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RESUMO

Descrevemos a nog¢do de orientagdo localmente transitiva de um
um grafo ndo direcionado, como uma generalizagdo de orientagdo tran
sitiva ordindria . Como aplicagdo, obiemos um algoriimo para a e
ragdo de todas as cliques maximais de um grafo circular G, cuja com
plexidade é O(n(m+a)), onde n,m e o sdo o numero de vértices, ares
tas e cliques maximais de G. Em adigdo, mostramos que o numero exa

to de tais cliques pode ser computado em tempo O{nm).

ABSTRACT

We describe the notion of locally transitive orientations of
an undirected graph, as a generalization of ordinary transitive
orientations. As an application, we obtain an algorithm for generating
all maximal cliques of a circle graph G in time O(n(m+a)), where
n,m and a are the number of vertices, edges and maximal cliques of
G. In addition, we show that the actual number of such cliques can

be computed in 0(nm) time.



1. INTRODUCTION

We describe an algorithm for generating all maximal cliques of
a circle graph having time complexity O(n(m+a)), where n,m and a
are respectively the number of vertices, edges and maximal <cliques
of the graph. The algorithm is an application of a special orientation
of a graph called locally transitive, a generalization of transitive

orientations.

Clearly, the maximal cliques of a general graph can be enumerated
by the algorithm of Tsukiyama et al. [7], but it would require O(nm'a)
time, where m' is the number of edges of the complement of the graph.
As for cliques of circle graphs, the following are some known results.

Rotem and Urrutia [6] generate all the maximum (largest maximal)
cliques in O(n(n+a*)) time, a* being the number of such cliques. Al
gorithms for computing one maximum clique include that of Rotem and
Urrutia [6], Gavril [3] and Buckingham [1], respectivily of Ltime
complexities 0(n2), O(n3) and O(n+mlog w), where w is the size of the
maximum clique. A maximum weighted clique can be computed by the al
gorithms of Hsu [4] and Buckingham [1] in time 0(n2+m loglogn) and
0O(n+md), respectively where § is the maximum degree of the graph.

In addition, we show that the exact number o of maximal cliques
of a circle graph can be computed in O(nm) time. Observe that a can
be large compared to n. In fact, the examples by Moon and Moser [5]
of graphs having a maximum number of maximal cliques are circle graphs.
Therefore it might be highly inneficient to compute a by generating
all maximal cliques and counting them. This is a motivation for
describing a polynomial time algorithm for computing such number.

The following are the terminology and notation employed.
G denotes an undirected graph with vertex set V(&) and edge set

E(G). If Z € V(G) then G<Z> denotes the subgraph induced in G by Z.
A clique is a complete subgraph of G and a maximal clique is one not
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properly contained in any other. A circle graph G is the intersection

graph of a set of n chords of a circle C. We may assume that no two
chords of C share a common endpoint. A circle sequence S of G is

the sequence of the 2n distinct endpoints of the chords of C that
we obtain as we walk around C in some fixed direction, starting from
a chosen point of C. Denote by ST(V) and Sz(v) respectively the first
and second instances in S of the chord of C corresponding to ve V(G).
Write Si(v) < Sj(w) whenever Si(v) proceeds S.(w) in S. Hence

J
51(v) < Sz(v), for all v ¢ V(G).

-

G denotes an acyclic orientation of G. AV(G) and A;1(E)are the

subsets of vertices incident to edges leaving and entering v, re
spectively. For v,w € V(G), v is an ancestor of w in E whenever the
digraph contains a v-w path. In this case, w is a descendant of v.

Denote by DV(E) the set of all descendants of v. If w ¢ Dv(E) and

viw, then v is a proper ancestor of w and the Tatter a proper descendant

of v. G is called transitive whenever (v,w),{(w,z) € E(&) implies
(v,2z) € E(G). The transitive reduction of G is the spanning subdigraph

of G formed exactly by the edges which are not implied by transitivity.

In Section 2 we present the locally transitive orientations of
a graph. The method described for all maximal clique enumeration em
ploys such orientations. In Section 3 we show that a circle graph

always admits a locally transitive orientation and the latter is
easily obtained from the circle sequence of the graph. The actual
algorithms are described in Section 4, whereas the results are

summarized in the last section.



2. LOCALLY TRANSITIVE ORIENTATIONS

Let G be an undirected graph, |V(G)| >~ 1, and G an acyclic ori

entation of it. Let v,w € V(G), v a proper ancestor of w in E, and

denote by Z(v,w) < V(G) the subset of vertices which are simultane

ously descendants of v and ancestors of w in G. An edge (v,w) e E(E)

=
induces local transitivity when G<Z(v,w)> 1s a transitive digraph.

Clearly, in this case the vertices of any path from vtow ﬂ1E<Zhuw)>

induce a clique in G. In addition, (v,w) induces maximal local

transitivity (or shortly, is a maximal edge) when there is no edge
-y

(v',w') € E(G) different from (v,w) such that simultaneously v' s
-
an ancestor of v and w' a descendant of w in G. The orientationg is

locally transitive when each of its edges induces local transitivity.

As an example, the digraph of figure 1(b) is a locally transitive
orientation of the graph shown in 1(a).

The application of locally transitive orientations to the enu

meration of maximal cliques is based on the following theorem.

Theorem 1: Let G be an undirected graph, E a locally transitive
orientation of it and ER the transitive reduction of E. Then there

exists a one-to-one correspondence between maximal cliques of G and
- -
v-w paths in Gn, for all maximal edges (v,w) ¢ E(G).

Proof: Let C be a maximal clique of G. Then the subdigraph i
duced in G by C is a tournment and therefore has a spanning path P.
Because G is locally transitive and C a maximal clique it follows

-

-
that no edge of P can be implied by transitivity. Hence P is also a

n

spanning path of C in ER- Suppose. P is
the path in G from vertex v to w. Then (v,w) € E(E) must be a maximal
edge, otherwise C is not a maximal clique. Therefore we can choose
3 as the v-w path corresponding to C satisfying the conditions of
the theorem. Conversely, any maximal edge (v,w) € E(E) defines a
clique C formed by the vertices of a v-w path in ER- C must be a

maximal clique, otherwise (v,w) is not a maximal edge O.



=
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Figure 1: A Locally Transitive Orientation

3. CIRCLE GRAPHS

Theorem 1 suggests a method for enumerating the maximal cliques
of a graph G, provided a locally transitive orientation G is given.
The problem remains how to construct E. Below we show that if G s
a circle graph then it is always simple to compute such an orientation.

The next lemma is immediate.

Lemma 1: Let G be a circle graph, S a circle sequence of it and
VyseoosVy € V(G) satisfying S1(vi) < 51(Vi+1)’ T¢i<k. Then {vq,...,v }
induces a clique in G if and only if Sq(vy) < So(vp) <...< Sol(vy).

Let G be a circle graph and S a circle sequence of it. A Sq-

orientation G of G is one in which every directed edge (v,w) € E(E)
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satisfies,s1(v) < Sq(w).

Lemma 2: If (v4q,vy) is an edge of a Sq-orientation G of G then

each path Vis .oy induces a clique in a.

Proof: If follows Sq{vq) <...< Sq{v ). Also, since (vi,vi) € E(E}
we conclude that S,(v, ) < S,(vqy). Now, for i=1,....k-1, (vi,vi4q) € E(G)

~and 51(y1) < S1(vi+1) imply Sz(vi) < Sz(v1+1). Therefore,
51(Vk) < 52(v1) <...< Sz(vk). By lemma 1 it follows that Vs eV
induces a clique in G O.
Theorem 2: Any Sq-orientation is locally transitive.
Proof: Clearly, a Sq-orientation G of the circle graph G is
always acyclic. Suppose it is not locally transitive. Then there

-

exists an edge (v,w) e E(G) which does not induce local transitivity.
-

That is, there is a path from v to w in G which does not induce a

clique in G, contradicting lemma 2 O.

4. THE ALGORITHMS

The algorithm for finding all maximal cliques of a circle graph
G can now be described as follows:

1. Construct a 51—orientafion G of G

2. Construct the transitive reduction ER

-
3. Find all maximal edges of G

-

4. For each maximal edge (v,w) € E(G)
find all v-w paths in ER (each of them defines a maximal
clique of G).

We discuss below the steps involved in this algorithm.
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A 51-orientat10n G of the given circle graph can be easily ob

tained from its circle sequence. The sequence itself can be computed
in 0(nm) time, following the characterization by Gabor, Hsu and
Supowit [2]. The amount of time required by the construction of GR

is less than O(nm). Step 3 of the above algorithm can be implemented
following an observation that whenever G is a locally transitive
orientation then (v,w) € E(G) is a maximal edge iff
A (G)n A (8) = AT @) A Az (@) = o
v W v W

"There is no difficulty to check this condition and therefore obtain
all maximal edges in O(nm) time. For implementing step 4 of the al
'} A

-+
gorithm, we define for each v € V(G), Z(v) = V(G) as the subset of
vertices simultaneously descendants of v and ancestors of w, for

every w such that (v,w) is a maximal edge. Clearly, the required v-w
paths in ER taken from some chosen vertex v are exactly the source-
sink paths in §R<Z(v)>. Each of these paths can be obtained in 0(n)
time, using a simple unconstrained dept-first search of §R<Z(v)>,
starting at the source v. The construction of ER<Z(V)> takes 0(m)
time for each vertex v. Therefore the overall complexity of the
maximal clique finding algorithm is O(n(m+a)).

Now, we proceed to describe the algorithm for computing the
number of maximal cliques a of a circle graph G, as follows.

1. Perform steps 1,2 and 3 of the previous (maximal clique finding)
algorithm.

2. For each v € V(E), let W(v) be the subset of vertices w such

that (v,w) is a maximal edge, and construct Eﬁ<2(v)> as the

digraph obtained from ER<Z(V)> by adding a new vertex w'and
and edge (w,w') for each w e W(v).

3. For each v € V(G), compute the number afv) of source-sink
paths in Eé<2(v);, as follows:



<I{v})>, otherwise

I'alt), vhere t e AU{ERcEfv]?j

A5 noted before, step 1 can be implemented in O(nm) time and

the same applies for step 2. For each considered digraph ER<E[u},,

we can obtain a(v) in O(m) time if we compute w(u) backwards from

the sinks to the source v. Therefore the everall time bound is Q(m).

The correctness of this algorithms follows directly from the
one-to-one correspondence between maximal cliques of G and source-sink

paths in ERcE(vj>, for each v e U{E}.

5. CONCLUSIONS

We have described an algorithm for finding all maximal cliques
of a circle graph G in time O(n(m+a)}), where n,m and o are the number
of vertices, edges and maximal cliques of G, respectively. The
maximal cligues are generated in lexicographical ordering. In
addition, we have also formulated a method for computing the total
number of maximal cliques of G in overall time O(nm). Both algarithms
can be applied to any graph (not necessarily a circle one) to which
a locally transitive orientation is known.
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