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Are Technology Diffusion Processes Inherently Historical?

1. Introduction

Since the firstefforts tomodel technological diffusion processes
(Ayres, 1969}, a basic tool has been the logistic curve deriving
from the diffusion equation:

(1) Aa(t) = oc-n(t)- (M - n(t))

In this simple “contagion model” a is a diffusion coefficient,
M is the population of “susceptibles” and n(t) is the number of
“infected” at time t. This equation has been adapted to more
complex models to try and account for observed complexities. It
has two strong points: it is simple and has shown a good fit to
a variety of phenomena. There is however a fundamental
drawback in it for economists: it is essentially deterministic and
its parameters have to be empirically determined without
reference to economic theory. Unsurprisingly, effortswere made
during the eighties to overcome both faults. Such efforts may be
divided into three general categories: efforts embedding
technology diffusion within the neo-classical framework, efforts
modelling diffusion as a random process, and efforts using an
evolutionary approach.

The first school of research (exemplified by Cameron and .
Metcalfe, 1987) analyses technology diffusion from the point of
view of economic theory. It starts from supply and demand
schedules for both a established technology and foran innovation.
From this, niches are deduced for both old and new technologies
under neo-classical assumptions. Furthermore, with the aid of
an empirically determinable contagion parameter, it may be
shown that a logistic equilibrium path exists under these
conditions.
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The second and third schools are both concerned with the
determinism of the diffusion equation. Interesting results were
- abtained by Arthur (Arthur, 1989; Arthur et al., 1987), treating
the competition between two innovations A and B as a random

walk with absorbing barriers and with transition probabilities.. .

dependent on the relative returns of each. This model departs
from the contagion approach; instead, a stream of agents enters
the market for technologies, and examines the two technologies
available using both their basic parameters (two types of agents
areassumed, each armed with a set of parametersfavouring one
technology) and the number of choices already made in favour
of each (n, and ng). The sequence n,-ngis a random walk with
absorbing barriers.

When returnsincrease withaccumulated adoption the process
is unstable, ending in one technology completely expelling the
other. Furthermore, in this case the outcome is unpredictable:
the economy may become locked-in by an inferior (considering
long-term returns) technology. Even worse, any attempt by
agents to forecast future evolution (e.g. by using rational
expectations) intensifies unpredictability. Conversely, ifreturns
are constant or decreasing with accumulated adoption the
process is ergodic and predictable.

The third school avoids both neo-classical and probabilistic
modelling. Instead, it tries to describe agents’ behaviour in an
evolutionary model, following a Schumpeterian tradition. A
good example is given by Silverberg, Dost and Orsenigo (1988).

In this, the degrees of freedom present in the behavioural

equations for distinct types of agents make for complex diffusion
trajectories. This is a theoretically attractive approach and may
achieve high explanatory power. However, the latter depends
critically upon the confidence in the behavioural equations and
on assumed values for parameters. Such confidence may
decrease as the complexity of the model increases.

The result obtained by Arthur is interesting and suggests a
line of investigation by focusing on random mechanisms,
However, it also means a significant break with the diffusion
model by doing away with the time dimension. Given the
empirical evidence in favour of logistic diffusion paths, as well
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as theoretical results such as those by Cameron and Meicalfe,
it seems worthwhile to explore stochastic approaches to the
contagion models. Likewise, the complexity of evolutionary
models may hide some basic features, that a simpler model
could make visible.

The present paper treats non-deterministic diffusion
trajectories for two competing technologies as a birth-and-
death process, using the basic contagion equations asa starting
point. This has the advantage of being comparable to earlier
efforts and of addressing the question: how does the introduction
ofrandomness affect the diffusion trajectories for two competing
technologles? A probabilistic treatment of simple contagion is of
course well known in the literature of stochastic processes and
epidemiology, using however diffusion processes, rather than
birth-and-death processes. For our purposes, birth-and-death
processes have the attractive feature of modelling individual
decisions which look random to an observer, as well as being
able to deal with finite markets.

The structure of the paper is as follows. The second section
goes from the basic diffusion process as a pure birth process to
introduce the competing diffusion process as a two-dimensional,
constrained birth process. This 18 discussed with a view to its
properties. Section three generalizes the model to a birth-and- -
death process. Finally, the last section discusses implications
and questions for investigations. Throughout the paper,
theoretical results are illustrated with computer simulations.

2. Technology diffusion as a pure birth process

This section introduces the basic models, in their simplest
form. The simplicity highlights some essential features, at the
cost of realism.

2.1. The basic contagion process

Assume thata new technology is introduced at time t=0O by an
innovator, and that the potential number of adopters totals M.
The adoption process is assumed to follow a pure birth process
with diffusion coefficient a {dependent on product and market
features). That is to say, time intervals between adoptions are

5
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independent random variables, with exponential distribution
withaverage time interval 1/A,, between the nth and the (n+1)th
adoptions. The parameter A, satisfies.

@4, = @-n- (M -n)

This model may be interpreted in the following way. After n
adoptions, each Temaining potential adopter independently
optsforthe technology in the time interval At with the probability
@xnxAt + o(At), where the second term goes to zero faster than

t; ermore, the probability of simultaneous adoptions 18
zero. In other words, the rate of adoption is proportional to the

numberofadoptiong alreadymade times the number of remaining

potential adopters. Note th fers to
the point ofview of at probability in this context re

sense to assume

that ea
technological chjee - Individual will throw dice to mak

ce, although this might occur in other contexts.

bir;rlmhe process {N (1)1 2 0}, with N(0) = 1, is then a pure
transient. It ig easy to show that N(t) converges to M

Shon. Probability 1. Furthermore, realizetions, or the process

sh
0w the familiar logistic pattern (see Figure 1).

Figure 1
Single Innovation Diffusion

(M=200, alpha=0.0002)
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2.2. Competitive diffusion as a pure birth process

The simple diffusion process is trivial. The introduction of -
competition, however, makes things far more interesting, If two
technologies, 1 and 2, are introduced at time 0 with diffusion
coefficients o, and a,, we have a two-dimensional process. This

maybenotedas{(Nn )N, (¢ ))'f 2 0} N;(0)=N,(0)=1, where
transitions in N, (t) and Ny(t) are independent save for the ‘birth
rates’ A; and A,. These are now linked through the equation

@A =0, n-(M-n-n),i=1,2

This may be interpreted as follows. During the time interval
(¢ + At) each remaining potential adopter has three choices:
wait and see, choose 1, or choose 2. If At is small enough,
Prichoosing i} = 0, - Ni (9) - Af, 1 = 1,2. Furthermore, each agent
chooses independently from the others, and the probability of
two simultaneous choices is zero.

Itisnotdifficult toshow thatall states of the form n, + n, = M
(numbering a total M- 1 states, since the states (0, M) and (M, 0)
are excluded in the pure birth model) are absorbing, and all
others are transient. Therefore, the process is not ergodic; once
it enters one absorbing state it cannot leave. Even though the
distribution of final states may be connected with a, and a,, the
outcome is unpredictable. An fllustration is given in Figure 2,
which presents a histogram of one hundred simulation runs for
two equally attractive technologles (a; = a, = 0.0002) competing
for a market of 200 potential adopters.

. Flgure 2

Histogram of Final States (n1/M*100%)
100 runs, alphai=alpha2=0.0002

° 2 8 B @ B 8 2 8 8

Interval (number gives lower end)
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The flat distribution of final states may come as a surprise to
those expecting a convergence to a 50% market share with
probability one (this would be the result with a deterministic
model). In fact, it is a direct consequence of a finite market.
Finiteness is the important factor, not market size. One may
easlly show that, when o, = oy, for any finite market size M and
any final market split-up (n, M-n) with n between 1 and M-1, the
probability that thissplit-up will be reached from the initial state
(1,1)18 1/(M-1). In other words, the distribution of final states s

‘uniform. See Appendix A.1 for a proof.

On the other hand, unequal diffuston rates lead to lopsided... .

w utions of final states, as was to be expected. Neither in
a-mmcase is there convergence to a state with probability one,
dlStrlbuglt.;ltmw size hasan effect: larger markets tend to make the
high: léif(fﬁislmore lopsided in favour of the technology with
mﬂoe;etw on rate, For instance, if & = 20, when M = 10 the
o 1o bveen probabilities of final states (9, 1) and (1,9) 18 13.5
other words ;loom, thaﬂe :'ai tio P, ,(99,1):P,, ,)(1,99)is 441 to 1.In
higher diffusi fhe tis sufficiently large a technology with

onrate tends to crowd out the other!, provided they

start diffusion at the same time and conditions. Figure 3

fllustrates the distribution wh
enone diffusion rate is the double
of the other, both technologies start at time zero with oOne

adoptereachand the marketsize
equals 100 potential adopters.
Itis well to discuss a little the reasons wh;lrm this should be s0.

Figute 3
Probabiity Distridution of Finel Gtates

Me100, aha1e0.000, Conea=0.0001
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To begin with, the contagion process described by equation
(3} intrinsically refers to a finite population of potential adopters.
Letting M tend to infinity will make A, and A infinite, ifn, + ng < oo,
and undefined otherwise; in the infinite market, the logistic
should be replaced by the exponential. For M finite, the process
stops aftera finite number of transitions and asymptotic results
are useless. On the other hand, for any given n, , n, and any M
>n,; +ng, we have o

1|(‘, = &y -M
W0 " x, oy

Thus, the size of the potential market affects only the rate at
which adoptions are taking place. It does not affect at all the
share of each technology in these adoptions. In contrast, this
share is directly affected by the ration, /n,. Initial deviations are
thus reinforced through it, with the result that each realization
of the process is a pair of logistic curves, noisy but apparently
well-behaved and arriving at an equilibrium.

Ex-post analysis will lead to estimates of diffusion rates with
little or nor relation to parameters. First, it is not possible to
identify o; and o, from observation, since this would require a
reliable estimate of their potential markets; all one observes,
however, are “equilibrium niches”. Second, equilibrium points
are unpredictable a prior, especially if diffusion rates are equal.
For an illustration, see Figure 4. The outcome shown has
precisely the same a priorl probability as any other. The
smoothness of the diffusion path is remarkable, despite its
totally random origin.

independently of M.

Flgure 4
Diffusion of two compsting innovaltons
{simuilstion run}
M =9940, siphat=alphale 0.0802

o — -
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On the other hand, for unequal diffusion rates, in large
markets a less “attractive” technology will tend to be crowded
out if it starts in the same conditions as its competitor. In these

cases, therefore, therewould seemtobea degree of predictability. = -

However, if a technology lags the other it may lose out even
if it has a higher diffusion rate (i.e., a higher intrinsic utility for
buyers). Thus, if in the example of Figure 3 technology 1 (with
diffusionratedouble that of technology 2) enters when technology
2 already has 6 adopters (6% of the market), the final state
distribution will be biased in favour of technology 2 (see Figures
5 and 6).

Pigure §
E[n1] given that Initial state Is {1,b)
forBe100,alphat=0.0002 = 2*aipha2

F3

40
20 =

/

B

Figure 8

Distribution of final states {(n1, M-n1t) from {1, b) for several
values of b.
M=100 and alphat = 0.002 = 2* gipha2

m——— pat
—O— a3
i T
_______ —— pay

el T |
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L
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This suggests that historical circumstances arevery important
in defining the actual diffusion paths and saturation levels of
competing technologies. The necessary lead to reverse the bias
from a higher diffustonrate willtend to increase with market size
in absolute terms, but not necessarily in relative terms. A closed
expression is out of question, but a few results may be shown.

For small values of M, it is possible to evaluate E[n, |b} for
various b. Experimenting with different values of M between 10
and 120 and «; =20, , we find that bmin, the initial advantage
that allows technology 2 to offset its smaller diffusion rate in
terms of expected market share, grows approximately as O(M0-45),
In other words, the relative offsetting lead decreases with

market size, This experimentation is however limited by
the fact that, for large M, the computational effort involved in
calculating the distribution of final states, or even E[n, ], may be
excessive. Instead, a simple measure of the impact of b may be
given by the ratio P2P1(M, b, b) = Pr{alladopt 2 | b}, Pr{all adopt
1 | b} for several values of M and B=o,/ o; , where the initial state
is (1, b) and b < 1 (that is, technology 1 is more attractive than
technology 2 but this latter starts with b adopters against 1).. .

We are interested in b,;,(M, b), the minimum b for which
ratio is greater than 1, for a given M and b. For all b at or above
this value, the initial stock more than compensates for the
disadvantage indiffusion rates. Even though this does not imply
Eln,] < M/2 (compare Figures 5 and 7), it is a m
measure. The figure below gives the result for a range of M and
b. (See also Appendix A.2).

Figure 7
Minimum b forcompensaillng beln tn P2PY
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One striking feature is the insensitivity of b,,;,(M, b) to market

size. Only for large inequalities between diffusion rates is there ™

a noticeable increase for the range of market sizes shown, and
even then by several orders of magnitude less than market
increase: When one diffusion rate is four times larger than the
other, a thousandfold increase in market size leads to a 55%
increase in bp,,. In other words, for a market of a hundred
thousand potential adopters a 4:1 disadvantage in diffusion
rates may be offset by a lead of less than 0.002% of the market.
Even more, the offsetting lead decreases in relative terms with
market size. This confirms that competitive technology diffusion
following a pure birth model is very sensitive to historical
factors, even with relative intensities proportional to adoption.

3. Competitive diffusion as a birth-and-death process

We shall now extend the model to the case where regrets may
occur, so that an adopter of technology i may abandon it.
Contrary to the pure birth case, there is no natural model to
follow. We shall therefore conduct most of the discussion using

a general functional form for the rate at which adopters leave a
technology.

To be more precise, we shall make the following assumption: -

given thatat time t technology i has n,(t) adopters, the probability
that one adopter will relinquish it and join the “potential
adopters” crowd during the interval [t, t+h) tends to

.u,(n,(t),n,(t), M)-h as h— 0", Thatis tosay, the instantaneous
death rate’ for each technology depends on the number of

adopters of each technology and on the size of the market. The
complete model is then

(5) { brith rate A, = &, - n(t)-(M—n, (H)-ny(t)), i=1,2
death rate 6, = K (), n), M), i=12

with the usual constraint that simultaneous events have zero
probability. We further assume that g, is positive for all n; > 0.

12
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With this formulation, the model undergoes aradical change.
All states satisfyingn, >0 orn, >0 arenow transient. In effect,
they cannot be reached from states having zero adopters for
either technology, and the ‘no-adopters’ state (n;= n;= 0)
behaves like an absorbing barrier. With (5), in the very long term
neither technology will have adopters.

Curiously enough, even in this case realizations of the process
will behave approximately as in the pure birth case, reaching
apparently stable (on a finite observation time window) market
shares. The figure below is an example, with the death rates
linear in the number of adopters; inotherwords. g, = p, -n, (t) -

Figure 8

Diffusion of Competitive Innovations as Birth-and-

Death Processes
alpha(i) = 0.002, muif) = 0.0018, M= 200
160
120
100 m
80 ;
% 60 Hre=—" ST —— L e e
40

20
000 10000 20000 30000 40000 50000 600,00
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The aspect of the curve might be explained by the fact that,
in the beginning, the process behaves like a pure birth process.
Deaths only become relevant when market approaches
saturation; and the oscillations around the equilibrium point
suggest that for most practical time horizons the fact that (0,0)
is an absorbing state is irrelevant. What is important is the

distribution of the “transient equilibria”2 such as the one shown -

in Figure 8 above. From the argument above, these should be
distributed roughly as equilibria under a pure birth process.
One may also observe that.

A,/6,=0a,/1, -(M—n, —n,), i=1,2 Thatis tosay, aslongas
death coefficients are not much larger than diffusion coefficients
births tend to dominate over deaths whenever the state drifts
away from market saturation. Taken together with

A/A, =(moy)/(m,@,), this tends to lead to stability of the
equilibrium, even though with infinite time there is extinction

with probability 1.

Another question of interest is the limiting behaviour of the
process if there is a renewal at extinction, i.e. whenever the
process attains the state (0,0) it starts anew at a given state (1,
b). With this change the chain becomes irreducible, allowing
evaluation of limit probabilities and investigation of the
consequences of initial advantages. Note, however, that for even
b the chain is periodic with period 2. Moreover, differently from
the remaining specifications, renewal at extinction does not
allow a natural economic interpretation. Rather, it serves ag a

means to study what would happen in the very very long term -

if extinctions were excluded.

It is out of question to obtain limit probabilities for large
markets, or even for moderate-sized ones. For instance, for
M=100 we would have to find 5151 steady state probabilities,
components of the eigenvector associated with the unit
eigenvalue of a (M+1)(M+2)/2 by (M+1)(M+2)/2 matrix for the
embedded Markov chain of the process. Nevertheless, it i
possible to obtain the flavour of the solution through a sma].
scale instance.

14
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Figure 9 shows the result for M=10; a; = 0.02, i =1,2; death
rates are assumed linear in adoption as in Figure 8, with m, =
0.02. It may be noticed that the least likely states are those with
both n; and n, positive: all have limit probabilities between
1"10-7and 2°10-8, Thus, the intrinsic dynamics of the competitive
birth-and-death process with renewal tends to exclusive
dominance of either technology, in an unpredictable way.
Decreasing the death rate coefficients will only accentuate this
feature; the probabilities of positive (n;, ng) drop by three orders
of magnitude when death coefficients are halved.

Figure 9
Limit Probabilities for the competitive diffusion process with linear

death rate, m(i)=0.02=w(i), and renewal at extinction to (1,1), and M=
10

mmfg‘nnﬂ
cBE8BE2RZESFR
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Since the model allows the investigation of initial advantages,

let the renewal be to the state (1,3) instead of (1,1). Figure 10,
below, shows the results.

Figure 10

Limit Probabilities for the competitive diffusion process with linear
death rate, m(i)=0.02=a(i), renewal at extinction to (1, 3), and M = 10

8

orob{n1.n2)
8 2 8 8 8§

16

Are Technology Diffusion Processes Inherently Historical?

It may be observed that P(0,1) is approximately the triple of
P(i,0), as was to be expected. It requires an decrease of a, to
0.0151 to compensate the initial advantage.

A question may be raised about the assumption of a linear
death rate in this example; other functional dependencies might
be proposed, such as a constant death rate (this would mean
that the likelihood of one adopter abandoning a given technology
varies inversely with the number of co-adopters of that
technology). The effect of this modification will depend on the
value chosen for the death rate 0, relative to M*a.. Using 6,° 0.01
or 0.02 in the above example, the result is to decrease even more
the probability of states with both technologies. On the other
hand, large 6; (so that at (M-1,0) and (0,M-1) birth and death
rates are the same) brings about a distribution centred on small
adoption values for both technologies. Inthis case, the probability
of both technologies having positive numbers of adopters is not
negligible. The same happens when in the linear death rate very
large m's are used (in the above example, m, = 0.4 = 2xMxoy —
which implies a deathrate larger than the birth rate for ni21leads
to P(n,;xn,>0) = 0.33; see Figure 11).

Figure 11

P(n1"n2>0) versus mu(i) (linear death rate),
for M=10, alpha(i}=0.02 and b=1

11
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However, such large death rates would mean massive user

dissatisfaction with a technology upon experiment; this would. |

" imply the need for a more sophisticated model, dividing the
population between susceptibles and immunes as in
epidemiologicalstudies (Bailey, 19785). Since we arenot concerned
with this aspect, but only with the occasional regret of a
technology by an adopter through accidental causes, it seems
more appropriate to consider only small death rates in relation
to M*a. Within thisrange, the qualitative results for a birth-and-
death competitive diffusion process seem independent of the
precise deathrate definition, The main conclusions to draw from
the above results are, one, that the limit distribution is centred
on states where only one technology is present: and two, that
initial advantages may be significant if both technologies are
equally attractive.

Whether initial advantages are significant when diffusion
parameters are not the same for both technologies is another
question. To investigate it, we shall use the probability ratio PR
= Piny>ng)/Png>n,). Figure 12 shows the behaviour of PR when
ay varies, with constant death rates, for distinct values of b

(initial advantage). Qualitatively similar results obtain with
linear death rates (not shown).

Figure 12

Probabliity Ratio against alpha2, for M=10,
alpha1=0.02, mu(l)=0.2 and be1, 3, §

18
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This figure allows two conclusions. First, PRis highly sensitive
to differences in diffusion coefficients: halving o4 increases PR
a hundredfold, cceteris paribus. Second, initial advantages
significantly change PR from the “no advantage” case by a
roughly invariant amount (one order of magnitude from b=1 to
b=3), over the range analysed for ay. These gains are only
marginally sensitive to mj, decreasing slightly with larger death
coefficients (not shown). A similar conclusion may be drawn
keeping birth coefficients fixed and varying death coefficients
{figure not shown). The main differences are that doubling p,
increases PR a thousandfold for our example, and larger birth
coefficients slightly increase the sensitivity.

A final question remains: It may be argued that the extremely
low values for P{n;n,>0) reflect the linear birth rate used.
Arguably, if there were “diseconomies of adoption”, limit
probabilities would be more evenly distributed, or possibly even
centred upon equitable market shares. To test this hypothesis,
we modified the functional form of birth rates to

@A =0 -n-(M-m-n),0e[03],i=12
Figure 13, below, shows theresult forM = 10and linear death
rates. There is a discontinuity at q = 0, where P{n,ng>0) @ 0.96;

for all other values, P(n;ny>0) only attains very low values. (The
behaviour with constant death rates is similar)

Figure 13

Probabllity of both n1, n2>0 for linear death rate with
alpha{l=mu(i)=0.02 and birth rate concave in

adopters {(with power theta)
1
- 0.1 S . . s
E 0.01 e
x 0,001 Soanso s e S
0,0001 TSN _ - _
0,00001
1] 0.2 0.4 08 0,8 1
theta
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These conclusions need qualififying, since they arise from
limited experimentation on a small-scale case. However, they
confirm the results obtained in the pure birth case as long as the
death rate does not dominate the behaviour. That is to say,

technology diffusion appears to be a priori uncertain and highly
sensitive to historical events.

4. Implications and avenues for investigation

The model investigated suggests an Intriguing possibility.
Thatis tosay, in ma:'iket pheno:;:dena for which birm-l:md-deatgh
processes are an adequate model, a nt equilibria®
ocm;rwltlwnlyatenuousrelaﬂonahlp tgptl?:fntrln%lc advant:;g
of competing alternatives. In other words, apparently stable
competitive equilibria need not be effictent in such cases, For
these classes of phenomena, relationships based on Pareto’s
theorems are not valid, not even in a probabilistic sense,
Nothing (or very little) can be said regarding social optima in
these cases by looking at market outcomes, with or without
redistribution of utilities among agents. In effect, this is an
almost perfect opposite of chaotic behaviour from deterministic
Exechanis:?s: instead, we are talking about unpredictable

equilibria” (that is, apparently orderly states) generated
random mechanisms. Insuch cases, publicregulation would be
legitimate in the search for a social optimum.

Given this possibility, two questions we must ask are, first,
ifbirth-and-death processesare a plausible model for technology

diffusion processes; second, if other economic phenomena are

amenable to a similar description,
The answer to the first question is a qualified yes,

and rejection in a market is a series of mdtvidgal d}:gl?l’;lt?sn
taking into account features of technologies as well ag thei;-
establtshed bases. Besides, given individual differencesin tastes
andexpectations, modellingan individual decisionaga stochastic
phenomenon from the point of view of an external observeris a
valid option, particularly if the number of individuals is large

loosely organized, without perfect informatio ;

undifferentiated. In cases where individuals arendgg'entiated
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into a small number of coherent groups, evolutionary models
may be a better description.

Accepting the description of technology diffusion as a
stochastic process, birth-and-death processes are a good -
candidate to model it for their simplicity and power. As a matter
of fact, the random walk employed by Arthur (1989) may be
viewed as a sequence of competitive births only, with some
special features: composition of birth rates between two types of
individual decision-makers, absorption at the (X,0) and (0.Y)
states (with X and Y > 0), no absorption at (0,0}, unlimited
market size. The last feature prevents it from being embedded
into a (composite) pure birth process for finite markets, and in
fact the key difference between Arthur’s results and ours is that
pure birth processes in a finite market reach equilibria covering
the whole range of market partititions (and the same happens
with the “transient equilibria” in birth-and-death processes). All
the otherfeatures might conceivably be reproduced by a suitably
adapted birth-and-death process. In fact, the introduction of
renewal creates an unlimited market; it seems no coincidence
that in this case our results are similar to Arthur's.

However, the case without renewal presents the most
remarkable result, whether in the pure birth form or in the
transient equilibria of the birth-and-death model. Thatis tosay,
observed equilibria span the whole range and their distribution
is affected by initial advantages. This has far-reaching
implications; thus, ex-post diffusion rates and niches tell little
or nothing regarding ex-ante parameters.

Birth-and-death rates could be made explicitly dependenton
perceived economics of competing technologies. However,
whether those rates should model decisions based on supply
and demand schedules is not crucial to the argument. What
matters is that qualitative conclusions drawn from the birth-
and-death model do not depend on the precise form of birth-
and-death rates. They are in fact remarkably robust, as shown
in the preceding sections. There i8 moreover some empirical.
justification for them, as Arthur (1989) argues*; and we agree
with him that there seems to be a clear case for testing these
conclusions against more systematic empirical evidence.
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The second question requires more careful examination. In
principle, one may model a market as an auctionwhere successive
bidders (buyers and sellers) raise or lower Prices as successive
units are sold. Nevertheless, it is not clear that a birth-and-
death process could be profitably used to model this auction in
most cases. An investigation of market phenomena for which

thisapproachis adequate mightbean interestingand potentially
relevant endeavour.
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Appendix

A.1 Distribution of final states tn the competitive pure birth
model

In order to determine the distribution of final states, we may
omit the time dimension and limit ourselves to the embedded
Markov chain of the process. That is, if we note the state (a, b)
as meaning that a have adopted technology 1 and b have
adopted technology 2, from this only two transitions are possible:

to (a+1, b) with probability 04 -@/(04 -@+ 05, -b), or to (a, b+1)

with probability a;-5/(0y-a+a,-), If we note Pusyimcr-sy the
probability of going from state (a, b) to state (n,, M-n,) in M-a-
b steps, we have from the Chapman-Kolmogorov equations
moting b = ay/a,):

Fantnu-m o -ata, b @ "'al_.?.,.az—,bﬂmqu-q) =

= a . pM-a-d-i + bﬁ . P“’-‘-b—l
a+bf " CIRMW T g pp T @mAtn)

From this recurrence P e ns
all n,, given Mand b. oo

Observe that these are not limiting probabilities, since the
chain is not ergodic. The probability of reaching a given final
state depends upon the initial state. This is in stark contrast to
many equilibrium models in mathematical economics.

In the special case where a,=q,. We obtain

- 1
ﬂ-‘.:}(: ey ™ ﬁ’vn' - The simplest way to prove this is to

note thatin this case any sequence of transitions
(1,1} to (n;, M-n,) has probability thatleads from

may be computed for
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R S R M-nm-1_(m-Dt(M-n-Di
n, nm+l m+2 M-1 (M-Dl

o (M ~2)
Sincethereare Ci”; = DF(M — = D such sequences,

the result follows Q.E.D.

A2 Derivation of P2P1(M., b, b)

Starting from (1. b), the probability that all remaining M-b-1
potential adopters choose technology 1 is

o 20 ke _ (M-b-Da -
o +b-o, 20, +b-, ko, +da, (M-b-Do,+b-a,
1 2 k M-b-1

“1+0B 2+68  k+bp M-b—1+bp

Similarly, the probability that all (M-b-1) remaining potential
adopters choose technology 2 is

ba, (BtDoy  Grk-Doy (M-, _
o +ba, o +(G+Da, o +G+k-Da, o +(M-2a,
__b @+ Q+k-Df (M-2)8
1488 1+(+)f  1+@+k-1f 1+(M-2)
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Therefore,
= .%+1ﬂ+51m_ +5-18¢k +
PEPIUS=0p 1+ g+ 1+ 0+4-1
L]
,,‘ﬁ'_{"_tl
1

f+
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Notas

1 For a determintstic model, final shares are linked through the equation
£ a [3|(%(°)].’%0. as it may be easily seen by solving the
equations. )

3 The probability law of the duration of these “pseudo-equilibiia” ts itself
a non-trivial research object. It may however be noted that, when market
s near saturation, birth rates are of the same order as death rates, L.e.
times between transitions are longer than in the intermediate stages,
Mareover, birth rates are proportional to market shares, which reinforces
stability.

3 Even though in the very long run all competitors are extinct in birth-and-
death processes without renewal, actual realizations spend a significant
amount of time in apparent equilibrium. The analysis of the probability
laws of this ‘equilibrium’ might be rewarding, as noted above,

*+ The best-known instance cited by Arthur is the QWERTY keyboard.
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