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RISC design for computer

image generation

Manuel L Anido and David J Allerton discuss the development of a

RISC-applicable instruction set for realtime computer image generation
�

,;I '

;t ...CAD packages, several RISCs have been produced from
The paper descnbes the des,gn and analys,s of an first-time silicon.
instruction set which is applicable to a RISC procesSor One common theme in the development of RISCs is
operating as a geometry e�gine for co.mputer in:'age the analysis of the characteristics of the application SOft-
generation. A prototype LSI ,mplementat'o� of a f,xed- ware, particularly the frequency distribution of executed
point pipelined RISC is described. It provlde� a n.ovel instructions and their addressing modes, prior to the
technique with DMA ch�n�els direct to t.he reglster f,le, a design of the processor. While detailed analysis results in
high-performance �ultlpller. and a hlgh-performance increased speed of execution of instructions, processor
divider. The extenslon of th,S approach to a VL.SI AS/� performance has also been optimized by exploitation of
version using macr?cells. from. a standard ce/� !,b�ary 15 state-of-the-art VLSI design styles, particularly full-custom
outljned together �Ith a dlscuss�on of the testabll!ty Iss�es. design, since hardware resources are allocated to accelerate
Results from an LSlImplementatIon and an AS/C slmulatlon the most used instructions.
are presented. Concurrent with the development of RISC archi-

..tectures the impact of VLSI design has been most
microsystesmCs computer images geomelrlc compulallon

p rofound in the area of application-specific integratedRISC A I s .

, : circuits (ASICs). In order to reduce the overall deslgn
cycle, the designer enters his design at the schematic levei

..using a predefined set of logic and arithmetic cells. The
RISCs have received popular acclalm In recent years for a design is simulated by conventionallogic simulation and
number of reasons: first, their performance can excee? the designer provides the semiconductorvendorwith the
processors with complex instruction sets because thelr schematic information and a suitable set of test vectors
instruction decoding and execution is simpler and there- which define the overall operation of the device. The
fore faster, which in turn has led to simpler and more translation from the schematic form to a fabricated device
efficient compilers. Second, reduction in complexity is is undertaken by the semiconductor vendor.

-accompanied bya reduction in chip area. Consequently, As ASIC technologies have progressed, the standard
chip area can also be utilized for floating-point processing, cells offered at the schematic stage have increased in
cache memory and memory management. .complexity to the point where macrocells are available for

However, most RISC developments have been onent�d ALUs, adders, multipliers, register files, shifters, etc. With
� towards the production of conventio�al sequentl�1 processing fabrication reductions to 1 .um technologies

processors. Typically, these processors are Judged on thelr and improvements in the compactness of automated
relative performance in executing high-Ievellanguages for layouts, these macrocells are relatively compact and fast
a wide range of applications. As a result of the demand f�r in comparison with full-custom equivalents. Thus, for the
high-performance low-cost processors, the overall archl- RISC designer, ASICs offer an effective method of
tectures of �hese processors rese�bl� those of CISCs, implementing a particular design giving a relatively short
particularty In terms of bus organlzatlon and memory time to silicon.
access. To summarize, there are two related themes in the

As RISC processors have become simpler in ter�s of developments of RISC design and ASIC technologies.
internal architecture there has been a concomltant First RISC architectures can also be applied to specific
reduction in the processor design cy.cle in terms �f man- appíications where high processing rates are required but
years of development. Moreover, wlth advances In VLSI where a simple set of instructions is adequate for the

...application. Second, RISC processor design has been
Department of Electronics and Computer Sclence. Umverslty of South- made more generally available by the recent develop-
ampton. University Road. Highfield, Southampton SO9 5NH. UK ..
Paper received: 23 January 1990. Revised 25 April1990 ment In ASIC deslgn packages.
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REALTIME COMPUTER GRAPHICS Table 1. Arithmetic operations per polygon (best and
worst cases)

As the use of computer workstations has become more
widespread there has been a proliferation in the demands Best c.ase (polygon Worst case (alI edges

outslde screen) cross screen)
on and appllcatlons of computer graphlcs In workstatlons.
The most exacting application area is realtime graphics, Operation + X + + X +
where images are continuously regenerated at video
frame rates. One specific example is flight simulation, Tr':lns�ormation 24 36 O 24 36 O
where the pilot's view is altered in realtime according to Cllpplng .o O O 40 16 16

d Perspect. proJect 0 0 0 16 16 16the changes of the posltlon and attltude of the slmulate
aircraft. A second group of applications is in visualization
systems, where large amounts of computer data must be
processed at very high rates and the natural medium to image update rate (usually less than 40 ms). The number
visualize these results is interactive computer graphics. of operations varies with the orientation and position of

In realtime graphics systems, objects are defined in 3D the view-port and also with image content, which makes
space, the image is transformed to 2D space (screen it difficult to define an 'average' case. Moreover, the visual
space) and this image is then formed in a framestore for system has to be able to cope with near worst case
subsequent display. This overall method is limited in situations, otherwise the userwill notice a discontinuity in
terms of bandwidth in two respects. The arithmetic motion and/or a lack of synchronization. For objects
calculations in 3D graphics operations are demanding in represented by four-sided planar polygons, the best case
terms of the inherent arithmetic operations and a very and worst case arithmetic operations per polygon are
high data rate is required to form the transformed image in shown in Table 1.
a framestore. This paper addresses the former problem, Consider an image with 1000 quadrilaterals (4000
namely the execution of the graphical operations to vertices) and an update rate of 25 times/s. In the worst
transform 3D objects to screen space. A phrase often case, the numberof arithmetic operations persecond is
associated with this application is the term 'geometry
engine'l. 4000 X 25 X 68 = 6800000 multiplications

Visual fidelity improves with the image content. 4000 X 25 X 32 = 3 200 000 divisions
Usually, images are defined as a set of objects, each 4000 x 25 x 80 = 8 000 000 additions

object is defined as a set of surfaces and each surface is
defined by its vertices. Clearty, increasing the image Unfortunately, multiplication and division instructions are
content results in an increase in the processing require- typically more than 20 times slower than simple instructions
ment. To provide the effect of continuous motion in on most microprocessors. Additionally, there are many
realtime systems the image must be regenerated at a rate more 'non-arithmetic' instructions to be executed to
of at least 25 frames/s and possibly at a rate of up to 60 'accomplish geometric computations, but the basic
frames/s2. This constrains the time available to generate example above gives an insight into a formidable
the image. computation problem.

Although commercially available microprocessors can The image content (and consequently imag� quality) is
be applied to the problems of image generation, two largely dependent upon the speed of executlon of the
advantages result from the use of an application-specific algorithms implicit in transformation, clipping and pro-
RISC (ASRISC). First, the RISC can be 'tuned' to the appli- jection operations, and the speed of execution of the
cation in terms of its instruction set and architecture, in multiply and divide instructions.
orderto enhance the performance. Second, the processor As the resolution of typical screen displays is of the
can be integrated into the system architecture in the most order 1024:1024, and the problem does not demand
effective possible manner. great magnitude or precision, it is possible that the

To transform objects from 3D space (world space) to complexity of floating-point arithmetic can be avoided.
screen space, there are three basic operations:3 Fixed-point arithmetic can be used, provided that the

overall resolution is maintained by means of inte/1igent
.Transformation: the object vertices are transformed scaling of the equations inherent in the image rendering

from the wortd axis system to the view-port axis system. processes. In order to avoid a larger and slower chip, it is
In other words, the position and orientation of the also possible to operate with 16-bit, instead of 32-bit
view-port is used to redefine the axis system and each fixed-point arithmetic. Several implementations of fixed-
object undergoes rotation and translation to this new point arithmetic have been demonstrated for realtime

..2 4 saxis system. Image generatlon systems ' , .

.Clipping: as each object (or a part of each object) may There is one further consideration in image generation
not be contained within the 2D view-port, the parts of where the application differs from general-purpose appli-
the object (in world space) that are outside the view- cations. Objects are effectively passed to the image
port must be removed (or clipped) with respect to the generation processor (stage 1) fortransformation, clipping
cone derived from the view-port. and projection (stage 2), and the 2D image is then passed

.Projectian: the resultant 3D abject is projected onto to a framestore controller (stage 3).
the 2D view-part in order to take accaunt of the This particular application allows a passible averlap af
perspective af the abject. these three stages. While an object undergaes the above

transformations, the previous object can be transferred
These operations require a significant number of arithmetic out af the processor (ta the framestore controller) and a
operations, particularly multiplication and division, which new object can be acquired ready for processing on
have to be executed within the periad dictated by the completion of processing the current object. This form af
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overlapped processing is not usually provided in con- multiplication takes 40 clock cycles (on average) to
ventional RISC processors, and its absence results in signi- complete and division takes 80 clock cycles (on average)
ficant processor idle time while 1/0 operations are per operation. Thus their optimization is essential to
performed, and a significant overall degradation of improve system performance. Branches also consume a
performance. The use of data storage internal to the considerable amount of the processor time ('5%).
processor and allowing autonomous external access Optimizing the execution of branches is more difficult in
concurrent with processing can provide a significant highly pipelined architectures and usually requires hard-
speed improvement, but requires a rigid scheme to avoid ware and/or software techniques to achieve significant
possible contention for on-chip memory. improveme:nts7-10. In this application, shift instructions

It is thus possible to gain significant improvement in occupy 7% of the time of the MC68000s. A shift
overall speed for image generation over conventional instruction requires two clock cycles to shift an operand
processors by designing a RISC with an instruction set and one bit position (6 + 2n clock cycles, where n is the
architecture which is optimized for the application and number of positions to shift). This explains the significant
which affords optimized 1/0 channels for the external time needed for this instruction.
reading of 3D objects and the writing of 2D objects. Branch to subroutine (BSR) instructions consume 8% of

the MC68000 processor time. However, the nesting
depth levei is small (less than six depth levels), which

REALTIME IMAGE GENERATION APPLICATION allows the implementation of a reduced and fast stack,
internal to this RISC geometry engine. Load, store, and

In order to assess the most used and ti,'1e-demanding load address instructions represent almost '6% of the
instructions of a realtime image generatiúll (RTIG) appli- total time. This large proportion of the total time is
cation, qualitative and quantitative analyses of the characteristic of microprocessors with a limited number of
University of Southampton flight simulator4.5 (which internal registers, and leads to the use of the main
employs MC68000 microprocessors) were carried out6. memory for temporary storage. Move register to register
The results of the quantitative analysis are shown in instructions represent only 3% of the processor time, but
Figure' .represent 5% of the total number of instructions. Once

multiplication, division, branch to subroutine and shift
instructions are optimized, move register to register

Instruction analysis instructions represent a much higher percentage of the
processor time. Therefore, their high frequency of occur-

The results of the instruction analysis are presented as a rence supports a switch to three operand instructions.
percentage of the total time per instruction rather than
percentage of instructions per program because this
reflects the problem more realistically.ln addition, system Additional findings

characteristics such as addressing range, addressing
modes, stack size, data space, and data structure were To achieve high polygon throughput, parallel processing
also analysed6. is required. The workload can be easily partitioned bya

The quantitative results show that the time spent by host computer which can associate one subregion of the
the MC68000 on multiplication and division instructions potentially visible polygons per processor. This workload
represents almost 35% of the total. This is mainly because partitioning is feasible because in realtime image generation

scenes are usually defined by sets of independent objects
and objects are composed of sets of independent

% of total time polygons. By processing one polygon at a time, the data
area required for 'polygon-related' data, transformation

20 matrix, viewpoint coordinates, and temporary variables is
relatively small (less than 64 '6-bit words) and can be
stored in the register file of a processor with an adequate
number of internal registers.

15 Polygon-related data, such as vertex coordinates,

vertex colour, and vertex intensity can be stored using a
highly regular data structure, such as a table, for easy data

10 access. Figure 2 illustrates a possible data organization.
� Similar data is repeated at constant intervals for the four

polygon vertices. Thus, it can be used to facilitate
5% procedure argument passing.

The quantity of data to be transferred into and out of
the system (per polygon) may vary between 20 and 60

0 1 2 3 4 words, depending on the polygon position in relation to
.the view-port. If a polygon is totally outside the view-port,

Instructlon it is rejected during the clipping operation and no output

Figure 1. Time requirements of geometric procedures on data transfer is required. In this case, only input (3D)
an MC68000 microprocessor (Instructions: 1, Multipli- coordinates are transferred. However, if a polygon
cation; 2, Division; 3, Conditional branch; 4, BSR; 5, Shift; 'crosses' the view-port, it is clipped, which can result in
6, Addition; 7, Subtraction; 8, Other instruction; 9, Load several additional vertices and thus additional data (2D
address; 10, Load data; 11, Move register to register; coordinates) to be output.
12, Store data) The data transfer time is significant when compared
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A program space of 2k instructions is compatible with the
application, which allows the specification of an absolute
address or an offset in the instruction field for branch
instructions. Branch instructions (unconditional and
conditional) use the absolute address for fast branching.

The target application does not require a large stack.
Never the less a very fast call/return mechanism is
necessary for improved performance. A smal/ stack of
depth 8 is used. Because ali global variables, local
variables, and procedure parameters can be stored in the
register file, call/return instructions can be very fast. The
program is small and can be hand coded in assembly
language, therefore the task of ensuring that there is no
stack overflow or underflow is left to the programmer.

RIG uses a fast Booth-encoded combinational multiplier
to speed-up muJtiplications. A multiplication instruction
is executed in two clock cycles. Division is accomplished
by using a radix-4 signed division method that provides
two quotient bits per iteration, instead of the usual single
quotient bit per division step.

The SCALE instruction performs a multiple bit shift of
two concatenated registers (left or right), using a funnel-
shifter. The number of bits to shift is specified by the
'scaling factor' register, which is implicitly loaded by the
prioritize (PRIOR) instruction or can be explicitly loaded
using the WRREG instruction. This instruction is used to
scale operands in fixed-point arithmetic so that overflow.
underflow and loss of accuracy problems are avoided or
minimized.

The PRIOR instruction determines the 'priority' of the
most significant bit (MSB). It determines how many
positions an operand has to be left-shifted to align the
MSB bit to the left, next to tl sign bit. It operates on
positive or negative numbers. The instruction result is
stored in a general-purpose register (explicit in the
instruction) and in the 'scaling factor' register (implícit in
the instruction).

RDREG and WRREG instructions control the read/write
operations on the. multíplier, divider and priortizer
circuits, as well as 1/0 control. Therefore, operations such
as 'Ioad dividend', 'read quotient' or 'set DMA output
request bit' are accomplished by these instructions.

The. CMPBRA instructron performs a 'quick compare
and branch' operation9, which makes it possible to
suppress a sígnificant number of conditional branch
instructions.

I nstruction format

The architecture of the RIG geometry engine is register-
oriented because fast operand access and efficient use of
the register file is essential to achieve high performance
and also to minimize the overall area. Three-address
instructions allow nondestructive register-to-register or
register with immediate operations and are employed to
achieve maximum register utilization. Ali RIG instructions
have a fixed width of one word for simplicity of the fetch
unit, with operand address fields at fixed locations, for
direct and fast instruction decoding. This scheme also
allows register access in parallel with instruction decoding.
Constants and branch addresses can be embedded in the
instruction field, providing immediate access to constants
and fast branch execution.

Four-stage pipeline

Instruction set

The instruction set is illustrated in Figure 5, reflecting the
findings of the quantitative and qualitative analyses
discussed above.

DESCRIJYrION

dst := .cl+sc2
dst := scl.sc2+cy
dst := .cl.sc2
dst:=scl.sc2.cy

dst := scl & sc2
dst:=scl\.sc2
dsl :=scl + sc2

dst :=scl slsc2 poslt; Isb =O
dsl := .cl sr sc2 poslt.; msb = 0
dst := scl sr sc2 pOSII. ; msb = msb
dsI := low(scl conc.t sc2 « n)
dst := hlgh(.cl conc.t sc2 « n)
dst := lo\'.(scl conc.t sc2 » n)
dst := hlgh(scl conc.t sc2 » n)

Ucc z truc lh"n PC := .ddr "Is. PC :zPC+l
U (scl=O & cCzO) v (scl<O & .czl) .> PC:.pc+orr..1
PC := .ddr ; St.ck :. PC+l; Sto.kP := StockP +I
StockP := SI.ckP .1 ; PC := St.ck

scl,S(2,dst dst :.Io\,iscl .sc2)
DI\'islon S!.p

scl.dsl dst :z priority (scl)
sc2,dst dst := r.Gist.r(sc2)
scl.sc2 R.�lst.r(sc2) := scl
n.dst dsl := n

No op.r.tlon

R/G ;nstruct;on set

Pipelining has been an essential techniqup in improving
processor perlormance. To balance the utilization of
pipeline stages (and also take advantage of the pipeline
organization), it is necessary to evaluate the time required
by each operation in the early stages of the design.
Instruction decoding in the RIG engine is simple (a
common RISC feature) and register read/write operati(jr1s
are fast, when compa(ed with instruction execution or
instruction fetch operations (approximately twice faster).
The use of a three-operand instruction format allows
instruction decoding and register read operations to be
effected in parallel (because register addresses and
instruction opcode are ready simultaneously).

RIG uses a four-stage pipeline, with half-clock cycle
times available for instruction decoding and register read/
write operations (see Figure 6). Ali functional units (fetch,
decode and execute units) are 100% occupied. One
instruction is executed every clock cycle and there are
three overlapped instructions in the pipeline.

This pipeline is much simpler than that of general-
purpose RISCs because no external data access is
required (data can always be read from or written to the
internal registers). Therefore, no address computation
and data access pipeline stages are necessary. Only one
levei of intemal forwarding (or bypassing) is required
because the instruction result is written in the register file
in the following cycle. In order to provide one cycle load
instructions, some RISCs 10 delay the write result operation

by one cycle, which demands two levels of data
forwarding to avoid pipeline interlocks.

Branches

Branch instructions use an absolute address embedded in
the instruction register. There is no PC-relative addressing
mode for branch instructions because no relocatableFigure 5.
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OPERATION OPERA,,"DS

ADD 5CI.5C2.dsl

ADDc 5CI.5C2.dsl
SVB 5CI.5C2.dst
St:Bc SCI.5C2.dsl

A:--D scl.sc2.dsl
OR SCI.5C2.dsl
XOR scl.sc2.dsl

LSL 5CI.sc2.dsl
LSR 5CI.sc2.dsl
ASR 5CI.sc2.dsl
SCALELI 5CI,sc2.dsl
SCALELb scl.sc2.dsl
SCALERI scl,sc2.dsl
SCALERb scl,sc2.dsl

DRA .ddr.cc

C�IPDRA 5CI.orr5CI.CC
CALL .ddr

RET

�IULs
DIVSTEP
PR\OR
RDREG
WRREG

MOVEQ





time required to perform the addition of a register address
with an index, obtaining a new register address. However,
the required adders are only 7-bit wide and can perform
the addition in a time that does not compromise the
system clock rate. In many cases, passing parameters to a
procedure and retrieving results can be performed by a
single instruction. This method is advantageous in this
particular case, but cannot be used as a broad scheme
for argument passing in general-purpose RISCs.

Funnel shifter and prioritizer

To SUppOrt fast scaling in fixed-point arithmetic and
provide fast shift instructions, a funnel-shifter and a
prioritizer circuit were used. The funnel-shifter performs
multiple-bit shifts of two concatenated operands (2n-bit
input and n-bit OUtput), in one clOCk cycle. The prioritizer
circuit determines the position of the most significant bit
of positive or negative numbers. It determines the
number of positionS left an operand must be shifted 50
that the most significant bit will be aligned with the sign
bit.

A radix-4 signed division method which employs
3 xdivisor multjples and uses a reduced next divisor
multiple .estimate table 18 is implemented using compact

and fast combinationallogic. Several higher radix division
implementations use 2 X divisor multiples (they are
easier to generate) but this implies the use of fairly large,
slow PLAs, and has precluded their application in the
integer unjt of microprocessors 19.20. The PLA time adds to
the ALU carry-propagate adder time, slowing down the
system.

The division method employed in this research project
provides two quotient bits per iteration, instead of the
usual single quotient bit per division step. This method
also deals directly with signed two's complement numbers,
eliminating the need for additional instructions for sign
conversion. This is achieved at negligible additional cost
because commonly used ALU hardware (also needed for
other instructions) is employed. In order to use the ALU
carry-propagate adder, partial remainders and quotient
bits are kept in irredundant form.

Figure 8 illustrates the circuit employed to calculate the
partial remainders. The divisor multiple 3D is obtained by
adding the divisor multiple 2D and D in the first division
instruction step. The logic equations for the mO and m'
signals are simply

Combinational multiplier
mO = (s.Y2 + Y3.Y2.YO + Y3.s.Yõ + Y2.Yf.YO

+ S.Y1.Yõ + S.Y2) + divstep1;

m1 = (Y2.Yf + S.Y2 + S.Y1).divstep1; (1)

These equations can be implemented using a single 16:1
multiplexer (for mO) and an and/or logic gate (for m1), as
illustrated in Figure 8. This logic is more compact and
faster than solutions employin� divisor multiples chosen

Multiplication (16-bit X 16-bit with 32-bit result) is per-
formed by a fast Booth-encoded combinational multiplier.
which is regular, iterative and uses a smaller area than an
array multiplier1s, 16, Ittakes two clock cycles to accomplish
a multiplication operation. In the first instruction cycle
operands are loaded in the multiplier and the lower result
bits are read. The higher part of the result is available only
on the following clock cycle. In order to minimize 1055 of
accuracy, arithmetic operations are effected on 32-bit
operands. converting the final result to 16 bit.

Performed in the conventional manner, binary multi-
plication requires the summation of as many partial
products as there are bits in the multiplier. Techniques to
reduce the number of partial products have been
developed and fa" under the heading of signed-digit
recodingschemes '6. The modified Booth algorithm is one
of these techniques, encoding the multiplier bits in such a
way that the number of partial products required is only
half that of the ..AND. gate approach16.

Some RISC designers have implemented multiplication
based on the observation that most multiplications
involve a small constant known at compile time17, and
this can be used to speed up multiplication. However, in
this application most of the multiplications have variable
magnitude operands. Therefore. this mechanism is not
suitable for this application.

Radix-4 divider

Division is intrinsically more complex than multiplication
and demands considerable effort for its optimization. The
two most common methods for division are based on
repeated subtractions, as exemplified by the 'paper and
pencil' method, or are based on repeated multiplications,
e.g. the Newton-Raphson method' 6. A major disadvantage
of the Newton-Raphson method is the need for a large
ROM to obtain a first good approximation of the quotient
digits to converge in a few iterations.
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-1 m1 mO Table 2. Comparison of 12 MHz MC68000 and

SiOn p 16 MHz RIG for certain instructions
Si9n N .

Instruction MC68000 RIG Improvement
Si9n p

Add 166 ns 62.5 ns 2.6 X
Shift 1.66.us 62.5 ns 26.6 Xsi9nD Call(Bsr) 1.33.us 62.5ns 21.3x

Multiply 4.us '25 ns 32.0 X
Sion N Divide, 0 .us 2.us 5.0 X

Branch 666 ns 62.5 ns '0.6 X

Table 3. Time measurements on RIG geometric pro-
cedures

Procedure Best case Average Worst caseLOAD (J1s) (J1s) (J1s)

,
Scaling 2.8 7.8 11.2

Figure 9. Circuit for division quotient caJcuJation Transforrn. 13.5 13.5 13.5
Clipping 15.6 26.2 94.0

1 � 20 ..Perspective 4.4 18.4 50.0
fromthesetl-2,-1,0,1,21. ,andallowsltsuselnthe TotaJtime 36.3 659 1687
ar�t�metic unit because no significant time is added to the per polygon ..

crltlcal path.
Figure 9 illustrates one possible implementation to

calculate the quotient digits, which are stored in irredundant
form. If the quotient is negative, quotient digits are chips. The system architecture is similar to the final VLSI
generated in one's complement and must be incremented design using a standard-cell approach. Subsequent
at the end of the division process. mapping of this hardware emulation to a standard-cell

implementation was relatively straightforward.

EMULATION AND VLSI DESIGN Performance measurements

..Table 2 depicts a time comparison between 12 MHz
Prior to VLSI. deslgn, the system was �mulated. Bo�h soft- MC68000 instructions and the equivalent RIG 16 MHz

war� emulatlon and har�ware emulatlo� were consl�ered. instructions. Measured performance indicates that a
Wh,le software emulatlon allows easler changes In the 16 MH RIG o t .

(16 MIPS k )..z ge me ry englne pea processorarchlte�ture and u�ually I.nvolves less cost, a hardwar,e emulation executes the geometric procedures 15 times
emu.JatIon mak�� .It posslble to evaluate the system s faster than a 12 MHz MC68000 microprocessor. Unfor-
realtlm� capabllltles. Moreover, a low-Ievel. software tunately, no performance figures comparing RIG with
emulatlon of a complex sys�em can ta�e a long time, .even more recent processors are available.
for � sm�11 progra�. A swltch-leveJ.slmulator ru.nmng a Table 3 i"ustrates some time measurements reaJized
d�slgn wlth approxlmately 80k translstors on a MI.cro Vft on RIG geometric procedures. They indicate that, on
III� r�po�ed to �xecute one clock cycle every mlnute. .average, this RIG emulation is capable of delivering a
Thls I�plles t.hat It takes 16.6 hours to.run a progr�m wlth transformed polygon every 66 J1s, which corresponds to
1000 In�tructlons. O� the other hand, If th� target IS a f�"- 15 000 poJygons per second or 600 polygons in realtime
�ustom ImplementatlOn: a software emulatlon. ca� provl�e (considering an update rate of 25 times/s). As is shown
In�ut vectors to be appJled to the �xtr�cted clrcult,.and In below, the VLSI design achieves twice this erforrnance.
thls case the software approach IS vlrtually mandatory. p
Thus each case must be anaJysed separately to decide
upon the appropriate method of emuJation. VLSI design

The RIG geometry engine has been designed in VLSI using
Using proprietary system components a 1 J1m CMOS standard ce" library, which has parameterized

silicon compiler datapaths, such as ALU, barrel-shifter,
In orderto validate the instruction set and provide realistic register file and multiplier. This approach provides
performance evaluation, the RIG geometry engine was packing densities and speed close to fu"-custom designs,
emulated using proprietary LSI building blocks, which with the design turnaround times of ASIC standard cells.
allowed the system to be constructed with a moderate A two-phase non-over1apping clock scheme is employed
number of ICs. This gave an insight into the main problem (see Figure 6). Because the design is synchronous, this
areas and bottlenecks. .clock scheme avoids any race conditions (the only races

The RIG geómetryenginewas emulated usingAm29300 are with clocks). By generating the master and slave
chips (32-bits), including an ALU and funnel-shifter phases external to the chip it is possible to control the
(Am29332), a registerfile (Am29C334) and a combinational clock skew immunity and the frequency of operation.
multiplier. The control is very simple (as usual in RISC-Iike Table 4 shows the time consumed by the major pipe-
systems) and is perforrned by several PAL and PROM line elements. It shows that the slowest element in the
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Table 4. Speed of certain pipeline elements

Time required (ns)Operation

33

14

11
10

28

27

2 X 30

13

Memory access
Register read/write
Instruction decode
Branch test
ALU
Shifter
Multiplier
Prioritizer

Area of certain basic system blocksTable 5.

Area (mm1Block

17.80
3.82
1.11
1.30
0.30
0.62
0.65
2.50
0.20
1.10

Register file
Multiplier
ALU
Shifter
Stack
Bus buffers
Adders
Registers
Mux and decoder
Other logic

every flip-flop (or latch) in a circuit from the devicepil
The test problem is then reduced to testing the combin-
ationallogic between the memory elements, i.e. the state
of a circuit loaded. The combinationallogic is exercised
by setting the intemal memory elements to a new state
which can be stored and compared to the result expected
from a functionally correct device. In a scan design, ali the
latches and flip-flops are joined together into a serial shift
registerl. By shifting data serially (scanning) in the shift
register the state of each flip-flop can be controlled and
observed.

The standard celllibrary used in this project has special
cells that use this testing philosophy. The test method is
based on the scan-path testing philosophy. Figure 10
illustrates a latch with testability support for scan-path
testing.

Ali large blocks in the system (ALU, funnel-shifter,
multiplier, etc.) incorporate 1/0 registers, which allows
them to be tested separatelyfrom the rest of the circuit.
This modular scan design approach simplifies test vector
generation and gives rise to a highly structured test
methodology .

CONCLUSIONS

pipeline is the external memory .Using standard 2k X 8 -

25 ns external static RAMs to store the program implies a
total access time of 33 ns. To speed up execution time, a
faster memory is necessary. It is feasible to store the
program in an internal ROM and eliminate the memory
access time bottleneck but the speed improvement will
be marginal. The significant advantage of this approach is
to provide a geometry engine system in a single chip.

It can be seen from Table 4 that the VLSI design runs
twice as fast as the hardware emulation discussed
previously. This implies a geometry engine that can run
the geometric procedures 30 times faster than a 12 MHz
MC68000 microprocessor. The table also shows that the
register read time and instruction decoding time represent
less than half the memory access time, proving that the
allocation of half clock cycle time for these operations
was appropriate.

Table 5 presents the area of the major system blocks. It
can be seen that the register file and the multiplier
consume a large area. However, datapath modules are
very compact, with minimal routing between them. On
the other hand, the interconnection between those
modules and the rest of the logic occupies a considerable
area.

The VLSI standard cell design is validated by running
the geometric procedures in a logic simulator and
comparing the perspected co-ordinates with the co-
ordinates generated by the University of Southampton
flight simulator. This is accomplished by loading the
object code generated by the assembler in a file that the
logic simulator 'sees' as the RIG program memory.
Running on an Apollo 3500 workstation with a 25 MHz
MC68030 microprocessor, the simulation takes approxi-
mately three seconds per clock cycle.

By careful analysis of the algorithms inherent in realtime
image generation, it is possible to design a RISC processor
which is capable of executing the algorithms significantly
fasterthan conventional microprocessorsystems. The use
of a novel techriique that employs autonomous 1/0
channels direct to the register file further enhances the
processing speed of the RISC in applications as a
geometry engine. The resultant instruction set contains 25
instructions and 128 registers. Ali arithmetic instructions
contain three register fields and a special-purpose register
filewas designed to avoid contention between processor
access to the register file and DMA transfers to and from
the register file.

A further substantial improvement in speed, when
compared with CISC computers, has been obtained by
means of a four-stage pipeline. The implementation is
relatively straightforward due to the simplicity of the
instruction set. Because the processor does not have to
access extemal data, dispensing with load and store
instructions, and because no delayed result write operation
is required, one levei of data forwarding is sufficient in the
four-stage pipeline. The quick-compare and branch
instruction eliminates a significant percentage of conditional
branch instructions and avoids double-delayed branches,
which would be required in a full compare instruction
using the ALU.

Analysis of the graphics algorithms emphasized the
need for high-spe�d fixed-point multiplication and
division. Problems of integer sca1ing- are ameliorated by

Built-in testability

Observability and controllability can be built into a circuit
by incorporating the ability to load and store the state of
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the implementation of a funnel-shifter. Multiplication is
achieved by means of a variant of the Booth encoded
algorithm. High-speed division is achieved by means of an
adaptation of a two-bits-at-a-time method.

The overall simplicity and regularity of the architecture
lends itself to ímplementation using ASIC macrocells.
However. príorto thís development. a prototype versíon
was constructed using equivalent L51 components. This
development confirmed the target processing speed and
provided a ready means of identífying possible bottle-
necks. Recently. a VL51 ASIC design has been undertaken
using a' .um CMOS standard celllíbrary. A performance
approximately 30 times faster than a' 2 MHz MC68000
processor is predicted forthe VL51 implementation. with a
chíp area of approximately 50 mm2.
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