%% RELATARIO TENICO *#x
PERFORMABLILITY ANALYSIS OF COMPUTER SYSTEMS:
TROM MODEL SPECIFICATION TO SOLUTION

Cdmundo de Souwza & S lwak

Fle Richard Gailss

NCE @6&6/91
fibe | 1/794

Universidade Federal do Rio de Janeiro
Mucleo de Computacio Eletrdnica

Caixan Postal 2324

2000L ~ Rin de Janeirro = RJd

BRASTIL

Univers dade Federal do Rio de Janeiro
i8h Research Qivision

TwdeWatson Center - MY/ US4

PERFORMABILITY ANALYSIS OF COMPUTER SYSTEMS:
FROM MODEL SPECIFICATION TO SOLUTION

RESUNMO

Mocaelagem de disponibilioades/condiabilidade de sistemas de conputagdo
diz respeito a resresentacio de mudangas na estruibura do sistems sendo
mocelado, geralmente causacaas por fFalhas, & como =28sas audangas afetam
A cosponibilidade uo ststema.

Mooe lagem de desempenho, por outro lado, € voltada para a representagio

ga naturess probabilistica o demandas dos usuarios ¢ tenta prever 9

cAapacidade do sistena para realizar ftarefas, supondo-se que a estrotura

stema permanece constante.

Com o advento de sistemas degradivetls, o sistena pode ser reestruturado
em consequéncia a falhas e pode continuar a realizar tarefas, MESMO 2
ma capacidade reduida.

anal ise de desempenhabilidade ("performability’™) considera o efeito das
mdangas sstruturars € 0 seuw pacto no desempenho global do sistema.

G complexibilidade dos atuais sistemnas de computagho, € a variedade de
diferentes problemas =z serem analisados, inclumdo a avaliagio simulta-
nea de desempenho & disponibilidade, demonstram a necessidade de ferra-
mentas sofisticadns que permitam a especiticacio de uma classe geral de
problemas além ue incorporarem técnicas poderosas anallticas e/ou de
‘ﬁ:mulacﬁo.

No aue oz respeito a especiticacio do modelo, & discutido um paradigma
arientado & objeto, recentemente proposto, 9uE BAComoda uama grande vae
Fiedade de aplicagdes.

fs principaas vantagens deste paradigma sio discutidas ¢ € feita uma
COMPRFAGCAO com outras técnicas.

Mo oue gtz resperto a metodos de solugio, € ferto um pDreve apanhado de
desempenhabilidade de modelos de Markov. £ mostrado entfo que muitas
medidas relacionadas n desempenhabil idade podem ser calouliadas usando-
e o téonrca de aleatorizacio (uniformizagio), marcando-se estados @/ou
transigoes do modelo Markoviano do sistema sendo estudado. Finalmente,
o problema de explosfo de estados € abordado, & varias técnicas para

lTidar com o problema sao discutidas.

in UNIVERSIDACE FEDERAL 00 30 DE SANEIRD

ir
o ;';J CMUSLETDZ COMPRTANAQ RUETRONICK

RC 16961 (#75239) 6/20/91

Computer Science 56 pages
Fil

Research Report

Performablity Analysis of Computer Systems:
from Mcdel Specification to Solution

Edmundo de Souza e Silva

Federal University of Rio de Janeiro, NCE
Rio de Janeiro, Brazil

H. Richard Gail

IBM Research Division
T. J. Watson Research Center
Yorktown Heights, NY 10598

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted If accepted for
publication. It has been issued as a Research Report for early dissemination of its contents ana wili be distributed
outside of IBM up to one year after the date indicated at the top of this page. In view of the transfer of copyright to
the outside publisher, its distribution outside of IBM prior to publication shouid be limited to peer communications
and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies
of the article (e.g., payment of royaities).

IBM Research Dlvision
Almaden + T.J. Watson * Tokyo ¢ Zurich

Performability Analysis of Computer Systems:
from Model Specification to Solution

Edmundo de Souza e Silva!l
Federal University of Rio de Janeiro, NCL
Rio de Janeiro, Brazil

[{. Richard Gail
IBM Thomas J. Watson Research Center
Yorktown Heights, NY 10598

Abstract

Computer system reliability /availability modeling deals with the representation
of changes in the structure of the system being modeled, which are generally due
to faults, and how such changes affect the availability of the system. On the
other hand, performance modeling involves representing the probabilistic nature
of user demands and predicting the system capacity to perform uscful work, un-
der the assumption that the system structure remains constant. With the advent
of degradable systems, the system may be restructured in response to faults and
may continue to perform useful work, even though operating at lower capac-
ity. Performability modeling considers the effect of structural changes and their
impact on the overall performance of the system. The complexity of current com-
puter systems and the variety of different problems to be analyzed, including the
simultaneous evaluation of performance and availability, demonstrate the nced
for sophisticated tools that allow the specification of general classes of problemns
while incorporating powerful analytic and/or simulation techniques. Concern-
ing model specification, a recently proposed object oriented modcling paradigm
that accommodates a wide variety of applications is discussed and compared
with other approaches. With respect to solution methods, a brief overview of
past work on performability evaluation of Markov models is presented. Then
it is shown that many performability rclated measures can be calculated using
the uniformization or randomization technique by marking distinguished states
and/or transitions of the Markov model of the system being studied. Finally,
the state space explosion problem is addressed and several techniques for dealing
with the problem are discussed.

1The work of E. de Sonza e Silva was supported by National Science Foundation grant INT-8514377 and
by a grant from CNPq(Brazil).

1 Introduction

During the last twenty years, the modeling and analysis of computer systems has received
increasing attention from rescarchers and practitioners who wish to understand and predict
the behavior of these systems. The greater the dependence of society on computer and
communication systems, the greater the need for efficient and reliable machines. Therefore.,
it is crucial that accurate answers be given to questions such as: “How long can the system
be expected to work without interruption?™; “How much work can the svstemn be expected
to accomplish before a failure?”; “What is the probability that the system operates above a
certain level of efficiency during an observation period?”

In the past. most modeling work has concentrated on developing tools and techniques to
analyze (exclusively) cither: (a) the reliability or the availability of the svstemn to the user:
or (b) the system performance under the assumption that it is perfectly reliable. Availabil-
ity /reliability (/rpendability) modeling represents the changes that may occur in the system
structure, typically cansed by faults in its components. Events that canse faults to occur
are probabilistic in nature, and the model captures the resulting effect in the components
as well as the way the system handles the faults (fault recognition, isolation of faulty com-
ponents with possible substitution of spares, etc.). Measures such as the probability that
the svstem operates successfully during a period of time or the percentage of time that the
system can perform uscful work are among the many important measures of interest to the
analyst. Performance modeling, on the other hand, represents the capacity of the system to
perform useful work under the assumption that no structural changes occur. In other words,
the model should capture the probabilistic nature of user demands for a sct of system re-
sources and the consequent contention for these resources. The effect of resource contention
is measured in terms of quantities such as throughput, average task completion time. ctc.

With the advent of degradable systems, some capacity mayv be lost when structural
changes occur in maintaining operation after a fault. Yet the system may still perform useful
work after a reconfiguration, although it may operate at a different “capacity level.” Thus its
performance cannot be accurately evaluated without taking into account the impact of the
structural changes. It is therefore desirable to define new combined measures of dependability
and performance. For example, consider a multiprocessor system with several CPUs that
process the submitted tasks. When a CPU fails, the system may continue to operate (if the
fault is properly recognized and isolated), but clearly performance degrades in such a case.
As another example, consider a database system having many disks, with the replication of
data for availability purposes. The loss of a disk may not affect data availability, but it may
affect performance during read accesses, since the load generated by read requests to a data
unit is balanced over fewer disks.

Early modeling studies on gracefully degradable systems can be found in the work of

Borgerson and Freitas [7). who developed a model for reliability analysis of such svstems.
Meyer [66] introduced the notion of “computational success™ and showed how i differs
from the usual reliability measures. Beaudry [4] and Meyer [67] were among the £ 3t who
developed measures to consider the interaction between reliability and performanc:. In the
pionecring work of Meyer [68], a general modeling framework was introduced for the icfinition
and evaluation of new mecasures that are called performability measures. Meyer's <¢ finition of
performability encompasses many different measures. In broad terms, consider a stochastic
process describing, for example, the evolution of the system structure over a finite tune
interval (0.1). For each sample path », a function v (#) that indicates the performance level
associated with u is defined. The performability is the probability that the system perforis
at a level in a given subset of the performance levels during the specified time interval.
For instance, 3,(u) may depend on the total accumulated performance during (0.7), on the
number of times a certain event occurs in u over (0, 1), etc.

There are several issues involved in relating the performance levels to sample paths in
the structural model, i.c. how does one obtain ~,(u) in order to calculate the desired per-
formability measure. Clearly, it is not practical to assign a level to each sample path in
the model. Instead, a performance level usually is associated with a state of the structural
system model. In carryving out such a procedure. some assumptions are commonly made.
To clarify certain issucs. consider a simple model of a distributed system as shown in Figure
1. In this system. submitted tasks arc dispatched to one of the two existing processors for

Tasks
@,
Q ||
o p ——{ dispatcher |
(ST
1O

Delay

/o Processors
(proc. rate = §)

Figure 1: A simple distributed system model.

execution. Once submitted, a dispatcher is in charge of selecting a processor '-» exccute the
task according to the following rule. The processor with the smallest queue is chosen to
execute a new task, and ties are broken randomly with equal probability. Each processor
fails with exponential rate) and is repaired with exponential rate .. Once a processor fails,
the tasks in its queue are instantaneously transferred to the other processor. In this example,
we assume that there is a fixed number of N tasks in the system, which are independently
submitted after an exponential delay with mean 1/0, and that each task is processed at an

exponential rate ¢ Our interest is in calculating the probability that the total thronghput
during (0.7) is above a certain level. i.e. I’[thr(0.¢) > 4]. Figure 2 shows the transition rate
matrix of the model of a system with N = 3 tasks and for which only processor 1 can fail.
The state of the system is a triple that indicates: (a) the number of tasks queucd at processor

[fooo 100 010 200 110 020 210
o0 [e 3a/2 Aa/2 iae oA
100 A . 2 A
oo A . 2 \

120 030 001 011 021 031)

200
1o

a0

210

af? af2
: o

.

120 B < . el
nan 5 . e
ot o N A ‘ ‘
BRLIE H
2] : it - A . P
031 I A .

Figure 2: The transition rate matrix of the distributed system model.

1, (b) the number of tasks queued at processor 2 and (c) if processor 1 is operational (1) or
failed (0). Clearly, the model corresponding to Figure 2 captures hoth the structural changes
that occur in the system (a processor fails) and the performance obtained from the number
of tasks in cach queue. In order to calculate the throughput probability discussed above. a
reward r, 1s associated with cach state a, in the system. The reward rate in state o, is equal
to the throughput for that state. The performance measure we want to calculate is simply
the distribution of the cumulative reward averaged over 7. In terms of Mever's definition of
performability, we have
1 if L [P ryads >y

ve(u) = { 0 otllle{?wis(e)

where 1(s) is the state of the system at time s for sample path u, and we wish to find the
probability that v, = 1.

Solving the performance-structural model of Figure 2 is more costly than first solving
separate models which represent the throughput of the system for a given structure and
the evolution of the system structure (number of working processors) over time, and then
combining the results. In other words, we would like to decompose the combined model
into distinct models. In Figure 2, the states are differentiated according to whether they
represent both processors working or only one processor working. The structural model is
obtained after aggregating states of Figure 2 with the same system structure and has only
two states as in Figure 3. It remains to find the reward associated with each state of the

Figure 3: The structural model.

aggregated structural model.

Failure rates and repair rates are usually much smaller than “performance rates”™ in a
svstem. e.g. in the above example, \.;1 <« a,8. From this observation. we see that the
matrix Q in Figure 2 is nearly completely decomposable, i.c. Q = Q* 4+ +C, where Q7 is a
completely decomposable stochastic matrix, C is a properly chosen matrix and ¢ is a small
constant. + < transition rates in the submatrices of Q*. Simon and Ando [90] formalized
the decomposition technique for stochastic models. They have shown that an approximate
solution for the state probabilities of the complete system can be found from the solution of
the submatrices of Q* and the matrix obtained after aggregating states in cach submatrix of
Q- (sce also Courtois [17]). Fort — oo, Courtois [16] has shown that the error resulting from
this approximation is ((¢). In our example, this is equivalent to first solving performance
models for each of the two structures, determining the steady state throughput rates ro
and rr and then using these rates in the aggregate two state structure model to obtain the
overall solution. Unfortunately, the error that results from this approach is only bounded as
f — co. We know of no bounds that exist for finite /. Nevertheless, this approach has also
been used for ¢ finitc and “large enough”, i.e. under the assumption that the performance
measure of interest reaches steady state between changes in the system structure.

The above example illustrates several issues concerning the evaluation of performability
measurcs. First, depending on the rates in the model and the length ¢ of the observation
interval, one may not be able to apply decomposition as described above. Second, even if
the usual decomposition assumptions are satisfied (which happens in most practical cases),
the analyst must deal with solving performance models as well as dependability models
and properly combine their results. Since these models may have many states it is very
important that the model construction is automated, and thus it is highly desirable that
the modeling paradigm used for system specification can properly describe bcth system
performance and dependability behavior. Third, an important issue is how to properly
merge the models, i.e. how are the rewards calculated (from a high level specification of a
measure) using the performance model and how are they then associated with states in the
structural model. Since the structural model may have hundreds or thousands of states, it is
important that the reward assignment be specified at the system level, not at the state level.
Finally, the evaluation of a measure itself raises important issues. Among these we mention:

4

computational complexity, numerical problems. tightness of error bounds, ete. Simnplicity of
the algorithm that is chosen may also be important, not only for didactic reasons. but also
for its ease of usc by practitioners.

It is the purpose of this paper to discuss the issues mentioned above, from model speci-
fication to solution techniques. We begin in section 2 by introducing notation and formally
defining various performability measures. The measures include those commonly used in
dependability analysis, since they are special cases of “strict” performability measures. i.c.
those for which performance is taken into account. In section 3 issues related to the speci-
fication of performability models are discussed. The section includes a brief survey of tools
that have been used for that purpose, with a concentration on a new modeling paradigm
(object oriented) that has been recently proposed. Section 4 is devoted to model solution
techniques. and it is divided into several subsections. We first brieflv survey results in the
literature for solving Markov chain performability models. We then describe in detail the
uniformization or randomization technique, which has been used successfully to calculate
several performability measures, and show that many of these measures can be calenlated
using the same framework. Finally we consider issues that are specifically concerned with the
state space explosion problem, and we survey some of the techniques proposed to alleviate
this problem, including both those for transient and steady state analysis. Our conclusions

are presented in section 5.

2 Notation and Measure Definitions

Most models that have been used for performability evaluation are based on Markov analysis.
A Markov process describes the structural changes in the system as faults and/or repairs
occur [35]. For performance evaluation, queuncing models are widely used, and results from
queucing theory and networks of queues are generally applied. However, for models that do
not satisfy product form requirements nor have some other closed form solution, the most
general approach is still to build and numerically solve a Markov chain performance madel.
In the example presented in the introduction, the Markov transition matrix of Figurc 2
describes both resource contention and structural changes for performability evaluation. If
decomposition/aggregation is used, the two state model of Figure 3 represents the structural
changes. In order to calculate the rewards that are assigned in the two state model, two
queueing models have to be solved. The first model corresponds to a fully operational system
(two working processors). However, since this model represents a shortest queue routing, it
does not possess a product form solution, and a Markov chain model is used to obtain the
throughput. The second model (only one processor working) is a simple quencing model and
has a closed form solution.

Before defining various performability measures, we first describe some basic notation
nsed throughout the paper. Since, as mentioned above, Markov chain models are used most
frequently. we introduce the notation in this context. Consider a homogencous continnous
time Markov process .0 = { X (/). > 0} that describes the behavior of the system (structural.
queucing or both), and let S = {a,,7 = 1..... M} be the finite state space associated with
the model. We assume there are &' 4+ 1 rewards p; > -+ - > pjyy which may be associated
with states or transitions. The special dependability case is of particular interest, and we
let So be the set of states that represent an operational system and Sp be the remaining
set of states that represent a failed system. A vector is designated v = (1), while a matrix
is written A = [A,,]. Usually Q denotes a transition rate matrix of a continuous time
Markov chain. while P represents a (stochastic) transition probability matrix of a discrete
time Markov chain. Given two vectors u and v of the same length, recall the inner product
notation u - v = ¥, i,r,. We also write |vll =2, v, =1 v.

We now define various performability measures, and this also serves to introduce further
notation. Note that, as mentioned in the introduction, such measures can be described in
terms of the sample path framework of Mecyer, althongh that approach is not followed here.

e Point availability.

Point availability /?AV (#) is defined as the probability that the system is operational at
time /. Formally, define an indicator random variable (representing the instantancous

availability) by
1 if X(1) € So
0 otherwisec.

(1) = {
Then the point availability is

PAV (1) = PlI(1) = 1] = E[I(1)].

The point availability reflects the state of the system (operational or failed) at a given point
in time, and for repairable systems it is not as useful as measures related to the amount of
time the system is operational during a specified interval.

e Cumulative operational time.

The random variable O(t) is the total amount of operational time during (0./):

o= [" I(s)ds.

Its expected value and distribution are often of interest.

e Availabhility.
The (interval) availability /1(/) is a random variable defined as the fraction of time the
system is operational during (0. ¢):
O(1)

Note that . ‘ L
| E[A()] = £ [[I(s)ds] == [PAV ().
/ In I Jn
and this formula can be used to calculate E[A(1)]. Another random variable of interest
is the limiting or steady state availability, which is the fraction of operational time
as t — oo, i.e. himy_.. A(f). In many casecs, the name limiting availability or simply

“availability™ is given to lim,_. >A1V(1), which is also equal to lim,_., FT[A(f)].

Several measures can be defined in terms of the time of first system failure during (0.1). In
this case, all failed states in the model are considered as absorbing states. Analogous to (1),
define a random variable /(#) for this absorbing state model which simply indicates whether
or not the system has failed by time /.

e Recliability.

The reliability R(f) is defined as the probability that the system is operational during
the entire observation period. It is defined in a manner similar to the point availability

as:

R(t) = P[I(t) = 1] = E[I(1)].

It can also be defined in terms of the cumulative operational time as:

R(t) = 1= lim P{O(1) < 5}

¢ Lifetime.

The lifetime L(f) over an observation period is a random variable that is equal to the
time of the first system failure, if such occurs before ¢, and is equal to ¢ otherwise.
That is, L() can be thought of as the cumulative operational time for the model with
all failed states made absorbing:

L = [*T(s)ds.

Note that the expected lifetime can be obtained from the reliability as:

E(L() = | " R(s)ds.

e Mecan time to failure.

This measure is the limiting expected lifetime:

MTTF = lim E[L(1)].

t—no

Assume that rewards are associated with the states of S, where the reward r, is associated
with state 7, (thus r, is one of the possible system rewards p, [= 1,..., k' + 1). The reward
r, may represent a performance measure when the system has the structure indicated by
a,. Forinstance. in the example of section 1, the reward ra for state o, is the throughpnt
rate when two processors are operational, and the cumulative reward is the number of job

completions during the observation period.

e Doint performability
Let [R(1) = »,if X(/) = a,, so that this random variable is the instantancons reward
at time f. The point performability 77I’F(t) is its expected value:

PPE() = E[IR(1)] = i n PLX (1) = a,].

o Cumulative reward.

The cumulative reward during (0, 1) is
!
CR(1) = / I R(s)ds.
J0

The expected value of this random variable is given by:
t M ! .
E[CR(1)] = /n PPF(s)ds = g, /n P[X(s) = a,)ds.

The cumulative reward averaged over the length of the observation period is AC'R(t) =
('R(t)/t. Note that when only two rewards are assigned, »; = 1 for operational states
and ro = 0 for failed states, then C'R(t) becomes the cumulative operational time and
ACR(t) the interval availability.

e Time to achieve a reward level.

Another random variable of interest is ©(r), the time to achieve a given level » of
reward. Since C'R(f) > r is equivalent to ©(r) < ¢, the distribution of ©(r) can
be directly obtained from the distribution of the cumulative reward. As an example,
the distribution of the time to finish a job that requires r units of work to complete
is obtained from the distribution of cumulative reward. As another example, the
distribution of the time to the first system failure is given by P[L(t) > s] = R(s) (for

s <1).

e Timne above a performance measure.

As before, associate a reward level with each state of §. For instance, rewards may be
assigned to states according to the capability of the system to execute different tasks,
or according to throughputs, cxpected queue lengths, ctc. Let /12(f) be defined as
above. Then, let

() = { L i TR(1) > r
0 otherwise,

where r is a specified performance level. Define the total time above level » as:

o) = /ﬂ' I(s)ds.

The cumulative operational time is the case of 0,1 rewards and 0 < » < 1.

In many cases it is 1mportant to evaluate the number of certain types of events during an
observation period. Forinstance, if the chosen event is the failure of a certain component (c.g.
the CPU) which causes the system to go down, then the measure to be obtained is the number
of CT'U failures that brought the system down during (0.7). An obvious generalization of
this measure is to associate rewards with transitions (pairs of states) instead of with states
and then to obtain the total reward over the period.

e Number of events of a given typec.

For a pair of states (a,,a,) associate the reward r,,. Let A'(f) be a random variable
that gives the number of transitions occurring during (0,¢). Let r, be the time of the
nth transition of the process .U, and set I{(n) = r,, if X(r7) = a, and X(7}) = a,.
Then the total reward due to transitions over (0,) is

N(¢)

TR(t) =)_ H(n).

e Cost measures.

Cost is an important measure to obtain, and it may be a function of different parameters
of the model [14]. Two cost functions are of main importance: (a) the cost incurred in
maintaining and repairing the system, and (b) the cost due to system unavailability per
unit time. The first function is an example of assigning rewards to particular transitions
in the model, e.g. a fixed cost is incurred each time a repair is performed. The second
function can be viewed as a cumulative reward measure obtained by assigning rewards
to certain states in the system, e.g. states that represent a down system.

¢ Other measures.

Cumulative measures arc related to the total amount of time spent in certain states
between transitions of .V during an observation period or to the total number of such
transitions. However. there are other measures of interest in addition to these cumu-
lative measures. One cxample, which is covered later in the paper, is the probability
that two failures occur during a small period of time Af. when the system mayv be
vulnerable to a second failure while attempting to recover from the first failure. That
is, a measure of interest is the probability of a “ncar coincident fault.” If we let }; be
the length of time between two consecutive faunlts, / = 1...., NF(1), where N F(1) is
the number of times that two consecutive faults occurred. and we define the random
variable ("F(/) = min(}}), then the measure of interest is I'[C'F(1) < Af].

3 Model Specification

3.1 Introduction

In the previous section several measures of interest to the analvst were defined. The measures
may reflect the effect of contention for resources and/or structural changes in the system.
To evaluate the measures, two major questions have to be answered: (a) How docs one
specify the model? (b) How does one solve for the measures of interest? The first question
is addressed in this section. while the second question is considered in section d.

In a modeling tool it is desirable from the user point of view that the mathematical
definition of the system being modeled and the details concerning the solution techniques be
hidden. Yet the tool should be sophisticated enough to allow the system specification of the
model and the measures in a manner as close as possible to the “natural” system definition,
i.e. to the way the user “thinks” of his system. Many tools have been developed over the
past few years, c.g. ARIES-82 [59], SURF ([15], CARE III [3], HARP [33, 93], SAVE [34],
SHARPE [87], METFAC (8], GreatSPN [10], METASAN (71, 88), TANGRAM [5. 80], SPNP
[12], DyQNtool [47). Some allow only specification similar to the mathematical definition of
the system (e.g. Markov chain), while a major concern of others is in developing a “natural”
definition language. Modeling capability, the type of measures that can be obtained and the
solution techniques employed also serve to differentiate the many tools. Johnson and Malek
(53] present a comprehensive survey of many existing tools which includes a discussion of
the user interface and the measures that are obtainable.

Several important issues are involved in the development of a tool. Of these, the user
interface is one of the main issues. The interface should be “friendly,” “high level” and

10

tailored to the problem the user wishes to solve. For instance, in the example of section 1. it
is desirable for the user to be able to describe the system in terms of processor modules and
their queues, the dispatcher and its policy, etc., and/or the components that can fail. the
repair policy, etc. The underlying Markov chain (the mathematical model) should be hidden
below the high level interface. An example of a high level interface tailored to availability
models is the language in the SAVE tool.

In addition to a high level interface language, the power of a tool also depends on the
flexibility of adding new features and the case with which it can be tailored to specific
problems. For instance, although the interface of the SAVE tool allows the specification
of many common availability models, the basic constructs in SAVE are not of sufficicnt
generality. New features in the language may not be modeled using existing constructs,
and the tonl does not allow the user to define additional constructs. Furthermore. the high
level user interface is tailored to availability modeling, and performance models cannot be

specified.

Another issue of concern in the design of a modeling tool is the choice of a proper
solution method, ¢.g. should a bounding technique be emploved in determining steady state
availability? Consider again the example of section 1. Depending on the user specified value
for the length of the observation period. decomposition techniques may not be of use. .8
the period of interest may be too short.

How to obtain a user specified measurce from a “basic” model solution also constitutes
an important issue to be addressed, and the answer may be nontrivial, depending on the
problem. Consider the example of section 1, and suppose that the user. after specifving
the system. asks for its steady state throughput. Although this scems like a stmple request,
satisfving it requires some effort. If decompositionis not used, the steady state solution of the
Markov chain of Figure 2 can provide the answer. However, the tool needs to “understand”
the meaning of cach state as well as the output rates, in order to calculate the thronghput
from the steady state probabilitics. If decomposition is used, performance models have to be
independently solved to obtain reward rates. Then, rates must be properly assigned to cach
of the structural model states, which also may require knowledge of the meaning of cach
state. e.g. in Figure 3, state /' (0) represents a system with one processor (two processors)
working. For a model with thousands of states, such a task is nontrivial.

We begin this section by first presenting examples of model specification, which serves
to briefly survey some of the existing modeling tools and to further illustrate the issues
mentioned above. Then we discuss a modeling paradigm recently proposed for model speci-
fication and present some examples of its use.

11

3.2 Examples of Model Specification

A model specification language that is frequently used in performability modeling to generate
the underlying Markov chain is that of stochastic Pctri neis (SPN). The use of stochastic
Petri nets for modeling specification was proposed independently by Molloy [73] and Natkin
(77) and has subsequently seen widespread application [1]. A stochastic Petri net is based
on the notion of a Petri net [82]. Briefly, a Petri net model consists of places and (ransitions
connected via a set of directed arcs. Places may contain tokens which move through the
network (i.c. from place to place) according to certain rules. One basic rule dictates that a
transition can fire if all of its input places contain one or morc tokens. When a transition
fires. it removes tokens from its input places and adds a token to each of its output places.
The current state of the model is given by the number of tokens in each place and is called
a markima, Figure 4 depicts a Petri net model, where places are represented by circles,
transitions are represented by bars and tokens are represented by dots.

S~

—(

places transitions

Figure 4: A Petri net model.

Various extensions to Petri net models have been proposed [1, 82]. One such extension is
the notion of inhibitor arcs. An inhibitor arc from a place to a transition indicates that the
transition is enabled when no tokens are present in the input place. Another extension is that
of multiple arcs from an input place to a transition. Equivalently, one may define counier
arcs, so that an integer k is associated with a counter arc to indicate that the transition is
enabled when at least & tokens are present in the input place.

In stochastic Petri net models, an exponentially distributed firing time is associated with
each transition. The firing rule is as follows: once a transition is enabled, an exponentially
distributed amount of time elapses at the end of which the transition fires if it is still enabled.
It was shown in [73] that an SPN model is equivalent to a continuous time Markov chain,
the state space of which is the reachability set of the SPN (i.e. the set of markings reachable
from an initial marking). Therefore, a Markov chain can be built and solved from a given

12

SPN model.

Several extensions have been proposed to increase the modeling power of SPNs. One of
these extensions allows the model to have transitions that fire in zero time (called 1mmediate
transitions) in addition to exponentially distributed transitions. Models that include such
transitions are called generabized stochastic £ etri nets (GSPN) and were proposed by Ajmone
Marsan rf al. [2]. In a GSPN model, some of the states (called #anishing states) have zero
holding times. and it is casy to show that an equivalent Markov chain with no such states can
be built. Immediate transitions can be nused to represent cvents with rates that are orders of
magnitude higher than those of other events in the model. By representing “fast events” with
immediate transitions, the state space of the associated Markov chain can be significantly
reduced. Immediate transitions are also useful in representing “logical™ structures in the

model.

Another set of extensions was proposed by Dugan rf al. [31], and the associated models
are called crtended stochastic etri nets (ESPN). An ESPN model allows the firing times
of certain transitions to be generally distributed. The embedded chain defined at points
where marking changes occur must exhibit the Markov property, and there are restrictions
concerning which transition may be allowed to have a general distribution. For instance,
a transition can have a generally distributed firing time if, when it is enabled. no other
transition is also cnabled. However, if there is a marking that simultancously enables two
transitions and the firing of onc of these does not disable the other, then these transitions
must have exponentially distributed firing times. Other extensions involve modifving the
transition firing rules. For example, a probabilistic arc from a transition to a set of places
allows a probabilistic choice of the output places that receive a token after the transition

fires.

Several tools utilize SPN (and its extensions) as part of the model specification langnage.
Among these we mention HARP [93], SPNP [12], GreatSPN [10] and METASAN [88]. Some
of the main advantages of SPN models are: (a) modeling power that is equivalent to Markov
chains; (b) a graphical representation of the model; and (c) “general” language constructs
(c.g. places, transitions), which permit new features to be incorporated in the model without
requiring changes in the language. However, these models also have disadvantages. Perhaps
the main disadvantage is that the basic SPN constructs are quite primitive, so that not
only is a significant burden placed on the analyst in order to specify complex models, but
in addition the graphical representation may become too complex to be useful. Another
disadvantage is that the representation of priorities or ordering is hard to managg, although
priority queues are important in performability modeling (e.g. a priority repair queue or
queues for resources such as CPUs).

SPN interfaces are flexible, but they cannot be easily tailored to particular application
domains. However, as mentioned in the introduction, a desirable property of an interface

13

is the ability of allowing users to specify the system in terms of how they think of it i.c.
in terms of the components of the particular application and the interactions among them.
The SAVE tool provides an example of such a specialized interface.

Availability modecls are described in SAVE by specifving its components and t* repair
strategy that is used when a unit fails. All components are described using the si.ne basic
constructs, and they differ only in the parameters specified by the nser. Basicall . a SAVE
specification of a set of component units of the same type (i.e. with the same set of parame-
ters) includes: the failure rate of units in the set: the number of spare units; “failure mode”
probabilitics; for cach failure mnode, the repair rate of units that failed in that mode: the
(possibly empty) list of components affected when a unit fails in each of the failure modes: re-
pair dependencics: operational dependencies. The behavior of a generic component is shown
in Figure 5. which is taken from [34]. As is apparent from this figure, an operational unit
that fails or is affected by other components goes to a down state. When an operational umt
goes to a down state, a spare unit (if there is any left) immediately replaces the failed unit.
A component may be in a dormant state if its operation depends upon components that are

not working.

OPERATIONAL
- system down
- oper. depends component
upon failed fails
comp. repair : - failure
of - affected
other hy other
DORMANT comp. ’ comp. SPARE
\ repair : repair
failure failure
DOWN

Figure 5: The behavior of a SAVE generic component.

Once the model is specified, the associated Markov chain is generated. An important
advantage of this type of interface is the high level language tailored to availability modeling.
Unfortunately, the language is not “general” in the sense that new features may require a
change in the language constructs. Examples of features that cannot be obtained from the
basic language constructs include: the modeling of “components affected” constructs that

14

differ {rom those that are provided: the modeling of resource contention other than the repair
queue: the modeling of certain fault detection/recover mechanisms.

Movaghar and Meyer [74] and subsequently Mever ¢/ al. [71] developed an SPN-based
modcling paradigm called stochastic actinty networks (SAN). SAN includes several exten-
sions to SPN, some of which are similar to those presented above (GSPN aud ESPN), but
which were independently developed. Similar to Petri nets, SAN primitives include places
and transitions (called activities). New primitives include input and output gafes. which are
used to describe how an activity is enabled and how the activity affects the next marking
after it finishes. In more detail, corresponding to cach gate is a rule that describes the con-
ditions under which a transition associated with the gate is enabled. There is also a rule
that describes the resulting marking at the places connected by the gate after the transition
completes. Since its inception, the developers of SAN have addressed issues concerning per-
formability evaluation such as the development of models that capture the performance of
a system with varving structure. The method proposed in [71] follows the classical decom-
position approach. A model that captures the overall behavior (performance and varving
structure) is developed, and then a performance submodel and a structural submodel are
identified. Reward rates arc calculated by solving performance submodels with different
initial markings obtained from the structural submodel. Performability measures are then
determined from these rates and the structural submodel. It is interesting to note the atten-
tion given in developing a paradigm to obtain rewards and associate them with the structural
model from a high level (Petri net) system description.

Later in {70} Mever developed a methodology for specifving performability measures di-
rectly from a high level system description (a SAN model). By working jointly with the
performance and structure submodels, reward structures are obtained that allow the deter-
mination of rewards for each structural configuration of the system. The reward structures
are defined in terms of functions of SAN primitives.

Haverkort and Niemegeers {44, 45, 46] also address the issue of obtaining a Markov reward
model from a high level system description. The approach, called the dynamic qurucing net-
work concept, follows the classical decomposition technique. First, a parameterized queucing
network is built with a set of parameters P which are not yet assigned. Each of the queucing
networks is to model the performance behavior under given structures. Second, a GSPN
model that represents the structural changes in the system is built, and a function & of
the possible markings of the GSPN is specified. This function returns a set of values to P
for each possible marking. Then, for each such set, a queueing network is solved and the
performance results are mapped as rewards to the corresponding GSPN marking or, equiv-
alently, to the corresponding state of the final Markov reward model. In the example of
section 1, the values of P would determine the scheduling policies of the queueing network
of Figure 1: if only one CPU is operating, then the scheduler would send jobs only to the
working CPU. More complex interdependencies between the performance and availability

15

models can also be specified. For example, GSPN transition rates can be made dependent
on the quecucing network model solution. This is useful in modeling failure rates that de-
pend on the system load. Furthermore, structural dependencies on performance can also be
modecled. In this casec. the genecration of the reachability set is done in conjunction with the
solution of the performance models. That is, once the performance associated with a given
marking is solved, the GSPN parameters are updated and the next marking reflects these
new changes. These dependencies are useful in modeling certain failures that are related
to the system load. Note, however, that these are dependencies on average load. To our
knowledge, dependencics on peak load, for example. cannot be modeled.

As noted previously, many model specification languages for performability evaluation
arc based on SPN, and thus they possess the disadvantage of relatively “low level™ construcets
“(c.g. places, transitions). The SAVE tool provides a convenient high level interface. but it
lacks the flexibility of incorporating new constructs. METFAC [8] is an example of a tool
which attempts to achicve a relatively high level of specification and vet preserve generality.
Its proposed methodology is based on production rulrs. Basically, the global state is specified.
and then rules are given that specify the conditions under which an action is taken that results
in the changing of (global) state variables. One disadvantage of this approach is that the
rules operate in the global systemn state variables.

Berson !l al. [5] propose a novel paradigm for model specification, which has been un-
plemented in the TANGRAM tool [80] developed at UCLA. Informally, the system to be
modeled is viewed as a collection of ohjects which interact by exchanging messagrs. Each
object has an internal state which can evolve over time. Changes in the internal state may
be due to: (a) the occurrence of an event; and (b) the arrival of a merssagr. Events are
~ generated internally to an object with a given rate, and the occurrence of an event causes a
set of actions to be taken. Actions are preconditioned on the state of the object and may
cause a change in the object state and the sending of messages to other objects. Such actions
are also taken when an object receives a message. Actions are exccuted in zero time. and
the delivery of messages also occurs instantaneously. The system state is the sct of internal
states of the objects and the list of messages not yet delivered. Therefore, two scts of states
are identified: (a) langible states, which have positive holding time, i.c. no messages to be
delivered; and (b) vanishing states, which have messages yet to be delivered and so have zero
holding time. For analysis purposes, only tangible states need to be considere: (analogous
to GSPN).

The notion of object types is used in order to facilitate the specification of models. Object
types are parameterized definitions, and an object is simply an instance of an object type,
i.e. every object in the model is declared to be of a certain type, and parameters arc specified
for each. This modeling paradigm is quite flexible, since object types can be constructed
for different application domains, and a higher level interface tailored to the needs of the
user can be built from the types appropriate to the particular domain. A tool based on

16

this modeling paradigm can be enhanced simply by the addition of new object tvpes. Thus.
both the flexibility of SPN description tools and the convenience of tailored interfaces are
obtained. The language chosen to implement the object oriented paradigin is Prolog. The
main advantages include the possibility of using untyped data structures, which give the user
freedom in the specification of object states. and the powerful pattern matching feature of
Prolog which is used in the precondition of rules.

Examples that illustrate the power of the modeling paradigm are presented in section A of
the appendix. In the examples, an object type that behaves like a SAVE generic component
is defined, and an object type priority queue is also described. From these objects, struc-
tural models and performance models can easily be built using the same paradigm. In [64]
cxtensions were made which include the ability to create and destroy objects dvnamically,
to prioritize execution among objects, and other additional features. These extensions are
used by an interface which was developed to allow an Estelle [49] specification of a commu-
nication protocol to be automatically translated to the object oriented paradigm for analysis
purposes. This is another example that demonstrates the power of the model deseription
paradigm.

In this section the main issues concerning the specification of performability models have
been addressed and existing tools that illustrate solutions to some of the problems have
been briefly described. The next section concentrates on solution techniques developed for
Markov performability modcls.

4 Model Solution

4.1 Introduction

In the previous section, our interest was in issues related to the specification of performability
models via a high level description language. The (low level) mathematical description that
represents the model (in our case the Markov transition rate matrix) is generated from the
specification. In this section we describe several solution techniques which have been used to
solve performability models. Although model specification and model solution are treated
in separate sections of the paper, these two subjects interact naturally during the modeling
and analysis process. For example, the state space explosion problem that we trcat below
in section 4.4 is of importance, not only in obtaining numerical solutions, but also in the
generation of states as part of the specification process. Thus the two are inherently tied
together.

As in the specification part of the paper, instead of presenting an exhaustive survey of so-

17

lution methods for dependability and performability models of computer systems. we will try
to give the reader a brief overview of the approaches that have been proposed and the models
for which they have been used. In particular, we will spend much of the section discussing
the application of the uniformization or randomization technique to dependability and per-
formability modeling. Other well-known methods of solution. such as transforin methods.
will receive less attention. However, the many references that are included should lead the
interested reader to more details on these other approaches and models. As an example, a
survey on performability analysis which concentrates on Laplace transform methods can be
found in [50]. We will discuss both Markov and semi-Markov models of svstem behavior,
with the emphasis on the former type of model.

Basically. the various solution techniques can be subdivided into those developed to
calculate specific measures related to the time until failure, those applicable only to models
of systems that cannot undergo repair during the observation period and those applicable
to general repairable systems. In the first case, both repairable and nonrepairable system
models mav be considered. and the corresponding Markov chain contains absorbing states
that are usually related to system failure. In the second case. the corresponding Markov
chain is acvclic, i.e. no state is visited twice for any of the possible sample paths. The
third case involves the solution of “gencral” chains that represent systems with repairable
components. The techniques employed may take advantage of the particular Markov chain

structure.

We begin this section with a brief overview of some of the techniques used in problems in-
volving the classes of chains mentioned above, with an emphasis on transform approaches. As
we will sce, most Laplace transform methods which have been used to determine performa-
bility measures of repairable and nonrepairable systems utilize recursive equations obtained
by conditioning on the time of the first transition of the Markov model. Next, a solntion
methodology based on the uniformization or randomization technique is described in detail,
and it is shown that many performability measures can be calculated using a unified frame-
work, i.c. by marking or coloring certain subintervals of the observation period based on the
underlying stochastic process and then associating rewards to these intervals. Finally, we
review some techniques that have been proposed in the context of the state space explosion

problem.

4.2 A Brief Overview of Solution Techniques

The work of Beaudry [4] is an example of one of the earliest methods developed to calculate
performability measures of Markov chains with absorbing states. Performability measures
calculated include the probability of executing a task of a given length before system failure
(equivalently, the distribution of accumulated reward until failure) and the expected accu-

18

mulated reward. The basic idea is to transform the original Markov chain with rewards into
an equivalent Markov chain for which all reward rates of nonabsorbing states are equal to
1, while ensuring that the accumulated reward in each state for both models is identical.
The performability mecasures of interest are then obtained from the reliability and the mean
time to failure of the second chain. That is, an exponential sojourn time time 7 in state
a, of the original chain is increased (if r, > 1) or decreased (if 0 < r, < 1) to compensate
for the unit reward of the second model. The transformation can be accomplished by di-
viding any rate from a state a, to a state a,, say q,,, by r,. This procedure applies directly
for the case of positive rewards. but nonpositive rewards can be easily handled when the
expected accumulated reward is the measure of interest. A constant is added to transform
the problem to the positive reward case, and then the constant is subtracted back ont of
the final result. However, dependencies between the accumulated reward and the time until
absorption cause this “trick™ to be unsuccessful when the measure of interest is the distribu-
tion of accurnulated reward. Recently, Ciardo «f al. [11} extended the approach of Beaudry
to handle the case of zero reward rates in determining the distribution. States with zero
rewards arc transformed into vanishing states in the equivalent model. similar to the GSPN
case. Extensions to semi-Markov models are also included in [11].

We now briefly discuss several solution techniques for nonrepairable systems. An im-
portant characteristic of such models is that the system states may be labeled in a manner
so that the probability of a transition from state a, to state a, is zero when 7 < . Thus,
the generator Q of the Markov process that describes the behavior of the system is lower
triangular. Several papers have appeared that address the issue of performability evaluation
for such models, and the acyclic structure has been exploited to obtain recursive solutions.
Meyer [69] considered a model of a nonrepairable multiprocessor system with N processors
and a fixed number of buffers to store submitted tasks. Each processor may fail, thus causing
the system to degrade. A fault in a buffer or a nonrecoverable fault in a processor causes the
system to fail. The state transition diagram of the Markov chain that models the structural
changes in the syvstem is given in Figure 6, where the state is the number of aperating proces-
sors. The measure of interest is the distribution of the fraction of arrived tasks processed in

: N\
Figure 6: Markov chain structure model for the processor-buffer example.

an observation interval (let Y be the random variable that represents this fraction of tasks).
After the rewards that are assigned to the states of the system are calculated, the solution
is obtained by calculating the joint density of residence times in each state, conditioned

19

on the imbedded Markov chain at state transition times. This procedure is easy to carry
out because of the special structure of the chain (see Figure 6). From the conditional joint
density of residence times, the conditional distribution of 1" is obtained by integrating over
the set for which)" is below a given level of performance. The final solution is obtained
by unconditioning, which requires determining the probability of the possible sample paths.
In Meyer [69] this procedure was used for a system with two processors. Later, Furchtgott
and Meyer [32] extended the technique to the case of general acyclic chains (i.c. multidimen-
sional acyclic chains). The approach works for rewards that arc monotonic in the states.
The technique is applicable to semi-Markov processes, but its computational requirements

\

are exponential in the number of states.

Donaticllo and Iyer [30] also studied the model of Figure 6. i.c. single dimensional chains.
They first obtained a recursive expression for calculating the cumulative reward by condi-
tioning on the time 7 of the first transition out of state N. The resulting cquation relates
the performability measure during (0./) with the measure during (f — ./) assumning that
the system starts in a state reachable from N. By transforming the recursive expression (i.c.
taking the double Laplace transform in the performability level and time variables), per-
forming a partial fraction expansion and then inverting the result, a closed form expression
for the cumulative reward is obtained (coefficients of the expression are found recursively).
The cost of calculating the distribution of cumulative reward is shown to be O(N*). In [30]
it is also shown that the approach can be extended to the case of general acyclic chains (sce
also Grassi rf al. [37]). In this case the computational complexity is O(A), where M is
the number of states and d is the maximum number of nonzero elements in a row of the
transition rate matrix. Ciciani and Grassi [13] solved the same model, but they work with
the general equation (5) below.

Goyal and Tantawi [36] studied general acyclic chains with monotonic rewards and ob-
tained a recursive equation by conditioning on the time of first failure. Unlike previous work,
their recursion is carried out in the time domain. The resulting algorithm is polynomial in
the number of states of the model. Note that the approach of [13, 30, 37 is not limited to
monotonic rewards. Other results related to acyclic chains can be found in [60, 86].

Determining performability measures for repairable systems is a more difficult problem.
In such systems, components can fail and then be repaired, so that the corresponding Markov
chain (or semi-Markov process) is not acyclic. Thus the techniques outlined above a-e not
directly applicable. However, as in the case of acyclic chains, transform methods have been
applied by several authors to obtain performability measures. In order to illustrate the basic
idea of such transform methods, consider a Markov chain model where a reward rate r, is
associated with state a,. Let); be the total rate out of state a,, and let p,, be the probability
of a transition from a, to a,. Let F,(y, t) be the distribution function of the cumulative reward
up to time ¢ given that the chain started in state a,, i.e. F;(y,t) = P[CR(#) < y|X(0) = a,].
An expression for the double Laplace transform of F;(y,t) is obtained by conditioning on ,

20

the time of the first transition. We have
1) = uly = f)e '“-;—/ “A"Zpu 1/-7,,,l-r)r1'r (1)

where #(7) is the unit step function. Equation (1) is the basic expression that is used in
many transform approaches, including those for acyclic chains. Taking the Laplace-Sticltjes
transform of F,(4./) in the y variable gives

M

B ' ’
Bis.t) —_--“ LA S / 0,--“-+'-”?/,;(s,f = r)dr. (2)

g= I Jr=
Now, taking the Laplace transform in the / variable, we have

1 4] \ At .
IR erap ey erpapd DY L YO (3)

=1

/7"(3,'5) =

1

Equation (3) can be written in matrix form as
h™(s,8) = w(s,8) + diag{w(s, §) }diag{ A} P h**(s. §). (4)

where all of the above vectors are column vectors. Here w(s,§) = (1/(), + 8 + 1)),
A=), and diag{x} is a diagonal matrix with the vector x as its diagonal. Rewriting
(4) gives

h**(s, 8) = (I — diag{w(s, §) }diag{ A\ } P]"'w(s, §).

Noting that P = I + (diag{A})™'Q, we have
h*(s,8) "= (I - diag{w(s. &)}diag{A} - diag{w(s.$)}Q] " w(s.5)

[diag{w(s, SYHAI + < diag{r}) — diag{w(s, 6)}Q]_'w(s‘ £)
where r = (r,)7. Since (AB)™' = B-'A~!, and defining 1 = (1,...,1)7, we finally have
h™*(s,6) = [§1 + s diag{r} — Q]"'1. (5)

Equation (5) was obtained by Puri [83] (see also Kulkarni et al. [56]). In [56] h:*(s,s)
is expanded in partial fractions, and the result is analytically inverted with respect to 6.
The final solution is then computed by numerically inverting the resulting transform in the s
variable. Later Smith et al. [91] improved the computational time of the algorithm. Kulkarni
et al. [57] used the duality between the cumulative reward and the time to achieve a reward
level mentioned in section 2 to derive equation (5) (see also Nicola et al. [79]).

Iver et al. [51] noticed that equation (5) can be directly inverted in the & variable to

obtain |
L-(S,t) = [th-—s dlag{r}t] 1,

21

and standard numerical techniques can then be used to invert the above transform in the
remaining variable. In [51] a double Laplace transform expression for semi-Markov :1odels

follows along the same lines as the one above. For Markovian models, a recursion . ween
the (1 + 1)st and nth moments of the cumulative reward was derived in [51]. The d¢ :vation
involved rearranging equation (5), differentiating (n + 1) times with respect to s ar . sctting
s = 0. The result is a simple Laplace transform expression relating the (n + 1)s: and nth
moments. Noting that @' is the inverse of the transform [6I — Q]™', the Laplace transform
expression can be inverted. and the final result is obtained from the spectral representation
of eQ'. Recently, Pattipati and Shah [81] considered the case of a nonhomogencous Markov
chain and showed how to calculate moments of cumulative reward using numerical integration

techniques.

In the next section we concentrate on a detailed description of the uniformization or ran-
domization technique, which has been found to be useful in calculating various performability

measures.

4.3 Calculating Performability Measures using Uniformization

We now turn to the discussion of another method that can be used to calculate performability
measures, namely, the uniformization or randomization technique. This approach proceeds
by replacing the continuous time Markov process that represents systemn behavior by an
equivalent process, that of a discrete time Markov chain subordinated to a Poisson process.
The technique can be used to calculate both transient and steady state solutions. In [23,
24] a methodology for calculating performability measures for repairable systems based on
uniformization was presented. In this section we discuss that approach in detail.

We begin by reviewing the uniformization technique, which was introduced by Jensen [52)
and is covered in many books on stochastic processes (see, for example, Cinlar (9], Heyman
and Sobcl [48], Keilson [54] and Ross [85]). Recall that the behavior of the systemn under
study is modeled by a homogeneous continuous time Markov process A" = {X(#) : { > 0}
with generator Q defined on a finite state space S = {a; : i = 1,...,M}. The M x M
generator matrix Q has the form

—¢1 qi2 --- QM

g1 —92 ... QM
Q=)))

am1 dM2 - —AqM

For i # j, the (i, j) entry represents the (exponential) rate at which a transition occurs from
state a; to state a,, while the negative of the ith diagonal entry satisfies g, = T,4, ¢,, and

22

represents the rate out of state a,. Since the state space is finite. the rates ¢, are uniformly
bounded. and we let A > max{q,}. It is possible to think of .1" as a Markov process for which
the rate out of cach state is the same parameter A by using the following construction. For
the 7th state simply add fictitious transitions from a, back to itself, so that with probability
¢,,/A a transition to a, occurs and with probability 1 — (¢,/A) a fictitious sclf-transition
takes place. This construction preserves the basic stricture of .1, while the transition rates
for all states are now identical. Thus the Markov process .1 can be thought of as a discrete
time Markov chain subordinated to a Poisson process in the following sense. Consider the -
discrete time Markov chain Z = {7, : n = 0,1....} with statc space & and with transition
matrix P = Q/A + I, and let A" = {N(/) : { > 0} be a Poisson process with rate A that is
independent of Z. Then the above discussion shows that we may interpret N (f) = 2y for
t > 0. That is, the transition times of .1" occur according to the Poisson process A", while the
transitions themselves are governed by the discrete time chain Z according to the transition
matrix P.

Using this form for the Markov process .U, numerically stable algorithms for the cal-
culation of transient (and steady state) distributions of various mecasures can be derived.
an approach advocated by Grassmann in [38, 39]. For example, consider the calenlation
of the transient state probability distribution (1) = (P,(1)..... 'y(1)), where 1(7) repre-
sents the probability that .U is in state a, at time f under the initial distribution 7’(0), i.c.
P(f) = P{X(t) =). Then, conditioning on the number of (Poisson) transitions 1 in a
period of length /. it is casy to sce that

o~ —ac(A1)”

Pty =3 e Mi——n(n). (6)
= n!
where n(n) = (m(n)..... ma(n)), and m(n) is the probability that the chain £ is in the

ith state at time ». i.e. 7, (n) = P[Z, = a,]. The n(n) satisfy the reccursion #(n + 1) =
m(n)P = x(0)P", with initial distribution 7(0) = ’(0). Note that, although the infinite
series in the expression for P(t) must be truncated during calculation, error bounds are
readily computable from properties of the Poisson distribution, and in fact calculations may
be performed within a prespecified error tolerance.

Uniformization can also be used to calculate performability measures of Markov reward
models. We assume there are ' + 1 rewards p; > --- > py4; which may be associated with
states or transitions, and without loss of generality we suppose that p; = 1 and py4 =0
(otherwise replace p, by (pi — prc+1)/(P1 — prc+1)). Recall that PPF(t), the point performa-
bility, is the expected instantaneous reward at time ¢. Thus it is simply

M oo Af n M

PPP) = S = £ MRS nn() = B s 00

1=} n=0 =0

where r, is the reward associated with state a, (and thus is one of the p;, [=1,..., i + 1).
Both the point availability and the reliability at time ¢ can be calculated as special cases

23

of the above formula. Using similar arguments, other simple performability measures have
been casily calculated using uniformization. These include mean time to failure. expected
availability and expected cumulative reward (see [40], [43], [92], [65], [72]).

As an example, the random variable AC'R(t) = C'R(t)/t represents the total accumulated
reward averaged over /. Its expected value can be expressed in terms of the integral of the
point performability over (0,4). That is,

FLACR(1)] = }/0' {\i ne A, 7r(n)}} s,

1
n=0 n.

Performing the integration viclds

CE[ACR()] = i i [Z;o{: 17"(].))} '

n=0

nl

Note that this equation can be written in the form

, = _ . (A"
EIACR(N]) =)« Mgn—')f(n.)
n=0 *
where . ()
, n + r-min+1
1) = —— - N7
fn+) n+ 2f(n) + n+2

and thus it can be casily evaluated in a recursive manner. Furthermore, f(n) < max{r,} =1
for all », so that the nth term of the infinite series in equation (8) is bounded by the
corresponding term of the Poisson distribution. Similar recursions mav be found for other
performability measures considered below. An equivalent expression for the expectation is

EACR(] = 13- Brral)r - 7(3)) (9)

where F,4ia(t) = 1= 7 ge (A1)’ /5! is the n + 1-stage Erlangian distribution.

In order to actually use (8) or (9) to calculate the expected cumulative reward averaged
over the period (0,1), an infinite series must be truncated after a finite number of steps, say
N. The amount of error introduced due to this truncation when using (8), for exampie, is

then ' o i}

n=N+1

In [40] it is shown that the error from (9) is even smaller than e(N), assuming the same
truncation value N. Thus calculations can be done to within a predetermined error tolerance
¢ by using properties of the Poisson distribution [38]. This type of behavior is common for

n=N+1

24

the measures we calculate using uniformization, and computations can be done so that the
total error can be easily bounded. Also note that the major computational cffort in the
calculation of E[AC'R(/)] only involves the uniformized chain Z. Thus several different
observation periods (0. s) can be considered, since only the Poisson terms change.

We now present a methodology for calculating transient performability measures using
uniformization over a finite observation period (0.t). Transitions of the uniformized chain
split the time period of interest into intervals during which the process .1 remains in a
particular state. The various performability measures considered depend on certain states
and/or transitions, and the methodology we introduce is based on “coloring™ intervals corre-
sponding to these states or transitions. Performance measures that can be calculated include
distribution functions (PDF), density functions (pdf), and probability mass functions (pmf).
Simpler performability measures such as expectations can be calculated as a byproduct of
the method of solution. This approach was first introduced in [23] for certain availability
measures (rewards of 0 or 1) and then extended to more general reward functions in [24].
Besides numerical stability and the ability to specify error tolerances in advance as discussed
above, other advantages of the methodology include the physical interpretation of the vari-
ous random variables studied along with the simplicity of implementation of the numerical
algorithms.

We now consider the problem of calculating various quantities in a performability envi-
ronment, that is, under general rewards. Our interest is in measures such as the distribution
of accurnulated reward during a finite observation period. Transitions during (0, /) split the
period into intervals that have rewards or colors associated to them, perhaps based on the
state of the system during the interval or based on the transition at the start of the interval.
Intervals with identical rewards are assigned the same color. and uniformization is used to
calculate the resulting measures which are defined in terms of the colors.

Recall that there are A + 1 different rewards 1 = p; > -+ > ppyq = 0 associated with
states or transitions (pairs of states) of the Markov process .. Let A (#) be the measure of
interest that we wish to calculate. If n transitions of X’ occur during (0, 1), the observation
period is divided into » + 1 intervals. Assume that there are 4 intervals of color / (with
reward py) for [= 1...., K + 1. Define the vector k = (ky, ..., kp41) which indicates the
number of intervals corresponding to each reward, and recall that k|| = k, + - + kp4;.
We will frequently refer to a “coloring” k. Note that there are (".:::’1) ways of assigning
colors to the intervals (i.e. such that lk]| = » 4+ 1). Conditioning on n and k gives

M(t)y=3Y" e"’“(—l—\—i'l- > QnkJM(¢, n k) (10)
n=0 " kll=n+1
where
Q[n, k] = Plcoloring k|n transitions] (11)

25

and
M(1, 1, k) = M(t)|n transitions, coloring k. (12)

This is the main equation that is used to calculate the various performability measures of

intercst.

In order to apply (12), both Q[n, k| and A (¢, n, k) have to be calculated. Note that the
quantity Q[n, k| depends only on the underlving discrete Markov chain Z. For the performa-
bility measures discussed below, recursions for Q[n, k] were found that are combinatorial in
the number of colors and may be quite expensive for general models. However, the nature
of highly dependable systems can be exploited to carefully organize the recursions in a way
that drastically reduces the computation for the performability measures that we consider.
Finding an expression for Af(t,n, k) is frequently challenging from a theorctical point of
view, but formulas for certain measures can be found by using the following probabilistic
reasoning. Consider the set (/) C S"*! of all possible sample paths of Z such that the first
n transitions vield the coloring k. Then for the performability measures considered in this
paper, further conditioning on v € G reveals that Af(f,n k) = A(1,n. k.1/). That is, the
particular sample path influences the measures only through the number of colored intervals
and not, for example, through the order in which such intervals occur. To show this result.
we must appeal to properties such as exchangeability of the interval length random variables
and independence of the Poisson process A/ and the discrete chain Z. Using this relationship,
expressions were found that allow one to easily calculate the conditional measure /(7. n k).

The availability case of only rewards 0 and 1 is of special interest. Here the intervals
cither are “marked” (reward 1) or are not marked (reward 0). Conditioning on n transitions
and k& marked intervals during (0, t), the main formula becomes

~ _/\g(At)n n+l
Mit)y=Y - — > Tln k)M (1, n k) (13)
n=0 n: k=0
where
[[n, k] = P[k marked intervals|n transitions] (14)
and
M(t, n, k) = M(t)|n transitions, k marked intervals. (15)

4.3.1 Performability Measures Based on Number of Colored Intervals

As a first example of.this approach, we discuss the calculation of performability measurcs
based on the number of events that occur during (0,t). Examples of such events include
system failure, failure of a particular component that caused the system to fail, repair of
a component, and the failure of a component that caused other components to fail. The

26

rewards we consider correspond to transitions (i.e. failures and repairs). There is a user-
defined A/ x M matrix H = [r,)], the (+.) entry of which is the reward associated with
a transition from state g, to state a,. Each reward r,, is one of the N + [distinct values
1l=p, > > pp > pryr = 0 discussed above. Given H, the reward matrix R = [»,, /]
gives the rewards obtained from one step of the discrete time Markov chain Z. The random
variable of interest is N R(f), which represents the total reward accumulated during the

period (0,1).

We first note that the expected value of N R(#) can be caleulated in a straightforward
manner without resorting to the device of coloring intervals. Consider the Markov chain Z.
and let o, be the reward obtained from the kth transition. Then given » transitions of .17 in
(0.1), the total reward is N R(!) = 7y +--- + 0,. The expected reward at the Ath transition

is given by Ioy] = i7(k = 1)RJ|. and so the total expected reward is simply
= At)
N RO) J—Z""'(Zn (k= DRI (16)
n=1 !

To find the distribution function of N R(/) (equivalently its pmf) we use the coloring of
intervals and equation (10). Here we must calculate A(/,n. k) = P[NR(f) < r{n. k] and
Q[r. k] = Q4[». k]. Given n transitions and a coloring k, the total reward is VR(1) = p-k =

N¥1 sk, since there are by transitions with reward p. Therefore, P[N R(1) < r|». k] = 1if
p-k <rand P[NR(!) < r|n. k] =0 otherwise. Thus

PINR(1) <r]= Z :“"A‘(—JH')— Z 0 [n. k] (17)
n=1\ n: [|k||=n+].ﬂ k<r

The recursion used to calculate €[k] is easy to describe. Define #,{n k| as the proba-
bility that after » transitions of Z, there are k; transitions with reward o (/ = 1... .. N+1)
and 7, = a,. Next define the vector f[n, k] = (f;[n,k],...,0x[n.k]). The recursion for
f[n, k] is

6,[n. k] = ,\}il Y b[n-1,k-1]P, (18)

=1 {vri=p}

where 1, is a vector of length "+ 1 with 1 in position [and 0 in every other entry. The above
equation holds, since the counter for color [is incremented only if the reward associated to
the nth transition is p;. Then we calculate

,[n. k] = ||8[n, k]|l (19)

The initial conditions for # are given by the initial probability distribution of the chain Z,
namely,

8[0, 0] = =(0).

27

Note that for general 1. not all possible colorings k need to be considered when computing
(17). To see this, for a reward p > 0, any coloring with more than r/ interva:s of color
! will yicld an accumnulated reward during any observation period that is greater than the
specified reward level r with probability one. Therefore, such cases need not be - asidered.
which drastically reduces the number of colorings that appear in the recursion.

The special case of 0.1 rewards can be used to obtain measures involvine the number
of times a particular event occurs (c.g. system failure). In this case, an inter~al is marked
if the transition leading into it is such an event. Let the random variable Y(f) represent
the number of events of interest during the observation period. We wish to calculate the
distribution function (PDF) of Y(f), that is, we set M (t) = P[Y(/) < A'] in equation (13).
We also st T[n, 4] = T,[n, #]. With this notation, we have

~ ln+

P < W= ,,' ST [n K PIY () < /\'[n.‘A']‘,

n=0 k=0

Given n transitions, at most n intervals can be marked (the first interval is never marked
since no transition leads into it), so that [y[n.» 4+ 1] = 0. If % intervals are marked. then
Y(t) = k with probability 1. Therefore, P[Y(/) < N|n. k] =1 for £ < I and is 0 otherwise.
These observations vicld the formula

~ n min(n,K")
PIT) < K= ™ A,:!) L nind (20)

n=0

Other quantitics of interest include the pmf of T(¢) and its moments. Clearly we have

OERNES i r"“%l‘,[n, K. (21)

n=N

Using (21), the mth moment is
N =3
n=t

Note that when the marked events represent system failure, the reliability at time ¢ is simply
the probability of no such event or P[Y(t) = 0], which is givenin (21). The time until the first
marked event occurs, L(t), (the lifetime if the distinguished event represents system failure)
is another random variable of interest. The distribution of L(t) can be easily calculated by
observing that L(t) > s is equivalent to Y(s) = 0 (for s < t) and applying (21). Integrating
. P[L(t) > s] gives the expected time until the first marked transition (the expected lifetime)

as

" n

Z Ty [n, k). (22)

n'

(oo}

E[L(1) Z we1,a(0)T [, 0], (23)

28

similar to equation (8). This is also equal to

ElL) =3 o=l

n=(

A" [Zroo Tils, O]J (24)
n+1 '

n!

Note that in this case, truncation at step N gives an error bound of

cr(N) <t i ,~‘-'\‘£A_t)l.

{
n=N+1] -

Letting © — oo in (23) gives the mean time until a marked event (mean time to failure) as

MTTE = % Z Ty[n, 0] (25)

n =0

In order to use equation (20) (and the cquations for the other measures). it is necessary
to calculate I'y[n. £]. A recursion to calculate this quantity is a special case of (18). That is.
let F = {F,,] be a user-defined Af x Al matrix of zeros and ones, with F,, = Lif the transition
» — 1 s an event of interest and /', = 0 otherwise. As an example, the matrix that has a 1
in the (7. 7) entry if and only if 4, is an operational state and a, is a failed state (4, € So,
@, € S¢) gives T(/) the interpretation of the number of system failures during (0./). Similar
matrices can be used to represent additional events of interest. Assume then that the matrix
F is given. and (for 7 = 1..... Af) let ~,[n, k] be the probability that » transitions have
occurred in Z, & of these transitions are marked and the state after the nth transition is o,.

The vector ~[n k] = (v [n k], ., Yar[n, k]) may be calculated using the recursion
v,[n. k] = Z Yn-1k=-1]P, + Z Y[n = 1. k)P, (26)
{r Fyy=1} {r-Fi, =0}

where the first sum accounts for the nth transition being an event of interest and the second
sum for it not being a marked event. Then we calculate

M
Tyl k] = 3 vl K] = Il]l (@)

The recursion (26) is illustrated in Figures 1 and 2 of [24]. As discussed there, the nature
of dependability models can be exploited to ensure that such a calculation is tractable. For
example, assume that the event of interest is a failure of some type. Since failures seldom
occur in highly dependable systems, most of the probability mass of Y(¢) will be clustered
around k = 0. Therefore, it is highly likely that only values for small ¥ must be calculated
to achieve a specified error tolerance. Practical experience confirms that substantial savings
result in the computation of such measures for dependability models.

29

Before concluding our discussion on measures given by marking transitions. we briefly
indicate another method of calculating several quantities involving Y(/). The approach
outlined above was developed for the calculation of the distribution (equivalently the pmnf) of
the number of a certain type of event. Thus the probability of the number of marked intervals
in (0,{) Ty[n, k] had to be calculated. However, if only the mean number of such events is of
interest. the following method can be used. The matrix M with entries Al,, = I, [, gives
the one step marking probabilities for the chain Z, while P — M gives the probabilitics of
not being marked. For £ = 1,...,n, the probability that the kth transition is marked 1s seen
to be

Plkth transition is marked] = ||7(k — 1)M|| = ||=(0)P*~'M]|.
Then the expected number of events of interest during (0./) can be calculated using the

formula -
reg) = 5 v B0

Zu F- 1M, (28)

n=| :

which is a special case of equation (16). Determlnmg the probability that no events happen

during the observation period (c.g. the system reliability) can also be easily computed. Al-

though this is one term of the pinf. it can be calculated as the probability that no transitions
are marked. Therefore,

o \{ n

Px(y =0j=% a1

n=1

D lir(O)(P - M)l (29)
Similarly, the distribution and expected value of the time until a marked transition occurs
can be calculated using this approach.

4.3.2 Performability Measures Based on Length of Colored Intervals

We next turn to the calculation of performability measures based on the length of intervals
of the observation period. In this case, rewards are based on the state of the process .1,
instead of on transitions. With each state a, there is associated a reward r,, which is one
of the N + 1 values 1 = p; > -+ > pp > pr4; = 0. Thus corresponding to the Markov
process X (t), the random variable 7y, gives the instantaneous reward at a time instant ¢.
A random variable of more significance is AC R(t), the total accumulated reward d::ring the
period (0,t) averaged over its length t. We now consider the calculation of the distribution
of ACR(t) with the methodology introduced above based on coloring of intervals.

Given n transitions and a coloring k (where ||k|| = n+1), let (; be the sum of the lengths
of all intervals of color {, for { = 1,...,{ + 1. Then the conditional total reward averaged

over t is
K+1

ACR(t)|n, k= = Z mG. (30)

1=1

30

In this case. we set M(1) = P[ACR(t) < r] and Q[n, k] = Q[n,kl. The parameter » is
assumed to satisfy 0 = pryy < r < p; = L to avoid trivial cases.

We first discuss the evaluation of the conditional distribution P{AC' R(1) < r|n k]. For
notational convenience, we assume that every color appears at least once in the vector k (i.c.
M #FO0forl=1... ., K +1). If this is not the case. certain terms are not present in the sum
in equation (30) and an obvious relabeling can be done. We will first express the random
variables (; in terms of certain intervals of (0,1). To that end, suppose that » transitions of
the uniformized chain occur during the observation period at times 0 < r; < - < r, < /.
These transitions split the period (0,1) into » + 1 intervals with lengths },. Yo+1. During
the 7th interval, the process .\' remains in a particular state 7Z,_;, which depends only on
the underlying discrete time Markov chain Z. Furthermore. the transitions are governed
by a Poisson process of rate A, so that the transition times r, are distributed as the order
statistics of » independent and identically distributed random variables uniform on (0. 1).
Let 17y..... 7, be iid uniform on (0,1), and let {7,y ... I’,,, be their order statistics. Then
we can identify 7 with tl7,), so that Y, = 10/, Y, = 1(/,v = U,_y)) for 7 = 1. . » and
Your = (1 = {7,)). Although it is clear that the), are dependent random variables (their
sum is the fixed number 7), it is well-known that they are exchangeable [85]. That is. the
Jjoint distribution of the Y, is invariant under any permutation of 1.. .. n + 1.

Exchangeability of the Y, and the independence of A7 and .U now allow us to assume that
the first & intervals are of color 1, the next &, intervals are of color 2, and so on. Defining
n, = Yjo ki for j=1.... K, we may assume that

Cl = {(/("l)
(.J = I((/(")) - 1/(11)-1)) forj =l I\-
Char =11 =T 00))

Therefore, we may write (recall that py 4y = 0)

N

ACR()n k=3 (py = pr4t)Uin,, (31)
j=1
and so the conditional distribution is
K
PIACR() < rln k] = P | S(, = pyet)Uiny) < 7| (32)
1=1

Determining A/ (f)|n, k has now been reduced to finding the distribution of a linear combina-
tion of uniform order statistics on (0,1). An expression for this quantity has been obtained
by Weisberg [96] (see also [21]), and we now describe his result. Define m to be the largest
index ¢ such that » < p,. Weisberg’s result is that

m (ki=1),
PIACR(1) < rin, k] =1 — Z: g—(k—_({’)T) (33)

31

where g.°' is the kth derivative of the function

a(e)= —= (34)

k
nII\T}¢t(/3') ,

The derivatives of the functions g,(z) may be evaluated recursively in a straightf rward
manner [96] (see also [24]).

We next develop a recursion for the evaluation of §2,[n, k], for which the coloring of
intervals is based on the state of the process .1 (cquivalently the state of the chain Z). For
each state a,, we definc () to be the color associated with it, that is, r; = py. Let w,[n. k]
be the probability that there are k; intervals with reward o (I = 1,..., k' + 1) when there
are » transitions of Z, and Z, = a,, and define the vector w[n, k] = (wy[n. k], ... wp{n. k]).
Then the recursion for win, kj is given by

M
w,{n, k] = Zw,[n - 1.k= 1,0, (35)

=1

where 1.,y is a vector of length A’ 4+ 1 with 1 in position () and 0 in every other entry.
That is, when the number of transitions increases from n — 1 to n and Z,, = a,, the counter
for the number of intervals that have color ¢(;) is incremented by 1 while all other counters

remain the same. Then we calculate

Q[k] = fjw[n, k]| (36)

The remarks concerning the calculation of §,[n, k] at the end of the previous section
apply equally well to to the above recursion. That is, although the number of vectors win. k]
grows combinatorially with the number of rewards, the nature of highly dependable systemns
can be exploited when calculating performability measures for such models. In the present
situation, usually higher rewards will be assigned to states that represent a system with a
large number of working components (e.g. throughput degrades as more components fail).
Furthermore, it is reasonable to assume that the system will spend most of its time in states
with few failed components, i.e. the set of states with i failed components is more likely than
the set of states with j failed components for 7 < j. Thus, the recursion can be organized in
a manner that reduces the computation drastically (see [24] for more details).

We now briefly discuss the calculation of availability measures based on the length of
marked intervals (0,1 rewards). One example is the distribution of total up time during
(0,7) (the cumulative operational time distribution). Recall that the random variable o(1)
represents the amount of time during (0, t) that the system (or a particular set of components)
is working. We wish to calculate M(t) = P[O(t) < s] (for s < t). Equivalently, the
distribution of the (mterval) availability A(t) = O(t)/t is to be calculated. An interval is

32

marked in this casc if the state corresponding to it belongs to the set of operational states
So, and we set [[n k] = I';[n, k] for this marking. From cquation (13), recall that we must
calculate T'y[n, k] and P[O(f) < s|n, k].

Using exchangeability. the £ operational intervals can be assumed to be the first 4. so
that the conditional distribution is given by the distribution of {74, that is

PlO(f) < s|n, k] = ; (’:‘) (;)(1 - ;)

As for I'y[n, k], a simple recursion is obtained by specializing (35) to the present case.
For 1 < j < M define n,{n. k] to be the probability that & of Za..... 7, of the Markov

chain Z correspond to operational states and 7, = a,. Also define the vector yn. k] =
(m{p koo onar[n k). The counter & is incremented only for operational states. so that
clearly we have
‘=1 k=111, 1 €S8 -
i) = { Ty — LS R E (37)
X, P - 1. k)P, 0, € Sp,
where P is the transition matrix of the uniformized chain . Then we calculate
M
Ta[n k] = Z mn k) = |Inln. Kl (38)
=1

The initial conditions are given by the initial probability distribution of the chain £, that
is,
S
m[0.1] = m(0) o, € o
0 otherwise.
. ‘q
7,(0.0] = { (’)’J(“) " €

otherwise.

A matrix form for the recursion for I';[n,] is given in [23]. Although the above recursion
can in principal be used to calculate the distribution of time during (0,) in any specified sct
of states, by exploiting dependability models the cumulative operational time distribution
can be calculated with a large computational savings.

Other quantities of interest can also be calculated as byproducts of the above compu-

tation. Since P[A(t) < s/t] = P[O(t) < s], the availability distribution has already been
determined. The density of availability can be found by differentiation, with the result that

fanten) = 3 e Sribn k]k()(N7 -9 (39)

The expected availability or the expected fraction of time during (0,1) that the system
is working can be calculated as follows. Since the interval lengths), are exchangeable

33

random variables. it is easily seen that cach has expected value t/(n + 1). Therefore. given
n transitions in (0. /), if & are operational then the expected total up time is &/ /(n + 1), and

SO
/ n n+! 1‘
™M (A1) Z To[n. k] (40)

k=1 n+1

The reliability at time ¢ is the probability that the system does not fail during the observation
period, that is, the probability that the system is operational during the entire period (0. 1).
Given n transitions. the system does not fail if every Y, corresponds to an operational interval.
Thus the reliability is

BLA(t)] = Z ,

1
n=0 n.

’[()(l Z ("‘M) Ty[n, n 4 1]. (41)
n=0
Similar to the discussion about marking of events, the distribution of the lifetime 7.(f) can
be determined by noting that 1(7) > s is equivalent to ()(s) = s and applying the above
formula {or reliability. The expected lifctime is obtained by integration as

ELL()] = 11\' é Fuota ()L oo + 1) (12)
or equivalently -) ST
EL(1)] = ',,};"-M(lt:!) [ZF"NQEI’* “]]‘ (43)
Finally, the mean time to failure is
MTTF = Z Ta[n, n+1] (44)
AL

Note that ' [n, 0] = T,[n,n+1] when marked transitions represent system failure, so that the
expressions for reliability, expected lifetime and mean time to failure are direct translations
of previous formulas.

For the transient performability measures discussed in the previous two sections. terms
of the Poisson distribution nced to be calculated. A stable algorithm for such calculation is
given below in section B of the appendix. The limiting measure mean time to failure (equiv-
alently, mean time to event) does not contain such terms, and a straightforward procedure
to compute it may converge slowly. This problem is addressed in [22], where a method to
speed convergence is presented.

4.3.3 Other Measures

In the preceding two sections, the calculation of cumulative performability measures based
on the uniformization method and coloring intervals was presented. However, as discussed in

34

section 2, other measures are also of interest to the analyst. one of these being the probability
that a so-called near coincident fault occurs. In this section we review an approach to that
problem using uniformization and the marking of intervals. The preceding sections have also
focussed on the calculation of transient measures over a finite observation period, and in this
section we also indicate how steady state measures can be obtained. A particular example
of an analysis of several scheduled maintenance policies for a repairable system is brieflyv

discussed.

We first introduce the near coincident fault problem and show how it can be addressed
using uniformization. In a highly reliable system, the occurrence of two faults in a short
period of time may have disastrous consequences. If a failure of a particular type (type 1)
occurs within the observation period, there is a vulnerable length of time Af during which
the system identifics and isolates that failure. If a sccond failure (tvpe 2) occurs during
that vulnerable period, perhaps to the components that participate in the recovery process,
the result may be catastrophic to the system. Therefore, it is of interest to compute the
probability that two such failures occur within a time A/. One approach to this problem
has appeared in the papers [61] and [62], where the effect of such a near coincident fault
is modeled explicitly. We now show that the probability of a near coincident fault can be
calculated using the methodology presented above based on uniformization and the marking
of intervals.

Consider the uniformized time homogeneons Markov process .1 that represents the be-
havior of the system. Given n transitions, recall that the observation period (0.7) is divided
into » + 1 intervals of length ¥,.... Y, .. Our interest is in marking an interval if it has
the possibility of corresponding to a near coincident fault, that is, if the transition leading
into it represents a fault of type 1 and the transition leading out of it represents a fanlt of
tvpe 2. Let ("F(f) be the random variable that is the minimum of the lengths of the marked
intervals, and we seek to calculate P[(7F(t) < At].

As for previous cases, we need to calculate M(1) = P[C'F(t) < Atln. k] and T[n, k] =
['3{n, k] and then apply formula (13). First, using exchangeability, C F(f) has distribution

PCF(1) < Atln,k] = 1=PlY; > At,..., Y > Al
= 1-{max(0,1 - kAt/t)}",

where the last equality follows from known results about uniform order statistics [21].

Although the recursion for I;[n, k] is similar to that for Ty[n, k], it involves the additional
complication of a marking based on pairs of transitions. A matrix F of zeros and ones
indicates the transitions that are classified as faults of type 1, while a similar matrix G
keeps track of the type 2 faults. We also introduce a 0-1 variable 6, which represents the
potential that an interval has of being marked. Define Xi[n, k,0] to be the probability
that there are & marked intervals assuming n transitions of 2 , the last transition was not

35

of type 1 and 7, = a,. Similarly, define v,[n. k. 1] in the natural wav. and let \[n 4] =
(vl k0o k1w k0 um(ny k1) Clearly Ca[n k) = [#Jll. We claim

Uik = T =LA+ Y Aulb-LE-LIR, 45)

vF,,=é 1:Fij=8,Giy=1

+ Z W[= LA 1D,

1 Fiy=8,G,,=0

for § = 0.1. To sce this, first note that the “new” value of § on the lefthand side of
the equation is determined solely by ;. Next observe that the first sum accounts for
intervals without type 1 transitions leading into them, and so they cannot possibly be marked.
The second and third sums account for intervals that have the potential to be marked.
and whether or not they do become marked depends on the value of (,, (i.c. whether the
transition leading out of the interval is of type 2).

As we have seen. various transient measures can be calculated nsing the uniformization
technique. However, steady state measures may also be of interest to the analyst, and
uniformization can be used for their calculation. One example appears in [25], where several
scheduled maintenance policies for repairable systems were analyzed. For each model that
was considered, the calculation of steady state measures was reduced to the transient case.
with the observation period of interest defined in terms of certain embedded points of the
process that describes system behavior. Quantitics corresponding to these embedded points
were obtained using transient uniformization calculations, and results concerning Markov
chains with rewards were then used to obtain the steady state resuits.

4.3.4 Additional Remarks

Uniformization is one of the best solution methods for transient analysis of Markov models.
However, certain computational issues have to be addressed. An important issuc is the
calculation of the Poisson distribution term that appears in the formulas for the measurcs
surveyed, and we include an algorithm for its calculation in section B of the appenrlix which
avoids numerical problems. Another issue is related to stiff Markov chains, thoze which
have states with output rates that differ by orders of magnitude. As a consequencr, some
state transitions occur at a fast rate, while others rarely occur when compared with these
transitions. The uniformization technique has computational complexity that is prop« r:ional
to the length t of the observation interval and to the largest output rate among all states « f the
model (A). Therefore, in order to capture the transient behavior of “slow” events, large —alues
of t (as compared to 1/A) have to be chosen, which degrades the performance of the ni-thod.
Melamed and Yadin [65] address the problem and propose a so-called “select randomization”
method. An approximation method based on decomposition of the state space into “fast” and
“slow” states has been proposed by Bobbio and Trivedi [6], and the description of a software

36

tool for stiff Markov chains that combines this approximation technique with uniformization

appears in [84].

We have surveyed several methods for calculating performability measures. the two main
approaches being transform methods and the uniformization technique. Recently, Donaticllo
and Grassi [29] have developed a new solution method for calculating the distribution of per-
formability which is based on both uniformization and the basic Laplace transform method-
ology outlined above. The main idca behind the approach is to first condition the performa-
bility distribution function (Fy) on the number of transitions of the uniformized process.
as described earlier. The authors then find a recursive expression for the conditional distri-
bution function ([yy,), by following the main steps of the Laplace transform method used
in {30} for acyclic chains. That is, Fy, is further conditioned on the time 7 of the first
transition of the embedded Markov process vielding the function (Fy-p, ,). The distribution
function of 7 can be found by using properties of the Poisson process which governs the
transitions of the uniformized chain. The recursive equation for F/y |, , is then transformed
in the two variables, a partial fraction expansion is performed and the result is inverted. The
final expression for [y, , is given in terms of coefficients which are calculated recursively.
The approach is shown to be computationally more cfficient than the method of [24].

4.4 The State Space Explosion Problem

Performability models may often contain millions or billions of states. Even if usual de-
composition assuinptions are satisfied, the number of states in a dependability model grows
exponentially with the number of components that can fail. Similarly, the number of states
in a performance model, such as a queucing network, grows exponentially with the number
of resources and customers, and an exact solution is impractical unless the network possesses
special properties. As an example, exact algorithms exist for product form networks to cal-
culate efficiently the joint queue length probabilities from which steady state performability
measures can be obtained (c.g. [26]). Large state space cardinality has a major impact, not
only on numerical solution techniques, but also on model generation. While current tools
may be able to handle tens (or even hundreds) of thousands of states, the solution of medium
to large size models is an important problem. One way to deal with this problem is through
state space reduction techniques, such as truncation of the state space or aggregation of
states. The main issue that arises when these techniques are applied is bounding the final

error.

In this section we briefly survey some of the approaches that have been proposed to alle-
viate the state space explosion problem. We present both steady state analysis methods and
others that are applicable for transient analysis. Lumping and methods that are concerned
specifically with the generation of the most probable states are also discussed.

37

4.4.1 Steady State Techniques

We first consider methods that have been developed for steady state analvsis. As indicated
in the introduction, decomposition [17] plays an important role in performability analysis.
The basic aggregation/disaggregation technique {17} can also be used for the solution of
performance models in order to obtain reward rates to associate with structural models.
However, Markov chains corresponding to structural models usually do not have a nearly
decomposable structure. Courtois and Semal {18, 19] computed bounds on the steady state
probability of each state in a subset of states of a Markov madel, conditioned on the system
being in a state of the subset. Such results can be used to compute bounds on certain
dependability measures, given a specific condition that determines the subset of interest.
The results can also be used to bound individual state probabilities, which mayv lead to a
bound on dependability measures. However, the cost of such a “direct™ application of the
method can be prohibitive for large models (e.g. transition rates between subsets of states
must be generated).

Muntz rf al. [75] extended the basic technique of Courtois and Semal to obtain bounds on
steady state availability (or steady state performability). An important characteristic of the
method is that only a small subset of states has to be generated and solved. The approach
is based on the observation that real systems are designed to have a high level of availability.
We therefore expect most of the probability mass to be concentrated on the relatively small
subset of states that represent a system with most of its components operational, with the
result that the system very rarely reaches other states. The idea is to maintain a detailed
description of the system model for such “popular” states and to aggregate the remaining
states. To illustrate the approach, consider a Markov model of a system and organize the
states in subsets F; with [components failed. In the transition rate matrix

[Qoo Qo Qo.N-1 QQ.N
Qo Qi Q1N Qi.n
0 Qun Q2.N-1 Q2N (46)
0 0 On-1n-1 Qnaw
0 0 - QnnNn-1 QNN

the submatrices (J;; represent the transitions between states in subsets F; and F,, I,.J =
0,..., N. The submatrices Q;; for I — ./ > 2 are identically zero, since it is assumed that two
or more components cannot finish repair at exactly the same time. However, this assumption
does not preclude multiple repair facilities or operational dependency constructs (c.g. SAVE).

Now assume that we further partition the state space into two subsets D = U/L;' F, and
R = UXN,. .. Clearly, the steady state availability A is given by

A = P(D)AD + P(R)AR,

38

where (D) (P(R)) is the probability that the system is in a state of D (R) and Ap (Ar)is
the conditional steady state availability given that the system isin D (R). Since 0 < AAp < 1.
0< Ar <1land P(R)=1- (D), it is easy to see that

P(D)An < A < P(D)Ap +1 = P(D).

Therefoe. |

{(P(D}n{Aptn < A <1 = {P(D)}[L - {Ap}an),
where subscript “Ib” (“ub”) indicates a lower (upper) bound on the term. Bounds on P(n)
and A, can be obtained by the results of [18], but the procedure may be too expensive
for large models. and the availability bounds may not be tight [75]. Instead, construct the
following matrix from (46)

~

Qv Qon | 0 Qon Qor. (o.1.41 (Qo.n =1 (Qan ol
Qre Qps| 0 Qpr Qo Wpra Qun-r. Qan |
Qro 0 | Qnrn Qpx Qm, (.41 QBN Qnne |
0 0 | Qe Unk Qri Qn.r+: Qr.N-1 Qun -
: N : : : : : (47
0 0 0 0 AQL[, QLL+ QN1 QN
0 0 0 0 Qi Qreri+ Qriin-r Qrsin
0 0 0 0 0 0 Qn-1n-1 Onaw
| 0 0 0 0o - 0 0 QNN NN

where B represents the subset of states UL7' F;, and the states in this subset have been repli-
cated in a way that vields an equivalent model. Let D' (R') represent states corresponding to
the upper left corner (lower right corner) of the matrix in (47). Note that system transitions
oceur for the most part between states in D', and every entry into D' from R’ is through
the single state 0 (no failed components). Clearly, P(D') < P(P). We now aggregate the
states in cach of the N — I + 2 subsets in R’. Although an exact aggregation would produce
exact results, it would require the solution of the whole model. However, for dependability
models, the rates between aggregates can be easily bounded as

[Qoo Qos |0 Qox Qor QoL+ Qon-1 Qo |
Qo Qps |0 sk Qpr 5141 Qpn-1 BN
- 0 ° + e + + R + +
0 0 |- e - + 4+ o+ +
0 0 0 0 - o + e + + ! (48)
0 o lo o ... = ° . + +
0 0 0 0 0 0 . +
0 0 {0 o0 0o 0 - e]

39

where + represents an upper bound on failure rates (e.g. the sum of failure rates). — repre-
sents a lower bound on repair rates (e.g. the minimum of repair rates) and e represents an
aggregate state. Using (48) decrecases the residence time in D’ whenever this subset is reen-
tered. If we then solve for the steady state probabilities of (48) and assign reward 0 (1) to
aggregate states in R’, lower (upper) bounds on availability are obtained. Additional dctails
can be found in [75]. Extensions that provide the capability of increasing the accuracy of the
bounds by incrementally generating more states of the transition rate matrix are presented
in [76)].

4.4.2 Transient Techniques

We now consider methods developed for transient analysis. A simple but not necessarily
good bound can be obtained by truncating the state space, i.c. only certain states in the
Markovian model are generated. The remaining states are aggregated into a single absorbing
state. Now assume that the rewards are bounded. ry, < r, < r, for all 7. It is casy to see
that the distribution of cumulative reward in the original model is bounded by

PMCR(L) > 4] < PICR() > 9] < PCR() > o),

where the superscript Ib (ub) indicates that the absorbing state in the truncated model is
assigned reward ry, (7,5). Note that the quality of the bounds depends on the probability of
reaching a nongenerated state during the observation period. An important issue is how to
gencrate states so as to minimize such a probability, and this will be discussed later in the

section.

In {20]. Courtois and Semal obtain bounds on the mean and second moment of the time
until absorption (c.g. the time until failure or, more generally, the time until a critical statc is
reached). Instead of using a chain with a single absorbing state, they work with a transformed
process which is ergodic. Consider a chain with one absorbing state and stochastic matrix

Fovo Por -+ Pon-1 Pon
Po Py o Pyvey Py (49)
0 o ... 0 1

where the submatrices #;;, I,J = 0,..., N — 1 correspond to particular subsets of states.
Now construct the matrix

Po Py -+ Pon-1 Pon
Po P, - Pn_ P

P= -10 .ll . l,l.Vl .lN (50)
do dy -+ dy_, 0

40

where d = (o, /x-1) is the initial probability vector. Note that each time the Markov
chain of (50) reaches state N (the absorbing state in (49)), the chain restarts under the
initial distribution. Let the vector @ be the solution of # = 7P (normalized so that its
entries sum to 1), and consider its last entry my. Now 1/7y is the mean time between two
visits of state V, and thus intuitively the mean time to absorption (MTTA) of (49) is

MTTA = 1. 1. (51)
™

This suggests that a bound on MTTA can be obtained in the following manner. First.
determine bounds on r,, the conditional steady state distribution of states in subset /. for
all /. These bounds can be obtained using results in [18] by solving a matrix with states in
subset [only. Sccond. from the above bounds and additional results in [18], obtain bounds
on the steady state distribution of cach subset / using a matrix formed by aggregating
(approximately) states in subset /, / = 0,..., N — 1. Finally, from these latter bounds. use
equation (51) to bound MTTA. Further results concerning the tightness of these bounds in
addition to bounds on the second moment of the time until absorption can be found in [20].

Bounding the absolute value of the difference between the expected accumulated reward
of a Markov model and that of a perturbed model for which the rewards and/or transition
probabilitics are “slightly” different was considered by van Dijk [94]. The truncation of
a Markov chain model is such an example, and one may bound the results for the original
model by solving the truncated model. Other examples include the transformation of a model
into one with special structure that can be efficiently solved (e.g. a product form queucing
network). The approach can be applicd to steady state as well as transicnt measures [95).
Further applications of this approach can be found in [44].

4.4.3 Lumping

Lumping is a method commonly used to reduce the state space of a Markov model, while
preserving sufficient detail in the lumped model so that the measures of interest can be
evaluated. In order to illustrate the general idea, consider the example of Figure 1 and
assume that both processors can fail, that they have identical failure and repair rates and
that they are repaired independently. The structural model of the system has four states,
(0, 0) representing both processors operating, (1,1) representing both processors failed and
(0,1) and (1, 0) representing a single operational processor. If the reward rates associated
with states (0,1) and (1, 0) are identical, it is not hard to see that these two states can be
lumped (combined) and performability measures can be easily calculated from the solution
of the lumped chain. In [55] conditions on the transition probabilities of a Markov model
are given for lumping states into disjoint sets. Briefly, the lumping of states into the disjoint
sets Sy,..., Sy may be possible when the sum of the transition rates from a state o, € S,

41

to states in S;, ./ # /. are identical for all states in S;, [= 1..... N. However. lumping
also depends on the measure to be calculated as well as the reward rates assigned o the
states. For instance, in the example above, lumping is possible even when the rewarc rates
assigned to states (0.1) and (1,0) are different, if the measure of interest is the ex cted
reward averaged over { for ¢ — oco. However, this is not the case if one wants to ca ulate
the distribution of accumulated reward over a finite interval. Lumping has been ar iied to
availability modeling {35]. In (78] a discussion of lumping applied to Markov rewar: models

1s presented.

An important issue for performability modeling is how to identify the states that can
be lumped from a high level model description. In a recent paper, Sanders and Meyer [89)
proposed a method of contructing models for which the state space generated is significantly
reduced when compared to the state space obtained from the application of “usual™ model
construction and state space gencration techniques. Their approach is based on recognizing
identical submodels in a SAN modcl and using results on lumping. Roughly, submodels with
identical behavior are combined and joined with different submodels to construct the final
SAN reward model. The construction process is such that the lumpability conditions are
satisfied whenever possible. Both the structure of the model as well as the performability
measures to be calculated are taken into account in the selection of the appropriate state
variables of the reduced state space.

4.4.4 Generating the Most Probable States

The bounding methodology of [75] assumes that a natural partitioning of the state space
exists, such that the majority of the probability mass is concentrated in the states of the
initial partitions (i.c. partitions F; with smaller values of 7). Although this works well for
most availability models, in general it may not be an easy task to find the most probable
states. So-called “dynamic state exploration” techniques address the issue of generating the
most probable states automatically.

Grassmann [41, 42] implements the uniformization technique in a dynamic fashion. At
a step n of the uniformization procedure, designate a set of active states as those having
a nonzero probability. This set is dynamically adjusted at each step, and the trnsition
rate matrix is generated incrementally according to the current set of active states. This
procedure avoids the generation of the entire transition rate matrix before the uniformiration

algorithm starts.

Yang and Kubat [97] developed an algorithm to generate the most probable states, one
by one, until a stopping criterion is reached for a specific model of Li and Silvester [58]. The
model is composed of N components, and component i operates in a given mode j with

42

probability />,. The procedure works because of the characteristics of the model, but it does
not apply to general models.

Dimitrijevic and Chen [27] proposed a dynamic state exploration technique for general
Markov models. A rough outline of the algorithm is as follows. The generated states are
divided into two subsets, the explored states (Sg) and the unexplored stutes (Si;). At each
step of the algorithm, the number of visits V, to each state a, between visits to the initial
state is calculated. The state in Sy with the largest such value (say a;) is removed from S
and placed in Sr. Finally, S;r is npdated by including the states that arc reachable from a,
but are not yet in cither Sg or Si. The algorithm terminates when a stopping criterion is
met, for example when the mean residence time in Sg is greater than a given tolerance. As
part of the procedure, an efficient recursive computation of the visit ratios was developed.
In {28}, the algorithm was improved to reduce the computational complexity to O(N?) (the
storage requirements remain (J(AN?)), where N is the number of generated states.

Recently Mejia Ochoa and de Souza c Silva [63] showed that computational and storage
improvements can be obtained for the above method by using iterative techniques in the
calculation of the visit ratios. Furthermore, they proposed a new algorithin that chooses
a new state at cach step so that the mean residence time is maximized when the state is
included in Sg. This method of selecting states has advantages over previous approaches as
discussed in [63]. Other measures that can be used in choosing a state arc also investigated.

5 Sufnmary

The interest in performability related problems has grown noticeably in the past ten years,
and the accomplishments to date are many. We have tried to indicate some of the important
issues involving the specification and solution of performability models and to emphasize the
relationship between these two problems.

Concerning model specification, there is a clear need for high level languages tailored to
the way the user thinks about his system. Among the important issues that arise in the
development of a tool we mention the flexibility of adding new features to the language and
the method by which performability measures are specified from a high level description of
the system and then mapped to the mathematical model. These issues have been addressed
and some of the proposed approaches have been discussed.

As for the solution of the mathematical model, we have surveyed various methods pro-
posed in the literature, notably Laplace transform methods, decomposition methods and
methods based on the uniformization technique. This last technique provides a unified ap-
proach to calculating many performability measures, and it was considered in detail. A

43

Markov performability model of real systems may have millions or billions of states. and
thus the need to deal with the state space explosion problem is evident. Decomposition
techniques are promising in this respect, since their basic approach is to obtain bounds
without resorting to the solution of the whole model. Other promising techniques include
those based on identifving symmetry on a high level model specification in order to oi:tain a
reduced (lumped) state space. Note also that generation of the complete transition matrix
can be avoided using the uniformization technique, as mentioned in section 4.

Solution techniques are closely tied to model specification and generation. Not only
does the specification of a measure to be calculated have an impact on the choice of solution
method, but solution techniques may influence model generation as discussed in section 4. As
an example, the fact that diffcrent measures can be calculated in parallel using uniformization
may be taken into account by the analyst. Another example of such influence is the way in
which a reward structure is obtained for use in a structural model. We wish to emphasize
the importance of considering jointly model specification and solution for performability

evaluation.

Appendix

A Specification Examples Using the Object Oriented
Paradigm

In this 'section of the appendix, we illustrate the modeling paradigm proposed in [5] by
presenting the object definition for two types of objects. We also show how the objects can
be instantiated in order to construct the model of a system.

For the first example, we choose to describe an object type that has all of the features
of a SAVE component [34]. We call this object type “SAVE_COMPONENT” (recall that
the behavior of a generic SAVE component is summarized in Figure 5). Although Prolog is
used to implement the paradigm, the description below can be understood without previous
knowledge of this language.

TYPE : SAVE_.CCOMPONENT;
NAME : Object_Name:
STATE : (Mode,Numb_Failures);
EVENT fail: (Mode.Numb_Failsl} — (Mode,Numb_Fails2);
READ : comp(Object Name,Numb.Comp),
repair(Object Name, Mode, Component_Repair).

44

aflected_components(Object_Name, Mode,List_of_.C'omponents_Affected);
EVALUATION : calc_total fails{(Object_Name, Total_Fails),
calc_rate{Object Name,Mode, T):
CONDITION : Total.Fails < Numb_.Comp,
T >0
ACTION : Numb_Fails2 := Numb_Failsi + 1,
send.message(msg(“fail”.Object Name.Mode,1), Component_Repair),
affect components(“fail”, List-of_-Components.Affected);
RATE : T;
MESSAGE (“repaired”, Mode, Numb): (Mode.Numb_Failsl) — (Mode . Numb_Fails2):
ACTION : Numb_Fails2 := Nnmb_[ails1 - Nnmb:
MESSAGE (“fail”, Mode,Numb_A flected, Affect _Prob,Prob_Mode) :
(Mode,Numb_Fails1}) — (Mode.Numb_Fails2);
READ : comp({Object Name,Numb_Comp);
EVALUATION : ralc_total fails(Object _-Name, Total Fails):
CONDITION : Tetal.Fails < Numb_Comp:
ACTION : Numb_Fails2 = Numb_Failsl;
PROBABILITY : 1 - (Affect.Prob * Prob-Mode):

READ : comp(Object_Name.Numb.Comp),
repair{ Object_Name, Mode, Component.Repair);
EVALUATION : total_fails(Object Name, Total Fails):
CONDITION : Numb.Aflected < Numb_Comp - Total_Fails:
ACTION : Numb.Fails2 = Numb_.Fails] + Numb_Afected.
send.message(msg(“fail”, Object Name,Mode.Numb_Afected),
Component_Repair):
PROBABILITY : Affect.Prob * Prob_Mode:

READ : comp{Object_.Name,Numb.Comp),
repair(Object_Name, Mode, Component_Repair):
EVALUATION : total fails(Object_Name, Total Fails);
CONDITION : Numb.Aflected > Numb.Comp - Total_Fails:
ACTION : Numb_Fails2 = Numb.Comp,
send_message(msg(“fail”,Object Name.Mode,
Numb.Comp - Total-Fails), Component_Repair):
PROBABILITY : Affect_Prob * ProbMode:

The object type definition begins with the name of this type of object: SAVE.COMPO-
NENT. The NAME statement indicates the name of the variable to be replaced by the name
of the object when instantiated. STATE includes the parameters that define the state of the
object: the failure mode and the number of units that are failed in that failure mode. Note
that the state can represent units failed in as many different failure modes as defined by the

user.

From the description above we note that the object type SAVE:COMPONENT has one
event called fai/ and can receive two messages: a repaired message and a fail message. The
EVENT and MESSAGE statements indicate the initial and final state of the object when
the actions related to each statement are performed ((initial state) — (final state)). The

45

cvent fail has a rate 1" which is calculated by a (Prolog) function (not shown) of the state
of the object and other parameters supplied by the user. The clauses nnder READ and
EVALUATION arc used to assign parameter values (given by the user) relevant to this
object and to evaluate the value of certain variables. The comp(...) clause simply obtains
the number of units for the object. The clause repair obtains the name of the object which
is responsible for repairing a unit that is failed in mode “Mode™. The affecicd_components
clause obtains the list of components that are possibly affected when a unit fails in mode
“Mode”. The clause cale_total_fails(...)is a function which calculates the total number of
units of this component that are currently failed, and calr_rafr(...) is a function which
calculates the value of 7. Following the clauses under READ and EVALUATION, there
is one set of actions and their preconditions. If the total number of failed units is less
than the total number of units of the object and T > 0, then the following actions are
taken: (a) the number of failed units is incremented; (b) a message failis sent to object
type “Component_Repair™, which will repair the unit. This message is represented by the
function send_messaqeimsq(X). destination) where X is the message body (data to be sent)
and drstination is the name of the object that will receive the message and: (¢) the function
affect_.components results in a message to be sent to each component in the list of affected
components obtained by the affected_components clause. This function can be defined in
Prolog as:

affect.components{ “fail" []).
affect components(“fail”, (Name,Mode,Num_Aflected.affect_Prob.Prob-Mode). Tail} <-
send_message(msg(“fail”, Mode Numb_Affected, Affect _Prob.Prob_Mode). Name).

affect components(“fail”, Tail).

As indicated above, cach clement in this list of affected components gives the name of an
object that may be affected (“Name™), the mode of failure if affected (“Mode™), the number
of units affected (“Num.Affected”), the probability of affecting the object (“affect Prob”)
and the probability that the affected units fail in that mode (“ProbMode™). If the list of
affected components is empty (“[]”), no action is taken. Otherwise, a message failis sent to
the first object in the list, and the function affect.components is called recursively with the
tail of the list. Other functions mentioned above can also be easily defined.

The first of the two messages that can be received indicates that a repair was performed
and a simple action is taken: the number of units failed in mode “Mode” is decremented
by the number of repaired units (“Numb”). In the second message, the object is informed
that another component has failed and that this object may be affected. The message also
informs the number of units to be affected, the probability that this object is affected and
the probability of being affected in the indicated mode (“Mode”). Note that each action is
associated with a probability that the action is performed. The actions performed can be
inferred from the above explanation.

46

It is interesting to observe that (as in SAVE) when an object fails it may affect other
components, but an affected component cannot affect any other component. This behavior
can be easily altered if we include the clauses affrcted-components and affret_componentsin
the definition of the fail message. In this way, it would be possible to model components
that are affected by other affected components in the system.

Once this object type is defined, it can be instantiated to create a system model. For
instance. to define a database system with two processors, a front-end and a database as
described in [34], the following clauses have to be included by the user:

TYPE(processor. SAVE_COMPONENT).
TYPE(front_end, SAVE_COMPONENT).
I'YPE(database, SAVE.COMPONENT).
I'YPE(repairserver, PRIORITY.SERVER).

These clauses instantiate three objects of type SAVE_COMPONENT and one object of type
PRIORITY.SERVER (to be defined below) to model the repair quene. Other clauses have
to be included to give the number of units for each object, the list of objects affected by a
failure. the failurc and repair rates, etc. Below we give several examples of these clauses.

COMP{processor,2).
COMP(front_end.l).
('OMP{database.l).

AFFECTED.COMPONENTS(processor,1,[]).
AFFECTED.COMPONENTS(processor,2.[database.l,1,1-¢,]).
AFFECTED.COMPONENTS(front.end.1.[]).
AFFECTED.COMFPONENTS(database,1,[]).

The first affected.components clause indicates that, if a processor fails in mode 1, it does not
affect any component. The second affected-components clause indicates that, if a processor
fails in mode 2, the database is affected with probability 1 — c.

As a second example to further illustrate the object oriented paradigm, we next define an
object tvpe priority server. Queues and queueing networks are the main modeling paradigm
used for performance evaluation. They are also used in availability modeling to represent
contention for the resources that perform repairs. A queue may be considered as a collection
of tasks that contend for one or more servers. Each task brings one or more units of work to
be executed by the servers. The servers choose the next task to be-executed according to a
given policy. We organize the tasks into classes which define the route to be followed when
they finish service (the next object to be visited) and the amount of work to be executed
during service. For a priority server, classes are also associated with a service priority, and

47

the mapping is defined by the user. Tasks mayv change classes as they move from object to

object.

Below is the definition of an object of type PRIORITY_SERVER and the (Prolog) func-
tion put_gueue, which includes a received task in the proper place of the queue according to
its priority. In our notation, priority number 1 is associated with the highest priority tasks.

TYPE : PRIORITY_SERVER;
NAME : Object _Name:
STATE : Quene:
FVENT serve: Quenel — Quene2;
READ : rate(Object Name, Initial _Class, T).
capacity(Obhject Name, Capacity),
route{Ohject _Name. Initial.Class, Prob. Destination, Final ('las<;:

CONDITION : Quenel = (Initial.('lass, Prior). Tail;

ACTION : Quene? = Tail,
send.message(msg(“task”, Final_Class). Destination):
RATEL : Prob * (Capacity / T); '

MESSAGE (*task™. Class) : Queuel — Queue2;
READ : mapping(Class, Prior),
ACTION : put_queue({Class. Prior),Quenel Quene?2);
PROBABILITY : I;

put_qneue((Class. Prior).]],(Class, Prior)).
put_quene((Class, Prior), (Class2. Prior2).Tail2, (Class, Prior).(Class2, Prior2).Tail2) <-

Prinr < Prior2.
. put_quene{{Class. Prior), (Class2. Prior2).Tail2, (Class2. Prior2).New _Tail) <-

Prior > Prior2,
put.queue((('lass, Prior), Tail2, New_Tail).

Note that there is only one event serve which indicates that a task is being served. A
message task indicates that a new task has arrived. The clauses rate, capacity and route are
specified by the user when the model is created and indicate, respectively, the amount of
work (in units of work/task) associated to a task of a particular class, the capacity (in urits
of work/unit of time) of the server, the route to be followed by the task and its next class
when the task finishes service.

B Calculation of the Poisson Distribution

In this section of the appendix, we present a numerically stable recursion for computing
the terms of the Poisson distribution, which always appear in the transient expressions that

48

are calculated using the uniformization technique. Evaluating the performance measures
presented in this paper involves the calculation of

N n
ol 14

Ny = (.—AI(A) , (52)
= n!

where A is the Poisson rate of the uniformized process and N is such that the desired error
tolerance is achieved (that is, ay > 1 —«). If ay is evaluated in a straightforward way, it is
very likely that underflow /overflow conditions will arise. even for moderate valnes of A/, In
what follows, we describe a simple algorithm which avoids underflow /overflow problems.

Let A(n) = c=M(A1)" /0! ie. A(n) is the (n 4 1)st term in ay. It is well-known that the
Poisson distribution can be approximated by a normal distribution for large values of A/
Therefore, we can choose Ny, such that the lower tail of the distribution has a value < .
but still is greater than the underflow limit. For example. using

Nmin = max(0, Al — 10VA?)

gives a value for the lower tail of the distribution around 10", which is negligible in com-
parison to a reasonable value of ¢ (see also [38]). But f3(N,a.) is greater than the underflow
value in FORTRANT7 (approximately 10-7).

Note that ‘N, = 0 for small values of At, and then #(Npin) = ¢™*. For N,in > 0 we
use the following algorithm. Define 7 = Ate=A/(Nmin 4D Gince N,. ~ Af for large values of
At, we have FY ~ Af/c. Now note that

E

?

Nmin
B(Ninin) = =AM (Nemin +1) H

1=1

The idea of the algorithm is to calculate the above product so that the intermediate result
stays as close to 1 as possible. To that end, we choose i such that E/i ~ 1. Multiplying
by L/j, 7 < i (j > 1) will tend to increase (decrease) the intermediate result. e use
this observation to choose the proper value j such that E/; is the next term by which the
intermediate result is multiplied. Finally, since S(Npin) is greater than the underflow value,
the final result is guaranteed to be calculable.

The remaining terms f(n), for Nyin < n < N, are calculated by the recursion

At

D
n

B(n) = A(n — 1)

and N is calculated such that mea.. B(n) >1—e

49

Acknowledgments

We wish to thank B.R. Haverkort, J.C.S. Lui and R.R. Muntz for useful comments and
suggestions.

References

[1] M. Ajmone Marsan, G. Balbo, and G. Conte. Performance Models of Mulliprocesser
Systems. MIT Press, 1985.

[2] M. Ajmone Marsan. G. Conte, and G. Balbo. A class of gencralized stochastic Petri nets
for the performance evaluation of multiprocessor systems. ACA Trans. on Computer
Sysiems. 2:93 122, 1984. e

(3] S.1. Bavuso. A user’s view of CARE III. In Proceedings of the 1984 Anwual Rehability
and Maimtainabhility Symposum, pages 382-389, January 1984.

[4] M.D. Beaudry. Performance-related reliability measures for computing systems. [FFET
Trans. on Computers, C-27(6):540-547, 1978.

[5] S. Berson, E.’de Souza e Silva, and R.R. Muntz. An object oriented methodology for the
specification of Markov models. In The First International Conference on the Numerical
Solution of Markov Chains, pages 2-29, 1990.

[6] A. Bobbio and K.S. Trivedi. An aggregation technique for the transient analysis of stiff
Markov chains. [EEE Trans. on. Computers, C-35(9):803-814, 1986.

(7} B.R. Borgerson and R.F. Freitas. A reliability model for gracefully degrading and
standby-sparing systems. IEEE Trans. on Computers, C-24(5):517-525, 1975.

[8] J.A. Carrasco and J. Figueras. METFAC: design and implementation of a software tool
for modeling and evaluation of complex fault-tolerant computing systems. In Proceedings

of FTCS-16, pages 424-429, 1986.
[9] E. Cinlar. Introduction to Stochastic Processes. Prentice-Hall, 1975.

[10] G. Chiola. A software package for the analysis of generalized stochastic Petri net models.
In Proceedings of the International Workshop on Timed Pelri-nets, pages 136-143, 1985.

[11] G. Ciardo, R.A. Marie, B. Sericola, and K.S. Trivedi. Performability analysis using
semi-Markov reward processes. I[EEE Trans. on Computers, C-39(10):1251-1264, 1990.

50

[12] G. Ciardo. J. Muppala. and K.S. Trivedi. SPNP: stochastic Petri net package. In
Proceedings of the Third International Workshop on Petri-nets and Performance Models,

pages 142-151, 1989.

[13] B. Ciciani and V. Grassi. Performability evaluation of fault-tolerant satellite systems.
IEEE Trans. on Communications, COM-35(4):403-409, 1987.

[14] R. Cléroux and D.A. Kadi. A summary of periodic replacement policies with minimal
repair. Inwesiigacion Operativa, 1(1):43-54, 1988.

[15] A. Costes. J.E. Doucet, C. Landrault, and J.C. Lapric. SURF: a program for dependabil-
ity evaluation of complex fault-tolerant computing systems. In Procecdings of FTCS-11.
pages 72-78. 1981.

[16] P.J. Courtois. Error analysis in nearly completely decomposable stochastic systems.
Econometrica, 43:691-709, 1975.

[17) P.J. Courtois. Decomposability: Queueing and Computer System Applicalions. Aca-
demic Press, 1977.

[18] P.J. Courtois and P. Semal. Bounds for the positive eigenvectors of nonnegative matrices
and for their approximations. Journal of the ACM, 31:804- 825, 1984.

[19] P.J. Courtois and P. Semal. Computable bounds for conditional steady-state probabil-
ities in large Markov chains and queueing models. [EEE Journal on Selected Areas i
Communications, SAC-4(6):926-937, 1986.

[20] P.J. Courtois and P. Semal. Bounds for transient characteristics of large or infinite
Markov chains. In The First International Conference on the Numerical Solution of
Markon (Chains, pages 446-468, 1990.

(21] H.A. David. Order Statistics, 2nd Ed. John Wiley & Sons, 1981.

[22] E. de Souza e Silva and H.R. Gail. Calculating availability and performability measures
of repairable computer systems using randomization. Technical report, IBM Rescarch

Report RC 12386, Yorktown Heights, N. Y., 1986.

(23] E. de Souza e Silva and H.R. Gail. Calculating cumulative operational time distributions
of repairable computer systems. I[EEE Trans. on Computers, C-35(4):322-332, 1986.

[24] E. de Souza e Silva and H.R. Gail. Calculating availability and performability measures
of repairable computer systems using randomization. Journal of the ACM, 36(1):171~
193, 1989.

[25] E. de Souza e Silva and H.R. Gail. Analyzing scheduled maintenance policies for re-
pairable computer systems. /EEE Trans. on Computers, 39(11):1309-1324, 1990.

51

(26] E. de Souza e Silva and S.S. Lavenberg. Calculating joint queue length distributions in
product form queucing networks. Journal of the ACM, 36(1):194-207, 1989

(27] D.D. Dimitrijevic and M.-S. Chen. An integrated algorithm for probabilist-~ protocol
verification and evaluation. In Procecedings of INFOCOM 89, 1989.

(28] D.D. Dimitrijevic and M.-S. Chen. Dynamic state exploration in quantita .ve protocol
analysis. In Protocol Specification, Testing, and Verification. LX, pages 327 338. North-
Holland, 1990.

(29] L. Donaticllo and V. Grassi. On evaluating the cumulative performance distribution of
fault-tolerant computer systems. Technical report, University of Pisa. 1991,

{30] L. Donatiello and B.R. Iver. Analysis of a composite performance reliability measure
for fault-tolerant systems. Journal of the ACM, 34(1):179-199, 1987.

[31} J.B. Dugan, K.S. Trivedi. R.M. Geist, and V.F. Nicola. Extended stochastic Detri nets:
Applications and analysis. In Prerformance 8/, pages 507-519, 1984.

(32] D.G. Furchtgott and Mever. Closed-form solutions of performability. (EEFE Trans. on
© Computers, C-33(6):550-554, 1984

[33] R.M. Geist and K.S. Trivedi. Ultra-high reliability prediction for fault-tolerant computer
systems. [LEFE Trans. on Computers, C-32(12):1118-1127, 1983.

[34] A. Goyal, W.C. Carter, E. de Souza e Silva, S.S. Lavenberg, and K.S. Trivedi. The
system availability estimator. In I"roceedings of FTCS-16, pages 84-89, 1986.

(35] A. Goyal, S.S. Lavenberg, and K.S. Trivedi. Probabilistic modeling of computer system
availability. Annals of Operations Research, 8:285-306, 1987.

[36] A. Goyal and A.N. Tantawi. Evaluation of performability for degradable computer
systems. [EEE Trans. on Computers, C-36(6):738-744, 1987.

(37] V. Grassi, L. Donatiello, and G. Iazeolla. Performability evaluation of multicomponent
fault-tolerant systems. JEEE Trans. on Reliability, 37(2):216-222, 1988.

[38] W.K. Grassmann. Transient solutions in-Markovian queueing systems. Comput. & Ops.
Res., 4:47-53, 1977.

(39] W.K. Grassmann. Transient solutions in Markovian queues. European Journal of Op-
erational Research, 1:396-402, 1977.

[40] W.K. Grassmann. Means and variances of time averages in Markovian environments.
Luropean Journal of Operational Research, 31:132-139, 1987.

52

[41] W.K. Grassmann. Numerical solutions for Markovian cvent systems. In Kall rf al,
editor, Quatilative Methoden in den Wirtschaftswissenschaften, pages 73--87. Springer,
1989.

[42] W.K. Grassmann. Finding transient solutions in Markovian event systems through
randomization. In The First International Conference on the Numerical Solution of
Markon Chains, pages 375-395, 1990.

(43] D. Gross and D.R. Miller. The randomization technique as a modeling tool and solution
procedure for transient Markov processes. Operations Research, 32(2):343 -361, 1984.

[44] B.R. Haverkort. Performability Modeling Tools, Evaluation Techniques and Applica-
tions. PhD thesis, University of Twente, the Netherlands, 1990.

[45] B.R. Haverkort and L.G. Niemegeers. Performability modelling using dynamic queueing
networks. Performance Evaluation Review, 17:225, 1989.

[46] B.R. Haverkort and L.G. Niemegeers. On the mutual performance-dependability influ-
ence in dynamic queucing networks. In Procerdings of the First International Workshop
on Performability Modelling of Computer and Communication Systrims, pages 33-40,
1991.

[47] B.R. Haverkort, I.G. Niemegcers, and P. Veldhuyzen van Zanten. DyQNtool - a per-
formability modelling tool based on the dynamic queueing network concept. In I’ro-
ceedings of the Fifth International Conference on Modclling Techniques and Tools for
Compuler Performance Evaluation, 1991.

(48] D.P. Heyman and M.J. Sobel. Stochastic Models in Operations Research. Volume |,
McGraw-Hall, 1982.

[49] ISO/TC97/SC21/WG1/DIS9074. Estelle - A Formal Deseription Technique Based on
an Eriended State Transition Model. 1SO, 1987.

[50] B.R. Iyer. Recent results in performability analysis. In Y. Yemini, cditor, Current Ad-
rances i Distributed Computing and Communications, pages 50-64. Computer Science
Press, 1987. '

(51] B.R. Iyer, L. Donatiello, and P. Heidelberger. Analysis of performability for stochastic
models of fault-tolerant systems. IEEE Trans. on Computers, C-35(10):902-907, 1986.

[52] A. Jensen. Markoff chains as an aid in the study of Markoff processes. Skandinavsk
Aktuarietidskrift, 36:87-91, 1953.

(53] A.M. Johnson Jr. and M. Malek. Survey of software tools for evaluating reliability,
availability and serviceability. ACM Computing Surveys, 20:227-271, 1988.

53

[54] J. Keilson. Markon Chain Models - Rarity and Erponentiabty. Springer-Verlag, 1979.
[55] J.G. Kemeny and J.L. Snell. Finite Markov Chains, 2nd Fdition. Springer-Verlag, 1987.

[56] V.G. Kulkarni, V.F. Nicola, R.M. Smith, and K.S. Trivedi. Numerical evaluation :: per-
formability and job completion time in repairable-fault tolerant systems. In Proc edings
of FTCS-16, pages 252--257, 1986.

[57] V.G. Kulkarni, V.F. Nicola, and K.S. Trivedi. On modeclling the performance and
reliability of multimode computer systems. Journal of Systems and Sofiware, 6(1,2):175
182, 1986.

[58] V.O.K. Li and J.A. Silvester. Performance analysis of networks with unreliable compo-
nents. [FEF Trans. on Communications, COM-32(10):1105 -1110. 1984.

[59) S.V. Makam and A. Avizienis. ARIES 81: a reliability and life-cycle evaluation tool. In
Proceedings of FTCS-12, pages 276-274, 1982.

[60] R.A. Marie, A.L. Reibman, and K.S. Trivedi. Transient analysis of acyclic Markov
chains. ’erformance Evaluation, 7(3):175-194, 1987.

[61] J. McGough. Effects of near-coincident faults in multiprocessor systems. In P’rocecdings
of the 5th Annual AIAA/IEEL Digital Avionics Systems Conference, pages 16.6.1
16.6.7, 1983.

[62] J. McGough, M. Smotherman, and K.S. Trivedi. The conservativeness of reliability
cstimates based on instantancous coverage. [EEE Trans. on Computrrs, C-34(7):602 -
609, 1985.

[63] P. Mejia Ochoa and E. de Sonza ¢ Silva. Dynamic state exploration in Markovian
models. Technical report, Federal University of Rio de Janeiro, NCE. 1991.

[64] P. Mejia Ochoa and E. de Souza e Silva. Performance evaluation of distributed systems
specified in Estelle. Technical report, Federal University of Rio de Janciro, NCE, 1991.

[65] B. Meclamed and M. Yadin. Randomization procedures in the computation of
cumnulative-time distributions over discrete state Markov processes. Operations Re-
search, 32(4):926-944, 1984.

[66] J.F. Mever. Computation-based reliability. /[EEE Trans. on Computers, C-25(6):578-
584, 1976.

(67) J.F. Meyer. On evaluating the performability of degradable computing systems. In
Proceedings of FTCS-8, pages 44-49, 1978.

[68] J.F. Meyer. On evaluating the performability of degradable computing systems. /EEE
Trans. on Computers, C-29(8):720-731, 1980.

54

(69] J.F. Meyer. Closed-form solutions of performability. [EEE Trans. on E('7f>1;17y1/lrr<. C-
31(7):648-657. 1982.

[70] J.F. Meyer. A unified approach for specifyving measures of performance. dependability,
and performability. In J. Laprie, editor, Vol 4. Dependable Computing and Fault-
Telerant Systems. Springer-Verlag, 1990.

(71] J.F. Meyer, A. Movaghar, and W.H. Sanders. Stochastic activitv networks: Structure.
behavior, and application. In Proceedings of the International Workshop on Timed
Priri-nets, pages 106-115, 1985.

[72] D.R. Miller. Reliability calculation using randomization for Markovian fault-tolerant
computing systems. In Proceedings of FTCS-19, pages 284-289, 1983.

(73] M. Molloy. Performance analysis using stochastic Petri nets. [EEE Trans. on Compui-
ers, C-31(9):913-917, 1982.

[74] A. Movaghar and J.F. Meyer. Performability modeling with stochastic activity networks.
In Proceedings of the 1984 Real-Time Systems Symp., pages 215224, 1984,

[75] R.R. Muntz, E. de Souza e Silva, and A. Goyal. Bounding availability of repairable
computer systems. [EELE Trans. on Computers, 38(12):1714-1723, 1989,

(76] R.R. Muntz and J.C.S. Lui. Evaluating bounds on steady state availability from Markov
models of repairable systems. In Thr First Intcrnational Conference on the Numerical
Solution of Markov Chains, pages 469-489, 1990.

[77] S. Natkin. Réseaux de Pctri Stochastiques. PhD thesis, CNAM-Paris, Paris, 1980.

(78] V.F. Nicola. Lumping in Markov reward processes. Technical report, IBM Rescarch
Report RC 14719, Yorktown Heights, N. Y., 1989.

[79] V.F. Nicola, A. Bobbio, and K.S. Trivedi. A unificd performance reliability analysis
of a system with a cumulative down time constraint. Technical report, IBM Rescarch
Report RC 15279, Yorktown Heights, N. Y., 1989.

[80] T.W. PageJr., S.E. Berson, W.C. Cheng, and R.R. Muntz. An object-oriented modeling
environment. ACM Sigplan Notices (Proceedings QOPSLA'89), 24(10):287-296, 1989.

[81] K.R. Pattipati and S.A. Shah. On the computational aspects of performability models
of fault-tolerant computer systems. /EEE Trans. on Computers, 39(6):832-836, 1990.

(82] J.L. Peterson. Petri Nct Theory and the Modeling of Systems. Prentice-Hall, 1981.

(83] P.S. Puri. A method for studying the integral functionals of stochastic processes with
applications: I. Markov chain case. Journal of Applied Probability, 8(10):331-343, 1971.

95

[84] A. Reibman, K. Trivedi, S. Kumar. and G. Ciardo. Analysis of stiff Markov chains.
ORSA Journal on Computing, 1(2):126-133, 1989.

[85] S.M. Ross. Stochastic Processes. John Wiley & Sons. 1983.

[86] R.A. Sahner and K.S. Trivedi. Performance and reliability analysis using dirccted acyclic
graphs. IEEE Trans. on Software Enginecring, SE-13(10):1105 -1114, 1987.

[87) R.A. Sahner and K.S. Trivedi. Reliability modeling using SHARPE. [EEE Trans. on
Reliability, R-36(2):186--193, 1987.

[88] W.H. Sanders and J.F. Meyer. METASAN: a performability evaluation tool based on
stochastic activity networks. In Proceedings of the 1986 Fall Joint Computer Conference,
pages 807-816, 1986.

(89] W.H. Sanders and J.F. Meyer. Reduced base model construction methods for stochastic
activity networks. [EEFE Journal on Sclected Aveas in Commumications. 9(1):25 36,
1991. :

[90] H.A. Simon and A. Ando. Aggregation of variables in dynamic systems. Econameirica,
29:111-138, 1961.

{91] R.M. Smith, K.S. Trivedi, and A.V. Ramesh. Performability analysis: Mcasures. an
algorithm and a case study. /EEE Trans. on Computers, 37(4):406-417, 1988.

[92] U. Sumita. J.G. Shanthikumar, and Y. Masuda. Analysis of fault tolerant computer
systems. Microelectron. Reliab., 27(1):65-78, 1987.

[93] K.S. Trivedi, J.B. Dugan, R.M. Geist. and M.K. Smotherman. Hybrid reliability mod-
eling of fault-tolerant computer systems. Comput. Llec. Eng., 11:87--108, 1984.

[94] N. van Dijk. The importance of bias-terms for error bounds and comparison results. In
The First International Conference on the Numerical Solution of Markon (Chains, pages
640-663, 1990.

[95] N. van Dijk. Transient error bound analysis for continuous time Markov reward struc-
tures. Performance Evaluation, 1991 (to appear).

[96] H. Weisberg. The distribution of linear combinations of order statistics from the nniform
distribution. Annals Math. Stat., 42:704-709, 1971.

[97] C.-L. Yang and P. Kubat. Efficient computation of most probable states for com-
munication networks with multimode components. [EEE Trans. on Communications,
37(5):535-538, 1989.

56

Copies may be requested from:

IBM Thomas J. Watson Research Center
Distribution Services F-11 Stormytown
Post Office Box 218

Yorktown Heights, New York 10598

