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Chapter 1
Introduction

This chapter describes the main subjects discussed in this work. It contains
the motivation, objectives and contributions of the presented research. The thesis
focuses on power system stability and control, small signal stability, linear analysis,

modal analysis and transport delay.

1.1 Context

Traditionally, power system stability control strategies mostly use local informa-
tion. The measuring delays associated to local information are usually very small
(less than 10 ms), so these delays are commonly ignored in power system stability
analysis and controllers design.

The general configuration of a modern power system, with huge dimensions,
presents power sources and loads widely dispersed. Generators and loads may be
hundreds of miles apart. As a result, the number of bulk power exchanges over long
distances has increased. Usually, a distributed control scheme is adopted, which
includes power system stabilizers (PSSs) and automatic voltage regulators (AVRs).
The independent local design may result in an inappropriate coordination between
the local controllers, causing serious problems, such as inter-area oscillations. [1]

The rapid development of phase measurement units (PMUs) and wide area mea-
surement systems (WAMSs) has brought more attention to coordinated stability
control that uses remote sensing given by WAMS/PMU. The time delay in wide
area measurement can be significant and cannot be ignored. So it is very important
to evaluate the impact of those time delays on power system stability analysis and
controls.

In order to obtain accurate results in computational simulations, the time delay

related to remote sensing must be modelled. In the Laplace domain, the transport



delay can be expressed as e‘s'ﬂ. However, historically, it is represented by a rational
transfer functions as Bessel functions, Padé approximations, Laguerre polynomials,
hyperbolic functions, etc [2H4].

The Brazilian Interconnected Power System (BIPS), as other power systems
worldwide, is constantly subjected to a wide range of disturbances. Whether large
or small disturbances, the BIPS may be able to react to adverse conditions and
operate satisfactorily.

The optimal use of power resources presented in different areas all over the
country is relevant for an economic and reliable operation of the BIPS. In this
context, the interconnection of electrical subsystems plays an important role.

For an adequate, continuous and secure supply of electrical energy, it becomes
necessary improving power system analysis tools. The results provided by such tools
drive the planning and operation decisions and their accuracy helps to minimize the
risks of failure. The higher penetration of PMUs and the increasingly widespread
WAMS bring benefits to the system observability and improve the possibilities of us-
ing remote signals in the control schemes. However, stability studies should consider
remote signals in order to allow a precise evaluation of system performance.

Modal analysis has a special contribution on small-signal studies because it car-
ries structural information about the electrical system, such as badly damped modes,

or the best location for installing a specific control.

1.2 Research Motivations

The main motivation of this research is the increasing development of commu-
nication structure in electrical systems all over the world. This development may
change the system operation and control paradigms, as it brings a range of new pos-
sibilities. Furthermore, there is a lack of methodologies and computational tools for
systems that use remote signals, especially focused on small-signal stability. In this
way, it is difficult to analyze alternative solutions based on remote sensing, including

the use of remote signals for damp local and inter-area oscillations.

1.3 Objectives and Contributions

The use of remote signals for stability control is not a practice currently adopted
by power system planners. However, with the growing development of communica-
tion structure, this is a promising future alternative. In order to obtain accurate

results, stability analysis and controller design methods must take into account

"Where: s is the complex frequency and 7 is the time delay.



time delays and practical tools should be developed to study the dynamic behavior
of time-delayed power systems.

This work presents the main concepts of small signal stability and proposes new
tools for modal analysis, considering the presence of transport delays in remote
control schemes. In addition, methods and corrective measures that can be used to
increase the damping factor of power system oscillations are evaluated, taking into
account the setting of controllers that use remote signals.

The mathematical development of modal analysis tools for systems with remote
signals is the main contribution of this thesis. The employed theory is based on
frequency modelling methods that allows a more precise representation of transport
delays and considers higher frequencies modes, historically ignored in electrome-
chanical stability studies [5].

The development of modal analysis tools for systems with transport delays rep-
resent an advance in the state of art of power system stability and control. With the
proposed approach, it is possible to determine better settings to controllers based

on remote signals, improving the dynamic behavior of power systems.

1.4 Thesis Outline

This thesis is divided in chapters as follow:

e Chapter 1 — Introduction: The main topics of this research are described,

including the motivations and contributions of this thesis;

e Chapter 2 — Modal Analysis Concepts: The basic concepts of power system

stability are reviewed, focusing on small-signal stability;

e Chapter 3 — Frequency Domain Modelling: The current state of art related
to the power system modelling is presented, including the full transport delay

modelling and modal analysis methodology for systems with remote signals;

e Chapter 4 — Tests and Results: Results obtained using the methods and com-
putational tools developed in this thesis are presented. Initially, a two-area
system is exploited in a tutorial and detailed analysis. After that, results for

the Brazilian Interconnected Power System are presented;

e Chapter 5 — Conclusion: Conclusions and proposals of future work are ad-

dressed.



Chapter 2
Modal Analysis Concepts

The main goal of this chapter is to review the basic concepts related to power
system stability analyses, focusing on the rotor angle stability. Transient and small-

signal stability analyses are described.

2.1 Introduction

A system is a set of physical elements acting together and realizing a common
goal. Usually, mathematical models adopted to represent the behaviour of a system
do not contain a universal character, but rather reflect some characteristic phenom-
ena which are of interest [6].

A dynamic systems modelled by ordinary differential has equations of the form:

z = F(x) (2.1)
T = Ax (2.2)

Equation describes a nonlinear system, while describes a linear system.
F(x) is a vector of nonlinear functions and A is a square matrix and @ is the state
vector and & is the time derivative of .

A curve z(t) in the state space containing system states values in consecutive
time instants is referred to as the system trajectory. A trivial one-point trajectory
is referred to as the equilibrium point if all partial derivatives are zero, i.e., £ = 0.
According to and (2.2)), the equilibrium point, denoted by Z, satisfies the

following equations [6]:

F(2) =0 (2.3)
A& =0 (2.4)

A nonlinear system may have more than one equilibrium point because nonlinear



equations may have generally more than one solution. In the case of linear systems,
according to the Cramer theorem concerning linear equations, there exists only one
uniquely specified equilibrium point & = 0 if and only if the matrix A is non-singular
(detA #0) [6].

Power system stability has three major areas: voltage, frequency and angular
stability, as illustrated in Figure This work focuses on angular stability, more

specifically on small signal stability.

Power System
Stability

Rotor Angle
Stability

Stability

Frequency
Stability

v v

. . Large Small
Smal|b$||_gna| Trans_ugnt Disturbance Disturbance
Stability Stability Voltage Stability Voltage Stability

Figure 2.1: Stability Areas

2.2 Transient Stability

According to [7], transient stability is the ability of the power system to maintain
synchronism when subjected to a severe transient disturbance such as a fault on
transmission lines, loss of generation, or loss of a large load. In order to analyze the
system stability, the dynamic behavior of the rotor angles and rotor speed of power
plants are observed [T, [§].

In general, the stability of nonlinear systems depends on the size of the distur-
bance which the system is subjected to. A nonlinear system may be stable for a
small disturbance, but unstable for a large one. Critical disturbance is the name
given for the disturbance in which a nonlinear system is still stable [6].

Several factors may influence the transient stability of power systems, including
the generators loading, the fault-clearing time, the post fault system topology and

the system inertia [7].



2.2.1 Non-linear System Modelling

A nonlinear dynamic system can be generally described by the following set of

algebraic and differential equations:

i = F(x,u) (2.5)
Yy = G(:I}, 'U') (2.6)

While a linear dynamic system model can be described by:

= Ax + Bu (2.7)
y=Cx+ Du (2.8)

The most practical available method for transient stability analysis is the time-
domain simulation in which the nonlinear differential equations are solved using
numerical techniques [7, 9.

The differential equations to be solved in power system stability analysis are non-
linear ordinary differential equations , where the initial values of state variables

are known [7].

i = f(z, 1) (2.9)

As previosly said, x is the state vector of n dependent variables, and ¢ is the
independent variable (time). The main goal of solving numeric equations for dy-
namics purposes is to solve x as a function of ¢, with the initial values of @ and ¢
equal to &g and tg, respectively [7, [10].

There are many numerical methods which solve the differential equations as
. As examples, it is possible to quote the Euler, Runge-Kutta and Trapezoidal
methods [7, [10].

2.3 Small-Signal Stability

The stability of linear systems is entirely independent of the input. The state of
a stable system with zero input will always return to the origin of the state space
[7, 10].

In contrast, for nonlinear systems, the stability depends on the type, the mag-
nitude of the input and the initial state 7, 10].

Usually, the stability of a nonlinear system is classified into three major cat-

egories, depending on the region of state space in which the state vector ranges

[7]:



e Local stability;
e Finite stability;
e Global stability.

The system is said to be a local stable system if, when subjected to a small
perturbation, it remains into a small region surrounding the equilibrium point. If
the system returns to the original equilibrium point as ¢ increases, the system is
called a asymptotically stable system. If the state of a system remains within a
finite region R, the system is said to be a Finite Stable. And, finally, the system is
called Global Stable if R includes the entire finite space [7].

2.3.1 System Model Linearization

In order to investigate the small-signal stability of an general system, (2.3)) and
(2.4) can be linearized around an equilibrium point (xo, ue) as given by ([2.10)

7, 19, [10].
.’D.() = F(CU(), U()) =0 (210)

Considering a small perturbation on the initial state of the system:

T =z + Ax (2.11)
u=ug+ Au (2.12)

Therefore, according to Equation ({2.3)):

T = a9+ Ax = f[(xo + Ax), (uo + Au)] (2.13)

Once the perturbation is assumed to be small, the nonlinear functions can be
expressed in terms of Taylor’s series expansion with terms involving second and

higher orders of Az and Awu neglected. Then, for example, one arbitrary line of

(2.13) turns into:

i = di0 + Ady = fi[(xo + Ax), (uo + Au)] =

0fi ofi
fi(@o, wo) + B Azy+ ...+ aanl"n (2.14)
0fi Ofi
+8u1 Auyp + ...+ 8urAur



Since &;0 = fi(xo, wo), then:

Az; = A Az, A Au, 2.15
x . T+ +(9xn x+au1 uy + +8u,, U ( )
With i = 1,2, ..., n. In the same way:
dg; dg; Jg; dg;
Ay = I ng 4o+ Dng, + DI a4+ DA, (2.16)
8331 a!L‘n 8u1 aur
Withi =12, ..., m.
Therefore, the linearized equations derived from ({2.3)) are:
At = AAx + BAu (2.17)
Ay =CAxz + DAu (2.18)
Where:
Fof o
oz Oz,
— | 8fi Ofi
A= |2 0% (2.19)
% %
Loz, 7 Oxp4
Fon R
our 77 Oup
— | 9fi Ofi
B= |0 . (2.20)
% %
LOuy 7 Oupd
- og. 5017
ox1 Oxn
— | 94 0gi
C=|zE .. & (2.21)
9gm 99m
L Oz1 St Oxp A




- 991 9917
oul o Ou
— | 99 9gi
D=|% . O (2.22)
Ogm 9gm
L Ouq St Ouye

Once small-signal stability is being analyzed, the partial derivatives are related

to the equilibrium point. For (2.17) and ({2.18):

e Ax is the state vector of dimension n;

e Ay is the output vector of dimension m;

e Aw is the input vector of dimension r;

e A is the state matrix of size n X n;

e B is the control or input matrix of size n x r;
e (' is the output matrix of size m x n;

e D is the feedforward matrix. This Matrix defines the proportion of input

which appears directly in the output, size m x r;

2.3.2 Eigenvalues and Eigenvectors
Taking the Laplace transform of (2.17) and (2.18]), it is possible to obtain the
state equations in the frequency domain:
sAx(s) — Axz(0) = AAxz(s) + BAu(s) (2.23)
Ay(s) = CAx(s) + DAwu(s) (2.24)

Which can be represented by the block diagram shown in Figure [2.2]



Y
O

Au + Ax Ax + X Ay
—>»| B (1/s)l » C

Figure 2.2: Block Diagram - state equations.

Since the representation is on the transfer function of the system, the initial
conditions Az(0) are assumed to be zero.

In order to obtain the system eigenvalues, (2.23) can be rearranged, resulting in:

sAx(s) — AAx(s) = BAu(s) (2.25)
(sI — A)Az(s) = BAu(s) (2.26)
Az(s) = (sI — A)"'BAwu(s) (2.27)

Using ([2.27)) in Equation (2.24)) one can obtained ([2.28)) and (2.29):
Ay(s) = C(sI — A)'BAu(s) + DAu(s) (2.28)

Ay(s) = (C(sI — A)"'B + D)Au(s) (2.29)

The system poles are given by the roots of (2.30)):

det(sI — A) =0 (2.30)

Equation ([2.30)) is known as the characteristic equation of matrix A. The values
of s that satisfy (2.30) are known as the eigenvalues of matrix A.

The eigenvalues are the values of scalar parameter A for which there exist non-

trivial solution to the ([2.31)):

A = A (2.31)

10



Where:
e ¢ is an vector of size nx1;

The n solutions of Equation (2.30)) gives the eigenvalues of A (A = Ay, Ag, .oy Ap)-
Any vector ¢; that satisfies (2.31)) is called to be an right eigenvector of A

associated with the eigenvalue \;. Therefore, for an ordinary eigenvalue:

The eigenvector ¢; has the form:

¢11l

P (2.33)

¢ni
One should note that k.¢; is also a solution.
Similarly, the n-row vector p; which satisfies the (2.34) is known as the left

eigenvector associated to the eigenvalue \;.

YviA=PN  i=1,2,..n (2.34)

The left and right eigenvectors corresponding to different eigenvalues are orthog-

onal, therefore:

Y =0 (2.35)

However, if the eigenvectors correspond to the same eigenvalue:

i = K (2.36)

Where, K is a non-zero constant.
It is usual to normalize the eigenvectors. Therefore, (2.36)) takes the form shown

in Equation ([2.37)):

i =1 (2.37)

The system modes obtained through the eigenvalues of matrix A, shown in
(2.30)), provides the system dynamic behavior in face of small disturbances.

11



These modes may represent characteristics of power system natural oscillations.
The oscillation modes related to electromechanical dynamics can be divided into 4

main categories:

e intra-plant modes: represent oscillations between generation units into the

same power plant;

e local modes: represent oscillations of a power plant against all other system

machines;

e inter-area modes: represent oscillations between power plants that belong to

different areas;

e multi-machine modes: represent oscillations between several machines of sev-

eral areas.

2.3.3 Stability from Small-Signal Point of View
Equation (2.17) with zero input can be expressed as Equation ([2.38), which is
referred as free motion equation:
Az = AAx (2.38)

Equation ([2.38]) can be expressed in a decoupled form by using linear techniques.
First, consider a new state vector z related to the original state vector Az by (2.39):

Ax = ¢z (2.39)
Therefore:
oz = Agz (2.40)
Then:
2=¢ tApz (2.41)

Using the new state vector (22.38)) become:

zZ=Az (2.42)

Where A is a diagonal matrix. The main diagonal of matrix A contains the n

eigenvalues of system. Therefore:

12



Using the transformation given by ([2.39)), it’s possible to obtain the uncoupled
state equations given by (12.43)).
Equation (2.43]) is a simple first-order differential equation with the following

solution:

zi = zi(0)e (2.44)

The time dependent characteristic of a mode corresponding to an eigenvalue \;
is given by e**. Therefore, the system stability is determined by the eigenvalues as

follows:

e Real eigenvalues correspond to non-oscillatory modes. A negative real eigen-
value represents a stable decaying mode, while a positive real eigenvalue means
an aperiodic instability. The bigger its magnitude, the faster its decay (stable)

or increase (unstable);

o Complex eigenvalues correspond to an oscillatory mode, with the real compo-
nent giving the damping and the imaginary component giving the frequency of
the oscillation. A negative real part corresponds to a damped oscillation. On

the other hand, a positive real part corresponds to an undamped oscillation;

Since a complex eigenvalue, A, composed by a real part ¢ and a imaginary
part w, is given by:

=0+ jw (2.45)
The damping ratio, ¢, is given by:

¢ = ﬁ (2.46)

The step responses for real and complex eigenvalues are illustrated in Figures

23 to 271
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Response

Time

Figure 2.3: Complex eigenvalues with a positive damping ratio step response

Response

Time

Figure 2.4: Complex eigenvalues with a zero damping ratio step response
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Figure 2.5: Complex eigenvalues with a negative damping ratio step response

Response

Time

Figure 2.6: Real eigenvalue with a positive damping ratio step response
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Figure 2.7: Real eigenvalue with negative damping ratio step response
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2.3.4 Participation Factors and Mode Shapes

Defining the Modal Matrices as:

6= o1 &2 . o) (247)

Y=o v Wl (2.48)
A1 0

A= 0 X ... 0 (2.49)
0 0 .. A\

Where each matrix in (2.47), (2.48)), (2.49) has dimension n x n. Equations
(2.31) and (2.43]) can be expanded as:

Ap = pA (2.50)

Yo=1 Pp=¢ ' (2.51)

The Equation (2.39)) shows the relationship between the state vectors Az and
z. Then:

Ax(t) = ¢z(t) = |¢p1 @2 ... ¢Pn|2(1) (2.52)

And:

2() = pAw(t) = [pT ¥ .. 7] Az() (2.53)

The transformed state variables z are directly related to the system modes. On
the other hand, the original state variables Ax gives the dynamic performance of
system [7].

Equation shows that the right eigenvector gives the relative activity of
the “original state variables” when a particular mode is excited. Therefore, the
magnitudes of the elements ¢; gives the magnitudes of the eigenvalue 7 in the n

“original state variables”. These relative activity is called mode shape.

17



In other hand, the Equation shows the ”participation” of each “original
state vartable” in a eigenvalue i. The left eigenvector measures the relative partici-
pation of each “original state variable” in the ith mode.

In order to determine the sensitivity of eigenvalues to the elements of state matrix
A, one should examine with respect to an ordinary eigenvalue \; as shown in
(12.54):

A = \ii (2.54)
Computing the derivative of (2.54)) with respect to ay; (kth row, jth column):

O0A 8¢i . 8)\1‘ 8¢i

—¢; + A = i N\ 2.55
8akj¢ + 8akj 8a,€j¢ + 6a,€j ( )
Multiplying (2.55) by ;...
0A O\
i——; = —— 2.56
Vi i = o (2.56)

One should note that all elements of ga—‘:‘_ are zero, except the element “k,7”.
J

Therefore:

o\
8akj

Vi = (2.57)

The matrix participation matriz (P), which combines the right and left eigenvec-

tors,can be used to measure the association between the state variables and modes:

D1
p=|P (2.58)
Pn
Then:
P1i D1
p; = P2i| _ P2iti (2.59)
Where:

e ¢p; = the element “k,i” of modal matrix ¢

e 1;;, = the element “,k” of modal matrix 1)

The element py; = ¢ is called participation factor and measures the partici-

pation of kth state variable in the i¢th eigenvalue.
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The sum of all participation factors of all state variables related to ith eigenvalue

equals 1.

2.3.5 Controllability, Observability and Residue

The concepts of controllability and observability play an important role in the
design of control systems in state space. The conditions of controllability and ob-
servability govern the existence of a complete solution to the control system design
problem [9].

It is possible the physical system being controllable and observable and the cor-
respondent mathematical model may not possess the property of controllability and
observability. Then, it’s necessary to know the conditions under which a mathemat-

ical model is controllable and observable [9].
Consider the system given by ([2.60)):

& = Az + Bu (2.60)

The system is completely state controllable if and only if the vectors
B, AB, ..., A" 1B are linearly independent, or the n x nr matrix, given by (2.61]),

is of rank n [9].

B | AB | .. | A"'B (2.61)

The matrix given by is known as controllability matriz.

The system is said to be completely observable if every state a(ty) can be de-
termined from the observation of y(t) over a finite time interval, ¢y < ¢ < t;. The
system is, therefore, completely observable if every transition of the state eventually
affects every element of the output vector [9].

The concept of observability is very important because, in practice, some of
the state variables are not accessible for direct measurement. In those cases, it is

necessary to estimate these state variables in order to design controllers [9].

Consider the unforced system given by ([2.62)) and (2.63):
&= Az (2.62)
y=Cx (2.63)

The system is completely observable if the matrix n x nm given by (2.64) is of
rank n (n linearly independent column vectors). In this case, matrix (2.64]) is called

observability matrix.
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cr | At | .. | (ayner] (2.64)

The decoupled (normal form) system modeling is given by ([2.65) and ({2.66]),
which can be obtained using the modal matrices.

z2=Az+ B'Au (2.65)
Ay=C'z+ DAu (2.66)
Where:
« B'=¢'B
« C'=Co

Equations and show that if one row of matrix B’ is zero, then the
inputs have no effect on the mode related to these line. Then, in such case, this
mode is called uncontrollable [7]. On other hand, if a column of matrix C” is zero,
the corresponding mode is unobservable, which means that the variable z; does not
contribute to the formation of the outputs. [7]

The nxr matrix B’ = ¢~ 1B is called mode controllability matriz, and the mxn
matrix C’ = C¢ is called mode observability matriz.

By inspecting B’ and C” it is possible to classify the modes into observable,

controllable, unobservable and uncontrollable.

Consider the system given by (2.67) and (12.68]):

AT = AAx + bAu (2.67)
Ay = cAx (2.68)
The transfer function is:
~ Ay(s) 1
G(s) = Aus) c(sI —A)"b (2.69)

Equation ([2.69)) can be expressed as:

R R R,
G(s) = —— 4+ —— 4 ... +
S—M S — P2 S — Dn

Where R; is known as the residue of G(s) at pole p;. [L1], 12]

(2.70)
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It is possible to express the transfer function in terms of eigenvalues and eigen-
vectors by expressing the state variables Ax in terms of transformed transformed

variables z:

G(s) = = cp(sI — A)"'opb (2.71)

G(s)=> R (2.72)

Where

R = cgipib (2.73)

2.4 Final Considerations

The basic concepts of angular stability of power systems have been described in
this chapter, including transient and small-signal stability analyses review. These
concepts are used in the next chapters of this thesis.

Modal analysis principles have been presented, including the concepts of eigen-
values, eigenvectors, participation factors, mode shapes, controllability, observability

and transfer functions residues.
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Chapter 3
Transport Delay Modeling

The main objective of this chapter is review basic concepts related to power
system modelling and discuss the representation of transport delays. Based on the
presented concepts, advances in techniques for small-signal stability analysis are
developed and the theoretical and mathematical aspects behind these advances are
described.

3.1 Basic Concepts

Chapter [2| has described the conventional small-signal state space modelling,
presenting the traditional and the decoupled equations form. Moreover, elementary
theory about the well-known modal sensibility analysis has been introduced.

However, for large scale power systems, the linear techniques for small-signal
stability analysis are usually based on the descriptor system representation ( “Dif-
ferential and Algebraic Equations — DAE”), as follows:

Ti = Az + Bu (3.1)
y=Cx+ Du (3.2)

Where:

e For the general case, T has constant elements and is not necessarily reversible.
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One can see that the main difference between the state space representation
shown in (2.7) and and the descriptor system representation shown in
and is the matrix T'.

In the particular case where T' has only unitary elements, it becomes the identity
matrix and the formulation results on the state space modelling.

Another particular case consists in a matrix T" with only unitary and zero el-

ements. In this case, the differential equations and algebraic equations may be

separated and (3.1)) and (3.2)) can be written as:

d}_AlAzﬂJ
0_A3A4.T'

y=Cix+ C,r+ Du (3.4)

Ba:
+ [Br] u (3.3)

Where the vector r is the algebraic variable vector and the matrix T' is given by

B3).

I o0
T = [0 0] (3.5)

Where I is the identity matrix with the dimension equal to the number of system

state variables.
Equations (3.3) and (3.4) can be transformed into a space state modelling by

the algebraic variables elimination as follows:

Asx+Ayr+B,u=0—r=—-A, 'Asz — A, 'B,u (3.6)

Using in and :

T = (Al — A2A471A3)21}' + (Bm - A2A4le,«)u (37)

Yy = (Cx - C,,.A471A3)33 + (D - CTA471.B,,‘)’U, (38)

Equations (3.7)) and (3.8)) show the system modelled into a differential and alge-
braic equations and transformed into a space state modeling.

In order to include the transport delay representation, frequency modelling, here

called as Y(s)-formulation, is used. In fact, the formulation presented in (3.7) and

(3.8) has some constrains associated to delays modelling as will be shown in the

next section. The mathematical expressions of Y(s)-formulation are shown in ([3.9)
and (3.10)) and have been derived from [I3]:

Y (s)Axz(s) = BAu(s) (3.9)

Ay(s) = CAx(s) + DAwu(s) (3.10)
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Where:

e Y (s) is the system matrix;

e B is the input matrix;

e (' is the output matrix;

e D is the matrix which direct links the input with the output;
e Ax(s) is the state vector in frequency domain;

e Aw is the input vector in frequency domain;

e Ay is the output vector in frequency domain;

The system matrix Y (s) in the s-domain is in general a non-linear function
of s. The descriptor system shown in and is a particular case where
Y (s) = (s.T — A), as shown below.

Applying the Laplace transformation in and and considering null

initial conditions, it is possible to obtain:

sTx(s) = Ax(s) + Bu(s) (3.11)
y(s) = Cx(s) + Du(s) (3.12)
Rewritten (3.11):
(sT — A)x(s) = Bu(s) (3.13)
y(s) = Cx(s) + Du(s) (3.14)

The Y (s)-formulation was used previously for electromagnetic and harmonic
analysis where the transmission system dynamics was fully represented by a nodal

admittance non-linear function of s. [14HI6]
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3.2 The Transport Delay

The transport delay can be understood as the time between one action and the
sensitivity of its effects. [9]

The mathematical definition of a transport delay in time domain is:

zq(t) = z(t — 1) (3.15)

Where x4 is a system variable delayed in relation to x by a time period 7.
In the complex frequency domain, the transfer function between variables x4 and

x can be obtained by using the Laplace transform in both terms of (3.15]). Therefore:

Xy(s) = /000 et —71).dt = X(s).e™*" (3.16)

Here, the variable x4 is called as a delayed variable in time domain and Xy is
called as a delayed variable in frequency domain.

The representation of transport delays as shown in and turns the
system model and into an infinite system, with an infinite number of poles.
Therefore, the traditional modelling cannot be used for an accurate representation
of the transport delay in linear analysis.

In order to include the transport delay more accurately in the traditional mod-
elling, a high order series in the Laplace domain, such as Padé approximations
or Taylor expansions , using a rational transfer function, may be used. How-
ever, these representations are still approximated. Moreover, the system dimension
increases significantly and eventually spurious high frequency poles may appear in
the frequency range where the infinite series is truncated. In order to avoid such
problems, the transport delay has not been fully represented in power system studies.

In fact, just a first order approximation has been considered.

ST 5272 B s373 .
pu—— 2.1! 22.22! 2233' (3.17)
1+ST+ST+ST+.“
2.11 2221~ 233
1
P — (3.18)
1—|—ST+T+T+

This thesis proposes the use of non-conventional s-domain modelling (3.9) and
(3.10) for small-signal analysis of large power systems with multiple transport delays.
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A particular approach is here proposed for dealing with power system dynam-
ics, considering the inclusion of multiple transport delays, yielding the following

formulation:

(M(s) + sT — A)Axz(s) = BAu(s) (3.19)
Ay(s) = CAz(s) + DAu(s) (3.20)
The differences between (3.13) and (3.14) and (3.19) and (3.20) are the terms

A and M/(s). While the former means that for each variable vector, there are
deviations in relation to the operation point, the latter is a diagonal matrix with
e ®Ti at the positions with equations with transport delays and zeros at the other
positions.

Supposing a generic transport delay equation i, associated to the variable Ax;,
which is delayed by 7; in relation to variable Ax;, the following relationship is
obtained, based on (3.16)):

e Av; — Az; =0 (3.21)

Therefore, at line 4, a;; = 1, a;r2; = 0, m;; = €7 and m; 4 = 0, where a; ;
and m, ; are elements of A and M, respectively.

Computationally, the information of M and T" are condensed in an column vector
with the same dimension of & where the numbers 0, 1 and 2, are flags that represent
algebraic, differential and transport delay equations, as shown in [1].

1| =Dif ferential

2| = Delay
Vector — |... (3.22)

= Algebraic

| = Algebraic
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3.3 Modal Analysis Tools for Systems with Trans-
port Delays

This section presents mathematical advances and computational methodologies
to allow a comprehensive modal analysis using accurate representation of trans-
port de- lays. The proposed modelling and methodologies are implemented in the
production-grade software PacDyn [18], developed by the Electrical Energy Research
Centre (CEPEL).

3.3.1 Time and Frequency Response

The time response of a descriptor system is efficiently obtained using trapezoidal
rule. When considering transport delay equations, each delayed variable Az;(t) is
equal to the previous value Az,;(t — 7;) as shown by .

The transport delay function, although conceptually simple, presents some com-

plications for its implementation, such as:

e Memory allocation;
e Interpolation for points not matching memory;

e Copy and transfer values for each response step.

From the computational point of view, the transport delay equation is replaced
by an algebraic equation with the diagonal element of A equal to 1 (a(;,;) = 1) and
the right-hand side term is equal to Az;(t — 7;) that is already known at time ¢. At
the end of each iteration, the values of all variables Ax;(t) is saved to be used after
the period 7;. If 7; is not multiple of the time step, a linear interpolation may be
used. In the efficient implementation of the method, a circular list is used to save
the values of Ax;(t) during the period 7.

In a simulation with step At, it is necessary that N points represent the delay 7
of the block output relative to the input. Assuming initially that the delay time 7

is divisible by the value of the integration step, then one has to:

-
N=— 3.23

A7 (3.23)

In cases where the delay time is not divisible by the integration step, it is neces-

sary to allocate more memory space for the value vector, therefore (3.23)) turns:

N T

=51 (3.24)
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Logically, one can infer that there is not only a transport delay block in the
system. There may be K delay units in the system, therefore, the memory allocation
becomes more complicated.

Assuming that for K transport delay blocks, the numbers of points required for

their representation have already been defined, namely:

1 :>N1
T2 :>N2
(3.25)
T; :>Nj
TK :>NK

The amount of memory space to be allocated by each transport delay block will

not necessarily be equal, thus, it was necessary to develop two vectors:

e a vector of size N = Zfil N; to store the input values of the blocks;

e pointer vector of size K, which indicates where is the position representing the

current time for each block.

71 %) Ti TK

Figure 3.1: Pointing vector and value vector.

In cases where the delay time is not divisible by the integration step. it is
necessary to use a linear interpolation method, so that the value of the delayed

function is effectively passed to the value vector.
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AN

AY

4] Lint L)

Figure 3.2: Interpolation of unmatched points in memory.

Thus:
to —tline  liw—
Where:
Atz = tz — tint and Atl == tint - tl (327)
Then:
At At
e = 1220 N108 (3.28)
Aty + Aty
After the value of the current time v§ being plotted, the values vector must be
updated to make room to a vjf value, i.e., the last position values vector must be

completed with the current time value delay block input variable.
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The values vector must be updated with the forward travel of all values, i.e., the

simulation time update. The process is illustrated by the figure below.

Plotted New
Value Value
¢ N\ Block j f-
vl pitl | pit2 o2 | ! !

J J J

J “ee J J
A UAUEVUEUEW,
Figure 3.3: Delay vector update.

The frequency scan method corresponds to the graphs of the magnitude and
phase of the transfer function G, ;(s) as a function of the frequency w, where s is
substituted for jw and w varies from a small value (ideally zero) to a large value
(ideally infinite). The frequency scan of the magnitude provides an overview of the
whole set of dominant poles and zeros, since its maxima frequencies are near the
imaginary parts of the poles and the minima frequencies are near the imaginary
parts of the zeros. Therefore, the frequency scan method can be used for yielding
automatic estimates for dominant pole algorithm, as presented in [I4]. Other inter-
esting information is related to the band width of the maxima, where a small band
width means a low damping ratio pole. The maxima magnitude is also related to
the pole influence, a larger magnitude means more pole dominance.

The control system design here proposed to be used in systems with transport
delays is the Damped Nyquist Plot (DNP) method [19]. It is based on the frequency
response along the complex frequencies of a constant damping ratio line.

The frequency response computation will be presented later in this Chapter.

3.3.2 [Eigenvalues, Eigenvectors and Participation Factors

The main feature of modal analysis is the pole calculation that defines the natural
oscillation modes of the system. For large scale power systems, partial pole solutions
are used. There are methods based on proximity to the estimates, or, based on the
dominance of a transfer function. The last ones, called dominant pole methods, are
of more practical use, since it allows the analyst to define a transfer function at the
region of interest and the algorithm will converge to some dominant pole of that
region.

An algorithm for partial pole solution is proposed in [14] to calculate sequentially

the whole set of dominant poles of a certain transfer function for the general s-domain
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formulation, shown in (3.29) and (3.30). The term D is supposed to be zero, but

there is no lack of generality.
Y (s)x(s) = Bu(s) (3.29)

y(s) = C'z(s) (3.30)

The mathematical basis developed in [14] is reproduced bellow. Equation ({3.31))
describes a transfer function and ({3.32)) gives a system pole A:

G(s) = u(s) =c'Y(s)"'b (3.31)
YMNv=0 (3.32)
v#0

One should note that if A is a system pole, there is a non-null vector v which

multiplied by Y () gives the null vector. Therefore:

Y (\) =0
wWE ; o (3.33)
FO) = —— — ¢ (3.34)
GO '
Using Newton method in (|3.34))
1 1 dG(\W)
— AP =0 3.35
GOMY ~ GOME  ds (3:35)
And:
(k)
%A/\(k) = G(\W) (3.36)
s
Using (B:31) in (3.30):
dY (AR)~1
a0 Y (A®)~1p (3.37)
ds
And:
tY()\(k))_lb
XA ) 9
AN = ctdY(’\dt))flb (3.38)
The inverse matrix of % can be obtained using the following property:

YY =1 — YD _dD_g (3.39)
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Therefore:

=Y —Y'= 4
ds ds + ds 0 (3.40)
And:
dy ~* Y
-y '—vy! 3.41
ds ds ( )
Finally:
FY (AW) b
AN = c (3.42)
(x)
ctY (AW) T LY (M) -1
With the pole corrected by:
AEFD — 2B L ANK) (3.43)

And, for the case with transport delays, assuming the particular case for the
Y (s):
Y(s)=(M(s)+sT—A) (3.44)
Y (s) derivative in relation to s:

dY (s) dM (s)
— =T+ ——= 3.45
ds s (345)
dM
Where the diagonal elements of g ()

s
given in ([3.46)). The other elements are zero.

for the lines with transport delays are

dmi,i (S)
ds

In the proposed Y (s)-formulation, the elements in vectors Az may be state,

= 7€ (3.46)

algebraic or delayed variables. When considering delayed vectors, it is not possi-
ble to compute the eigenvectors, since the system with transport delays are infinite
systems. As a result, the eigenvectors, whose dynamics are embedded in the corre-
sponding delayed variables of Az, would have infinite dimensions.

As explained in Chapter [2| the participation factor p;; is the sensitivity of the
eigenvalue \; to the diagonal element a;; of the state matrix A. The participation
factor can also be interpreted as the contribution of state variables of the system on
a certain pole.

The participation factors cannot be calculated as a function of eigenvectors, since
the system with transport delays is an infinite system.

As shown in [20], the participation factor of a certain state variable Ax; is equal
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to the residue of a transfer function whose input variable Aw; is a signal applied to
the differential equation corresponding to Ax;, and the output variable is the same
state variable Ax; before the input application.

Therefore, to calculate participation factors as a function of the residues of a
certain transfer function G;;(s) for the Y (s)-formulation, for each state variable,
G,.i(s) is defined by the column vector ¢; and line vector ¢} that are built with 1 at

the position of the state variable Az; and 0 at the other positions.

pix = RY (3.47)

One should note that the participation factors are not calculated for algebraic
equations nor for the delayed equations. Theoretically, there would be an infinite
number of participation factors embedded into each delayed variable. However,
considering that the key purpose of participation factors calculation is to identify
the main state variable responsible for a certain pole, when a delayed variable has
a large participation for a certain pole, the other state variables in that control
loop also will present large participation. Consequently, the same information is

obtained.
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3.3.3 Residue, Controlability and Observability

The transfer function residues can be calculated during the iterative procedure
using the dominant pole algorithm, described in previous subsection, but more ro-
bust methods can be used, as shown in [2I]. The mathematical procedure for residue
calculation using the dominant pole algorithm will be described below.

The residue of a transfer function can be described as follows:

R; = lim G(s)(s — \) (3.48)

S—))\i
Where, numerically, s = \; — A)\,;. (with A); being a very small value, 1078, for
example.)

Therefore:

The value ), is the pole A**1 and the value A); is the last pole correction before
the convergence AXF. Therefore, the value \; — A); is the shift immediately before

convergence \*. Thus:

R; = —G(\* — AN AN, (3.50)

Finally:

R, = —G(\) AN, (3.51)

The algorithm for computation of residues will be shown in the next subsection.
After dominant poles calculation, the transfer function is analytically written as
the following summation:

k
Giis) = E i (3.52)
2] - g — /\k’

Where ), are the dominant poles of the transfer function G;;(s) and R}, are
the associated residues. Transfer function residues can be interpreted as a measure
of the system pole influence in the selected output variable Ay, when this pole is
excited by the selected input variable Au; [20].

In [20], it is shown that the residue also corresponds to the sensitivity of the
pole shift for an incremental gain feedback. Therefore, the residue can be used to

identify the most adequate transfer function to be used for feedback stabilization.
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Equations (2.65)) and ([2.66)), repeated below, show the decoupled form of a dy-

namic system:

2=Az+ B'Au (2.65| Revisited)
Ay =C'z+ DAu (2.66| Revisited)

Since A is diagonal, the system can be solved for each mode variable z;, associated
to eigenvalue \;. For simplicity, a SISO transfer function G; ;(s) (input Au;, output

Ay;) is considered. Therefore:

Azu(t) = Mo Azi(t) + b Aug (1) (3.53)

Where the lower-case coefficients correspond to their respective matrix elements.

The s-domain solution for z(s) is then obtained from ([3.53]):
b .
Az (s) = —2—Au;(s) (3.54)
S — )\k

The output variable Ay; can be obtained from line i of (2.66):

Ayi(s) = c;Azg(s) + d; jAu;(s) (3.55)

Expanding the vector multiplication ¢;Azy(s) into a summation and substituting
Equation (3.53]) into Equation (3.55)):

Ay(s) Ci ik
Gii(s) = = 24y 3.56
) (S) AUJ'(S) Z g — )\k: + ) ( )

k

Therefore, comparing (3.52)) and (3.56)), the residue of a pole A\ can be given as
the product of the observability factor of that pole, associated to the output variable
Ay;, by the controllability factor of the same pole associated to the input variable
Au;:

J

R, = ¢, by (3.57)

7

The residue is a measure of the influence of a pole into a transfer function. Con-
sequently, the controllability factor measures the separated influence into the input
variables and the observability factor measures the pole influence into the output
variables. In other words, the controllability factor measures the capability of the
input variable to excite a modal component of a pole, in frequency or time domain.
Analogously, the observability factor measures how much of the pole appears at the
output variable.

The traditional method for stabilization uses the residues for the loop selection
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for stabilization, once the control scheme is local. Indirectly, controllability and
observability are used to identify the best input and output variables for the control.
However, controllability and observability factors can be used to select separately
the most adequate input and output variables to be used for feedback stabilization.
In control systems with remote signals, those variables are not necessarily in the
same geographic location. In the Y (s)-formulation proposed here, the elements
in vectors Az may be state, algebraic or delayed variables. The residues can be
obtained using the dominant pole algorithm or other method as shown in [21],
but not the eigenvectors. When considering delayed vectors, it is not possible to
compute eigenvectors, since the system with transport delays are infinite systems.
As a result, the eigenvectors, whose dynamics are embedded in the corresponding
delayed variables of Az, would have infinite dimensions.

In order to overcome this issue, it is proposed to use the residues for obtaining the
observability and controllability factors. From Equation , one can see that the
residue is the product of them. So, maintaining constant an input variable Aw;, the
residue RZ’j may be calculated for several output variables Ay; and the observability
factor would be given by the division of this residue by the controllability factor. This
controllability factor could not be calculated for infinite systems. However, assuming
an infinite norm for the observability factor, the observability factor associated to
output variable Ay, with the largest residue may be considered as unitary (c;, , =
1). Consequently, the other variables will have relative values of it, equal to the

residue of them divided by the largest residue:

2]
/o Rk

C:. . = -
ik
Ry

(3.58)

Similarly, the controllability factor, normalized for the input variable Aw, of

largest residue, is given by:

; R}:]

by; = RT,C” (3.59)
Then, the controllability and observability factors still can be used in the pro-

posed Y (s)-formulation for measuring pole influence into the input and output vari-

ables or for selection of stabilization control loops, including the use of remote sig-

nals.
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3.3.4 Computational Developments

The computational developments implemented for systems with transport delays
will be described as follows. The methods were implemented first in MATLAB and
later in software PacDyn [I§].

3.3.4.1 Frequency Response

The frequency response development is illustrated in the diagram of Figure [3.4]

Define: transfer function input, output, damping ratio,
initial frequency, final frequency and the frequency ste

=0 Initial shift
>[ YA) =5, T— A ]
[ Find : 1V (i) =2 ]
( )
Yii=e"" Y, =-1 Where: "i" is the
delayed variable, in
relation to "j"
N\
[ Spe1 = Sy + As ] - *
1 G(sp)=C.Y(s,)".B+ D
. J
‘ n=n+1 \
A

Figure 3.4: Frequency response calculation algorithm.
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3.3.4.2 Single Dominant Pole Algorithm

The method implementation is based on the dominant pole calculation as de-

scribed in [14] and is illustrated in the diagram presented in Figure (3.5

@ Initial shift

:[ Y(4,)=4,.T — A ]

[ Find : IV (i) =2
4 , )
Y. .
Yy = et D gt
as Where: "i" is the
delayed variable, in
relation to "}"
_ 9Y;
[ An = Apo1 + A4 ] Yi’j =-1 os =0
A \_ J
4 : N
oY (A,
G(A)=C.Y(A)'.B+ D ;S ) _ T
0G(4A,) 1 9Y(4,) 1
=C.Y(4)" . Y(A,)" .B+ D
as as
N\ J
\ 2
n=n+1 G(A,)
[::] Adn = 0G (i)
A —
AA, < Tol?
Yes

Figure 3.5: Dominant Pole Algorithm.
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3.3.4.3 Residue

The algorithm for residue computation is depicted in Figure and is based on

(3.48) to (3.51).
@ Initial shift
:[ Y4,)=4,.T—-A ]
[ Find : IV (i) =2
4 , )
Y. .
Yy = et D gt
as Where: "i" is the
delayed variable, in
relation to "}"
_ 9Y;
[ ﬂn = /ln—l + Ain—l ] Yi’j =-1 ds =0
A \_ J
4 : )
oY (4,
G(A)=C.Y(A)'.B+ D ;S ) _ T
0G(4A,) 1 9Y(4,) 1
=C.Y(4,) . Y(A,)" .B+ D
as as
N\ J
\ 2
n=n+1 G(A,)
[::] Adn = 0G (i)
A —
AA, < Tol?

Yes

Figure 3.6: Residue using Dominant Pole Algorithm Diagram.
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3.3.4.4 Sequential Dominant Pole Algorithm

After the development of residue computation algorithm, it is possible to remove
the contributions of converged poles into a transfer function allowing to converge

other poles with lower dominance, as illustrated in the diagram of Figure [3.7]

@ Initial shift

A\ 4

Y(4) = A, T — A ]

Where: "i" is the
delayed variable, in

Ap = Aot + AA,_ oY, relation to "j"
[ n—1 nl] Yijz_l tJ:O
as
v
—1 Y (A,)
G(An)=C.Y(4y)”" .B+ D 3 =T
N
aG(A aY (4
) _ ¢, Y (G} Y(4) . B+ D
os s
Where the last
¢ term of two
* — ) equations only
Glhn) = G — e - B 060G _ 06U | R R oists
An—=Ae  An— A Os ds G = A2 (A — 252 ,
is a complex
pole.

[ R, = _G(An) Ay ]

Figure 3.7: Sequential Dominant Pole Algorithm.




3.3.4.5 Observability Factor for Systems with Transport Delays Algo-
rithm

The observability factor for systems with transport delays algorithm is presented

in Figure [3.8
@ Initial shift

Define one fixed Def:\e thigost;}'|ongvh|c:
state variable in vector corresponds the chose
state variable chosen in vector
B
C
where the pole is observable
N7

4{ Y(Ay) = An.T — A ]

Y

Y = et = = g ehT
das
Where: "i" is the
delayed variable,
[ An = Anmt + Bl ] Y =-1 -aY"J in relation to "j
ij = =0
A ds
¥
; 1 Y (A,)
G(An) = C1.Y(4n)™" . Bfixea + D =

ds

0G(A,) _ OY(4) .
—— =C.Y() . —— - Y() . Bfixea + D
ds ds
¢ Where the last term of two equations
— ly exists if
Eu o R. ] R: G0 - 3G R . R: only exists i
dn=Ae A=A as T os (= A)* (An — A8 Ae

is a complex pole.

No

ast state variable
chosen?

Yes

Find the maximum

Obtain the normalized
residue

residues:

Ruax = Ry R; = Ri/Ryax

Figure 3.8: Observability Factor for Systems with Transport Delay Algorithm.
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3.3.4.6 Controllability Factor for Systems with Transport Delays Algo-

rithm

The controllability factor for systems with transport delays algorithm is pre-

w Initial shift

Define the position which
corresponds the chosen
state variable chosen in vector

—

sented in Figure [3.9

Define one fixed
state variable in vector

C

where the pole is controllable
Y(Ap) = 4. T - A
Find :1V (i) =2

Y,, e/l,,J S - el,,r
— Where: "i" is the
P An = An-t + Ady delayed variable,
- in relation to "j"
Y, =-1 My _ 0
ds
0Y (4
G(h) = Cived- YY" By + D T 7
N
0G(Ay) _1 0Y(4,) _
= Clixea- Y(A) ' ——>.Y(4,)"". B, + D
ds as
v Where the last term of two
— R, R )E(/{ ) IG(A,) R R equations only exists if
G(an) = G(Ay) — -— ) _ T ¢ ¢
Ay =de Ay — A s O Cn= A = AP Ae
is a complex pole.

m=m+1 b—

[ R, = —G(4,). A, ]

No
Last state variable

chosen?

Yes

Find the maximum
residue

Ryax = Ry

Obtain the normalized
residues:

R; = R/ Ryax

Figure 3.9: Controllability Factor for Systems with Transport Delay Algorithm.
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3.4 Final Considerations

The concepts of frequency modelling, transport delay modelling and the lim-
itations associated to the traditional modal analysis have been described in this
chapter.

In addition, the advances in sensibilities calculation for systems with transport
delays have been proposed in this chapter.

All theoretical formulations described in this chapter have been implemented in

PacDyn software [18].
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Chapter 4

Tests and Results

This chapter presents tests and simulation results using the methods developed
in this thesis. The results are evaluated in order to highlight the benefits obtained
through applying these methods in power system analysis. Initially, a two-area
system is exploited in a tutorial and detailed analysis. After that, results for the

Brazilian Interconnected Power System are presented.

4.1 Two-Areas System

The modal analysis tools for systems with transport delays are tested in a two-

area system. This tutorial system has 11 buses and 4 machines [22].

BUS 1 BUS 3
BUS 5 BUS 11

BUS 6 BUS 7 BUS 8§ BUS 9 BUS 10

¥
v
hd
L4

BUS 2 BUS 4 °

|
|\H
Il

Figure 4.1: Single-line diagram of the two-area system.
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Figure presents the single-line diagram of the two-area system, showing in-
terconnections between Areas #1 and #2. Area #1 has power plants at Buses #1
and #2, while, Area 2 has power plants at Buses #3 and #4.

The system was presenting a base case with the following characteristics:

e Power plant dispatch and terminal voltage at bus 1 = 1100 MW and 1.05 pu;

e Power plant dispatch and terminal voltage at bus 2 = 700 MW and 1.02 pu;

Power plant dispatch and terminal voltage at bus 3 = 755 MW and 1.03 pu;

Power plant dispatch and terminal voltage at bus 4 = 300 MW and 1.01 pu;

Load at bus 7 = 1167 MW,
Load at bus 9 = 1567 MW.

Using the QR method [23] 24], electromechanical poles can be identified by the
largest participation factors being speed or loading angle of generators [7), 9l 25].
These poles are shown in Table[d.1] together with the frequency in hertz and damping
ratio. The first pole has a negative damping ratio (-1.25%), responsible for the
system instability, the second pole has a moderate damping ratio of (7.41%) and
the third one is poorly damped (3.59%).

Table 4.1: Electromechanical System Poles, Without PSS.

Poles Frequency (Hz) | Damping Ratio (%)
0.04912 + j 3.9397 0.6270 -1.2468
-0.5473 + j 7.3670 1.1725 7.4082
-0.2557 + j 7.1248 1.1339 3.5861
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4.1.1 Solution Based on Local Signals

This system was primary used in [22] whose electromechanical modes were an-
alyzed. The results obtained in [22] has been reproduced here for comparison pur-
poses. Two local power system stabilizers are used in order to improve damping ratio
of the three poles shown in Table The parameter settings have been obtained
using the Damped Nyquist Plot (DNP) [19] aiming at a pole placement design of

local power system stabilizers, shown in Figure 4.2]

Vpss

\ 4

Figure 4.2: Structure of simple PSS stabilizing loop.

In [22], the generator G3 proved to be adequate to improve damping ratio of
the first two poles, while G1 was adequate to improve the third pole. Table 4.2
shows the parameters of power system stabilizers connected to Machines 3 and 1,

respectively.

Table 4.2: Local Power System Stabilizers, connected to G3 and G1.

Generator | n K T, T o We | Winax
G3 2 | 81561 | 10 | 0.12480 | 3.9548 | 7.37 | 4.00
Gl1 1 (10255 | 3 |0.30000 | 1.8903 | 7.12 | 2.397

The electromechanical system poles, with PSS connected at generator G3, are
shown in Table [4.3]

Table 4.3: Electromechanical System Poles, with PSS at G3.

Poles Frequency (Hz) | Damping Ratio (%)
-0.8907 + j 3.9227 0.6243 22.144
-0.8908 + j 7.3700 1.1730 12.000
-0.2486 + j 7.1091 1.1315 3.4948

The electromechanical system poles, with PSSs connected at generators G3 and
G1, are shown in Table [4.4]

Table 4.4: Electromechanical System Poles, with PSS at G3 and G1.

Poles Frequency (Hz) | Damping Ratio (%)
-0.7667 + j 3.9817 0.6337 18.908
-0.9006 + j 7.3675 1.1726 12.133
-1.0802 + j 7.1200 1.1332 15.000
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4.1.2 Solution Based on Remote Signals

Contrasting a local solution used in [22] and reproduced in Section [4.1.1] remote
signal solution is proposed in order to improve the damping ratio of electromechani-
cal oscillation modes. In order to illustrate the proposed methodology, the damping
ratio improvement is performed by designing a single centralized PSS, using fre-
quency measurements from dedicated channels, which is unusual, the two channels

contain remote signals as shown in Figure 4.3,

(el % S. Tt ( 1+s.aT) )nl
! 1+ 5.Ty 1 +s.T

Figure 4.3: Figure 3. Structure of a two-channel centralized PSS.

It is noteworthy that the designer should include a limitation block after the
summation block, usually of the order of 4/- 0.1 pu, to avoid large PSS impact on
the voltage regulation during the first period of large disturbances and to prevent in-
appropriate voltage offsets during significant speed machine variations. Non-windup
limits can also be included at each channel to improve performance. For the linear
analysis here presented, these limits were not included since they do not influence
in the small-signal dynamics.

Table [4.5] shows the normalized observability factors of generators rotor speed
for all three poles shown in Table [4.1], aiming at to evaluate the best input variables

for a centralized power system stabilizer.

Table 4.5: Normalized Observability Factors, Electromechanical Poles.

Poles Machine 1 Machine 2 Machine 3 Machine 4

0.04912 + j 3.9397 | 0.1035Z£ 167 | 0.08706£ -70 1.0£ 178 0.85962 -180

-0.5473 4+ j 7.3670 | 0.07409Z£ 75 | 0.1190Z -89 | 0.2573Z-178 | 1.0£-0.018

-0.2557 4 j 7.1248 | 0.6230Z -6.06 1.0£ 173 0.1064Z 20.73 | 0.1854Z 165

Table shows the normalized controllability factors of automatic voltage reg-
ulators for all three poles shown in Table [4.1] aiming at to evaluate the best output

variables for a centralized power system stabilizer.
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Table 4.6: Normalized Controllability Factors, Electromechanical Poles.

Poles Machine 1 | Machine 2 | Machine 3 | Machine 4
0.04912 + j 3.9397 1.0000 0.1090 0.5936 0.1119
-0.5473 + j 7.3670 0.4408 0.1010 1.0000 0.4594
-0.2557 + j 7.1248 1.0000 0.09724 0.05908 0.01176

Using the results shown in Table[d.6|the centralized PSS is selected to be installed
at G1, since its controllability factors are the largest for the two most critical poles.

In same way, the generator speeds of G3 and G4 were chosen as remote signals,
since they have the largest observability factors for two most critical poles. These
signals are weighted approximately by the observability factors to yield a good ob-
server for the stabilizing loop input.

A PSS design using weighted signals from generators G4 and G3 rotor speed as
input and acting at voltage regulator of generator G1 is evaluated (PSS G43). The
transfer function using signals coming from rotor speed generators G4 and G3 and

acting at voltage regulator of generator G1 are shown in the following equation:

wy — 0.25 x w3

VlREF (4' 1)

The inverse DNP of ([.1)) for damp & = 20% is shown in Figure [1.4]

,005
TN

P
-,012
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-,065

-,005 ,003 011 ,019 ,027

Figure 4.4: Uncompensated Nyquist Diagram for The First PSS Design.

Figure shows the DNP for frequencies ranging from 1 rad/s to 20 rad/s. The
point with frequency 6.86 rad/s is used for the pole placement, following the steps
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presented in [22]. The compensated Nyquist diagram (blue) is shown in Figure [4.5]

0,98

e
Ly 4]l

1,32
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Figure 4.5: Compensated and Uncompensated Nyquist Diagram for The First PSS
Design.

The PSS parameters are presented in the second row of Table [4.6]

Table 4.7: First Power System Stabilizer, Signals From G4 and G3, Acting at G1.
Generator | n K T, | T « We | Winax

G43 3 10.38545 | 10 | 0.09 | 11.888 | 6.86 | 3.1575

The poles with PSS G43 at G1 are presented in Table [£.§8 The pole placement
is not performed exactly in the frequency of 6.86 rad/s and damping ratio of 20%
because of the lack of significant digits in the PSS design.

Table 4.8: Electromechanical System Poles, with PSS G43 at G1.

Poles Frequency (Hz) | Damping Ratio (%)
-0.2060 + j 8.1885 1.3032 2.5152
-0.7499 + j 4.2581 0.6777 17.345
-1.4004 + j 6.8599 1.0918 20.002

Even though with a PSS installed, the system still has a poorly damped elec-
tromechanical pole. Therefore, it is necessary another PSS design.

Table shows the normalized observability factor calculation of generators
rotor speed for poorly damped pole shown in Table also aiming at to evaluate

the best input variables for a centralized power system stabilizer.
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Table 4.9: Normalized Observability Factors, Poorly Damped Pole.
Poles Machine 1 | Machine 2 | Machine 3 | Machine 4

-0.2060 + j 8.1885 | 0.8609Z 7.22 | 1.0£-172 | 0.04433Z 109 | 0.1362Z 158

A PSS design using weighted signals from generators G2 and G1 rotor speed as
input and acting at voltage regulator of generator G1 at the same time is the first
PSS is proposed (PSS G21). The transfer function using signals coming from rotor
speed generators G2 and G1 and acting at voltage regulator of generator G1 are

shown in the following equation:

wy — 0.86 * wy
VlREF

(4.2)

The inverse uncompensated DNP, for frequencies ranging from 1 rad/s to 20
rad/s, of transfer function shown for & = 13% is shown in Figure

0,178

0,096

0,013

-0,069

-0,152
-0,241 -0,119 0,003 0,125 0,247

Figure 4.6: Uncompensated Nyquist Diagram for The Second PSS Design.
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The point with frequency 8.43 rad/s is used for the pole placement. The com-
pensated Nyquist diagram (blue) is shown in Figure [4.7]

0,76
0,41 8.43
7
0,06
. [A
Nz
AL
-0,29
-0,64
-1.1 -0,56 -0,02 0,51 1,05

Figure 4.7: Compensated and Uncompensated Nyquist Diagram for The Second
PSS Design.

The PSS parameters are presented in Table

Table 4.10: Second Power System Stabilizer, Signals From G2 and G1, Acting at
Gl1.

Generator | n K T T (6% We | Winax

G21 3 10.27805 | 3 | 0.047509 | 6.1289 | 8.43 | 8.43

The poles with PSSs G43 and G21 at G1 are presented in Table [4.11| The pole
placement is exactly performed in the frequency of 8.43 rad/s and damping ratio of

13%, even though the lack of significant digits in the PSS design.

Table 4.11: Electromechanical System Poles, with PSS G43 and G21 at G1.

Poles Frequency (Hz) | Damping Ratio (%)
-1.1052 + j 8.4300 1.3417 13.000
-0.7222 + j 4.2588 0.6778 16.720
-1.5708 + j 8.4984 1.3526 18.175
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4.1.3 Solution Based on Remote Signals With The Inclusion
of Delays

The solution presented in Section has been developed without accounting
any latency effects. Including a small delay (20 ms), which will primarily repre-
sented as a first order polynomial approximation, those effects in electromechanical
oscillation modes can be evaluated.

The effects at system electromechanical eigenvalues including approximated de-
lay on signals coming from generators G4, G3, and G2 are shown in Table 4.12]

Table 4.12: Electromechanical System Poles with first order approximation - small

delay.

Poles Frequency (Hz) | Damping Ratio (%)
-0.2401 + j 8.8299 1.4053 2.7182
-0.6829 + j 4.3487 0.6921 15.513
-1.2062 + j 7.6498 1.2175 15.576

Representing the small delay with the complete model, it is not feasible to
perform a QR decomposition. Therefore, the sequential dominant pole algorithm
[111, [14] is used, once it is a partial pole computation algorithm.

The effects at system electromechanical eigenvalues including the complete delay

model on signals coming from generators G4, G3, and G2 are shown in [£.13]

Table 4.13:  Electromechanical System Poles with complete - small delay.

As expected, a small delay represented by the complete model has not impacted

Poles Frequency (Hz) | Damping Ratio (%)
-0.2282 + j 8.8797 1.41 2.57
-0.6869 + j 4.3503 0.69 15.60
-1.1961 + j 7.6648 1.22 15.42

the results significantly when compared to a first order approximation.
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In order to evaluate the impact of a bigger delay, a relevant time delay (100
ms) is considered. Initially, a first order polynomial approximation is used. After
that, the complete model is adopted to analyze the effects in the electromechanical
oscillation modes computation.

The approximated delay representation is included in the signals coming from
generators G4,G 3, and G2. The electromechanical poles are shown in Table [4.14]

Table 4.14: Electromechanical System Poles with first order approximation - rele-

vant delay.
Poles Frequency (Hz) | Damping Ratio (%)
0.3941 + j 8.0513 1.2814 -4.8894
-0.3967 + j 4.5110 0.7180 8.7604
-0.9357 + j 7.4584 1.1870 12.448

Using the sequential dominant pole algorithm [I1], [14] in order to evaluate trans-
port delay with complete model, Table shows the results.

Table 4.15: Electromechanical System Poles with complete model - relevant delay.

Poles Frequency (Hz) | Damping Ratio (%)
0.7270 + j 8.0520 1.28 -8.99
-0.4179 + j 4.5924 0.73 9.06
-0.9137 +j 7.5193 1.20 12.06

As expected, bigger is the time delay, bigger is its impact on the issues related to
the communication of remote control signals and the impact of delays on electrome-
chanical stability of power grid. A precise model of transport delays is important to
avoid totally incorrect results in the analysis, mainly for the cases with large values

of time constants and widespread remote measurements in control systems. [2-4]
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4.1.3.1 Remote Signal Solution Small Delay First Order Approximation

The result presented in Section [4.1.3] shows why it is important to account time

delays on small-signal analysis of powers systems. In this section, the controllers are

designed taking account a first order approximation time delay.
The results obtained in Section [4.1.2]are used to evaluate the best input variables
for a centralized power system stabilizer. The normalized observability factors of

machine electrical frequency, shown in Table are repeated in [4.16]

Table 4.16: Normalized Observability Factors, Electromechanical Poles.

Poles Machine 1 Machine 2 Machine 3 Machine 4
0.04912 4 j 3.9397 | 0.1035Z 167 | 0.08706Z -70 1.0£ 178 0.8596/ -180
-0.5473 + j 7.3670 | 0.07409Z£ 75 | 0.1190Z£ -89 | 0.2573£-178 | 1.0£-0.018
-0.2557 + j 7.1248 | 0.6230Z£ -6.06 1.0£ 173 0.1064Z 20.73 | 0.1854Z 165

Again, the generator speeds of G3 and G4 were chosen as remote signals, since
they have the largest observability factors for two most critical poles. These signals
are weighted approximately by the observability factors to yield a good observer for
the stabilizing loop input.

A PSS design using weighted signals from generators G4 and G3 rotor speed as
input and acting at voltage regulator of generator G1 is evaluated (PSS G43). The
transfer function using signals coming from rotor speed generators G4 and G3 and

acting at voltage regulator of generator G1 are shown in the following equation:

wy — 0.25 x w3
V,REF

The inverse DNP of ([£.3) for damp & = 20% is shown in Figure [1.8|

(4.3)
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Figure 4.8: Uncompensated Nyquist Diagram for The First PSS Design.

The point with frequency 6.87 rad/s is used for the pole placement. The com-
pensated Nyquist diagram (blue) is shown in Figure [£.9]
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Figure 4.9: Compensated and Uncompensated Nyquist Diagram for The First PSS
Design.



The PSS parameters are presented in the second row of Table [4.17]

Table 4.17: First Power System Stabilizer, Signals From G4 and G3, Acting at G1.
Generator | n K T, | T « We | Winax

G43 3 10.11458 | 8 | 0.09 | 17.624 | 6.87 | 2.5932

The poles with PSS G43 at G1 are presented in Table [4.18, The pole placement
is not performed exactly in the frequency of 6.87 rad/s and damping ratio of 20%
because of the lack of significant digits in the PSS design.

Table 4.18: Electromechanical System Poles, with PSS G43 at G1.

Poles Frequency (Hz) | Damping Ratio (%)
-0.1358 + j 8.1480 1.2968 1.6662
-0.7634 + j 4.0905 0.6510 18.347
-1.4025 + j 6.8699 1.0934 20.002

As in Section [£.1.2] even with a PSS installed, the system still has a poorly
damped electromechanical pole. Therefore, it is necessary another PSS design.

Table .19 shows the normalized observability factor calculation of generators
rotor speed for poorly damped pole shown in Table [4.1§] also aiming at to evaluate

the best input variables for a centralized power system stabilizer.

Table 4.19: Normalized Observability Factors, Poorly Damped Pole.
Poles Machine 1 | Machine 2 | Machine 3 | Machine 4

-0.1358 + j 8.1480 | 0.8522/-156.5 1.0£25 0.04682/£-57 | 0.1411/4-6.4

A PSS design using weighted signals from generators G2 and G1 rotor speed as
input and acting at voltage regulator of generator G1 at the same time is the first
PSS is proposed (PSS G21). However, differently from Section the time delay
is taken into account using a first order approximation.

The transfer function using signals coming from rotor speed generators G2 and
G1 and acting at voltage regulator of generator G1 are shown in the following

equation:

Wy — 0.85 x Ws
VlREF

(4.4)

The inverse DNP of ([4.4) for damp & = 12.5% is shown in Figure [4.10]
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Figure 4.10: Uncompensated Nyquist Diagram for The Second PSS Design.

The point with frequency 8.44 rad/s was used for the pole placement. The
compensated Nyquist diagram (blue) is shown in Figure u
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Figure 4.11: Compensated and Uncompensated Nyquist Diagram for The Second
PSS Design.

The PSS parameters are presented in the second row of Table |4.20]



Table 4.20: Second Power System Stabilizer, Signals From G2 and G1, Acting at
G1.

Generator | n K T, T la% We | Wynaw

G21 31021792 | 3 | 0.042812 | 7.5397 | 8.44 | 8.44

The poles with PSS G43 and G21 at G1 are presented in Table [4.21}
Table 4.21: Electromechanical System Poles, with PSS G43 and G21 at G1.

Poles Frequency (Hz) | Damping Ratio (%)
-1.0636 + j 8.4399 1.3433 12.503

-1.2687 + j 8.4084 1.3382 14.920
-0.7430 + j 4.0991 0.6524 17.836
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4.1.3.2 Remote Signal Solution Small Delay Complete Model

In this section, the controllers are designed taking account the complete model
of transport delay. The results obtained in Section [4.1.2] are used to evaluate the
best input variables for a centralized power system stabilizer. The normalized ob-

servability factors of machine electrical frequency, shown in Table are repeated

in 4.22)

Table 4.22: Normalized Observability Factors, Electromechanical Poles.

Poles Machine 1 | Machine 2 Machine 3 Machine 4
0.04912 + j 3.9397 | 0.1035Z 167 | 0.08706Z -70 1.0£ 178 0.8596/ -180
-0.5473 + j 7.3670 | 0.07409Z£ 75 | 0.1190Z£ -89 | 0.2573£-178 | 1.0£-0.018
-0.2557 + j 7.1248 | 0.6230Z -6.06 1.0£ 173 0.10642 20.73 | 0.1854/Z 165

A PSS design using the complete model of time delay is performed. Initially,
remote signals from generators G4 and G3 rotor speed are used as input, acting at
voltage regulator of generator G1 (PSS G43). The transfer function using signals
coming from rotor speed generators G4 and G3 and acting at voltage regulator of

generator G1 are shown in the following equation:

wy — 0.25 x ws
VlREF

(4.5)
The inverse DNP of ([£.5) for damp & = 20% is shown in Figure [£.12]
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Figure 4.12: Uncompensated Nyquist Diagram for The First PSS Design.
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The point with frequency 6.83 rad/s is used for the pole placement. The Com-
pensated Nyquist diagram (blue) is shown in Figure [1.13]
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Figure 4.13: Compensated and Uncompensated Nyquist Diagram for The First PSS
Design.

The PSS parameters are presented in Table

Table 4.23: First Power System Stabilizer, Signals From G4 and G3, Acting at G1.
Generator | n K T, | T o We | Winax

G43 310.094987 | 8 | 0.09 | 18.715 | 6.83 | 2.5165

The poles with PSS G43 at G1 are presented in Table [4.24]

Table 4.24: Electromechanical System Poles, with PSS G43 at G1.

Poles Frequency (Hz) | Damping Ratio (%)
-0.1507 + j 8.1507 1.30 1.85
-0.7613 + j 4.0572 0.65 18.44
-1.3941 + j 6.8301 1.09 20.00

Similarly to the results shown in Section [4.1.3] even with a PSS installed in the
system, a poorly damped electromechanical pole still exists. Therefore, it will be

necessary other PSS design.
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Table shows the normalized observability factor of generators rotor speed
for the poorly damped pole, aiming at to evaluate the best input variables for a

centralized power system stabilizer.

Table 4.25: Normalized Observability Factors, Poorly Damped Pole.
Poles Machine 1 | Machine 2 | Machine 3 | Machine 4

-0.1507 + j 8.1507 | 0.8528£1.26 1.0£-177 ] 0.046142100.6 | 0.1400£151

A PSS design using weighted signals from generators G2 and G1 rotor speed
as input and acting at voltage regulator of generator G1 at the same time as the
first PSS is proposed. The transfer function using signals coming from rotor speed
generators G2 and G1 and acting at voltage regulator of generator G1 are shown in

the following equation:

we — 0.85 * wq

VFEF (4.6)

The inverse uncompensated DNP, for frequencies ranging from 1 rad/s to 20
rad/s, of transfer function shown for ¢ = 12.5% is shown in Figure [1.14]
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Figure 4.14: Uncompensated Nyquist Diagram for The Second PSS Design.

The point with frequency 8.38 rad/s is used for the pole placement. The Com-
pensated Nyquist diagram (blue) is shown in Figure [4.15]
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Figure 4.15: Compensated and Uncompensated Nyquist Diagram for The Second

PSS Design.

The PSS parameters are presented Table [4.26]

Table 4.26: Second Power System Stabilizer, Signals From G2 and G1, Acting at

G1.

Generator | n

K

T

T

(87 wC wma:z:

G21 3 | 0.21415

3

0.04357

7.3841 | 8.38 | 8.38

The poles with PSS G43 and G21 at G1 are presented in Table [4.27]

Table 4.27: Electromechanical System Poles, with PSS G43 and G21 at G1.

Poles Frequency (Hz) | Damping Ratio (%)
-1.0558 + j 8.3798 1.33 12.50
-1.2903 + j 8.5393 1.36 14.94
-0.7427 + j 4.0658 0.65 17.97
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4.1.3.3 Remote Signal Solution Relevant Delay First Order Approxima-
tion

The results presented in Sections and have shown the impact of
modelling small time delays using a first order approximation and the developed
complete model. This section repeats the analysis for a relevant time delay.

The normalized observability factor of generators rotor speed, shown in Table
and repeated in Table [4.28] is used to evaluate the best input variables for a
centralized power system stabilizer.

Table 4.28: Normalized Observability Factors, Electromechanical Poles.

Poles Machine 1 Machine 2 Machine 3 Machine 4

0.04912 + j 3.9397 | 0.1035Z£ 167 | 0.08706Z -70 1.0£ 178 0.85962 -180

-0.5473 4+ j 7.3670 | 0.07409Z£ 75 | 0.1190Z£ -89 | 0.2573£-178 | 1.0£-0.018

-0.2557 + j 7.1248 | 0.6230Z£ -6.06 1.0£ 173 0.10644 20.73 | 0.1854Z 165

A PSS design using weighted delayed signals from generators G4 and G3 rotor
speed as input and acting at voltage regulator of generator G1 is first proposed (PSS
G43). Initially, the time delay is represented by a first order approximation.

The transfer function using signals coming from rotor speed generators G4 and
G3 and acting at voltage regulator of generator G1 are shown in the following

equation:

Wy — 0.25 % Ws
VFEF (4.7)

The inverse DNP of ([4.7) for damp & = 18% is shown in Figure [4.16]
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Figure 4.16: Uncompensated Nyquist Diagram for The First PSS Design.

The point with frequency 6.99 rad/s was used for the pole placement. The
Compensated Nyquist (blue) diagram is shown in Figure [4.17]
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Figure 4.17: Compensated and Uncompensated Nyquist Diagram for The First PSS
Design.

The PSS parameters are presented in Table [4.29

64



Table 4.29: First Power System Stabilizer, Signals From G4 and G3, Acting at G1.
Generator | n K T, | T ls% We | Winax

G43 31031146 | 3 | 0.06 | 17.984 | 6.99 | 3.8659

The poles with PSS G43 at G1 are presented in Table |4.29, The pole placement
is not exactly performed with the frequency of 6.99 rad/s and damping ratio of 18%
because of the lack of significant digits in the PSS design.

Table 4.30: Electromechanical System Poles, with PSS G43 at G1.

Poles Frequency (Hz) | Damping Ratio (%)
-0.05550 + j 8.0860 1.2869 0.6864
-0.6148 + j 4.1926 0.6673 14.508
-1.2790 + j 6.9900 1.1125 17.998

Even with a PSS installed in the system, a poorly damped electromechanical
pole still exists. Therefore, it will be necessary other PSS design.

Table shows the normalized observability factor calculation of WW for
poorly damped pole shown in Table 4.30] also looking forward evaluate the best

input variables for a centralized power system stabilizer.

Table 4.31: Normalized Observability Factors, Poorly Damped Pole.
Poles Machine 1 | Machine 2 | Machine 3 | Machine 4

-0.05550 + j 8.0860 | 0.8395£-89.7 1.0£93 0.050234£5.34 | 0.1469.4£60

A PSS design using weighted delayed signals modelled through first order aprox-
imation is performed. Rotor speed from generators G2 and G1 are used as input,
acting at voltage regulator of generator G1 at the same time as the first PSS is

proposed.
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The transfer function using signals coming from rotor speed generators G2 and
G1 and acting at voltage regulator of generator G1 are shown in the following

equation:

Wy — 0.84 x w1
VlREF

(4.8)

The inverse uncompensated DNP, for frequencies ranging from 1 rad/s to 20
rad/s, of transfer function shown for £ = 11% is shown in Figure [4.18|
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Figure 4.18: Uncompensated Nyquist Diagram for The Second PSS Design.

The point with frequency 8.48 rad/s is used for the pole placement. The Com-
pensated Nyquist (blue) diagram is shown in Figure [£.19]
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Figure 4.19: Compensated and Uncompensated Nyquist Diagram for The Second
PSS Design.

The PSS parameters are presented in of Table 4.32

Table 4.32: Second Power System Stabilizer, Signals From G2 and G1, Acting at
Gl1.

Generator | n K T T « We | Winax
G21 310.18445 | 3 | 0.035844 | 10.693 | 8.48 | 8.48

The poles with PSS G43 and G21 at G1 are presented in Table [4.33]

Table 4.33: Electromechanical System Poles, with PSS G43 and G21 at G1.

Poles Frequency (Hz) | Damping Ratio (%)
-0.9386 + j 8.4800 1.3496 11.001
-0.5884 + j 4.1910 0.6670 13.903
-1.3866 + j 8.1511 1.2973 16.770
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4.1.3.4 Remote Signal Solution Relevant Delay Complete Model

In this section, the control is designed considering the complete model of trans-

port delay in the presence of a relevant time delay (100 ms).

The normalized observability factor of generators rotor speedfor the poorly
damped pole, shown in Table and repeated in Table [4.34] is used in order to

evaluate the best input variables for a centralized power system stabilizer.

Table 4.34: Normalized Observability Factors, Electromechanical Poles.

Poles Machine 1 | Machine 2 Machine 3 Machine 4
0.04912 4 j 3.9397 | 0.1035Z 167 | 0.08706Z -70 1.0£ 178 0.8596/ -180
-0.5473 + j 7.3670 | 0.07409Z 75 | 0.1190Z£ -89 | 0.2573/-178 | 1.0£-0.018
-0.2557 + j 7.1248 | 0.6230Z -6.06 1.0£ 173 0.10644 20.73 | 0.1854Z 165

A PSS design using the complete delay model delayed is performed. Initially,
rotor speed signals from generators G4 and G3 are used as input, acting at voltage
regulator of generator G1 (PSS G43).

The transfer function using signals coming from rotor speed generators G4 and

G3 and acting at voltage regulator of generator G1 are shown in the following
equation:

wy — 0.25 x w3
VlREF

The inverse DNP of ([1.9) for damp & = 18% is shown in Figure [£.20]
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Figure 4.20: Uncompensated Nyquist Diagram for The First PSS Design.

The point with frequency 6.98 rad/s is used for the pole placement. The Com-
pensated Nyquist (blue) diagram is shown in Figure [4.21]
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Figure 4.21: Compensated and Uncompensated Nyquist Diagram for The First PSS
Design.

The PSS parameters are presented in Table [4.35

Table 4.35: First Power System Stabilizer, Signals From G4 and G3, Acting at G1.
Generator | n K T,| T o We | Winax

G43 31019275 | 3 | 0.06 | 19.475 | 6.98 | 3.715

The poles with PSS G43 at G1 are presented in Table [4.36]

Table 4.36: Electromechanical System Poles, with PSS G43 at G1.

Poles Frequency (Hz) | Damping Ratio (%)
-0.05402 + j 8.0790 1.29 -0.67
-0.5034 + j 4.1162 0.66 12.14
-1.2773 + j 6.9800 1.11 18.00

Even with a PSS installed in the system, a poorly damped electromechanical
pole still exists. Therefore, will be necessary other PSS design.
As happened before, even a PSS was installed in the system still exist a poorly

damped electromechanical pole. Therefore, will be necessary other PSS design.
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Table shows the normalized observability factors of generators rotor speed
for the poorly damped pole shown in Table aiming at to evaluate the best

input variables for a centralized power system stabilizer.

Table 4.37: Normalized Observability Factors, Poorly Damped Pole.
Poles Machine 1 | Machine 2 | Machine 3 | Machine 4

-0.05402 + j 8.0790 | 0.8389/-13.6 | 1.0£170.6 | 0.05642/81.9 | 0.1531£138

A PSS design using weighted delayed signals from generators G2 and G1 rotor
speed as input, acting at voltage regulator of generator G1 at the same time as the
first PSS is proposed (PSS G21).

The transfer function using signals coming from rotor speed generators G2 and
G1 and acting at voltage regulator of generator G1 are shown in the following

equation:

wye — 0.84 % w;
VREF

(4.10)

The inverse uncompensated DNP, for frequencies ranging from 1 rad/s to 20
rad/s, of transfer function shown for & = 10% is shown in Figure m
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Figure 4.22: Uncompensated Nyquist Diagram for The Second PSS Design.

The point with frequency 8.36 rad/s is used for the pole placement. The Com-
pensated Nyquist diagram (blue) is shown in Figure m
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Figure 4.23: Compensated and Uncompensated Nyquist Diagram for The Second
PSS Design.

The PSS parameters are presented in the second row of Table [4.38]

Table 4.38: Second Power System Stabilizer, Signals From G2 and G1, Acting at
G1.

Generator | n K T, | T o We | Winax
G21 31017761 | 3 | 0.02|17.895 | 836 | 11.76

The poles with PSS G43 and G21 at G1 are presented in Table [4.39

Table 4.39: Electromechanical System Poles, with PSS G43 and G21 at G1.

Poles Frequency (Hz) | Damping Ratio (%)
-0.8402 + j 8.3600 1.33 10.00
-0.4850 + j 4.1158 0.66 11.70
-1.9449 + j 6.8857 1.10 27.18
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4.1.4 Comparative Analysis with Small Time Delay

This section presents comparative results considering the step response with am-
plitude 0.01V at time (¢t = 1s) in the Automatic Voltage Regulator (AVR) connected
to generator G1 for the solutions proposed in [4.1.3.1]

The voltage deviation at each generator is compared in Figures [4.24], [£.25] [£.26]
and [4.27], considering the first order approximation and the complete model as well.

0,012

0,014

0,008 4

—Voltage Bus 1 - Complete Model
— Voltage Bus 1 - First Order Approximation

0,006 1

0,004 -

0,002 1

Figure 4.24: Voltage at Bus 1 - Small Time Delay.
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— Voltage Bus 2 - Complete Model

0,003+ — Voltage Bus 2 - First Order Approximation
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Figure 4.25: Voltage at Bus 2 - Small Time Delay.
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-0,0002 — Voltage Bus 3 - Complete Model
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Figure 4.26: Voltage at Bus 3 - Small Time Delay.
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0,001+

— Voltage Bus 4 - Complete Model

0,00054 — Voltage Bus 4 - First Order Approximation

-0,0005

-0,001 4

Figure 4.27: Voltage at Bus 4 - Small Time Delay.

The frequency deviation at each generator is compared in Figures [4.29]
[4.30] and [4.31], considering the first order approximation and the complete model as

well.

04

-0,0005

-0,001+

— Frequency Deviation Generator 1 - First Order Approximation

-0,0015 — Frequency Deviation Generator 1 - Complete Model

-0,002

-0,0025

Figure 4.28: Frequency at Generator 1 - Small Time Delay.
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— Frequency Deviation Generator 2 - First Order Approximation

— Frequency Deviation Generator 2 - Complete Model
-0,0015
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Figure 4.29: Frequency at Generator 2 - Small Time Delay.
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— Frequency Deviation Generator 3 - First Order Approximation

.0,0015 | — Frequency Deviation Generator 3 - Complete Model
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Figure 4.30: Frequency at Generator 3 - Small Time Delay.
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— Frequency Deviation Generator 4 - First Order Approximation

.0,00151 — Frequency Deviation Generator 4 - Complete Model
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-0,0025

Figure 4.31: Frequency at Generator 4 - Small Time Delay.

As suggested in Section [4.1.3.2| and discussed in the literature [2H4, 26H31], a

small time delay can be represented using polynomial approximations.
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4.1.5 Comparative Analysis with Relevant Time Delay

This section compares the step response in the Automatic Voltage Regulator
(AVR) connected to generator G1 considering the solutions proposed in Section
4.1.3.3| using the complete modelling of transport delay as well as the first order
approximation.

The voltage deviation at each generator is compared in Figures [.32], [£.33] [£.34]
and [£.35] considering the complete modelling of transport delay as well as the first

order approximation.

— Voltage Bus 1 - First Order Approximation
0,2 — Voltage Bus 1 - Complete Model
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Figure 4.32: Voltage at Bus 1 - Relevant Time Delay.
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Figure 4.33: Voltage at Bus 2 - Relevant Time Delay.
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Figure 4.34: Voltage at Bus 3 - Relevant Time Delay.
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—Voltage Bus 4 - First Order Approximation
0.01 — Voltage Bus 4 - Complete Model
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Figure 4.35: Voltage at Bus 4 - Relevant Time Delay.

The frequency deviation at each generator is compared in Figures [4.37]
and [4.39, considering the complete modelling of transport delay as well as the

first order approximation.
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Figure 4.36: Frequency at Generator 1 - Relevant Time Delay.
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0,003

— Frequency Deviation Generator 2 - First Order Approximation
— Frequency Deviation Generator 2 - Complete Model
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Figure 4.37: Frequency at Generator 2 - Relevant Time Delay.
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— Frequency Deviation Generator 3 - Complete Model
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Figure 4.38: Frequency at Generator 3 - Relevant Time Delay.
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— Frequency Deviation Generator 4 - First Order Approximation
— Frequency Deviation Generator 4 - Complete Model
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Figure 4.39: Frequency at Generator 4 - Relevant Time Delay.

The results shown that the first order approximation is not suitable for transport

delay modelling when a relevant time delay exists.
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4.2 Brazilian Interconnected Power System

The modal analysis tools for systems with transport delays is tested in Brazilian
Interconnected Power System (BIPS), illustrated in Figure The studies are
developed using two different load-flow database cases as described in the following

sections.
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Figure 4.40: Brazilian Interconnected Power System (BIPS).

4.2.1 Southeast System Exporter

In this section, the proposed modal analysis tool for systems with transport
delays is tested in the BIPS, considering its full database for a planning scenario
of 2020 with 6620 buses, 257 power plants and 6,824 state variables. The studies

are developed using a critical scenario where the Southeastern region (SE) exports
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power to the North Region (N). It presents a high power flow (6400 MW, SE = N)
through the HVDC line that connects substations Estreito (S) and Xingu (N). In this
scenario, there is a moderate damped electromechanical mode (7%) with frequency
3.2 rad/s. In order to increase this damping factor, a remote signal from Belo Monte
power plant (bus 6728), located close to the Xingu substation (17 km), is used. The
remote signal is the rotor speed deviation at Belo Monte and the PSS acts at the
rectifiers located at Estreito substation, through the converter modulation signals
(referred to as CMS).

This scenario was used in [5], where remote signals are used in order to increase
damping factor of electromechanical modes without take into account any transport
delay. As presented in [5], the electromechanical mode with frequency 3.2 rad/s is
allocated at (-0.6144+4j3.010) in the complex plane with 20% of damping.

Including the time delay on the remote signals and varying the time constant
from 0 to 0.25 seconds, it is possible to account the impact of the delay omission
on the mode damping. The sequential dominant pole algorithm [11, [14] is used in

order to calculate the root locus varying time constant 7.
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Figure 4.41: Root-Locus of time constant 7.

In Figure it is possible to analyze the transport delay impact on the control
development. The bigger the time delay, the bigger its impact on damping control.

4.2.1.1 PSS Design Including Transport Delay

The PSS will be re-designed considering the time delay associated to the remote
signals. For research proposes, a big time delay (0.25 s) is used. For project proposes,
the complete model of transport delay developed in this thesis is considered.

In order to increase this damping factor, a remote signal from Belo Monte power
plant (bus #6728), located close to the Xingu substation (17 km), is used. The

remote signal is the rotor speed deviation at Belo Monte and the PSS acts at the
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rectifiers (converters #3201 and #3203) located at Estreito substation, through the

converter modulation signals (referred to as CMS).

CMS3201(s) + CMS3203(s)
w6728(s)

The DNP of for £ = 20% is shown in Figure [4.42]

(4.11)
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-2,3

7.1

11,9
12,5 -8,5 -4,5 0,5 3,5

Figure 4.42: Uncompensated and Compensated Nyquist Diagram for The PSS Re-
Design.

The parameters for re-designed PSS are shown in Table [4.40]

Table 4.40: Re-designed PSS, for Southeast System Exporter of Electric Power.
Generator | n K T, T « We | Winaz

CS-6728 11]-15.044 | 3 | 0.11036 | 8.6416 | 3.02 | 3.02

84



Figure m shows the time response comparison for system without PSS (red),
system with PSS but no time delay accounting (blue) and system with PSS account-

ing time delay (green).
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Figure 4.43: Time Response Comparison - Southeast System Exporter of Energy.

As expected, the system performance with PSS accounting time delay is superior

when compared to the one that does not considers the transport delay.

4.2.2 North System Exporter

The second case has an high power flow (7200 MW) on DC line from Belo Monte
hydroelectric plant North-Southeast direction. In order to increase the damping
factor of poorly damped electromechanical mode (10.58%) with frequency 2.41 rad/s,
converged using the Dominant Pole Algorithm [I4], remote signals are used from
rotor speed deviation from machine located on Belo Monte hydroelectric plant and
act at the rectifier located at the HVDC that links Belo Monte hydroelectric plant
to the Southeast of Brazil. The control acts at the rectifier of the substation located
in Xingu-PA, located only 17 km away from the origin of input signals.

This scenario was also used in [5], where remote signals are used in order to
increase damping factor of electromechanical modes without take into account any
transport delay. As presented in [5], the electromechanical mode with frequency
2.41 rad/s is allocated at (—0.4922 + j2.4111) in the complex plane with 20% of
damping.

The transport delay modelling is included considering the developed complete
model. The time delay on signals coming from Belo Monte machines is varied from
0 to 0.5 seconds. The sequential dominant pole algorithm [IT) [14] is used in order

to calculate the root locus varying time constant 7.
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Figure 4.44: Root-Locus of time constant 7 - North System Exporter of Energy.

In [4.44] it is possible to analyse the transport delay impact on control develop-

ment. The bigger the time delay, The bigger its impact on damping control.
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4.2.3 Computational Performance

For the computational performance evaluation, a computer with an Intel (R)
Core (TM) i7-3517U CPU @ 1.90 GHz-2.40 GHz, 4,00 Gbytes of RAM and Win-
dows 10 was used. The computational time for the BIPS case of Southeast System
Exporter is 59 seconds for the root locus calculation, 23 seconds for the frequency
response calculation and 1 minute and 33 seconds for the time response calculation,
all of them using the proposed methods applied to the Y(s)-formulation. On the
other hand, using a first order approximation in place of the transport delay with the
conventional descriptor system modeling, the computational time is 59 seconds for
root locus, 11 seconds for frequency response and 1 minute and 21 seconds for time
response. Therefore, there was no significant loss of computational performance for

the proposed method.

4.3 Final Considerations

In this chapter, a two-area system has been used to evaluate three aspects: first,
the importance of the advances in modal analysis tools for systems with transport
delay. Second, the comparison between solutions using local and remote sensing
aiming at the damping of electromechanical oscillations. Third, the impact of using
the first order approximation delay and the complete time delay model proposed in
this work in the PSSs design.

An analysis of the Brazilian Interconnected Power System has been conducted
to highlight the importance of time delay modelling in the controller design. The
results have evidenced that the omission of time delay may cause lack of damping.

The results obtained in this chapter evidence benefits brought by the methods

developed in this thesis for power system analysis.
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Chapter 5
Conclusion

The development of modal analysis tools for systems with transport delays repre-
sents an advance in the state of art of power system stability and control area. With
the recent widespread usage of communication systems in electrical networks, it is
expected that stability analysis and control design methods must consider time de-
lays. In this way, practical tools should be developed to study the complex dynamic
behavior of time-delayed power systems.

The main contributions of this work are the mathematical and computational
developments of modal analysis tools for systems that use remote signals in their
control structure. The developments, based on s-domain methods, allow includ-
ing more precise modelling of transport delays. When modelling infinite systems by
non-linear functions of s, as proposed in the beginning of this thesis, the eigenvectors
are not available. Therefore, the sensitivity tools of modal analysis (mode-shapes,
transfer function residues, participation, observability and controllability factors)
must be calculated by different numerical algorithms, based on the general complex
variable theory, which is still valid for the proposed modelling form. Moreover, such
methods consider the impact of the infinite system on the system dynamics, his-
torically ignored in electromechanical stability studies. It should be noted that the
proposed methodology does not cause significant loss of computational performance.

Concluding, the methods and methodologies proposed in this work have been
implemented in software PacDyn and contribute greatly to small-signal analysis of

delayed power systems, enabling a better planning and operation processes.

5.1 Future Works

The following future works can be proposed:

e Expansion of theoretical developed in this work for system with other non-

linear system representation such as lines with distributed parameters;
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e Investigation of a stochastic approach in the transport delay modelling;

e Perform additional tests in other power systems worldwide with a large quan-

tity of remote measurements spread along the system.
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