffic 

loads as well as other load cases. Also the process involves the evaluation of the proper 

pre-tensioning forces without relying on surrogate functions. The present model can be 

easily extended to include as a design variable any of the constant dimensions. For 

example, if the topography allows a ratio β of side (L2) and main (L1) spans varying 

between 0.40 and 0.60, the total number of design variables would become equal to 

seven. In this case, the bridge total length L will be fixed, and the ratio β will be 
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randomly determined between the lower (0.40) and upper (0.60) bounds with L1=L/(2β 

+1) and L2=(L-L1)/2. In addition, different stay-cables arrangements may be evaluated 

by adding some restrictions to the cable anchorages at the towers. Deck vertical profiles 

and radius of curvature can be considered as input parameters to be considered in the 

calculation of the deck nodes coordinates. 

After the selection of random values for the main design variables, I, N, tc, TL1, 

TL2, and Ha, the numerical procedure go through the following five phases described 

below. If the solution is feasible, i. e. attend all the design criteria, the fitness value is 

equal to the objective function value, which is the deck weight or the material cost of 

the bridge, depending on the objective that has been chosen. Otherwise, if any of the 

design constraints is violated, the solution is considered infeasible and the fitness value 

is calculated based on DEB (2000): 

𝑭(�⃗⃗� ) = 𝒇𝒎𝒂𝒙 + ∑ 𝒈𝒋(�⃗⃗� )
𝒎
𝒋=𝟏                                          (II. 1) 

where 𝑥 = {𝑁, 𝐼, 𝑡𝑐, 𝑇𝐿1, 𝑇𝐿2, 𝐻𝑎} is the vector of design variables; 𝐹(𝑥 ) is the fitness 

value; m is the total number of design constraints; 𝑓𝑚𝑎𝑥 is the fitness value of the worst 

feasible solution that has been observed; 𝑔𝑗(𝑥 ) are the normalized design constraints 

that have been violated. Preliminary tests should be performed for obtaining some of the 

RCGA parameters. For optimizing the six design variables showed in red in Figure II. 1, 

the RCGA parameters are defined as follows: (i) the total of 90 samples compose the 

population, (ii) 20 generations, (iii) 3 samples are saved in each generation, for 

considering elitism in the next one, (iv) 3 crossover operations and 5 mutation 

operations are applied in each generation, and (v) mutation rate is equal to 0.1. 
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Figure II. 2: Flow chart for the optimization scheme. GEN is the current generation of 

analysis. 
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II.2.1.1 PHASE 1 

The purpose of this phase is determine the dimensions of the I-girder that leads 

to minimum value for the cross section area “A” of the girder for a given value of I 

selected by the random generation RCGA process. The cross-section area of the girder 

is defined by the following variable: b1, t1, b2, t2, D, w (see Figure II. 1.e). Those 

variables can be reduced by relating the flange width to thickness ratio (i.e.  b1 to t1 and 

b2 to t2) and the web depth to thickness ratio (D to w).  For classes 2, 3, 4, the upper 

limit of classes 1, 2, and 3 are used, respectively. By applying those limits, the number 

of independent variables is reduced to 3. A parametric study is conducted by varying the 

ratio (b1/b2) of the top and bottom flanges. It is found for a given value of I, this ratio 

has a minor effect on the minimum value of “A”. As such a value of b1/b2=0.75 is 

selected as it was found to be used in a number of bridges design. This reduces the 

number of design variables to two (b2, D). The cross-sectional area A is found to be 

reduced by decreasing the ratio b2/D. However it was found that the minimum ratio 

b2/D in real bridges varies between 0.20 and 0.25. As such, a limit of b2/D ≥ 0.20 is 

adopted in this study.  

For a given value of I and assuming a certain class section, this phase 

determines the dimensions of the I-girder cross section (b1, t1, b2, t2, D, w) which lead to 

a minimum value of the cross section area “A”. The I-girder depth (D), bottom flange 

width (b2) and web thickness (w) for width-to-thickness limit ratio of Classes 2 and 3 

are presented in Appendices 2 and 3, respectively. 

The determination of minimum area for the I-girder is required since the 

overall objective function of the optimization process is either minimum cost or 

minimum deck weight. 

II.2.1.2 PHASE 2 

In this phase the deck is simulated using three-dimensional frame elements. A 

single spine approach, similar to that used by WILSON et al. (1991) is adopted to 

simulate the slab and the girders (Appendix 4). ADELI & ZHANG (1995) considered 

full non-linear analysis of a steel-concrete composite cable-stayed bridge. The authors 

concluded that for dead and live loads, the geometric nonlinearity had an effect of 4% 

on the maximum deflection. Given the large number of analysis needed for conducting 
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the design optimization, and the minor effect of the geometric nonlinearity, the analysis 

is conducted linearly. In this phase the deck is modelled as a continuous beam with 

pinned support at each cable-anchorage location. The model is analyzed under the effect 

of dead and superimposed loads. This model simulates the intended deflection 

configuration of the bridge where the pre-tensioning cable forces tend to counterbalance 

the effect of dead and superimposed loads. The model is used to obtain the reaction at 

the supports from which the cables pre-tensioning forces are obtained using the 

following relation: 

T0,i =
Ri

sinθi
                                                        (II. 2) 

where T0,i is the initial pre-tensioning force for the i-th cable; Ri is the reaction of i-th 

stay-cable obtained from the continuous beam model; and, θi is the angle between the i-

th stay-cable direction and longitudinal direction. 

It is assumed that the initial pre-tensioning forces are equal to 25% of the 

cables breaking load. This leads to the evaluation of the cross sectional area of the 

cables using the following relation: 

Ai = [
T0,i

0.25×FB,1ɸ
] × A1ɸ                                              (II. 3) 

where Ai is the steel total cross-section area of the i-th cable; FB,1ɸ is the steel nominal 

breaking load for 1 strand; and, A1ɸ is the steel nominal cross-section area for 1 strand. 

Also in this phase, the bending moments at the cable anchorages points are 

recorded and are called desired bending moments (M0). 

 

II.2.1.3 PHASE 3 

In this phase, the entire bridge, including deck, towers and cables, is modelled 

using an assembly of finite elements (Figure II. 3). Three-dimensional frame elements 

are used to model the deck and the towers, while three-dimensional truss elements are 

used to model the cables. HASSAN et al. (2012) concluded that the cables sag is a 

source of nonlinear behaviour that affects the response of cable-stayed bridges. The sag 

effect is taken into account by replacing each cable with a truss element of an equivalent 
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cable stiffeness. The equivalent tangent modulus of elasticity (Eeq) was derived by 

ERNST (1965) and is given by: 

Eeq =
Ecs

1+
(wcsH)

2AEcs
12T3

                                                 (II. 4) 

where Ecs is the cable material effective modulus of elasticity; A is the cross-

sectional area of the cable; H is the horizontal projection of the cable; wcs is the weight 

per unit length of the cable; and T is the tension in the cable. 

This model is used to determine the final values of the pre-tensioning forces 

based on JANJIC et al. (2003) and summarized by the following: 

{M0} = {MP} + [m]{X}                                               (II. 5) 

{T} = {T0} + {X}                                                   (II. 6) 

where {M0} is the vector of desired bending moments at control points, or 

cable-anchorages at the deck, obtained in Phase 2; {MP} is a vector of bending moments 

at the control points due to dead and superimposed loads obtained from the cable-stayed 

bridge complete 3D FEM – i.e. deck, towers, and non-tensioned cables; [m] is the 

influence matrix,  mi,j is the bending moment at the i-th control point due to an unit 

force applied to the j-th cable. The influence matrix is obtained employing the same 

FEM used to obtain {MP}. The vector {X}, obtained from Equation II.5, is added to the 

vector of initial pre-tensioning force {T0} to produce the final vector of pre-tensioning 

forces {T}. 

 

Figure II. 3: Finite element model. 
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II.2.1.4 PHASE 4 

By this phase, all the cross-sectional dimensions of the bridge are assumed, the 

dead loads are calculated, and the pre-tensioning forces counterbalancing the effects of 

dead and superimposed loads are calculated. This phase considers finite element 

analysis of the entire bridge under the effect of live loads which are determined using 

the Canadian Highway Bridge Design Code (CAN/CSA-S6-14). For the province of 

Ontario, the CL-625-ONT Lane Load is composed of a 500kN truck with 5 axles and a 

9kN/m uniformly distributed load. The number of design lanes is dependent upon the 

deck width, and a modification factor for multi-lane loading is also considered.  

 

II.2.1.5 PHASE 5 

In this final phase, the displacements and internal forces due to dead and 

superimposed loads, and live loads obtained through Phases 3 and 4, respectively, are 

combined. One Ultimate Limit State (ULS) load combination is considered: (DL+SL) + 

1.7(LL), with 𝛼 equal to 1.10 for factory produced components, 1.20 for cast-in-place 

concrete, and 1.50 for wearing surfaces (CAN/CSA-S6-14). While two Serviceability 

Limit State (SLS) combinations are considered: 1.0(DL+SL) + 0.90(LL), and 0.90(LL). 

The objective function, which can be the lightest deck weight (Objective-1) or the 

lowest material cost of the entire structure (Objective-2) is calculated. If one or more of 

the design constraints are not satisfied, penalties are applied to the objective function 

value. The design constraint functions (gj) at the Serviceability Limit State (SLS) and 

Ultimate Limit State (ULS) are as follow: 

 

 Displacements at the deck due to dead and superimposed loads (𝛿DL+SL) at SLS: 

𝑔1 =
5000×𝛿𝐷𝐿+𝑆𝐿

span length
− 1.0 ≤ 0                                                  (II. 7) 

 Displacements at the deck due to live  loads (𝛿LL) at SLS (AASHTO 2012): 

         𝑔2 =
800×𝛿𝐿𝐿

span length
− 1.0 ≤ 0                                                   (II. 8) 
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 Displacements at the towers due to dead and superimposed loads (𝜟DL+SL) at 

SLS: 

              𝑔3 =
1700×Δ𝐷𝐿+𝑆𝐿

𝐻𝑡
− 1.0 ≤ 0                                                 (II. 9) 

where 𝐻𝑡 is the total length of tower. 

 Displacements at the towers due to live loads (𝜟LL) at SLS: 

              𝑔4 =
500×Δ𝐿𝐿

𝐻𝑡
− 1.0 ≤ 0                                                 (II. 10) 

where 𝐻𝑡 is the total length of tower. 

 Combined shear and moment at the deck at ULS: 

𝑔5 =
𝑉𝑓

𝑉𝑟
− 1.0 ≤ 0                                                         (II. 11) 

𝑔6 =
𝑀𝑓

𝑀𝑟
− 1.0 ≤ 0                                                        (II. 12) 

𝑔7 = 0.727
𝑀𝑓

𝑀𝑟
+ 0.455

𝑉𝑓

𝑉𝑟
< 0                                             (II. 13) 

where 𝑉𝑓  is the factored shear force at ULS; 𝑀𝑓  is the factored bending moment at 

ULS; 𝑉𝑟  is the factored shear resistance; 𝑀𝑟  is the factored bending moment resistance. 

 Axial compression and bending at the deck at ULS: 

𝑔8 =
𝐶𝑓

𝐶𝑟
+
𝑈1𝑥𝑀𝑓𝑥

𝑀𝑟𝑥
+
𝑈1𝑦𝑀𝑓𝑦

𝑀𝑟𝑦
− 1.0 ≤ 0                                  (II. 14) 

where 𝐶𝑓  is the factored compressive force at ULS; 𝑀𝑓𝑥  and 𝑀𝑓𝑦  are the factored 

bending moment at ULS about x-axis and y-axis; 𝐶𝑟  is the factored compressive 

resistance; 𝑀𝑟𝑥 and 𝑀𝑟𝑦 are the factored bending moment resistance about x-axis and y-

axis; 𝑈1𝑥  and 𝑈1𝑥 are factors to account for moment gradient and second order effects. 

 Control of permanent deflections at the deck at SLS: 

𝑔9 =
𝑀𝐷𝐿

𝑆
+
𝑀𝑆𝐿

𝑆3𝑛
+
𝑀𝐿𝐿

𝑆𝑛
− 0.90𝐹𝑦 ≤ 0      (positive moment regions)           (II. 15) 
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𝑔10 =
𝑀𝐷𝐿

𝑆
+
𝑀𝑆𝐿+𝑀𝐿𝐿

𝑆′
− 0.90𝐹𝑦 ≤ 0      (negative moment regions)           (II. 16) 

where 𝑀𝐷𝐿, 𝑀𝑆𝐿 and 𝑀𝐿𝐿 are the bending moment at SLS due to dead load, 

superimposed load, and live load; 𝑆, 𝑆′, 𝑆𝑛, 𝑆3𝑛 are the elastic section modulus of the 

steel section only, the steel section and reinforcement within the effective width of the 

slab, the steel girder and the concrete slab using a modular ratio n and 3n, respectively. 

 Biaxial loading at the towers at ULS: 

𝑔11 =
𝑀𝑓𝑥

𝑀𝑟𝑥
+
𝑀𝑓𝑦

𝑀𝑟𝑦
− 1.0 ≤ 0                                            (II. 17) 

where 𝑀𝑓𝑥  and 𝑀𝑓𝑦  are the factored bending moment at ULS about x-axis and y-axis; 

and, 𝑀𝑟𝑥 and 𝑀𝑟𝑦 are the factored bending moment resistance about x-axis and y-axis. 

 Stay-cables axial forces at ULS: 

𝑔12 =
𝑇𝑓,𝐷𝐿+𝑆𝐿+𝑇𝑓,𝐿𝐿

𝐹𝐵
− 0.50 ≤ 0                                            (II. 18) 

where 𝑇𝑓,𝐷𝐿+𝑆𝐿  and 𝑇𝑓,𝐿𝐿 are the factored axial forces at ULS due to dead and 

superimposed loads, and live loads respectively; and, 𝐹𝐵 is the breaking force. 

 

 

II.2.1 CASE STUDY 

A cable-stayed bridge is analyzed and optimized using the developed model as 

a case study. The total length (L), mid span (L1) and side span (L2) of the bridge are 

assumed to be equal to 400m, 200m and 100m, respectively. The assumed fixed 

dimensions for the deck and the towers are shown in Figure II. 1. A cross-beam is 

placed at the stay-cable anchorages coordinates and a maximum distance of 8m between 

cross-beams is adopted. Three different values for the tower height below the deck (Hb) 

are assumed: 30m, 40m and 50m.The bridge is analyzed under dead and live loads 

using the loads and load combination factors defined in the CAN/CSA-S6-14 (2014). 

The material properties are presented in Table II. 1. 

The semi-fan configuration is chosen for this case study because it combines 

the advantages of both fan and harp configurations (SVENSSON, 2012). The fan 
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configuration provides higher stay-cable angles of inclination when compared to the 

harp configuration, but having all the cable anchorages at the top of the towers is not 

practical from construction point of view. The harp configuration is aesthetically 

appealing, but requires considerably taller towers than the fan system. Additionally, 

according to ADELI & ZHANG (1995) the semi-fan system provides the highest failure 

load capacity when compared to the fan and harp configurations. 

The traffic loads are considered by moving the truck along the bridge at each 

18m, which corresponds to the truck length. Comparisons with the results provided by 

the moving load from the commercial program SAP2000 demonstrate that moving the 

truck at each 18m is an adequate choice for this case study. 

As described earlier, two objective functions are considered separately for 

design optimization. The first objective function (Objective-1) aims minimizing the 

mass of the deck. The second objective function (Objective-2) targets minimizing the 

total cost of the bridge. In this case study, the optimization of Objective-1 is repeated 

three times, by considering: (i) dead, truck plus lane live load; (ii) dead and lane live 

load; (iii) dead load alone. The optimization of Objective-2 is repeated twice by 

considering two different locations, which reflect different price schemes for the bridge 

materials. 

For Objective-1, the concrete slab thickness (tc) of the deck is assumed to be 

0.25m, which is the lower bound for this variable. A parametric study is conduct by 

considering four different towers cross-sections (TL1 x TL2) – 3.0m x 1.5m, 4.0m x 

2.0m, 5.0m x 2.5m, and 6.0m x 3.0m – and, five different tower heights above the deck 

(Ha) – 10m, 20m, 30m, 40m, and 50m. Since tc, TL1, TL2, and Ha are assumed fixed 

values in the parametric study, only two design variables are obtained during the 

optimization process, which are number of stay-cables (N) and the steel I-girder inertia 

(I). For Objective-2, two cities in Canada, London, ON and North Bay, ON, with 

different materials cost are considered. The prices of materials are estimated from 

RSMeans (2013) and from constructor companies (Table II. 1). City-specific factors are 

applied on top of material costs to adjust for differences in price between the two 

locations. The city-specific factors for concrete and metal materials are 1.45 and 1.25 

for London-ON, and 1.50 and 1.06 for North Bay-ON, respectively. In this design 

objective all six design variables – N, I, tc, TL1, TL2 and Ha – are determined by the 
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optimization process. The lower and upper bound for the design variables are presented 

in Table II. 2. Results of all the optimization analyses are presented below. 

 

Table II. 1: Material properties and costs used in the study. 

Elements Material Properties and Costs 

Deck 

Steel 

Modulus of elasticity (Es) 200 GPa 

Unit weight (γs) 77 kN/m
3
 

Yield strength (Fy) 350 MPa 

Cost (Cs) $3,125/t 

Concrete 

Modulus of elasticity (Ec, slab) 25.6 GPa 

Unit weight (γc, slab) 24 kN/m
3
 

Compressive strength (f’c, slab) 30 MPa 

Cost (Cc, slab) $1,300/ m
3
 

Reinforcement 
Yield strength (fy) 500 MPa 

Cost (Cr) $2,400/t 

Towers 

Concrete 

Modulus of elasticity (Ec, tower) 28.4 GPa 

Unit weight (γc, tower) 24 kN/m
3
 

Compressive strength (f’c, tower) 40 MPa 

Cost (Cc, tower) $1,200/ m
3
 

Reinforcement 
Yield strength (fy) 500 MPa 

Cost (Cr) $2,400/t 

Cables Steel strands 

Modulus of elasticity (Ecs) 205 GPa 

Unit weight (γcs) 83 kN/m
3
 

Ultimate tensile strength (Tcs) 1.86 GPa 

Cost (Ccs) $7,650/t 

 

 

 

Table II. 2: Lower and upper bounds of the design variables. 

Design Variables Nomenclature 
Lower 

Bound 

Upper 

Bound 

Number of cables N 6 12 

Steel I-girder inertia I (m
4
) 0.005 0.50 

Concrete thickness tc (m) 0.25 0.30 

Tower cross-section 

dimensions 

TL1 (m) 3.00 6.00 

TL2 (m) 0.30 0.70 

Tower height above deck Ha (m) 10.0 50.0 
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II.2.2 NUMERICAL RESULTS FOR DESIGN OBJECTIVE-1 

CONSIDERING DEAD LOAD AND TRUCK PLUS LANE LIVE LOAD 

Optimizing the number of cables (N) and steel I-girder inertia about the major 

axis (I) with the objective of minimizing the deck mass has revealed observable patterns 

for dead plus live loads (Figures II.4 and II.5). In these figures, three graphs are 

presented for tower heights below the deck (Hb) of 30m, 40m and 50m and each curve 

is related to a specific tower cross-section dimension (TL1 x TL2). Each one of the 

curves has been constructed with 5 points. The first point corresponds to Ha=10m 

(vertical distance between the deck level and the tower upper transverse beam, Figure 

II. 1.b), and the other points have Ha values augmented by 10m, resulting in Ha=50m for 

the last point. As the total tower height (Ht) depends on the number of cables (N), two 

points on a single curve can present the same value of Ht even though they each have 

distinct values for Ha. 

Curves in the plots for Hb=30m and  Hb=40m have similar trends and three 

different behavioural patterns can be seen. First, when Ha values are small, a higher 

number of stay-cables are required to support the deck because angles of inclination (𝜃) 

values for each cable is also reduced. Second, as Ha increases, and consequently the 𝜃 

values, the structure stiffness is increased, allowing the reduction of N and I. Third, 

while the variable N is maintained constant, but again with the increase of Ha  and 

consequently of 𝜃, the variable I reduces until a point when the stiffness cannot reduce 

anymore for the same number of stay-cables N, resulting in an increase of I value.   

For Hb=50m, the curves present analogous behaviours and relationships 

between the design variables Ha, N and I as presented for Hb=30m and Hb=40m. 

However, due to the fact that the towers are higher than in the other two analyses, other 

factors have to be taken into account. As mentioned before, the augmentation of Ha 

values allows the increase of deck rigidity, but also might result in the towers becoming 

excessively flexible depending on their cross sections. This fact can explain the cross 

between the 4mx2m and the 5mx2.5m curves. Besides that, for the 4mx2m curve, the 

number of stay-cables N is reduced twice. 

For each tower cross-section, 15 different cases are performed. For TL1 x TL2 

equal to 3.0m x 1.5m, only 6 of the 15 cases provide feasible solutions that attend all the 
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design constraints: (1) Hb=30m; Ha=40m; (2) Hb=30m; Ha=50m; (3) Hb=40m; Ha=40m; 

(4) Hb=40m; Ha=50m; (5) Hb=50m; Ha=40m; and (6) Hb=50m; Ha=50m. Among these 

solutions, case (2) has delivered the lowest deck mass value (5733 tons). The analysis 

case with Hb=30m, Ha=50m, TL1=6.0m, and TL2=3.0m provides the lightest deck mass 

(5304 tons) of all examples. Table II. 3 presents the deck mass of 45 cases normalized 

by the minimum obtained deck mass. In this table, it is noted that all the cases for 

TL1=6.0m and TL2=3.0m have lower deck masses than the respective cases with 

smaller tower cross-sections. It is also noted that the lightest deck mass is obtained for 

Ha = 50m.  

Figure II. 6 shows the values for stay-cable masses that have been obtained by 

the structural optimization to achieve Objective-1. In general, the stay-cable mass 

curves follow a similar trend as the deck mass curves. In the majority of the cases, an 

increase/decrease of deck mass is also followed by a proportional increase/decrease of 

stay-cable mass. The case of analysis with lightest deck mass (Hb=30m; Ha=50m; 

TL1=6.0m, and TL2=3.0m) provides stay-cable mass equal to 128 tons which also 

presents the minimum stay-cable mass obtained among all the cases. 

 

Table II. 3: Deck masses obtained for Objective-1 normalized by the minimum mass. 

TL1 x TL2 Hb Ha =10m Ha =20m Ha =30m Ha =40m Ha =50m 

4m x 2m 

30m 1.19 1.14 1.09 1.07 1.06 

40m 1.2 1.15 1.12 1.1 1.07 

50m 1.21 1.17 1.12 1.1 1.09 

5m x 2.5m 

30m 1.14 1.1 1.06 1.04 1.04 

40m 1.17 1.11 1.09 1.06 1.05 

50m 1.2 1.15 1.09 1.07 1.06 

6m x 3m 

30m 1.09 1.04 1.02 1.01 1.00 

40m 1.12 1.07 1.04 1.02 1.02 

50m 1.18 1.1 1.06 1.04 1.02 
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Figure II. 4: Deck mass due to dead plus live loads as a function of Hb and tower 

dimensions TL1 x TL2.  

 

 

Figure II. 5: Steel I-girder inertia about major axis due to dead plus live loads as a 

function of Hb and tower dimensions TL1 x TL2.  
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Figure II. 6: Stay-cables mass as a function of Hb and tower dimensions TL1 x TL2. 

For all cases, the limiting constraint, for the optimization of the number of 

cables (N) and inertia of the deck I-girders (I), is the deck displacements due to live 

loads (Equation II.8). This means that tower stiffness and deck rigidity relations 

obtained from these cases may be applied to any cable-stayed bridge deck and towers 

cross-section (and not only to the composite steel-concrete two I-girder deck and H-

shape towers cable-stayed bridges) as a conceptual design tool. Figure II. 7 presents 

curves that relate tower total height, tower longitudinal bending stiffness, optimized 

deck rigidity (𝐸𝐼𝑑𝑒𝑐𝑘) and number of stay-cables. 

The data is presented as a function of ranges of stayed-cable masses: 115-135 

tons; 135-155 tons; and 175-195 tons. The stay-cable mass range 155-175tons is not 

considered because only one sample, related to the tower total height, has been 

observed. By analyzing Figure II. 7, it is easily noticed that an increase in tower total 

height corresponds to a decrease in tower stiffness. Besides that, the stay-cables mass 

range tends to reduce with the increase of tower total height, and the consequent 

increase of the cables angle of inclination (𝜃). 
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Figure II. 7: Relation between deck rigidity and tower longitudinal stiffness to obtain 

lightest deck mass. 
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II.2.3 NUMERICAL RESULTS FOR DESIGN OBJECTIVE-1 

CONSIDERING DEAD LOAD AND LANE LIVE LOAD 

The structural optimization for design Objective-1 considering dead load and 

lane live load is conducted for cases with tower height below deck (Hb) equal to 30m, 

resulting in 15 case analyses (5 different values for Ha and 3 different values for tower 

cross-section). These analyses are performed and the optimal solution results for deck 

mass, stay-cable mass, and steel I-girder inertia, are displayed in Figure II. 8. 

 

Figure II. 8: Deck mass, stay-cables mass, and steel I-girder inertia due to dead and lane 

live loads as a function of tower dimensions TL1 x TL2. 

The case of analysis for Ha=40m, TL1=6.0m, and TL2=3.0m, with N=12 and 

I=0.007m4 presents the lightest deck mass (4880 tons) and the lowest mass of stay-

cables (123 tons). For the equivalent case of analysis that considers truck loads, the 

optimized values are: N = 7, I = 0.036m
2
, deck mass = 5311, and stay-cables mass = 

128 tons. The considerable difference of deck steel I-girder inertia demonstrates the 

importance of considering truck loads in the optimization analysis. In terms of deck 

mass, by considering the truck loads, there is an increase of mass that varies from 8 to 

12% (Table II. 4). 
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Table II. 4: Deck mass ratio (DL + lane LL)/(DL + truck and lane LL) obtained for 

Objective-1. 

TL1 x TL2 Ha =10m Ha =20m Ha =30m Ha =40m Ha =50m 

4m x 2m 0.88 0.88 0.90 0.91 0.92 

5 x 2.5m 0.88 0.89 0.91 0.92 0.92 

6 x 3m 0.92 0.91 0.92 0.92 0.92 

 

 

II.2.4 NUMERICAL RESULTS FOR DESIGN OBJECTIVE-1 

CONSIDERING DEAD LOAD ONLY 

The structural optimization for design Objective-1 considering dead load only 

is evaluated for cases with tower height below deck Hb=30m. It is observed in Figure II. 

9 that for Ha=30m, Ha=40m, and Ha=50m, the I-girder inertia is equal to the lower 

bound (I=0.005m
4
). The case of analysis for Ha=50m, TL1=5.0m, and TL2=2.5m, with 

N=7 and I=0.005m
4
 presents the lightest deck mass (4786 tons) and one of the lowest 

mass of stay-cables (120 tons). Comparison of the optimal solutions for dead load only, 

and for dead and truck plus lane live loads, reveals that considering live loads leads to 

an increase of deck mass that varies from 10 to 19% (Table II. 5). 

 

Figure II. 9:  Deck mass, stay-cables mass, and steel I-girder inertia due to dead load as 

a function of tower dimensions TL1 x TL2. 
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Table II. 5: Deck mass ratio (DL)/(DL + truck and lane LL) obtained for Objective-1. 

TL1 x TL2 Ha =10m Ha =20m Ha =30m Ha =40m Ha =50m 

4m x 2m 0.81 0.81 0.83 0.84 0.85 

5 x 2.5m 0.84 0.84 0.86 0.87 0.87 

6 x 3m 0.89 0.87 0.89 0.90 0.90 

 

 

 

II.2.5 NUMERICAL RESULTS FOR DESIGN OBJECTIVE-2  

The optimal solutions for six cases of analysis – 2 cities (London, ON and 

North Bay, ON) and 3 values of tower height below the deck Hb (30m, 40m, 50m) - 

with the objective of obtaining the lowest cost of materials are evaluated. After 

comparing material costs (Figure II. 10) and design variables obtained through 

optimization (Table II. 6), one can observe that the lowest total material cost for both 

cities has been obtained for Hb equal to 30m.  

  

Figure II. 10: Comparison of material costs for the considered case study. 

 

Although cost factors for London-ON and North Bay-ON are about 15% 

difference for the steel (1.25 and 1.06, respectively), they are very similar for the 

concrete (1.45 and 1.50, respectively). As a result, the total material costs in London - 

ON are only 5%-9% more expensive than in North Bay – ON. With the increase of Hb, 

material total cost is also increased by 10% and 8% for London and North Bay, 
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respectively. For both cities, the deck is responsible for 60% (Hb =50m) to 65% (Hb 

=30m, 40m) of the material cost. 

 

Table II. 6: Design variables obtained for the considered case study. 

Elements Variables London, ON North Bay, ON 

Towers 

Hb (m) 30 40 50 30 40 50 

Ha (m) 46.0 47.3 45.3 42.0 47.4 46.0 

Ht (m) 93.0 104.3 112.3 89.0 104.4 113.0 

TL1 (m) 3.29 3.21 3.23 3.23 3.00 3.60 

TL2 (m) 1.14 1.14 1.59 1.24 1.27 1.24 

Deck 

I (m4) 0.071 0.075 0.070 0.072 0.096 0.078 

tc (m) 0.28 0.28 0.30 0.28 0.25 0.28 

D (m) 2.50 2.50 2.50 2.50 2.50 2.50 

b1 (m) 0.432 0.454 0.430 0.441 0.556 0.470 

t1 (m) 0.027 0.029 0.027 0.028 0.035 0.030 

b2 (m) 0.577 0.606 0.573 0.588 0.741 0.626 

t2 (m) 0.027 0.029 0.027 0.028 0.035 0.030 

w (m) 0.024 0.024 0.024 0.024 0.024 0.024 

Cables N 7 7 7 7 7 7 

Material Cost ($× 106)  13,8 14,0 15,2 12,9 13,3 14,0 

 

 

Table II. 7 presents the constraint values for each case of analysis according to 

the constraint Equations II.7 to II.18. The constraint values confirm that the structures 

are properly optimized, once both the deck and the towers have their limiting constraint 

not smaller than -0.01 for the deck and -0.014 for the towers. 

 

Table II. 7: Constraint values (Equations II.7 to II.18) obtained for the considered case 

study. 

Element 

London, ON North Bay,ON 

Hb=30m Hb =40m Hb =50m Hb =30m Hb =40m Hb =50m 

gi Value gi Value gi Value gi Value gi Value gi Value 

Deck 
g2 -0.008 g2 -0.001 g8 -0.008 g2 -0.004 g2 -0.01 g2 -0.001 

g8 -0.047 g8 -0.089 g2 -0.015 g8 -0.052 g8 -0.261 g8 -0.105 

Tower 
g11 -0.006 g4 -0.010 g4 -0.009 g11 -0.009 g4 -0.002 g4 -0.014 

g4 -0.091 g11 -0.015 g11 -0.084 g4 -0.092 g11 -0.043 g11 -0.094 
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The displacements at SLS and internal forces at ULS for the optimal cable-

stayed bridge solutions for Hb=30m in both cities are presented below. The two bridges 

have the same number of stay-cables (N=7), similar steel I-girder inertia (I=0.071m
4
 

and I=0.072m
4
) and slight difference in Ha (less than 10%). The distribution of 

displacements and forces of the deck (Figures II.11 and II.12) and towers (Figures II.13 

and II.14) are also similar for both bridges. 

Small displacements at the towers (Table II. 8) and deck (Figure II. 11) show 

that the pre-tensioning forces (Figure II. 15) are well distributed. Ratios between axial 

forces acting on the stay-cables and breaking loads have an average of 0.37 with 

maximum value equal to 0.47 for both bridges.  

 

Table II. 8: Maximum longitudinal displacements at the top of towers (SLS). 

City DL (cm) LL (cm) 

London, ON 3.1 16.9 

North Bay, ON 2.7 16.1 



52 

 

 

Figure II. 11: Deflections, axial forces, and vertical bending moments at the deck spine 

due to dead loads for the considered case study. 
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Figure II. 12: Deflections, axial forces and vertical bending moments at the deck spine 

due to dead and live loads for the considered case study. 
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Figure II. 13: Axial forces and longitudinal bending moments in one of the tower’s legs 

due to dead loads for the considered case study. 

  

Figure II. 14: Axial forces and longitudinal bending moments in one of the tower’s legs 

due to dead and live loads for the considered case study. 
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Figure II. 15: Cables areas and pre-tensioning forces for the considered case study. 

 

 

 

 

II.2.6 COMPARISON OF COSTS FROM OBJECTIVE-1 AND 

OBJECTIVE-2 CONSIDERING DEAD LOAD AND TRUCK PLUS LANE 

LIVE LOAD 

The solutions from Objective-1 (i.e. minimum deck mass that attends all design 

constraints) illustrate that cases with tower cross-sections of 6mx3m present the lowest 

value of deck mass for the various values of height below the deck (Hb). Table II. 9 

displays the optimal solutions from Objective-1 with their location-specific cost of 

materials detailed by element for London-ON and North Bay-ON.  
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The costs of bridge configurations that are presented in Table II. 9 for 

Objective-1 are much higher than those that have been obtained for Objective-2 (Table 

II. 6), and vary between 32% and 34% for London-ON and 33% and 37% for North 

Bay-ON respectively. This considerable difference can be explained by the fact that 

Objective-1 solutions have tower cross-sections 6mx3m; while the Objective-2 solutions 

have tower cross-sections of 3.29x1.14m, 3.21x1.14m, and 3.23x1.59m for London-

ON, for example, with Hb equal to 30m, 40m, and 50m, respectively. 

 

Table II. 9: Material costs for the optimal solutions with miminum deck mass (TL1=6m 

and TL2=3m). 

Hb (m) Elements 
Mass 

(ton) 

Objective-1 Material Costs 

London, ON North Bay, ON 

30 

Deck 5304  $         7,216,643   $         6,717,297  

Towers 15326  $       11,946,922   $       12,090,223  

Cables 128  $         1,220,723   $         1,035,173  

Total 20757  $       20,384,288   $       19,842,693  

40 

Deck 5397  $         7,608,790   $         7,049,838  

Towers 15059  $       11,735,716   $       11,877,274  

Cables 132  $         1,261,088   $         1,069,403  

Total 20587  $       20,605,594   $       19,996,514  

50 

Deck 5417  $         7,687,953   $         7,116,968  

Towers 18281  $       14,264,714   $       14,432,545  

Cables 130  $         1,241,114   $         1,052,465  

Total 23828  $       23,193,781   $       22,601,978  

 

To accurately compare the costs from Objective-1 and Objective-2, it is 

necessary to consider solutions with similar tower cross-sections. In Tables II.10 and 

II.11, the optimal solution obtained with Objective-1 for Hb=30m, TL1=3.0m, and 

TL2=1.5m is compared with the optimal solution from Objective-2 for Hb=30m (Table 

II. 6). 

The difference in total material costs is only 0.4% for London-ON and 5% for 

North Bay-ON, demonstrating the efficacy of the approach for attending different 

design objectives. 
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Table II. 10: Comparison of material costs for Objective-1(Hb=30m, Ha=50m, 

TL1=3.0m, and TL2=1.5m) and Objective-2 (Hb=30m) optimal solutions in 

London-ON. 

Elements 
Objective-1 Objective-2 

Mass (ton) Cost Mass (ton) Cost 

Deck 5733  $         8,897,196  6214  $        8,973,406  

Towers 4528  $         3,632,440  4065  $        3,429,717  

Cables 135  $         1,291,557  143  $        1,366,262  

Total 10395  $       13,821,193  10422  $      13,769,385  

 

 

Table II. 11: Comparison of material costs for Objective-1(Hb=30m, Ha=40m, 

TL1=3.0m, and TL2=1.5m) and Objective-2 (Hb=30m) optimal solutions in 

North Bay-ON. 

Elements 
Objective-1 Objective-2 

Mass (ton) Cost Mass (ton) Cost 

Deck 5858  $         8,576,245  6242  $        8,345,242  

Towers 4583  $         3,809,325  4088  $        3,408,941  

Cables 144  $         1,166,617  144  $        1,169,575  

Total 10585  $       13,552,187  10474  $      12,923,758  

 

 

 

II.3 VALIDATION OF THE DISCRETE PHASES DESIGN 

APPROACH 

Comparisons between the optimized solutions provided by Objective-1 

(lightest deck weight) and Objective-2 (lowest material cost for the entire structure) 

presented in Tables II.10 and II.11 indicate consistency of the approach proposed in this 

paper. Additionally, the constraint values presented in Table II.7 are very close to the 

allowable limits to attend the SLS and ULS, demonstrating that an optimum solution is 

obtained. Finally, a case example presented by HASSAN et al. (2014) is performed 

considering exactly the same: (i) cable-stayed bridge fixed dimensions (total length, 

deck width, etc.), (ii) material properties and cost, (iii) design constraints, (iv) design 

variables lower and upper bounds and (iv) load combinations in order to validate the 

Discrete Phases Design Approach.  
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The cable-stayed bridge considered in the validation is similar to the geometry 

presented in Figure II. 1, with two I-girder composite deck and hollow reinforced 

concrete box tower cross-section. The concrete slab deck is 14.20m (Bt) wide and 

includes 2 lanes. The bridge total length is L=350m with a main span L1=171.70m and 

side span L2= 89.15m. For the structural steel the material properties are: modulus of 

elasticity Es=200GPa, specific weight γs=77kN/m
3
, yield stress Fy=350MPa, and cost 

Cs=12,000$/ton. For the concrete: modulus of elasticity Ec=24.87GPa, specific weight 

γc=24kN/m
3
, compressive strength f’c=30MPa, and cost Cc=4,218 $/m

3
. For the stay 

cables: modulus of elasticity Esc=205GPa, specific weight γsc=82.40kN/m
3
, breaking 

stress Tsc=1.6GPa, and cost Csc=60,000 $/ton.  

The design constraints are equivalent to the ones presented in Item II.2.1.5, but 

the constraint related to the displacements at the top of towers due to live loads 

(Equation II.10) is not taken into account in order to have the same conditions as the 

case optimized by HASSAN et al. (2014). The design variables and their bounds are as 

follows: number of cables N [4, 15], deck I-girder inertia I [0.005m
4
, 0.50 m

4
], concrete 

thickness tc [0.16m, 0.40m], tower cross-section dimensions TL1 [1.0m, 6.0m] and TL2 

[1.0m, 5.0m], tower height above the deck Ha [10.5m, 42.0m]. The dominant ULS load 

combination is 1.1(DL) + 1.7(LL) and the SLS load combination is 1.0(DL) + 0.9(LL). 

For the live loads (LL), only the uniformly distributed load is considered in the analysis.  

The optimized design variables and the costs obtained with the Discrete Phases 

Design Approach are compared to the results presented by HASSAN et al. (2014) in 

Table II. 12. The Discrete Phases Approach reduces the I-girder depth from 2.06m to 

1.25m when comparing to HASSAN et al. (2014). That might be explained by the fact 

that this girder depth reduction occurs together with an increase of number of stay-

cables and tower longitudinal stiffness by almost 29.4%. Overall, the total cost is 

reduced by 2.0%, allowing the validation of the approach presented in this paper. 
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Table II. 12: Comparison of material costs and design variables for validation of the 

Discrete Phases Design Approach. 

Elements Variables Hassan et al. (2014) Discrete Phases Design Approach 

 Tower 

Ha (m) 32.5 31.3 

TL1 (m) 2.75 3.12 

TL2 (m) 1.00 1.00 

Cost ($) 1,219,385 1,355,493 

Deck 

tc (m) 0.16 0.16 

D (m) 2.06 1.25 

b1 (m) 0.357 0.363 

t1 (m) 0.019 0.023 

b2 (m) 0.438 0.484 

t2 (m) 0.023 0.023 

w (m) 0.012 0.012 

Cost ($) 6,661,027 5,563,805 

Cables 
N 6 7 

Cost ($) 3,076,943 3,819,542 

Total Cost ($)  10,957,355 10,738,840 

 

 

 

 

II.4 CONCLUSIONS 

In this study, the structural optimization of composite steel-concrete two I-

girder cable-stayed bridges is accomplished by adopting a 5-Phases approach. This 

approach is based on three-dimensional finite element models and the Real Code 

Genetic Algorithm (RCGA). One of the advantages of this approach is that by using the 

concept of primary and secondary variables, the total number of variables to be 

optimized with the RCGA procedure is significantly reduced. Two independent 

objective functions are considered in the optimization process of a cable-stayed bridge 

with total length L=400m, main span L1=200m, and side spans L2=100m. 

The first design objective, Objective-1, aims to obtain the lightest deck mass 

that attends to all design criteria. It is observed that robust tower cross-sections with 

greater area and inertias provide lower values of deck mass. It is also noted that the 

stay-cables mass tends to increase/decrease proportionally with an increase/decrease in 

deck mass because the stay-cable areas are selected to achieve a deck continuous beam 



60 

 

type of behaviour. Additionally it is noted that for different tower cross-sections, the 

minimum deck masses are obtained for height above the deck Ha equal to 40m or 50m.  

When comparing the optimal solutions of dead load only versus that from dead 

and truck plus lane live loads, the former led to 10% (6mx3m tower cross-section) to 

19% (4mx2m tower cross-section), increase in the deck mass values. Besides that, when 

comparing the optimal solutions of dead and lane live loads versus dead and truck plus 

lane live loads, the former provides 8% (6mx3m tower cross-section) to 12% (4mx2m 

tower cross-section) higher deck mass values. These results show the importance of not 

only considering the live loads, but also of considering both the truck and the lane loads.  

The data from Objective-1 provides curves that relate deck rigidity, towers 

stiffness and stay-cable mass for cases where the deck steel I-girder and the number of 

cables are optimized for obtaining the lightest deck possible. These curves can be used 

for any type of cable-stayed bridge deck and towers cross-section, once the limiting 

constraint is the displacement at the deck due to truck plus lane live loads. 

The second design objective, Objective-2, aims to obtain the lowest total 

material cost that attends to all design criteria. The material cost for two cities is 

considered and shows that despite difference in cost, the design variables have similar 

values for the same construction site conditions. As the Objective-1 optimal solution 

tends to have a more slender deck and robust tower cross-sections, the cost of its 

solutions cannot be directly compared to Objective-2 optimal material costs. When 

Objective-1 and Objective-2 solutions have analogous tower cross-sections dimensions, 

their total material cost differs by less than 5%. 

Overall, the results from the 5-Phases approach provides small displacement 

values for the deck and towers, and well distributed internal forces. Therefore, the 

discrete phases approach can be successfully used for structural optimization of cable-

stayed bridges under dead and moving live loads, and for two distinct design objectives 

– minimum deck weight or minimum material cost. 
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III. COMPARISON BETWEEN THE THEORETICAL 

AND EXPERIMENTAL WIND RESPONSES OF A 

FULL AEROELASTIC MODEL TEST OF A CABLE-

STAYED BRIDGE 

 
III.1 INTRODUCTION 

Long-span bridges are susceptible to dynamic responses due to buffeting wind 

loads, even if the structure is considered stable in flutter and vortex shedding 

phenomena. Additionally, the action of atmospheric turbulence on bridges significantly 

contributes to the envelopes of internal forces. In other words, the size of the structural 

elements may be governed by the fluctuating wind forces (DAVENPORT, 1966; 

HOLMES, 2015). 

Two of the most usual wind tunnel techniques are exploited on the buffeting 

analyses: (1) the sectional model test, and (2) the full aeroelastic model test of the 

completed bridge. The first test determines the static aerodynamic force and moment 

coefficients, which are measured in both smooth and turbulent flows from a range of 

angles of wind attack. The second test provides information on the accelerations, 

displacements and moments in the sections of the deck and towers. 

While only the external shape of the deck is modelled in the first model test, in 

the second model test all structural members – deck, towers, cables and connections – 

are modelled. Moreover, the geometric properties, masses, and stiffnesses must be 

scaled to respect the mode shapes and the frequencies of the prototype bridge. Thus, the 

full aeroelastic model test is relatively expensive, due to the need of manufacturing a 

complex scaled model, as well as it is time-consuming because even the surrounding 

topography needs to be considered. 

Considering all that, two approaches to evaluate bridge responses under 

turbulent wind action are examined and compared for the case example of the Prospect 

Verona Bridge, Maine (USA). The first approach is theoretical while being fed by 

experimental data from sectional wind tunnel test and is based on: (i) the general 

procedure of equivalent static buffeting wind loads developed by Davenport and King 

(1984); and (ii) the Finite Element Method (FEM). The equivalent static wind loads 

equate to an effective load distribution that is applied to the bridge deck and should 
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produce the same effects— such as the displacements and moments—that are expected 

from the fluctuating wind loads (HOLMES, 2015). These effective wind loads are a 

function of: (1) the static aerodynamic force and the moment coefficients, which are 

obtained from the sectional model test; (2) the spectrums of the longitudinal and vertical 

velocities that describe the distribution of the turbulence with frequency (ESDU 74031; 

HOLMES, 2015); (3) the aerodynamic admittances that reflect the influence of the gust 

size in relation to the size of the structure (DAVENPORT, 1966; DAVENPORT, 1977; 

MATSUDA et al., 1999); (4) the joint acceptance function, which specifies the capacity 

of the turbulence to excite each mode of vibration (DAVENPORT, 1966; 

DAVENPORT, 1977; DAVENPORT & KING, 1982). Additionally, gust factors are 

considered with respect to the towers in order to reflect the effect of the buffeting loads 

on these elements. Mean and peak wind loads are applied to the finite element model 

and displacements obtained from the theoretical approach are examined.  

The second approach is experimental and is based on testing the full aeroelastic 

model of the cited bridge tested at The Boundary Layer Wind Tunnel Laboratory at 

Western University (KING et al., 2005). The displacements at the deck and top of the 

towers are correlated to determine how accurately the first approach (theoretical) can 

predict results compared to the second approach (experimental). 

 

 

III.2 WIND LOADS AND BRIDGE RESPONSES 

The formulation to estimate the equivalent static buffeting loads on the bridge 

deck follows the general approach developed for the study of wind action on the 

Sunshine Skyway Bridge, Florida (DAVENPORT & KING, 1984). This approach takes 

into consideration the fact that persistent movement of a long-span bridge in a strong 

wind is due to its various mode shapes, and that this behavior can be simulated by 

utilizing mode shapes of the first symmetric and the first antisymmetric in each of the 

following movements of the deck: lateral bending, vertical bending, and torsional 

rotation, totalizing mode shapes. In this way, other than mean wind loads, peak wind 

loads that reflect the background and the resonant components of the response are 

applied to the bridge deck. While the background component introduces the influence of 

the load frequency range that is too low to excite the structure, the resonant components 
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reflect the influence of each mode shape of the structure that is considered in the 

response estimation. 

The quasi-steady equations for motion of deck in gusty wind can be expressed 

according to the following equations (DAVENPORT, 1966): 

𝐹′𝑋(𝜂, 𝑡) = 𝜌�̅�𝐵𝐶𝐹𝑋𝑢(𝑡) + 
1

2
𝜌�̅�𝐵

𝑑𝐶𝐹𝑋

𝑑𝛼
𝑤(𝑡)                             (III.1.a) 

𝐹′𝑍(𝜂, 𝑡) = 𝜌�̅�𝐵𝐶𝐹𝑍𝑢(𝑡) + 
1

2
𝜌�̅�𝐵

𝑑𝐶𝐹𝑍

𝑑𝛼
𝑤(𝑡)                             (III.1.b) 

𝑀′𝜃(𝜂, 𝑡) = 𝜌�̅�𝐵
2𝐶𝑀𝜃𝑢(𝑡) + 

1

2
𝜌�̅�𝐵2

𝑑𝐶𝑀𝜃

𝑑𝛼
𝑤(𝑡)                           (III.1.c) 

where 𝜂, 𝑋, 𝑍 are the deck longitudinal, transversal, and vertical directions respectively 

(see Figure III. 1); 𝐹′𝑋(𝜂, 𝑡), 𝐹′𝑍(𝜂, 𝑡) and 𝑀′𝜃(𝜂, 𝑡) are the quasi-steady horizontal 

force (wind direction), vertical force and pitching moment to be applied to the bridge 

deck due to the turbulent wind flow;  𝐶𝐹𝑋 , 𝐶𝐹𝑍  and 𝐶𝑀𝜃 are the force coefficients 

obtained from the static sectional model test; 
𝑑𝐶𝐹𝑋

𝑑𝛼
, 
𝑑𝐶𝐹𝑍

𝑑𝛼
 and 

𝑑𝐶𝑀𝜃

𝑑𝛼
 are the slopes of force 

coefficients at a specific angle of attack 𝛼; 𝜌 is the air mass density; �̅� is the mean wind 

speed at the deck height; 𝐵 is the deck width; 𝑢(𝑡) and 𝑤(𝑡) are the horizontal and 

vertical velocity fluctuations. 

 

Figure III. 1: Scheme of deck cross-section dimensions, mean and turbulent wind 

speeds, and axis representation. 

The mean-square fluctuating generalized horizontal and vertical forces, and 

pitching moment for the jth mode of vibration are given by: 

𝑄′𝑋,𝑗
2̅̅ ̅̅ ̅̅ = ∫ ∫ 𝐹′𝑋(𝜂1, 𝑡)𝐹′𝑋(𝜂2, 𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ɸ𝑗(𝜂1)

𝐿

0

𝐿

0
ɸ𝑗(𝜂2)𝑑𝜂1𝑑𝜂2                     (III.2.a) 

𝑄′𝑍,𝑗
2̅̅ ̅̅ ̅̅ = ∫ ∫ 𝐹′𝑍(𝜂1, 𝑡)𝐹′𝑍(𝜂2, 𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ɸ𝑗(𝜂1)

𝐿

0

𝐿

0
ɸ𝑗(𝜂2)𝑑𝜂1𝑑𝜂2                     (III.2.b) 

𝑄′𝜃,𝑗
2̅̅ ̅̅ ̅̅ = ∫ ∫ 𝐹′𝜃(𝜂1, 𝑡)𝐹′𝜃(𝜂2, 𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ɸ𝑗(𝜂1)

𝐿

0

𝐿

0
ɸ𝑗(𝜂2)𝑑𝜂1𝑑𝜂2                     (III.2.c) 
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where ɸ𝑗(𝜂) is the jth mode shape function. 

The power spectral density of the fluctuating generalized forces in the direction 

𝑋, 𝑍 and 𝜃 as a function of the reduced frequency 𝑓∗can be expressed by the equations 

below (adapted from DAVENPORT & KING, 1984): 

𝑆𝑄′𝑋,𝑗
(𝑓∗) = [(𝑞𝐵𝐶𝐹𝑋)

2
4 (
𝜎𝑢

�̅�
)
2 𝑆𝑢𝑢(𝑓

∗)

𝜎𝑢
2 + (𝑞𝐵

𝑑𝐶𝐹𝑋
𝑑𝛼
)
2

(
𝜎𝑤

�̅�
)
2 𝑆𝑤𝑤(𝑓

∗)

𝜎𝑤
2 ] |𝐽𝑗(𝑓

∗, 𝜂1, 𝜂2)|
2
    (III.3.a) 

𝑆𝑄′𝑍,𝑗(𝑓
∗) = [(𝑞𝐵𝐶𝐹𝑍)

2
4 (
𝜎𝑢

�̅�
)
2 𝑆𝑢𝑢(𝑓

∗)

𝜎𝑢
2 + (𝑞𝐵

𝑑𝐶𝐹𝑍
𝑑𝛼
)
2

(
𝜎𝑤

�̅�
)
2 𝑆𝑤𝑤(𝑓

∗)

𝜎𝑤
2 ] |𝐽𝑗(𝑓

∗, 𝜂1, 𝜂2)|
2
    (III.3.b) 

𝑆𝑄′𝜃,𝑗(𝑓
∗) = [(𝑞𝐵2𝐶𝐹𝜃)

2
4(
𝜎𝑢

�̅�
)
2 𝑆𝑢𝑢(𝑓

∗)

𝜎𝑢
2 + (𝑞𝐵2

𝑑𝐶𝐹𝜃
𝑑𝛼
)
2

(
𝜎𝑤

�̅�
)
2 𝑆𝑤𝑤(𝑓

∗)

𝜎𝑤
2 ] |𝐽𝑗(𝑓

∗, 𝜂1, 𝜂2)|
2
(III.3.c) 

 

𝑓∗ =
𝑓𝐵

𝑈
                                                                (III.4) 

where 𝜎𝑢 and 𝜎𝑤 are the standard deviation of longitudinal and vertical wind velocity 

fluctuations; Iu =
𝜎𝑢

𝑈
 and Iw =

𝜎𝑤

𝑈
 are the wind longitudinal and vertical turbulence 

intensity; 𝑆𝑢𝑢(𝑓
∗) and 𝑆𝑤𝑤(𝑓

∗) are the power spectral density for longitudinal and 

vertical wind velocity, respectively; |𝐽(𝑓∗, 𝜂1, 𝜂2)|
2 is the joint acceptance function. 

To calculate the power spectral density of the fluctuating generalized forces 𝑆𝑄′ 

(Eq. III.3), the following parameters are used to describe the wind action:  

1. the variation of the mean wind speed according to the height above the ground is 

calculated using the logarithm profile, which is considered to be the most precise 

expression to simulate the wind speed profile;  

 

2. the spectral density function for the longitudinal turbulence 𝑆𝑢𝑢 was estimated 

using the von Karman spectral equation, which is generally accepted as the best 

analytical representation of isotropic turbulence (ESDU 74031): 

𝑓 𝑆𝑢𝑢(𝑓)

𝜎𝑢
2 =

4(
𝑓𝑙𝑢
�̅�
)

[1+70.8(
𝑓𝑙𝑢
�̅�
)
2
]
5/6                                                 (III.5) 

𝑙𝑢 =
25�̅�0.35

𝑧0
0.063                                                             (III.6) 

where 𝜎𝑢
2 is the variance of longitudinal velocity fluctuation; 𝑙𝑢 is the turbulence length 

scale; and 𝑧̅ is the effective height. 
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3. the vertical velocity component has different characteristics, and its power 

spectral density function 𝑆𝑤𝑤 is estimated by adopting the Busch and Panofsky 

spectral equation (HOLMES, 2015): 

𝑓 𝑆𝑤𝑤(𝑓)

𝜎𝑤
2 =

2.15(
𝑓�̅�

�̅�
)

1+11.16(
𝑓�̅�

�̅�
)
5/3                                                   (III.7)                   

where 𝜎𝑤
2  is the variance of vertical velocity fluctuation. 

In order to estimate the interaction between the gust and the structure, the joint 

acceptance function is employed to consider the ability of the turbulence to excite each 

one of the modes of vibration that are being considered in the analysis (DAVENPORT, 

1966; DAVENPORT, 1977; DAVENPORT & KING, 1982). The equation for the joint 

acceptance function |𝐽(𝑓∗, 𝜂1, 𝜂2)|
2 is given by DAVENPORT & KING (1984). 

|J(f ∗, η1, η2)|
2 =

1

N̅
2 ∫ ∫ RF′1F′2(η1, η2, f

∗
)

L

0
ɸ(η

1
)ɸ(η

1
)

L

0
dη
1
dη
2
                 (III.8) 

N̅ = ∫ ɸ(η)2dη
L

0
                                                      (III.9) 

RF′1F′2(η1, η2, f
∗) = e

−ϒ(η1−η2)f
∗

B                                        (III.10)                                           

where R𝐹′1𝐹′2(η1, η2, f
∗) is the cross spectrum of forces F′1 and F′2 at cross sections η1 

and η2 for the frequency f ∗, and ϒ is a constant with values ranging between 5 and 8 

that defines the effective width of the correlation. 

The power spectral density of displacements in the three considered directions 

𝑋, 𝑍 and 𝜃 can be expressed as follow; (adapted from DAVENPORT & KING, 1984): 

𝑆𝑋′,𝑗(𝑓
∗) =

1

𝐾𝑗
2 |𝐻𝑗(𝑓

∗)|
2
|χ𝑋(𝑓

∗)|2𝑆𝑄′𝑋,𝑗
(𝑓∗)                                (III.11.a) 

𝑆𝑍′,𝑗(𝑓
∗) =

1

𝐾𝑗
2 |𝐻𝑗(𝑓

∗)|
2
|χ𝑍(𝑓

∗)|2𝑆𝑄′𝑍,𝑗
(𝑓∗)                                (III.11.b) 

𝑆𝜃′,𝑗(𝑓
∗) =

1

𝐾𝑗
2 |𝐻𝑗(𝑓

∗)|
2
|χ𝜃(𝑓

∗)|2𝑆𝑄′𝜃,𝑗
(𝑓∗)                                (III.11.c) 

where 𝐾𝑗 is the structure stiffness; |𝐻𝑗(𝑓
∗)|
2
 is the mechanical admittance; |χ𝑋(𝑓

∗)|2, 

|χ𝑍(𝑓
∗)|2 and |χ𝜃(𝑓

∗)|2 are the aerodynamic admittances, which reflect the influence of 

the sizes of both, the gust and the structure (DAVENPORT, 1966; DAVENPORT, 

1977) on the capacity of the gust to affect the structure. According to MATSUDA et al. 

(1999), aerodynamic admittance are difficult parameters to be measured in wind tunnel 
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test and are often adopted as the DAVENPORT function (Eq. III.12; DAVENPORT, 

1962 apud MATSUDA et al., 1999) for longitudinal buffeting forces and as Holmes 

function (Eq. III.13; HOLMES, 1975 apud MATSUDA et al., 1999) for vertical 

buffeting forces and pitching buffeting moments. 

|χ𝑋
𝑢(𝑓′)|2 =

2

(𝑘𝑓′)2
(𝑘𝑓′ − 1 + 𝑒−𝑘𝑓

′
)                                     (III.12) 

|χ𝑍,𝜃
𝑤 (𝑓∗)|

2
=

1

1+4𝑓∗
                                                     (III.13) 

where 𝑓′ = 𝑓𝐷/�̅� is the reduced frequency as a function of the deck height 𝐷; 𝑓∗ =

𝑓𝐵/�̅� is the reduced frequency in function of the deck width 𝐵; 𝑘 is the decay factor. 

The mean-square value of fluctuating generalized deflections (𝜎𝑋′,𝑗
2 , 𝜎𝑍′,𝑗

2  and 

𝜎𝜃′,𝑗
2 ) are obtained by integrating the power spectral density of displacements over all 

frequencies:  

𝜎𝑋′,𝑗
2 = ∫

1

𝐾𝑗
2 |𝐻𝑗(𝑓

∗)|
2
|χ𝑋(𝑓

∗)|2𝑆𝑄′𝑋,𝑗(𝑓
∗)
𝑈

𝐵
𝑑𝑓∗

∞

0
                         (III.14.a) 

𝜎𝑍′,𝑗
2 = ∫

1

𝐾𝑗
2 |𝐻𝑗(𝑓

∗)|
2
|χ𝑍(𝑓

∗)|2𝑆𝑄′𝑍,𝑗(𝑓
∗)
𝑈

𝐵
𝑑𝑓∗

∞

0
                         (III.14.b) 

𝜎𝜃′,𝑗
2 = ∫

1

𝐾𝑗
2 |𝐻𝑗(𝑓

∗)|
2
|χ𝜃(𝑓

∗)|2𝑆𝑄′𝜃,𝑗(𝑓
∗)
𝑈

𝐵
𝑑𝑓∗

∞

0
                         (III.14.c) 

The mean-square value of the equivalent static forces (𝜎𝐹′̅̅̅𝑋,𝑗
2 , 𝜎𝐹′̅̅̅𝑍,𝑗

2  and 𝜎𝐹′̅̅̅𝑍,𝑗
2 ) 

are then obtained from the mean-square deflections as showed below. 

𝜎𝐹′̅̅̅𝑋,𝑗
2 = ∫ |𝐻𝑗(𝑓

∗)|
2
|χ𝑋(𝑓

∗)|2𝑆𝑄′𝑋,𝑗(𝑓
∗)
𝑈

𝐵
𝑑𝑓∗

∞

0
                           (III.15.a) 

𝜎𝐹′̅̅̅𝑍,𝑗
2 = ∫ |𝐻𝑗(𝑓

∗)|
2
|χ𝑍(𝑓

∗)|2𝑆𝑄′𝑍,𝑗(𝑓
∗)
𝑈

𝐵
𝑑𝑓∗

∞

0
                           (III.15.b) 

𝜎𝐹′̅̅̅𝑍,𝑗
2 = ∫ |𝐻𝑗(𝑓

∗)|
2
|χ𝜃(𝑓

∗)|2𝑆𝑄′𝜃,𝑗(𝑓
∗)
𝑈

𝐵
𝑑𝑓∗

∞

0
                           (III.15.c) 

DAVENPORT (1977) divided the area underneath the integrand from 

Equations III.15 into two parts: the background component and the resonant component. 

For background part which the frequencies are too low to excite the structure, the 

mechanical admittance |𝐻(𝑓∗)|2 = 1. For the resonant part, each frequency mode of 

vibration evaluated is represented by the reduced frequency 𝑓0
∗. The terms |χ𝑍(𝑓0

∗ )|2 
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and 𝑆𝑄′𝑍,𝑗(𝑓0
∗ ) are constant, while the integral of the mechanical admittance is found to 

be equal to 
𝜋𝑓0
∗

4𝜉
 by using the method of poles (CRANDALL & MARK, 1963 apud 

HOLMES, 2015). 

The background mean-square equivalent static forces in 𝑋, 𝑍 and 𝜃 directions 

are then written as: 

𝜎�̅�′𝐵,𝑋
2 (𝑓∗) = ∫ |χ𝑋(𝑓

∗)|2𝑆𝑄′𝑋,𝑗(𝑓
∗)
𝑈

𝐵
𝑑𝑓∗

∞

0
                             (III.16.a) 

𝜎�̅�′𝐵,𝑍
2 (𝑓∗) = ∫ |χ𝑍(𝑓

∗)|2𝑆𝑄′𝑍,𝑗(𝑓
∗)
𝑈

𝐵
𝑑𝑓∗

∞

0
                             (III.16.b) 

𝜎�̅�′𝐵,𝜃
2 (𝑓∗) = ∫ |χ𝜃(𝑓

∗)|2𝑆𝑄′𝜃,𝑗(𝑓
∗)
𝑈

𝐵
𝑑𝑓∗

∞

0
                             (III.16.c) 

And the resonant mean-square equivalent static forces are given by: 

𝜎�̅�′𝑅,𝑋,𝑗
2 (𝑓0

∗) = |χ𝑋(𝑓
∗)|2𝑆𝑄′𝑋,𝑗(𝑓0

∗)
𝜋𝑓0
∗

4𝜉

𝑈

𝐵
                                  (III.17.a) 

𝜎�̅�′𝑅,𝑍,𝑗
2 (𝑓0

∗) = |χ𝑍(𝑓
∗)|2𝑆𝑄′𝑍,𝑗

(𝑓0
∗)
𝜋𝑓0
∗

4𝜉

𝑈

𝐵
                                  (III.17.a) 

𝜎�̅�′𝑅,𝜃,𝑗
2 (𝑓0

∗) = |χ𝜃(𝑓
∗)|2𝑆𝑄′𝜃,𝑗(𝑓0

∗)
𝜋𝑓0
∗

4𝜉

𝑈

𝐵
                                  (III.17.a) 

where; 𝜉 is the total (structural + aerodynamic) damping. 

The equivalent static buffeting forces (𝐹′̅𝑘,𝑗) per unit length for each mode of 

vibration considering the background and resonant components are calculated as 

follows by g: 

𝜎𝐹′̅̅̅𝑘,𝑗 = √(𝑔𝐵 × 𝜎�̅�′𝐵,𝑘)
2 + (𝑔𝑅𝑗 × 𝜎�̅�′𝑅,𝑘,𝑗)

2                                   (III.18) 

𝐹′̅𝑘,𝑗 = 𝜎𝐹′̅̅̅𝑘,𝑗 × ɸ𝑗(η)                                            (III.19) 

g = √2ln(νT) + 0.577 √2ln(νT)⁄                                    (III.20) 

where 𝑘 = 𝑋, 𝑍 𝑜𝑟 𝜃; 𝜎𝐹′̅̅̅𝑘,𝑗 is the standard deviation of the equivalent static buffeting 

force (longitudinal, vertical or pitching moment) of the jth mode due to the background 

and resonant components; 𝜎�̅�′𝐵,𝑘 and 𝜎�̅�′𝑅,𝑘,𝑗 are the standard deviation of the forces due 

to the background (Eq. III.16) and resonant (Eq. III.17) contributions, respectively; 𝑔𝐵 
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and 𝑔𝑅𝑗 are the background and resonant peak factors. The peak factor expression (Eq. 

III.20) was developed by DAVENPORT (1964). 

Besides mean wind loads at deck, towers and cables, and the deck buffeting 

peak wind loads as described above, tower peak wind loads are also considered in this 

study. Peak wind loads for the towers are calculated only for alongwind direction, by 

calculating a gust factor according to SOLARI (1987, 1993a, 1993b). 

 

 

III.3 METHODOLOGY 

The displacements at the deck and towers of a bridge estimated through a full 

aeroelastic model tested in wind tunnel (experimental approach) are predicted by 

applying mean and peak wind loads due to buffeting in a Finite Element Model 

(theoretical approach) of the same bridge. The methodology for comparing the two 

approaches is described in Figure III. 2. 

The theoretical approach utilizes the following parameters from sectional 

model tests: (i) aerodynamic force coefficients; (ii) slopes of force coefficients from the 

static sectional model test; and (iii) flutter derivatives from the dynamic sectional model 

test to calculate the aerodynamic damping. In order to be consistent with the 

comparisons between the two approaches, structural damping ratios, turbulence profile, 

and wind speed profile used to calculate the equivalent static forces due to buffeting 

wind should be the same as those registered in the wind tunnel tests of the full 

aeroelastic model. Once all six parameters are defined, the equivalent static forces due 

to buffeting wind loads are calculated according to the Equations presented in Section 2.  

A finite element model is constructed to achieve the same frequencies and 

mode shapes as the full aeroelastic model. Mean wind loads at the deck, towers, and 

cables as well as peak wind loads at the deck and towers are applied to the finite 

element model. Geometric non-linear analysis of the bridge before the free vibration 

analysis to determine natural frequencies and mode shapes is performed and the 

displacements provided at the deck and top of towers for mean and peak wind loads are 

compared to those provided by the experimental approach. 
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Figure III. 2: Flowchart of the comparison between theoretical and experimental 

approaches. 

 

 

III.4 CASE STUDY 

The  Prospect Verona Bridge Maine, USA (KING et al, 2005) has been chosen 

as the case study.  The cable-stayed bridge has a main span length of 354 m and two 

side spans of 146 m each. Therefore, the total length of the bridge is 646 m as shown in 

Figure III. 3.a. One of the side spans has the first 34.7 m in a curve, for which the 

horizontal radius is equal to 121.8 m. The typical cross-section of the bridge deck 

consists of a concrete box-girder with a width of 17.5 m and a depth of 3.9 m (Figure 

III. 3.b).  

Since the box-girder cross-section provides considerable torsional rigidity, the 

deck superstructure is supported by only one plan of stay cables. Forty cables support 

the main span and twenty cables support each side span, totalizing eighty cables in a 

semi-harp arrangement. The two towers are 84.8 m above the deck level and consist of a 

concrete tubular section of variable heights.  
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The concrete have a modulus of elasticity Ec = 30.442GPa, while the steel of 

the stay cables, have a modulus of elasticity Es = 193GPa. The geometric properties of 

the bridge elements are presented in Table III. 1. 

 

 

 

(a) Geometry of the bridge (adapted from KING et al., 2005). 

 

(b) Cross-section of the side span.         

 

(c) Finite element model. 

Figure III. 3: Bridge geometry, cross-section of the side span, and finite element model 

of the cable-stayed bridge. 
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Table III. 1: Geometric properties of the structural elements. 

 

 

 

III.4.1 THEORETICAL APPROACH 

The finite element model was developed using three-dimensional frame 

elements to simulate the deck and towers, and three-dimensional nonlinear truss 

elements to simulate the stay cables, as shown in Figure III. 3.c. The deck was modelled 

using a single spine that passes through its centre of gravity. The cable anchorages and 

deck spine were connected by massless rigid links to achieve the proper offset of the 

cables from the centre line of the deck. 

In order to conduct a nonlinear analysis under dead loads and pre-tensioning 

forces, the P-Δ and the large displacements effects were taken into account by using the 

following equation for the local tangent stiffness matrix: 

[KT]b = [KE]b + [KG]b                                       ( III.21) 

where [KE]b and [KG]b are the elastic (WEAVER & GERE, 1980) and the geometric 

(NAZMY & GHAFFAR, 1990) stiffness matrices for the three-dimensional frame 

elements, respectively. The sag effect on the cables was dealt with by replacing each 

cable with a truss element of an equivalent cable stiffness. The equivalent tangent 

modulus of elasticity (Eeq) is given by (ERNST, 1965): 

Eeq =
Ecs

1+
(wcsH)

2AcEcs
12T3

                                (III.22) 

where Ecs is the cable material effective modulus of elasticity; Ac is the cross-sectional 

area of the cable; H is the horizontal projection of the cable; wcs is the weight per unit 

length of the cable; and T is the tension in the cable.  

Element 
Area 

(m
2
) 

Minor inertia 

(m
4
) 

Major inertia 

(m
4
) 

Torsional 

Constant (m
4
) 

Deck – main span 10.65 22.39 226.46 49.69 

Deck – side span 17.11 34.18 296.37 81.35 

Upper tower 17.39 - 32.80 44.77 – 67.25 110.78 – 379.93 91.10 – 218.71 

Lower tower  16.25 3.63 61.35 6.38 

Cables 0.006 – 0.0108 (2.87 – 9.28)10
-6

 (2.87 – 9.28)10
-6

 (0.57 – 1.86)10
-5

 



72 

 

The frequencies and mode shapes, which are also inputs for the equivalent 

static forces calculation, are determined using the deformed configuration obtained in 

the static nonlinear analysis of the bridge under dead loads and pre-tensioning forces. 

Table III. 2 presents the obtained frequencies associated to the six mode shapes 

considered in the analysis and the corresponding values from the full aeroelastic model 

(in the prototype scale). It can be seen that the theoretical values are well correlated with 

the experimental ones, demonstrating that the finite element model has the proper 

stiffness and mass simulation of the structure.  

The static sectional model test and the full aeroelastic model test of the cable-

stayed bridge were performed in The Boundary Layer Wind Tunnel Laboratory at 

Western University (KING et al., 2005). The aerodynamic force coefficients and their 

slopes obtained from the sectional model test are listed in Table III. 3 for angle of attack 

equal to zero.   

 

Table III. 2: Frequencies and mode shapes. 

 

 

 

 

 

 

 

 
 

 

 

Table III. 3: Aerodynamic coefficients and theirs slopes for angle of attack equal to 0º.  

 

 

 

 

 

 

 

According to KING et al. (2005), the aeroelastic model was tested with 

roughness length equal to 0.030m (≈0.1ft). Despite this fact, the roughness length 

applied in the theoretical approach has to be adjusted to 0.183m (≈0.6ft) in order to 

Mode Shape 
Frequency (Hz) 

Wind Tunnel FEM 

Drag 
Symmetric 0.242 0.248 

Anti-symmetric 0.782 0.778 

Lift 
Symmetric 0.327 0.340 

Anti-symmetric 0.500 0.510 

Torsion 
Symmetric 1.104 1.238 

Anti-symmetric 2.198 2.490 

Direction Coefficients Slopes 

Drag 0.261 -0.382 

Lift 0.161 0.867 

Torsion 0.129 0.013 
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achieve matching longitudinal turbulence intensity profile and wind speed profile from 

the full aeroelastic model test at the deck height (46.9m). Figure III. 4 presents the 

theoretical and experimental profiles describing the wind velocity. 

 

 

Figure III. 4: Longitudinal turbulence intensity profile and mean wind speed profile 

obtained experimentally from the full aeroelastic model test and the ones 

used in the theoretical  approach. 

 

As the vertical turbulence intensity profile was not provided by KING et al. 

(2005), it is adopted according to HOLMES (2015): 

σw = 1.375u∗                                                       (III.23) 

where σw is the standard deviation of vertical wind speed, and  u∗ is the friction 

velocity. This means that σw is taken as 0.55σu. 
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The structural damping ratios for vertical movements (0.16%), lateral 

movements (0.5%) and torsion (1.3%) are adopted in accordance with the full 

aeroelastic model test. The alongwind aerodynamic damping is calculated according to 

EUROCODE 1 (Part 1-4, 2005): 

𝜉𝑎𝑋(𝑓0) =
𝜌𝐶𝐷𝐵𝑈

2�̅�𝜔0
                                                   (III.24) 

where 𝜉𝑎𝑋(𝑓0) is the alongwind aerodynamic damping of the lateral mode of vibration 

with frequency 𝑓0; 𝐶𝐷  is the drag coefficient; �̅� is the deck mass per unit of length; and 

𝜔0 = 2𝜋𝑓0, the angular frequency. 

The crosswind and torsional aerodynamic damping ratios are calculated 

according to DAVENPORT (1982). As a dynamic sectional model test was not 

performed by KING et al. (2005) in order to provide the flutter derivatives, the flutter 

derivative 𝐻1
∗ is estimated by Equation III.26 (DAVENPORT, 1982). 

𝜉𝑎𝑍(𝑓0
∗) =

−𝜌𝐵2

�̅�

𝐻1
∗(𝑓0

∗)

2
                                                   (III.25) 

𝐻1
∗(𝑓0

∗) =
−1

4𝜋

𝐶𝑍
′

𝑓0
∗                                                        (III.26) 

𝜉𝑎𝜃(𝑓0
∗) =

−𝜌𝐵4

𝐼0

𝐴2
∗ (𝑓0

∗)

2
                                                   (III.27) 

where 𝜉𝑎𝑍(𝑓0
∗) and 𝜉𝑎𝜃(𝑓0

∗) are the crosswind and torsional aerodynamic damping of 

the vertical and torsional mode of vibrations with reduced frequency 𝑓0
∗, respectively; 𝐼0 

is the polar moment of inertia; 𝐻1
∗(𝑓0

∗) and 𝐴2
∗(𝑓0

∗) are flutter derivatives. In the lack of 

an approximated equation to estimate 𝐴2
∗(𝑓0

∗) , the torsional aerodynamic damping is 

neglected in this case study. 

The mean and buffeting equivalent static forces of each deck mode of vibration 

are applied separately to the FEM model of the cable-stayed bridge. The total deck peak 

displacements obtained after linear analyses are combined by taking the root-mean-

square of displacement of the six modes of vibration that are being evaluated. 
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III.4.2 EXPERIMENTAL APPROACH 

The 1:200 scaled aeroelastic model was tested in an open country exposure 

with roughness length equal to 0.03048m (1ft). A detailed topographic model of the 

hills in the surrounding of the prototype was constructed to simulate the features of the 

terrain. The wind speed profile and longitudinal turbulence intensity profile used for the 

testing are presented in Figure III. 4. 

The results, in terms of displacements, of the full aeroelastic model test were 

obtained by measuring and recording the time histories of non-contacting laser 

displacement transducers located at different positions of the deck, such as at ¼ and at 

½ of the main span, and at the top of the towers. The mean and the peak values of the 

displacements were recorded for a range of wind speeds. The mean values were 

obtained by taking the arithmetic average of time history over the time of 15 minutes, 

and corrected to the time of 60 minutes. While the peak values were obtained by taking 

the root-mean-square (RMS), of the time history, and multiplying it by a statistically-

based peak factor of 3.5. The total response is equal to the mean value plus or minus the 

peak value. 

 

III.4.3 RESULTS 

The comparison between the theoretical and experimental approaches are 

presented for displacements at the middle of main span, one-fourth of main span, and 

top of one tower.  

The comparisons of mean displacement values are presented in Figures III.5 to 

III.8 as a function of the deck height wind speed. A good correlation for the mean drag 

displacements for the deck for wind speeds up to 40m/s is observed (see Figure III. 5). 

For wind speeds greater than 40m/s, the theoretical approach tends to predict slightly 

smaller values than the experimental approach. The same good behavior is observed for 

the mean rotations on the deck for wind speeds up to 40m/s as shown in Figure III. 7, 

although for wind speeds greater than that, the theoretical approach results are slightly 

greater than the experimental approach values. Overall, the mean drag displacements 

and the mean rotations have a good agreement as well as the mean lateral displacements 

at the top of the first tower. On the other hand, the mean lift displacements comparisons 
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do not show a good correlation at the main span. It can be observed that the 

experimental approach provides smooth curves for drag displacements and rotations. 

However the mean lift curve exhibits very small displacements with floating values for 

wind speed up to 40m/s, and after that a more stable increasing response. It is worth 

noting that the upstream topography simulated in the test may have affected the wind 

flow on the side spans and part of the main span imposing small deviation from the 0° 

angle of attack condition over the sea water (as considered in the theoretical approach). 

 

 

 

  
(a)                                                                    (b) 

Figure III. 5: Comparison of mean drag displacements: (a) at ½-point of main span; (b) 

at ¼-point of main span. 
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(a)                                                                    (b) 

Figure III. 6: Comparison of mean lift displacements: (a) at ½-point of main span; (b) at 

¼-point of main span. 

   

 

  
(a)                                                                    (b) 

Figure III. 7: Comparison of mean rotations: (a) at ½-point of main span; (b) at ¼-point 

of main span. 
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Figure III. 8: Comparison of mean lateral displacements at the top of the 1st tower. 

The comparisons of peak values between the two approaches are presented in 

Figures III.9 to III.12. A good agreement of peak drag displacements is observed for 

wind speeds up to 40m/s, same behavior that is noticed for the mean drag 

displacements. The peak lift displacements of the deck from the theoretical approach, 

contrary to the mean lift displacements behavior, tend to be smaller than those obtained 

from the experimental approach. The lift displacements at ¼-point at the main span 

have very good correlation for wind speeds above 60m/s. It is necessary to emphasize 

that the vertical turbulence intensity profile applied to the full aeroelastic model was not 

provided; this way, in the theoretical approach the vertical turbulence was adopted from 

the literature and could not be checked experimentally. 
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(a)                                                                    (b) 

Figure III. 9: Comparison of peak drag displacements: (a) at ½-point of main span; (b) 

at ¼-point of main span. 

 

 

 

  
(a)                                                                    (b) 

Figure III. 10: Comparison of peak lift displacements: (a) at ½-point of main span; (b) at 

¼-point of main span. 
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(a)                                                                    (b) 

Figure III. 11: Comparison of peak rotations: (a) at ½-point of main span; (b) at ¼-point 

of main span. 

  

Figure III. 12: Comparison of peak lateral displacements at the top of the 1st tower. 

 

The peak rotations shown in Figure III. 11.(a) for the midpoint of the main 

span obtained through the experimental approach shows a change of slope at the wind 

speed of 65.9m/s that can be explained by the detection of flutter phenomenon. The 

same behavior cannot be perceived in the theoretical approach, once the equivalent 
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static forces applied to the finite element model take into account only the buffeting 

phenomenon. The peak rotations at ¼-point of main span present excellent correlation 

for the whole range of wind speed. For the peak lateral displacements at the top of the 

1
st
 tower, the experimental approach provides greater rotations values for wind speeds 

above 60m/s. Other than that, the top of the tower has a good correlation as shown in 

Figure III. 12. 

 

 

III.5 CONCLUSIONS 

A theoretical-experimental comparison has been carried out to estimate how 

accurately the theoretical approach, constituted by a FEM model under equivalent static 

aerodynamic loading  that considers the results from the sectional model test can 

estimate the results provided by the experimental approach, established solely by the 

full aeroelastic model test. The comparisons indicate that the theoretical approach 

overall can successfully estimate the displacements of the experimental approach.  

It is observed an excellent correlation for drag displacements and rotations on 

the deck for wind speeds up to 40m/s, for both peak and mean values. For higher wind 

speeds the numerical results tend to be slightly greater or less than the experimental 

ones. The lateral displacements at the top of the first tower present a very good 

correlation for the peak values for wind speeds up to 60m/s.  

The mean and peak rotations have an overall excellent correlation for the 

whole range of wind speeds. On the other hand, the lift displacements do not present a 

very good correlation between the approaches. Nevertheless, the correlation can be 

considered satisfactory once the lift peak displacements from the experimental approach 

are able to follow the same trends as the ones from the theoretical approach. While at 

the ½ -point, the numerical peak lift displacements are smaller than the experimental 

values, at the ¼-point the displacements have a great correlation for wind speeds above 

60m/s. 

The differences between the theoretical and experimental approaches analyses 

can be attributed to uncertainties encountered during the process of obtaining the 

displacements for both approaches. Some of the main uncertainties are: 
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1. The experimental approach takes into account the general features of the 

prototype terrain, while the static sectional model test from theoretical approach 

does not consider the influence of the topography. Small deviations of the angle 

of attack from the 0° condition adopted in the theoretical analysis may have 

influenced the responses; 

 

2. The experimental approach can detect other phenomena like vortex shedding 

and flutter, while the theoretical approach considers only the buffeting 

phenomenon; 

 

3. The theoretical approach considers approximated aerodynamic damping ratios, 

once they are function of the flutter derivatives. Dynamic sectional tests were 

not realized for the bridge in study, so the flutter derivatives were estimated 

according to DAVENPORT et al. (1982); 

 

4. The theoretical approach considers approximated aerodynamic admittance 

functions to describe the effect of the relation between the sizes of the gust and 

structure, which are naturally and more accurately taken into account during the 

experimental approach; 

 

5. The theoretical approach considers a vertical turbulence intensity profile that 

could not be checked or corrected to attend the one utilized in the experimental 

approach. 

Considering the magnitude of the differences between the theoretical and 

experimental approaches results as well as the source of uncertainties that cause these 

differences, one can conclude that the theoretical approach provides a satisfactory way 

of performing buffeting wind loads analysis.  
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IV. STRUCTURAL OPTIMIZATION OF TWO I-

GIRDER COMPOSITE CABLE-STAYED BRIDGES 

UNDER THE ACTION OF DEAD, LIVE AND WIND 

LOADS 

 
IV.1 INTRODUCTION 

Cable-stayed bridges are efficient structures due to their several advantages, 

and at the same time they are challenging structures due to the integrated behaviour of 

their structural components (PODOLNY, 1976; TROITSKY, 1988; SVENSSON, 

2012).  

According to SVENSSON (2012), the number of cable-stayed bridges has been 

increasing since the 1970s, given the numerous benefits when compared to other type of 

bridges. As span lengths have recently increased significantly, cable-stayed bridges are 

becoming more flexible and consequently more susceptible to dynamic actions, 

specially from wind loads. 

To simplify and improve the design process of cable-stayed bridges, many 

studies were dedicated to their structural automatization and optimization. In some 

studies, optimization is restricted to the stay cable pre-tensioning forces (WANG et al., 

1993; CHEN et al., 2000; JANJIC et al., 2003; HASSAN et al., 2012 and 2013a; 

MARTINS et al., 2015) in which only dead and superimposed loads are considered. 

While in other studies, the optimization is more encompassing by considering the 

optimization of deck, tower, and stay-cables dimensions in addition to stay-cable pre-

tensioning forces.   

LONG et al. (1999) studied the optimization of a composite box girder cable-

stayed bridge. Deck, tower and cable dimensions were optimized under dead and live 

loads using Powell’s direct search method with the objective of obtaining minimum cost 

of the superstructure.  

SIMÕES & NEGRÃO (1994, 2000) and NEGRÃO & SIMÕES (1997) have 

optimized different cable-stayed bridges with box-girder decks. Dimensions and 

geometry were optimized under the action of dead and live loads, and erection 

configurations, with goals related to minimum cost and stresses. Entropy based 
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technique and Pareto solution were used for solving the multi-objective problem. 

FERREIRA & SIMÕES (2011) also considered seismic loading during the optimization 

process with the objective of obtaining reduced stresses.  

HASSAN et al. (2013b, 2015) optimized main span length, tower height, 

number of cables, deck and tower cross-section dimensions considering the action of 

dead, lane live loads and lateral mean wind loads. The optimization aimed obtaining the 

minimum design cost by using Real Coded Genetic Algorithm (RCGA) and Finite 

Element Method (FEM). The stay-cables pre-tensioning forces were obtained through 

surrogate functions previously developed by HASSAN et al. (2013a). 

Considering that engineers are adopting thinner and lighter decks while 

considering longer spans, dynamic analysis becomes an important matter during the 

design and optimization of cable-stayed bridges. The main objective of this study is to 

evaluate how buffeting wind loads affect structural optimization procedures. Primary 

focus is given to buffeting wind loads because they are an inevitable phenomenon (ZHU 

et al., 2007), and depending on the wind magnitude, fluctuating forces may govern the 

selection of structural component dimensions (DAVENPORT, 1966; HOLMES, 2015). 

The critical wind velocity for vortex shedding, classical flutter, single mode torsional 

flutter, torsional divergence and galloping are also checked during the optimization 

process to guarantee that structures are aerodynamically stable. This task is 

accomplished by using a numerical tool developed in-house that integrates: (i) the Finite 

Element Method (FEM) for modelling and analyzing the structure; (ii) the Real Coded 

Genetic Algorithm (RCGA) for determining optimum design variables that achieve 

minimum material cost of the structure; and (iii) the Discrete Phase Design Approach. 

The FEM and RCGA were adapted from HASSAN’s work (2013b, 2015), while the 

Discrete-Phase Design Approach was developed in this study. 

  The variables to be optimized are divided into two categories: main and 

secondary variables. The main variables are the independent design variables and 

consist of the following: number of stay-cables, deck I-girder inertia, concrete slab 

thickness, tower height above the deck, and tower cross-section longitudinal and 

transverse external dimensions. The secondary variables are dependent on the main 

variables values and are determined in Phases 1 to 3 of the Discrete-Phase Design 

Approach. Phase 1 determines the I-girder dimensions as a function of the I-girder 
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inertia that minimize the girder cross-sectional area. Phases 2 and 3 determine the stay-

cables area and pre-tensioning forces, respectively. Phases 4 to 7 involve determining 

natural frequencies and mode shapes, calculating displacements and internal forces due 

to live loads and buffeting wind loads based on the approach described and validated in 

Chapter 3, and checking the critical wind velocity of aerodynamic excitations. The 

Serviceability Limit State (SLS) and Ultimate Limit State (ULS) criteria are checked 

during Phase 8.  

In this chapter, the structural optimization of cable-stayed bridges described in 

Chapter 2 and based on the Discrete-Phase Design Approach, FEM and RCGA methods 

is extended. Three more discrete phases are added to the algorithm in order to: (i) 

perform free vibration analysis; (ii) evaluate critical wind velocities of aerodynamic 

effects; (iii) determine displacements and internal forces due to mean and buffeting 

wind loads. 

The chapter starts by introducing the design variables, the objective function to 

be minimized and the design constraints to be satisfied. In sequence, the design 

methodology is presented focusing on the three discrete phases that are added for 

considering the wind loads. In order to illustrate the procedure, a case study for the 

design optimization of a cable-stayed bridge is considered under different SLS 

parameters. 

The research significance of this study is described below: 

1. As described in Chapter 2, one of the main advantages of the Discrete-Phase 

Design Approach is the practicality of adding new phases for considering 

additional effects in the optimization of cable-stayed bridges. This is applied in 

this chapter by adding three new discrete phases to the approach for considering 

the wind effect. 

 

2. Three different basic wind velocities are considered in the study in order to 

assess the structure geometry and material cost behavior with the increase of the 

wind speeds. 

 

3. Comparisons between four load combinations is assessed for estimating the 

significance of considering the wind loads during the optimization process of 
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cable-stayed bridges. The most dominant load combination for different basic 

wind velocities are also assessed. The load combinations considered in these 

comparisons are: (i) dead and live loads; (ii) dead and wind loads; (iii) dead, live 

and wind loads; (iv) the load combinations (i), (ii) and (iii) are simultaneously 

considered. 

 

4. A correlation between the results considering different SLS parameters is 

performed in order to evaluate the influence of these parameters in deck rigidity 

and tower longitudinal stiffness relation as well as in the structure material cost.  

 

5. Structural optimization of cable-stayed bridges are completed with and without 

the consideration of critical wind velocities of aerodynamic effects to estimate 

the influence of these constraints in the optimization process. 

 

 

 

IV.2 DESCRIPTION OF NUMERICAL TOOL 

IV.2.1 DESIGN VARIABLES 

The vector of design variables �⃗⃗�  includes the main variables: 

�⃗⃗� = {𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6}−1                               (IV.1) 

where 𝑥1 is the total number of cables (2x4xN), N is the number of cables in half of the 

main span in one plan of cables; 𝑥2 is the deck I-girder inertia (I); 𝑥3 is the concrete slab 

thickness (tc); 𝑥4 is the tower height above the deck (Ha); 𝑥5 and 𝑥6 are the longitudinal 

(TL1) and the transversal (TL2) external dimensions of the towers cross-section, 

respectively. 

The secondary design variables are dependent on the main variables values. 

This way, instead of being considered as design variables to be optimized directly using 

RCGA, they are optimized by the Discrete Phase Design Approach. This leads to a 

large reduction in computational cost. The secondary variables are: 

1. I-girder deck dimensions: I-girder depth (D), top flange (b1, t1), bottom flange 

(b2, t2) and web (w) dimensions are calculated as a function of the main variable 

𝑥2 (I); 
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2. Stay-cable areas (Ai; i=1,4xN) which are calculated as a function of the design 

variables 𝑥1(N), 𝑥2 (I) and 𝑥3 (tc); 

 

3. Stay-cable pre-tensioning forces (Ti; i=1,4xN) which are calculated as a function 

of the design variables 𝑥1(N), 𝑥2 (I) and 𝑥3 (tc), and the secondary variables Ai. 

The total length of the bridge (L), the main span (L1), the side spans (L2), the 

tower height below the deck (Hb) and the deck width (B) are determined by the 

topography and traffic conditions, and thereby are considered as constants during the 

optimization process. Some of the main and secondary variables are presented in Figure 

IV. 1. 

 

Figure IV. 1: Main and secondary variables. 

 

 

IV.2.2 DESIGN CONSTRAINTS 

The constraints are defined to satisfy the Serviceability Limit State (SLS) and 

Ultimate Limit State (ULS) based on the Canadian Highway Bridge Design Code 

(CAN/CSA-S6-14). Some of the SLS that are not covered by CAN/CSA-S6-14 are 
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specified according to the AASHTO (2012) or the designer specifications. The design 

constraint functions (gj, j=1,10) at the Serviceability Limit State (SLS) are as follow: 

 Displacements at the deck due to dead and superimposed loads (𝛿DL+SL) as a 

function of the maximum displacement C1 specified by the designer: 

𝑔1 =
𝐶1×𝛿𝐷𝐿+𝑆𝐿

span length
− 1.0 ≤ 0                                                  (IV.2) 

 Displacements at the deck due to live loads (𝛿LL) according to the AASHTO 

(2012): 

         𝑔2 =
800×𝛿𝐿𝐿

span length
− 1.0 ≤ 0                                                   (IV.3) 

 Displacements at the deck due to wind loads (𝛿WL) as a function of the 

maximum displacement C3 specified by the designer: 

         𝑔3 =
𝐶3×𝛿𝑊𝐿

span length
− 1.0 ≤ 0                                                   (IV.4) 

 Displacements at the deck due to live (𝛿LL) and wind (𝛿WL) loads as a function 

of the maximum displacement C4 specified by the designer: 

         𝑔4 =
𝐶4×(𝛿𝐿𝐿+𝛿𝑊𝐿)

span length
− 1.0 ≤ 0                                                (IV.5) 

 Control of permanent deflections at the deck according to CAN/CSA-S6-14: 

𝑔5 =
𝑀𝐷𝐿

𝑆
+
𝑀𝑆𝐿

𝑆3𝑛
+
𝑀𝐿𝐿

𝑆𝑛
− 0.90𝐹𝑦 ≤ 0      (positive moment regions)            (IV.6) 

𝑔6 =
𝑀𝐷𝐿

𝑆
+
𝑀𝑆𝐿+𝑀𝐿𝐿

𝑆′
− 0.90𝐹𝑦 ≤ 0      (negative moment regions)            (IV.7) 

where 𝑀𝐷𝐿, 𝑀𝑆𝐿 and 𝑀𝐿𝐿 are the bending moments at SLS due to dead load, 

superimposed load, and live load; 𝑆, 𝑆′, 𝑆𝑛, 𝑆3𝑛 are the elastic section modulus of the 

steel section only, the steel section and reinforcement within the effective width of the 

slab, the steel girder and the concrete slab using a modular ratio n and 3n, respectively. 
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 Displacements at the towers due to dead and superimposed loads (𝜟DL+SL) as a 

function of the maximum displacement C7 specified by the designer: 

              𝑔7 =
𝐶7×Δ𝐷𝐿+𝑆𝐿

𝐻𝑡
− 1.0 ≤ 0                                                 (IV.8) 

where Ht is the total length of tower. 

 Displacements at the towers due to dead and superimposed loads (𝜟DL+SL), and 

live loads (𝜟LL) as a function of the maximum displacement C8 specified by the 

designer: 

              𝑔8 =
𝐶8×(Δ𝐷𝐿+𝑆𝐿+Δ𝐿𝐿)

𝐻𝑡
− 1.0 ≤ 0                                          (IV.9) 

 Displacements at the towers due to dead and superimposed loads (𝜟DL+SL), and 

wind loads (𝜟WL) as a function of the maximum displacement C9 specified by 

the designer: 

              𝑔9 =
𝐶9×(Δ𝐷𝐿+𝑆𝐿+Δ𝑊𝐿)

𝐻𝑡
− 1.0 ≤ 0                                     (IV.10) 

 Displacements at the towers due to dead and superimposed loads (𝜟DL+SL), live 

(𝜟LL) and wind (𝜟WL) loads as a function of the maximum displacement C10 

specified by the designer: 

              𝑔10 =
𝐶10×(Δ𝐷𝐿+Δ𝐿𝐿+Δ𝑊𝐿)

𝐻𝑡
− 1.0 ≤ 0                               (IV.11) 

 

The design constraint functions (gj; j=11,18)  at the Ultimate Limit State (ULS) 

are as follow: 

 Combined shear and moment at the deck according to CAN/CSA-S6-14: 

𝑔11 =
𝑉𝑓

𝑉𝑟
− 1.0 ≤ 0                                                        (IV.12) 

𝑔12 =
𝑀𝑓

𝑀𝑟
− 1.0 ≤ 0                                                        (IV.13) 
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𝑔13 = 0.727
𝑀𝑓

𝑀𝑟
+ 0.455

𝑉𝑓

𝑉𝑟
< 0                                             (IV.14) 

where 𝑉𝑓  is the factored shear force at ULS; 𝑀𝑓  is the factored bending moment at 

ULS; 𝑉𝑟  is the factored shear resistance; 𝑀𝑟  is the factored bending moment resistance. 

 

 Axial compression and bending at the deck according to CAN/CSA-S6-14: 

𝑔14 =
𝐶𝑓

𝐶𝑟
+
𝑈1𝑥𝑀𝑓𝑥

𝑀𝑟𝑥
+
𝑈1𝑦𝑀𝑓𝑦

𝑀𝑟𝑦
− 1.0 ≤ 0                                  (IV.15) 

where 𝐶𝑓  is the factored compressive force at ULS; 𝑀𝑓𝑥  and 𝑀𝑓𝑦  are the factored 

bending moment at ULS about x-axis and y-axis; 𝐶𝑟  is the factored compressive 

resistance; 𝑀𝑟𝑥 and 𝑀𝑟𝑦 are the factored bending moment resistance about x-axis and y-

axis; 𝑈1𝑥  and 𝑈1𝑦 are factors to account for moment gradient and second order effects. 

The combined axial force and bending moment are also verified for both deck 

and towers by considering interaction diagrams, providing the constraints 𝑔15 and 𝑔16, 

respectively. More details about the interaction diagram can be obtained in WIGHT & 

MacGREGOR (2009). 

 Biaxial loading at the towers according to CAN/CSA-S6-14: 

1

𝑃𝑟𝑥𝑦,𝑡𝑜𝑤𝑒𝑟
=

1

𝑃𝑟𝑥,𝑡𝑜𝑤𝑒𝑟
+

1

𝑃𝑟𝑦,𝑡𝑜𝑤𝑒𝑟
−

1

𝑃0,𝑡𝑜𝑤𝑒𝑟
                                    (IV.16) 

𝑔17 =
𝑀𝑓𝑥,𝑡𝑜𝑤𝑒𝑟

𝑀𝑟𝑥,𝑡𝑜𝑤𝑒𝑟
+
𝑀𝑓𝑦,𝑡𝑜𝑤𝑒𝑟

𝑀𝑟𝑦,𝑡𝑜𝑤𝑒𝑟
− 1.0 ≤ 0                                     (IV.17) 

where 𝑃𝑟𝑥𝑦,𝑡𝑜𝑤𝑒𝑟  is the factored axial resistance in compression with biaxial 

loading; 𝑃𝑟𝑥,𝑡𝑜𝑤𝑒𝑟  and 𝑃𝑟𝑦,𝑡𝑜𝑤𝑒𝑟 are the factored axial resistance in compression 

corresponding to 𝑀𝑟𝑥,𝑡𝑜𝑤𝑒𝑟 and 𝑀𝑟𝑦,𝑡𝑜𝑤𝑒𝑟, respectively; 𝑃0,𝑡𝑜𝑤𝑒𝑟  is the factored axial 

resistance in pure compression; 𝑀𝑓𝑥,𝑡𝑜𝑤𝑒𝑟 and 𝑀𝑓𝑦,𝑡𝑜𝑤𝑒𝑟  are the factored bending 

moment at ULS about x-axis and y-axis; and, 𝑀𝑟𝑥,𝑡𝑜𝑤𝑒𝑟 and 𝑀𝑟𝑦,𝑡𝑜𝑤𝑒𝑟  are the factored 

bending moment resistance about x-axis and y-axis. 
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 Stay-cables axial forces: 

𝑔18 =
𝑇𝑓

𝐹𝐵
− 0.50 ≤ 0                                            (IV.18) 

where 𝑇𝑓 is the factored axial forces at ULS, and 𝐹𝐵  is the breaking force. 

The design constraints (gj; j=19,23) related to wind limited amplitudes and 

instability phenomena are as follow: 

 Vortex shedding excitation critical velocity 𝑈𝑐𝑟,𝑣𝑜𝑟𝑡𝑒𝑥 (CNR-DT 207/2008): 

𝑔19 = 𝑈𝑐𝑟,𝑣𝑜𝑟𝑡𝑒𝑥 − 𝑈𝑚,𝑘 < 0                                        (IV.19) 

𝑈𝑐𝑟,𝑣𝑜𝑟𝑡𝑒𝑥 =
𝑓𝑖𝐵

𝑆𝑡
                                                 (IV.20) 

where 𝑈𝑚,𝑘 is the mean wind velocity for return period TR=k years; 𝑈𝑐𝑟,𝑣𝑜𝑟𝑡𝑒𝑥 is the 

critical velocity for the i-th mode of vibration with frequency 𝑓𝑖; and 𝑆𝑡 is the Strouhal 

number. 

 Single mode torsional flutter limitation: 

𝑔20 = 𝐴2
∗(𝑓𝜃,𝑖) −

4𝐼𝑚𝜉𝑠,𝜃,𝑖

𝜌𝐵4
< 0                                        (IV.21) 

where 𝐴2
∗(𝑓𝜃,𝑖) is a function of the torsional frequency mode and of the wind velocity; 

𝐼𝑚 is the mass moment of inertia; 𝜉𝑠,𝜃,𝑖   is the structural damping of the i-th torsional 

mode; 𝜌 is the air mass density. 

 Classical flutter critical velocity 𝑈𝑐𝑟,𝑓𝑙𝑢𝑡𝑡𝑒𝑟  given by Selberg equation 

(SVENSSON, 2012): 

𝑔21 = 𝑈𝑐𝑟,𝑓𝑙𝑢𝑡𝑡𝑒𝑟 − 𝑈𝑚,𝑘 < 0                                        (IV.22) 

𝑈𝑐𝑟,𝑓𝑙𝑢𝑡𝑡𝑒𝑟 = 2𝜋𝐵𝜂′𝑓𝐵 [1 + (
𝑓𝑇

𝑓𝐵
− 0.5)√

0.72𝑚𝑟

𝜋𝜌𝐵3
]                    (IV.23) 
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where 𝑓𝐵and 𝑓𝑇 are the first bending and the first torsional bending frequencies; 𝜂′ is a 

reduction factor function of the ratios 𝑓𝑇/𝑓𝐵 and (D+tc)/B (KLÖPPEL, 1967 apud 

SVENSSON, 2012); 𝑚 is the mass per length; and 𝑟 is the mass of gyration.  

 Galloping critical velocity 𝑈𝑐𝑟,𝑔𝑎𝑙𝑙𝑜𝑝𝑖𝑛𝑔: 

𝑔22 = 𝑈𝑐𝑟,𝑔𝑎𝑙𝑙𝑜𝑝𝑖𝑛𝑔 − 𝑈𝑚,𝑘 < 0                                        (IV.24) 

𝑈𝑐𝑟,𝑔𝑎𝑙𝑙𝑜𝑝𝑖𝑛𝑔 =
2𝑓𝐵𝐵

|
𝑑𝐶𝑧
𝑑𝛼
|
𝑆𝑐                                            (IV.25) 

where 
𝑑𝐶𝑧

𝑑𝛼
 is the first derivative of vertical force coefficient; and 𝑆𝑐  is the Scruton 

number. 

 Torsional divergence critical velocity 𝑈𝑐𝑟,𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒: 

𝑔23 = 𝑈𝑐𝑟,𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 − 𝑈𝑚,𝑘 < 0                                        (IV.26) 

 𝑈𝑐𝑟,𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 = √
−2𝐺𝐽𝑡

𝜌𝐵2
𝑑𝐶𝜃
𝑑𝛼

                                            (IV.27) 

where 
𝑑𝐶𝜃

𝑑𝛼
 is the first derivative of torsion force coefficient; 𝐺 is the shear modulus of 

the material; and 𝐽𝑡 is the torsional moment of inertia of the cross-section. 

 

IV.2.3 OBJECTIVE FUNCTION 

The objective of this optimization is to obtain the minimum material cost of 

deck, towers and stay-cables that attend all the ULS and SLS requirements. The 

objective function 𝐹(�⃗⃗� ) is defined as follow: 

𝐹(�⃗⃗� ) = 𝐶(�⃗⃗� )𝑑𝑒𝑐𝑘 + 𝐶(�⃗⃗� )𝑡𝑜𝑤𝑒𝑟𝑠 + 𝐶(�⃗⃗� )𝑐𝑎𝑏𝑙𝑒𝑠                   (IV.28) 

where �⃗⃗�  is the design variables vector, 𝐶(�⃗⃗� )𝑑𝑒𝑐𝑘, 𝐶(�⃗⃗� )𝑡𝑜𝑤𝑒𝑟𝑠 and 𝐶(�⃗⃗� )𝑐𝑎𝑏𝑙𝑒𝑠 are the 

material cost of deck, towers and cables for the design variables vector �⃗⃗� . The material 

costs are obtained from construction companies and RSMeans (2013). The deck costs 

are: $3,125/t of steel; $1,300/m
3
 of concrete; $2,400/t of reinforcement. For the towers 

the costs are: $1,200/ m
3
 of concrete and $2,400/t of steel. The stay-cables cost is 
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$7,650/t of strands. Coefficients obtained from RSMeans (2013) are also applied to the 

costs in order to reflect the specific costs of the city in which the cable-stayed bridge is 

located. 

 

IV.2.4 FINITE ELEMENT MODEL 

The finite element model uses three-dimensional frame elements to represent 

the deck and towers, and three-dimensional truss elements to represent the stay-cables. 

The deck is modelled using a single spine simulating the concrete slab and I-girders, 

similar to the approach adopted by WILSON et al.(1991), and later used by HASSAN 

et al. (2012, 2013a, 2013b). The stay-cable anchorages and deck spine are connected by 

massless rigid links to achieve the proper offset of cables from the centre line of the 

deck. 

The only source of non-linearity contemplated in this study is the sag effect, 

which is considered substituting the modulus of elasticity of stay-cables by an 

equivalent tangent modul us (Eq. IV.29) established by ERNST (1965). This is justified 

by: (i) the limited effect that was observed by WILSON et al. (1991), ADELI & 

ZHANG (1995) and HASSAN et al. (2012) when considering fully nonlinear analysis 

of cable stayed bridges; (ii) the large number of analysis to perform the optimization of 

cable-stayed bridges considering the action of dead, live and wind loads; (iii) the fact 

that this study reproduces the initial design stage. 

𝐸𝑒𝑞 =
𝐸𝑐𝑠

1+
(𝑤𝑐𝑠𝐻)

2A𝐸𝑐𝑠
12𝑇3

                                                   (IV.29) 

where Ecs is the cable material effective modulus of elasticity; A is the cross-sectional 

area; H is the horizontal projection of the cable; wcs is the weight per unit length of the 

cable; and T is the tension in the cable. 

 

IV.2.5 DESIGN METHODOLOGY 

The design methodology is based on the Discrete Phases Design Approach 

which is responsible for: (i) determining the value of the secondary variables; (ii) 
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calculating the loads due to dead, superimposed, live and buffeting wind loads; (iii) 

checking the ULS and SLS requirements, and calculating the objective function values. 

When only dead, superimposed and live loads are evaluated during the 

optimization process, the Discrete Phases Design Approach is composed by five design 

phases. By assessing buffeting wind loads as well, other three design phases are 

activated as described below. 

IV.2.5.1 PHASES 1 TO 4 

Phases 1 to 4 are described in detail in Chapter 2. 

IV.2.5.2 PHASE 5 

Phase 5 involves solving an eigenvalue/eigenvector problem to obtain the 

frequencies and mode shapes of the bridge. When the live loads are part of the load 

combination analysis, the uniformly distributed live load is converted to linear mass, 

which is taken into account in the mass matrix; otherwise this matrix is formed 

considering only the mass of deck, towers and cables.  

IV.2.5.3 PHASE 6 

In this work emphasis is given to bridge buffeting excitation and before 

proceeding to the calculation of wind loads due to atmospheric turbulence (see Phase 7) 

some other mechanisms which can generate dynamic response and instability are 

addressed in this phase. Although vortex shedding can induce vibration classified as 

limited amplitude response it can generate sharp resonances causing intolerable stresses 

or fatigue problems on structures if submitted to prolonged time to this type of event. 

On the other hand, galloping and flutter (single mode torsional and classical) are 

classified as divergent amplitude response, in which the self-excited forces lead very 

rapidly to large amplitude values. The torsional divergence is classified as a non-

oscillatory divergence that is characterized by a negative aerodynamic torsional stiffness 

(SIMIU & SCANLAN, 1996; BD 49/01-Part 3, 2001). These latter three phenomena 

cause instability and must be avoided.  
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Critical wind speeds related to each of these phenomena are calculated and 

compared to the mean wind velocity at the deck height for return period of TR years 

(for example, TR=500 as prescribed by CNR-DT 207/2008) to guarantee that the 

structure is aerodynamically stable. In the case of vortex shedding this would be a 

condition to avoid the need to further investigate the induced vibration and check for 

cross wind amplitudes but is adopted here as a simplified criterion for aerodynamic 

stability. 

IV.2.5.4 PHASE 7 

In Phase 7, equivalent static buffeting wind loads at the deck are calculated 

according to the theoretical equations developed by DAVENPORT & KING (1984). 

Equivalent static wind loads are those that provide the same values of peak load effects 

as the dynamic fluctuating wind loads. Mean wind loads at deck, towers and stay-

cables; and peak wind loads at deck and towers are applied to the complete FEM model 

in order to obtain the results in terms of displacements and internal forces. The peak 

wind loads at the towers are determined by calculating a gust factor (SOLARI 1987, 

1993a, 1993b). 

The cable-stayed bridge behavior due to turbulence induced excitation can be 

simulated by 6 modes of vibration DAVENPORT & KING (1984): the first symmetric 

and the first antisymmetric lateral, vertical and torsional mode shapes (see Figure IV. 2). 

Peak wind loads, with background and resonant components, are calculated as a 

function of:  

1. static aerodynamic forces and moment coefficient obtained from a sectional 

model test; 

2. flutter derivatives obtained from a dynamic sectional model test for calculating 

the aerodynamic damping ratios; 

3. spectrums of longitudinal and vertical turbulence velocities; 

4. aerodynamic admittance to relate the size of the gust and the structure; 

5. joint acceptance function to reproduce the capacity of the turbulent flow to 

excite the modes of vibration.  

The static coefficients and flutter derivatives used in the numerical tool are 

obtained from LIN et al. (2005) in which they provided static force coefficients for four 
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plate girder cross-sections, with deck width and I-girder depth (B/D) ratios equal to 4.0, 

6.7, 10.0, and 13.3. Flutter derivatives were also provided as a function of B/D ratio and 

reduced frequency of the mode shape being analyzed. The aerodynamic coefficients and 

flutter derivatives obtained from LIN et al. (2005) are provided in Appendix 5. 

 

Figure IV. 2: Deck mode shapes: (a) 1st symmetric vertical mode; (b) 1st antisymmetric 

vertical mode; (c) 1st symmetric lateral mode; (d) 1st antisymmetric lateral 

mode; (e) 1st symmetric torsional mode; (f) 1st antisymmetric torsional 

mode. 

The spectrums of longitudinal and vertical velocities are evaluated considering 

the spectrum of Harris (ESDU 74031, 1974) and the spectrum of Busch and Panofsky 

(HOLMES, 2015), respectively. The aerodynamic admittances are calculated according 
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to Davenport (1982) and MATSUDA et al. (1999). The joint acceptance is estimated 

according to DAVENPORT (1977 and 1982). 

To validate the equivalent static buffeting loads at the deck implemented in the 

numerical tool, a numerical-experimental correlation has been previously performed for 

the Prospect Verona Bridge in Maine, USA. The results from the cable-stayed bridge 

full aeroelastic model tested in The Boundary Layer Wind Tunnel Laboratory at 

Western University and provided by KING et al. (2005) were successfully compared to 

the results from the numerical procedure calculated using the numerical tool, as 

presented in Chapter 3. 

The background (σF̅′B,X
2 (f ∗), σF̅′B,Z

2 (f ∗) and σF̅′B,θ
2 (f ∗)) and resonant (σF̅′R,X

2 (f ∗), 

σF̅′R,Z
2 (f ∗) and σF̅′R,θ

2 (f ∗)) mean-square equivalent static forces adapted from 

DAVENPORT & KING (1984) and HOLMES (2015) are presented as follow: 

𝜎�̅�′𝐵,𝑋
2 (𝑓∗) = ∫ |χ𝑋(𝑓

∗)|2𝑆𝑄′𝑋,𝑗(𝑓
∗)
𝑈

𝐵
𝑑𝑓∗

∞

0
                             (IV.30.a) 

𝜎�̅�′𝐵,𝑍
2 (𝑓∗) = ∫ |χ𝑍(𝑓

∗)|2𝑆𝑄′𝑍,𝑗(𝑓
∗)
𝑈

𝐵
𝑑𝑓∗

∞

0
                             (IV.30.b) 

𝜎�̅�′𝐵,𝜃
2 (𝑓∗) = ∫ |χ𝜃(𝑓

∗)|2𝑆𝑄′𝜃,𝑗(𝑓
∗)
𝑈

𝐵
𝑑𝑓∗

∞

0
                             (IV.30.c) 

 

𝜎�̅�′𝑅,𝑋,𝑗
2 (𝑓0

∗) = |χ𝑋(𝑓
∗)|2𝑆𝑄′𝑋,𝑗(𝑓0

∗)
𝜋𝑓0
∗

4𝜉

𝑈

𝐵
                                  (IV.31.a) 

𝜎�̅�′𝑅,𝑍,𝑗
2 (𝑓0

∗) = |χ𝑍(𝑓
∗)|2𝑆𝑄′𝑍,𝑗(𝑓0

∗)
𝜋𝑓0
∗

4𝜉

𝑈

𝐵
                                  (IV.31.b) 

𝜎�̅�′𝑅,𝜃,𝑗
2 (𝑓0

∗) = |χ𝜃(𝑓
∗)|2𝑆𝑄′𝜃,𝑗(𝑓0

∗)
𝜋𝑓0
∗

4𝜉

𝑈

𝐵
                                  (IV.31.c) 

 

𝑆𝑄′𝑋,𝑗
(𝑓∗) = [(𝑞𝐵𝐶𝐹𝑋)

2
4 (
𝜎𝑢

�̅�
)
2 𝑆𝑢𝑢(𝑓

∗)

𝜎𝑢
2 + (𝑞𝐵

𝑑𝐶𝐹𝑋
𝑑𝛼
)
2

(
𝜎𝑤

�̅�
)
2 𝑆𝑤𝑤(𝑓

∗)

𝜎𝑤
2 ] |𝐽𝑗(𝑓

∗, 𝜂1, 𝜂2)|
2
   (IV.32.a) 

𝑆𝑄′𝑍,𝑗(𝑓
∗) = [(𝑞𝐵𝐶𝐹𝑍)

2
4 (
𝜎𝑢

�̅�
)
2 𝑆𝑢𝑢(𝑓

∗)

𝜎𝑢
2 + (𝑞𝐵

𝑑𝐶𝐹𝑍
𝑑𝛼
)
2

(
𝜎𝑤

�̅�
)
2 𝑆𝑤𝑤(𝑓

∗)

𝜎𝑤
2 ] |𝐽𝑗(𝑓

∗, 𝜂1, 𝜂2)|
2
    (IV.32.b) 

𝑆𝑄′𝜃,𝑗(𝑓
∗) = [(𝑞𝐵2𝐶𝐹𝜃)

2
4(
𝜎𝑢

�̅�
)
2 𝑆𝑢𝑢(𝑓

∗)

𝜎𝑢
2 + (𝑞𝐵2

𝑑𝐶𝐹𝜃
𝑑𝛼
)
2

(
𝜎𝑤

�̅�
)
2 𝑆𝑤𝑤(𝑓

∗)

𝜎𝑤
2 ] |𝐽𝑗(𝑓

∗, 𝜂1, 𝜂2)|
2
(IV.32.c) 

 

where 𝑋 is the along-wind direction; 𝑍 is the cross-wind direction; 𝜃 represents the 

torsional movements; 𝑓∗ = 𝑓𝐵/U̅ is the reduced frequency; U̅ is the mean wind velocity 

at the deck height;  SQ′X,j(f
∗), SQ′Z,j(f

∗) and SQ′θ,j(f
∗) are the power spectral density of 
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the mean square fluctuating generalized forces; |χX(f
∗)|2, |χZ(f

∗)|2 and |χθ(f
∗)|2 are 

the aerodynamic admittances; and ξ is the total (structural + aerodynamic) damping; 𝑞 is 

the dynamic wind pressure; 𝐶𝐹𝑋 , 𝐶𝐹𝑍 , 𝐶𝐹𝜃, 
𝑑𝐶𝐹𝑋

𝑑𝛼
, 
𝑑𝐶𝐹𝑋

𝑑𝛼
, 
𝑑𝐶𝐹𝜃

𝑑𝛼
 are the aerodynamic 

coefficients and their first derivatives; 𝑆𝑢𝑢(𝑓
∗) and  𝑆𝑤𝑤(𝑓

∗) are the spectrums of 

longitudinal and vertical turbulence velocities, respectively;  𝜎𝑢 e 𝜎𝑤 are the standard 

deviation of longitudinal and vertical fluctuations, respectively; |𝐽𝑗(𝑓
∗, 𝜂1, 𝜂2)|

2
 is the 

joint acceptance function. A detailed presentation of the equations used for calculating 

the peak wind loads due buffeting wind loads is found in Chapter 3. 

IV.2.5.5 PHASE 8 

Finally, displacements and internal forces due to dead and superimposed loads, 

live loads, mean and buffeting wind loads (obtained from Phases 3, 4 and 7, 

respectively), are checked against the design constraints presented in Equations IV.2 to 

IV.27. The objective function for minimum material cost is calculated, and penalties are 

applied if one or more requirements from SLS or ULS are not attended. 

 

IV.2.6 OPTIMIZATION TECHNIQUE 

When the number of variables to be optimized are significantly large, the 

search space becomes substantial making it impossible to obtain the optimal solution 

through direct search. In these situations, evolutionary algorithms, like Real Coded 

Genetic Algorithm (RCGA), are a good option because they are able to find a near 

optimum solution in a relatively short period of time (RAO, 2009; MICHALEWICZ et 

al., 2000; JACOBSON et al., 2015; KRAMER, 2017). The RCGA is effective for 

avoiding local optimum if the population is large enough so that the algorithm can 

explore different areas of the search space.  

The RCGA makes use of selection method to pick samples among all the 

population of solutions.  Mutation and crossover operators are applied to these selected 

samples in order to generate new ones along the generations. In the end of each 

generation, the population is ordered according to their objective function values, with 

the best solution staying at the top of the list, while the worst ones are eliminated to 

keep the total number of samples constant. Elitism is also considered by saving a few 
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best solutions to prevent them of being lost during the operations and to avoid extra 

computational time to recover previously eliminated solution. Throughout the 

generations and due to the operators applied, the samples start to convert to the same 

area of the search space where the global optimum is located. 

The RCGA finds the design variable vector �⃗⃗�  (Equation IV.1) which 

minimizes the objective function 𝐹(�⃗⃗� ) (Equation IV.28) subjected to the design 

constraints gj (j=1,23) presented in Equations IV.2 to IV.27.  

Each sample, from the initial population or obtained throughout the 

generations, has a design variable vector �⃗⃗�  that is evaluated by the eight phases of the 

Discrete Design Approach. In Phase 8 the objective function is calculated as follow: 

1. If the sample solution is feasible, all the design constraints are respected, the 

objective function is equal to Equation IV.28; 

2. If the sample solution is infeasible, at least one of the design constraint is 

violated, the objective function is given by the equation based on DEB (2000): 

 

𝐹(�⃗⃗� ) = 𝑓𝑚𝑎𝑥 + ∑ 𝑔𝑗(�⃗⃗� )
23
𝑗=1                                    (IV.33) 

where fmax is the fitness value of the worst feasible solution that has been observed.  

 

IV.2.7 CABLE-STAYED BRIDGE OPTIMUM DESIGN 

ALGORITHM 

The RCGA procedure for the structural optimization of cable-stayed bridges 

considering dead, live and wind loads are described below: 

Step 1: Define the constant geometry values: bridge total length (L), main span length 

(L1), tower height below the deck (Hb), and deck width (B). Define the lower and upper 

bounds of the design variables.  

Step 2: Define RCGA parameters: number of samples in the population (𝑁POP); number 

of generations (𝑁GEN); fitness value of the worst feasible solution (fmax); crossover and 

mutation operator parameters; number of samples to be saved for considering elitism 

(𝑁elitism).  
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Step 3: Define parameters for buffeting wind loads: basic wind velocity for SLS 

(𝑈0,𝑆𝐿𝑆), ULS (𝑈0,𝑈𝐿𝑆) and mean wind velocity at the deck height for aerodynamic 

stability checks (𝑈𝑚,𝑘); roughness length (𝑧0); and structural damping (𝜉𝑠). 

Step 4: Define the SLS and ULS load combination factors for dead, superimposed, live 

and wind loads. 

   GEN=0 

Step 5: Initialize the population by generating randomly 𝑁POP samples. For each one of 

the samples, the Discrete Phases Design Approach described in Section III.2.5 is 

performed, and its objective function value is calculated.  

Step 6: Sort the population by ordering  𝑁POP samples from the lowest to the highest 

objective function values.  

Step 7: Save 𝑁elitism fittest candidates to be added to the population of the next 

generation. 

   GEN=GEN+1 

Step 8: Apply crossover and mutation operators to samples from the previous 

generation to reproduce new samples that will compose the population of the current 

generation. For each one of the new samples, the Discrete Phases Design Approach 

described in Section III.2.5 is performed, and its objective function value is calculated.  

Step 9: Add the candidates from the previous generation to the new population starting 

by the fittest until this population achieve 𝑁POP samples. 

Step 10: Replace the samples with highest objective function values by the 𝑁elitism 

fittest candidates saved in Step 7, if they are no longer part of the new population 

provided by Step 9. 

Step 11: Sort the population by ordering  𝑁POP samples from the lowest to the highest 

objective function values. The lowest value is the fittest candidate to be the solution so 

far. 

Step 12: If GEN is equal to 𝑁GEN, deliver the solution. Go to Step 7, otherwise. 
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IV.3 CASE OF STUDY 

IV.3.1 CABLE-STAYED BRIDGE OPTIMUM DESIGN 

ALGORITHM 

A composite two I-girders cable-stayed bridge is optimized using the design 

algorithm described step by step in Section III.2.7. The bridge has deck width B=17m, 

with 15m of distance between the two main girders. The total length L=400m, main 

span L1=200m, and the two side spans L2=100m each. The tower height below the deck 

Hb=30m, and the distance between cable anchorages at the tower is 2m. The cross-

section of the tower is a hollow reinforced concrete box, and the thickness of its cross-

section is assumed to be equal to 20% of the external dimensions. Table IV. 1 presents 

the upper and lower bounds of the design variables. 

In Phase 1 of design described in Section III.2.5.1, three parameters have to be 

chosen according to the designer. This case of study is based on the limit of Class 3 

width-to-thickness ratio of cross-section elements (CAN/CSA-S6-14). A b1/ b2=0.75 is 

assumed, which was observed in a number of real bridges; the maximum ratio b2/ D is 

assumed to be 0.20. The compressive strength of concrete, the yield strength of 

structural steel and the breaking load of stay-cable strands are assumed to be equal to: 

𝐹𝑠𝑘 = 1.86𝐺𝑃𝑎 (𝐸𝑠 = 195𝐺𝑃𝑎),  𝑓′𝑐𝑘 = 30𝑀𝑃𝑎 (𝐸𝑐 = 25.6𝐺𝑃𝑎),and 𝑓𝑦 = 350𝑀𝑃𝑎 

(𝐸𝑠 = 200𝐺𝑃𝑎), respectively. 

Table IV. 1: Design variables: lower and upper bounds. 

Design variable Lower Bound Upper Bound 

N 6 12 

I (m
4
) 0.005 0.50 

tc (m) 0.25 0.30 

TL1 (m) 3.00 7.00 

TL2/ TL1 0.30 0.70 

Ha/L1(m) 0.05 0.25 

The constants of the design constraints are defined by the user and in this case 

study are assumed as: 𝐶1 = 5,000 (Eq. IV.2); 𝐶7 = 1,700 (Eq. IV.8); 𝐶8 = 𝐶9 = 𝐶10 =

500 (Eq. IV.9 to IV.11). The constants 𝐶3 (Eq. IV.4) and 𝐶4 (Eq. IV.5) are tested for 

two different values: (i) 800 that is the constant value when only live load is evaluated 



102 

 

(Eq. IV.3); (ii) and half of this value, 400, to assess the sensibility of the optimization to 

this parameter. 

The hourly mean basic wind velocity adopted for the ULS analysis considers a 

return period of 𝑇𝑅 = 100 years according to CAN/CSA-S6-14, once there is one span 

over 125m. The hourly mean basic wind velocity considered for calculating the critical 

velocities is equivalent to𝑇𝑅 = 500 years based on CNR-DT 207/2008. In the lack of a 

more specific guideline for the hourly mean basic wind velocity for SLS analyses, two 

different return periods were evaluated 𝑇𝑅 = 10 years and 𝑇𝑅 = 2 years. It should be 

mentioned that when the live loads are considered together with the wind loads, the 

recommended maximum wind velocity to be evaluated at SLS is 23m/s (EN 1991-1-

4:2005+A1:2010). Above this wind velocity, the vehicles may become instable causing 

overturning incidents (COOK, 2007). Approximated values for logarithm decrement are 

obtained from   EN 1991-1-4:2005+A1:2010. 

The cable-stayed bridge is assumed to be constructed in London, ON. Based on 

the RSMeans (2013), the city-specific factors to be applied to the materials costs 

presented in Section III.2.3 are 1.45 and 1.25 for concrete and steel respectively. 

Although the hourly mean basic wind velocity in London, ON for 𝑇𝑅 = 100 is 𝑈0,100 =

30.8𝑚/𝑠, two other basic wind velocities are considered in the analyses: 𝑈0,100 =

21.9𝑚/𝑠 referent to the city Clapleau – ON; and 𝑈0,100 = 42.2𝑚/𝑠 referent to 

Cardston – AB. Only one set of material costs and three different basic wind velocities 

(see Table IV. 2) are considered to evaluate the effect of increasing wind velocity in the 

process of structural optimization of cable-stayed bridges. The effect of considering the 

critical wind velocity of aerodynamic stability checks is also evaluated in this case 

study. In light of all the considerations mentioned above, six main cases of analysis are 

taken into account as described in Table IV. 3. The load combinations factors at ULS 

(CAN/CSA-S6-14) and SLS used in this case study are specified in Table IV. 4. 
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Table IV. 2: Hourly mean basic wind velocities adapted from CAN/CSA-S6-14. 

Basic Wind 

Velocity 

(m/s) 

SLS ULS 
Aerodynamic  

Instabilities 

𝑇𝑅 = 2 𝑇𝑅 = 10 𝑇𝑅 = 100 𝑇𝑅 = 500 

V0,1 13.4 17.2 21.9 25.3 

V0,2 18.3 23.0 30.8 35.5 

V0,3 23.0 23.0 42.2 48.1 

 

 

Table IV. 3: Main cases of analysis. 

Case 
SLS Return Period 

(years) 

𝐶3 and 𝐶4 
(Eq. IV.4 and IV.5) 

Aerodynamic  

Instabilities 

A1 
10 800 

✗ 

A2  ✓ 

B1 
02 800 

✗ 

B2  ✓ 

C1 
02 400 

✗ 

C2  ✓ 

 

 

Table IV. 4: Load factor combinations. 

Load Case 
ULS Factors SLS Factors 

DL LL WL DL LL WL 

DL +LL 𝛼 1.70 - 1.00 0.90 - 

DL +WL 𝛼 - 1.40 1.00 - 1.00 

DL +LL+WL 𝛼 1.40 0.45 1.00 0.90 1.00 
Notes: DL=dead and superimposed loads; LL=live loads; WL=wind loads. 

            𝛼: load factor provided by Table 3.3 of CAN/CSA-S6-14 depending on the type of material. 
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IV.3.2 RESULTS AND DISCUSSION 

IV.3.2.1 IMPORTANCE OF CONSIDERING DIFFERENT LOAD 

CASE CONFIGURATIONS IN THE OPTIMIZATION PROCESS 

Optimization of cable-stayed bridges are performed for case of analysis A1 

(𝑇𝑅,𝑆𝐿𝑆 = 10 years; 𝐶3 = 𝐶4 = 800) described in Table IV. 3. Three basic wind 

velocities V0,1, V0,2 and V0,3 defined in Table IV. 2 are considered and four load 

combinations are assessed:  

1. DL+LL case: dead, superimposed and live loads; 

2. DL+WL case: dead, superimposed and wind loads; 

3. DL+LL+WL case: dead, superimposed and live loads; 

4. Three Cases:  DL+LL, DL+WL, DL+LL+WL. 

Figure IV. 3.a summarizes and presents the material cost of the ten 

optimization analyses described above versus the basic wind velocities. The 

optimization that considers only dead, superimposed and live loads (DL+LL) are not 

dependent on the wind velocities, so those results are shown as constant in the graph.  

Figure IV. 3.b-d shows that for the lowest wind velocity V0,1, the Three Cases 

configuration presents the same material cost as DL+LL+WL case. For the wind 

velocity V0,2, DL +WL case and DL+LL+WL case represent 96.1% and 95.3% of the 

Three Cases material cost, respectively. And for V0,3, DL +WL case is equivalent to 

96.4% of the Three Cases material cost. Results show that for lower wind speeds there 

is more influence of live and wind loads combined together (DL+LL+WL case), but the 

effect of wind loads (DL+WL case) on the structure become more pronounced as wind 

speed increases. For the intermediary wind velocity V0,2, both DL+WL case and 

DL+LL+WL case are equally important for the final design. 

Overall, these analyses demonstrate not only the importance of considering the 

mean and buffeting wind loads during the structural optimization process, but also of 

considering the Three Cases load combinations simultaneously. 

 



105 

 

          

Figure IV. 3: Optimized material cost for distinct load combinations and different basic 

wind velocities. 
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IV.3.2.2 INFLUENCE OF EVALUATING DIFFERENT SLS 

PARAMETERS AND DECK RIGIDITY AND TOWER LONGITUDINAL 

STIFFNESS BEHAVIOR 

All results from this section are obtained considering the three cases load 

combinations (DL+LL, DL+WL, DL+LL+WL) as it was previously determined in 

Section III.3.2.1. The influence of evaluating different SLS parameters is investigated 

by optimizing the cases A1 (𝑇𝑅,𝑆𝐿𝑆 = 10 years; 𝐶3 = 𝐶4 = 800), B1 (𝑇𝑅,𝑆𝐿𝑆 = 2 years; 

𝐶3 = 𝐶4 = 800) and C1 (𝑇𝑅,𝑆𝐿𝑆 = 2 years; 𝐶3 = 𝐶4 = 400), previously described in 

Table IV. 3. 

Table IV. 5 presents the deck limiting constraints and the bridge material cost 

for nine cable-stayed bridges optimization analyses. The material cost from the most 

severe (A1) to the most bland (C1) case is reduced by 15.3%, 5.15% and 6.79% for the 

basic wind velocities V0,1, V0,2, and V0,3, respectively. For the cases A1 and B1, the 

limiting design constraint of the deck is the vertical displacements due to dead, live and 

wind loads. For case C1, the limiting constraint at the deck is no longer displacements, 

but constraints related to resistance. This is explained by the value of constants 𝐶3 and 

𝐶4, which are equal to 800 for cases A1 and B1, and equal to 400 for case C1. 

The relationship between deck rigidity and tower longitudinal stiffness for 

cases A1, B1 and C1 is presented in Figure IV. 4.(a). For all three cases, by increasing 

wind velocity from V0,1 to V0,2, there is an accentuated augmentation of deck rigidity 

while a small increase of tower longitudinal stiffness is observed. When varying the 

wind velocity from V0,2 to V0,3 the opposite behavior is perceived, a considerable 

increase of tower stiffness accompanied by a small increase of deck stiffness.  
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Figure IV. 4: (a) Relation between deck rigidity and tower longitudinal stiffness; (b), 

(c), (d) proportion of elements material cost for cases of analysis (A1), (B1), 

and (C1). 

 

 

  

Table IV. 5: Deck limiting design constraint and material cost for cases A1, B1 and C1. 

Wind  

(m/s) 
A1 B1 C1 

𝑔𝑖 Cost ($x10
6
) 𝑔𝑖 Cost ($x10

6
) 𝑔𝑖 Cost ($x10

6
) 

V0,1 0.029(𝑔4) 19.6 0.001(𝑔4) 17.4 0.226(𝑔14) 16.6 
V0,2 0.023(𝑔4) 23.3 0.021(𝑔4) 22.1 0.328

(𝑔15
)
 22.1 

V0,3 0.013(𝑔4) 28.0 0.001(𝑔4) 27.9 0.034
(𝑔15

)
 26.1 

Notes: V0,1, V0,2 and V0,3 according to Table IV. 2. 

 

 

 

 

V0,1 

V0,2 V0,3 
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In Figure IV. 4.(b-d), the inner circle corresponds to V0,1 while the exterior 

represents V0,3. These graphs show that the optimized solutions for V0,2 present the 

greater proportion of deck cost (≈70% of the total material cost) when compared to the 

other basic wind velocities. These observations can be explained by the connected 

behavior of deck rigidity and tower stiffness displayed in Figure IV. 4.(a). 

 

 

 

IV.3.2.3 INFLUENCE OF EVALUATING SUSCEPTIBILITY TO 

AERODYNAMIC EXCITATIONS 

The results for six cases of analysis described in Table IV. 3, considering (A2, 

B2, and C2) or disregarding the susceptibility to aerodynamic excitations (A1, B1, and 

C1) are presented in Figure IV. 5. For basic wind velocity V0,1, the same optimized 

structure is obtained with or without aerodynamic considerations, which infers that 

these wind speeds are too low to excite aerodynamic phenomena.  

 

 

Figure IV. 5: Material total cost optimized for the six main cases of analysis: A1, B1, 

C1, A2, B2 and C2. 
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For basic wind velocity V0,2, the optimized structures delivered for cases A1, 

B1 and C1 are susceptible to vortex shedding excitation. The optimized cable-stayed 

bridges provided by A2, B2 and C2 when compared to A1, B1 and C1 have a 

significant increase of tower longitudinal stiffness, varying between 40.4% and 56.7%, 

which reflects in the frequencies of vertical modes of vibration. The increase of material 

cost is equal to 9.6%, 6.7% and 6.3% for A2, B2 and C2, respectively. The geometry 

and dynamic properties of the optimized cable stayed bridges obtained for V0,2 are 

presented in Table IV. 6. 

 

Table IV. 6: Design variables, frequencies and damping ratios for optimized cable-

stayed bridges considering critical wind velocity V0,2. 

Element Variables 
Cases of Analysis for V0,2 

(A1) (A2) (B1) (B2) (C1) (C2) 

Towers 

Ha (m) 23.8 32.2 13.4 13.9 13.4 20.6 

Ht (m) 70.8 77.2 60.4 60.9 60.4 67.6 

TL1 (m) 3.39 4.49 3.20 4.44 3.20 4.74 

TL2 (m) 2.30 2.16 2.15 1.92 2.15 2.15 

Deck 

tc (m) 0.28 0.29 0.25 0.25 0.25 0.25 

D (m) 4.00 4.00 4.00 4.00 4.00 3.75 

b1 (m) 0.691 0.699 0.680 0.710 0.680 0.696 

t1 (m) 0.044 0.044 0.043 0.045 0.043 0.044 

b2 (m) 0.922 0.932 0.906 0.946 0.906 0.928 

t2 (m) 0.044 0.044 0.043 0.045 0.043 0.044 

w (m) 0.039 0.039 0.039 0.038 0.039 0.036 

Cables N 7 6 7 7 7 7 

1
st  

lateral 

bending 

mode 

f (Hz) 0.65 0.60 0.62 0.61 0.62 0.67 

𝜉𝑠 (%) 0.64 0.64 0.64 0.64 0.64 0.64 

𝜉𝑎 (%) 0.11 0.11 0.12 0.12 0.12 0.11 

𝜉𝑡 (%) 0.75 0.75 0.76 0.76 0.76 0.75 

1
st 

vertical 

bending 

mode 

f (Hz) 0.39 0.42 0.38 0.42 0.38 0.42 

𝜉𝑠 (%) 0.64 0.64 0.64 0.64 0.64 0.64 

𝜉𝑎 (%) 3.03 1.92 3.33 2.16 3.33 2.09 

𝜉𝑡 (%) 3.67 2.56 3.97 2.80 3.97 2.73 

1
st 

torsional 

mode 

f (Hz) 0.89 0.92 0.84 0.91 0.84 0.95 

𝜉𝑠 (%) 0.64 0.64 0.64 0.64 0.64 0.64 

𝜉𝑎 (%) 0.42 0.69 0.10 0.64 0.10 0.68 

𝜉𝑡 (%) 1.06 1.33 0.74 1.28 0.74 1.32 

Total Cost 

(x$1,000,000) 
23.337 25.802 22.058 23.644 22.058 23.531 

Notes: 𝜉𝑠: structural damping; 𝜉𝑎: aerodynamic damping; 𝜉𝑡 = 𝜉𝑠 + 𝜉𝑎: total damping; V0,1, V0,2 and V0,3 

according to Table IV. 2. 
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For basic wind velocity V0,3, the optimized structures provided by cases A1, B1 

and C1 are susceptible to classical flutter.  Cases A2, B2 and C2 give the same 

optimized cable stayed-bridge. This is explained by the fact that the limiting constraint 

is the critical velocity for classical flutter (𝑙5 = 8.1 × 10
−4, Eq. IV.23), which does not 

depend on the parameters that differentiate A2, B2 and C2. The increase in material cost 

varies between 4.30% (A1 to A2) and 10.8% (C1 to C2).  

 

 

IV.4 CONCLUSIONS 

In this study, the structural optimization of composite steel-concrete two I-

girder cable-stayed bridges is performed by using a numerical tool that combines a 

Discrete Phases Design Approach, Finite Element Model (FEM) and Real Coded 

Genetic Algorithm (RCGA). Six main variables – number of stay-cables, deck I-girder 

inertia, thickness of concrete slab, tower height above the deck, and tower cross-section 

external dimension – are optimized via RCGA with the objective of obtaining the 

minimum material cost that attend all the design constraints. Secondary variables that 

are directly dependent on the main variables – deck I-girder dimensions, stay-cables 

areas and pre-tensioning forces – are determined throughout the phases that compose 

the Discrete Phases Design Approach.  

The structural optimization considers dead and superimposed loads, live loads, 

mean and buffeting wind loads. The design constraints include SLS and ULS 

requirements, besides critical wind velocities of aerodynamic excitations. Three 

different hourly mean basic wind velocities are evaluated.  

The significance of considering wind loads in the optimization process varies 

depending on many factors: basic wind speed and topography at the construction site; 

design code load factors; restrictions to the maximum displacements applied to the deck 

and towers specified by the designer; etc. Although there is a great number of possible 

configurations, comparing material cost as well as the main design variables for the 

different cases of analysis, it is observed that the wind loads have an important role in 

the structural optimization. 
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Contrasting results for three separated load combinations (DL+LL, DL+WL or 

DL+LL+WL) and for all the combinations simultaneously (Three Cases) shows the 

importance of considering the former during the optimization process. Among the three 

separated load combinations, DL+LL+WL tends to be the most important combination 

for lower basic wind velocities while DL+WL is more significant for higher wind 

speeds. 

When comparing optimized cable-stayed bridge solutions for different SLS 

parameters, the cases with more severe restrictions provide higher values of material 

cost as expected. But most important, same relations between deck rigidity and tower 

longitudinal stiffness are observed with the increase of basic wind velocity, regardless 

of the SLS parameters adopted by the designer.  

The results also show the importance of considering the critical wind velocities 

of aerodynamic stability, especially for higher values of basic wind velocity. A 

maximum increase in material cost of 10.8% is observed when taking into account the 

aerodynamic design constraints during the optimization. 

Overall, the results show that when the structure is optimized without 

considering the wind loads, the structure tends to be more flexible and do not attend all 

the design requirements. In many cases of analyses, especially the ones with higher 

wind speeds, the final cable-stayed bridge optimized structure is obtained by 

considering not only dead, superimposed, live and wind loads, but also by considering 

restrictions to aerodynamic phenomena. 
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V. CONCLUSIONS AND RECOMMENDATIONS  

 

The aim of this thesis is to perform structural optimization of two I-girder steel 

concrete composite cable-stayed bridges under permanent and transitory loads, with 

focus on evaluating the influence of considering moving live loads and buffeting wind 

loads. Chapter I provided an overview about stay-cable bridges configurations and 

behavior, and literature review related to the optimization of this type of structure. The 

optimization procedure based on FEM, RCGA and Discrete-Phase Design Approach 

was first introduced in Chapter II, which consider permanent and moving live loads in 

the optimization process. In Chapter III, a correlation between displacements of 

theoretical and experimental approaches due to mean and buffeting wind loads was 

performed to validate the former approach. The theoretical approach, validated in 

Chapter III, was used in Chapter IV for considering the structural optimization of cable-

stayed bridges under the action of permanent loads, moving live loads, mean and 

buffeting wind loads. Items V.1 to V.3 summarize the main conclusions of each data 

chapter. 

The structural optimization of cable-stayed bridges presented in this thesis 

consists of a preliminary design. In order to perform the final design, some cases of 

analysis and design checks described in Item V.4 must be added to the numerical tool. 

Although the structural optimization delivers a preliminary design of cable-stayed 

bridge, the numerical tool has great contribution to the literature due to the evaluation of 

wind action. The comparisons presented in Chapter IV demonstrate that by disregarding 

the wind action (mean and buffeting wind loads, as well as critical velocities of the 

aerodynamic phenomena), there is great possibility of delivering a preliminary solution 

that will require reinforcements when wind tunnel test analysis are performed. 

The material costs of optimum cable-stayed bridge solutions obtained in this 

thesis could not be compared to the material costs of cable-stayed bridges in service, 

once the former consists of a preliminary design as previously explained. Another fact 

that should be mentioned is that the conclusions presented for the structural 

optimization along the thesis and summarized below depend on the lower and upper 

bounds adopted for the design variables and on the geometric values that were assumed 

constant. 
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V.1 STRUCTURAL OPTIMIZATION OF TWO I-GIRDER 

COMPOSITE CABLE-STAYED BRIDGES UNDER THE 

ACTION OF DEAD AND LIVE LOADS 

Chapter 2 introduces the Discrete-Phases Approach that has two main 

characteristics. First, the variables are divided into two categories: (i) main variables: 

number of stay-cables, I-girder inertia, concrete slab thickness, tower cross-section 

external dimensions; (ii) secondary variables: I-girder dimensions, stay-cable areas and 

pre-tensioning forces. While the main variables are considered as design variables to be 

optimized via RCGA, the secondary variables are optimized indirectly by discrete 

phases. Secondly, the way the Discrete-Phases Approach was implemented simplifies 

the addition of new phases to account for other effects.  

For considering the action of permanent and live loads, the Discrete-Phases 

Approach is composed of five phases: (i) Phase 1 determines I-girder dimensions to 

minimize the cross-section area; (ii) Phase 2 calculates stay-cables cross-sectional areas; 

(iii) Phase 3 determines stay-cables pre-tensioning forces, displacements and internal 

forces due to dead loads; (iv) Phase 4 estimates displacements and internal forces of the 

bridge under the action of live loads; and (v) Phase 5 combines the results from Phases 

3 and 4 to check if they satisfy the ULS and SLS criteria.  

Two design objectives were tested: (i) lightest deck mass; (ii) lowest material 

cost. Three load cases were considered: (i) dead and truck plus lane live loads; (ii) dead 

and lane live loads; (iii) dead load. The following conclusions can be drawn from this 

chapter: 

(i) The displacements obtained for the optimal solution in both deck and towers 

had very small values, demonstrating the efficiency of the design performed 

by the Discrete-Phases Design Approach together with RCGA and FEM. 

 

(ii) For the lightest deck mass as objective function, the tower cross-section 

dimensions tended to reach their upper bounds in order to provide a very 

rigid tower. The tower height above the deck also tended to reach its upper 

bound value to increase the angle of inclination of stay-cables, and 

consequently the capacity of supporting the deck. 
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(iii) The displacements of both deck and towers approached the limiting 

constraints of all optimal solutions that considered deck mass as the 

objective function. This allowed the construction of curves that relate deck 

rigidity, towers stiffness and stay-cables mass and can be used for any type 

of deck and tower cross-sections. 

 

(iv) Stay-cables mass increase/decrease with an increase/decrease of deck mass, 

once the stay-cable cross-sectional areas were determined using a continuous 

beam FEM model of the deck. 

 

(v) By considering the truck in live load analysis, the deck mass value increased 

up to 12% when compared to optimum solutions that only consider 

uniformly distributed live load. These results demonstrate the importance of 

considering both truck and uniformly distributed live loads in the 

optimization process. 

 

(vi) When material cost was considered as the objective function, the optimal 

solutions could not be directly compared to the ones for the lightest deck 

mass. Despite this, when the solutions present analogous tower cross-

section, their material cost differs by less than 5%. 

 

 

 

V.2 COMPARISON BETWEEN THE THEORETICAL AND 

EXPERIMENTAL WIND RESPONSES OF A FULL 

AEROELASTIC MODEL TEST OF A CABLE-STAYED 

BRIDGE 

A comparison between the wind response of a cable-stayed bridge predicted by 

theoretical and experimental approaches was performed. In the theoretical approach, 

buffeting equivalent static forces due to turbulent wind flow were calculated taking into 

account static force coefficients provided by the static sectional model test, and other 

parameters such as gust spectral density, aerodynamic admittance, and joint acceptance 

function. Wind loads were then applied to the finite element model of a cable-stayed 
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bridge case study to obtain mean and peak displacements of the deck and towers. These 

results were compared to the corresponding displacements obtained from the 

experimental approach, i.e. the full aeroelastic model test of the same bridge.  

Some sources of uncertainties that can  explain the differences in results 

between the two approaches were identified: (i) the theoretical vertical turbulence 

intensity profile could not be checked against the experimental one; (ii) in the lack of 

flutter derivatives values provided by dynamic sectional model tests, the theoretical 

approach considered approximated aerodynamic damping ratio equations; (iii) the 

theoretical approach also considered approximated aerodynamic admittance functions, 

which are naturally taken into account by the experimental approach; and (iv) unlike the 

theoretical approach, the experimental approach considered the features of the terrain 

and was able to identify other phenomena like vortex shedding and flutter. Despite the 

uncertainties summarized above, the theoretical-experimental correlations presented in 

Chapter 3 were very good for rotations, and more than satisfactory for drag and lift 

displacements at the deck. The correlations showed that the theoretical approach overall 

can successfully estimate the displacements of the experimental approach. 

 

 

V.3 STRUCTURAL OPTIMIZATION OF TWO I-GIRDER 

COMPOSITE CABLE-STAYED BRIDGES UNDER THE 

ACTION OF DEAD, LIVE AND WIND LOADS 

As suggested by the bibliography presented in Chapter 1, the objective of 

Chapter 4 was to cover a gap in the literature, which is the consideration of buffeting 

wind loads during the optimization process of cable-stayed bridges. The structural 

optimization of steel-concrete composite I-girders cable-stayed bridges under the action 

of permanent loads, live loads, mean and peak buffeting wind loads was performed 

through the numerical tool used in Chapter 2 that is based on FEM, RCGA and 

Discrete-Phases Approach. In order to account for the wind effect, three new phases 

were added to the Discrete-Phases Approach: (i) for performing free vibration analysis; 

(ii) for determining displacements and internal forces due to mean and peak buffeting 

wind loads; and (iii) for estimating the critical wind velocities for aeroelastic 

phenomena.  
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A cable-stayed bridge case of study was optimized for obtaining the lowest 

material cost for the structure. Three basic wind velocities were evaluated, and different 

SLS parameters were assessed. Three load combinations were considered: (i) dead and 

live loads (DL+LL); (ii) dead, mean and buffeting wind loads (DL+WL); (iii) dead, 

live, mean and buffeting wind loads (DL+LL+WL). The conclusions that can be drawn 

from this chapter are: 

(i) Discrete-Phase Design Approach’s advantage related to the practicality of 

incorporating new phases to account for other effects has been verified. 

 

(ii) The results showed that the load combinations DL+LL+WL and DL+WL 

tend to be the most critical case for lower and higher wind velocities, 

respectively. This demonstrates the importance of considering wind loads 

even for the lowest value of basic wind speed (V0,1). 

 

(iii) The same relations between deck rigidity and tower longitudinal stiffness 

were observed with the increase of basic wind speed, independently of the 

SLS parameters adopted for the structural optimization process.  

 

(iv) The results demonstrated that by considering critical wind velocities of 

aerodynamic phenomena as constraints, the material cost increased up to 

10.8%, demonstrating the relevance of these constraints in the optimization 

process. 

Overall, this thesis contributes by providing a new procedure for structural 

optimization of cable stayed-bridges based on FEM, RCGA, and Discrete-Phases 

Design Approach. This procedure simultaneously reduces the number of design 

variables, and facilitates future implementation of additional load cases. Moreover, this 

thesis demonstrated the significance of considering truck live loads, the importance of 

evaluating buffeting wind loads and assessing critical wind velocities for aeroelastic 

phenomena. 
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V.4 RECOMMENDATIONS FOR FUTURE RESEARCH  

For future research, the following suggestions are made in order to complement 

this study: 

 Add a new phase to the Discrete-Phase Design Approach to calculate the loads 

due to vortex shedding excitation, instead of considering its critical velocity as a 

design constraint. 

 Add new phases to the Discrete-Phase Design Approach for considering seismic 

analysis and to evaluate construction stages. 

 Account for the dynamic interaction vehicle-structure. 

 Account for the fluid-structure interaction. 

 Account for creep and shrinkage of concrete. 

 Account for fatigue analysis. 

Additionally, other parameters can be included to: 

 Perform structural optimization for longer spans of cable stayed bridge, with 

different proportions of main and side spans. 

 Consider different number of stay-cables per spans. 

 Consider different tower cross-sections along the height and consider the 

thicknesses of the hollow concrete box cross-section as design variables. 

 Consider different deck I-girder inertia of deck cross-section along the bridge 

length.  
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APPENDICES 

 
APPENDIX.1 : EXAMPLES OF CABLE-STAYED BRIDGES 

CONSTRUCTED IN THE LAST 40 YEARS. 

 

Table A1. 1: Concrete cross-section cable-stayed bridges (SVENSSON, 2012). 

Cross-section Bridge Name Country Year  Main span (m) 

Thin concrete 

beams 

Diepoldsau Bridge Switzerland 1985 97 

Evripos Bridge Greece 1993 215 

2 concrete 

girders 

River Leven Bridge Scotland 1995 115.2 

East Huntington Bridge USA 1985 274 

Rosario-Victoria Bridge Argentina 2000 330 

Helgeland Bridge Norway 1991 425 

Box girder 

Brotonne Bridge France 1977 320 

2
nd

 Panama Canal 

Bridge Panama 2004 420 

Barrios de Luna Bridge Spain 1983 440 

Skarnsundet Bridge Norway 1991 530 
 

 

Table A1. 2: Steel cross-section cable-stayed bridges (SVENSSON, 2012). 

Cross-section Bridge Name Country Year  Main span (m) 

Box girder 

Alamillo Bridge Spain 1992 200 

Rhine River at Ilverich Bridge Germany 2002 287 

Rhine River Wesel Bridge Germany 2009 335 

Sava at Ada Bridge Serbia 2011 376 

 St. Nazaire Bridge France 1975 404 

Tatara Bridge Japan 1999 890 

Sutong Bridge China 2008 1088 

Russki Bridge Russia 2012 1104 

2 box girders Stonecutters Bridge China 2009 1018 
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Table A1. 3: Composite steel-concrete cross-section cable-stayed bridges (SVENSSON, 

2012; PEDRO & REIS, 2016) 

Cross-section Bridge Name Country Year Main span (m) 

2 plate girders 

Heinola Bridge Finland 1994 165 

Elbe River Bridge Germany 2008 192 

Burlington Bridge USA 1993 201 

Quincy Bridge USA 1987 274 

Cape-Girardeau Bridge USA 2004 350 

Sunshine Skyway Bridge 

Composite alternative 
USA 1982 366 

Industrial Ring Road Bridges Thailand 2006 398 

Nanpu Bridge China 1991 423 

Second Severn Crossing 

Bridge 
South Wales 1996 456 

Alex Fraser Bridge Canada 1986 465 

Arthur Ravenel Bridge USA 2005 471 

John James Audubon Bridge USA 2011 482.5 

Rion-Antirion Bridge Greece 2005 560 

Erqi Yangtze River Bridge China 2011 616 

3 plate girders Hooghly Bridge India 1992 457 

4 plate girders 
Baytown Bridge USA 1995 381 

Ting Kau Bridge Hong Kong  1998 475 

2 box girders 

Xupu Bridge China 1997 590 

Yangpu Bridge China 1993 602 

Queensferry Crossing Bridge Scotland 2017 650 

Truss deck 

Karnali Bridge Nepal 1993 325 

Mercosur Bridge Venezuela - 360 

Oresund Bridge 
Sweden-

Denmark 
2000 490 

Hybrid  Baluarte Bridge Mexico 2013 520 
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APPENDIX.2 I-GIRDER DIMENSIONS FOR WIDTH-TO-

THICKNESS LIMIT RATIO OF CLASS 3 IN ORDER TO 

MINIMIZE THE CROSS-SECTION AREA. 

 

 

Figure A2.  1: I-girder depth as a function of the Class 3 I-girder inertia. 

 

 

Figure A2.  2: Bottom flange width as a function of the Class 3 I-girder inertia. 

 

 

Figure A2.  3: Web thickness as a function of the Class 3 I-girder inertia. 
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APPENDIX.3 I-GIRDER DIMENSIONS FOR WIDTH-TO-

THICKNESS LIMIT RATIO OF CLASS 2 IN ORDER TO 

MINIMIZE THE CROSS-SECTION AREA. 

 

 

Figure A3.  1: I-girder depth as a function of the Class 2 I-girder inertia. 

 

 

Figure A3.  2: Bottom flange width as a function of the Class 2 I-girder inertia. 

 

 

Figure A3.  3: Web thickness as a function of the Class 2 I-girder inertia. 
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APPENDIX.4 FINITE ELEMENT MODELLING OF 

CONCRETE-STEEL COMPOSITE TWO I-GIRDERS 

DECK 

 
 

Figure A4. 1: Finite element modelling of concrete-steel composite two I-girders deck 

according to WILSON et al. (1991). 

 

The composite steel-concrete deck modelled as a spine is positioned at the 

concrete slab elevation to provide the correct geometry of the model. Two horizontal 

rigid links, both with length equal to the half distance between I-girders, are considered 

to give the correct offset of the stay-cables. In addition, two vertical links with length 

equal to the distance between the shear centre and the centroid are considered in order 

to provide the proper torsional and transversal behavior of the deck (WILSON et al., 

1991). The stay-cables anchorages at the deck are positioned at the connection of the 

horizontal and vertical rigid links. Translational masses and rotational masses are 

applied to the model in order to calculate the mass matrix to be used in the dynamic 

analysis. 
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APPENDIX.5 AERODYNAMIC COEFFICIENTS AND 

FLUTTER DERIVATIVES 

 

 

 

Figure A5. 1: Geometry of plate girder section model evaluated by LIN et al. (2005). 

 

 

 

 

 

Figure A5. 2: Drag coefficients (LIN et al., 2005).  
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Figure A5. 3: Lift coefficients (LIN et al., 2005).  

 

 

 

 

 

 

Figure A5. 4: Torsional coefficients (LIN et al., 2005).  
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Figure A5. 5: Flutter derivative H1* (LIN et al., 2005).  

 

 

 

 

Figure A5. 6: Flutter derivative A2* (LIN et al., 2005). 

 
 


