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RISC design for computer
image generation

Manuel L Anido and David J Allerton discuss the development of a
RISC-applicable instruction set for realtime computer image generation

The paper describes the design and analysis of an
instruction set which is applicable to a RISC processor
operating as a geometry engine for computer image
generation. A prototype LSI implementation of a fixed-
point pipelined RISC is described. It provides a novel
technique with DMA channels direct to the register file, a
high-performance multiplier and a high-performance
divider. The extension of this approach to a VLSI ASIC
version using macrocells from a standard cell library is
outlined together with a discussion of the testability issues.
Results from an LSl implementation and an ASIC simulation
are presented.

microsystems geometric computation

RISC  ASICs

computer images

RISCs have received popular acclaim in recent years for a
number of reasons: first, their performance can exceed
processors with complex instruction sets because their
instruction decoding and execution is simpler and there-
fore faster, which in turn has led to simpler and more
efficient compilers. Second, reduction in complexity is
accompanied by a reduction in chip area. Consequently,
chip area can also be utilized for floating-point processing,
cache memory and memory management.

However, most RISC developments have been oriented
towards the production of conventional sequential
processors. Typically, these processors are judged on their
relative performance in executing high-level languages for
awide range of applications. As a result of the demand for
high-performance low-cost processors, the overall archi-
tectures of these processors resemble those of CISCs,
particularly in terms of bus organization and memory
access.

As RISC processors have become simpler in terms of
internal architecture there has been a concomitant
reduction in the processor design cycle in terms of man-
years of development. Moreover, with advances in VLSI
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CAD packages, several RISCs have been produced from
first-time silicon.

One common theme in the development of RISCs is
the analysis of the characteristics of the application soft-
ware, particularly the frequency distribution of executed
instructions and their addressing modes, prior to the
design of the processor. While detailed analysis results in
increased speed of execution of instructions, processor
performance has also been optimized by exploitation of
state-of-the-art VLSI design styles, particularly full-custom
design, since hardware resources are allocated to accelerate
the most used instructions.

Concurrent with the development of RISC archi-
tectures, the impact of VLS| design has been most
profound in the area of application-specific integrated
circuits (ASICs). In order to reduce the overall design
cycle, the designer enters his design at the schematic level
using a predefined set of logic and arithmetic cells. The
design is simulated by conventional logic simulation and
the designer provides the semiconductor vendor with the
schematic information and a suitable set of test vectors
which define the overall operation of the device. The
translation from the schematic form to a fabricated device
is undertaken by the semiconductor vendor.

As ASIC technologies have progressed, the standard
cells offered at the schematic stage have increased in
complexity to the point where macrocells are available for
ALUs, adders, multipliers, register files, shifters, etc. With
processing fabrication reductions to 1 um technologies
and improvements in the compactness of automated
layouts, these macrocells are relatively compact and fast
in comparison with full-custom equivalents. Thus, for the
RISC designer, ASICs offer an effective method of
implementing a particular design giving a relatively short
time to silicon.

To summarize, there are two related themes in the
developments of RISC design and ASIC technologies.
First, RISC architectures can also be applied to specific
applications where high processing rates are required but
where a simple set of instructions is adequate for the
application. Second, RISC processor design has been
made more generally available by the recent develop-
ment in ASIC design packages.
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REALTIME COMPUTER GRAPHICS

As the use of computer workstations has become more
widespread there has been a proliferation in the demands
on and applications of computer graphics in workstations.
The most exacting application area is realtime graphics,
where images are continuously regenerated at video
frame rates. One specific example is flight simulation,
where the pilot’s view is altered in realtime according to
the changes of the position and attitude of the simulated
aircraft. A second group of applications is in visualization
systems, where large amounts of computer data must be
processed at very high rates and the natural medium to
visualize these resuits is interactive computer graphics.

In realtime graphics systems, objects are defined in 3D
space, the image is transformed to 2D space (screen
space) and this image is then formed in a framestore for
subsequent display. This overall method is limited in
terms of bandwidth in two respects. The arithmetic
calculations in 3D graphics operations are demanding in
terms of the inherent arithmetic operations and a very
high datarate is required to form the transformed image in
a framestore. This paper addresses the former problem,
namely the execution of the graphical operations to
transform 3D objects to screen space. A phrase often
associated with this application is the term ‘geometry
engine’

Visual fidelity improves with the image content.
Usually, images are defined as a set of objects, each
object is defined as a set of surfaces and each surface is
defined by its vertices. Clearly, increasing the image
content results in an increase in the processing require-
ment. To provide the effect of continuous motion in
realtime systems the image must be regenerated at a rate
of at least 25 frames/s and possibly at a rate of up to 60
frames/s2. This constrains the time available to generate
the image.

Although commercially available microprocessors can
be applied to the problems of image generation, two
advantages result from the use of an application-specific
RISC (ASRISQ). First, the RISC can be ‘tuned’ to the appli-
cation in terms of its instruction set and architecture, in
order to enhance the performance. Second, the processor
can be integrated into the system architecture in the most
effective possible manner.

To transform objects from 3D space (world space) to
screen space, there are three basic operations:>

e Transformation: the object vertices are transformed
from the world axis system to the view-port axis system.
In other words, the position and orientation of the
view-port is used to redefine the axis system and each
object undergoes rotation and translation to this new
axis system.

e Clipping: as each object (or a part of each object) may
not be contained within the 2D view-port, the parts of
the object (in world space) that are outside the view-
port must be removed (or clipped) with respect to the
cone derived from the view-port.

® Projection: the resultant 3D object is projected onto
the 2D view-port in order to take account of the
perspective of the object.

These operations require a significant number of arithmetic

operations, particularly muitiplication and division, which
have to be executed within the period dictated by the
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Table 1. Arithmetic operations per polygon (best and
worst cases)

Best case (polygon Worst case (all edges
outside screen) cross screen)

Operation + x +. + X . =

24 36 0
40 16 16
16 16 16

Transformation 24 - 36
Clipping 0 0
Perspect. project 0 0

[N N]

image update rate (usually less than 40 ms). The number
of operations varies with the orientation and position of
the view-port and also with image content, which makes
it difficult to define an ‘average’ case. Moreover, the visual
system has to be able to cope with near worst case
situations, otherwise the user will notice a discontinuity in
motion and/or a lack of synchronization. For objects
represented by four-sided planar polygons, the best case
and worst case arithmetic operations per polygon are
shown in Table 1. :

Consider an image with 1000 quadrilaterals (4000
vertices) and an update rate of 25 times/s. In the worst
case, the number of arithmetic operations persecond is

4000 X 25 X 68 = 6 800 000 multiplications
4000 X 25 X 32 = 3 200 000 divisions
4000 X 25 X 80 = 8 000 000 additions

Unfortunately, multiplication and division instructions are
typically more than 20 times slower than simple instructions
on most microprocessors. Additionally, there are many
more ‘non-arithmetic’ instructions to be executed to
accomplish geometric computations, but the basic
example above gives an insight into a formidable
computation problem.

The image content (and consequently image quality) is
largely dependent upon the speed of execution of the
algorithms implicit in transformation, clipping and pro-
jection operations, and the speed of execution of the
multiply and divide instructions.

As the resolution of typical screen displays is of the
order 1024:1024, and the problem does not demand
great magnitude or precision, it is possible that the
complexity of floating-point arithmetic can be avoided.
Fixed-point arithmetic can be used, provided that the
overall resolution is maintained by means of intelligent
scaling of the equations inherent in the image rendering
processes. In order to avoid a larger and slower chip, it is
also possible to operate with 16-bit, instead of 32-bit
fixed-point arithmetic. Several implementations of fixed-
point arithmetic have been demonstrated for realtime
image generation systems? 43,

There is one further consideration in image generation
where the application differs from general-purpose appli-
cations. Objects are effectively passed to the image
generation processor (stage 1) fortransformation, clipping
and projection (stage 2), and the 2D image is then passed
to a framestore controller (stage 3).

This particular application allows a possible overlap of
these three stages. While an object undergoes the above
transformations, the previous object can be transferred
out of the processor (to the framestore controller) and a
new object can be acquired ready for processing on
completion of processing the current object. This form of

Microprocessors and Microsystems



overlapped processing is not usually provided in con-
ventional RISC processors, and its absence results in signi-
ficant processor idle time while 1/O operations are
performed, and a significant overall degradation of
performance. The use of data storage internal to the
processor and allowing autonomous external access
concurrent with processing can provide a significant
speed improvement, but requires a rigid scheme to avoid
possible contention for on-chip memory.

It is thus possible to gain significant improvement in
overall speed for image generation over conventional
processors by designing a RISC with an instruction set and
architecture which is optimized for the application and
which affords optimized 1/0 channels for the external
reading of 3D objects and the writing of 2D objects.

REALTIME IMAGE GENERATION APPLICATION

In order to assess the most used and time-demanding
instructions of a realtime image generatiun (RTIG) appli-
cation, qualitative and quantitative analyses of the
University of Southampton flight simulator® > (which
employs MC68000 microprocessors) were carried out®.
The results of the quantitative analysis are shown in
Figure 1.

Instruction analysis

The resuits of the instruction analysis are presented as a
percentage of the total time per instruction rather than
percentage of instructions per program because this
reflects the problem more realistically. In addition, system
characteristics such as addressing range, addressing
modes, stack size, data space, and data structure were
also analysed®.

The quantitative results show that the time spent by
the MC68000 on multiplication and division instructions
represents almost 35% of the total. This is mainly because

% of total time

20

5% ‘_\
5

0|123'4”5'678

Instruction

I

10 11 12

Figure 1. Time requirements of geometric procedures on
an MC68000 microprocessor (Instructions: 1, Multipli-
cation; 2, Division; 3, Conditional branch; 4, BSR; 5, Shift;
6, Addition; 7, Subtraction; 8, Other instruction; 9, Load
address; 10, Load data; 11, Move register to register;
12, Store data)

Vol 14 No 6 July/August 1990

multiplication takes 40 clock cycles (on average) to
complete and division takes 80 clock cycles (on average)
per operation. Thus their optimization is essential to
improve system performance. Branches also consume a
considerable amount of the processor time (15%).
Optimizing the execution of branches is more difficult in
highly pipelined architectures and usually requires hard-
ware and/or software technigues to achieve significant
improvements’ '°. In this application, shift instructions
occupy 7% of the time of the MC68000s. A shift
instruction requires two clock cycles to shift an operand
one bit position (6 + 2n clock cycles, where n is the
number of positions to shift). This explains the significant
time needed for this instruction.

Branch to subroutine (BSR) instructions consume 8% of
the MC68000 processor time. However, the nesting
depth level is small (less than six depth levels), which
allows the implementation of a reduced and fast stack,
internal to this RISC geometry engine. Load, store, and
load address instructions represent almost 16% of the
total time. This large proportion of the total time is
characteristic of microprocessors with a limited number of
internal registers, and leads to the use of the main
memory for temporary storage. Move register to register
instructions represent only 3% of the processor time, but
represent 5% of the total number of instructions. Once
multiplication, division, branch to subroutine and shift
instructions are optimized, move register to register
instructions represent a much higher percentage of the
processor time. Therefore, their high frequency of occur-
rence supports a switch to three operand instructions.

Additional findings

To achieve high polygon throughput, parallel processing
is required. The workload can be easily partitioned by a
host computer which can associate one subregion of the
potentially visible polygons per processor. This workload
partitioning is feasible because in realtime image generation
scenes are usually defined by sets of independent objects
and objects are composed of sets of independent
polygons. By processing one polygon at a time, the data
area required for ‘polygon-related’ data, transformation
matrix, viewpoint coordinates, and temporary variables is
relatively small (less than 64 16-bit words) and can be
stored in the register file of a processor with an adequate
number of internal registers.

Polygon-related data, such as vertex coordinates,
vertex colour, and vertex intensity can be stored using a
highly regular data structure, such as a table, for easy data
access. Figure 2 illustrates a possible data organization.
Similar data is repeated at constant intervals for the four
polygon vertices. Thus, it can be used to facilitate
procedure argument passing.

The quantity of data to be transferred into and out of
the system {(per polygon) may vary between 20 and 60
words, depending on the polygon position in relation to
the view-port. If a polygon is totally outside the view-port,
it is rejected during the clipping operation and no output
data transfer is required. In this case, only input (3D)
coordinates are transferred. However, if a polygon
‘crosses’ the view-port, it is clipped, which can result in
several additional vertices and thus additional data (2D
coordinates) to be output.

The data transfer time is significant when compared
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of a prioritizer and a fast shifter forimproved performance.

Unlike general-purpose RISCs this application does
not require complex exception handling, Therefore,
saving and restoring the state of condition codes is simple.
Maoreover, the program is small and can be hand coded,
and compute instructions can be made to generate the
condition code needed for a branch, suggesting the use of
condition codes, instead of an explicit instruction to
senerate the required condition”™

ARCHITECTURAL OVERVIEW

A parallel processing system which employs several
concurrently operating RIG (RISC for image generation)
geometry engines 1= used to achieve high polygon
throughput, Its operation is discussed in more detail in a
previous paper' 2. The organization of this multiprocessor
image generation system is illustrated in Figure 3.

This paper concentrates on the architecture of the RIG
engine which is an ASRISC and, unlike general-purpose
RISC architectures, is characterized by an emphasis on

e extrenely fast 1/O data transfer
@ the use of the intemal registers as the main data storage

drea
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Figure 4. RIC internal architecture

e fast multiplication and division instructions
e an application driven instruction set

RIG intermnal architecture is illustrated in Figure 4, and its
most impeortant characteristics are discussed below. |t
accomplishes the processing of one polygon at a time
and, by using an adequate number of intemal registers
(128), no extemal data memory is required for this
application, thus avoiding data delays in the pipeline and
improving processor performance,

This geometry engine also provides an extremely fast
mechanism for transferring data into and out of the
processor. Data is transferred in direct memory access
(DMA) burst mode directly between the extemnal environ-
ment and the intemal registers, concurrent with processing.
This is possible because the register file is organized in
three independent sections:

e general-purpose registers and polygon data structure
section

e input registers section

® output registers section

Microprocessors and Microsystems



A program space of 2k instructions is compatible with the
application, which allows the specification of an absolute
address or an offset in the instruction field for branch
instructions. Branch instructions (unconditional and
conditional) use the absolute address for fast branching.

The target application does not require a large stack.
Never the less a very fast call/return mechanism is
necessary for improved performance. A small stack of
depth 8 is used. Because all global variables, local
variables, and procedure parameters can be stored in the
register file, call/return instructions can be very fast. The
program is small and can be hand coded in assembly
language, therefore the task of ensuring that there is no
stack overflow or underflow is left to the programmer.

RIG uses a fast Booth-encoded combinational multiplier
to speed-up muiltiplications. A multiplication instruction
is executed in two clock cycles. Division is accomplished
by using a radix-4 signed division method that provides
two quotient bits per iteration, instead of the usual single
quotient bit per division step.

Instruction format

The architecture of the RIG geometry engine is register-
oriented because fast operand access and efficient use of
the register file is essential to achieve high performance
and also to minimize the overall area. Three-address
instructions allow nondestructive register-to-register or
register with immediate operations and are employed to
achieve maximum register utilization. All RIG instructions
have a fixed width of one word for simplicity of the fetch
unit, with operand address fields at fixed locations, for
direct and fast instruction decoding, This scheme also
allows register access in parallel with instruction decoding.
Constants and branch addresses can be embedded in the
instruction field, providing immediate access to constants
and fast branch execution.

Instruction set

The instruction set is illustrated in Figure 5, reflecting the
findings of the quantitative and qualitative analyses
discussed above.

OPERATION OPERANDS DESCRIPTION

ADD scl,sc2,dst dst 1= scl+sc2

ADDc scl,sc2.dst dst := sclesc2+cy

SUB scl,sc2.dst dst := scl-sc2

SUBc scl.sc2,dst dst := scl-sc2-cy

AND scl,sc2,dst dst :=scl & sc2

OR scl,sc2,dst dst ;= scl vsc2

XOR scl,sc2,dst dst :=scl +sc2

LSL scl,5¢2,dst dst :=scl sl sc2 posit;Isb =0

LSR sclsc2 dst dst ;= scl srsc2 posit;msb=0

ASR scl,s¢2,dst dst := scl srsc2 posit. ; msb = msb
SCALELI scl,sc2,dst dst := low(scl concat sc2 << n)

SCALELh scl,sc2,dst dst := high(scl concat sc2 << n)

SCALERI scl,sc dst dst ;= low(scl concat sc2 >> n)

SCALERK scl,sc2,dst dst ;= high(scl concat sc2 >> n}

BRA addr,cc 1f ce = true then PC := addr cise PC := PC+1
CMPBRA scl,offsct,cc If (sc1=0 & cc=0) v (sc1<0 & cex1) -> PC:xPCeoffset
CALL addr PC := uddr ; Stack := PC+1; StackP := StackP +1
RET StackP := StackP -1 ; PC := Stack

MULs dst 3= low(scl * sc2)

DIVSTEP - Division Step

PRIOR dst := priority (sc1)

RDREG dst := register(sc2)

WRREG Register(sc2) := scl

MOVEQ dst:=n

e — No operation

Figure 5. | 7 instruction set

Vol 14 No 6 July/August 1990

The SCALE instruction performs a muitiple bit shift of
two concatenated registers (left or right), using a funnel-
shifter. The number of bits to shift is specified by the
‘scaling factor’ register, which is implicitly loaded by the
prioritize (PRIOR) instruction or can be explicitly loaded
using the WRREG instruction. This instruction is used to
scale operands in fixed-point arithmetic so that overflow,
underflow and loss of accuracy problems are avoided or
minimized.

The PRIOR instruction determines the ‘priority’ of the
most significant bit (MSB). It determines how many
positions an operand has to be left-shifted to align the
MSB bit to the left, next to th-~ sign bit. It operates on
positive or negative numbers. The instruction result is
stored in a general-purpose register (explicit in the
instruction) and in the ‘scaling factor’ register (implicit in
the instruction).

RDREG and WRREG instructions control the read/write
operations on the, muiltiplier, divider and priortizer
circuits, as well as 1/O control. Therefore, operations such
as ‘load dividend’, ‘read quotient’ or ‘set DMA output
request bit’ are accomplished by these instructions.

The CMPBRA instruction performs a ‘quick compare
and branch’ operation®, which makes it possible to
suppress a significant number of conditional branch
instructions.

Four-stage pipeline

Pipelining has been an essential technique in improving
processor performance. To balance the utilization of
pipeline stages (and also take advantage of the pipeline
organization), it is necessary to evaluate the time required
by each operation in the early stages of the design.
Instruction decoding in the RIG engine is simple (a
common RISC feature) and register read/write operaticns
are fast, when compared with instruction execution or
instruction fetch operations (approximately twice faster).
The use of a three-operand instruction format allows
instruction decoding and register read operations to be
effected in parallel (because register addresses and
instruction opcode are ready simultaneously).

RIG uses a four-stage pipeline, with half-clock cycle
times available for instruction decoding and register read/
write operations (see Figure 6). All functional units (fetch,
decode and execute units) are 100% occupied. One
instruction is executed every clock cycle and there are
three overlapped instructions in the pipeline.

This pipeline is much simpler than that of general-
purpose RISCs because no external data access is
required (data can always be read from or written to the
internal registers). Therefore, no address computation
and data access pipeline stages are necessary. Only one
level of intermal forwarding (or bypassing) is required
because the instruction result is written in the register file
in the following cycle. In order to provide one cycle load
instructions, some RISCs'? delay the write result operation
by one cycle, which demands two levels of- data
forwarding to avoid pipeline interlocks.

Branches
Branch instructions use an absolute address embedded in

the instruction register. There is no PC-relative addressing
mode for branch instructions because no relocatable
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WRITE n-1

/ PS-?VQ/dgd \ CALC. NEXT PC

SFETCH ns+1 :nEc.,q
i

Figure 6. RIG four-stage pipeline

object code is required. Conditional branches are per-
formed according to the condition codes, which are set
by the arithmetic and logic instructions. The branch delay
for these instructions is only one cycle, because there is
no need to use the ALU to calculate the next PC address.

A significant percentage of branch instructions (approxi-
mately 20%) can be eliminated by emgloying a quick
compare and branch (CMPBRA) instruction”. The instruction
field incorporates an offset which is added to the program
counter, providing a PC-relative addressing mode for this
instruction. This addition is performed in the instruction
fetch unit (IFV), rather than the ALU. Instead of a full
comparison of two registers, which would demand the
completion of an ALU cycle (consequently adding an
extra clock cycle), a quick comparison of a register with
zero or sign comparison is effected. This comparison is
realized at the end of the register file read cycle by a
simple and fast circuit and thus avoids double delayed
jumps in the four-stage pipeline.

To implement half-clock cycle operation, the IFU
master and slave clocks are swapped with the master and
slave clocks of the rest of the system. Therefore, it is not
possible to connect all system registers in a single shift
register for scan-path testing. Two solutions were con-
sidered: the use of two extra scan-in and scan-out pins for
the instruction fetch unit or multiplexing the master and
slave clocks (controlled by the test signal). In order to
avoid extra test pins, the latter solution — which allows all
system registers to be connected in a long shift reglster —
was adopted.

HARDWARE RESOURCES
Register file and indices

A register file with three sections is provided: one,section
for the general-purpose registers and polygon data
structure, one section for data input, and one section for
data output. These input and output registers can be
read/written directly by the processor, and can also be
accessed by an external DMA device, concurrent with
processing. In a previous paper'? several options to
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implement such a register file were discussed. It was
shown that (for this application) a register file with three-
port/three-access cells, allowing read/write operations on
all ports, would afford advantages over a first in, first out
(FIFO) memory or register banks in terms of area, regularity
and the number of buses required. However, standard
cell libraries do not normally provide such register files.
and this option is only feasible using a full-custom imple-
mentation.

To use proprietary register files or register files available
in standard cell libraries (two read/write ports and a third
write port), a scheme with 64 general-purpose registers,
32 input registers and 32 output registers was chosen.
These registers are organized in a linear addressing space,
which requires 7-bit in the instruction register (IR)
operand fields. As illustrated in Figure 7, input and output
registers can be addressed by the processor (using the
SC1, SC2 and DST address buses) or by an external DMA
controller (using the DMAADDR address bus). The input
data required during processing can be accessed directly
from the input registers, dispensing with additional
instructions or storage space to move data to the general-
purpose registers. The same reasoning applies to output.
Additionally, 1/O registers can be used as general-purpose
registers.

To achieve an effective parameter passing mechanism
which maximized register usage, two register file organiz-
ation techniques were exammed First, a fixed-size multi-
window register file organization® was considered. Although
the nesting depth level in this application is small (which
favours windows), this scheme lacks efficiency because it
does not provide sufficient registers for some procedures
and wastes registers for others. While the translation,
transformation, and perspective procedures require few
parameters and local variables, the clipping procedure
{which is frequently used) requires a large number of para-
meters and local variables. Second, a variable-size multi-
window register file (or register stack) organization® '* was
examined. In this scheme each window is only as large as
needed, making effective use of the register file. The RIG
processor uses a variation of this technique, which is
described in more detail in Reference 12. The data
structure is regular, thus making the use of indices a
feasible choice. The penalty for using indices is the extra
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time required to perform the addition of a register address
with an index, obtaining a new register address. However,
the required adders are only 7-bit wide and can perform
the addition in a time that does not compromise the
system clock rate. In many cases, passing parameters to a
procedure and retrieving results can be performed by a
single instruction. This method is advantageous in this
particular case, but cannot be used as a broad scheme
for argument passing in general-purpose RISCs.

Funnel shifter and prioritizer

To support fast scaling in fixed-point arithmetic and
provide fast shift instructions, a funnel-shifter and a
prioritizer circuit were used. The funnel-shifter performs
multiple-bit shifts of two concatenated operands (2n-bit
input and n-bit output), in one clock cycle. The prioritizer
circuit determines the position of the most significant bit
of positive or negative numbers. it determines the
number of positions left an operand must be shifted so
that the most significant bit will be aligned with the sign
bit.

Combinational multiplier

Multiplication (16-bit X 16-bit with 32-bit result) is per-
formed by a fast Booth-encoded combinational multiplier,
which is regular, iterative and uses a smaller area than an
array multiplier'™ '®, It takes two clock cycles to accomplish
a multiplication operation. In the first instruction cycle
operands are loaded in the multiplier and the lower result
bits are read. The higher part of the result is available only
on the following clock cycle. In order to minimize loss of
accuracy, arithmetic operations are effected on 32-bit
operands, converting the final result to 16 bit.

Performed in the conventional manner, binary multi-
plication requires the summation of as many partial
products as there are bits in the multiplier. Techniques to
reduce the number of partial products have been
developed and fall under the heading of signed-digit
recoding schemes'®. The modified Booth algorithm is one
of these techniques, encoding the muitiplier bits in such a
way that the number of partial products required is only
half that of the ‘AND’ gate approach'®,

Some RISC designers have implemented multiplication
based on the observation that most multiplications
involve a small constant known at compile time'/, and
this can be used to speed up multiplication. However, in
this application most of the multiplications have variable
magnitude operands. Therefore, this mechanism is not
suitable for this application.

Radix-4 divider

Division is intrinsically more complex than multiplication
and demands considerable effort forits optimization. The
two most common methods for division are based on
repeated subtractions, as exemplified by the ‘paper and
pencil’ method, or are based on repeated muitiplications,
e.g. the Newton-Raphson method" 6, A major disadvantage
of the Newton-Raphson method is the need for a large
ROM to obtain a first good approximation of the quotient
digits to converge in a few iterations.
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A radix-4 signed division method which employs
3 Xdivisor multiples and uses a reduced next divisor
multiple estimate table'® is implemented using compact
and fast combinational logic. Several higher radix division
implementations use 2 X divisor multiples (they are
easier to generate) but this implies the use of faily large,
slow PLAs, and has precluded their application in the
integer unit of microprocessors'? 2% The PLA time adds to
the ALU carry-propagate adder time, slowing down the
system.

The division method employed in this research project
provides two quotient bits per iteration, instead of the
usual single quotient bit per division step. This method
also deals directly with signed two’s complement numbers,
eliminating the need for additional instructions for sign
conversion. This is achieved at negligible additional cost
because commonly used ALU hardware (also needed for
other instructions) is employed. In order to use the ALU
carry-propagate adder, partial remainders and quotient
bits are kept in irredundant form.

Figure 8 illustrates the circuit employed to calculate the
partial remainders. The divisor multiple 3D is obtained by
adding the divisor multiple 2D and D in the first division
instruction step. The logic equations for the m0 and m1
signals are simply

mo = (S.Y2 + Y3.Y2.Y0 + Y3.5.Y0 + Y2.Y1.YO
+S.Y1.YO + 5.Y2) + divstep1;
m1 = (Y2.YT + S.Y2 + 5.Y1).divstep1; m

These equations can be implemented using a single 16:1
multiplexer (for m0) and an and/or logic gate (for m1), as
illustrated in Figure 8. This logic is more compact and
faster than solutions employing divisor multiples chosen
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Figure 8.  Circuit for division partial remainder calculation
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from the set {—2,~1,0,1,2}'* 2% and allows its use in the
arithmetic unit because no significant time is added to the
critical path.

Figure 9 illustrates one possible implementation to
calculate the quotient digits, which are stored in imedundant
form. If the quotient is negative, quotient digits are
generated in one’s complement and must be incremented
at the end of the division process.

EMULATION AND VLSI DESIGN

Prior to VLS| design, the system was emulated. Both soft-
ware emulation and hardware emulation were considered.
While software emulation allows easier changes in the
architecture and usually involves less cost, a hardware
emulation makes it possible to evaluate the system'’s
realtime capabilities. Moreover, a low-level software
emulation of a complex system can take a long time, even
for a small program. A switch-level simulator running a
design with approximately 80k transistors on a Micro Vax
Il is reported to execute one clock cycle every minute'®.
This implies that it takes 16.6 hours to run a program with
1000 instructions. On the other hand, if the target is a full-
custom implementation, a software emulation can provide
input vectors to be applied to the extracted circuit,-and in
this case the software approach is virtually mandatory.
Thus each case must be analysed separately to decide
upon the appropriate method of emulation.

Using proprietary system components

In orderto validate the instruction set and provide realistic
performance evaluation, the RIG geometry engine was
emulated using proprietary LS| building blocks, which
allowed the system to be constructed with a moderate
number of ICs, This gave an insight into the main problem
areas and bottlenecks.

The RIG geometry engine was emulated using Am29300
chips (32-bits), including an ALU and funnel-shifter
(Am29332), a register file (Am29C334) and a combinational
multiplier. The control is very simple (as usual in RISC-like
systems) and is performed by several PAL and PROM
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Table 2. Comparison of 12MHz MC68000 and
1§ MHz RIG for certain instructions

Instruction MC68000 RIG Improvement
Add 166 ns 62.5 ns 26X
Shift 1.66 us 62.5 ns 26.6 X
Call (Bsr) 133 us 62.5 ns 213 X
Multiply 4 us 125 ns 32.0 X
Divide 10 us 2us 5.0 X
Branch 666 ns 62.5 ns 10.6 X

Table 3. Time measurements on RIG geometric pro-
cedures

Procedure  Best case Average Worst case
(us) (us) (us)
Scaling 2.8 7.8 11.2
Transform.  13.5 13.5 13.5
Clipping 15.6 26.2 94.0
Perspective 4.4 18.4 50.0
Total time  36.3 65.9 168.7
per polygon

chips. The system architecture is similar to the final VLS|
design using a standard-cell approach. Subsequent
mapping of this hardware emulation to a standard-cell
implementation was relatively straightforward.

Performance measurements

Table 2 depicts a time comparison between 12 MHz
MC68000 instructions and the equivalent RIG 16 MHz
instructions. Measured performance indicates that a
16 MHz RIG geometry engine (16 MIPS peak processor)
emulation executes the geometric procedures 15 times
faster than a 12 MHz MC68000 microprocessor. Unfor-
tunately, no performance figures comparing RIG with
more recent processors are available.

Table 3 illustrates some time measurements realized
on RIG geometric procedures. They indicate that, on
average, this RIG emulation is capable of delivering a
transformed polygon every 66 us, which comesponds to
15 000 polygons per second or 600 polygons in realtime
(considering an update rate of 25 times/s). As is shown
below, the VLS| design achieves twice this performance.

VLSI design

The RIG geometry engine has been designed in VLS| using
a1 um CMOS standard cell library, which has parameterized
silicon compiler datapaths, such as ALU, barrel-shifter,
register file and multiplier. This approach provides
packing densities and speed close to full-custom designs,
with the design turnaround times of ASIC standard cells.

A two-phase non-overapping clock scheme is employed
(see Figure 6). Because the design is synchronous, this
clock scheme avoids any race conditions (the only races
are with clocks). By generating the master and slave
phases external to the chip it is possible to control the
clock skew immunity and the frequency of operation.

Table 4 shows the time consumed by the major pipe-
line elements. It shows that the slowest element in the
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Table 4. Speed of certain pipeline elements
Operation Time required (ns)
Memory access 33
Register read/write 14
Instruction decode 11
Branch test 10
ALU 28
Shifter 27
Multiplier 2X 30
Prioritizer 13
Table 5. Area of certain basic system blocks
Block Area (mm?)
Register file 17.80
Muitiplier 3.82
ALU 1.11
Shifter 1.30
Stack 0.30
Bus buffers 0.62
Adders 0.65
Registers 2.50
Mux and decoder 0.20
Other logic 1.10

pipeline is the external memory. Using standard 2k X 8 —
25 ns external static RAMs to store the program implies a
total access time of 33 ns. To speed up execution time, a
faster memory is necessary. It is feasible to store the
program in an internal ROM and eliminate the memory
access time bottleneck but the speed improvement will
be marginal. The significant advantage of this approach is
to provide a geometry engine system in a single chip.

it can be seen from Table 4 that the VLS! design runs
twice as fast as the hardware emulation discussed
previously. This implies a geometry engine that can run
the geometric procedures 30 times faster than a 12 MHz
MC68000 microprocessor. The table also shows that the
register read time and instruction decoding time represent
less than half the memory access time, proving that the
allocation of half clock cycle time for these operations
was appropriate.

Table 5 presents the area of the major system blocks. It
can be seen that the register file and the muiltiplier
consume a large area. However, datapath modules are
very compact, with minimal routing between them. On
the other hand, the interconnection between those
modules and the rest of the logic occupies a considerable
area.

The VLSt standard cell design is validated by running
the geometric procedures in a logic simulator and
comparing the perspected co-ordinates with the co-
ordinates generated by the University of Southampton
flight simulator. This is accomplished by loading the
object code generated by the assembler in a file that the
logic simulator ‘sees’ as the RIG program memory.
Running on an Apollo 3500 workstation with a 25 MHz
MC68030 microprocessor, the simulation takes approxi-
mately three seconds per clock cycle.

Built-in testability

Observability and controllability can be builtinto a circuit
by incorporating the ability to load and store the state of
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Figure 10. Basic latch for scan-path testing

every flip-flop (or latch) in a circuit from the device pir:
The test problem is then reduced to testing the combin-
ational logic between the memory elements, i.e. the state
of a circuit loaded. The combinational logic is exercised
by setting the intemal memory elements to a new state
which can be stored and compared to the result expected
from a functionally correct device. In a scan design, all the
latches and flip-flops are joined together into a serial shift
register’’. By shifting data serially (scanning) in the shift
register the state of each flip-flop can be controlled and
observed.

The standard cell library used in this project has special
cells that use this testing philosophy. The test method is
based on the scan-path testing philosophy. Figure 10
illustrates a latch with testability support for scan-path
testing.

All large blocks in the system (ALY, funnel-shifter,
multiplier, etc.) incorporate /O registers, which allows
them to be tested separately from the rest of the circuit.
This modular scan design approach simplifies test vector
generation and gives rise to a highly structured test
methodology.

CONCLUSIONS

By careful analysis of the algorithms inherent in realtime
image generation, it is possible to design a RISC processor
which is capable of executing the algorithms significantly
faster than conventional microprocessor systems. The use
of a novel technique that employs autonomous |/O
channels direct to the register file further enhances the
processing speed of the RISC in applications as a
geometry engine. The resultant instruction set contains 25
instructions and 128 registers. All arithmetic instructions
contain three register fields and a special-purpose register
file was designed to avoid contention between processor
access to the register file and DMA transfers to and from
the register file.

A further substantial improvement in speed, when
compared with CISC computers, has been obtained by
means of a four-stage pipeline. The implementation is
relatively straightforward due to the simplicity of the
instruction set. Because the processor does not have to
access extemal data, dispensing with load and store
instructions, and because no delayed result write operation
is required, one level of data forwarding is sufficient in the
four-stage pipeline. The quick-compare and branch
instruction eliminates a significant percentage of conditional
branch instructions and avoids double-delayed branches,
which would be required in a full compare instruction
using the ALU. :

Analysis of the graphics algorithms emphasized the
need for high-speed fixed-point multiplication and
division. Problems of integer scaling are ameliorated by
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the implementation of a funnel-shifter. Multiplication is
achieved by means of a variant of the Booth encoded
algorithm. High-speed division is achieved by means of an
adaptation of a two-bits-at-a-time method.

The overall simplicity and regularity of the architecture
fends itself to implementation using ASIC macrocells.
However, prior to this development, a prototype version
was constructed using equivalent LS| components. This
development confirmed the target processing speed and
provided a ready means of identifying possible bottle-
necks. Recently, a VLSI ASIC design has been undertaken
using a 1 um CMOS standard cell library. A performance
approximately 30 times faster than a 12 MHz MC68000
processor is predicted forthe VLSl implementation, with a
chip area of approximately 50 mm?. '
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