#%% RELATOR1O TENICD *xx
AVALIACXO DE UMA ARQUITETURA SPARC
COM CACHE DE DESVIO €
BARRAMENTO TIPO HARVARD

Gabriel Pereira da Silva
Julio Salek Aude

NCE 18/91
Qutubhro/?4

Universidade. Federal do Rio de Janeiro
Niicleo de Computaclo Eletrinica

Caixa Postal 2324

20001 — Rio de Janeiro - RJ

BRASIL

Este artigo +oi apresentado na EUROMICRO’94, realizada en

VienaZaustria, de 082 a 05 de setembro de 1991}

”I[jj UNIVERSIDADE FEDERAL DO RIO DE JANEIRO
}tfﬁlj NUCLEQ DE COMPUTACAO ELETRONICA

AVALIACAO DE UMA ARQUITETURA SPARC COM CACHE DE DESVIO
E BARRAMENTO TIPO HARVARD.

Resumo

VariagGes na arquitetura SPARC sdo estudadas neste artigo, com particular
enfase no uso de uma cache de desvio e de um barramento Harvard. Um simulador
que funciona em um modo ciclo a ciclo foi desenvolvido para realizar medidas de
desempenho em vdrias configuragdes. Os resultados obtidos sdo apresentados neste
artigo.

EVALUATION OF A SPARC ARCHITECTURE WITH HARVARD BUS
AND BRANCH TARGET CACHE

Abstract

Variations in the SPARC architecture are studied in this paper, with particular
emphasis to the use of a branch target cache and a Harvard bus. A simulator that works
in a cycle per cycle basis has been developed to conduct performance measurements
of some configurations. The resuits obtained are reported in this paper.

EVALUATION OF A SPARC ARCHITECTURE WITH HARVARD BUS AND

BRANCH TARGET CACHE

Gabriel P. Silva and Julio S. Aude

N.C.E., Federal University of Rio de Janeiro
P.O Box 2324, Cep 20001, Rio de Janeiro, Brasil.
Tel:55-21-5983212 Fax: 55-21-2708564 E-mail: ncd01010@ufrj.bitnet

DTS

The SPARC architecture is studied in this paper, with particular emphasis to the use of a
branch target cache and a Harvard bus. Performance measurement with some configurations
are reported. A simulator that works in a cycle per cycle basis has been developed to conduct

those measurements.

1. INTRODUCTION

The SPARC was defined by Sun Microsystems in
1987 (1,2] based on Berkeley’s RISC architectures. It
is an open architecture with a high degree of
architectural freedom that allows specific hardware
implementations while keeping binary
compatibility. This paper describes the results
obtained by a SPARC simulator that makes an
evaluation of different SPARC configurations.

The SPARC is a 32 bit RISC architecture, based on
RISC VII and SOAR Berkeley designs. It has two
main units: a Floating Point Unit and an Integer
Unit. Each of these units has its own register file.
The Integer Unit may have between 40 and 520
registers, depending on the implementation. These
registers are partitioned into 2 to 32 overlapping
windows, that contain parameters passed between
routines. This organization allows around 10 to 20%
fewer memory references than stack organized
architectures(2].

The SPARC is a pipelined architecture, and most
transfer control instructions are one slot delayed,
that means, the instruction immediately following
the jump instruction is also executed. Some other
features are not originally specified in the
architecture’s definition. They include the size of the
bus and its organization, the use of a internal cache,
number of pipeline stages, the type of control logic
(RANDOM/PLA) and technology of implementation
(ECL, CMOS).

The simulator explores configurations that result in
implementations with higher performance.

although with low hardware complexity. The
parameters that the simulator evaluates are the
register file size, the bus interface and the use of an
internal branch target cache. With the
enhancements proposed here, an architecture with
an execution ratio as low as one cycle per instruction
can be achieved.

2. THE OPTIONS EVALUATED

The register file size has been evaluated to obtain a
minimum size, freeing chip area to implement other
features. Specific routines to handle register window
overflow/underflow have been assembled, creating a-
more realistic environment since their cost is also.
considered in program execution. The best register
file managing strategy consists of moving one frame
every time an underflow/overflow occurs, as
indicated by Tamir and Sequin [3}, and is used in the
simulation. '

The branch target scheme implemented was defined
by Cortadella & Jové as Zero Time delay Branch [4).
It is intended for pipelined architectures and allows
the evaluation of the conditional branch in parallel)
with the delayed slot instruction execution. The .
simulator assigns cache sizes in the range from 8 to
128 entries, each one composed of an instruction,
target address and condition codes. The line size °
varies from 1 to 4 sets. The model simulated |
considers the use of an external memory with zero
wait state instruction delivery.

The use of a Harvard bus organization, with
independent data and instruction naths i alan

simulated. This was done because loads and stores
account for 20% of the instructions executed, and
data accesses compete with instruction fetches in a
shared bus. With the use of separate data and
instructions paths it is expected to get a considerable
performance gain.

The simulated architectures differ among them in
some points. While a shared bus has only four
pipeline stages, the Harvard bus needs an extra
pipeline stage. Also, the use of a branch target cache
demand some modifications in the control of the bus
fetch unit. These modifications were done in the
simulator, but keeping compatibility with SPARC’s
definition.

The need for precise results concerning the
microprocessor’s behavior required the simulation of
its operation on a cycle per cycle basis. To achieve
this a detailed study of each instruction was done,
with the definition of each pipeline stage operation.
The trap instructions have been also emulated, and
whenever a window underflow/overflow occurs, the
program deviates to specific management routines.
These routines have been hand coded and are loaded
with the programs, acting as a little kernel, that
saves and restores the window-frames to/from
simulator’s memory.

The simulator does not allow /O operations and
does not simulate floating point operations. Also, it
does not predict the cost related to context switching,
which can happen in a real environment, though it
can be estimated by the average number of activated
windows.

3. THE BENCHMARK PROGRAMS

Conventional benchmark programs have been used
in the evaluation. Those programs were written in C
language {5,6] and some of them had been already
used in other evaluations [7]. The code was compiled
in a SPARCstation and then ported and adapted to
the simulator.

The Quicksort program sorts a 1 Kword (4 Kbytes)
array randomly filled, with recursive calls of best
case O(N log N). The Sieve program generates series
of prime numbers manipulating ‘an array of 16
Kbytes. The Fibonacci program calculates the 18th
member of a Fibonacci series through recursive
calls. The Dhrystone program is a synthetic
benchmark [6] with a mix of instructions of a typical
integer application. In the code used there are only
256 iterations in the main program loop. The

program Towers, that implements the Towers of
Hanoi algorithm with 12 dishes, was used for
register sizing simulation.

The number of simulated cycles of a program
considers the cycles spent in save/restoring the
windows from/to memory. The results of the
simulation are expressed in terms of: number of
cycles, number of instructions executed, cycles per
instruction, average number of activated windows,
data and instruction accesses, number of interlocks
and instruction utilization.

4. RESULTS

Some of the results are summarized in figures 1 to 6.

Figures 1 and 2 show the effects of register file sizing -
in three programs that use recursive calls. The

"window miss ratio” in figure 1 expresses the ratio of
save/restore instructions executed that don’t find a

window frame available in the register file. Figure 2

shows the total number of executed cycles for each

program as a function of the register file size.

Figure 3 and 4 illustrate the influence of the branch
target cache in the execution of Dhrystone program.
The hit ratio of figure 3 expresses the ratio of
conditional branch instructions that are found in the
cache. Even for a cache with a total of 32 entries, hit
ratios of 80% can be found, giving a considerable
improvement in overall performance. The impact of
this feature in the execution time of this program is
shown in Figure 4.

Figure 5 shows the speedup obtained with the use of *
a Harvard bus organization, with independent paths
for instruction and data. This analysis was done
without the use of a branch target cache and with
the register file configured with 8 windows. Figure 6 -
shows the speedup obtained if an internal branch
cache with 64 positions is also added to the
architecture. In this graphic, the average cycle per
instruction execution ratio that is obtained with a
"standard" and the proposed "enhanced”

configuration is plotted.

6. CONCLUSIONS

The results obtained from the simulation lead us to
the following conclusions:

Register File Size

Miss ratlo('l:)

25 1
20 | = Quicksort
~— Towers
16 == Fibonacec!
10 |
5 - ",
0 - . N LB — i
0 4 8 12 16 20 24 28 32
Number of Windows
- fixed(1,1) strategy
*+ miss ratio = traps / (saves+restores)
Figure 1
Branch Target Cache
Hit Ratio(%)
100 - =5 i —— Y N T T M -
T e
801 -
v
sor 7 awey |
! = 2 Way |
w0} j v Direot "[
201»
|
c‘. 't e i
] 16 a2 48 64 80 96 nz2 128

Number of Cache Entries

+ register file size = 8 windows
+» dhrystone
Figure 3

Bus Organization

260 Cycles(Thousands)
200
180
100
50
0
Shared 236.837 238.808 200.648 81.992
Harvard 183.108 205.425 182.683 77.352
Speedup 129 116 116 108
* without cache

+ register flle size = 8 windows
Figure 6

Register File Size

Cycles (Thousands)
250+

1 "
*— Fibonacei | »

.. *" Quicksort = Towers
1 O -
et — — :
200+ o
15014
.
100+
50 . R R " . - s i e . . O R
] 4 8 12 16 20 24 28 a2

Number of Windows

« fixed(1,1) strategy
Figure 2

Branch Target Cache

Cycles (Thousands)
250, — -

‘R4 Way © 2 Way ** Direot |

2401 s s e ————— .}
o |

2aor\‘&\\ L
|

220} = i kg
: ¥
|

210+
|
!

200! . - .
0 16 32 48 64 80 96 12 128

Number of Cache Entries

* register file size = 8 windows
*+ dhrystone

Figure 4

Architecture Comparision

2 Cycles/Instruction
EEH standard Enhanced
18BERR------ s SN e AR g e e e A e
1
0.8
0
Standard 1.66 139 144 - 1.34
Enhanced - 1.09 0.08 0.99 - 118
Speedup 142 146 148 1.18

* enh: 64 entries, harvard bus
** registertile size » 8 windows -

- The use of a register file with between 6 and 10
windows is optimal. The remaining area can be used
to others features, such as an internal branch target
cache.

- The traces indicate that caches of small sizes, with
only 32 to 128 positions, are very effective. The set
size seems not to be of significant influence, as also
shown by Lee & Smith [8].

- The traces also shown that the use of a Harvard bus
organization results in good improvement. It is
problably the most expensive solution involved, but
it 1s important if intensive data manipulating
programs will be used.

- The association of a branch target cache with a
Harvard bus can lead to execution ratios as low as
one cycle per instruction.

This work has been used as a guideline to an
implementation of a SPARC architecture that is
currently being developed at NCE/UFRJ. Cost
considerations are strongly dependent on the
technology being used and are not done here. As a
target for future work we intend to expand this
simulator for handling superscalar architectures
and study the data dependencies that can arise in

this situation.

ACKNOWLEDGEMENTS

The authors would like to acknowledge CNPQ and
FINEP, Brazil, for the support given to this research
work. .

* SPARC is a registered trademark of SPARC International, Inc.

REFERENCES

[1] Sun Microsystems Inc "The SPARC
Architecture Manual", Mountain View CA, 1987.

199 pp.

[2] Garner, B. et all "The Scalable Processor
Architecture” Proceedings of the IEEE COMPCON
88, New York, NY, IEEE, pp 278-283, 1988.

[(3]Tamir, Y. & Sequin, C.H. "Strategies for
Managing the Register File in RISC" IEEE
Transactions on Computers, Vol C-32 (11):
977-989, Nov 1983

(4] Cortadella, J. & Jové, T. "Designing a Branch
Target Buffer for Executing Branches with Zero
Time Cost in a RISC Processor”, Microprocessing
and Microprogramming, North-Holland, 24:
573-580,1988.

(6] Hinnant, D.F. "Benchmarking UNIX Systems"
Byte, Peterborough, N.H., McGrawHill,
9(8):132-5,400-9, Aug 1984.

[6] Reinhold, P.W. "Dhrystone: A synthetic
Systems Programming Benchmark",
Communications of the ACM, New York,
27(10):1013-1030, Oct 1984 ,

[7] Tamir, Y. "Simulation and Performance
Evaluation of the RISC Architecture" Berkeley ,
CA, University of California, Memorandum,
UCB/ERLM 81/17,1981, 29 pp.

[8] Lee, J.K.F. & Smith, A.J. "Branch Prediction
Strategies and Branch Target Buffer Design""
Computer, New York, IEEE, 17(1):6-22, Jan 1984.

