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Are Technology Diffusion Processes Inherently Historical?

1. Introduction

Sincethefirstefforts to model technologicaldiffusionprocesses
(Ayres, 1969), a basic tool has been thelogistic curve deriving
from the diffusion equation:

(1) A(t) = o-n(1)-(M—n(1))
In this simple “contagion model”a is a diffusion coefficient,

Misthe population of “susceptibles” and n(t) is the numberof
“infected” at time t. This equation has been adapted to more
complex models to try and accountforobserved complexities.It
has twostrong points:it is simple and has shown a good fit to
a variety of phenomena. There is however a fundamental
drawbackin it for economists:it is essentially deterministic and
its parameters have to be empirically determined without
reference to economic theory. Unsurprisingly,effortswere made
during the eighties to overcome both faults. Suchefforts maybe
divided into three general categories: efforts embedding
technology diffusionwithin the neo-classical framework, efforts
modelling diffusion as a random process,andefforts using an
evolutionary approach.

Thefirst school of research (exemplified by Cameron and
Metcalfe, 1987) analyses technology diffusion from the point of ,
view of economic theory. It starts from supply and demand

schedulesforbothaestablished technologyandforaninnovation.

From this, niches are deducedforboth old and newtechnologies
underneo-classical assumptions. Furthermore, with the aid of
an empirically determinable contagion parameter, it may be
shown that a logistic equilibrium path exists under these
conditions.
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The second and third schools are both concemed with the
determinism of the difiusion equation. Interesting resnlts were
obtainedby Arthiir (Arthur. 1989; Arthur et al., 1987), treating
the competitlon between two Innovatlons A and B as a random
walk with absoibing barrieis and with transition probabilities ,
dependent on the relattve retums of each. This model departs
fromthecontaglonapproach: instead, astreamofagentsenters
the market for technologies, and examines the two technologies
available usingboth theirbasic parameters (two types of agents
are assumed, each armed with a set of parameters favouring one
technology) and the number of choices alrea^ made in íavour
of each (n^and i^. The sequence n^^-neis a random walk with
absoibing barrieis.

Whenietnmsincreasewithaccumulatedadoptiontheprocess
is iinstáble, ending in one technology complete^ expelling the
other. Purthermore, in this case the outcome is unpredictable:
the econon^ may become locked-in by an inferior (consideiing
long-term retums) technology. Even woise, any attempt by
agents to forecast future evolution (e.g. by using laüonal
expectaüons) intensiâesunpredictability. Converse^, if retums
are constant or decreasing with accumulated adoption the
process is ergodic and predictáble.
The third school avoids both neo-classical and probabilistic

modelling. Instead, it trles to describe agents* behaviour in an
evolutionaiy model, following a Schumpeteiian tiadition. A
good example is given by Sihreibeig, Dosi and Orsenigo (1988).
In this, the degrees of freedom present in the behaviouiiál
equaüons for distinct types of agents make for complex difiusion
trajectories. This is a theoretically attractive approach and may
achieve hlgh explanatoiy power. However, the latter depends
cilticaliy upon the confidence in the behavioural equations and
on assumed values for parameters. Such confidence may
decrease as the complexity of the model increases.
The result obtained by Ailhiu* is interesting and suggests a

line of investigation by focusing on random mechanisms.
However, it also means a significant break with the difiusion
model by doing away with the time dimension. Given the
empirical evidence in favour of logistic difiusion paths, as well

as theoretical results such as those Cameron and Metcalfe,
it seems worthwhile to explore stochastic approaches to the
contagion models. Likewise, the complexity of evolutionaiy
models may hlde some basic features, that a simpler model
could make visible.
The present paper treats non-determinlstic diífusion

trajectories for two competing technologies as a birth-and-
death process, using the basic contagion equations as a starting
point. This has the advantage of being comparable to earlier
efibrts and of addressing the question: how does the introduction
of randomness affect the difiusion trajectories for two competing
technologies? Aprobabilistic treatment ofsimple contagion is of
course well known in the literature of stochastic processes and
epidemiology, using however difiusion processes, rather than
birth-and-death processes. Forourpurposes, birth-and-death
processes have the attractive feature of modelling individual
decisions which look random to an observer, as well as being
able to deal with finite markets.
The stmcture of the paper is as follows. The second section

goes fcom the basic difiusion process as a pure birth process to
introduce the competing difiusion process as a two-dimensional,
constrained birth process. This is discussed with a vlew to its
properties. Section three generalizes the model to a birth-and-
death process. Finally, the last section discusses implications
and questions for investigations. Throughout the paper,
theoretical results are illustrated with computer simulations.

2. Technology difiusion as a pure birth process

This section introduces the basic models, in their simplest
form. The simpHcity highlights some essential features, at the
cost of reaUsm.

2.1. The basic contagion process

Assume that a new technology is introduced at time t=0 by an
innovator, and that the potential number of adopters totais M.
The adoption process is assumed to follow a pure birth process
with difiusion coeflacient a (dependent on product and market
features). That Is to say, time intervals between adoptlons are
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independent random variables, with exponential distributionwith averagetimeinterval 1/1, between the nth andthe (n+ 1)thadoptions. The parameter 4, Satisfies.
(2A, =Q-n-(M -n)

This model may be interpreted in the following way. After n
adoptions, each remaining potential adopter independently
opts forthe technologyin thetimeintervalAtwith the probability
axnxAt + ofAt), where the second term goesto zero faster than
t furthermore, the probability of simultaneous adoptions iszero.In other words, the rate of ado:

Oi
ption is proportional tonumberofadoptions alreadymadetimesthe numberofrempotential adopters. Note thatprobability in this context refers to

birtheee LN (¢),f > o}, with N(O) = 1, is then a purebate raceswith a single absorbing state (n=M); all the other
with probabili lent. It is easy to show that N(t) converges to Mshow the fame, Furthermore,realizations of the processamiliar logistic pattern (see Figure 1).

Figure 1

Single Innovation Diffusion(M=200, alpha=0.0002)
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2.2. Competitive diffusion as a pure birth process

The simple diffusion process is trivial. The introduction of -
competition, however, makes thingsfar moreinteresting. Iftwo
technologies, 1 and 2, are introduced at time O with diffusion
coefficients o., and a2, we have a two-dimensional process.This

maybenctedas (NY, (¢),N, (¢)) £2 of _N,(0)=No(0)= 1, where
transitions in N)(t) and No(t) are independentsavefor the ‘birth
rates’ , and Ag. These are now linked through the equation

(3) 4, = a, -n,-(M —n,-n,)= 1,2,
This maybeinterpreted as follows. During the timeinterval

(4¢ + At) each remaining potential adopter has three choices:
wait and see, choose 1, or choose 2. If At is small enough,
Pr{choosing i} = 01 - Ni (4 - Af, i= 1,2, Furthermore, each agent
chooses independently from the others, and the probability of
two simultaneous choicesis zero.

Itisnotdifficult toshowthatall states ofthe form n, + ng=M
(numbering a total M-1 states, since the states (0, M) and (M,0)
are excluded in the pure birth model) are absorbing, andall
others are transient. Therefore, the process is not ergodic; once
it enters one absorbing state it cannot leave. Even though the
distributionoffinal states may be connected with a, and ag, the ©
outcomeis unpredictable. An illustration is given in Figure 2,
which presents a histogram ofone hundred simulationruns for
two equally attractive technologies(a; = a2 = 0.0002) competing
for a market of 200 potential adopters.

Figure 2
Histogram of Final States (n1/M*100%)

100 runs, alpha1=alpha2=0.0002

es Ff 8 8 © B® Be BS
Interval (numbergives lower end)
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Hie flat distribution of final states may come as a surprise to
those expectíng a convergence to a 50% market share with
probabfiity one (thls would be the result with a detennlnlstic
model). In £^ct, it is a direct consequence of a finlte market.
Finiteness is the important factor, not market size. One may
easifyshowthat, when = oq, for any finlte market size M and
aiQrfinal market split-up (n, M-n) withnbetween 1 and M-1, the
probability that this split-up will be reached fix)m the initial state
(1.1) is 1/(M-1). Inotherwords. the distribution of final states is
uniform. See AppendixA.l foraproof.

other hand. imequal difiusion rates lead to lopsided
^tributions of final states. as was to be expected. Neither in
um caae is there convergence to a state with probabfiity one.

^ ̂ effect: laiger markets tend to make the
lopsided in favour of the technology with

= 202. when M = 10 therallo between probabilitíes of final states (9.1} and (1.9) is 13.5
to 1, whenM= 100, theratioP.i ii(99.1):Píi níl 99) is441 to 1. In

maritet Is suffldently laige á technology with

samc time and condítions. Figure 3

of dlfluslonrate isthe double
lOOpotentlaladopters.

itls wellto discuss aütüe the reasons why thls should be so.

Plgill^ S
Probgbnty Dl^utton of Pbtti stotoo
u.4fiA 0.1)S 1*^. •Ipilo1*0.0002, •Ipho2«0.0001

Al(nttmborofi.«4opttra)
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To begin with. the contagion process described by equation
(3) intrinsica%refer8toafinitepopulationofpotentiala(k)ptei8.
LettingMtendtoinfinitywfilmakeX|andX2Ínfinite.ifn| + na < oo,
and undefined otherwise; in the infinite market. the logisUc
should be replaced by the exponential. For M finite. the process
stops aíter a finite number of transitions and asymptotic resulta
are useless. On the other hand. for any given n^, na and aiiy M
> ni + na . we have

(4)AiíLl=
A a (f) a a «i

, independently of M.

Thus, the size of the potential market afifects onfy the rate at
which adoptions are taking place. It does not affect at ali the
share of each technology in these adoptions. In contrast. this
share is directly affected by the ratio n^ /na. Initial deviations are
thus reinforced through it, with the result Uiat each realization
of the process is a patr of loglstic curves, noisy but apparent^
well-behaved and arriving at an equifibrlum.

Ex-post analysis will lead to estimates of difííision rates with
little or nor relation to parameters. Flrst. it is not possible to
identify Uj and oca firom observation, since this would require a
reliable estimate of their potential markets: ali one observes,
however, are "equilibrium niches". Second, equilibriiun points
are unpredictable a priori, especialfy if difiusion rates are equal.
For an illustration, see Figure 4. The outcome shown has
precisely the same a priori probability as any other. The
smoothness of the difiusion path is remarkable, despite its
totaUy random origin.

Plours 4
DIffutIen oftwo een|i«tlng Innevatlens

(•iMulallon run)
■ 
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On the other hand, for unequal dif^ion rates» in large
markets a less "attractive** technology will tend to be crowded
out if it starts in the same conditíons as its competitor. In these
cases» therefore» theie would seem to be a degree of predietabilify.

However» if a technology lags the other it may lose out even
if it has a higher difiusion rate (i.e.» a higher intrinsic utiliiy for
buyers). Thus» if in the example of Figure 3 technology 1 (with
diffiisionrate double thatoftechnology 2) enters\^en technology
2 ákeady has 6 adopters (6% of the market)» the final state
distribution will be biased in favour of technology 2 (see Figures
5 and 6).

Figura 5
B|n1] givan that Initial atata ia (1ib)
forH«ige.alplia1-0.0«02 - 2*alplia2
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Figura 6
Diatribution of flnal atetas (n1» M-n1) from (1, b) for aavarai

valuaa of b.
M"100 and alphal ■ 0.002 ■ 2* alpha2
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This suggests thathistoricalcircumstances are veiy important
in defining the actual difiusion paths and saturation leveis of
competing technologies. The necessaiy lead to reverse the bias
finm ahigherdifiiisionrate will tend to incieasewlth market size
inabsolute terms» butnotnecessarüy inrelative terms. Adosed
expression Is out of question» but a few results may be shown.

For small values of M» it is possible to evaluate EIn| |bl for
vaiious b. Experimentingwith difierent values of M between 10
and 120 and ai=2a2»we find that bmin» the initial advantagie
that allows technology 2 to ofiQset its smaller difiusion rate in
terms of esqiected maiket share» grows approximatety as .
In other words» the relative ofi^tting lead decreases with
growing market size. This experimentation is however limited by
the fact that» for large M» the computational efibrt invohred in
calculating the distribution offinal states» or even £[nil» may be
excessive. Instead» a simple measure of the impact of b may be
givenbytheratiorâPl(M»b,b) = Pr{alladopt2 I b),Pr{alladopt
1 I b)forseveralvaluesofMandp=a2/ai»wheretheinitialstate
is (1» b) and b < 1 (that is» technology 1 is more attractive than
technology 2 but this latter starts with b adopters against 1)^

Weareinterestedinbmin(M»b)» the minimum b for which
ratio is greater than 1» for a gtven M and b. For ali b at or above
this value» the initial stock more than compensates for the
disadvantageindifiusionrates. Even though this doesnotimp^
Elnil < M/2 (compare Figures 5 and 7)» it is a meaningfid
measure. The figure below gives the result for a range of M and
b. (See also Appendix A.2).

Plgiir* ?
■ InlM um b ter ceia peneellNe bela Ia F2F1

h»ia-an

e«ieae.aa

11
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Onestrikingfeatureisthe insensitivity ofb,,;,(M, b) tomarket
size. Onlyfor large inequalities between diffusion rates is there ~
a noticeable increase for the range of market sizes shown, and
even then by several orders of magnitude less than market
increase: Whenonediffusion rate is four times larger than the

other, a thousandfold increase in marketsize leads to a 55%
increase in Dyin. In other words, for a market of a hundred
thousandpotential adopters a 4:1 disadvantage in diffusion
rates maybeoffset by a lead ofless than 0.002% of the market.
Even more,theoffsetting lead decreases in relative terms with
marketsize. This confirmsthatcompetitive technology diffusion
following a pure birth model is very sensitive to historical
factors, even with relative intensities proportional to adoption.

3. Competitive diffusion as a birth-and-death process

Weshall now extend the modelto the case where regrets may
occur, so that an adopter of technology i may abandonit.
Contrary to the pure birth case, there is no natural model to
follow. We shall therefore conduct mostofthe discussion using
a general functional form for the rate at which adopters leave a
technology.

To be moreprecise, we shall makethe following assumption:--

given thatat time t technology ihasn,(t) adopters, the probability
that one adopter will relinquish it and join the “potential
adopters” crowd during the interval [t, tth) tends to

H,(n,(1),1,(0),M)-h as h— 0°, Thatis tosay, the instantaneous
‘death rate’ for each technology depends on the numberof
adopters of each technology and onthesize of the market. The
complete modelis then

(5) { brith rate 2, = a, - n(t).(M-n,()—n(), i= 1.2
death rate 8, = #,(n, (0, n,(), M), i= 1,2

with the usual constraint thatsimultaneous eventshave zero
probability. We further assumethat q,is positive for all n, > 0.

12
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With this formulation, the model undergoes aradical change.
Allstates satisfyingn, >Oorn, >Oarenowtransient.Ineffect,

they cannot be reached from states having zero adopters for
either technology, and the ‘no-adopters’ state (n; = n2,= 0)
behaves like an absorbingbarrier. With (5), in theverylong term
neither technology will have adopters.
Curiously enough,even in this case realizations of the process
will behave approximately as in the pure birth case, reaching

apparently stable (on a finite observation time window) market°
shares. The figure below is an example, with the death rates
linear in the numberofadopters;in otherwords, 9, = p, -m,(t)-

Figure 8

Diffusion of Competitive Innovations as Birth-and-
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The aspect of the curve might be explainedby thefactthat,
in the beginning,the process behaveslike a purebirth process.
Deaths only become relevant when market approaches
saturation; andtheoscillations around the equilibrium point
suggest that for mostpractical time horizons thefact that (0,0)
is an absorbing state is irrelevant. What is important is the
distributionofthe “transientequilibria"? suchas the one shown --
in Figure 8 above. From the argumentabove, these should be
distributed roughly as equilibria undera pure birth process.

One mayalso observethat.

A,/0, = 0,/,; -(M-n, -n), i=1,2, Thatis to say, as long as
deathcoefficients are not muchlargerthandiffusion coefficients
births tend to dominate over deaths wheneverthestate drifts
away from market saturation. Taken together with

A,/A, = (1, %)/(7,0,), this tends to lead to stability of the
equilibrium, even though with infinite time there is extinction
with probability 1.

Anotherquestionofinterest is the limiting behaviour of the
process if there is a renewal at extinction, i.e. whenever the
process attains thestate (0,0) it starts anew ata givenstate (1,
b). With this change the chain becomesirreducible, allowing
evaluation of limit probabilities and investigation of the
consequencesofinitial advantages. Note, however,that foreven
b the chain is periodic with period 2. Moreover, differently from
the remaining specifications, renewal at extinction does not
allow a natural economicinterpretation. Rather,it serves as a
means to study what would happenin thevery very long term..
if extinctions were excluded.

It is out of question to obtain limit probabilities for large
markets, or even for moderate-sized ones. For instance, for
M=100 we would haveto find 5151 steady state probabilities,
components of the eigenvector associated with the unit
eigenvalue of a (M+1)(M+2)/2 by (M+1)(M+2)/2 matrix for the
embedded Markov chain of the process. Nevertheless, it is
possible to obtain the flavour of the solution through a small-
scale instance.

14
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Figure 9 shows the result for M=10; a, = 0.02, i =1,2; death
rates are assumedlinear in adoption as in Figure 8, with m, =

0.02. It may be noticed thattheleastlikely states are those with
both n, and ng positive: all have limit probabilities between
1°10-7 and2°10.Thus,the intrinsic dynamics ofthe competitive
birth-and-death process with renewal tends to exclusive
dominance of either technology, in an unpredictable way.
Decreasing the death rate coefficients will only accentuate this
feature; the probabilities ofpositive (n,, ng) drop by three orders
of magnitude when death coefficients are halved.

Figure 9

Limit Probabilities for the competitive diffusion process with linear
death rate, m(i)=0.02=a(i), and renewalat extinction to (1,1), and M=

10
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Since the modelallows the investigationofinitial advantages,
let the renewal beto the state (1,3) instead of(1,1). Figure 10,
below, shows theresults.

Figure 10

Limit Probabilities for the competitive diffusion process with linear
death rate, m(i)=0.02=a(i), renewalat extinction to (1, 3), and M = 10

 16
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It may be observedthat P(0,i) is approximately thetriple of
P(i,0), as was to be expected. It requires an decrease of ag to

0.0151 to compensatethe initial advantage.
A question may be raised about the assumptionofa linear

death rate in this example; otherfunctional dependencies might
be proposed, such as a constant death rate (this would mean
thatthe likelihood ofone adopterabandoningagiven technology
varies inversely with the number of co-adopters of that
technology). The effect of this modification will depend on the
value chosenfor the death rate6,relative to M*a. Using @,°0.01
or 0.02 in the above example,the result is to decrease even more
the probability of states with both technologies. On the other
hand,large 6, (so that at (M-1,0) and (0,M-1) birth and death
rates are the same) brings aboutadistribution centred on small
adoptionvalues forboth technologies. Inthis case, the probability
ofboth technologies having positive numbers ofadopters is not
negligible. The same happens whenin thelinear death rate very
large m‘s are used(in the above example, m, = 0.4 = 2xMxo,—
whichimpliesa death ratelargerthan the birth rate for n,2 lleads
to P(n,xng>0) = 0.33; see Figure 11).

Figure 11

P(n1*n2>0) versus mu(i) (linear death rate),

for M=10, alpha(l)}=0.02 and b=1
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However, such lai^ge deatfa rates would mean masaive user
disBatisfactlon with a technology upon e3q)eriinent; thi« would
imp^ the need for a more sophistlcated model, dMdlilg the
populatlon between susceptibles and immunes as In
epidemiologlcalstudies(Baflqr, 197Q).Sincewearenotconcemed
with thls aspect, but oniy with the occasional regret of a
technology by an adopter through accidental causes, it seems
more appropriate to consider onfy small death rates in relation
to M*a. Within this range, the qualitative results for a birth-and-
death competittve diffusíon proc^ seem Independent of the
precise death rate definitíon. lhe malnconclusíons to drawfrom
the above results are, one, that the limit distribution is centred
on states where only one technology is present; and two, that
initial advantages may be signiflcant if both technologies are
equally attractive.

Whether initial advantages are significant when difíusion
parameters are not the same for both technologies is another
question. To investigate it, we shall use the probability ratio PR
a P(ni>n2)/P(n2>n J. Figure 12 shows the behaviour of PR when
(*2 varies, with constant death rates, for distinct values of b
(initial advantage). Qualitative^ similar results obtain with
linear death rates (not shown).

Figure 12

ProbsbHIty Ratio sgabist slpliaa, lér IMO»
afpfia1-0U»2, J and b-1, t, §

0,012 0J014 OjMO

ÊÊfihãa

Ofiiê
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This figure allows two conclusions. First,PRishigh^sensitive
to differences in difiusion coefflcients: halving increases PR
a hundredfold, cceteiis paribus. Second, initial advantages
significant^ change PR hom the **no adivantage" case by a
roughly invariant amount (one order of magnitude from b-1 to
b=3), over the range anafysed for 02. These gains are onfy
maiginaUy sensitive to mj, decreasing slightly with laiger death
coefflcients (not shown). A similar conclusion may be drawn
keeping birth coefflcients fixed and vaiying death coefflcients
(figure not shown). The main differences are that doubling (12
increases PR a thousandfold for our example, and laiger birth
coefflcients sli^t^ increase the sensitivity.
A final question remains: It may be aigued that the extreme^

low values for P(n|n2>0) reflect the linear birth rate used.
Arguably. if there were "diseconomies of adoption**, limit
probabilities would be more evenfy distrlbuted, or possib^ even
centred upon equitable market shares. To test this hypotiiesis,
we modified the functional form of birth rates to

(6)A,, =a, n®- -1%),0e[oA],/=l,2
Figure 13, below, shows the result for M s 10 and linear death

rates. There is a discontinuity at q = O, where P(nin2>0) ® 0.96;
for ali other values, P(nin2>0) onfy attains veiy low values. flhe
behaviour with constant death rates is similar)

Figure 13

Probability of both n1, n2>0 for ünoar doath rato wKh
alpho(l)"mu(i)^.02 and birth rato eoncavo In

adoptora (with powor thota)

6  0.001
9.

0,0001

0,00001
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These condusions need qualiflfylng, slnce th^ ailse from
limlted 69q>eriinentation on a. small-scale case. However, they
confirm the resulta obtained In the puie blrth case as long as the
death rate does not domlnate the behaviour. Ihat Is to say,
techiiologjr difiustonappears tobeaprioriuncertalnandhJghhr
sensitive to histórica] events.

4. Implícations and avenues for investigatlon

lhe model investigated suggests an Intilgulng possibllíty.
Ihat Is to say, in market phenomena for whídi birth-and-death
processes are an adequate model, apparent equilibrla^ may
occurwithonljratenuousrelationdi^totheintnnsicadvantaíEwof competing altematives. In other woids. apparent^ stable
competitive equlUbrla need not be efflcient in such cases. For
these classes of phenomena, relationships based on Pareto's
l^eorems are not valid, not even in a probabilistic sense.
I^thing (or veiy little) can be said regardi^ social optima in
these c^ses 1^ looking at market outeomes, with or without
r^tnbutíon of utiUtíes among agents. In eflfect, this is an
almost perfectopposite ofdiaotic behaviour ftom deterministíc
mec^itóms: instead, we are talking about unpiedictable
eqi^bria fthat is. appaientty order^ states) generated by
random mechanisms. In such cases, public regulation would be
legitimate in the search for a social optimum.

Given this possibility, two questlons we must ask are, first
ifblrth-and-deaíhprocessesareaplauslbleinoddfortechnolocvdifluslon processes: second, If other economlc ph<.n»n,»nfi ̂
amenable to a similar desciiption.

pje a^er to the flret question is a qualifled yes. Adopüon
Md rejecaon in a m^t is a series of individual dectelons
taU^ into account features of technologies as weU as their
establistedbases. ̂Wes.givenindlvidualdifference8inta8te8
andexpectatlon^m^ellinganindividualdedsionasastoc^te
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into a small number of coherent groups, evolutionaiy models
may be a better descilption.

Accepting the description of technology difiusion as a
stochastic process, birth-and-death processes are a good
candidate to model it for their simplidty and power. As a matter
of fact, the random walk employed Arthur (1989) may be
vlewed as a sequence of competitive births onfy, with some
special features: composition ofbirth rates between two lypes of
individual decision-makers, absorption at the C7C.0) and (0,Y)
states (with X and Y > O), no absorption at (0,0), unlimited
market size. The last feature prevents it finm being embedded
into a (composite) pure birth process for finite markets, and in
fact the k^ dtfference between Arthur^s results and ours is that
pure birth processes in a finite market reach equilibrla covering
the whole range of market partititions (and the same happens
with the "transient equilibrla'* in birth-and-deathprocesses). Ali
the other features might conceivabty be reproduced by a sultab^
adapted birth-and-death process. in fact, the introduction of
renewal creates an unlimited market: it seems no coincidence
that in this case our results are similar to Arthur^s.

However, the case without renewal presents the most
remarkable result, whether in the pure birth form or in the
transient equilibrla ofthe birth-and-death model. That is to say,
observed equilibrla span the whole range and their distrlbution
is alfected by inltlal advantages. This has far-reaching
implícations; thus, ex-post difiusion rates and niches tell litüe
or nothing regarding ex-ante parameters.

Btrth-and-death rates could be made explicita dependent on
perceived economics of competing technologies. However,
whether those rates should model decisions based on supp^
and demand schedules is not crucial to the argument. What
matters is that qualitative condusions drawn fiom the birth-
and-death model do not depend on the precise form of birth-
and-death rates. They are in fact remaikabty robust, as shown
in the preceding sections. There is moreover some empirlcal
Justificatlon for them, as Arthur (1989) argues*; and we agree
with him that there seems to be a dear case for testing these
condusions against more systematic empirlcal evidence.
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The second question requires more careful examination. In
principle, onemaymodel amarketasanauctionwheresuccessive
bidders (buyers andsellers) raise or lower Prices as successive
units are sold. Nevertheless,it is not clear that a birth-and-
death process could beprofitably used to model this auction in
mostcases. An investigation of market phenomena for which
this approach is adequatemightbean interestingand potentially
relevant endeavour.
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Appendlx

A. 1 Dlstribution of final states In the competltive pure birth
model

In order to determine the dlstribution of final states, we may
omit the time dimension and limlt ouraelves to the embedded
Markov chain of the process. That is, if we note the state (a. b)
as meaning that a have adopted technology 1 and b have
adopted technology 2, from this onJ^ two transitions are possible:

to (a+1, b) wlth probability OC^ •«+0^ or to (a. b+1)
with probability (h bli(x, a^a^ h), if we note the
probability of going fiom state (a, b) to state (ni, M-nJ in M-a-
b steps, we have fiom the Chapman-Kolmogorov equations
.(notingb = a2/ai):

a, a+a,-6 =

=—^—pu-«-t-i 4,_r£L_
a+bfl a+bfi'

From this recurrence p.f-f - • ^ may be computed for
allni.glvenMandb.

Observe that these are not limiting probabilities. since the
chain is not eigodic. lhe probability of reaching a given fin^
state depends upon the iiütial state. This is in stark contrast to
mai^ equilibiium models in mathematical economics.

In the special case where we obtain

bp

pU-2 1

A/-1
, V/f, • The simplest way to prove this is to

imtetottató*caMaiy8equenceoftn^^
(1,1) to (ni, M-n|) has probability
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2  Af-/ii-l_(/ii-l)l'(Af-/i|~l)l

2 3 /I, /i|+l iii+2 A/-1 (Af-l)l
1 2 /f,-l 1

Since theie are C^:,

the result follows Q.E.D.

such sequences.

A.2 Derivation of P2P1(M. b. b)

Startingfrom (1. b). the probability that ali lemainlngM-b-l
potentlal adopters choose technology 1 is

a. 2a. ka^ (Ji/-ò-l)a,

a,+6 a2 2a,+6 aj ^a, + 6 a, (M-fi-l)a,+6 a,
1  2 k M-b-\

Ubp 2 + bP k+bp M-b-l+bp
Similarly, the probability that ali (M-b-1) remainingpotential

adopters choose technology 2 is

ba^ (6 + l)aa (6+^-1)0^ (Jif-2)aa
a,+òaa a,+(6 + l)a, a,+(6+^-l)aa a,+(Ji/-2)a,

bP ib + l)P {b+k-\)P (M-2)P
\+bP \+(b+l)P l+(b+k-l)p ' \+(M-2)p
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Therefore.

.W-Íiil
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Notas

* Foradetermliilstlcinodel. finalaharesarellnkedthrDu^ttieeqiiatlon

•r-- ['•'"X.w] . aa It may be easUy seen by aolvbig the
equatlons.

3 The probabUlIy law of the duiatlon of theae **paeudo-eqiilIlbi1a** ts Itaelf
anon-trivlalreseaxxrhobject Itmay howeverbenotedthat, vdieniiiailGet
is near saturatton, birth rates are of the same order as death rates. l.c.
times bctween transitiona are longer than in the intermedlate stages.
Moreover, birth rates are proportional to marketahares.^Kdikdirelnforoes
stablllty.

3 Bven though In the veiy long nm ali oompetitora are extlnct in blrth-and-
death processes wlthout renewal, actual reallzatkms spend a slgnlflcant
amount of time in apparent equilibrium. The anatysis of the probability
laws of this 'equilibrium' mlgbt be rewarding. as noted above.

^The best-known instance cited by Arthur is the QWERIY keyboard.
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