CAPACIDADE DE ROTAÇÃO DE RÓTULAS CONDICIONADAS NO CONCRETO ARMADO, COM E SEM FORÇA AXIAL.

Paulo Cesar Primo Agostinho

TESE SUBMETIDA AO CORPO DOCENTE DA COORDENAÇÃO DOS PROGRAMAS DE PÓS-GRADUAÇÃO DE ENGENHARIA DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE MESTRE EM CIÊNCIAS (M.Sc.) EM ENGENHARIA CIVIL.

Aprovada por:

Sydney Martins Gomes dos Santos

Eduardo de Moraes Rego Fairbairn

Adolpho Polillo

AGOSTINHO, PAULO CESAR PRIMO

CAPACIDADE DE ROTAÇÃO DE RÓTULAS CONDICIONADAS NO CONCRETO ARMADO, COM E SEM FORÇA AXIAL (Rio de Janeiro), 1986.

X , 142 p. 29,7 cm (COPPE/UFRJ, M. Sc., Engenharia Civil, 1986)

Tese - Universidade Federal do Rio de Janeiro, COPPE.

- 1. Rótulas Plásticas
- I. COPPE/UFRJ

II. Título (Série)

A minha mãe, Juracy P. Agostinho

> e em memória de meu pai, Henrique Agostinho

AGRADECIMENTOS

Ao professor Sydney Martins Gomes dos Santos, pela amizade, apoio e orientação durante todo o desenvolvimento deste trabalho.

A todos os professores da COPPE/UFRJ e da Faculdade de Engenharia Civil de Limeira da Universidade Estadual de Campinas pelos ensinamentos recebidos.

A UNESP (Universidade Estadua) Paulista), campus de Ilha Solteira, Departamento de Engenharia Civil e a Coordenação de Aperfeiçoamento de Pessoal de Nivel Superior (CAPES - PICD) que financiaram meus estudos de Pós-Graduação.

Aos professores e funcionários do Laboratório de Estruturas da COPPE/UFRJ, pela orientação, apoio e amizade.

Ao professor Renato Bertolino Júnior, da UNESP - Ilha Solteira, pela amizade e colaboração na parte computacional.

Aos amigos da COPPE/UFRJ pela dedicação e companheirismo.

Ao Marden, pela excelente elaboração gráfica deste trabalho.

A Maurícia e Leninha pelo esmerado trabalho de desenho. v

Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos necessários para a obtenção do grau de Mestre em Ciências (M. Sc.)

CAPACIDADE DE ROTAÇÃO DE RÓTULAS CONDICIONADAS NO CONCRETO ARMADO, COM E SEM FORÇA AXIAL.

Paulo Cesar Primo Agostinho

Julho, 1986

Orientador: Professor Sydney Martins Gomes dos Santos

Programa : Engenharia Civil

O objetivo do trabalho foi pesquisar comportamento de peças condicionadas na região comprimida, trabalhando a flexão composta; realizou-se uma previa análise de ensaios relatados na bibliografia especializada, quer na flexão simples, quer na flexão composta. Os resultados experimentais obtidos foram confrontados com os valores fornecidos pelas diferentes formulas propostas por vários laboratórios e autores.

Como conclusão do estudo constatou-se que expressões simples das rotações plásticas, traduzem com bastante fidelidade o comportamento real das peças ensaiadas. νì

Abstrate of Thesis presented to COPPE/UFRJ as partial fulfillment of the requirements for the degree of Master of Science (M. Sc.)

CAPACITY OF ROTATION OF THE CONDITIONED HINGES IN REINFORCED CONCRETE; WITH AXIAL FORCE OR NOT.

Paulo Cesar Primo Agostinho

Julho, 1986

Chairman : Prof. Sydney Martins Gomes dos Santos

Departament : Civil Engineering

The objective of this work was to research, conditioned beam's comportment at the compressed region, working to the compound flexion, was realized an previous analysis of the experiment related at the specializes bibliography, whether at the simple flexion, or at the compound flexion. The experimental results were obtained confronted with the values furnished by different formules proposed by various laboratorys and authors.

As a conclusion of the study was verified that simple expressions of the plastic hingings, translate with enough fidelity the real comportment of the assaied beams.

INDICE

		Į.	Pāg.
CAPÍTULO	Ι -	INTRODUÇÃO	1
CAPITULO	II -	MÉTODOS DE CÁLCULO DE ESTRUTURAS DE CONCRETO ARMADO NA FASE ELASTO-PLÁS-TICA.	7
II.1 -	Conside	erações	7
11.2 -	Hipótes	ses de Calculo	8
II.3 -	Teoria	Bilinear do Professor Baker	10
II.4 -	Teoria	Trilinear do Professor Macchi	13
II. 5 -	Outros	Metodos	14
II.5.1 -	Metodo	Jossa-Castelhano	14
11.5.2 -	Método	Massonet-Doyen	15
II.5.3 -	Método	Sawyer	17
II.5.4 -	Método	de Cohn	18
II.5.5 -	Método	de Furlong	19
CAPITULO	- 111	DETERMINAÇÃO DAS ROTAÇÕES NAS ARTI- CULAÇÕES CONDICIONADAS	21
III.1 -	Determi	inação de G. Macchi	22

viii

111.2	-	Fórmula do Professor A. L. L. Baker	2 4
111.3	-	Fórmula Conceição Sampaio	26
III.4	-	Fórmula do Professor Sydney Santos	26
I II.5	-	Determinação de A. H. Mattock	2 9
111.6	-	Determinação de Park e Paulay	40
111.7	-	Comprimento de Plastificação	4 3
111.7.1	-	Professor A. L. L. Baker	43
111.7.2	-	Professor Sydney Santos	44
III.7.3	-	Outras Determinações	44
III.7.3.1	-	Corley	44
111.7.3.2	-	Sawyer	46
CAPÍTULO	IV	- PLANO DE ENSAIOS	47
IV.1	-	Definição Geométrica	48
IV.2	-	Armação	49
17.3	-	Medições e Instrumentação	5 8
IV.4	-	Equipamento de Carregamento da Estrutura e Plano Utilizado	60
CAPÍTULO	v	- MATERIAL UTILIZADO NA MOLDAGEM DAS VIGAS	62
V.1	-	Aço	62

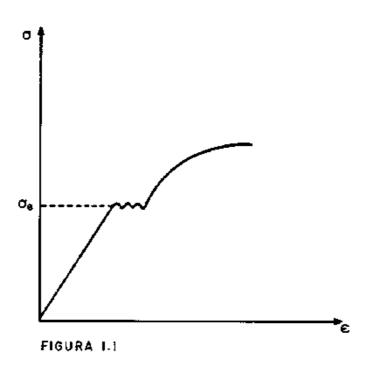
V.2	-	Areia	64
V.3	-	Brîta	64
V.4	-	Cimento	65
V.5	-	Солстево	65
CAPÍTULO	VI	- RESULTADO DOS ENSAIOS	66
VI.1	-	Série de Ensaío nº 1	67
VI.2	-	Sērie de Ensaio nº 2	72
CAPÍTULO	VII	- ANÁLISE DOS RESULTADOS	76
VII.1	-	Flexão Composta	76
VII.1.1	-	Altura da Região Comprimida do Concreto (x)	77
VII.1.2	-	Encurtamento Máximo do Concreto	78
VII.1.3	-	Capacidade de Rotação da Rótula Plástica	7 8
VII.1.4	-	Resultado Finais	79
VII.2	-	Flexão Simples	82
VII.2.1	-	Características das Peças	8.3
VII.2.2	-	Resultados Obtidos Através da Teoria de	
		Baker e Amarakone	93
VII.2.3	-	Resultados Obtidos Pela Teoria de Mattock	101
VII.2.4	-	Resultados Obtidos pela Teoria do Professor Sydney Santos	105

VII.2.5 -	Resu1	tados Finais 1	02
CAPITULO VI	III -	CONCLUSÃO1	15
APÊNDICE 1	-	TEORIA DE MATTOCK - "CÁLCULO COMPUTACIO- NAL"1	
APÊNDICE 2	-	TEORIA DE BAKER - "CÁLCULO COMPUTACIO- NAL"	124
APĒNDICE 3		ADAPTAÇÃO DO PROGRAMA COMPUTACIONAL DA TEORIA DE BAKER, PARA ANÁLISE DOS DADOS DE MATTOCK	127
APÊNDICE 4	-	TEORIA DO PROFESSOR SYDNEY SANTOS - "CÁLCULO COMPUTACIO-	. 7 1
APÊNDICE 5		NAL"	131
		NAL" 1	136
REFERÊNCI AS	S BIBLI	OGRĀFICAS 1	139

CAPÍTULO I

INTRODUÇÃO

Os fundamentos da teoria de plasticidade foram expostos em 1868 por Tresca, em 1870 por Barre de Saint-Venant e em 1871 por Levy. No princípio deste século, na Alemanha, começaram a esboçar-se as primeiras análises teóricas de elementos estruturais simples, de acordo com o valor da carga última que produzia sua ruína. Em 1915, Maier e Leibnitz comprovaram experimentalmente o valor das cargas de colapso em vigas duplamente engastadas e quase — simultaneamente se começou a levar em conta, nos Estados Unidos e na Inglaterra, a reserva de resistência plástica dos materiais dúteis, como critério de projeto.


Continuando essas investigações, em 1917 Kist, na Holanda, publicou um trabalho sobre o cálculo de verificação de estruturas singelas, baseando-se no comportamento plástico experimental de diversos materiais.

As polêmicas, que nasceram a partir de 1930, levaram os pesquisadores Prager, Kuntz e outros, a dedicarem-se ao estudo da determinação, com maior precisão, dos momentos limites e solicitações máximas em sólidos prismáticos diversos.

A partir de 1936 multiplicaram-se as investigações teóricas e experimentais referentes a esse assunto com Roderick, Baker, Bleich, Beedle, Neal, Yang, Melan, Symonds, Horne e Heyman; surgiram as primeiras aplicações dos teoremas gerais da plasticidade ao projeto de estruturas, o que permitiu Van Der Broek em 1940 emitir um critério definido sobre projeto limite e publicar em 1948 o primeiro volume relativo ao tema.

A partir de 1952, são muitos os estudiosos que têm dedicado seus esforços ao estudo e aplicação de novas teorias de plasticidade à resolução de todos os tipos de estruturas planas e espaciais, permitindo que a análise e projeto limites tenham alcançado extraordinário nível de difusão.

Fundamentalmente o cálculo de estruturas em regime plástico encontra-se apoiado na propriedade que certos materiais possuem, de apresentarem deformações crescentes com tensões constantes. Como exemplo a figura I-1 mostra o diagrama do ensaio de tração simples do aço, dito de construção, onde se vê, para o valor de ^oe, um pequeno patamar, em que a amostra como que "escoa".

Vejamos como essa propriedade influenciou os projetistas a adotarem uma nova sistemática no cálculo estrutural.

Consideremos a viga da figura I-2-a, constituída de um material que admite patamar de escoamento, com seção transversal constante, dois eixos de simetria ortogonais, um deles no plano de carregamento.

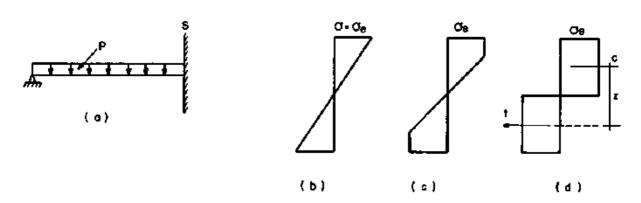


FIGURA 1.2

Em primeiro lugar, suponhamos que p cresça a partir de zero; as tensões na seção "S" terão um aumento proporcional, até que a tensão de bordo atinja o limite de escoamento ©e (figura I-2-b); continuando a incrementar p, o diagrama de tensões apresentará a configuração mostrada na figura I-2-c, até atingir a configuração da figura I-2-d, já em regime plástico. A esse diagrama corresponde um Pe, e um momento fletor, dito de escoamento.

$$Me = Cz = Tz$$

C = T e z dependendo da forma da seção.

A partir dessa configuração, se continuarmos a incrementar ainda mais p, com as suposições feitas, Me permanecerá constante, e os momentos positivos passarão a ter agora um certo aumento gradativo, até que venha aparecer em outra seção um novo Me, relativo a um p[†].

O valor de p' constituira assim o carregamento de colapso. De fato, a estrutura tornou-se agora movel, admitindo--se comportamento de rotulas nas seções totalmente plastificadas; a viga passará, a partir desse instante, a cadeia cinemática.

Com isso o cálculo da peça hiperestática reduzir-se-à, conhecido Me, a determinar p' de colapso. A carga de serviço, seria uma fração desse valor = p'/n.

O exemplo aqui apresentado, refere-se a materiais dúteis, ficando por conseguinte excluídos os aços duros e os materiais frágeis.

No entanto, não tardaram os especialistas em tentar estender os conceitos do cálculo plástico a esses materiais.

O professor A. L. L. Baker foi um dos primeiros a utilizar as considerações acima em estruturas de concreto armado. Partiu da hipótese da existência de um comportamento análogo ao escoamento plástico, em segmentos de hastes de concreto sub-armadas com aço doce, quando sujeitas a momentos crescentes.

Por ser o concreto armado um conjunto heterogêneo,

onde o primeiro é um material pouco dútil, a aplicação do cálculo plástico a tais estruturas, detém-se em dois pontos básicos:

- 1 A capacidade de rotação das rótulas plásticas.
- 2 Fissuração excessiva.

A capacidade de rotação das rótulas plásticas no concreto armado é restrita. O objetivo desta pesquisa é ensaiar dispositivos que a aumentem, bem como as diversas fórmulas propostas por diferentes autores para a sua avaliação. Estudaremos ao longo deste trabalho esse ponto com a acuidade necessária, por constituir ele questão fundamental.

A fissuração excessiva implica em que não haja trincas com aberturas superiores aquelas que ponham em risco as armaduras, considerando as condições e o tempo de exposição da estrutura. Assim sendo, para o caso de obras de concreto armado, será necessário que verifiquemos, para a carga de serviço, a inexistência de fissuração nociva, bem como deformações que comprometam a peça, quanto à sua utilização ou simplesmente sua apresentação. Em princípio não será aconselhável o aparecimento de rótulas plásticas em estado de serviço. Tanto a fissuração como a deformação excessiva, poderão, no entanto, ser controladas por um cálculo elástico, não extremamente rigoroso, pois se destina a uma simples verificação da ordem de grandeza.

Um fator que favorece a aplicação do cálculo plástico ao concreto armado (e em particular o projeto de rótulas condicionadas) é o fato de ser possível variar as percentagens e a distribuição das armaduras. Numa peça de seção constante, tal variação permite alterar entre largos limites, a resistência de suas seções com pequena modificação de sua rigidez na fase elástica ou "quasi-elástica". O momento de ruptura ou de plastificação de uma seção pode ser assim fixado de acordo com conveniências do projeto, ou seja, é possível arbitrar dentro de certos limites os momentos fletores hiperestáticos. Esse fato pode ser bastante explorado, com a possibilidade de se aumentar, no projeto, a capacidade de rotação das rótulas plásticas.

CAPITULO II

MÉTODOS DE CÁLCULO DE ESTRUTURAS DE CONCRETO ARMADO NA FASE ELASTO-PLÁSTICA

II.1 - CONSIDERAÇÕES:

A bibliografía jã se vai engrandecendo com métodos e processos aplicados ou criados para o cálculo hiperestático de estruturas em fase elasto-plástica. No caso específico do concreto armado, porém, o problema se torna mais delicado, precisamente pela natureza frágil do concreto como material estrutural.

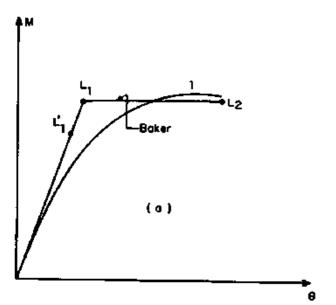
Quando ha dutilidade característica, como nas peças de aço doce, a orientação básica é pesquisar um mecanismo de colapso após a plastificação de um número suficiente de seções. Por simplificação concentram-se os setores plásticos em seções, nas quais se supõe existir rotulas ditas plásticas.

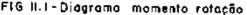
Uma ampliação dessa conceituação que não tem sido usada até o presente, consiste em predeterminar essas mesmas seções mediante projetos condicionados à priori, isto é, dando-lhes funções que limitam estáticamente sua capacidade à flexão, de modo a se poder comandar o andamento do diagrama de mo-

mentos (ou, de modo mais abrangente, solicitações seccionais).

No caso do concreto armado, essa concentração do segmento plastificado numa única seção ainda é mais arbitrária que nos materiais dúteis, porque para se preservar a distribuição da seção de maior plastificação na faixa, é mister considerar a fissuração e a esfoliação de todo um trecho. Essa é, entre outras, a razão que terá levado Macchi a considerar um "lp" (comprimento de plastificação), entre a seção de começo de plastificação e a do estado último, isto é, do término dessa mesma plastificação. Essas considerações parecem assim reforçar a idéia seguinte. Um comportamento aceitável ou melhoramento funcional de uma rótula plástica se ela for projetada, condicionada por conseguinte a esse funcionamento.

II.2 - HIPÓTESES DE CÁLCULO


No estudo de problemas de cálculo, baseados na fase plástica, um fator importante é a relação momento x rotação; ou momento x curvatura, para o elemento estrutural a ser analisado.


O diagrama real momento x curvatura é analiticamente de difícil representação. Mas mesmo que assim não fosse, seu proveito prático seria restrito, devido à complexidade da função representativa, que não permitiria uma determinação cômoda da repartição dos momentos. Por essa razão procuram-se relações aproximadas, que facilitem a solução.


O diagrama momento x curvatura é substituido por exemplo, por uma função hiperbólica, por uma reta e por uma parábola, etc... Na prática os diagramas compostos unicamente de retas é que são importantes; principalmente o constituído de três retas (tri-linear), ou de duas retas (bilinear).

Para a resolução de problemas no regime plástico, foram propostas várias idealizações dessa curva, entre as quais podemos ressaltar as do professor Baker e do professor Macchi.

Seja a figura II-1, apresentando curvas relacionando momento x rotação. A curva i é a típica de um elemento estrutural.

O professor Baker, utiliza um diagrama bilinear (fig. II-1-a) assumindo configuração composta de dois segmentos cujos limites são:

- L1, correspondente ao início da plastificação, e
- L₂, correspondente à ruptura; para o cálculo Baker introduz uma redução do ponto L₁ para L'₁; nas seções não plastificadas isso equivale a uma redução no momento fletor.

O professor Macchi, utiliza um diagrama trilinear (figura II-1-b), assumindo configuração composta de três segmentos, cujos limites seriam:

- Lo correspondente ao início da fissuração;
- L₁ início da plastificação; e
- L₂ ruptura.

Para a solução do problema do cálculo do concreto armado na fase plástica, foram desenvolvidos métodos baseados em uma ou outra dessas idealizações. A seguir são apresentadas algumas dessas teorias.

II.3 - TEORIA BILINEAR DO PROFESSOR BAKER

(mētodo das rotações últimas)

É uma teoria semi-empírica e a mais simples para o concreto armado.

Para se resolver uma estrutura <u>n</u> vezes hiperest<mark>ati-</mark> ca pelo cálculo elástico, podem-se colocar n rótulas de modo a tornar a estrutura isostática, introduzindo-se então \underline{n} incógnitas, quais sejam \underline{n} pares de momentos X_1,\ldots,X_n atuando nessas rótulas. A solução elástica exige que a rotação nas rótulas pela ação das cargas externas e dos momentos aplicados seja nula. Exprimem-se assim \underline{n} equações com \underline{n} incógnitas.

$$\delta_{10} + \delta_{11}X_{1} + \dots + \delta_{1n} X_{n} = 0$$

$$\delta_{20} + \delta_{21}X_{1} + \dots + \delta_{2n} X_{n} = 0$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$\delta_{n0} + \delta_{n1}X_{1} + \dots + \delta_{nn} X_{n} = 0$$

$$(2-1)$$

sendo:

$$\delta i \, k \, = \, \int \, \frac{\chi_i - \chi_k}{E \, I} \, ds \; ; \quad \delta \, i \, i \, = \, \int \, \frac{\chi_i \,^2}{E \, I} \, ds \quad e \quad \delta i \, e \, = \, \int \, \frac{\chi_i - \chi_0}{E \, I} \, ds$$

- δii = a rotação relativa das extremidades <u>i</u> dos tramos adjacentes à rotula plástica <u>i</u> sob a ação de momentos iguais a 1 (hum), atuando em <u>i</u>, no mesmo sentido de <u>Xi</u>.
- δ ik = a rotação na extremidade \underline{k} , do tramo ik, sob a ação de momento igual a 1 (hum), atuando em \underline{i} na direção de $\underline{X}\underline{i}$.
- óio = a rotação relativa das extremidades <u>i</u> dos trechos adjacentes à rótula plástica <u>i</u>, sob a ação das cargas de serviço (o sentido positivo das rotações em <u>i</u>, ê sempre o de <u>Xi</u>).

Quando, numa estrutura hiperestática, um número suficiente de rótulas plásticas se forma, de modo a transformá-la em estaticamente determinada, ela pode ser tratada como se fossem colocadas nessas seções onde se formam as rótulas plásticas, articulações com pares de momentos cujos valores sejam iguais aos de plastificação.

As rotações 0i nessas seções não seriam mais nulas e, assumindo que a totalidade das deformações se concentram nas rótulas, permanecendo os trechos entre estas perfeitamente elásticas, as equações (2-1) ficarão:

$$\delta_{10} + \delta_{11}X_{1} + \dots + \delta_{1n}X_{n} = -\Theta_{1}$$

$$\delta_{20} + \delta_{21}X_{1} + \dots + \delta_{2n}X_{n} = -\Theta_{2}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$\delta_{n0} + \delta_{n1}X_{1} + \dots + \delta_{nn}X_{n} = -\Theta_{n}$$

$$(2-2)$$

Se os momentos de plastificação são fixados para cada rótula, pode-se então calcular as rotações 0i nesses pontos.

As rótulas plásticas podem ser inicialmente colocadas nos pontos de momentos máximos, na solução elástica. Essas posições estarão corretas, se a rotação em cada rótula for oposta à direção do momento de plastificação; nas equações (2-2), 0i deverá ser positivo caso Xi seja considerado negativo e vice-versa. Em nenhuma outra seção da estrutura, o momento excederá o momento de plastificação correspondente.

II.4 - TEORIA TRILINEAR DO PROFESSOR MACCHI.

(método das rotações impostas)

Um método dito "Exato" para a resolução de uma estrutura de concreto armado pelo cálculo plástico, é também um método baseado nas equações da solução elástica (equações 2-1)

$$\delta_{i0} + \delta_{ii}X_{i} + \sum_{k \neq 1} \delta_{ik} X_{k} = 0$$
 (2-1)

e que deverá constar um termo, que considere as rotações inelásticas existentes nas regiões fora das rótulas plásticas, ficará então:

$$\delta_{\hat{\mathbf{1}} \mathbf{0}} + \delta_{\hat{\mathbf{1}} \hat{\mathbf{1}}} X_{\hat{\mathbf{1}}} + \sum_{\mathbf{k} \neq \mathbf{1}} \delta_{\hat{\mathbf{1}} \mathbf{k}} X_{\mathbf{k}} + \sum_{\mathbf{i'}} \Psi_{\hat{\mathbf{1}}} + \Theta_{\hat{\mathbf{1}}} = 0 \qquad (2-3)$$

O professor Macchi propõe uma simplificação deste método dito "Exato", sem perda de suas catacterísticas através de artifícios para a resolução do sistema de equações 2-3. Consiste em considerar as rotações inelásticas como rotações impostas às seções críticas da estrutura ainda elástica.

O procedimento principia por subdividir as equações 2-3 em duas partes:

- equações elásticas devido ao carregamento.

$$\delta_{i0} + \delta_{ii} X_i + \sum_{k \neq 1} \delta_{ik} X_k = 0$$

- Equações que levam em conta uma rotação inelástica unitária.

$$\Sigma \delta i_k X_k + 1 = 0$$

As duas equações têm características elásticas, sendo possível uma resolução direta. A parte "inelástica" do cálculo se ocupa com a preparação dos elementos; consiste em superpor
os diagramas devido às cargas, com os decorrentes das rotações
unitárias impostas, dando-se a cada um, coeficientes de amplificação, que são incógnitas do problema, de maneira a respeitar as
leis momento x rotações reais.

Macchi utiliza na resolução, o diagrama momento x rotação, trilinear (figura II-1-b), por este se aproximar mais do diagrama real, proporcionando melhor precisão.

A adoção dessa simplificação no método dito "Exato", com emprego do diagrama trilinear permite, segundo Macchi, uma precisão suficiente, tanto para o caso de redistribuição da carga de serviço, como também para o caso de seções, na configuração de ruptura.

Na fase fissurada, já se apresenta considerável redistribuição de tensões na estrutura, com existência de também considerável divergência dos valores reais dos esforços internos com relação ao cálculo elástico, bem antes do aparecimento de deformações plásticas das estruturas - [11].[12] [13] [14].

II.5 - OUTROS METODOS.

II.5.1 - Método Jossa-Castelhano.

Os autores propõem utilizar o método elasto-plástico

clássico, para proveito de toda sua simplicidade, introduzindo um controle simplificado das deformações. A separação das incógnitas (isto é, a redução do sistema a um conjunto de equações independentes) é obtida ao introduzir-se o número de rotulas necessário para que a estrutura se torne isostática, considerando somente em suas rotulas as rotações inelásticas.

Essa simplificação, de considerarmos as rotações inelásticas somente nas rótulas, é necessária para se conseguir a separação das incognitas; por outro lado nos leva a negligenciar as rotações inelásticas das seções que não foram escolhidas como rótulas.

As limitações introduzidas nos momentos levados em conta abaixo da avaliação, compensa o efeito da aproximação introduzida. Todavia, os autores consideram que seus estudos devem ser verificados e que a aplicabilidade do metodo nos casos particulares de seções frágeis, devem ser controladas perante ensaios.

II.5.2 - Método Massonet-Doyen.

O presente método é como que uma extensão do das rotações impostas; utiliza a superposição dos efeitos elásticos das cargas e dos efeitos (estes também elásticos), das rotações inelásticas consideradas como deslocamentos incógnitos.

· A sua característica fundamental é a de seguir a evolução dos estados sucessivos de plastificação até que uma das
rotações atinja o seu valor limite. Em cada estado os momentos

são expressos em função do coeficiente de carga; nos estados plastificados, esta expressão é obtida com apoio em um diagrama bilinear de encruamento (figura II-2).

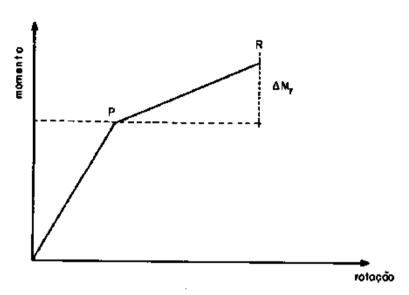


FIG II.2 - Diagrama bilinear de encruamento

Quando existem vârias seções plastificadas, haverá aí a interdependência entre elas, o que obriga a resolver um sistema de equações lineares em cada etapa. Mas se as rotulas são bem escolhidas, a resolução é, sem dúvida, rápida.

Este método mostra a evolução da redistribuição plástica considerando as fases sucessivas separadas pelos pontos de plastificação das diversas rótulas. Ele permite todavia considerar todas as seções críticas, não negligenciando pois a compatibilidade das deformações.

Apresenta a vantagem de considerar o material encruado, seguindo muito de perto da fase de ruptura. O método que de uma maneira análoga considera um diagrama bilinear com encruamento, ao mesmo tempo superpõe as situações elásticas calculadas independentemente, é proposto pelo professor Sawyer, como uma simplificação do método geral que considera os diagramas momento - rotações multilineares e que veremos a seguir.

II.5.3 - Método Sawyer.

Sawyer apresenta seu método aproximado, baseando-se nos requisitos de equilíbrio limite e compatibilidade de rotações. A condição de funcionalidade [14] (Tensão de serviço do aço menor que a tensão de escoamento), é verificada passo a passo. É uma análise indireta da compatibilidade rotacional por sucessivas aproximações. O projeto se inicia, ajustando o momento elástico obtido através de várias combinações de carga, para estabelecer o momento de flexão padrão provido de um reforço. Para cada possível combinação de carga, usando qualquer forma de ajuste do momento que satisfaça o equilíbrio estático, recai-se sempre no momento resistente último da seção, calculando a rotação inelástica em cada região plástica.

No diagrama momento - curvatura assume-se que o momento de plastificação é 0,85 do momento último.

A teoria elástica é usada para calcular os momentos resultantes dos ângulos de flexão inelásticos e o carregamento externo imposto à estrutura. Se o momento calculado exceder ao momento resistente último da seção, o reforço é corrigido adicionando parcelas nas regiões onde o momento último ê excedido ou nas regiões onde o ângulo inelástico desenvolvido é excessi-

vo. Os momentos introduzidos pelos ângulos inelásticos e o carregamento externo são recalculados, e o reforço ajustado até
que a suficiência do momento último de resistência tenha sido
demonstrada.

O projeto é então verificado pela teoria elástica para assegurar que a tensão no aço e a carga última não sejam excessivas.

II.5.4 - Método de Cohn.

Cohn desenvolveu um mētodo baseado no requisito do equilíbrio limite e funcionalidade. A condição da compatibilidade rotacional é verificada passo a passo. A solução é obtida reduzindo o momento elástico através de várias combinações de carga, multiplicando-se por um parâmetro $\gamma_j \leq 1$, onde γ_j é dado pelas seguintes condições:

- Para a carga de serviço, as seções críticas do portico devem permanecer no limite elástico;
- Para a carga última as forças internas devem equilibrar-se com as forças externas e um ou mais mecanismos de colapso deverá ser formado;
- A redução do momento global para o momento elástico deverá ser a máxima.

Um projeto padrão procura o mínimo valor de Y_j consistente com o comportamento aceitável da carga de serviço e condições de equilíbrio para a carga última.

As seções são projetadas, sobre bases de uma determinada distribuição de momentos de flexão e as regiões de rotação plástica são verificadas para assegurar que terão suficiente capacidade de rotação para desenvolver e assumir a distribuição de momentos e a carga última.

II.5.5 - Método de Furlong.

O método do projeto limite de Furlong consiste em atribuir momento último às estruturas para diferentes arranjos de carregamentos, Furlong utiliza o mais desfavorável deles, a fim de prever uma possível idealização dos momentos que satisfaça o requisito da funcionalidade e equilíbrio limite. A curva de flexibilidade será determinada por intermédio da rotação plástica resultante da distribuição do momento último. As possíveis distribuições dos momentos serão tabeladas, e a curva de flexibilidade será dada por uma equação simples. Para projetar uma viga, as seções serão reforçadas de modo que, nos locais de momento último de resistência, haja equilíbrio com a carga última, que suportará os momentos de resistência extremos, sendo iguais ou maiores que o produto de M_F pelo coeficiente dado na tabela II-1.

TABELA II-1

COEFICIENTE DO MOMENTO FLETOR, PARA VÁRIAS CONDIÇÕES DE APOIO

Condição de apoio	Tipo de momento	Carregamento somente no meio do vão	Outras formas de carrega- mento
duplamente	negativo	0,37	0,50
engastada	positivo	0,42	0,33
engastada	negativo	0,56	0,75
	positivo	0,50	0,46

Onde M_F e o máximo momento de flexão, no comprimento entre seções de cargas últimas, quando as extremidades são livres de restrição rotacional.

As seções são também avaliadas de maneira que:

$$\frac{\varphi_u}{\varphi_y} \geq 1 + 0.25 \quad \frac{\ln \alpha}{d}$$

onde:

Φu = curvatura última

 ϕ_y = curvatura no início da fissuração

ln = comprimento livre

d = altura efetiva da seção.

CAPÍTULO III

DETERMINAÇÃO DAS ROTAÇÕES NAS ARTICULAÇÕES CONDICIONADAS

As rotações 0i calculadas (equações 2-2), deverão ser inferiores aquelas que elas podem realizar. Então, deve ser determinada para cada rótula plástica, a rotação máxima, que ela pode admitir.

Exporemos a seguir as diversas fórmulas existentes na bibliografia, para a avaliação da capacidade de rotação das rótulas plásticas.

III.1 - DETERMINAÇÃO DE G. MACCHI.

0 professor G. Macchi em seus estudos adota como ponto de partida o diagrama trilinear, figura III-1. Onde se mostram os θ que se necessita conhecer.

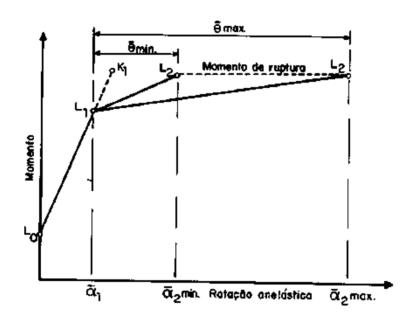


FIG III.1 - Diagrama - tritinear

Macchi propõe o uso de curvas construídas experimentalmente, das quais obtém Θmin. e Θmax a partir de x/h, ou da percentagem de armadura, em vigas e colunetas. Tais curvas fazem parte de um ábaco construído com resultados de ensaios de laboratórios realizados em Paris, Turin, Porto, Madri, México e Veneza (figura III-2).

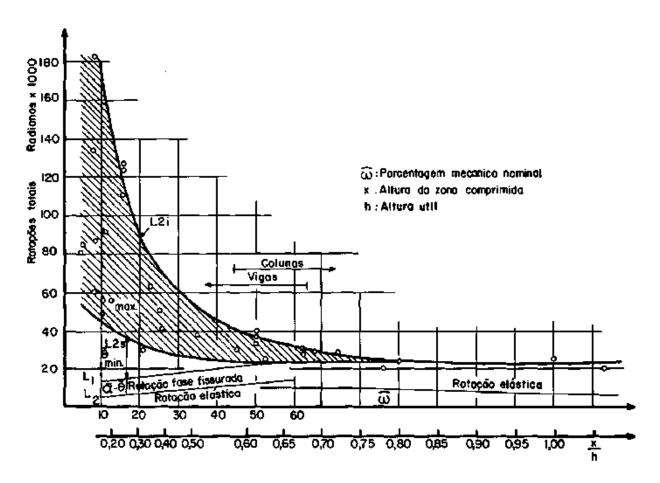


FIG III.2 - Abaco de Macchi

O uso desse diagrama é recomendado, enquanto se espera que uma análise satisfatória das deformações na faixa de ruptura permita a determinação teórica de 8.

III.2 - FÓRMULA DO PROFESSOR A. L. L. BAKER.

Baker havia proposto para a determinação da capacidade de rotação, a equação abaixo.

$$\theta_p = \frac{\varepsilon_{c_2} - \varepsilon_{c_1}}{k_x - h} - k_1 - k_3 - \left(\frac{a}{h}\right)^{1/4} - h.$$

onde

$$\varepsilon_{c_2} = 0,0035$$

$$\varepsilon_{c_1} = 0,0020$$

$$k_1 = \begin{cases} 0.7 & \text{para aço de dureza natural} \\ 0.9 & \text{para aços encruados} \end{cases}$$

- k₃ = variando de 0,6 a 0,9, para a resistência mêdia do concreto determinada em corpos de prova cúbicos, de 420 a 140 Kg/cm², (em corpos de prova cilíndricos de 350 a 115 Kg/cm²).
 - a = distância da seção crítica, à seção de momento nulo.

$$k_{x} = x/h$$
.

Posteriormente em um trabalho conjunto com Amarakone, a influência do cintamento foi então considerada, tendo o encurtamento máximo do concreto determinado através da equação
3-1.

$$\epsilon_{c_2} = 0,0015 \left[1,45 + 1,5 w_t + (0,7 - 0,1 w_t) \frac{1}{k_x} - \frac{fc_{cil}}{10^4} \right]$$

ou ainda, devido ao fato de que a influência de fo_{cil} é pequena na determinação de ec₂, para as misturas normais de concreto, a equação 3-1, pode ser expressa da seguinte maneira.

$$\varepsilon_{c_2} = 0.0015 \left[1+1.5w_t + (0.7 - 0.1w_t) \frac{1}{k_X} \right] \dots (3-2)$$

onde:

 w_t = percentagem de estribos (estribos comuns)

fccil = tensão no concreto determinada em corpos de prova
cilíndricos.

 ϵ_{c_2} = encurtamento mâximo do concreto, com limite superior igual a $10\%_0$.

A tensão máxima no concreto é dada pela equação 3-3:

$$f_{c_2} = f_{c_{cil}} \left(0.8 + \frac{1}{k_X}\right) \dots (3-3)$$

Por intermédio da equação 3-4, obteremos a capacidade de rotação plástica.

$$\Theta_{p} = 0.8 (\varepsilon_{e_{2}} - \varepsilon_{e_{1}}) k_{1} k_{3} \frac{a}{h} \dots (3-4)$$

A determinação do comprimento de plastificação (1p) será abordada no item III-7-1.

III.3 - FORMULA CONCEIÇÃO SAMPAIO.

O engenheiro Joaquim da Conceição Sampaio, em trabalho apresentado às 2ª Jornadas Luso-Brasileiras de Engenharia
Civil [21], tratou da "Capacidade de rotação das rótulas plásticas" no concreto armado, tendo ensaiado 15 vigas no Laboratório de Ensaios de Materiais da Universidade do Porto.

Conceição Sampaio, partiu de valores fixados no Regulamento Português, com $\epsilon_{c_2} = 0.2\%$ e $\epsilon_{c_1} = 0.05\%$ e obteve as expressões 3-5; adota também a relação trilinear, tal como Macchi.

$$\Theta_{p} = \frac{0.14 \times 10^{-5}}{W_{t}} \quad \frac{a}{h} \quad \text{para armaduras de aço doce.}$$

$$\Theta_{p} = \frac{0.04 \times 10^{-3}}{W_{t}} \quad \frac{a}{h} \quad \text{para aço encruado}$$
(3-5)

onde: wt é a percentagem de estribos (estribos comuns).

Assinalemos porem, que se trata de estribos habituais, com a altura total da viga, e não um <u>condicionamento</u> ou projeto especial com esse objetivo em vista, assunto próprio desta pesquisa.

III.4 - FÓRMULA DO PROFESSOR SYDNEY SANTOS.

Nas rótulas condicionadas é mister, como ja observado para os segmentos plastificados em estribos comuns, fazer presente o papel do condicionamento (hélices, estribos curtos, fretagem horizontal, etc...) na região comprimida, pois aumentando-se o εc_2 , obviamente disporemos de maiores Θ_p . E as fórmulas deverão assim exprimir essa variação.

Para isso podemos usar as expressões de Baker, ou adotar um caminho mais simples, jã que a natureza das heterogeneidades próprias do concreto armado talvez não comportem, nem assegurem maiores complicações. Essa fórmula mais simples é a seguinte:

$$\theta_{p} = 2 \int_{0}^{\ell_{p}/2} \frac{ds}{r} = 2 \int_{0}^{\ell_{p}/2} \frac{\epsilon_{c}}{x} ds.$$

ou com aproximação suficiente

$$\Theta_{\mathbf{p}} = 2 \quad \sum_{1}^{n} \in_{\mathbf{c}} \frac{\Delta s}{n}$$

sendo se a deformação do concreto com o condicionamento usado, variável de ponto para ponto.

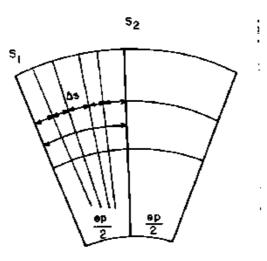


FIGURA III.3

Para Ec/x constantes, encontraremos a expressão

$$\Theta_{\mathbf{p}} = \frac{\varepsilon_{\mathbf{c}} \cdot \mathbf{1}_{\mathbf{p}}}{\mathbf{x}}$$

Se porem na seção inicial S_1 , tivermos c_1/x_1 , e na seção critica, mediana, existir c_2/x_2 , poderemos adotar, com pequeno erro, variação linear entre esses valores, de tal sorte que;

$$\Theta_{p} = \left(\frac{\varepsilon_{c_{2}}}{x_{2}} + \frac{\varepsilon_{c_{1}}}{x_{1}}\right) \frac{1p}{2} \qquad \dots \qquad (3-6)$$

Sendo ${}^{\mathbf{c}_2}$ calculado em decorrência do condicionamento adotado, ou pela formula 3-1 de Baker, se só existirem estribos habituais:

Conforme o tipo de condicionamento podemos ter; (ver artigos 4.1.1-5 e 4.1.1-4 da NB-1).

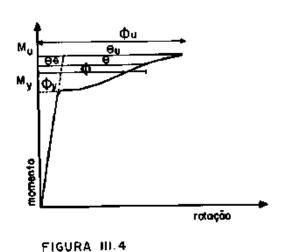
a) hélice ou estribos curtos.

ec2 = deformação de uma coluneta fretada, equivalente à região comprimida, levada a ruptura.

$$\varepsilon_{c_2} = \frac{1}{E_{b_r}} (fc_k + 2 w_t fy_k); \quad w_t = \frac{\tilde{a}rea \ da \ freta}{\tilde{a}rea \ do \ núcleo}$$

b) malhas de vergalhões.

 ϵ_{c_2} = deformação de uma coluneta armada, equivalente à região comprimida, levada a ruptura.


$$\epsilon_{c_2} = \frac{1}{E_{b_r}} (f_{ck} + 1.7 w_t f_{yk}); w_t = \frac{\tilde{a}rea \ da \ malha}{\tilde{a}rea \ da \ columeta}$$

O comprimento plastificado, será abordado no item III.7.2.

III.5 - <u>DETERMINAÇÃO</u> DE A. H. MATTOCK.

Pode-se calcular os momentos e as curvaturas, usando as equações derivadas dos conceitos básicos, de compatibilidade de deformações e equilíbrio de forças.

A rotação inelástica θ_u , ocorrendo em um comprimento de viga igual à metade da altura efetiva e localizada na seção de momento máximo, é calculada usando a equação 3-7, obtida através das considerações mostradas na fígura III-4.

$$\Theta_{\mathbf{u}} = \emptyset_{\mathbf{u}} - \emptyset_{\mathbf{y}} \frac{M_{\mathbf{u}}}{M_{\mathbf{v}}} \qquad \dots \qquad (3-7)$$

onde

$$\emptyset_u = \Psi_u \frac{d}{2}$$
 e $\emptyset_y = \Psi_y \frac{d}{2}$

- $\theta_{\rm u}$ = rotação inelástica última, ocorrendo em um comprimento d/2 para um lado da seção de momento máximo.
- Ø = rotação total, ocorrendo em um comprimento igual a metade da altura efetiva.

 \emptyset_{II} = rotação \emptyset última

 \emptyset_y = rotação \emptyset no início da plastificação

 ψ = curvatura média, medida sobre o comprimento \underline{d} , situada simétricamente sobre a seção de momento máximo.

 ψ_{tt} = 'curvatura máxima

ψy = curvatura no início da plastificação.

Mattock utiliza aqui as seguintes suposições:

1 - No início da plastificação, a tensão de compressão no concreto varia linearmente de zero no eixo neutro, à máxima na face de compressão da viga, como indicado na figura III-5.

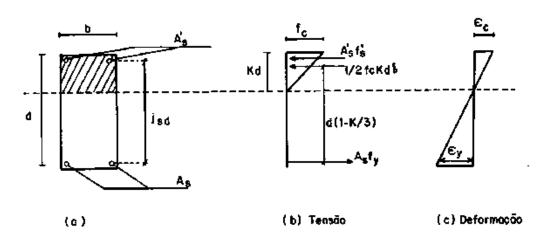


FIGURA III.5

2 - No esforço último, isto é, com o momento máximo, as tensões de compressão no concreto, são distribuídas de maneira não linear, como indicado na figura III-6, e a magnitude e localização da força resultante de compressão do concreto, pode ser expressa em termos dos coeficientes k1, k2 e k3 das dimensões da zona de compressão.

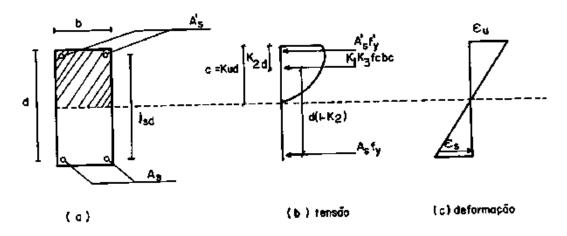
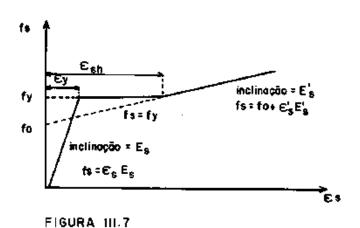



FIGURA III.6

- 3 Despreza-se a força de tração no concreto.
- 4 A deformação no concreto, é assumida como uma variação linear, exceto na região de ancoragem, em que a deformação nas barras é assumida igual à do concreto.
- 5 A curva tensão deformação do aço é suposta como se mostra na figura III-7.

- Condições de início de plastificação: Para a consideração das propriedades de transformação da seção, pode ser mostrado que:

onde

$$p' = \frac{A_s}{bd}$$

$$p' = \frac{A'_s}{bd}$$

n = razão do modulo de elasticidade do aço para o concreto = E_s/E_c .

 j_sd = distância entre os centros das armaduras de tração e compressão. Para a distribuição das tensões (ver figura III-5-b)

$$\frac{\mathbf{f}^{\dagger}_{s}}{\mathbf{f}_{c}} = n(\mathbf{k} + \mathbf{j}_{s} + 1) \dots (3-9)$$

onde

f_c = tensão de compressão máxima no concreto.

f'_c = tensão no concreto, medida em corpos de prova cilindricos.

fo = tensão definida na figura III-7.

fs = tensão de tração no aço.

f's = tensão de compressão no aço.

 f_y = tensão de escoamento a tração do aço.

 f'_v = tensão de escoamento a compressão do aço.

Para equilíbrio das forças

$$f_c = \frac{pf_y}{\frac{k}{2} + \frac{p'f's}{fc}} \qquad (3-10)$$

substituindo (f_8/f_c) na equação 3-10, temos:

$$f_{c} = \frac{pf_{y}}{\frac{k}{2} + np'\left(\frac{k+j_{s}-1}{k}\right)}$$

O momento de plastificação é dado por:

$$M_y = \frac{1}{2} f_c k d^2 b \left(1 - \frac{k}{3}\right) + j_s d A'_s f'_s \dots$$
 (3-11)

A curvatura é obtida pela consideração de distribuição de deformações (ver figura III.5-c)

$$\Psi_{\mathbf{y}} = \frac{\varepsilon_{\mathbf{y}}}{d(1-\mathbf{k})} \qquad \dots \qquad (3-12)$$

- <u>Condições de Momento último</u>: para equil**í**brio das forças internas (ver figura III.6-b)

$$k_1 k_3 f_c^{\dagger} bc + f_y^{\dagger} A_s = f_s A_s$$
.

Transpondo

$$c = \frac{f_s A_s - f'_y A'_s}{b k_1 k_3 f'_c} = d \frac{pf_s - p'f'_y}{k_1 k_3 f'_c} \qquad (3-13)$$

Momento ültimo

$$M_u = k_1 k_3 f'_c bc (d - k_2c) + f'_y A'_s j_s d \dots (3-14)$$

substituindo c da equação 3-13, na equação 3-14, temos

$$M_u = bd^2 \left[(pf_s - p'f'y) \left(1 - \frac{k_2(pf_s - p'f'y)}{k_1 k_3 f'c} \right) + p'j_sf'y \cdots \right]$$

 $M_{\rm u}$ poderã ser calculado, se $f_{\rm s}$ for conhecido.

Para a compatibilidade de deformações (ver figura III.6-c)

$$\frac{c}{d} = \frac{\varepsilon_u}{\varepsilon_s + \varepsilon_u} \qquad \dots (3-16)$$

transpondo a equação 3-13

$$\frac{c}{d} = \frac{pf_8 - p'f'}{k_1 k_3 f_c} \qquad \dots \qquad (3-17)$$

resolvendo a equação 3-16 e 3-17, temos:

$$f_s = \frac{1}{p} \left[k_1 k_3 f'_c \left(\frac{\epsilon_u}{\epsilon_s + \epsilon_u} \right) + p'f'_y \right] \cdots (3-18)$$

Caso 1: Tensão abaixo da tensão de escoamento.

$$\varepsilon_s = f_s/E_s$$
.

substituindo €s na equação 3-18, e resolvendo:

$$f_{s} = \sqrt{\frac{1}{4} \left(\epsilon_{u} E_{s} - \frac{p'}{p} f'_{y} \right)^{2} + \frac{\epsilon_{u} E_{s}}{p} \left(k_{\perp} k_{3} f'_{e} + p' f'_{y} \right)} - \frac{1}{2} \left(\epsilon_{u} E_{s} - \frac{p'}{p} f'_{y} \right) \qquad (3-19)$$

Caso 2: Tensão igual a tensão de escoamento.

$$f_s - f_y$$

Caso 3: Tensão acima da tensão de escoamento (ver figura III-7)

$$\varepsilon_s = (f_s - f_0) / E_s'$$
 (3-20)

resolvendo a equação 3-18 e 3-19

$$f_{s} = \sqrt{\frac{1}{4} \left(\epsilon_{u} E'_{s} - f_{o} - \frac{p}{p'} f'_{y} \right)^{2} + \frac{1}{p} \left(k_{1}k_{3}f'_{c} \epsilon_{u}E'_{s} + p'f'_{y} \epsilon_{u}E'_{s} - \frac{p'_{o}f'_{y} f_{o}}{p'_{o}f'_{y} f_{o}} \right)^{2} - \frac{1}{2} \left(\epsilon_{u} E'_{s} - f_{o} - \frac{p'_{o}}{p} f'_{y} \right) \dots (3-21)}$$

Para se saber se a tensão última é acima, igual, ou abaixo da tensão de escoamento, o valor crítico de (q-q') corresponde a ϵ_s = ϵ_y e ϵ_s • ϵ_{sh} deverá ser calculado.

onde

$$q = pf_{y/f_c}$$
, $q' = p'f_{y/f_c}$ $e q_b = p_bf_{y/f_c}$

p_b = proporção de aço para balancear a condição de força última na viga, reforçada à compressão.

Resolvendo a equação 3-16 e 3-17 e transpondo:

$$\frac{pf_s - p'f'_y}{k_1 k_3 f'_c} = \frac{\epsilon_u}{\epsilon_s + \epsilon_u} \qquad \dots \qquad (3-22)$$

agora, quando $\varepsilon_s = \varepsilon_y + \varepsilon_{sh}$, $f_s = f_y$

$$\frac{pf_y - p'f'_y}{f'c} = \frac{k_1 k_3 \varepsilon_u}{\varepsilon_s + \varepsilon_u}$$

isto
$$\tilde{\epsilon}$$
, $(q-q^{\dagger}) = \frac{k_1 k_3 \epsilon_u}{\epsilon_s + \epsilon_u}$ (3-23)

Quando ε_s = ε_γ, condição de equilibrio último,

$$(q-q')_b = \frac{k_1 k_3 \epsilon_0}{\epsilon_V + \epsilon_0}$$
 (3-24)

Quando $\varepsilon_s = \varepsilon_{sh}$, início da plastificação

$$(q-q^{\dagger})_{sh} = \frac{k_1 - k_3 - \epsilon_u}{\epsilon_{sh} + \epsilon_u}$$
 (3-25)

donde:

se
$$(q-q') > (q-q')_b$$
 $f_s < f_y$ caso 1
se $(q-q')_b > (q-q') > (q-q')_{sh}$ $f_s = f_y$ caso 2
se $(q-q')_{sh} > (q-q')$ $f_s > f_y$ caso 3

A curvatura \tilde{u} ltima Ψ_u , \tilde{e} obtida da consideração da distribuição de deformações (ver figura III.6-c).

Para os casos 1 e 3

$$\Psi_{\mathbf{u}} = \frac{\varepsilon_{\mathbf{s}} + \varepsilon_{\mathbf{u}}}{\mathbf{d}} \qquad \dots \dots \dots (3-26)$$

O valor de es usado na equação 3-26, serã o correspondente à deformação calculada para a tensão última do aço, obtida pelas equações 3-19, 3-20, de acordo com o caso.

Para o caso 2, onde $f_s = f_y$.

substituindo f_s = f_y na equação 3-17, temos:

$$c = d \left(\frac{pf_y - p'f'_y}{k_x k_x f'_a} \right)$$

isto é:

$$c = \frac{d}{k_1 k_3} (q-q')$$
 (3-27)

Onde a curvatura última é;

$$\Psi_{\mathbf{u}} = \frac{\varepsilon_{\mathbf{u}}}{c} \qquad (3-28)$$

Observação:

Valores de ε_u , E_c e k_1 , k_2 e k_3 , usados no cálculo.

ε_u = deformação máxima de compressão à força última, calculada usando a equação 3-29.

$$\varepsilon_{11} = 0.003 + 0.5/2 \dots (3-29)$$

onde z é medido em polegadas.

 E_c = o módulo de elasticidade do concreto, foi tomado como:

$$E_c = 60.000 \sqrt{f'_c}$$

onde Ec e f'c são em psi.

 k_1 = 0,85 para forças f'_c acima de 4000 psi; para f'_c abaixo de 4000 psi, reduz-se continuamente na razão de 0,05 para cada 1000 psi.

$$k_2 = 0.425$$

$$k_3 = 0.85$$
.

A razão da rotação inelástica total (Θ_{tu}) , no comprimento z, para a rotação inelástica (Θ_{u}) , no comprimento d/2, pode ser calculada usando a equação abaixo:

$$\frac{\Theta t_{u}}{\Theta u} = 1 + \left(1, 14\sqrt{\frac{2}{d}} - 1\right) \left[1 - \left(\frac{q - q^{1}}{q_{b}}\right)\sqrt{\frac{d}{16, 2}}\right] \dots (3-30)$$

onde q_b é calculada usando ε_u = 0,003. Esta equação pode ser usada em conjunto com o valor calculado θ_u para prever o valor limite da rotação inelástica na região plástica θ_{tu} .

III.6 - DETERMINAÇÃO DE PARK E PAULAY.

A figura III-8, mostra uma peça de concreto armado, submetida à flexão, que tenha alcançado a curvatura e momento de flexão última na seção crítica. A região da curvatura inelástica é expandida sobre o comprimento da viga, para momentos de flexão acima do momento de plastificação da seção, esta região deverá ser a mínima possível. Em regiões da viga, a curvatura varia por causa do incremento de rigidez dos segmentos entre as fissuras. O pico da curva representa a região de fissuração.

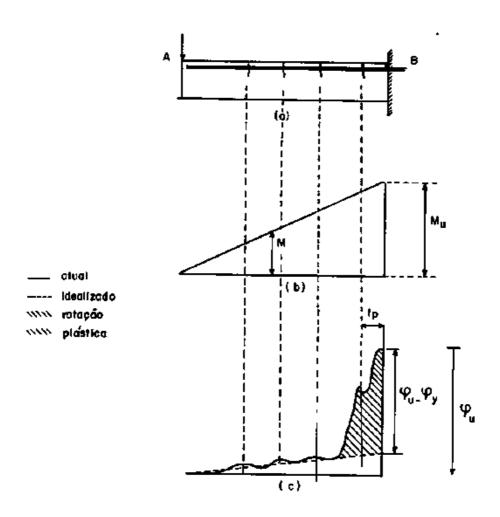


FIGURA III.8

Para se prever a dutilidade, é necessário determinar a deformação que ocorre quando o momento último é alcançado. A distribuição da curvatura última pode ser idealizada para regiões elásticas e plásticas (ver figura III.8-c). A contribuição elástica para a rotação sobre todo o comprimento da peça é dado por:

$$\Theta = \int_{A}^{B} \frac{M}{EI} d_{X}.$$

A área sombreada da figura III.8-c, é a rotação plástica que pode ocorrer, na rótula plástica, na vizinhança da seção crítica. A área inelástica para o estádio último pode ser substituída, por um retângulo de área equivalente, de altura ϕ_u - ϕ_y , e largura ℓ_p . A largura ℓ_p é o comprimento equivalente da rótula plástica, onde a curvatura plástica é considerada constante. Sendo assim, a rotação plástica de um lado da seção crítica, pode ser escrita como:

$$\Theta_{\mathbf{p}} = (\Psi_{\mathbf{u}} - \Psi_{\mathbf{y}}) \, \mathbb{A}_{\mathbf{p}} \qquad \dots \qquad (3-31)$$

Esta equação nos fornece a rotação plástica, em função das curvaturas últimas e de escoamento, e do comprimento de plastificação.

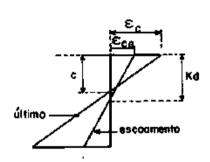


FIGURA III.9

Por intermédio do diagrama de deformação para curvatura última e de escoamento (figura III.9), podemos chegar ã seguinte fórmula.

$$\Theta_{\mathbf{p}} = \left(\frac{\varepsilon_{\mathbf{c}}}{\mathbf{c}} - \frac{\varepsilon_{\mathbf{c}} \mathbf{e}}{\mathbf{k} \mathbf{d}}\right) \, \mathcal{L}_{\mathbf{p}} \qquad \dots \qquad (3-32)$$

onde:

- c = é a altura do eixo neutro, para o momento último.
- ϵ_c = é a deformação do concreto na fibra extrema de compressão a momento último.
- kd = e a altura do eixo neutro, quando a curvatura de escoamento e alcançada.
- ε_{ce} = é a deformação do concreto na fibra extrema de compressão, quando a curvatura de escoamento é alcançada.

III.7 - COMPRIMENTO DE PLASTIFICAÇÃO:

O comprimento de plastificação (ℓ_p), \hat{e} outro assunto muito discutido; apresentaremos aqui diversos modos de avaliã-lo.

III.7.1 - Professor A. L. L. Baker.

Baker, propõe a seguinte főrmula para avaliar o lp.

- Para peças de concreto não confinado.

$$\ell_p = k_1 k_2 k_3 (z/d)^{0,25} d$$
 (3-33)

onde

$$k_2 = 1 + 0.5 \frac{p}{p_n}$$
 (3-34)

p = força axial

p_u = força de compressão máxima que o elemento poderia suportar sem existência de momento fletor.

- Para peças de concreto com aço transversal.

$$\ell_p = 0,8 k_1 k_3 (z/d) c$$
 (3-35)

onde c é a altura do eixo neutro, para o momento último.

O professor Baker define um comprimento equivalente igual a 2 ℓ_p , como sendo parte de uma haste na qual o comprimento inelástico dá lugar a uma curvatura constante, de modo que a rotação é igual aquela devida do comportamento inelástico.

III.7.2 - Professor Sydney Santos.

O professor Sydney Santos considera que o comprimento ℓ_p será o do condicionamento, se o momento for constante; se houver variação do momento figura III-10, não é necessário exceder o maior dos dois valores.

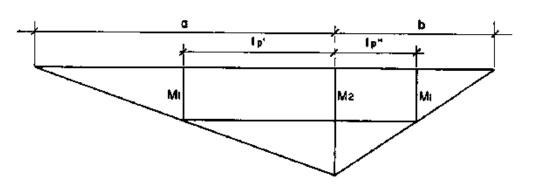


FIG III.O-Esquema para determinação do Ip

$$\frac{^{2}p}{2} = \frac{M_{2} - M_{1}}{M_{2}} \quad a. \qquad (3-36)$$

$$\frac{\ell_{\rm p}}{2} = \frac{M_2 - M_1}{M_2} \quad b.$$

sendo M_2 correspondente a L_2 e M_1 a L_1 (ver figura III-10).

III.7.3 - OUTRAS DETERMINAÇÕES.

III.7.3.1 - <u>Corley</u>

Para os resultados dos testes de vigas simplesmente apoiadas, Corley propos a seguinte expressão para o comprimento plastificado (ℓ_p).

$$\ell_p = 0.5 \text{ d} + 0.2 \sqrt{d} (z/d)$$
 (3-37)

e sugere que usemos a fórmula seguinte, para a determinação da deformação máxima do concreto:

$$\varepsilon_{c_2} = 0,003 + 0,002 \frac{b}{z} + \left(\frac{\varphi_s f_y}{20}\right)^2 \dots (3-38)$$

onde:

z = distância da seção crítica, ao de momento nulo.

b = largura da viga.

d = altura efetiva da viga (em polegadas)

 ϕ_s = razão do volume do aço confinado (incluindo aço de compressão) para o volume total de concreto.

fy = tensão de escoamento do aço confinado.

Na discussão da publicação do Corley, Mattock sugere uma forma mais simples para se avaliar ℓ_p e ϵ_p .

$$\ell_p = 0,5 d + 0,005 z$$
 (3-39)

$$\varepsilon_{\rm p} = 0,003 + 0,002 \frac{\rm b}{\rm z} + 0,2 \, \varphi_{\rm S} \, \dots \, (3-40)$$

Esta modificação na equação de $\varepsilon_{\rm p}$ é mais conservativa para os altos valores de $\varphi_{\rm s}$.

III.7.3.2 - Sawyer.

Sawyer propôs a seguinte expressão para o comprimento plastificado (\mathfrak{k}_p)

$$\ell_p = 0,25 d + 0,075 z$$
.

Esta equação é baseada na hipótese de que o momento máximo da peça é o momento último, que ${\rm M_{y/M_{u}}}$ = 0,85, e que a zona de influência é expandida de d/4, da seção do momento de flexão reduzida para ${\rm M_{y}}$.

CAPÍTULO IV

PLANO DE ENSAIOS

É fato constatado que um aumento na quantidade de estribos, com uma consequente diminuição do espaçamento como que proporciona dutilidade ao concreto [14]. Pode ser também aumentada com a colocação de armadura de compressão. As vigas superarmadas tem sua dutilidade reduzida, pois a armadura longitudinal de tração influi também na dutilidade do concreto.

Pretendemos neste estudo definir a capacidade de rotação das rótulas plásticas no concreto armado, através de dispositivos colocados tão somente na região comprimida.

Para isso, não usamos armadura de compressão alem dos ferros de montagem.

Por atuarmos tão somente na região comprimida, temos a vantagem de poder colocar quantidade maior de armadura transversal, sem alcançar a região tracionada, onde quase sempre há grande densidade de armadura longitudinal; tornar-se-ia uma área em que encontraríamos dificuldade na ocasião da concretagem, caso fosse aumentada a quantidade de armaduras transversais.

Para a realização deste estudo, executamos duas sêries de vigas que passamos a descrever:

IV.1 - DEFINIÇÃO GEOMÉTRICA

As vigas foram projetadas com dimensões de 15 x 30 $\,$ x 140cm, conforme esquema abaixo, figura IV-1 e figura IV-2.

Para as vigas V2, V4 e V5, a excentricidade, ou seja o local de aplicação da carga, passou de 5cm para 10cm, medidos a partir da face inferior.

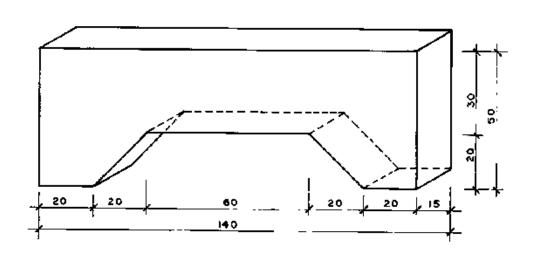


FIG IV.I - Projeto geométrico das vigas

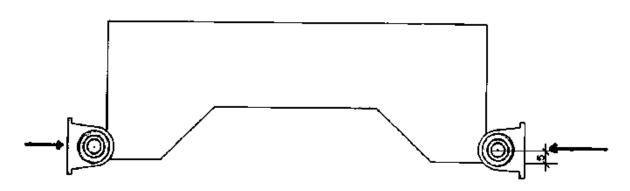


FIG IV.2 - Definição do ponto de carregamento

IV.2 - ARMAÇÃO

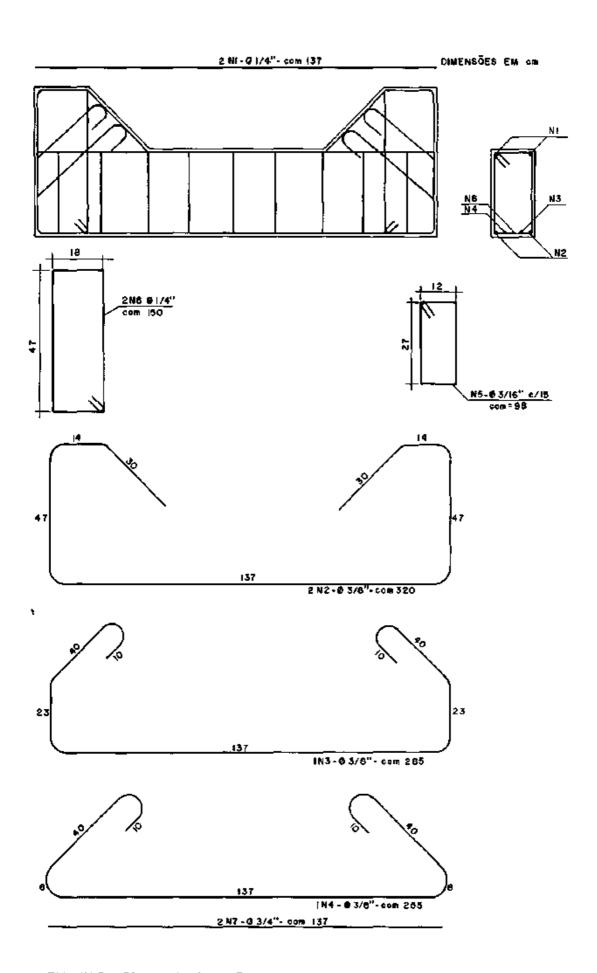
Todas as vigas da série 1, foram armadas à flexão com $40^{\circ}3/8''$, assim como as da série 2 armadas à flexão com $40^{\circ}3/8''$ mais $20^{\circ}3/4''$, como indica a figura IV-3; recebendo armadura transversal em estribos de 1/4'' cada 15cm, e estribos de 1/4'' nas "cabeças" da peça.

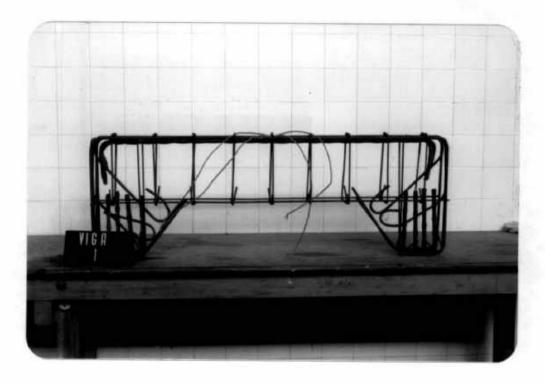
VIGA	ARMADURA	FRETAGEM	OBSERVAÇÃO
B1	403/8"		referência
B2	40/3/8"	Hélice retangular	
В3	4Ø3/8"	Hélice circular	
B4	403/8"	Estribo curto	
В5	403/8"	Fretagem tridimensional	

QUADRO 4-1 - RESUMO DAS PEÇAS DA 1ª SÉRIE DE ENSAIOS.

VIGA	ARMADURA	FRETAGEM	OBSERVAÇÃO
1	403/8" + 203/4"		referência
2	403/8" + 203/4"	Hélice retangular	
3	403/8" + 203/4"	Hélice circular	
4	403/8" + 203/4"	Estribo curto	
5	403/8" + 203/4"	Fretagem tridimensional	

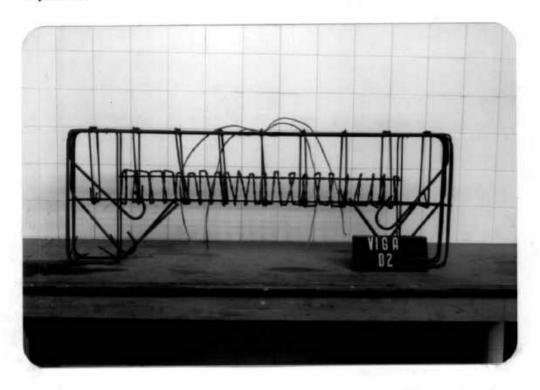
QUADRO 4-2 - RESUMO DAS PEÇAS DA 24 SÉRIE DE ENSAIOS.




FIG. IV.3 - Planta de Armação

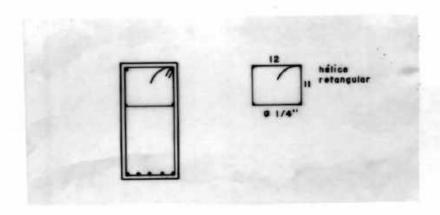
As demais características da cada viga são expostas a seguir:

V1 - Vigas de referência.

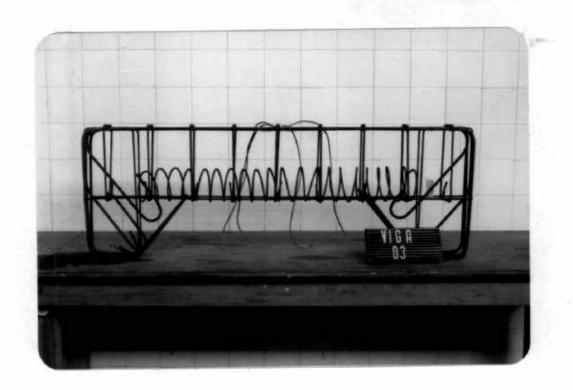


a) 1ª série.

b) 2ª série.


V2 - Dotada na região comprimida de "hélice retangular" (passo 5,0cm).

a) 1ª série.


b) 2ª série.

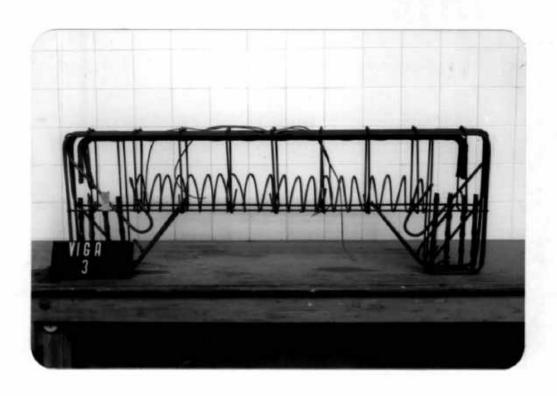
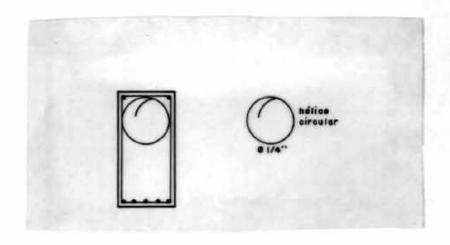
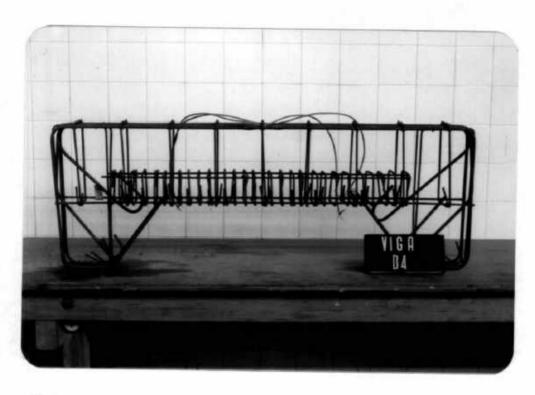
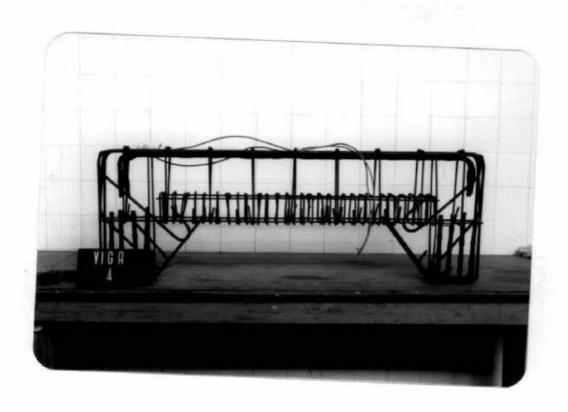

c)

FIGURA IV-5


V3 - Dotada na região comprimida de "helice Circular" (passo 5,0cm).

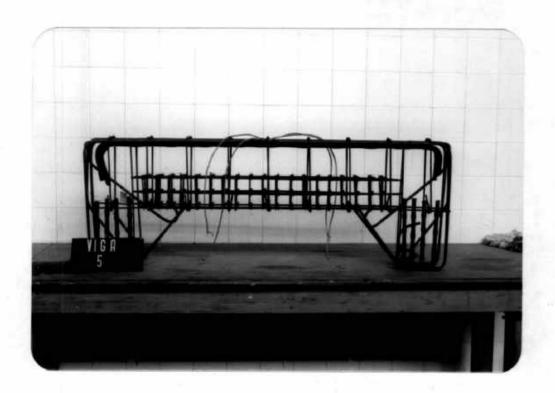

a) 1ª série.


b) 2ª série.

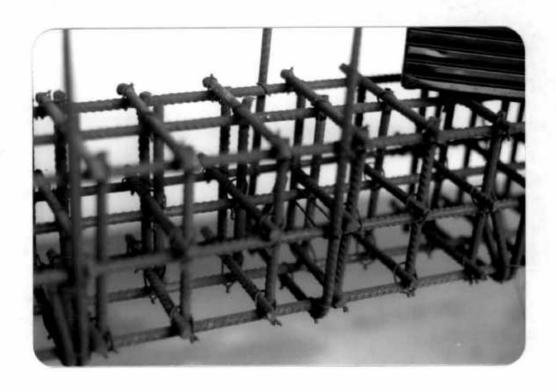

V4 - Dotada na região comprimida de "estribos curtos" retangulares, com espaçamento de 3,3cm.

a) 1ª série.

b) Za série.



c)


FIGURA IV-7

V5 - Dotada na região comprimida de "Fretagem tridimensional" (espaçamento 5cm).

b) 2ª série.

c) detalhe da fretagem.

FIGURA IV-8

IV-3 - Medições e Instrumentação.

Foram feitas medições de deformação no concreto e no aço, rotações das seções transversais, como indicado a seguir:

- Deformações do concreto: medições com Tenso-Tast (base 10cm) na região central da viga, como detalhado na figura IV-9.

		XX L.P.		
	. 10	_(اک)	ا ن	<u>L Tenso-Tast</u>
		L .		1
	l.	2	. 3	3
	4	8		7
	,] .	<u> </u> 5_
ا	10	U	12	3 }
ו 🎞 ו	13_	14	[15_	3
	1.6	17	I 18	<u> </u>
	1.19	I 20 .	$\mathbf{I}_{\mathbf{Z}}$	<u> </u>
		Ĭ		3

FACE LATERAL ESQUERDA

₩					
	31	32	35	3_	
ļ!	34	35	36	12	
	37	30	59	12	
			Ĺ	T3	

FACE LATERAL DIREITA

		\mathbb{X}		
	22	23	24	12.
<u>, </u>	25	26	27	<u> 6.</u> 5
	2-8	29	30	5.5
				12

FACE SUPERIOR

FIG IV.9-Bases de medição de deformação do concreto.

- Deformações no aço: medida das deformações com extensômetros elétricos de resistência, base 5mm, colados nas barras longi-

tudinais como indicado na figura IV-10.

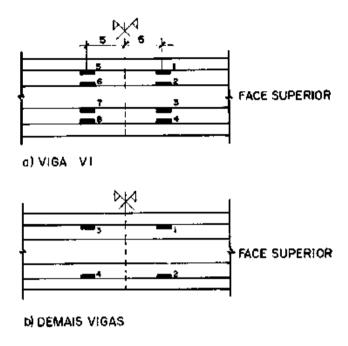
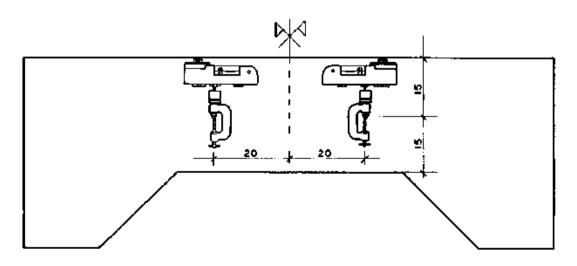
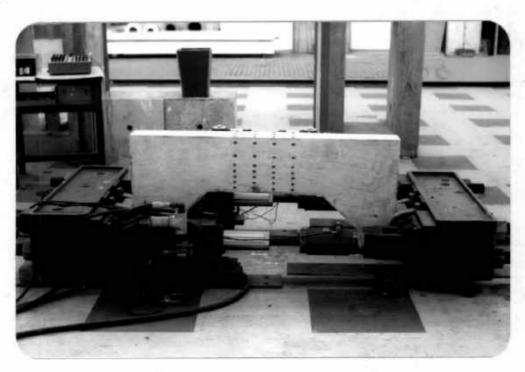


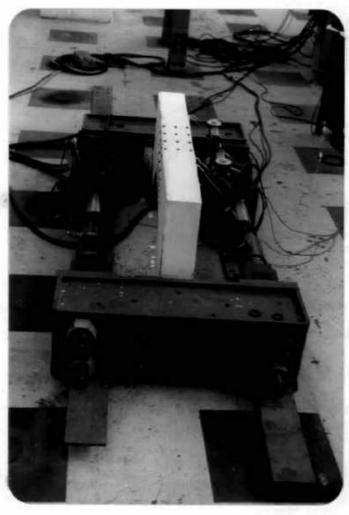
FIG IV. IO - Posição dos Extensômetros elétricos

- Rotações: medidas através de clinômetros de bolha, colocados como indicado na figura IV-11.




FIG IV.II - Posição dos clinômetros

IV-4 - <u>Equipamento de Carregamento da Estrutura e Plano Utili-</u> zado.


Para a aplicação de carga usou-se o equipamento MTS. Ele permite que seja utilizado tanto o contrôle de carga como o de deslocamento.

Permite também que sejam lidas as cargas através de Load-Cell acoplados aos macacos ou não, bem como deslocamentos, através de transdutor existente no interior do macaco. Adotamos o controle de deslocamento para que fosse permitido estudar o comportamento da estrutura na fase plástica. Entretanto, procuramos através da leitura das cargas, manter uma igualdade entre as duas, em cada etapa do carregamento.

Foram utilizados dois macacos hidráulicos com capacidade de carga igual a 350 KN e montados como mostrado nas figuras IV-12.

FIGURAS IV-12

CAPITULO V

MATERIAL UTILIZADO NA MOLDAGEM DAS VIGAS

V.1 - Aço.

O aço utilizado na moldagem das vigas é o aço encruado (caso B), cujas características médias são mostradas a seguir.

Na figura V-1, pode ser visto o diagrama tensão deformação dos aços longitudinais.

As características médias dos aços longitudinais e dos aços transversais estão apresentados no quadro 5-1.

	3/4"	3/8"	1/4"
Ø (mm)	18,98	9,92	6,34
f _y (N/mm²)	518	568	652
f _{yu} (N/mm²)	648	773	813
E (N/mm ²)	220.000	190.000	200.000

QUADRO 5-1 - CARACTERÍSTICAS DO AÇO.

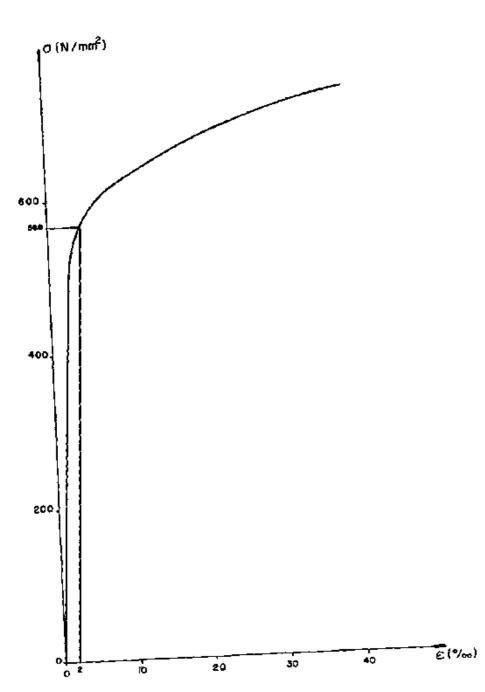


FIGURA V.I - Diagrama tensão - deformação do aco longitudinal

V.2 - Areia

Características físicas indicadas no quadro 5-2.

Peneira (mm)	Percentagem retida	Percentagem acumulada
0,95	0	0
4,8	0	0
2,4	6,8	6,8
1,2	18,0	24,8
0,6	32,5	57,3
0,3	23,2	80,5
0,15	14,6	95,1
FUNDO	4,9	100,0
	diâmetro mâximo	Módulo de finura
	D = 2,4mm	$M_{\mathbf{f}} = 2,7$

QUADRO 5-2 - CARACTERÍSTICAS DA AREIA

V.3 - Brita

Características físicas indicadas no quadro 5-3.

Peneira (mm)	Porcentagem retida	Porcentagem acumulada
38		-
19	10,7	10,7
9,5	72,1	82,8
4,8	9,8	92,6
2,4	1,5	94,1
1,2	1,0	95,1
FUNDOS	5,0	100,1
	Diâmetro máximo	Modulo de finura
	D = 19mm	$M_f = 3.8$

QUADRO 5-3 - CARACTERÍSTICAS DA BRITA

V.4 - Cimento

Portland comum CP320 de marca Mauã.

V.5 - Concreto

Foi determinado o traço do concreto pelo método racional, em peso, seguinte:

1:1,90:3,90

fator agua cimento:

x = 0,60.

consumo de cimento:

 323 Kg/m^3

De cada viga retiram-se 6 corpos de prova, mantidos imersos na 1ª semana e depois curados nas mesmas condições das vigas. Foram rompidos mo mesmo dia do ensaio.

CAPÍTULO VI

RESULTADO DOS ENSAIOS

Para as leituras de deformações do concreto, como jã descrito no item IV.3, foram afixadas "Bases" nas vigas. Ao longo dos ensaios, principalmente quando as deformações atingiam valores elevados ocorreram descolamentos de algumas dessas "Bases". Em decorrência, em muitas vigas não foi possível obter valores do encurtamento em vários pontos, nas últimas etapas. Por isso, muitas vezes daremos valores do encurtamento correspondente a etapas anteriores à última, chamando a atenção para tal fato.

Nos ensaios, o carregamento foi incrementado através do controle de deslocamentos, até um certo valor, onde observamos o início da ruína da viga (carga última). Na tentativa de se obterem as leituras dos instrumentos, mantivemos o carregamento constante; a partir deste instante, tornou-se muito difícil a obtenção das deformações do aço e concreto, bem como das rotações, em face da rapidez com que se alteravam as leituras, fato este que é notado nos gráficos, onde não se observa o trecho descendente das curvas.

VI.1 - SERIE DE ENSAIO Nº 1

Na primeira série de ensaios, foram moldadas 5 vigas, com as características já mostradas no item IV.2, denominadas:

- viga B1 de referência.
- viga B2 com "hélice retangular" na zona comprimida do concreto.
- viga B3 com "hélice circular" na zona comprimida do concreto.
- viga B4 com "estribos curtos" na zona comprimida do concreto.
- viga B5 com "fretagem tridimensional" na zona comprimida do concreto.

No ensaio da viga B1, houve problemas com a estrutura auxiliar, que transfere a carga dos macacos para a viga, devido ao fato de que esta não estava devidamente posicionada (horizontalizada), introduzindo na viga uma carga inclinada, o que não era o desejavel. Solucionado este problema o ensaio transcorreu sem maiores incidentes.

Para esta primeira série de ensaios, as vigas romperam-se por esmagamento do concreto na região central.

No gráfico relacionando momento x rotação (figura VI-1), observa-se que a capacidade de rotação das vigas com condicionamento, teve um ligeiro acréscimo em relação à viga de referência. Pode também ser notado que, nas vigas com condicionamento, houve tendência à formação de um patamar, onde a rotação aumentava sob momento constante.

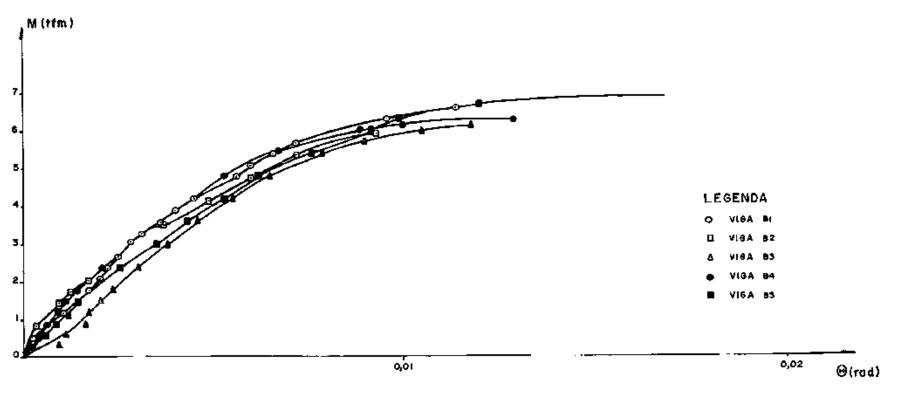


FIGURA VI.1 - Diagrama mamento rotação - 🌬 série

A resistência do concreto à compressão determinada pelo ensaio de 6 corpos de prova no dia dos ensaios, é dada pelo quadro 6-1.

VIGA	RESISTENCIA DOS C.P.
B1	346 Kg/cm ²
В2	225 Kg/cm ²
В3	303 Kg/cm ²
B4	323 Kg/cm ²
B5	332 Kg/cm ²

QUADRO 6-1 - RESISTÊNCIA MÉDIA DOS C.P.

DAS VIGAS.

No ponto de momento máximo, o encurtamento do concreto mostrado no quadro 6-2, era da ordem de:

VIGA	ENCURTAMENTO
В1	5,0%
B2	4,0%
В3	3,0%
B4	3,0%
В5	3,0%

QUADRO 6-2 - ENCURTAMENTO MÁXIMO DAS PEÇAS

NA FIBRA MAIS COMPRIMIDA.

As fotos abaixo, mostram as configurações das peças na ruptura.

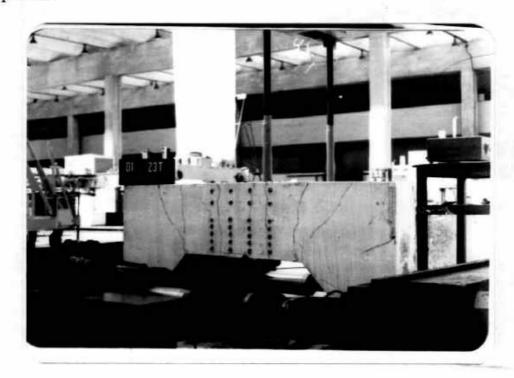


FIGURA VI-2 - VIGA B-1

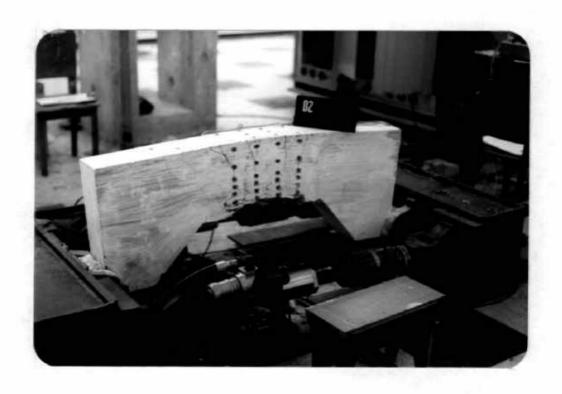


FIGURA VI-3 - VIGA B-2

FIGURA VI-4 - VIGA B-3

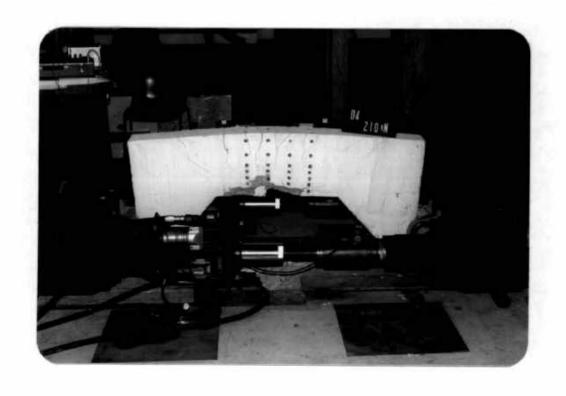


FIGURA VI-5 - VIGA B-4

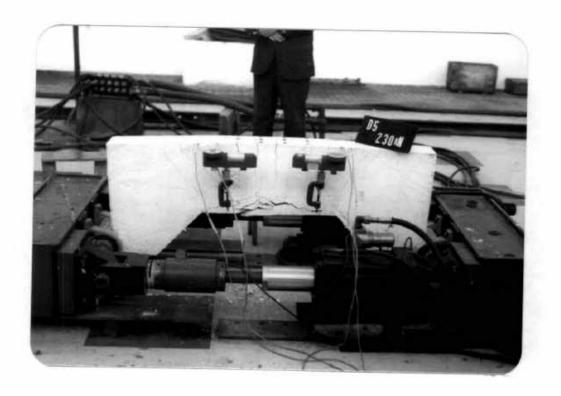


FIGURA VI-6 - VIGA B-5

VI-2 - SERIE DE ENSAIO Nº 2

Para esta série de ensaios, resolveu-se que a taxa de armadura de flexão deveria ser aumentada; com isto moldamos 5 vigas, como mostrado no item IV.2, denominadas:

- viga 1 de referência.
- viga 2 com "hélice retangular", na zona comprimida do concreto.
- viga 3 com "hélice circular", na zona comprimida do concreto.
- viga 4 com "estribos curtos", na zona comprimida do concreto.

viga 5 - com "fretagem tridimensional", na zona comprimida do concreto.

No ensaio da viga 1, observamos que esta rompeu na região central por esmagamento do concreto, e junto a um dos apoios por efeito da força cortante; jã no ensaio da viga 3, quando se iniciou o processo de ruptura na região central da viga, esta rompeu junto a um dos apoios por efeito de força cortante, por este fator resolveu-se que para as demais vigas, reduziría-mos o braço de alavanca em 5 cm, o que resolveu este problema, e estas romperam-se por esmagamento do concreto na região central.

No gráfico relacionando momento x rotação (figura VI-6), observa-se que a menos das vigas 2 e 3, a capacidade de rotação das vigas com condicionamento foi reduzida em relação à viga de referência. Pode-se também notar que a menos da viga 3, houve tendência à formação de um patamar, onde a rotação aumentava sob momento constante.

A resistência do concreto à compressão determinada pelo ensaio de 6 corpos de prova no dia dos ensaios, é dada pelo quadro 6-3.

VIGA	RESISTÊNCIA DOS C.P.
1	318 Kg/cm ²
2	292 Kg/cm ²
3	316 Kg/cm ²
4	329 Kg/cm ²
5	277 Kg/cm ²

QUADRO 6-3 - RESISTÊNCIA MÉDIA DOS C.P. DAS VIGAS.

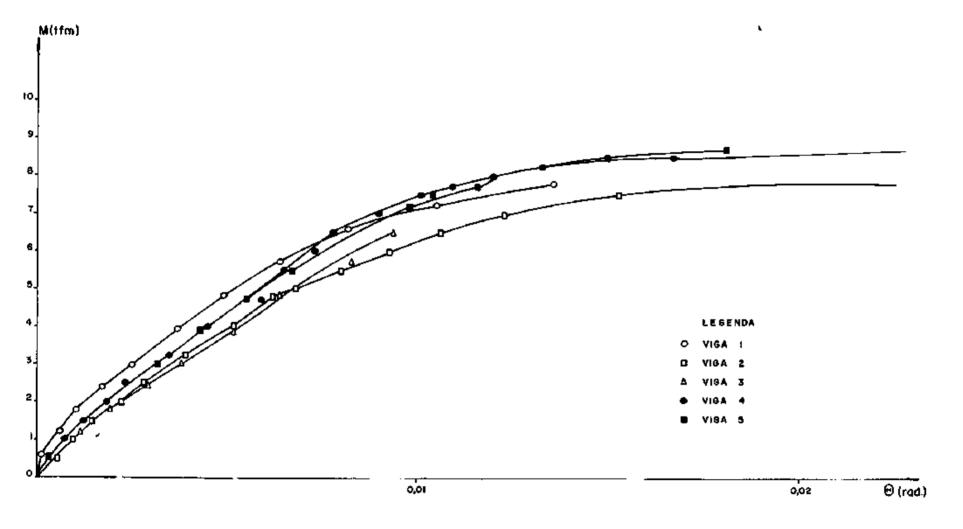


FIGURA VI.7 - Diagrama momento rotação - 2º série

No ponto de momento máximo, o encurtamento do concreto mostrado no quadro 6-4, era da ordem de:

VIGA	ENCURTAMENTO
1	280
2	4 % o
3	3% 0
4	4% ₀
5	4% o

QUADRO 6-4 - ENCURTAMENTO MÁXIMO DO CONCRE-TO, NA FIBRA MAIS COMPRIMIDA.

CAPÍTULO VII

ANĀLISE DOS RESULTADOS

VII.1 - FLEXÃO COMPOSTA.

Por intermédio dos resultados experimentais, confirmamos a idéia, que levou este trabalho a ser executado, de que, trabalhando com dispositivos colocados somente na região comprimida do concreto, podemos aumentar a capacidade de rotação de vigas de concreto armado.

Esse aumento da capacidade de rotação é dependente da taxa de armadura de tração utilizada. Na primeira série de ensaios, usamos uma taxa de armadura de tração que possibilitou, na sua fase última, o escoamento do aço (peça sub-armada), verificando assim, por intermédio da figura VI-1, que a capacidade de rotação das vigas com fretagem, aumentou em relação à viga de referência; jâ na segunda série, com uma taxa de armadura bem maior, o aço não chega a escoar (peça super armada), prejudicando a capacidade de rotação (figura VI-6).

Outros dispositivos talvez mais sofisticados [23], podem ainda ser ensaiados, pois não hã interesse em se limitar a pesquisa. Mas os resultados que aqui são apresentados jã são bastante úteis em ajuizar a possibilidade prática e teórica no uso, principalmente, de hélices circulares e estribos curtos, de execução muito fácil.

VII.1.1 - Altura da Região comprimida do concreto (x).

A altura da região comprimida tende a diminuir, a medida que o carregamento aumenta, até alcançar o momento de plastificação, correspondendo ao início do patamar (figura VI-1). A partir daí, até o momento máximo resistido, a área comprimida do concreto se manteve constante, estabilizando-se a posição da Linha Neutra.

Para se obter o momento máximo resistido, teórico da viga, deparou-se com o problema de não se ter como determinar a posição da Linha Neutra, pois não se sabe, qual é a deformação do aço de tração, se este já alcançou o escoamento ou não; optou-se, então, por efetuar o cálculo fixando a posição da linha neutra (x₂) igual a obtida experimentalmente.

Os valores da altura da região comprimida do concreto se encontram no quadro 7-1.

		1 ?	SÉRIE			29 SÉRIE					
VIGAS	B1	в2	в3	В4	В5	1	2	3	4	5	
х ₂ (ст)	8,3	12,7	8,5	8,2	8,6	13,4	16,5	14,7	17,0	18,2	

QUADRO 7-1 - ALTURA DA REGIÃO COMPRIMIDA DO CONCRETO.

VII.1.2 - Encurtamento Máximo do Concreto.

Os valores do encurtamento máximo do concreto obtidos nos ensaios estão no quadro 7-2.

O cálculo teórico do encurtamento máximo do concreto, proposto pelo professor Sydney Santos no item III.4., seguindo orientação da Norma Brasileira, está mostrado no quadro 7-2.

		1	Iª SĒR	IE		2ª SÉRIE					
VIGAS	В1	B2	В3	В4	B5	1	2	3	4	5	
€ _{C2} 1ido	2,5	3,4	3,8	3,5	3,5	1,5	4,3	2,8	4,1	3,9	
ε _{C2} teor.	1,2	2,5	2,5	3,2	3,1	1,2	2,4	2,4	3,1	3,3	

QUADRO 7-2 - ENCURTAMENTO DO CONCRETO (%0)

VII.1.3 - Capacidade de Rotação da Rótula plástica.

O professor Sydney Santos adota, para a determinação da capacidade de rotação da rótula plástica, a expressão 3-6. Fazendo os cálculos, tem-se os resultados no quadro 7-3.

Os valores da rotação, obtidos nos ensaios, estão apresentados também no quadro 7-3.

		1	SERII	E		2ª SÉRIE							
VIGAS	Bi	В2	В3	В4	В5	1	2	3	4	5			
θ_1 teor.	2,7	2,8	2,7	2,7	2,7	2,6	2,7	2,6	2,6	2,7			
θ _p teor.	5,6	6,7	8,5	10,4	9,9	4,4	5,6	6,0	6,3	6,3			
Θ _t teor.	16,6	19,0	22,4	26,2	25,3	14,2	16, 5	17,3	17,9	17,9			
Θ _t prat.	11,4	9,3	17,9	12,9	22,5	13, 6	26, 3	9,4	29,6	18,1			

QUADRO 7-3 - ROTAÇÕES (rad + 10^{-3})

O comprimento de plastificação (ℓ_p) , adotado para o cálculo teórico, será igual à distância entre os clinômetros de bolha (distância experimental), porque neste trecho, o momento é considerado proximamente constante e a fretagem está contida neste.

Comparando os resultados obtidos nos ensaios com os calculados, observa-se que os calculados são superiores aos obtidos; isto se deve principalmente ao fato da impossibilidade de se ler os instrumentos na fase última do ensaio, devido avelocidade com que as leituras se sucedem, mesmo mantendo a deformação constante.

VII.1.4 - Resultados Finais.

As características das peças ensaiadas, utilizadas para a análise teórica apresentam-se no quadro 7-4.

VIGAS	As (cm ²)	A's (cm²)	C _C (Kgf/cπे)	E ₁ +10 ⁶	d (cm)	D (em)	Fy (Kg/cm²)	Fy' (Kg/cm²)	L (em)	В (ст)	e (cm)	Wt	X ₂ (m)
В1	2,85	0,63	346	1,9	28,5	30	5680	6520	40	15	30	0,0101	8,3
В2	2,85	0,63	225	1,9	28,5	30	5680	6520	40	15	30	0,0439	12,7
В3	2,85	0,63	303	1,9	28,5	30	5680	6520	40	15	30	0,0458	8,5
B4	2,85	0,63	323	1,9	28,5	30	5680	6520	40	15	30	0,0665	8,2
В5	2,85	0,63	332	1,9	28,5	30	5680	6520	40	15	30	0,0659	8,6
1	8,55	0,63	318	2,2	28,5	30	5180	6520	40	15	30	0,0101	13,4
2	8,55	0,63	292	2,2	28,5	30	5180	6520	40	15	25	0,0439	16,5
3	8,55	0,63	316	2,2	28,5	30	5180	6520	40	15	30	0,0458	14,7
4	8,55	0,63	329	2,2	28,5	30	5180	6520	40	15	25	0,0665	17,0
5	8,55	0,63	277	2,2	28,5	30	5180	6520	40	15	25	0,0659	18,2

QUADRO 7-4 - CARACTERÍSTICAS FÍSICAS E GEOMÉTRICAS DAS VIGAS.

		· <u> </u>		7	rørio					PRĀTI CO					
VIGAS	X ₁ (cm)	ε ₀₁₋₃ +10	€ _{C2} -3	Pu tf	Mu tf+cm	fs Kg/cm²	Θ ₁ +10 ⁻⁹	⊖ _p +10 ⁻³	O _t +10 ⁻³	ε _{C2} +10 ⁻³	p _u tf	Mu tf+cm	Θ _t +10 ⁻³	$\Theta_{\mathbf{t}}/\mathrm{prat}/\Theta_{\mathbf{p}}$ calc.	
B1	6,25	.8	1,2	24,61	738,2	5654	2,7	5,6	16,6	1,7	22,0	660,0	11,6	2,07	
B2	6,85	.9	2,9	24,35	730,6	5680	2,8	6,7	19,0	2,6	19,9	597,0	9,3	1,39	
В3	6,43	.9	2,9	20,76	622,7	5680	2,7	8,5	22,4	2,5	21,0	630,0	17,9	2,11	
В4	6,35	. 9	3,2	21,69	650,7	5680	2,7	10,4	26,2	2,6	21,0	630,0	12,9	1,24	
В5	6,31	. 9	3,1	24,32	729,7	5680	2,7	9,9	25,3	2,6	23,0	690,0	22,5	2,27	
1	10,71	1,4	1,2	32,98	989,5	2977	2,6	4,4	14,2	0,5	26,0	780,0	13,6	3,09	
2	10,88	1,5	2,4	32,58	814,6	3854	2,7	5,6	16,5	3,6	32,0	800,0	26,3	4,70	
3	10,72	1,4	2,4	20,13	604,1	5052	2,6	6,0	17,3	2,1	20,0	600,0	9,4	1,57	
4	10,64	1,4	3,1	35,46	886,5	4673	2,6	6,3	17,9	3,3	35,0	875,0	29,6	4,70	
5	10,98	1,5	3,3	33,77	844,4	4047	2,7	6,3	17,9	3,8	35,0	875,0	18,1	2,87	

QUADRO 7-5 - RESULTADOS TEÓRICOS - EXPERIMENTAIS.

Comparando os resultados obtidos nos ensaios com os calculados, vimos que a discrepância entre os valores para a carga última (p_u) e o momento último (M_u) é muito pequena, assim como a deformação última do concreto nos dá valores bem próximos da realidade.

A diferença maior está nos resultados da rotação da peça, mas como os resultados teóricos são menores que os experimentais, já é possível inferir que um cálculo de concreto armado em regime plástico estará mais legitimado com o emprego conveniente de rótulas condicionadas, não só por melhor adequação entre teoria e comportamento real, como por melhor utilização da capacidade resistente das peças.

VII.2 - FLEXÃO SIMPLES

Para a análise de peças submetidas à flexão simples, recorremos aos resultados experimentais obtidos por Baker e Amarakone [1], e por Mattock [17]. Salientamos, portanto, que esses estudos foram desenvolvidos em peças com estribos habituais; logo, não dispõem de condicionamento.

O capítulo III, mostra diversas teorias para a avaliação da rotação plástica. Analisaremos apenas 3 (três) destas, a de Baker, de Mattock e do professor Sydney Santos; toda a sistemática de cálculo destas teorias foram traduzidas para linguagem de máquina, apresentadas nos apêndices 1, 2, 3 e 4. (calculadora HP 41 CV)

VII.2.1 - Características das Peças.

As características físicas e geométricas das vigas analisadas por Baker e Amarakone [1], estão nos quadros 7-6-a, 7-6-b, 7-6-c e 7-6-d; onde:

 $\overline{W} = \frac{pf_{S_2}}{c_c}$ porcentagem efetiva do aço de tração

 $\overline{W} = \frac{p'f_{s_2}}{porcentagem}$ porcentagem efetiva do aço de compressão

 $p = \frac{A_s}{b+d} \times 100$ porcentagem do aço de tração

 $p' = \frac{A's}{b+d} \times 100$ porcentagem do aço de compressão

 p^{tr} = porcentagem do cintamento

c_c = resistência cilíndrica do concreto

d = altura efetiva da seção

D = altura da seção

Fy = tensão de escoamento do aço

L = comprimento da viga entre apoios

B = largura da seção

carregamento (1/2) : 1 : carga única aplicada no meio da viga.

Mu calculado

 $\beta = \frac{\theta_p \quad atuante}{\theta_p \quad calculado}$

θ_p = rotação plástica de um lado da seção crítica

Θ_r = rotação elástica da viga

θt = rotação total da viga

 ℓ_p = comprimento de plastificação de um lado da seção crítica

 $E_s = modulo de deformação do aço = 2,1 + 10^6 Kg/cm^2$.

2 : cargas aplicadas nos terços da viga.

$$\alpha = \frac{M_{\rm u} - atuante}{M_{\rm u} - calculado}$$

$$\beta = \frac{\theta_p \quad \text{atuante}}{\theta_p \quad \text{calculado}}$$

- Θ_p = rotação plástica de um lado da seção crítica
- Θ_1 = rotação elástica da viga
- Ot = rotação total da viga
- £p = comprimento de plastificação de um lado da seção crítica
- E_s = modulo de deformação do aço = 2,1 + 10⁶ Kg/cm².

VIGAS	W2	₩'%	ट _ट (Kgf/cm²)	p''	d (cm)	D (cm)	Fy (Kg/cm ²)	L (cm)	B (cm)	carr/o 1/2	α	β
MADRID 6α-2	33,5	2,8	185	0,00176	24,5	28,0	3350	280	15	1	1,17	1,5
6α - 3	31,4	2,6	202	0,00176	24,5	28,0	3420	280	15	1	1,08	1,6
PARIS A2	4,2	4,2	318	0,00132	25,5	28,0	2820	280	25	1	1,15	1,6
A5	20,3	1,2	338	0,00172	24,5	28,0	2760	280	15	1	1,09	1,8
A8	6,32	1,2	338	0,00165	25,5	28,0	2600	280	15	1	1,17	1,7
в5	21,2	1,2	310	0,00165	24,5	28,0	2720	280	15	2	1,10	3,0
В8	7,1	1,2	310	0,00165	25,5	28,0	2690	280	15	2	1,04	1,1
PORTO B6	23,4	1,6	306	0,0026	25,1	28,0	3440	280	15	2	0,96	2,0
В7	12,8	1,6	321	0,0026	26,0	28,0	3060	280	15	2	1,06	0,6
в9	5,0	1,6	287	0,0026	26,0	28,3	2760	280	15	2	1,25	2,2
TORINO A6	16,7	1,5	297	0,00132	24,5	28,0	2800	280	15	1	1,18	0,7
E4 .	. 39,8	1,4	390	0,00132	24,5	28,0	4750	280	15	1	1,00	1,00

QUADRO 7-6-a - CARACTERÍSTICAS FÍSICAS E GEOMÉTRICAS

DAS VIGAS DE BAKER E AMARAKONE.

VIGAS	WZ	₩'%	C _c	p''	d	D	Fy	L	В	carr/o	α	β
		,, ,,	(Kgf/टार्ने)	P	(cnn.)	(cm)	(Kg/cm ²)	(cm)_	(cm)	1/2		<u>.</u>
TORINO L4	50,6	2,4	308	0,00117	24,5	28,0	4750	280	15	1	1,12	2,8
D8	11,0	2,0	374	0,00190	25,5	28,0	5040	280	15	1	1,32	2,0
PORTO C6	36,4	3,0	265	0,0023	24,82	28,02	4700	280	15,10	1	1,09	1,8
C7	20,3	2,5	303	0,0023	25,60	28,07	4800	280	15,04	1	1,07	2,1
C9	6,5	2,5	323	0,0023	26,30	28,07	4100	280	14,48	1	1,19	0,8
м9	6,7	2,5	302	0,0023	26,16	28,08	4100	140	15,24	1	1,32	1,2
PARIS E6	22,5	1,67	258	0,00176	24,5	28,0	5580	280	15,0	1	1,20	1,5
E9	11,7	1,67	252	0,00176	25,5	28,0	5450	280	15,0	1	1,06	0,6
F6	23,3	1,04	415	0,00176	24,5	28,0	6050	280	15,0	1	1,06	0,9
F9	6,6	0,96	450	0,00176	25,5	28,0	5660	280	15,0	1	1,03	0,9
Н2	8,2	8,17	308	0,00051	25,5	28,0	5160	280	25	1 .	1,20	1,4
н5	46,0	1,50	287	0,00062	24,5	28,0	5440	280	15	1	1,27	1,5

QUADRO 7-6-b - CARACTERÍSTICAS FÍSICAS E GEOMÉTRICAS

DAS VIGAS DE BAKER E AMARAKONE.

VIGAS	WZ	₩'%	C _C (Kgf/cm ²)	p''	d (cm)	D (cm)	F _y (Kgf/cm ²)	L (cm)	B (cm)	carr/o 1/2	α	В
PARIS H8	15,2	1,47	295	0,00062	25,5	28,0	4890	280	15	1	1,06	1,2
R4	59,0	15,3	2 92	0,00176	24,6	28,0	4810	280	15	1	1,25	1,4
R 5	41,5	14,1	317	0,00176	24,5	28,0	5200	280	15	ì	1,10	1,4
R6	25,1	6,6	387	0,00176	24,5	28,0	5450	280	15	1	1,07	1,6
I.C-3	31,5	4,0	293,85	0,0061	16,26	20,32	2903,39	203,2	15,24	1	1,10	1,9
I.C-4	40,7	4,2	291,75	0,0081	15,85	20,32	2903,39	203,2	15,24	1	1,18	2,2
1.C-5	45,1	3,7	336,74	0,0097	14,94	20,32	2903,39	203,2	15,24	1	1,13	1,6
1.C-6	42,9	6,0	353,61	0,0122	14,94	20,32	2903,39	203,2	15,24	1	1,06	1,3
I.C-7	48,4	16,1	310,73	0,0046	15,06	20,32	2903,39	203,2	15,24	1	1,00	4,3

QUADRO 7-6-C - CARACTERÍSTICAS FÍSICAS E GEOMETRICAS DAS

VIGAS DE BAKER E AMARAKONE.

VIGAS	Wz	W12	C _C (Kgf/cm ²)	p"	d (сш)	D (cm·)	Fy (Kgf/cm²)	(cm)	В (ст)	carr/o 1/2	α	β
1.C-8	65,7	16,4	302,29	0,0055	15,19	20,32	2 903,39	203,2	15,24	1	1,04	2,2
1.C-9	10,7	_	345,17	-	17,40	20,32	5975,5	203,2	15,24	1	1,11	0,8
I.C-10	14,9	_	345,52	-	17,30	20,32	5975,5	203,2	15,24	1	1,09	1,8
I.C-11	22,5	2,0	344,12	0,0061	17,17	20,32	5975,5	203,2	15,24	1	1,14	1,5
I.C-12	25,1	2,0	343,77	0,0061	16,74	20,32	5975,5	203,2	15,24	1	1,14	1,7
I.C-13	45,0	2,0	308,62	0,0081	16,26	20,32	5975,5	203,2	15,24	1	1,34	1,2
I.C-14	16,7	11,6	314,24	0,0061	16,94	20,32	5975,5	203,2	15,24	1	1,13	0,9
I.C-15	33,0	24,8	312,84	0,0126	17,17	20,32	5975,5	203,2	15,24	1	1,12	0,8
I.C-16	70,4	16,4	319,87	0,0151	15,95	20,32	5975,5	203,2	15,24	1	1,27	2,5

QUADRO 7-6-à - CARACTERÍSTICAS FÍSICAS E GEOMÉTRICAS DAS

VIGAS DE BAKER E AMARAKONE.

As características físicas e geométricas das vigas analisadas por Mattock [17], estão nos quadros 7-7-a, 7-7-b e 7-7-c, onde:

F'c = resistência cilíndrica do concreto

D = altura efetiva da seção

H = altura da seção

 $p = \frac{A_s}{hd}$ razão do aço de tração

 $p' = \frac{A's}{bd}$ razão do aço de compressão

Z = distância da seção de momento máximo, a seção adjacente de momento nulo.

Fo = tensão definida pela figura III-6.

 $\alpha = \frac{M_{u} \text{ atuante}}{M_{u} \text{ calculado}}$

 $\beta = \frac{\Theta_{tu}}{\Theta_{tu}} \frac{\text{atuante}}{\text{calculado}}$

B = largura da seção = 6 in.

carregamento = Todas as vigas estão submetidas a carga única, aplicada no meio da viga.

VIGA	F _c ' (psi)	E _s +10 ⁶	D (in)	H (in)	p	p'	F _y (psi)	Z (in)	F _y '	F _o (psi)	E's +10 ⁶	α	В
A1	5540	28,4	10	11	0,0147	0,0037	45700	27,5	49300	35600	1,05	0,87	1,22
A2	6135	28,4	10	11	0,0147	0,0037	46100	55	49300	3600 0	1,05	0,90	1,13
А3	5940	28,4	10	11	0,0147	0,0037	48800	110	49300	38100	1,05	1,00	1,40
A4	6215	28,4	10	11	0,0294	0,0037	45700	27,5	49800	35600	1,05	1,03	1,79
A5	5750	28,4	10	11	0,0294	0,0037	45600	55	48200	35600	1,05	1,02	1,60
A6	5960	28,4	10	11	0,0294	0,0037	47600	110	48200	37100	1,05	0,98	1,48
B 1	62 30	28,2	20	21	0,0147	0,0018	47700	55	49300	38200	1,03	0,92	1,39
в2	6060	28,2	20	21	0,0147	0,0018	46700	110	48800	37400	1,03	0,90	0,93
В3	6220	28,2	20	21,75	0,0294	0,0018	46600	55	51500	37300	1,03	1,02	1,55
В4	6210	28,2	20	21,75	0,0294	0,0018	46800	110	48900	37400	1,03	0,91	1,17
C1	3980	28,3	10	11	0,0147	0,0037	47700	27,5	495 0 0	38200	0,91	0,95	2,15
C2	3770	28,3	10	11	0,0147	0,0037	47700	55	49500	38200	0,91	0,99	1,12

QUADRO 7-7-a - CARACTERÍSTICAS FÍSICAS E GEOMÉTRICAS

DAS VIGAS DE MATTOCK.

VIGA	F _c ' (psi)	E _s +10 ⁶	D (in)	H (in)	р	p'	F _y (psi)	Z (in)	Fy' (psi)	F _o (psi)	E's +10 ⁶	α	β
С3	3710	28,3	10	11	0,0147	0,0037	47800	110	49500	38200	0,91	1,04	1,44
C4	3760	28,3	10	11	0,0294	0,0037	47200	27,5	49500	37800	0,91	1,18	1,89
C5	3390	28,3	10	1 1	0,0294	0,0037	47600	. 55	48500	38100	0,91	1,10	1.46
C6	3970	28,3	10	11	0,0294	0,0037	46300	110	48500	37000	0,91	1,00	1,51
D1	3870	28,2	20	21	0,0147	0,0018	46300	55	50000	37000	0,92	0,93	1,15
D2	37 15	28,2	20	21	0,0147	0,0018	45 900	110	485 00	36700	0,92	1,01	1,08
D3	37 65	28,2	20	21,75	0,0294	0,0018	46400	5.5	49400	37100	0,92	1,07	1,50
D4	3900	28,2	20	21,75	0,0294	0,0018	46700	110	46300	37400	0,92	1,04	0,93
E1	4045	27,9	10	11	0,0147	0,0037	58600	27,5	7 32 00	48100	1,25	0,91	1,02
E2	4110	27,9	10	11	0,0147	0,0037	60000	55	72700	49200	1,25	1,00	1,59
E3	4320	27,9	10	11	0,0147	0,0037	59800	110	72700	49000	1,25	0,98	1,55

QUADRO 7-7-5 - CARACTERÍSTICAS FÍSICAS E GEOMÉTRICAS

DAS VIGAS DE MATTOCK.

VIGA	F _c ' (psi)	E _s +10 ⁶	D (in)	H (in)	p	p'	F _y (psi)	Z (in)	Fy' (psi)	F _o (psi)	E _s ' +10 ⁶	α	В
F1	5980	27,9	10	11	0,0147	0,0037	58600	27,5	7 32 00	48600	1,19	0,90	0,97
F2	6000	27,9	10	11	0,0147	0,0037	60200	55	68200	50000	1,19	0,96	1,55
F3	6215	27,9	10	11	0,0147	0,0037	60200	110	67300	50000	1,19	1,05	1,54
G1	3970	28,6	20	21	0,0110	0,0018	60100	55	73600	49900	1,20	0,98	1,18
G2	4110	28,6	20	21	0,0110	0,0018	60000	110	70000	49800	1,20	1,09	1,79
Ģ3	4170	28,6	20	21	0,0147	0,0018	60200	55	68200	50000	1,20	0,93	0,83
G4	3950	28,6	20	21	0,0147	0,0018	60200	110	73200	50000	1,20	1,02	1,45
G5	3970	28,6	20	21	0,0073	0,0018	60500	110	73600	50200	1,20	1,08	1,91

QUADRO 7-7-c - CARACTERÍSTICAS FÍSICAS E GEOMÉTRICAS

DA VIGAS DE MATTOCK.

VII.2.2 - <u>Resultados Obtidos Através da Teoria de</u> <u>Baker e Amarakone.</u>

O cálculo teórico de Baker e Amarakone [1], feito como descrito no item III.2 e obedecendo as recomendações do C.E.B. [29], adota como base de cálculo que, a distribuição de tensão de compressão no concreto seja parabólica, entre o limite elástico (L_1) e o limite de ruptura idealisados (L_2) e que a distribuição da deformação através da seção seja linear; este ainda faz a seguinte simplificação na equação 3-4, $k_1 \times k_3$ e a/2 tenham respectivamente os valores de 0,5 e 6.

Através do cálculo teórico automatizado (apêndice 2), obtem-se os resultados mostrados nos quadros 7-8-a, 7-8-b e 7-8-c, com os resultados experimentais.

Para analisar pela teoria de Baker, os dados de Mattock, transformamos as unidades e os resultados são mostrados nos quadros 7-9-a, 7-9-b, 7-9-c e 7-9-d.

onde:

 $\theta_{\rm p}$ = rotação plástica (rad)

 Θ_1 = rotação elástica (rad)

θ_t = rotação total da peça (rad)

 M_y = Momento elástico ($t_f \times cm$)

 $M_{\rm u}$ = Momento último ($t_{\rm f} \times c_{\rm m}$)

 $n_2 = x/d$

x_n = altura da linha neutra

 ϵ_{c_2} = deformação última da fibra mais comprimida do concreto.

VIGAS	2Θ _p calc.	Θ _p calc.	O _p atuante	$\frac{\Theta_{\mathrm{p}}}{\Theta_{\mathrm{p}}}$ calc.	My calc.	Mu calc.	Mu atu∕e		$\frac{M_{\rm U}}{M_{\rm U}}$ calc.	Θ ₁ calc.	Θ _t calc.	n ₂	€c ₂
MADRID 6α-2	0,0138	0,0069	0,0104	1,5	418,51	460,04	538,25	0,78	0,85	0,0133	0,0271	0,50	0,0036
6α-3	0,0148	0,0074	0,0118	1,6	428,32	477,48	515,68	0,83	0,93	0,0131	0,0279	0,47	0,0037
PARIS A2	0,0477	0,0238	0,0381	1,6	178,35	233,30	268,29	0,66	0,87	0,0077	0,0554	0,06	0,0100
A5	0,0220	0,0110	0,0198	1,8	463,34	552,81	602,56	0,77	0,92	0,0098	0,0314	0,30	0,0050
A8	0,0475	0,0238	0,0404	1,7	171,15	204,86	239,69	0,71	0,86	0,0074	0,0549	0,09	0,0100
B5	0,0211	0,0106	0,0317	3,0	443,79	526,29	578,93	0,77	0,91	0,0163	0,0375	0,32	0,0048
В8	0,0474	0,0237	0,0261	1,1	176,34	209,71	218,04	0,81	0,96	0,0128	0,0602	0,11	0,0100
PORTO B6	0,0195	0,0098	0,0195	2,0	536,50	593,39	569,65	0,94	1,04	0,0194	0,0389	0,35	0,0045
В7	0,0325	0,0163	0,0098	0,6	357,11	390,79	414,24	0,86	0,94	0,0151	0,0476	0,19	0,0070
В9	0,0476	0,0238	0,0524	2,2	121,86	145,56	181,94	0,67	0,80	0,0125	0,0601	0,07	0,0100
TORINO A6	0,0260	0,0130	0,0091	0,7	334,93	410,57	484,47	0,69	0,85	0,0094	0,0353	0,25	0,0057
F4	0,0118	0,0059	0,0059	1,0	1048,17	1093,26	1093,26	0,96	1,00	0,0175	0,0294	0,59	0,0033
L4	0,0084	0,0042	0,0118	2,8	1052,41	1015,32	1137,16	0,93	0,89	0,0194	0,0278	0,76	0,0029
D8	0,0371	0,0185	0,0371	2,0	329,61	383,72	506,51	0,65	0,76	0,0141	0,0512	0,16	0,0079

VIGAS	20p calc	Θ _p calc	⊖ _p atuante	$\frac{\Theta_p}{\Theta_p}$ atu/e	My calc	M _u calc	M _u atu∕e	My calc Mu atu/e	$\frac{M_{\rm u}}{M_{\rm u}}$ calc	Θ ₁ calc	Θ _t calc	n ₂	€c2
PORTO C6	0,0131	0,0065	0,0118	1,8	692,33	724,01	789,17	0,88	0,92	0,0167	0,0297	0,54	0,0034
C7	0,0222	0,0111	0,0233	2,1	499,57	544,59	582,71	0,86	0,93	0,0144	0,0366	0,30	0,0050
С9	0,0475	0,0238	0,0190	0,8	183,76	208,07	247,61	0,74	0,84	0,0109	0,0584	0,10	0,0100
м9	0,0475	0,0237	0,0295	1,2	182,17	208,89	275,74	0,66	0,76	0,0055	0,0530	0,10	0,0100
PARIS E6	0,0204	0,0102	0,0153	1,5	392,00	462,39	554,87	0,71	0,83	0,0174	0,0378	0,34	0,0046
E9	0,0352	0,0176	0,0106	0,6	236,23	272,77	289,14	0,82	0,94	0,0153	0,0505	0,17	0,0075
F 6	0,0198	0,0099	0,0089	0,9	652,96	762,63	808,39	0,81	0,94	0,0187	0,0385	0,35	0,0045
F9	0,0475	0,0238	0,0214	0,9	237,96	283,12	291,61	0,82	0,97	0,0154	0,0629	0,10	0,0100
Н2	0,0474	0,0237	0,0332	1,4	337,25	431,83	518,19	0,65	0,83	0,0142	0,0616	0,12	0,0100
н5	0,0101	0,0050	0,0075	1,5	891,51	888,17	1127,98	0,79	0,79	0,0201	0,0302	0,69	0,0030
Н8	0,0282	0,0141	0,0169	1,2	359,26	404,30	428,55	0,84	0,94	0,0142	0,0424	0,23	0,0061
R4	0,0061	0,0030	0,0045	1,4	1184,06	1103,48	1379,35	0,86	0,80	0,0212	0,0273	0,88	0,0027
R5	0,0114	0,0057	0,0080	1,4	888,37	966,85	1063,54	0,84	0,91	0,0189	0,0303	0,62	0,0032
R6	0,0186	0,0093	0,0149	1,6	655,95	784,58	839,50	0,78	0,93	0,0175	0,0359	0,37	0,0043

VIGAS	2Θ _p calc	θ _p calc	⊙p atuante	$\frac{\Theta_p}{\Theta_p}$ at u/e	My calc	M _u calc	M _u atu/e	$\frac{M_{\rm y}}{M_{\rm u}}$ calc.		Θ ₁ calc	Θ _t calc	Π ₂	Ec2
I.C. 3	0,0146	0,0073	0,0138	1,9	223,92	319,03	350,93	0,64	0,91	0,0131	0,0276	0,47	0,0037.
I.C. 4	0,0104	0,0052	0,0114	2,2	254,61	364,29	429,86	0,59	0,85	0,0158	0,0262	0,61	0,0032
I.C. 5	0,0085	0,0042	0,0068	1,6	243,05	481,46	453,65	0,54	0,89	0,0183	0,0268	0,67	0,0031
I.C. 6	0,0095	0,0047	0,0062	1,3	242,77	418,11	443,19	0,55	0,94	0,0175	0,0270	0,64	0,0032
I.C. 7	0,0070	0,0035	0,0150	4,3	253,71	439,41	439,41	0,57	1,00	0,0195	0,0265	0,72	0,0030
I.C. 8	0,0038	0,0019	0,0042	2,2	345,75	500,44	520,46	0,66	0,96	0,0318	0,0280	0,98	0,0026
I.C. 9	0,0386	0,0193	0,0154	0,8	119,17	157,40	174,71	0,68	0,90	0,0176	0,0561	0,16	0,0082
I.C. 10	0,0287	0,0144	0,0258	1,8	165,02	215,24	234,61	0,70	0,92	0,0181	0,0468	0,22	0,0062
I.C. 11	0,0204	0,0102	0,0153	1,5	240,02	309,74	353,10	0,68	0,88	0,0191	0,0395	0,34	0,0046
I.C. 12	0,0186	0,0093	0,0158	1,7	238,65	323,01	368,23	0,65	0,88	0,0199	0,0385	0,37	0,0043
I.C. 13	0,0106	0,0053	0,0063	1,2	335,97	424,85	569,30	0,59	0,75	0,0233	0,0338	0,67	0,0031
I.C. 14	0,0262	0,0131	0,0118	0,9	153,15	239,86	271,04	0,57	0,89	0,0187	0,0449	0,25	0,0057
I.C. 15	0,0139	0,0070	0,0056	0,8	320,03	442,11	495,17	0,65	0,89	0,0129	0,0268	0,49	0,0037
I.C. 16	0,0074	0,0037	0,0092	2,5	497,55	584,78	742,67	0,67	0,79	0,0349	0,0276	1,05	0,0025

VIGAS	2⊖ _p calc	Θ _p calc	O _p atuaπte	$\frac{\theta_p}{\theta_p}$ atu/e	My calc	Mu calc	M _u atu∕e	$\frac{M_{\rm W}}{M_{\rm U}}$ atu/e	$\frac{M\mathbf{u}}{M\mathbf{u}}$ calc	Θ_1 calc	Θ _t calc	n ₂	€c2
A1	0,0156	0,0078	0,0695	8,9	329,89	375,83	585,34	0,56	0,64	0,0050	0,0206	0,18	0,0073
A2	0,0338	0,0169	0,0627	3,7	332,80	381,59	541,50	0,61	0,70	0,0099	0,0438	0,16	0,0079
A3	0,0627	0,0314	0,0739	2,4	352,25	401,42	539,87	0,65	0,74	0,0211	0,0838	0,18	0,0073
A4	0,0096	0,0048	0,0625	13,0	659,63	708,65	960,91	0,69	0,74	0,0055	0,0152	0,32	0,0048
A5	0,0180	0,0090	0,0449	5,0	658,26	699,53	839,96	0,78	0,83	0,0113	0,0293	0,35	0,0045
A6	0,0357	0,0179	0,0353	2,0	686,98	729,30	764,98	0,90	0,95	0,0233	0,0590	0,35	0,0045
B1	0,0167	0,0083	0,0489	5,9	1523,25	1577,49	2159,89	0,71	0,73	0,0052	0,0218	0,17	0,0078
В2	0,0331	0,0166	0,0326	2,0	1490,90	1543,34	1860,13	0,80	0,83	0,0101	0,0433	0,17	0,0077

QUADRO 7-9-a - RESULTADOS TEÓRICOS DE BAKER
EXPERIMENTAIS DE MATTOCK.

VIGAS	2Θ _p calc	Θ _p calc		$\frac{\Theta_p}{\Theta_p}$ atu/e $\frac{\Theta_p}{\Theta_p}$ calc.	My calc	M _u calc			M _u calc M _u atu/e	$ heta_1$ calc	O _t	n ₂	€ _{C2}
В3	0,0095	0,0047	0,0289	6,1	2975,43	2883,14	3372,62	0,88	0,85	0,0057	0,0152	0,33	0,0047
B4	0,0188	0,0094	0,0176	1,9	2988,18	2893,09	2784,96	1,07	1,04	0,0114	0,0302	0,33	0,0047
Ç1	0,0114	0,0057	0,1088	19,0	344,26	379,27	560,00	0,61	0,68	0,0055	0,0169	0,26	0,0055
C2	0,0218	0,0109	0,0491	4,5	344,23	376,9 3	505,22	0,68	0,75	0,0111	0,0329	0,27	0,0053
С3	0,0430	0,0215	0,0600	2,8	344,95	376,91	479,99	0,72	0,79	0,0223	0,0653	0,28	0,0052
C4	0,0058	0,0029	0,0491	17,0	681,29	660,67	904,44	0,75	0,73	0,0068	0,0126	0,55	0,0034
C5	0,0099	0,0050	0,0249	5,0	686,97	645,64	752,91	0,91	0,86	0,0146	0,0245	0,62	0,0032
C6	0,0249	0,0124	0,0275	2,2	668,28	660,03	685,85	0,97	0,96	0,0262	0,0510	0,52	0,0036

QUADRO 7-9-b - RESULTADOS TEÓRICOS DE BAKER

EXPERIMENTAIS DE MATTOCK.

VIGAS	2⊖ _p calc.	Θ _p calc		$\frac{\Theta_{\mathrm{p}}}{\Theta_{\mathrm{p}}}$ atu/e		Mu calc	_	My calc Mu atu/e	Mu calc Mu atu/e	⊖ _l calc	Θt calc	n _z	€c2
D1	0,0114	0,0057	0,0335	5,9	1478,16	1472,91	1820,97	0,81	0,81	0,0054	0,0168	0,26	0,0055
D2	0,0222	0,0111	0,0274	2,5	1464,94	1454,57	1760,29	0,83	0,83	0,0107	0,0330	0,27	0,0054
р3	0,0059	0,0029	0,0189	6,4	2746,93	2609,90	2927,73	0,94	0,89	0,0067	0,0126	0,54	0,0035
04	0,0121	0,0060	0,0089	1,5	2764,54	2645,61	2746,79	1,01	0,96	0,0133	0,0254	0,53	0,0035
E1	0,0098	0,0049	0,0433	8,9	422,96	455,32	633,24	0,67	0,72	0,0068	0,0166	0,32	0,0048
E2	0,0194	0,0097	0,0589	6,1	432,98	465,64	630,22	0,69	0,74	0,0139	0,0333	0,32	0,0048
Е3	0,0407	0,0203	0,0564	2,8	431,57	467,39	572,56	0,75	0,82	0,0275	0,0681	0,30	0,0050

QUADRO 7-9-c - RESULTADOS TEÓRICOS DE BAKER

EXPERIMENTAIS DE MATTOCK.

VIGAS	20 _p calc.	⊖ _P calc	, .	$\Theta_{ m p}$ atu/e $\Theta_{ m p}$ calc.	My calc	Mu calc	$M_{ m u}$ atu/e	*	$\frac{M_{ m U}}{M_{ m U}}$ calc.	Θ_1 calc	Θ _t calc	n ₂	€c2
F 1	0,0135	0,0068	0,0502	7,4	423,03	475,33	703,46	0,60	0,68	0,0064	0,0200	0,22	0,0064
F2	0,0266	0,0133	0,0703	5,3	434,46	487,16	662,93	0,66	0,73	0,0132	0,0398	0,22	0,0063
F3	0,0547	0,0274	0,0689	2,5	434,46	488,69	660,97	0,66	0,74	0,0263	0,0891	0,21	0,0065
G1	0,0120	0,0060	0,0351	5,8	1435,33	1438,57	1985,13	0,72	0,72	0,0066	0,0186	0,25	0,0057
G2	0,0247	0,0124	0,0500	4,0	1433,29	1441,76	2014,98	0,71	0,72	0,0130	0,0378	0,24	0,0059
G3	0,0098	0,0049	0,0191	3,9	1921,44	1871,47	2208,65	0,87	0,85	0,0068	0,0166	0,32	0,0048
G4	0,0187	0,0094	0,0272	2,9	1921,44	1857,29	2204,82	0,87	0,84	0,0138	0,0325	0,33	0,0047
G5	0,0337	0,0168	0,0806	4,8	958,61	993,57	1586,37	0,60	0,63	0,0126	0,0463	0,17	0,0078

QUADRO 7-9-d - RESULTADOS TEÓRICOS DE BAKER

EXPERIMENTALS DE MATTOCK.

VII.2.3 - Resultados Obtidos Pela Teoria de Mattock.

O calculo teórico de Mattock efetua-se como descrito no item III-5 e foi traduzido para linguagem computacional, como mostra o apêndice 1.

Pela Figura III-7, vê-se que a determinação de fo é em função do E's; não se conhecendo este valor, fica impossível aplicar esta teoria. Qualquer tentativa em estimar fo poderia resultar em valores totalmente falsos; portanto, optou-se por analisar apenas os dados fornecidos pelo próprio Mattock, como mostram os quadros 7-10-a, 7-10-b e 7-10-c; onde:

 $M_{\rm V}$ e $M_{\rm U}$ são dados em Ksi e $\Theta_{\rm U}$, $\Theta_{\rm L}$ em rad.

VIGA	€ _C ¿	n ₂	My	M _U	Mu atu/e	My calc Mu atu/e		O _u	Otu calc.	Θ _{tu} atu/e	Θ _{tu} atu/e Θ _{tu} calc.		Θ _t calc
	 		calc	calc	atu/e	Mu acu/e	····u acu/e	Carc.	earc.	acu/e	Otucarc.	Carc	Caic
A1	0,0212	0,34	358,10	672,81	585,34	0,61	1,15	0,0329	0,0573	0,0700	1,22	0,0067	0,1214
A2	0,0121	0,33	362,01	601,67	541,50	0,67	1,11	0,0231	0,0560	0,0632	1,13	0,0134	0,1253
A3	0,0076	0,33	382,95	539,86	539,86	0,71	1,00	0,0159	0,0529	0,0741	1,40	0,0284	0,1342
A4	0,0212	0,43	692,34	932,92	960,91	0,72	0,97	0,0224	0,0355	0,0635	1,79	0,0078	0,0788
A5	0,0121	0,44	689,47	823,49	839,96	0,82	0,98	0,0138	0,0285	0,0455	1,60	0,0157	0,0727
A6	0,0073	0,44	720,36	780,59	764,98	0,94	1,02	0,0091	0,0250	0,0370	1,48	0,0327	0,0827
B1	0,0121	0,33	1500,86	2347,71	2159,89	0,69	1,08	0,0216	0,0359	0,0499	1,39	0,0070	0,0788
В2	0,0076	0,34	1486,51	2066,81	1860,13	0,79	1,11	0,0152	0,0340	0,0317	0,93	0,0137	0,0818

VIGA	€C2	n ₂	My calc	M _U calc	Mu atu/e		Mu calc Mu atu/e	Ou calc	θ _{tu} calc	Θ _{tų} atu/e	O _{tu} atu/e O _{tu} cak	θ_1 calc	Ot calc
В3	0,0121	0,44	2816,29	3306,49	3372,62	0,84	0,98	0,0135	0,0191	0,0296	1,55	0,0081	0,0462
B4	0,0076	0,44	2828,25	3063,70	2787,96	1,01	1,10	0,0088	0,0157	0,0184	1,17	0,0162	0,0476
C1	0,0212	0,36	371,25	589,48	560,01	0,66	1,05	0,0300	0,0502	0,1089	2,15	0,0072	0,1076
C 2	0,0121	0,36	370,82	510,33	505,22	0,73	1,01	0,0193	0,0434	0,0486	1,12	0,0145	0,1012
с3	0,0076	0,36	371,48	461,53	479,99	0,77	0,96	0,0133	0,0407	0,0586	1,44	0,0292	0,1106
C4	0,0212	0,47	706,18	766,47	904,44	0,78	0,85	0,0184	0,0251	0,0474	1,89	0,0087	0,0589
C5	0,0121	0,48	710,32	684,46	452,91	0,94	0,91	0,0103	0,0162	0,0236	1,46	0,0177	0,0501
C6	0,0076	0,47	693,67	685,85	685,85	1,01	1,00	0,0076	0,0172	0,0260	1,51	0,0337	0,0681

QUADRO 7-10-b - RESULTADOS TEÓRICOS E EXPERIMENTAIS DE MATTOCK.

VIGA	€c2	n ₂	My calc	Mu calc	Mu atu∕e		Mu calc Mu atu/e	Θu calc	Θ _{tu} calc	Θ _{tu} atu/e	Θ _{tu} atwe Θ _{tu} calc	Θ ₁ calc	Ot calc
D1	0,0121	0,37	1441,59	1958,03	1820,97	0,79	1,07	0,0185	0,0284	0,0326	1,15	0,0071	0,0639
D2	0,0076	0,37	1427,82	1742,87	1760,29	0,81	0,99	0,0124	0,0246	0,0266	1,08	0,0142	0,0634
D3	0,0121	0,48	2764,94	2736,20	2927,73	0,94	0,93	0,0107	0,0120	0,0179	1,50	0,0086	0,0325
D4	0,0076	0,47	2785,61	2641,14	2746,79	1,01	0,96	0,0069	0,0086	0,0080	0,93	0,0173	0,0346
E1	0,0212	0,36	456,51	695,86	633,23	0,72	1,10	0,0259	0,0416	0,0425	1,02	0,0090	0,0922
E2	0,0121	0,35	467,58	630,22	630,22	0,74	1,00	0,0169	0,0360	0,0572	1,59	0,0183	0,0903
E3	0,0076	0,35	466,51	584,25	572,56	0,81	1,02	0,0119	0,0350	0,0542	1,55	0,0364	0,1063
F1	0,0212	0,33	460,26	781,62	703,46	0,65	1,11	0,0303	0,0516	0,0500	0,97	0,0086	0,1117
F2	0,0121	0,33	472,86	690,55	662,93	0,71	1,04	0,0198	0,0456	0,0706	1,55	0,0177	0,1089
F3	0,0076	0,33	473,20	629,50	660,97	0,72	0,95	0,0140	0,0445	0,0685	1,54	0,0354	0,1243
G1	0,0121	0,33	1420,75	2025,65	1985,13	0,72	1,02	0,0190	0,0293	0,0346	1,18	0,0086	0,0672
G2	0,0076	0,32	1419,38	1848,61	2014,98	0,70	0,92	0,0133	0,0271	0,0486	1,79	0,0171	0,0714
G 3	0,0121	0,36	1876,33	2374,90	2208,65	0,85	1,08	0,0156	0,0222	0,0184	0,83	0,0091	0,0534
G4	0,0076	0,37	1874,05	2161,59	2204,82	0,85	0,98	0,0101	0,0177	0,0256	1,45	0,0183	0,0536
G5	0,0076	0,27	966,53	1468,86	1586,37	0,61	0,93	0,0183	0,0417	0,0797	1,91	0,0160	0,0995

VII.2.4 - <u>Resultados Obtidos Pela Teoria do Professor</u> <u>Sydney Santos</u>.

O cálculo teórico desenvolvido pelo professor Sydeny Santos [25], segue a orientação básica dada pela NB-1 [28], avalia-se a capacidade de rotação das peças de concreto armado como descrito no item III.4.

O comprimento de plastificação é determinado de acordo com o item III.7.2, e faz-se com que este não seja inferior a d/2.

Os quadros de 7-11-a a 7-11-f, mostram os resultados obtidos quando se aplica esta teoria.

VIGAS	My calc	Mu calc	Mu atu∕e	My calc Mu atu∕e	Mu calc Mu atu/e	n ₂	€c2	łр	2Θ _ρ calc	Θ _p calc		Θpatu/e Θpcalc		θ _t calc
MADRID 6α – 2	305,21	459,00	538,25	0,57	0,85	0,45	0,0038	46,91	0,0195	0,0098	0,0104	1,07	0,0154	0,0349
6α - 3	328,55	475,60	515,68	0,64	0,92	0,42	0,0040	43,29	0,0198	0,0099	0,0118	1,19	0,0156	0,0354
PARIS A2	201,76	211,75	268,29	0,75	0,79	0,06	0,0100	12,75	0,0818	0,0409	0,0381	0,93	0,0094	0,0912
A5	533,40	547,26	602,56	0,89	0,91	0,28	0,0052	12,25	0,0104	0,0052	0,0198	3,79	0,0127	0,0232
A8	190,13	199,39	239,69	0,79	0,83	0,08	0,0100	12,75	0,0672	0,0336	0,0404	1,20	0,0092	0,0764
B5	508,68	521,27	578,93	0,88	0,90	0,29	0,0051	46,67	0,0370	0,0185	0,0317	1,71	0,0210	0,0580
В8	195,58	204,93	218,09	0,90	0,94	0,09	0,0100	46,67	0,2141	0,1071	0,0261	0,24	0,0160	0,2301
PORTO B6	505,76	590,48	568,70	0,89	1,04	0,32	0,0048	46,67	0,0320	0,0160	0,0195	1,22	0,0249	0,0569
B7	372,36	388,61	414,24	0,90	0,94	0,16	0,0079	46,67	0,0897	0,0449	0,0098	0,22	0,0193	0,1090
В9	134,67	139,41	181,94	0,74	0,77	0,05	0,0100	46,67	0,3620	0,1810	0,0524	0,29	0,0151	0,3771
TORINO A6	391,51	404,50	484,47	0,81	0,83	0,22	0,0062	12,25	0,0149	0,0075	0,0091	1,22	0,0121	0,0270
F4	674,22	1085,96	1093,26	0,62	0,99	0,56	0,0034	53,08	0,0179	0,0089	0,0059	0,66	0,0232	0,0410
L4	555,52	1014,73	1137,16	0,49	0,89	0,71	0,0030	63,36	0,0159	0,0080	0,0118	1,48	0,0239	0,0399
р8	366,94	376,74	506,51	0,72	0,74	0,13	0,0094	12,75	0,0373	0,0186	0,0371	2,00	0,0177	0,0549

QUADRO 7-11-a - RESULTADOS TEÓRICOS DO PROFESSOR

SANTOS - EXPERIMENTAIS DE BAKER.

VIGAS	My calc	Mu calc	Mu atu/e	My calc Mu atu/e	Mu calc Mu atu/e	n ₂	εc ₂	٤p	^{2⊖} p calc	θ _p calc	Θp atu/e	θp atu/e θp calc	θ_1	Θr calc
PORTO C6	440,89	725,99	789,17		0,92	0,49	0,0036	54,98	0,0211	0,0105	0,0118	1,12	0,0209	0,0420
C7	446,82	543,40	582,71	0,77	0,93	0,26	0,0055	24,88	0,0232	0,0116	0,0233	2,01	0,0184	0,0416
C9	195,47	201,79	247,61	0,79	0,82	0,06	0,0100	13,15	0,0862	0,0431	0,0190	0,44	0,0132	0,0994
М9	196,07	201,98	275,74	0,71	0,73	0,06	0,0100	13,08	0,0822	0,0411	0,0285	0,69	0,0066	0,0888
PARIS E6	326,49	457,84	554,87	0,59	0,82	0,31	0,0049	40,16	0,0308	0,0154	0,6153	0,99	0,0219	0,0527
E9	264,99	269,01	289,14	0,92	0,93	0,15	0,0086	12,75	0,0309	0,0155	0,0106	0,69	0,0186	0,0495
F6	560,65	756,15	808,39	0,69	0,94	0,33	0,0047	36,20	0,0259	0,0129	0,0089	0,69	0,0247	0,0506
F9	269,82	277,34	291,61	0,93	0,95	0,08	0,0100	12,75	0,0620	0,0310	0,0214	0,69	0,0186	0,0806
H2	380,89	390,76	518,19	0,74	0,75	0,12	0,0100	12,75	0,0430	0,0215	0,0332	1,54	0,0172	0,0603
HS	473,85	882,13	1127,98	0,42	0,78	0,65	0,0031	64,80	0,0180	0,0090	0,0075	0,83	0,0255	0,0435
н8	378,69	401,30	429,55	0,88	0,94	0,20	0,0067	12,75	0,0181	0,0091	0,0169	1,86	0,0178	0,0360
R4	605,97	1210,05	1379,35	0,44	0,88	0,64	0,0031	69,89	0,0193	0,0097	0,0043	0,44	0,0240	0,0433
R5	573,50	1000,95	1063,54	0,54	0,94	0,40	0,0041	59,79	0,0305	0,0152	0,0080	0,52	0,0235	0,0540
R6	574,42	771,59	839,50	0,68	0,92	0,27	0,0054	35,78	0,0331	0,0165	0,0149	0,90	0,0226	0,0557

QUADRO 7-11-b - RESULTADOS TEÓRICOS DO PROFESSOR

SANTOS - EXPERIMENTAIS DE BAKER.

VIGAS	My calc	Mu calc	Mu atu/e	$\frac{M_{y} \text{ calc}}{M_{u} \text{ atu/e}}$	Mu calc Mu atu/e	n ₂	€c₂	£p	2Θ _p calc	Θ _p calc	Θ _p atu/e	Θ _p atu/e Θ _p calc	Θ ₁ calc	θt calc
I.C - 3	238,97	308,46	350,93	0,68	0,88	0,40	0,0041	22,89	0,0170		0,0138	1,62	0,0159	0,0329
I.C - 4	241,06	353,85	429,86	0,56	0,82	0,54	0,0035	32,38	0,0168	0,0084	0,0114	1,36	0,0176	0,0345
I.C - 5	255,63	385,85	4 5 3, 6 5	0,56	0,85	0,61	0,0032	34,29	0,0163	0,0082	0,0068	0,83	0,0200	0,0363
I.C - 6	269,31	393,69	443,19	0,61	0,89	0,54	0,0035	32,10	0,0177	0,0088	0,0062	0,70	0,0197	0,0373
I.C - 7	254,40	393,52	439,41	0,58	0,90	0,48	0,0037	35,92	0,0228	0,0114	0,0150	1,31	0,0194	0,0422
I.C - 8	273,93	487,53	520,46	0,53	0,94	0,73	0,6030	44,51	0,0166	0,0083	0,0042	0,51	0,0213	0,0379
I.C - 9	154,28	156,90	174,71	0,88	0,90	0,15	0,0083	17,40	0,0575	0,0287	0,0152	0,54	0,0216	0,0791
I.C - 10	193,59	214,24	234,61	0,83	0,91	0,22	0,0063	17,30	0,0322	0,0161	0,0258	1,60	0,0228	0,0551
I.C - 11	223,09	303,98	353,10	0,63	0,86	0,30	0,0050	27,03	0,0308	0,0154	0,0153	0,99	0,0247	0,0555
I.C - 12	219,66	316,14	368,23	0,60	0,86	0,34	0,0046	31,01	0,0304	0,0152	0,0158	1,04	0,0259	0,0563
I.C - 13	221,56	418,12	569,30	0,39	0,73	0,63	0,0032	47,76	0,0212	0,0106	0,0063	0,60	0,0300	0,0513
I.C - 14	179,26	195,59	271,04	0,66	0,72	0,08	0,0100	16,94	0,1367	0,0684	0,0118	0,17	0,0234	0,1601
I.C - 15	252,65	394,32	495,16	0,51	0,80	0,12	0,0100	36,50	0,1820	0,0910	0,0056	0,06	0,0255	0,2074
I.C - 16	265,28	604,63	742,68	0,36	0,81	0,79	0,0029	57,02	0,0198	0,0099	0,0092	0,93	0,0342	0,0540

QUADRO 7-11-c - RESULTADOS TEÓRICOS DO PROFESSOR

SANTOS - EXPERIMENTAIS DE BAKER.

VIGAS	My calc	M _u calc	M _u atu/e	My calc Mu acu/e	Mu calc Mu atu/e	n ₂	€c ₂	ℓ _P	20 _p	Θ _p calc	Θp atu/e	Θ _p atu/e Θ _p calc	Θ ₁ calc	Θ _t calc
A1	416,39	434,24	661,44	0,63	0,66	0,13	0,0094	12,70	0,0363	0,0181	0,0695	3,83	0,0064	0,0427
A2	420,92	439,73	611,89	0,69	0,72	0,12	0,0100	12,70	0,0423	0,0211	0,0627	2,97	0,0128	0,0551
A3	445,24	463,76	610,05	0,73	0,76	0,13	0,0094	12,70	0,0366	0,0183	0,0739	4,04	0,0272	0,0638
A 4	800,44	826,80	1085,83	0,73	0,76	0,28	0,0053	12,70	0,0109	0,0054	0,0625	11,48	0,0074	0,0183
A5	750,82	818,00	949,16	0,79	0,86	0,30	0,0050	12,70	0,0096	0,0048	0,0449	9,32	0,0149	0,0245
A6	773,38	853,05	864,42	0,89	0,99	0,30	0,0050	26,09	0,0196	0,0098	0,0353	3,59	0,0309	0,0506
В1	1745,54	1828,73	2440,68	0,72	0,75	0,15	0,0087	25,40	0,0313	0,0156	0,0489	3,13	0,0067	0,0380
B 2	1707,52	1789,31	2101,95	0,81	0,85	0,15	0,0087	25,40	0,0309	0,0155	0,0326	2,11	0,0132	0,0441

QUADRO 7-11-d - RESULTADOS TEÓRICOS DO PROFESSOR

SANTOS - EXPERIMENTAIS DE MATTOCK

VIGAS	My calc	Mu calc			Mu calc Mu atu/e	n ₂	€ç₂	l _p	20p calc	Θ _p calc	, <u>-</u> .	Θ _p atu/e Θ _p calc		Θ _t caçc
В3	3135,79	3344,35	3811,06	0,82	0,88	0,30	0,0050	25,40	0,0095	0,0048	0,0289	6,08	0,0076	0,0172
В4	3131,67	3356,12	3147,00	1,00	1,07	0,31	0,0049	25,40	0,0094	0,0047	0,0176	3,74	0,0154	0,0248
C1	431,76	444,38	632,81	0,68	0,70	0,19	0,0069	12,70	0,0191	0,0096	0,1088	11,38	0,0070	0,0261
C2	425,28	442,81	570,90	0,74	0,78	0,20	0,0066	12,70	0,0175	0,0087	0,0491	5,62	0,0139	0,0314
С3	419,82	443,17	542,39	0,77	0,82	0,21	0,0065	14,72	0,0196	0,0098	0,0600	6,11	0,0279	0,0476
C4	527,89	788,01	1022,01	0,52	0,77	0,47	0,0037	23,06	0,0089	0,0044	0,0491	11,03	0,0082	0,0171
C5	484,57	775,67	850,79	0,57	0,91	0,53	0,0035	53,42	0,0173	0,0086	0,0249	2,88	0,0167	0,0340
C6	552,20	784,11	775,01	0,71	1,01	0,44	0,0039	82,63	0,0351	0,0176	0,0275	1,57	0,0318	0,0669

QUADRO 7-11-e - RESULTADOS TEÓRICOS DO PROFESSOR

SANTOS - EXPERIMENTAIS DE MATTOCK.

VIGAS	Му	Mu	Mu	My calc	Mu calc	n ₂	€c2	l _p	29 _P	Θр	⊖р	Θp atu/e	Θ1	Θt
	calc	calc	atu/e	Mu atu/e	M _u atu∕e	112	- G ₂	~p	calc	calc	atu/e	Θ _p calc	calc	calc
D1	1118,78	1275,96	2057,69	0,58	0,62	0,23	0,0061	25,40	0,0147	0,0073	0,0335	4,57	0,0066	0,0213
D2	1641,04	1700,33	1989,13	0,83	0,85	0,23	0,0060	25,40	0,0140	0,0070	0,0274	3,92	0,0136	0,0276
D3	2051,36	3042,88	3398,33	0,62	0,92	0,50	0,0036	45,52	0,0082	0,0041	0,0189	4,61	0,0081	0,0163
Đ4	2112,98	3082,74	3103,87	0,68	1,00	0,49	0,0037	87,89	0,0164	0,0082	0,0089	1,08	0,0163	0,0327
E1	447,15	538,75	715,55	0,62	0,75	0,23	0,0060	12,70	0,0141	0,0071	0,0433	6,14	0,0086	0,0227
E2	452,86	551,20	712,15	0,64	0,77	0,24	0,0060	24,92	0,0274	0,0137	0,0589	4,30	0,0176	0,0450
Е3	471,28	551,63	646,99	0,73	0,85	0,22	0,0062	40,70	0,0488	0,0244	0,0564	2,31	0,0349	0,0837
F1	535,20	552,36	794,91	0,67	0,69	0,16	0,0081	12,70	0,0272	0,0136	0,0502	3,70	0,0083	0,0355
F2	549,71	566,60	749,11	0,73	0,76	0,16	0,0080	12,70	0,0261	0,0131	0,0703	5,38	0,0171	0,0432
F3	550,10	567,63	746,90	0,74	0,76	0,16	0,0082	12,70	0,0277	0,0139	0,0689	4,97	0,0340	0,0618
G1	1574,97	1617,34	2243,20	0,70	0,75	0,20	0,0066	25,40	0,0176	0,0088	0,0351	3,98	0,0082	0,0259
G2	1619,64	1689,44	2276,93	0,71	0,74	0,20	0,0068	25,40	0,0188	0,0094	0,0500	5,33	0,0164	0,0352
G3	1812,82	2196,39	2495,78	0,73	0,88	0,27	0,0053	25,40	0,0111	0,0055	0,0191	3,45	0,0087	0,0198
G4	1734,71	2183,10	2491,45	0,70	0,87	0,29	0,0051	57,39	0,0230	0,0115	0,0272	2,37	0,0175	0,0404
G5	1121,17	1160,19	1792,60	0,63	0,65	0,12	0,0100	25,40	0,0420	0,0210	0,0806	3,84	0,0155	0,0575

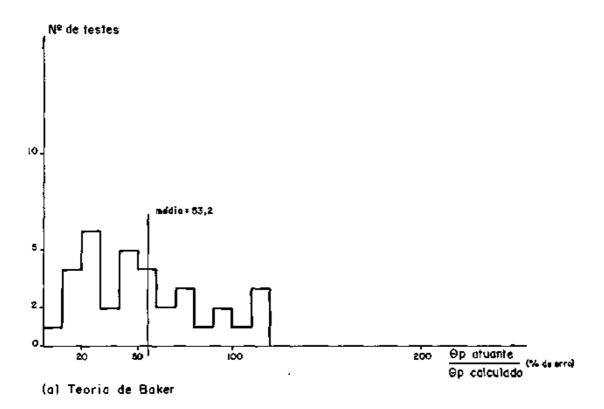
QUADRO 7-11-f - RESULTADOS TEÓRICOS DO PROFESSOR

SANTOS - EXPERIMENTAIS DE MATTOCK

VII.2.5 - Resultados Finais.

Nas vigas apresentadas por Mattock [17], quando analisadas por sua propria teoria, apresentam resultados bem proximos da realidade, mas ao se confrontar seus resultados com
outras teorias, observa-se que os valores obtidos teoricamente
são muito menores que os experimentais, isto se deve principalmente ao fato de Mattock fazer as seguintes considerações:

- O comprimento de plastificação é adotado igual a d/2, enquanto Baker e o professor Sydney Santos calcula-o.
- A fretagem mesmo com estribos habituais é totalmente desprezada.
- Não é imposto nenhum limite para a deformação última do concreto.


Destas considerações resultam valores bem maiores em comparação com os obtidos por Baker e pelo professor Sydney Santos.

Apesar de ter conseguido valores teóricos mais próximos dos experimentais, conclui-se que Mattock, faz certas considerações em seus estudos, restringindo sua aplicação teórica, a apenas experimentos com características similares aos por ele realizados.

Pela comparação da teoria de Baker com a do professor Sydney Santos, feita através das vigas dos quadros de 7-6-a a 7-6-d conclui-se que a teoria do professor Sydney Santos possibilita uma margem de erro menor, como mostra a figura VII-1.

As vigas B8, B7, B9, I.C 14, I.C 15, fornecem valores bem longe do real, isto devido ao fato destas peças serem superarmadas, onde o cálculo plástico não alcança totalmente seu objetivo.

Conclui-se que a teoria do professor Sydney Santos, além de traduzir melhores resultados, sua aplicabilidade se faz com maior facilidade, além de ser toda ela baseada na Norma Brasileira.

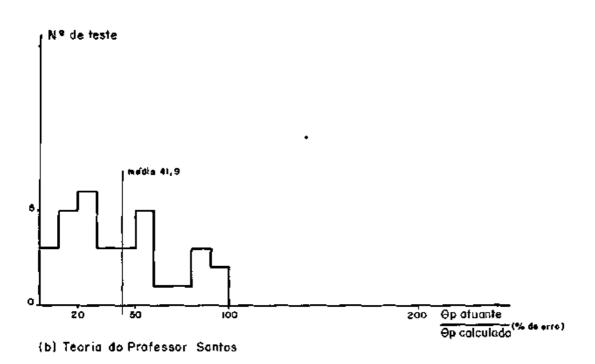


FIGURA VII.1 - Histograma <u>Opatuante</u> (% de erro) para as vigas de Boker e Amorakone Opacalculado

CAPÍTULO VIII

CONCLUSÃO

Na flexão composta demonstra-se que, o uso do condicionamento somente na região comprimida das peças, possibilita também um acréscimo na rotação, para um mesmo momento atuante, e que o uso de hélice circular e estribos curtos como fretagem, mesmo em peças dotadas de uma maior taxa de armadura de flexão, proporciona um aumento na capacidade de rotação das peças.

O encaminhamento proposto pelo professor Sydney Santos, para análise de peças com condicionamento, fornece resultados bem próximos da realidade, portanto proporcionando uma melhor adequação entre a teoria e o comportamento real; donde se conclui que um cálculo de concreto armado em regime plástico, estará bem mais legitimado com o emprego de rótulas condicionadas.

Na flexão simples, a teoria de Mattock com toda sua complexidade de cálculo, não considera qualquer forma de condicionamento. Baker leva em conta apenas os estribos habituais; conclui-se portanto que a teoria proposta retrata melhor a realidade porque: considera o condicionamento; traduz melhor os resultados; é simples tanto conceitual como algebricamente e

esta de acordo com as Normas Brasileiras.

Como sugestão para prosseguimento de pesquisa, lembramos ensaios com peças sujeitas também à cargas transversais, arranjo que permitiria maior liberdade entre as grandezas geométricas a serem utilizadas.

APÉNDICES

APÊNDICE 1 - TEORIA DE MATTOCK - "CALCULO COMPUTACIONAL"

Ø 1	LBL "MATTOCK"	28	"H"	55	LBL B
Ø 2	1	29	XEQ ØØ	56	.5
ØЗ	STO ØØ	30	"P"	57	RCL Ø8
Ø4	"FCL"	31	XEQ ØØ	58	/
Ø5	XEQ ØØ	32	"PL"	59	. ØØ3
Ø 6	RCL Ø1	33	XEQ ØØ	6Ø	+
ø7	4000	34	"FY"	61	STO 21
Ø8	X > Y ?	35	XEQ ØØ	62	VIEW 21
ø9	GTO Ø1	36	"Z"	63	GTO a
1 Ø	-	37	XEQ ØØ	64	TBT C
11	1000	38	"FYL"	65	. ØØ3
12	1	39	XEQ ØØ	66	STO 21
13	.ø5	4 Ø	"FO"	67	VIEW 21
14	*	41	XEQ ØØ	68	LBL a
t 5	. 85	42	"ESL"	69	RCL Ø1
16	X <> Y	43	XEQ ØØ	7 Ø	SQRT
17	-	44	** B **	71	60000
18	STO 12	45	PROMPT	72	*
19	LBL Ø2	46	STO ØØ	73	STO 15
2 Ø	. 85	47	"MU ACT/CALC="	74	1/X
21	STO 14	48	PROMPT	75	RCL Ø2
22	. 425	49	STO 31	76	*
23	STO 13	5 Ø	"ØTU ACT/CALC="	77	STO 16
24	"ES"	51	PROMPT	78	2
25	XEQ ØØ	52	STO 32	79	RCL Ø4
26	"D"	5 3	"B-1/C-2"	80	RCL Ø3
27	xeq ØØ	54	PROMPT	81	1

82	-	111 SQRT	140 *
83	STO 17	112 RCL 18	141 RCL 17
84	1	113 -	142 *
85	Х<> У	114 STO 18	143 1
86	-	115 VIEW 18	144 RCL 18
87	RCL Ø6	116 RCL 17	145 3
88	*	117 +	146 /
89	RCL 16	118 1	147 -
9ø	1	119 -	148 RCL 18
91	-	120 RCL 18	149 *
92	*	121 /	150 RCL 19
93	RCL Ø5	122 RCL 16	151 *
94	RCL 16	123 *	152 2
95	*	124 STO 2Ø	153 /
96	•	125 RCL Ø6	154 +
97	2	126 *	155 RCL ØØ
98	×	127 RCL 18	156 *
99	RCL 16	128 2	157 RCL Ø3
100	1	129 /	158 X+2
1Ø1 -	-	130 +	159 *
1 Ø 2	RCL Ø6	1.31 1/X	160 STO 20
1Ø3 °	*	132 RCL Ø5	161 "MY CALC="
104]	RCL Ø5	133 *	162 XEQ 13
1 Ø 5 j	RCL 16	134 RCL Ø7	163 LBL b
106 1	k	135 *	164 RCL Ø7
107 +	٠	136 STO 19	165 RCL Ø2
108 9	3TO 18	137 RCL 2Ø	166 /
199 }	(+2	138 *	167 RCL 21
110 +	•	139 RCL Ø6	168 +

169	1/X	198	X<>Y	227	LBL	ØØ	
17 Ø	RCL 21	199	X > Y ?	228	PRON	4PT	
171	*	2 Ø Ø	GTO Ø7	229	STO	IND	ØØ
172	RCL 12	2Ø1	CF Ø1	230	1		
173	*	202	RCL 11	231	ST+	ØØ	
174	RCL 14	2 Ø 3	sто 22	2 32	RTN		
175	ж	2 Ø 4	XEQ Ø3	233	LBL	Ø 1	
176	STO 26	2 Ø 5	XEQ 10	234	.85		
177	RCL Ø7	206	RCL 27	235	STO	12	
178	RCL 1Ø	2Ø7	X>Y?	236	GTO	Ø2	
179	-	208	GTO Ø9	237	LBL	ØЗ	
180	RCL 11	2 Ø 9	RCL Ø7	238	RCL	21	
181	1	210	RCL Ø5	239	RCL	22	
1 82	RCL 21	211	*	240	*		
183	+	212	RCL Ø6	241	RCL	Ø 6	
184	1/X	213	RCL Ø9	242	RCL	Ø5	
185	RCL 21	214	*	243	/		
186	*	215	••	244	RCL	Ø9	
187	RCL 12	216	RCL Ø1	245	*		
188	×	217	RCL 12	246	-		
189	RCL 14 .	218	/	247	F S ?	Ø1	
190	*	219	RCL 14	248	GT0	Ø4	
191	STO 27	2 2 Ø	1	249	RCL	1 Ø	
192	SF Ø1	221	RCL Ø3	25Ø	-		
193	RCL Ø2	222	*	251	LBL	Ø4	
194	STO 22	223	1/X	252	STO	23	
195	XEQ Ø3	224	RCL 21	253	RCL	12	
196	XEQ 10	225	%	254	RCL	1 4	

226 GTO Ø8

255 *

197 RCL 26

285 RCL 23	314 /
286 2	315 STO 24
287 /	316 RCL Ø5
288 -	317 RCL 23
289 STO 23	318 *
29Ø RTN	319 RCL Ø6
291 LBL Ø7	32Ø RCL Ø9
292 RCL 23	321 *
293 RCL Ø2	322 -
294 /	323 STO 22
295 RCL 21	324 RCL 13
296 +	325 *
297 RCL Ø3	326 RCL 12
298 /	327 RCL 14
299 GTO Ø8	328 *
300 LBL 09	329 RCL Ø1
3Ø1 RCL 23	330 *
3Ø2 RCL 1Ø	331 /
3Ø3 -	332 1
3Ø3 - 3Ø4 RCL 11	332 1 333 X<>Y
3Ø4 RCL 11	333 X<>Y
3Ø4 RCL 11 3Ø5 /	333 X<>Y 334 -
3Ø4 RCL 11 3Ø5 / 3Ø6 RCL 21	333 X<>Y 334 - 335 RCL 22
3Ø4 RCL 11 3Ø5 / 3Ø6 RCL 21 3Ø7 +	333 X<>Y 334 - 335 RCL 22 336 *
3Ø4 RCL 11 3Ø5 / 3Ø6 RCL 21 3Ø7 + 3Ø8 RCL Ø3	333 X<>Y 334 - 335 RCL 22 336 * 337 RCL Ø6
3Ø4 RCL 11 3Ø5 / 3Ø6 RCL 21 3Ø7 + 3Ø8 RCL Ø3 3Ø9 /	333 X<>Y 334 - 335 RCL 22 336 * 337 RCL Ø6 338 RCL 17
3Ø4 RCL 11 3Ø5 / 3Ø6 RCL 21 3Ø7 + 3Ø8 RCL Ø3 3Ø9 / 31Ø LBL Ø8	333 X<>Y 334 - 335 RCL 22 336 * 337 RCL Ø6 338 RCL 17 339 *
	286 2 287 / 288 - 289 STO 23 290 RTN 291 LBL Ø7 292 RCL 23 293 RCL Ø2 294 / 295 RCL 21 296 + 297 RCL Ø3 298 / 299 GTO Ø8 300 LBL Ø9 301 RCL 23

343	RÇL	Ø 3	372	*	4 Ø 1	+
344	x ↑2		373	/	402	1/X
345	*		374	RCL 22	4 Ø 3	. ØØЗ
346	RCL	ØØ	375	*	404	*
347	*		376	RCL 20	4Ø5	RCL Ø2
348	STO	2 2	377	/	4 Ø 6	*
349	"אט	CALC="	378	RCL 24	407	. 67
35 Ø	XEQ	13	379	X<>Y	4 ø 8	*
351	RCL	31	38Ø	-	4 ø 9	STO 29
352	RCL	22	381	STO 3Ø	41Ø	RCL 25
353	*		382	"ØU CALC="	411	RCL 28
354	ST0	36	383	XEQ 13	412	-
35 5	"MV	A C T = "	384	LBL 11	413	RCL 29
356	XEQ	13	385	RCL Ø5	414	1
357	RCL	20	386	RCL Ø7	415	RCL Ø3
358	RCL	36	387	ħ	416	16.2
359	1		388	RCL Ø1	417	1
360	"MY	CALC/MU ACT=**	389	/	418	SQRT
361	XEQ	13	39₽	STO 25	419	≵
362	RCL	22	391	RCL Ø6	42Ø	CHS
363	RCL	36	392	RCL Ø7	421	1
364	1		393	*	422	+
365	"MU	CALC/MU ACT="	394	RCL Ø1	423	RCL Ø8
366	XEQ	13	395	1	424	RCL Ø3
367	RCL	1 9	396	STO 28	425	1
368	RCL	15	397	.003	426	SQRT
369	RCL	18	398	RCL Ø2	427	1.14
37Ø	*		399	*	428	*
371	2		4 Ø Ø	RCL Ø7	429	1

488 RCL Ø9

491 RCL Ø1

489 *

490 -

492 /

493 RTN

494 LBL 13

495 ARCL X

496 AVIEW

497 FC? 55

498 "STOP"

499 RTN

5ØØ .END.

43Ø -	459 GTO 14
431 *	46Ø RCL Ø8
4 32 1	461 *
433 +	462 STO 35
434 RCL 3Ø	463 GTO 15
435 *	464 LBL 14
436 "ØTU CALC="	465 RCL 34
437 STO 33	466 5
438 XEQ 13	467 *
439 RCL 32	468 6
44Ø RCL 33	469 /
441 *	47Ø RCL Ø8
442 "ØTU ACT="	471 *
443 XEQ 13	472 STO 35
444 RCL 33	473 LBL 15
445 /	474 "Ø1 CALC="
446 "ØTU ACT/CALC="	475 XEQ 13
447 XEQ 13	476 RCL 35
448 RCL Ø7	477 RCL 33
449 RCL Ø2	478 2
450 /	479 *
451 1	48Ø +
452 RCL 18	481 "DT CALC="
453 -	482 XEQ 13
454 RCL Ø3	483 LBL 10
455 *	484 RCL 23
456 /	485 RCL Ø5
457 STO 34	486 *
458 FS? Ø1	487 RCL Ø7

APĒNDICE 2 - TEORIA DE BAKER - "CÁLCULO COMPUTACIONAL"

Ø1 LBL "BAKER"	28 "BETA"	55 1
Ø2 1	29 PROMPT	56 +
Ø3 STO ØØ	3 Ø ST O 27	57 .0015
Ø4 "W"	31 "1/B-2/C"	58 *
Ø5 XEQ ØØ	32 PROMPT	59 .01
Ø6 "WL"	33 LBL B	6Ø X<>Y
Ø7 XEQ ØØ	34 CF Ø1	61 X>Y?
ø8 "CC"	35 GTO Ø1	62 RDN
Ø9 XEQ ØØ	36 LBL C	63 STO 11
10 "PLL"	37 SF Ø1	64 VIEW 11
11 XEQ ØØ	38 LBL Ø1	65 RCL Ø3
12 "ES"	39 RCL Ø1	66 SQRT
13 XEQ ØØ	40 67	67 195ØØ
14 "d"	41 /	68 *
15 XEQ ØØ	42 STO 10	69 STO 12
16 "D"	43 VIEW 10	7Ø 1/X
17 XEQ ØØ	44 .7	71 RCL Ø5
18 "FY"	45 RCL Ø4	72 *
19 XEQ ØØ	46 .1	73 STO 13
20 "L"	47 *	74 RCL Ø6
21 XEQ ØØ	48 -	75 RCL Ø7
22 "B"	49 RCL 1Ø	76 RCL Ø6
23 PROMPT	5 Ø /	77 -
24 \$TO ØØ	51 RCL Ø4	78 -
25 "ALFA"	52 1.5	79 RCL Ø7
26 PROMPT	53 *	80 /
27 STO 25	54 +	81 STO 14

82	RCL Ø1	111 RCL Ø6	140 "20P CALC:"
83	RCL Ø3	112 +	141 XEQ Ø3
84	*	113 1/X	142 RCL 21
85	RCL Ø8	114 RCL Ø6	143 2
86	/	£15 *	144 /
87	100	116 RCL 17	145 STO 28
88	1	117 *	146 "OP CALC:"
89	STO 15	118 RCL Ø8	147 XEQ Ø3
9Ø	RCL Ø2	119 *	148 RCL 28
91	RCL Ø3	12Ø RCL Ø5	149 RCL 27
92	*	121 /	150 *
93	RCL Ø8	122 RCL 12	151 STO 29
94	/	123 *	152 "OP ACT:"
95	1 Ø Ø	124 STO 22	153 XEQ Ø3
96	1	125 RCL 12	154 RCL 29
97	STO 16	126 /	155 RCL 28
98	. ØØ t	127 STO 18	156 /
99	RCL Ø5	128 RCL 17	157 "OP ACT/OPCALC!"
1 Ø Ø	*	129 RCL Ø6	158 XEQ Ø3
101	RCL Ø1	130 *	159 RCL 15
tØ2	*	131 /	16Ø RCL Ø6
193	RCL 98	132 STO 19	161 X+2
194	/	133 LBL Ø2	162 *
1Ø5	67	134 RCL 11	163 RCL Ø8
1Ø6	/	135 RCL 18	164 *
	STO 17	136 -	165 RCL 14
		137 4.8	166 *
109		138 *	167 RCL ØØ
11Ø	CHS	139 STO 21	168 *

169 STO 24	198 RCL 16	227 /
170 "MY CALC:"	199 *	228 STO 20
171 XEQ Ø3	2ØØ +	229 GTO Ø5
172 RCL 10	2Ø1 STO 23	230 LBL 04
173 .375	202 "MU CALC:"	231 5
174 *	203 XEQ 03	2 32 *
175 1	204 LBL 06	233 6
176 X<>Y	205 RCL 23	234 /
177 -	2Ø6 RCL 25	235 STO 2Ø
178 RCL Ø3	207 *	236 LBL Ø5
179 *	2Ø8 STO 26	237 "01 CALC:"
180 RCL 06	2Ø9 "MU ACT:"	238 XEQ Ø3
181 X+2	210 XEQ 03	239 RCL 20
182 *	211 RCL 24	240 RCL 21
183 RCL ØØ	212 RCL 26	241 +
184 *	213 /	242 "OT CALC:"
185 .67	214 "MY CALC/MU ACT:"	243 XEQ Ø3
186 *	215 XEQ Ø3	244 LBL ØØ
187 RCL 1Ø	216 RCL 23	245 PROMPT
188 *	217 RCL 26	246 STO IND ØØ
189 RCL Ø7	218 /	247 t
190 RCL Ø6	219 "MU CALC/MU ACT:"	248 ST+ ØØ
191 -	22Ø XEQ Ø3	249 RTN
192 RCL Ø8	221 RCL 19	250 LBL 03
193 *	222 RCL Ø9	251 ARCL X
194 RCL Ø6	223 *	252 AVIEW
195 *	224 FS? Ø1	253 FC? 55
196 RCL ØØ	225 GTO Ø4	254 STOP 255 RTN
197 *	226 2	256 .END.

APÉNDICE 3 - ADAPTAÇÃO DO PROGRAMA COMPUTACIONAL DA TEORIA DE BAKER, PARA ANÁLISE DOS DADOS DE MATTOCK.

Øi	LBL "BAKER"	26 PROMPT	51	-
Ø 2	1	27 STO 25	52	RCL 10
ØЗ	STO ØØ	28 "ØP ACT"	53	1
Ø 4	и Д п	29 PROMPT	5 4	RCL Ø4
Ø5	XEQ ØØ	3Ø STO 27	5 5	1.5
Ø6	"WL"	31 "FYL"	56	*
Ø7	XEQ ØØ	32 "PROMPT"	57	+
Ø8	"cc"	33 STO 3Ø	58	1
ø9	XEQ ØØ	34 "1/B-2/C"	59	+
1 Ø	"PLL"	35 PROMPT	6₽	. ØØ15
11	xeq ØØ	36 LBL B	61	*
12	"ES"	37 CF Ø1	62	. Ø 1
13	XEQ ØØ	38 GTO Ø1	63	X <> A
14	"d"	39 LBL C	64	X> Y ?
15	xeq ØØ	40 SF 01	65	RDN
16	"D"	41 LBL Ø1	66	STO 11
1 7	XEQ ØØ	42 RCL ØI	67	VIEW 11
18	"FY"	43 67	68	RCL Ø3
19	xeq øø	44 /	69	SQRT
20	"L"	45 STO 10	7Ø	19500
2 1	XEQ ØØ	46 VIEW 10	71	*
22	"B"	47 .7	72	STO 12
23	PROMPT	48 RCL Ø4	73	1/X
2 4	STO 00	49 .1	74	RCL Ø5
25	"MU ACT"	5Ø *	75	*

7 6	STO 13	1 Ø5 *	134 /
77	RCL Ø6	106 RCL 08	135 STO 19
78	RCL Ø7	107 /	136 LBL Ø2
79	RCL Ø6	1Ø8 67	137 RCL 11
8ø	_	109 /	138 RCL 18
81	-	110 STO 17	139 -
82	RCL Ø7	111 RCL Ø6	140.8
83	/	112 *	141 *
84	\$TO 14	113 CHS	142 RCL Ø9
85	RCL Ø1	114 RCL Ø6	143 2
86	RCL Ø3	115 +	144 /
87	*	116 1/X	145 *
88	RCL Ø8	117 RCL Ø6	146 RCL Ø6
89	/	118 *	147 /
90	100	119 RCL 17	148 STO 21
91	/	120 *	149 "20P CALC:"
92	STO 15	121 RCL Ø8	150 XEQ 03
93	RCL Ø2	122 *	151 RCL 21
94	RCL Ø3	123 RCL Ø5	152 2
9 5	*	124 /	153 /
96	RCL Ø8	125 RCL 12	154 STO 28
97	1	126 *	155 "OP CALC:"
	100	127 STO 22	156 XEQ Ø3
	1	128 RCL 12	157 RCL 27
	STO 16	129 /	158 RCL 27
	. ØØ 1	13Ø STO 18	159 STO 29
	RCL Ø5	131 RCL 17	160 "OP ACT:"
103		132 RCL Ø6	161 XEQ Ø3
10/4	RCL Ø1	133 *	162 RCL 29

163	RCL 28	192	*	
164	1	193	.67	
165	"OP ACT/OP CALC:"	194	*	
166	XEQ Ø3	195	RCL	1 Ø
167	RCL 15	196	*	
168	RCL 06	197	RCL	Ø 7
169	X+2	198	RCL	Ø6
17Ø	*	199	-	
171	RCL Ø8	200	RCL	3 Ø
172	*	2 Ø 1	*	
173	RCL 14	2 Ø 2	RCL	Ø 6
174	*	203	*	
175	RCL ØØ	2 Ø 4	RCL	ØØ
176	rit .	2 Ø 5	*	
177	STO 24	2 Ø 6	RCL	16
178	"MY CALC:"	2Ø7	*	
179	XEQ 93	208	+	
180	RCL 10	2 Ø 9	STO	2 3
181	. 375	2 1 Ø	"M U	CALC: "
182	*	211	XEQ	Ø 3
183	1	212	LBL	Ø 6
184	X <> Y	213	RCL	25
185	-	214	STO	26
186	RCL Ø3	215	ими	ACT: "
187	*	216	X EQ	Ø3
188	RCL Ø6	217	RCL	2 4
189	X+2	218	RCL	26
19Ø	*	219	/	
191	RCL ØØ	22Ø	"MY	CALC/MU ACT:"

- 221 XEQ Ø3
- 222 RCL 23
- 223 RCL 26
- 224 /
- 225 "MU CALC/MU ACT:"
- 226 XEQ Ø3
- 227 RCL 19
- 228 RCL Ø9
- 229 *
- 23Ø FS? Ø1
- 231 GTO Ø4
- 232 2
- 233 /
- 234 STO 20
- 235 GTO Ø5
- 236 LBL Ø4
- 237 5
- 238 *
- 239 6
- 240 /
- 241 STO 20
- 242 LBL Ø5
- 243 "0! CALC:"
- 244 XEQ Ø3
- 245 RCL 20
- 246 RCL 21
- 247 +
- 248 "OT CALC:"

- 249 XEQ Ø3
- 25Ø LBL ØØ
- 251 PROMPT
- 252 STO IND ØØ
- 253 1
- 254 ST+ Ø₽
- 255 RTN
- 256 LBL Ø3
- 257 ARCL X
- 258 AVIEW
- 259 FC? 55
- 260 STOP
- 261 RIN
- 262 .END.

APÊNDICE 4 - TEORIA DO PROFESSOR SYDNEY SANTOS "CÁLCULO COMPUTACIONAL"

Ø1 LBL "SANTOS"	27 "MU ACT="	53 STO 12
Ø2 1	28 PROMPT	54 RCL Ø3
Ø3 STO ØØ	29 STO 31	55 SQRT
Ø4 "W"	3Ø "1/B-2/C"	56 19500
Ø5 XEQ ØØ	31 PROMPT	57 *
Ø6 "WL"	32 LBL B	58 STO 13
Ø7 XEQ ØØ	33 CF Ø1	59 1/X
Ø8 "CC"	34 GTO Ø1	60 RCL 95
Ø9 XEQ ØØ	35 LBL C	61 *
10 "PLL"	36 SF Ø1	62 STO 14
11 XEQ ØØ	37 LBL Ø1	63 RCL Ø7
12 "ES"	38 RCL Ø1	64 RCL Ø6
13 XEQ 00	39 RCL Ø3	65 -
14 "d"	4Ø *	66 RCL Ø6
15 XEQ ØØ	41 RCL Ø8	67 /
16 "D"	42 /	68 RCL 12
17 XEQ ØØ	43 100	69 *
18 "FY"	44 /	7 Ø RCL 11
19 XEQ ØØ	45 STO 11	71 +
2 Ø "L"	46 RCL Ø2	72 2
21 XEQ ØØ	47 RCL Ø3	73 *
22 "B"	48 *	74 RCL 14
23 XEQ ØØ	49 RCL Ø8	75 *
24 "OP ACT="	50 /	76 RCL 11
25 PROMPT	51 1ØØ	77 RCL 12
26 STO 29	52 /	78 +

7 9	X † 2	198 *	137 X>Y?
8Ø	RCL 14	1Ø9 RCL 14	138 RDN
81	X↑2	110 *	139 STO 18
82	*	111 RCL 15	14Ø RCL 15
83	+	112 2	141 3
84	SQRT	113 /	142 /
85	RCL 11	114 +	143 CHS
86	RCL 12	115 1/X	144 1
87	+	116 RCL 11	145 +
88	RCL 14	117 *	146 RCL 10
89	*	118 RCL Ø8	147 *
90	CHS	119 *	148 RCL Ø6
91	+	120 RCL 03	149 X†2
92	STO 15	121 X<>Y	15Ø *
93	RCL Ø6	122 X>Y?	151 RCL 15
94	RCL Ø7	123 RDN	152 *
95	RCL Ø6	124 STO 17	153 RCL 17
96	-	125 RCL 14	154 *
97	-	126 *	155 2
98	RCL Ø6	127 RCL 15	156 /
99	1	128 /	157 RCL 18
100	STO 16	129 RCL 15	158 RCL 12
1Ø1	RCL 15	13Ø RCL 16	159 *
1 Ø 2	+	131 +	160 RCL 10
1Ø3	1	132 1	161 *
1Ø4	-	133 -	162 RCL Ø6
1Ø5	RCL 15	134 *	163 X+2
106	1	135 RCL Ø8	164 *
107.	RCL 12	136 X<>Y	165 RCL 16

	166	*		195	1		224	RCL 31
	167	+		196	CHS		225	"MU ACT="
	168	s t o	19	197	RCL	Ø6	226	XEQ Ø3
	169	"MY	CALC=11	198	+		227	RCL 19
	17Ø	XEQ	Ø 3	199	RCL	1 Ø	228	RCL 31
	17 t	i		200	*		229	1
	172	RCL	15	201	RCL	2 1	230	"MY CALC/MU ACT="
	173	-		2 Ø 2	*		2 3 1	XEQ Ø 3
	174	RCL	Ø 6	203	RCL	Ø 3	2 32	RCL 22
	1 7 5	*		2 Ø 4	*		233	RCL 31
	176	1 / X		2Ø5	. 85		2 3 4	1
	177	RCL	Ø8	206	*		2 35	"MU CALC/MU ACT="
	178	RCL	Ø5	2 Ø 7	RCL	Ø6	236	XEQ Ø3
	179	1		208	RCL	07	237	RCL 21
	18Ø	*		209	RCL	Ø6	238	. 8
	181	sто	2 Ø	210	-		239	1
	182	RCL	11	211	-		24Ø	RCL Ø6
	183	RCL	12	212	RCL	Ø8	241	1
	184	-		213	*		242	STO 23
	185	RCL	Ø 8	214	RCL	12	243	"N2="
	186	*		215	*		244	XEQ Ø3
	187	RCL	Ø 6	216	RCL	Ø6	245	. 7
	188	*		217	ń		246	RCL 04
	189	. 85		218	RCL	1 Ø	247	.1
	19Ø	/		219	*		248	Ŕ
	191	RCL	Ø 3	220	+		249	_
	1 92	1		221	STO	22	250	RCL 23
	193	STO	21	222	'nΜŲ	CALC="	251	1
,	194	2.		223	X EQ	Ø 3	252	RCL Ø4

253	1.5	282 X<=Y?	311 RCL 25
254	*	283 RDN	312 *
255	+	284 STO 25	313 STO 26
256	1	285 "LP="	314 2
257	+	286 XEQ Ø3	315 *
258	. 0015	287 GTO Ø7	316 "20P CALC="
259	*	288 LBL Ø6	317 XEQ Ø3
26Ø	. Ø 1	289 RCL Ø9	318 RCL 26
261	X<>A	29Ø 6	319 "ØP CALC="
262	X>Y?	291 /	32 Ø XEQ Ø3
263	RDN	292 STO 25	321 RCL 29
2.64	STO 24	293 "LP="	322 "ØP ACT="
2 6 5	"EC2 = "	294 XEQ Ø3	323 XEQ Ø3
266	XEQ Ø3	295 LBL Ø7	324 RCL 29
267	FS? Ø1	296 RCL 17	325 RCL 26
268	GTO Ø6	297 RCL 13	326 /
269	RCL 22	298 /	327 "ØP ACT/CALC≈"
27Ø	RCL 19	299 RCL 15	328 XEQ Ø3
271	-	300 RCL 06	329 RCL 20
272	RCL 22	301 *	33Ø RCL Ø9
273	1	302 /	331 *
274	RCL Ø9	3Ø3 RCL 24	332 FS? Ø1
275	2 .	304 RCL 23	333 GTO Ø4
276	/	3Ø5 RCL Ø6	334 2
277	*	3Ø6 *	335 /
278	RCL Ø6	307 /	336 STO 27
279	2	3Ø8 +	337 GTO Ø5
28\$	1	3Ø9 2	338 LBL Ø4
281	X <> Y	310 /	339 5

- 34Ø *
- 341 6
- 342 /
- 343 STO 27
- 344 LBL Ø5
- 345 "Ø1 CALC="
- 346 XEQ Ø3
- 347 RCL 26
- 348 2
- 349 *
- 35Ø RCL 27
- 351 +
- 352 STO 28
- 353 "Ø7 CALC="
- 354 XEQ Ø3
- 355 LBL ØØ
- 356 PROMPT
- 357 STO IND ØØ
- 358 **1**
- 359 ST+ ØØ
- 36Ø RTN
- 361 LBL @3
- 362 ARCL X
- 363 AVIEW
- 364 FC2 55
- 365 "STOP"
- 366 RTN
- 367 .END.

APĒNDICE 5 - TEORIA DO PROFESSOR SYDNEY SANTOS PARA PEÇAS SUJEITAS À FLEXÃO COMPOSTA "CÁLCULO COMPUTACIONAL"

Ø 1	LBL "FLECOMP"	26	"WT"	51	*	
Ø2	1	27	KEQ ØØ	52	STO	1 7
Ø 3	STO ØØ	28	"X2 ="	53	RCL	Ø6
Ø 4	"As"	2 9	XEQ ØØ	54	RCL	Ø5
Ø 5	xeq øø	3 Ø	RCL 10	5 5	-	
ø 6	"ASL"	31	RCL Ø5	56	RCL	Ø5
Ø 7	XEQ ØØ	32	*	57	1	
Ø8	"CC"	33	1/X	58	RCL	15
Ø 9	XEQ ØØ	34	RCL Ø1	59	¥	
1 Ø	"ES"	35	*	6Ø	RCL	14
11	XEQ ØØ	36	ST0 14	61	+	
12	"d"	37	RCL 10	62	2	
13	XEQ ØØ	38	RCL Ø5	63	*	
14	nD n	39	*	64	RCL	17
15	XEQ ØØ	4 Ø	1/X	65	*	
16	"FY"	4 t	RCL Ø2	66	RCL	14
17	XEQ ØØ	42	*	67	RCL	ξ 5
18	"FYL"	43	STO 15	68	+	
19	XEQ ØØ	44	RCL Ø3	69	X†2	
2 Ø	"L"	45	SQRT	7 Ø	RCL	1.7
2 1	XEQ ØØ	46	21000	71	X↑2	
22	** B **	47	*	72	*	
23	XEQ ØØ	48	STO 16	73	+	
24	"e"	49	1/X	74	SQRT	
25	xeq ØØ	5 Ø	RCL Ø4	75	RCL	14

76	RCL	15	1 Ø 5	sto	2 1	134	*	
77	+		106	RCL	Ø 9	1 35	RCL	Ø 3
78	RCL	17	1 Ø 7	×		136	+	
79	*		108	2		137	RCL	16
8ø	CHS		109	1		138	/	
81	+		110	STO	22	139	STO	25
82	sto	1 8	111	. 85		140	RCL	øs
83	RCL	Ø5	112	RCL	Ø 3	141	RCL	13
84	*		113	it		142	-	
85	sto	19	114	RCL	1 9	143	RCL	25
86	RÇL	Ø 7	115	#		144	*	
87	RCL	Ø 4	116	RCL	1 Ø	145	RCL	13
88	/		117	*		146	/	
89	RCL	1 9	118	RCL	Ø2	147	RCL	Ø7
9 Ø	*		119	RCL	Ø8	148	RCL	Ø 4
91	RCL	Ø 5	12Ø	*		149	1	
92	RCL	1 9	121	+		15Ø	X < > 7	Z.
93	-		122	RCL	Ø 1	151	X > Y 3	?
94	1		123	RCL	Ø7	152	GTO	Ø 4
95	STO	2 Ø	124	*		153	RCL	Ø 4
96	RCL	Ø7	125	-		154	*	
97	RCL	Ø 4	126	STO	23	155	GTO	Ø5
98	1		127	RCL	11	156	LBL	Ø4
99	1		128	*		157	RCL	Ø 7
100	RCL	18	129	\$10	2 4	158	LBL	Ø5
101	-		13Ø	RCL	Ø 8	159	STO	26
1 Ø 2	RCL	Ø5	131	RCL	12	16Ø	. 85	
1Ø3	*		1 3 2	*		161	RCL	øз
1 Ø 4	1		133	2		1 62	*	

163	3 RCL 13	193 2	223 XEQ Ø3
164	; *	194 *	224 RCL 28
165	RCL 10	195 RCL 22	225 "MU="
166	ó *	196 2	226 XEQ Ø3
1 67	rcl Ø2	197 *	227 RCL 26
168	B RCL Ø8	198 +	228 "FS="
169) *	199 STO 31	229 XEQ Ø3
17⊈) +	200 RCL 19	23Ø RCL 22
171	RCL Ø1	$2 \not 0 1^{-n} X 1 = ^n$	231 " Ø1= "
172	RCL 26	2 Ø 2 X E Q Ø 3	232 XEQ Ø3
173	} *	203 RCL 13	233 RCL 30
174	· -	2 Ø 4 ¹¹ X 2 = ⁿ	234 "ØP="
175	STO 27	2Ø5 XEQ Ø3	235 XEQ Ø3
176	RCL 11	206 RCL 29	236 RCL 31
177	*	2 Ø 7 ''' L F = ''	237 "ØT="
178	3 STO 28	208 XEQ 03	238 XEQ Ø3
179) RCL Ø9	2Ø9 RCL 2Ø	239 LBL ØØ
180	3 2	210 "EC1="	240 PROMPT
181	1	·211 XEQ Ø3	241 STO IND ØØ
182	STO 29	212 RCL 25	242 1
183	RCL 2Ø	213 "EC2="	243 ST+ ØØ
184	RCL 19	214 XEQ Ø3	244 RTN
185	1	215 RCL 23	245 LBL Ø3
186	RCL 25	216 "PY="	246 ARCL X
187	RCL 13	217 XEQ Ø3	247 AVIEW
188	· /	218 RCL 24	248 FC? 55
189	+	219 "MY="	249 "STOP"
190	RCL 29	22Ø XEQ Ø3	25Ø RTN
191	*	221 RCL 27	251 .END.
400	0 m o 0 M	202 H M	

 $222^{-10} PU = ^{10}$

192 STO 3Ø

REFERÊNCIAS BIBLIOGRÁFICAS

- 01 BAKER, A.L.L. e AMARAKONE, A.M.N.: Inelastic hyperstatical frames Analyses and application of the international correlated test. <u>Bulletin D'Information Nº 52</u>, C.E.B., november 1965
- 02 BAKER, A.L.L.: Proposed coordination of research on inelastic deformation <u>Bulletin D'Information Nº 30</u>, august 1960.
- 03 BAKER, A.L.L.: The ultimate load theory applied to the design of reinforced E prestressed concrete frames.

 Concrete publications limited, London 1956.
- 04 BASE, G.D. e READ, J.B.: Effectivenes of helical binding in the compression zone of concrete beams. <u>Journal of American Concrete Institute</u>, july 1965.
- 05 CAMPORA, G.F.: Cálculo Plástico. <u>Macagno</u> <u>Landa</u> <u>y cia</u>,

 Buenos Aires, 1967.
- 06 CARNEIRO, F.L.L.B.: Cálculo das estruturas hiperestáticas de concreto armado na fase plástica. <u>Primeiras Jorna-das Luso-Brasileiras de Engenharia Civil</u>, Lisboa 1965.

- 07 COHN, M.Z.: Analysis and design of inelastic structures, volume 2, Problems, University of Waterloo Press, 1972.
- O8 COHN, M.Z.: Limit Design of reinforced concrete frames,

 Journal of the Structural, Divison ASCE vol. 94.

 ST 10., october 1968.
- 09 CORLEY, W.G.: Rotational capacity of reinforced concrete

 beams. <u>Proceeding of the American Society of Civil</u>

 Engineers, october 1966.
- 10 FURLONG, R.W.: Design of concrete frames by assigned Limit Moments. <u>Journal of the American concrete Institute</u>; proceedings vol. 67, N.4 - april 1970.
- 11 FUSCO, P.B.: Estruturas de concreto Solicitações Normais. Editora Guanabara Dois E S.A.. Rio de Janeiro. 1981.
- 12 HOGNESTAD, E.; HANSAN, N.W e MC HENRY, D.: Concrete stress distribution ultimate in strength design. <u>Journal of American concrete</u> Institute, december 1955.
- 13 LIMA, J.A.; COELHO, A.J. e MONTEIRO, V.: Manual de Betão Armado. <u>Laboratório de Engenharia Civil</u>, Lisboa 1970.
- 14 MACCHI, G.: Methodes de calcul des structures hiperstatiques,

 Bulletin D'Information Nº 53, C.E.B., Janvier 1966.

- 15 MACCHI, G.: Proposition de calcul basee sur la theorie des rotations imposies, <u>Bulletin D'Information Nº 21</u>, <u>C.E.B.</u> janvier 1960.
- 16 MACCHI, G.: Proposition pour le calcul des deformations du béton armé in vue des calculs hyperstatiques. <u>Bulletin</u> <u>D'Information Nº 52 - C.E.B.</u>, novembre 1965.
- 17 MATTOCK, A.H.: Rotational capacity of hinging regions in reinforced concrete beams, <u>Proceedings of International Symposium</u>, <u>Flexural Mechanics of Reinforced Concrete</u>.

 1965.
- 18 MICHALKA, C. Jr.: Rótulas condicionadas no cálculo plástico de concreto armado. <u>Tese de Mestrado 1981</u> - COPPE - UFRJ.
- 19 NAWY, E. G.; DANESI, R.F. e GROSKO, J.J.: Retangular spiral binders effect on plastic hinge rotational capacity in reinforced concrete. <u>Journal of American Concrete Institute</u>. june 1971.
- 20 PARK, R. e PAULAY, T.: Reinforced concrete structures. A Wiley Instersciencia Publication, New York, 1975.
- 21 RAO, S.P.; KANNAN, P.R. e SUBRAHMANYAM, V.: Influence of span lenght and application of load on the rotational capacity of plastic Hings. <u>Journal of American Concrete</u> <u>Institute</u>, june 1971.

- 22 SAMPAIO, J.C.: Cálculo à rotura das estruturas hiperestáticas de betão armado. Determinação da capacidade de rotação das rótulas plásticas. <u>Segundas Jornadas Luso-</u> -Brasileiras de Engenharia Civil. Porto 1967.
- 23 SANTOS, S.M.G.: Cálculo das solicitações na fase plástica, Revista Estruturas Nº 21.
- 24 SANTOS, S.M.G.: C\u00e4lculo estrutural na fase pl\u00e4stica. Pontificie Universidade Cat\u00f6lica, Rio de Janeiro, novembro 1967.
- 25 SANTOS, S.M.G.: Estudo teórico Experimental de rótulas condicionadas, Inédito. Rio de Janeiro.
- 26 SANTOS, S.M.G.: Projeto de Estruturas com Articulações condicionadas. <u>Anuário da Faculdade de Engenharia</u> U.E.G. 1961/62/63.
- 27 TICKY, M. e RAKOSNIH, J.: Calcul Plastique des ossatures in beton. Editions Eyrolles, Paris 1975.
- 28 NB-1 Projeto e Execução de obras de concreto armado.

 Associação Brasileira de Normas Técnicas. 1978.
- 29 C.E.B. Recomendações Práticas Unificadas para cálculo e execução das obras de Betão Armado, <u>Editorial</u> "Engenha-ria". Porto, 1967.