
*** RElATóR:lO TÉNXCO ***

AVAlIACAO D/:: UMA ARQU }:TETUI�A SPAI�C

COM CACi-IE DE DESVJ.O E

BARI�AMENTO TIPO I;AI�VAI�D

Gabr' i �1 P�re i ra d<.\ S i 1 va

Jlí1 i o Sal�k AIJd�

NCE 18/91

Out:ubro/91

Universidade Federal do Rio de Janeiro

Núcleo de Computat;ão !::letl'"':�n i ca

Cai)<a Postal 2324

20001 -Rio de Janeiro -I�J

BRASIL

I::st e art i go To i al;)resent ado na EUI�OM]:CI�O ' 91,

V i ena/ÁI.J.f';t r' i a, de 02 a 05 de set embro de 1991.

realizada em

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

NUCLEO DE COMPIJTACAO ELETRONICA

r�'t'".J(� ...

'J,-� ��I

Iti�1i}

.

AVALIAÇÃO DE UMA ARQUITETURA SPARC COM CACHE DE DESVIO

E BARRAMENTO TIPO HARVARD.

Resumo

v ariações na arquitetura SP ARC são estudadas neste artigo, com particular

enfase no uso de uma cache de desvio e de um bauamento Harvard. Um simulador

que funciona em um modo ciclo a ciclo foi desenvolvido para realizar medidas de

desempenho em várias configurações. Os resultados obtidos são apresentados neste 4

artigo.

EVALUAnON OF A SPARC ARCHITECTURE Wl1H HARVARD BUS

AND BRANCH TARGET CACHE

Abstract

Variations in the SPARC architecture are studied in this paper, with particular

emphasis to the use of a bI:"anch target cache and a Harvard bus. A simulator that works

in a cycle per cycle basis has been developed to conduct performance measurements

of some configurations. The results obtained are reponed in this paper.

,
�
;

EVALUATION OF A SPARC ARCHITECTURE WITH HARVARD BUS AND
BRANCH TARGET CACHE

�
IGabriel P. Silva and Julio S. Aude k"

1
..

N.C.E., Federal University ofRio de Janeiro
P.O Box 2324, Cep 20001, Rio de Janeiro, Brasil.
Tel:õõ-21-õ983212 Fax: õõ-21-2708õõ4 E-mail: ncd01010@UfIj.bitnet

The SPARC architecture is studied in this paper, with particular emphasis to the use of a
branch target cache and a Harvard bus. Perfonnance measurement with some configurations
are reported. A simulator that works in a cycle per cycle basis has been developed to conduct
those measurements.

1. INTRODUCTION although with low hardware complexity. Thf

parameters that the simulator evaluates are thfc
The SPARC was defined by Sun Microsystems in register file size, the bus interface and the use of aÍl
1987 [1,2] based on Berkeley's RISC architectures. It internal branch target cache. With the
is an open architecture with a high degree of enhancements proposed here, an architecture with
architectural freedom that allows specific hardware an execution ratio as low as one cycle per instruction
implementa tions while keeping binary can be achieved.
compatibility. This paper describe8 the re8ults
obtained by a SPARC simulator that make8 an
evaluation of di.fferent SPARC configurations. 2. THE OPTIONS EV ALUATED

The SPARC is a 32 bit RISC architecture, based on The register file size has been evaluated to obtain a
RISC I/II and SOAR Berkeley de8ign8. It ha8 two minimum size, freeing chip area to implement other
main units: a Floating Point U nit and an Integer feature8. Specific routine8 to handle register window.
U nit. Each of these units ha8 its own register file. overf1ow/underflow have been a88embled, creating a-
The Integer Unit may have between 40 and õ20 more rea1istic environment since their cost is al8O
registers, depending on the implementation. The8e considered in program execution. The beBt register
registers are partitioned into 2 t{j 32 overlapping file managing strategy consiBts ofmoving one frame
windoWB, that contain parameters paBBed between every time an underflow/overflow occurB, aB
routineB. This organization allowB around 10 to 20% indicated by Tamir and Sequin [3], and i8 uBed in the
fewer memory reference8 than Btack organized Bimu1ation.
architecture8[2].

The branch target 8cheme implemented wa8 defined
The SPARC i8 a pipelined architecture, and mo8t by Cortade1la & Jové a8 Zero Time deIay Branch [4].
tran8fer control instroction8 are one 81ot deIayed, It i8 intended for pipelined architecture8 and allOW8
that means, the in8troction immediate1y following the evaluation of the conditional branch in parallel .
the jump instroction is al8O executed. Some other with the delayed 81ot instruction execution. The "
features are not originally specified in the simu1ator assigns cache size8 in the range from 8 to
architecture'8 definition. They include the 8ize ofthe 128 entrie8, each one composed of an instroction,
bus and its organization, the use of a internal cache, target addre88 and condition code8. The line 8ize .
number of pipeline 8tages, the type of controllogic varies from 1 to 4 set8. The model 8imulated .

(RANDOM/PLA)andtechnologyofimplementation considers the u8e ofan externa1 memory with zero
(ECL, CMOS). wait state instruction delivery.

The simu1ator explores configurations that result in The use of a Harvard bus organization, with
implementations with higher performance. independent data and instroction DathA- iA A1An

simulated. This was done because loads and stores
account for 20% of the instructions executed, and
data accesses compete with instruction fetches in a
shared bus. With the use of separate data and
instructions paths it is expected to get a considerable
perfonnance gain.

program Towers, that implements the Towers of
Hanoi algorithm with 12 dishes, was used for
register sizing simulation.

The number of simulated cycles of a program
considers the cycles spent in save/restoring the
windows from/to memory. The results of the
simulation are expressed in terms of: number of
cycles, number of instructions executed, cycles per
instruction, average number of activated windows,
data and instruction accesses, number of interlocks
and instruction utilization.

The simulated architectures differ among them in
some points. Whi1e a shared bus has Ol1ly four
pipeline stages, the Harvard bus needs an extra
pipeline stage. Also, the use of a branch target cache
demand some modifications i1l the control ofthe bus
fetch unit. These modifications were done in the
simulator. but keeping compatibi1ity with SPARC's
definition. 4. RESUL TS

Some of the results are summarized in figures 1 to 6.
Figures 1 and 2 show the effects of register file sizing .
in three programs that use recursive ca1ls. The
"window miss ratio" in figure 1 expresses the ratio of
save/restore instructions executed that don't find a
window frame available in the regi6ter file. Figure 2
shows the total number of executed cycles for each
program as a function of the register file size.

The need for precise results concerning the
1llicroprocessor's behavior required the simulation of
its operation on a cycle per cycle basis. Th achieve
this a detailed study of each instroction was done,
with the definition of each pipeline stage operation.
The trap instroctions have been also emulated, and
whenever a window underflow/overflow occurs, the
program deviates to specific management routines.
These routines have been hand coded and are loaded
with the programs, acting as a litt1e kemel, that
saves and restores the window .frames to/from
simulator's memory.

Figure 3 and 4 illustrate the influence ofthe branch
target cache in the execution ofDhry8tone program.
The hit ratio of figure 3 eXpreS8e8 the ratio of
conditional branch instructions that are found in the
cache. Even for a cache with a total of 32 entries, hit
ratios of 80% can be found, giving a considerable
improvement in overall performance. The impact of
thi8 feature in the execution time of thi8 program is
shown in Figure 4.

The simulator does not allow 1'0 operations and
does not simulate floating point operations. Also, it
does not predict the cost related to context switching,
which can happen in a real environment, though it
can be estimated by the average nwnber of activated
windowB.

Figure 5 shows the speedup obtained with the use of .

a Harvard bus organization, with independent paths
for instroction and data. This analysis Wa8 done
without the U8e of a branch target cache and with
the register file configured with 8 windows. Figure 6 .

ShOW8 the 8peedup obtained if an interna1 branch
cache with 64 po8ition8 i8 a18o added to the
architecture. In this graphic, the average cycle per
instroction execution ratio that i8 obtained with a
"8tandard" and the propo8ed "enhanced" .
configuration is plotted.

3. THE BENCHMARK PROGRAMS

Conventional benchmark programs have been used
in the evaluation. Those programs were written in C
language [5,6] and some of them had been a1ready
used in other evaluation8 [7]. The code Wa8 compiled
in a SPARC8tation and then ported and adapted to
the 8imulator.

The Quicksort program sorts a 1 Kword (4 Kbytes)
array randomly filled, with recursive cal1s of best
case O(N log N). The Sieve program generates serie8
of prime number8 manipulating .an array of 16
Kbyte8. The Fibonacci program calculates the 18th
member of a Fibonacci serie8 through recursive
ca118. The Dhry8tone program i8 a 8ynthetic
benchmark [6] with a mix of instrnctions of a typica1
integer app1ication. In the code used there are on1y
2ó6 iterations in the main program loop. The

ó. CONCLUSIONS

The resulta obtained from the simulation lead us to
the fo11owing conclusions:

-The use of a register file with between 6 and 10
windows is optima1. The remaining area can be used
to others features, such as an intemal branch target
cache.

.SPARC is a registered trademark of SPARC International. Inc.

REFERENCES

-The traces indicate that caches of small sizes, with
only 32 to 128 positions, are very effective. The set
size seems not to be of significant izúluence, as also
shown by Lee & Smith [8].

-Tlle traces also shown that the use of a Harvard bus
organization results in good improvement. It is
problably the most expensive solution involved, but
it is important if intensive data manipulating
programs will be used.

[1] Sun Microsystems Inc "The SPARC
Architecture Manual", Mountain View CA, 1987.
199 pp.

[2] Garner, B. et all "The Scalable Processor
Architecture" Proceedings ofthe IEEE COMPCON
88, New York, NY, IEEE, pp 278-283,1988.

[3]Tamir, Y. & Sequin, C.H. '.Strategies for
Managing the Register File in RISC.. IEEE
Transactions on Computers, Vol C-32 (11):
977-989, Nov 1983

[4] Cortadella, J. & Jové, T. "Designing a Branch
Target Buffer for Executing Branches with Zero
Time Cost in a RISC Processor", Microprocessing
and Microprogramming, N orth-Holland, 24:
573-580,1988.

-T1le association of a branch target cache with a
Harvard bus can lead to execution ratios as low as
one cycle per instruction.

This work has been used as a guideline to an
iInplementation of a SPARC architecture that is
currently being developed at NCE/UFRJ. Cost
considerations are strongly dependent on the
technology being used and are not done here. As a
target for future work we intend to expand this
simulator for handling superscalar architectures
and study the data dependencies that can arise in
this situation.

[5] Hinnant, D.F. "Benchmarking UNIX Systems"
Byte, Peterborough, N.H., McGrawHill,
9(8):132-5,400-9, Aug 1984.

[6] Reinhold, P. w. "Dhrystone: A synthetic
Systems Programming Benchmark'.,
Communications of the ACM, New York,
27(10):1013-1030, Oct 1984

[7] Tamir, Y. "Simulation and Performance
Evaluation of the RISC Architecture" Berkeley ,
CA, University of California, Memorandum,
UCB/ERLM 81/17,1981, 29 pp.

[8] Lee, J.KF. & Smith, AJ. "Branch Prediction
Strategies and Branch Target Buffer Design" ,

Computer, New York, IEEE, 17(1):6-22, Jan 1984.
ACKNOWLEDGEMENTS

The authors would like to acknowledge CNPQ and
FINEP, Brazil, for the support given to this research
work.

~~~


