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RESUMO

Há uma demanda crescente por análises mais elaboradas e significativas nos eSports: seja
para o entretenimento dos espectadores enquanto assistem seus times favoritos competi-
rem, para identificar trapaceiros automaticamente ou até mesmo para obter uma vantagem
competitiva sobre um oponente, existe uma infinidade de aplicações para tais análises den-
tro da cena. Logicamente, segue então que existe também uma demanda por conjuntos
de dados bem estruturados e organizados que possibilitem a exploração eficiente de dados
e sirvam como base para tais camadas de análise e visualização. Nosso trabalho fornece
os meios para a construção de tal conjunto de dados para o jogo Counter-Strike Global
Offensive (CS:GO). Propomos um workflow que pode ser executado para capturar e ex-
trair não somente metadados de torneios e jogadores, mas também os dados altamente
granulares do jogo que estão disponíveis em um arquivo demofile do CS:GO. O dataset é
então estruturado de forma que o metadado é exposto através de uma interface SQLite e
os dados altamente granulares são armazenados em – e podem ser consumidos através de
– arquivos parquet.

Palavras-chave: esporte eletrônico; conjunto de dados; csgo; jogos;



ABSTRACT

There is a growing necessity for insightful and meaningful analytics within eSports: be
it to entertain spectators as they watch their favorite teams compete, to automatically
identify and catch cheaters or even to gain a competitive edge over an opponent, there is
a plethora of potential applications for analytics within the scene. It follows, then, that
there is also a necessity for well-structured and organized datasets that enable efficient
data exploration and serve as a foundation for visualization and analytic layers. Our
work provides the means by which to construct such a dataset for the Counter-Strike
Global Offensive (CS:GO) game. We propose a workflow that can be executed to fetch
and extract not only metadata of tournaments and players, but also the highly-granular
in-game data one can get out of CS:GO demofiles. The dataset is then structured in a
way that the metadata is exposed through a SQLite interface and the highly-granular
data is stored – and can be consumed from – parquet files.

Keywords: esport; dataset; csgo; games;
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1 INTRODUCTION

From the ages of ancient civilizations to the current times, the practice of sports has
always been a widespread activity and a source of recreation for the humankind (EL-
HARAMI, 2015). Thanks to the development of technology, the same atmosphere that
has ignited crowds of spectators and inspired people all over the world in sports, has also
become a part of electronic games. By breaking the frontiers and allowing people to not
only spectate but also compete with other people around the world over the Internet,
tournaments that until around the 2000s were mostly among amateur players started
to become bigger and attracted the market’s attention. Rapidly following it, a large
structure was formed around professional tournaments, which became collectively known
as “eSports” (a short term for electronic sports).

According to SuperData’s annual report (SUPERDATA, 2021), digital games earned
$126.6B in 2020 and many organizations have been investing in the creation of teams and
leagues to explore the competitive potential of digital games. One of the games that have
for a long time been a pillar of the eSports world and that greatly influenced its growth
is the franchise of the multiplayer first-person shooter: Counter-Strike (CS).

Released in 1999 as a modification1 of another game called Half-Life, the Counter-
Strike franchise has surpassed and outlived its predecessor, with many versions of the
game being developed and released. Its latest version – called Counter-Strike: Global
Offensive (CS:GO) – is the subject of this article.

1.1 COUNTER-STRIKE: GLOBAL OFFENSIVE

CS:GO is a first-person shooter game that revolves around a team-based action ga-
meplay with a thematic of counter-terrorist (CTs) forces against terrorist forces (Ts). A
competitive match is defined by two different teams (composed of 5 players each) playing
against each other in a preselected map. A map is the virtual location where the match is
played at and each map has its own particular set of characteristics and in-game topology
that completely changes the match’s dynamic. At the moment of writing of this article,
there are 7 maps that can be selected to play in a competitive match setting: Mirage,
Inferno, Nuke, Overpass, Dust II, Vertigo and Ancient. Due to the different nature of each
map, the strategies employed can vary greatly and, as a result, some maps may favour
a specific side (Ts or CTs). As an illustration, the Dust II map could be said to have a
in-game topology that favors the terrorists forces due to how quickly this side can get to
the objective sites.
1 Modifications are also known as mods in the gaming jargon.
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Figure 1 – Dust II minimap
A loading screen showing the “Dust II” minimap.
The locations marked A and B on the map are the two bombsites.
The locations marked with a blue and yellow circles mark the CTs and Ts spawn locations,
respectively.

A competitive match is divided in two halves, where a team A starts playing in the
counter-terrorist side (CTs) and a team B starts playing in the terrorist side (Ts). After
playing 15 rounds, the two teams switch sides (in the example above, team A goes to
T and Team B goes to CT). Each round is 1 minute and 55 seconds long, with both
teams having specific win conditions: the Ts can win a round by either eliminating every
member of the opposing team or by planting a bomb in a designated zone, which will
detonate after 40 seconds if not defused by the CTs. The CTs can win a round by either
eliminating every member of the opposing team, by defusing the bomb after it has been
planted or by staying alive in the round after the round time is over if the Ts did not
plant the bomb. The first team to win 16 rounds is the match winner and the game is
over.

At the beginning of each round, teams start on their own bases, which are fixed
designated locations based on the selected map. Once the round timer starts to run, the
goal of the CTs is to defend two key locations on the map called bombsites: the defense
aims to prevent the Ts from planting the bomb on one of these locations. In contrast, the
goal of the Ts is to plant the bomb on one of these bombsites and to defend it until the
bomb timer runs out – and so it explodes.

An important aspect to keep in mind is the game economy: a certain amount of money
is awarded to each player at the end of each round based on their win or loss conditions.
The baseline gain comes from whether the team won or lost the round: winning a round
grants more money to each individual player on a team then losing the round. Additional
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Figure 2 – Dust II - CTs spawn location

Figure 3 – Dust II - Ts spawn location
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Figure 4 – Dust II - Bombsite A

Figure 5 – Dust II - Bombsite B



15

bonus money is also awarded to each player based on their achievements on the round:
each kill awards a specific amount of money based on the gun used, and planting or
defusing the bomb also awards additional money to the player that carried out the action.
This money can be used at the beginning of each round to buy guns and equipment:

• Guns can do damage and kill opponents if enough bullets land on the target. Each
gun has its own set of characteristics and some are exclusive to a specific side –
i.e. some guns can only be purchased by CTs while others can only be purchased
by Ts. Additionally, each gun deals a specific amount of damage based on a set
of parameters – e.g. the location the bullet hits the body, whether that location
is protected by equipment or external environmental entities such as boxes or thin
walls, etc – and better guns are the most expensive ones.

• Bullet proof vests and helmets reduce inflicted damage for each landed bullet.

• Defuse kits reduce the bomb defusal time.

• HE grenades can damage players based on the radius of its explosion.

• Flash grenades can blind enemy players for up to 4.87 seconds.

• Smoke grenades can obstruct vision of tight corridors.

• Molotov grenades can burn enemy players and cause damage.

It is clear then that players from both teams need to manage their economy in order to
sustain guns and equipment that will give them a competitive edge on each round. Note
that guns and equipment are carried out to the next round if the player remains alive. In
contrast, if a player dies on any given round, every purchased gun and equipment is lost
and needs to be re-purchased on the next round – if there is enough money available for
the investment, that is.

1.2 COMPETITIVE TOURNAMENTS

There are many professional CS:GO tournaments with different formats and awards.
Tournaments with higher prestige usually offers a 1 million dollar award for the tourna-
ment winner.

The most popular format is a group stage followed by playoff stage in a Swiss Format
(RIVALRY, 2021). Each team plays against each other in the group stages in what is
called a series. Each series is usually composed of multiple matches that are disputed
in a best-of-X format (with X being the number of maps played, usually ranging from 1
to 5). Each win in a series grants a point for the winning team and once a threshold of
points is achieved, the team advances to the playoff stage. The playoff stage is composed
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of quarter finals, semifinals and grand final. In the playoff stage, if if a team loses a series
they are out of the tournament and the winning team advances to the next series.

The proof-of-concept dataset presented in this article (see Section 7) covers a tour-
nament that follows precisely this format.

1.3 GOALS AND CONTRIBUTION

On the tail of the incredible growth of the eSports market – and of the CS:GO com-
petitive scenario – is the ever-growing need for insightful analytics and visualizations.
Acquiring data to support these goals is not easy: the readily available data one can find
in most CS:GO websites can only support basic analysis. Furthermore, there are many
players2,3 in the market that seemingly employ sophisticated data retrieval strategies to
obtain quality data, but the knowledge and tooling used to obtain such data seems to
be intellectual property. This ends up leaving a gap with respect to publicly available
datasets.

Thus, to enable data exploration and ultimately empower the community to conduct
meaningful and insightful analysis, this article introduces a workflow that can be leveraged
to retrieve quality CS:GO data. In this work, the main contributions are:

• Proposed solution to bridge the gap – between metadata and actual data – found
in the literature and publicly available CS:GO datasets

• Publications (see Subsection 1.4)

• Proof-of-concept dataset (see Subsection 1.4)

• Proof-of-concept analysis (see Section 8)

• Open sourced codebase, which one can easily extend (see Section 9)

1.4 PUBLICATIONS

The work developed in this project was used to generate a proof-of-concept dataset that
was published – along with a short-paper – in the DSW’214 symposium. A summarized
description of the workflow was also published as a short-paper in the SBGames’215

symposium.

2 https://sixteenzero.net/
3 https://csgostats.gg/
4 https://sol.sbc.org.br/index.php/dsw/article/download/17412/17248/
5 https://www.sbgames.org/proceedings2021/WorkshopG2/219280.pdf

https://sixteenzero.net/
https://csgostats.gg/
https://sol.sbc.org.br/index.php/dsw/article/download/17412/17248/
https://www.sbgames.org/proceedings2021/WorkshopG2/219280.pdf
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2 RELATED WORK

Some of the first papers involving crawling and analysis of gaming data focused on
Second Life (VARVELLO; VOELKER, 2010; VARVELLO et al., 2008). Some of the
challenges presented in our work, e.g., corresponding to the rate at which crawler can
consume data from public sources without being black listed, are common across the
works. Among the differences, we note that whereas data from CS:GO competitions is
available in websites such as HLTV, Second Life by its nature counts with a distributed
architecture, requiring different tools and methods for data gathering.

Interesting works can also be found in the literature on titles within the eSports
scene. As a notable example, another game developed and maintained by the company
responsible for CS:GO (Valve), called “Dota 2”, provide equally good opportunities for
data exploration and analysis, as both utilize a proprietary format to store highly granular
in-game data. Works such as (YANG; QIN; LEI, 2016) and (HODGE et al., 2021) make
use of this richness of data in order to tackle match result prediction, paving the way
to similar works in CS:GO, such as (BEDNáREK et al., 2018) and (MAKAROV et
al., 2018) – which presents game analytics for predicting winning team based on game
statistics and TrueSkill.

Among works focusing solely on CS:GO, the two more closely related to ours are (XE-
NOPOULOS; DORAISWAMY; SILVA, 2020) and (BEDNáREK; ZAVORAL; YAGHOB,
2017). In (BEDNáREK; ZAVORAL; YAGHOB, 2017) the authors report their findings
on the process of parsing and analyzing CS:GO metadata extracted from demofiles – a
proprietary format maintained by Valve that serializes snapshots containing highly gra-
nular data that reflects the state of the game as it takes place. Their goal is to understand
the challenges faced in extracting and structuring information from this format and thus
establish a strategy for acquiring quality data that can be used as a basis for assessing and
predicting the performance of players and teams in CS:GO. We envision that our work
can be instrumental to reproduce and expand previous efforts such as those reported
in (BEDNáREK; ZAVORAL; YAGHOB, 2017).

In (XENOPOULOS; DORAISWAMY; SILVA, 2020) the authors propose a new tech-
nique for evaluating a player’s impact on the results of a match. They also provide an
open source platform to collect data from CS:GO. Their platform is complementary but
different from ours. In particular, it does not bridge the gap between metadata and the
highly granular data one can retrieve from CS:GO demo files (see Section 4). In addition,
the datasets produced by (XENOPOULOS; DORAISWAMY; SILVA, 2020) are still not
publicly available.
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3 CHALLENGES

Collecting data in a large scale fashion can be a problem even if the data is readily
available: there are many avenues of concern within the overall process of collecting,
storing and shaping raw data into valuable information. For instance, how do you optimize
and scale your data fetching routine when the source isn’t well-structured or protects itself
against crawlers? How do you store the data while minimizing infrastructure costs and
maximizing retrieval response time? Will the data require real time aggregation? Should
it be structured with a relational schema or not? There are many more questions looming
over the topic, and answering these questions requires a deeper understanding of one’s
objectives when handling the data.

The collection process for CS:GO data is no different. There are many challenges in
capturing and structuring the data in a useful way. To name a few:

• Surpassing anti-crawling mechanisms while being mindful of crawling ethics, as not
to disrupt the crawled source (see Subsection 3.1).

• Scaling the data fetching routine.

• Extracting information out of CS:GO “demofiles”.

• Linking metadata and data (see Sections 4, 5.5 and 6).

• Managing associated costs.

The breadth and depth of data available in a CS:GO match is astounding, though.
Once the challenges are overturned, it is possible to build a robust dataset that can be
leveraged in many ways, such as to gain insight into aspects of the game that are hidden
from the “naked eye”, to define new models that better evaluate the impact of each player
in a match and to find trends in the game.1

3.1 ETHICAL ASPECTS

In order to build a proof-of-concept dataset and therefore prove the capacity of the
workflow presented herein, it was necessary to acquire real data. This data was crawled
from the HLTV platform (see Section 4) with due ethical concerns:

• The data acquired is public and any individual on the internet can access it without
logging into the platform.

1 Such trends also known as “meta” within the gaming community.
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• The crawler – the only “closed source” code in this work – has mechanisms to make
sure it acquires the data without disrupting the service, by:

– Waiting several seconds between HTTP requests.

– Crawling the data in a single-threaded model – i.e. no parallel requests.

• The data selected for the proof-of-concept consists of a single tournament. No more
data was acquired.

3.2 UNRAVELING THE DEMOFILES

The “demofiles” (see Section 4) are protobuf-serialized2 files containing structured
information representing everything that happened throughout a match – i.e. the match
can effectively be replayed by consuming the file. The problem is: the way the data is
serialized is proprietary, meaning there aren’t any official sources documenting how to
extract information from it. To solve this challenge without recurring to direct reverse
engineering, we employed a parser3 that abstracted away some of that work, but since
the parser was still in its early days, there was still considerable need for research and a
trial-and-error approach to find the desired data in the underlying protobuf schema that
the parser exposed.

2 https://developers.google.com/protocol-buffers
3 https://github.com/saul/demofile

https://developers.google.com/protocol-buffers
https://github.com/saul/demofile
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4 DATA SOURCES

To build a truly meaningful CS:GO dataset, we believe one has to leverage aspects
from two different data sources and bridge the gap in between them:

• The first source – containing data henceforth referred to as “metadata” – is any
website or application that tracks competitive matches and displays their results.
It offers information such as the date window in which championships took place,
the dates in which matches were played, the teams and players that participated in
those matches, their scores and finally, some high-level statistics that can support
shallow analysis.

• The second source – containing data henceforth referred to as simply “data” – is
an actual “replay” file of a match. These “replay” files – henceforth referred to as
“demofiles”, as they are known in the community – are protobuf-serialized files that
contain every important event that occurred within the match. It offers a plethora
of information regarding every player at almost any given moment in the game, such
as their positions, their net worth (i.e. current money plus investment in current
equipment) and their actions (e.g. movements, shots, grenades thrown).

Thus, for the overall success of our endeavor, it was paramount to select a source that
made it possible to capture both the metadata and the actual data. Consider the HLTV
CS:GO portal1: in it, one can not only browse championships and select the results of
the matches played in them, but also download the demofiles of each match, which can
then be consumed to extract the highly granular data representing the events played out
in the match.

1 http://hltv.org

http://hltv.org
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5 WORKFLOW

Next, we propose a workflow that can be leveraged to compose a CS:GO dataset
capable of bridging the gap between the metadata and data planes. It consists of five
different components:

Figure 6 – Dataset generation workflow

5.1 CRAWLER

The web crawler is the entry point of the workflow: given the identification number
of a tournament, it crawls the HLTV website 1 , scrapes relevant data and stores it in a
manifest file 2 . The information stored in this file is imperative for the construction of
the dataset and is used in different steps of the workflow. It stores metadata such as the
teams and players participating in the tournament, the results of each map disputed and
finally the download URL for each demofile – which contains the highly granular data we
want to extract.
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5.2 DOWNLOADER

The downloader is the module responsible for downloading the demofiles from HLTV.
It retrieves the download URLs from the manifest file 3 and downloads 4 each file to
the configured directory in the local file system 5 .

5.3 PARSER

The demo file parser parses the downloaded protobuf-serialized demofiles and writes
the desired data in a set of CSV files 8 .

5.4 ORCHESTRATOR

The orchestrator is the module responsible for orchestrating the transformation of the
demofiles into the final parquet files, which contain the highly granular data we deem
important for analysis. It does this by iterating over the downloaded demofiles 6 ,
invoking the parser 7 and finally converting resulting data from CSV to the parquet
columnar format 9 (see Subsection 6.2).

5.5 INDEXER

The indexer is the last module of the workflow: it is responsible for bridging the gap
between the metadata and actual data planes. It does this by indexing the location of each
disputed map data – already structured as a set of parquet files – in the local file system
10 , wrapping it around metadata data read from the manifest file and finally exposing

this information through the “queryable” interface it generates: a SQLite database 11
(see Subsection 6.1).
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6 DATASET STRUCTURE

The dataset was designed to be consumed locally while minimizing the resources requi-
red to store and process it. The main drivers behind the design were to allow cost-effective
data exploration and to facilitate integration with well established data-science libraries
(e.g. Pandas). It is structured as a set of files that are laid out hierarchically on the local
file system (see Figure 7) and is composed solely of directories, a SQLite database and a
set of parquet files.

Figure 7 – Dataset Hierarchical Structure

6.1 ROLE OF SQLITE FILE

As outlined in the previous section, the SQLite database is the link between the
metadata and data planes: through it one can perform queries using metadata – such as
a player or a map name – and retrieve the location of relevant parquet files containing
the highly granular in-game data that enables in-depth analysis.

6.1.1 Why SQLite?

But, why SQLite? There are, of course, other options of database engines that could’ve
been employed to achieve similar results. As a simple – and by no means extensive – list
of examples, on the relational side, PostgreSQL and MySQL could’ve been contenders.
On the non-relational side, MongoDB could’ve been another.

SQLite1 is an in-process library that implements a self-contained, serverless, zero-
configuration, transactional SQL database engine and the complete state of the database
it generates and manages is usually contained in a single file on disk. This allows us to
reap the benefits of a transactional database engine without the additional costs associated
1 https://www.sqlite.org/about.html

https://www.sqlite.org/about.html
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with using it as a service or maintaining a remote database server. It also means we can
treat the whole dataset – i.e. the entirety of the hierarchical structure presented here –
as a single unit, which facilitates versioning and sharing of its contents.

6.2 ROLE OF PARQUET FILES

The parquet files contain highly granular in-game data, such as the events that oc-
curred within the game and the positions of each player at virtually every moment of the
game.

6.2.1 Why Parquet?

But, why Parquet? Again, there are other alternatives to the format that could’ve
been employed. Obvious contenders would’ve been CSV or even JSON.

Parquet2 is a storage format that allows use of compressed, efficient columnar data
representation. To achieve that, it uses complex nested data structures to represent the
data, leveraging the record shredding and assembly algorithm described in the Dremel
paper (MELNIK et al., 2010). Effectively, it allows us to apply specific encoding schemes
and compression algorithms to each column based on the data type it stores, which
ultimately leads to files requiring considerably smaller disk footprints for storage and
also enables programs to efficiently load the data in-memory by loading only the desired
columns.

2 https://parquet.apache.org/documentation/latest/

https://parquet.apache.org/documentation/latest/
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7 DATASET

Next, we describe the obtained dataset and dive into the contents of the highly granular
in-game data extracted from demofiles. We restrict our description, focusing on a proof-
of-concept of what can be achieved by leveraging the workflow described in Section 5.
Lastly, we cover the resources required to make use of this proof-of-concept dataset.

Our dataset contains all matches played in the “ESL Pro League Season 13” 1 champi-
onship, where 73 distinct matches were disputed throughout the competition, resulting in
a total of 173 maps played. Each disputed map has its in-game information partitioned
in a set of five different parquet files, further described in the next subsections.

7.1 BOMB_LIFECYCLE.PARQUET

A “bomb lifecycle” file contains events related to the C4 explosive - a mechanism in
the game that can ultimately be used to claim a round. If the bomb is defused or isn’t
planted at all in a round’s allotted time, the counter-terrorists win. If the C4 explosive
explodes, the terrorists win. Table 1 shows a sample of the file contents.

Table 1 – Bomb lifecycle

tick round event userId

6877 0 bomb_dropped 10
7260 0 bomb_pickup 23
16903 0 bomb_planted 23
22152 1 bomb_exploded 23
22792 1 bomb_pickup 21

7.2 PLAYER_DEATH.PARQUET

A “player death” file contains the events of every death that occurred throughout a
particular game, along with some information to contextualize each death, such as whether
the player was blinded by a flash-grenade, which weapon was used, whether the bullet
was a “headshot”, etc. Table 2 shows a sample of the file contents.
1 https://www.hltv.org/events/5553/esl-pro-league-season-13

https://www.hltv.org/events/5553/esl-pro-league-season-13
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Table 2 – Player death

tick round userId attacker assister assistedFlash weapon headshot penetrated

5497 0 13 10 23 False glock False 0
6216 0 21 18 0 False usp_silencer True 0
6877 0 10 19 0 False usp_silencer True 0
7087 0 19 23 0 False glock True 0
7503 0 9 18 0 False usp_silencer True 0

7.3 TICK.PARQUET

A “tick” file contains basic player information at virtually every moment of the game,
such as their position on the map and their current health points2. Table 3 shows a sample
of the file contents.

Table 3 – Ticks

tick round userId steamId userName health pitch yaw speed x y z placeName

4350 0 9 xxx blameF 100 4.48 106.81 0.0 1296.0 -256.0 -167.96 TSpawn
4350 0 10 xxx jks 100 11.14 108.93 0.0 1216.0 -16.0 -163.96 TSpawn
4350 0 11 xxx RUSH 100 11.66 317.64 0.0 1216.0 -211.0 -163.96 TSpawn
4350 0 12 xxx tiziaN 100 9.87 87.79 0.0 -1656.0 -1800.0 -266.92 CTSpawn
4350 0 13 xxx tabseN 100 6.55 89.04 0.0 -1552.0 -1808.0 -266.29 CTSpawn

7.4 UTILITY_LIFECYCLE.PARQUET

A “utility lifecycle” file contains information regarding the utility grenades used th-
roughout the match. The coordinates in this file represent where the grenade landed and
exploded or expired. Table 4 shows a sample of the file contents.

Table 4 – Utility lifecycle

tick round event userId x y z

4622 0 smokegrenade_thrown 11.0 1422.96 -367.96 -165.65
5307 0 flashbang_thrown 11.0 1180.12 -964.68 -261.65
5529 0 flashbang_detonate 11.0 -88.27 -1686.01 200.85
5842 0 smokegrenade_detonate 11.0 -640.25 -1582.35 -165.96
8153 0 smokegrenade_expired 11.0 -640.25 -1582.35 -165.96

7.5 WEAPON_FIRE.PARQUET

A “weapon fire” file contains context information regarding every weapon that was
fired throughout the match: the actions of throwing a grenade, firing a weapon or using
2 Each player begins each round with 100 health points and their death means those points were reduced

to 0
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Table 5 – Weapon fires dataset

tick round userId weapon

4622 0 11 weapon_smokegrenade
4722 0 12 weapon_knife_survival_bowie
4796 0 12 weapon_knife_survival_bowie
4879 0 13 weapon_knife_tactical
5127 0 13 weapon_knife_tactical

a knife are all classified as a “weapon fired” event. Table 5 shows a sample of the file
contents.

7.6 REQUIRED RESOURCES

Our workflow leverages the Apache Parquet format3 as a means to decrease system
resources when storing and consuming the dataset. The columnar nature of this format
allows us to:

1. Apply column-specific compression and encoding schemes, drastically reducing the
required disk size to hold the dataset;

2. Read only the desired columns when consuming the dataset, again drastically redu-
cing the amount of memory required to hold the dataset in memory.

A quick comparison between the dataset in CSV format and the currently employed
optimized parquet format shows the drastic difference in disk size required to store the
dataset in the hard drive (see Table 6).

Table 6 – CSV vs Parquet

Unit CSV Apache Parquet

(GB) 83.2 9.86

3 https://parquet.apache.org/documentation/latest/

https://parquet.apache.org/documentation/latest/
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8 ANALYZING THE DATASET

The standard way of using the dataset is to first query the index database to locate
the parquet files of interest and then proceed to load the data into memory, selecting only
the necessary columns to support the analysis. This workflow is very malleable, in the
sense that both the SQLite database and the parquet files can be read using a wide range
of libraries across several programming languages.

There are many ways one can go about using this dataset in order to gain insight into
the game. To illustrate that point, Figure 8 shows a simple visualization: a contour line
graph of flash-grenade explosions on every “Inferno” map – this is one of the maps in the
game – played throughout the championship contained in this dataset.

Figure 8 – Contour lines of flash-grenade explosions on the Inferno map.

8.1 EXAMPLE IMPLEMENTATION

Following is a simple implementation in Python that generates Figure 8. We start by
importing the libraries we require – most of which are pretty standard when conducting
Data Science in Python. Then, we proceed to populate a “Data Frame” with the data we
wish to analyze. In order to do this, we leverage the local SQLite database by querying
the location in the file system of the parquet files we wish to load into the “Data Frame”.
We can query the files of interest using metadata – for instance we can select all the games
where a specific map was played. Finally, we plot the contour line graph.
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Code 1 – Imports
import itertools
import os
import pandas as pd
import pyarrow.parquet as pq
import sqlite3
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import numpy as np
import seaborn as sns
from pathlib import Path

Code 2 – Setting up the Data Frame
conn = sqlite3.connect("C:\\csgo -dataset \\index.db")

dfs = []
for row in conn.execute(

f"SELECT path_on_fs FROM maps WHERE map_name = ’INFERNO ’"
):

map_dir = row[0]

utility_file = os.path.join(map_dir , "utility_lifecycle.parquet")
df = pq.read_pandas(

utility_file , columns =["tick", "round", "event", "x", "y"]
).to_pandas ()

dfs.append(df)

df = pd.concat(dfs)
df.reset_index(inplace=True)
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Code 3 – Plotting the data
img = mpimg.imread("../ maps/de_inferno_radar.dds")

fig = plt.figure(frameon=False , figsize =(15, 15))
imgplot = plt.imshow(img , zorder =0)

sns.set_theme(style=’dark’)
sns.kdeplot(data=round_df ,

x=’x’,
y=’y’,
cmap=’Reds’,
shade=True ,
alpha =0.33,
cbar=False ,
antialiased=True ,
thresh =0.2,
levels =10)

plt.show()

8.2 FURTHER EXPLORATION

Next, we raise some interesting topics for further analytical exploration. We refer to
scenarios of interest and to research questions that can be elaborated or resolved from the
availability of our dataset.

• What is the behavior of user’s mobility?

From the user’s movement data, it would be possible to analyze how the best players
in the teams move and how this affects their results. This information can be used
by these same players to find their flaws and fix it or by opponents to overcome
those players. We envision that the vast literature on human mobility may be con-
trasted against player’s mobility, and that generative mobility models can be used for
practicing purposes.

• What are the most adopted game strategies?

Based on the dataset, it would be possible to categorize the different strategies used
by the teams and how the teams coordinate their actions during the match. We
envision that both supervised and unsupervised machine learning tools may be used
for clustering and classification purposes.
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• What are the best strategies to win a match?

Based on the strategies, it would be possible to infer and compare which were used
in the championship and find out which were the most victorious or most efficient
against the best teams. We envision that using reinforcement learning, one may
also use our dataset for training purposes, to shed insight into novel strategies.

• How to identify behavior resulting from cheating?

Despite the great effort of championships and game developers to prevent cheating,
a structured database allows anyone to carry out their search for different patterns
in the behavior of a player, which could indicate some use of illegal software or
abuse of some hitherto unknown bug to have advantage in the match. We envision
that statistical analysis of our dataset, together with algorithms for change point
detection and outlier analysis, may shed insight into unexpected user behavior.
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9 CODE AVAILABILITY

The modules comprising our crawling infrastructure are available as follows:
Crawler: https://github.com/ErickRDev/csgo-demo-crawler

Downloader: https://github.com/ErickRDev/csgo-demo-downloader

Orchestrator: https://github.com/ErickRDev/csgo-demo-parser-orchestrator

Parser: https://github.com/ErickRDev/csgo-demo-parser

Indexer: https://github.com/ErickRDev/csgo-dataset-indexer

https://github.com/ErickRDev/csgo-demo-crawler
https://github.com/ErickRDev/csgo-demo-downloader
https://github.com/ErickRDev/csgo-demo-parser-orchestrator
https://github.com/ErickRDev/csgo-demo-parser
https://github.com/ErickRDev/csgo-dataset-indexer
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10 CONCLUSION AND FUTURE WORK

The increasing popularity of eSports has raised an interest in analyzing and visualizing
relevant data within the domain. When it comes to CS:GO, there are websites with readily
available metadata that, when coupled with the highly granular in-game data extracted
from demofiles, provide the necessary input to build a robust dataset that can ultimately
be leveraged to satisfy the needs of the community.

In this project we presented such a proof-of-concept dataset along with the means by
which to collect and expand on the data. Our method crawls the relevant metadata from
the HLTV website, parses the protobuf-encoded demofiles to extract in-game data and
employs a simple, yet effective strategy to bridge the gap between them.

The presented workflow represents a huge opportunity to explore CS:GO data and
can be used to investigate several scenarios and aspects of the game, to create analytic
reports and visualizations about the matches, players and championships.

As future work related to the generation of the dataset, we envision a number of
opportunities to improve the proposed pipeline and to foster a plug-and-play analysis of
the collected data. In particular, we envision additional automation of the whole pipeline,
from data collection to data storage, without manual intervention.
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