
IDENTIFICATION OF A MECHATRONIC SYSTEM

Rafael Accácio Nogueira

Projeto de Graduação apresentado ao Curso
de Engenharia de Controle e Automação da
Escola Politécnica, Universidade Federal do
Rio de Janeiro, como parte dos requisitos
necessários à obtenção do título de Engenheiro
de Controle e Automação.

Orientador: Marcos Vicente de Brito Moreira

Rio de Janeiro
Julho de 2019

Nogueira, Rafael Accácio
Identificação de uma Planta Mecatrônica de

Manufatura/Rafael Accácio Nogueira. – Rio de Janeiro:
UFRJ/ Escola Politécnica, 2019.

XVIII, 118 p.: il.; 29, 7cm.
Orientador: Marcos Vicente de Brito Moreira
Projeto de Graduação – UFRJ/ Escola Politécnica/

Curso de Engenharia de Controle e Automação, 2019.
Bibliography: p. 102 – 104.
1. Identification. 2. Discrete Event Systems.

3. Automata. 4. Mechatronic System. I.
Moreira, Marcos Vicente de Brito. II. Universidade
Federal do Rio de Janeiro, Escola Politécnica, Curso de
Engenharia de Controle e Automação. III. Identification
of a Mechatronic System.

iii

“It’s a dangerous business going
out your door. You step onto the
road, and if you don’t keep your
feet, there’s no knowing where

you might be swept off to.”
(J.R.R Tolkien)

iv

Agradecimentos

Primeiramente a Deus, sem quem nada é possível e por todas as pessoas colocadas
em meu caminho, que me fizeram crescer e ser o indivíduo que hoje sou.

Aos meus pais, Rosemeri e Rogério. Por todo amor, carinho, atenção e apoio dados,
pela primeira educação, essencial para toda minha trajetória, educação não só acadêmica,
mas também moral. Obrigado, por tudo ! Amo muito vocês.

A todas minhas professoras e professores por mostrarem o quão importante e bonita
é a profissão e por terem sempre instigado a sede pelo aprendizado. Agradeço àqueles
que contribuíram para minha base acadêmica e profissional.

As amizades que fiz, as que se foram de minha convivência e as que permaneceram,
agradeço aqueles que conheci na UFRJ, mais especificamente a nossa turma T17, pois
se chegamos até onde chegamos foi porque estivemos juntos, fortes, ombro no ombro,
tentando não deixar o outro cair, mas quando alguém caía sempre uma mão amiga se
estendia para ajudar a levantar e recomeçar.

Ao Paulo Yamasaki, pelo convívio no LABECA, e pelas trocas de ideias em assuntos
gerais que por fim, intencionalmente ou não, se tornariam orientação em diversos projetos
que fiz na faculdade, e até mesmo orientação acadêmica e profissional.

Aos melhores companheiros de grupo, Gabriel Pelielo e Rodrigo Moysés, um ver-
dadeiro “Power Trio”. Também a Philipe Moura e Felipe Matheus, que me incentivaram
a sair da minha zona de conforto e me fizeram compreender de fato o sentido do quão
“perigoso” é sair pela porta de casa, pois quando saímos da nossa zona de conforto, coisas
mágicas podem acontecer e pessoas mágicas podem aparecer em nossas vidas.

À Evelise, a pessoa mágica que apareceu em minha vida, que me ajudou fisicamente
e psicologicamente nos momentos que mais precisei. Obrigado por escolher compartilhar
parte de sua vida comigo e por toda a força dada para o término desse ciclo. Eu te amo!

Por fim às pessoas que me ajudaram mais diretamente neste projeto, Ryan Pitanga
e ao meu orientador Marcos Moreira.

v

Abstract of Undergraduate Project presented to POLI/UFRJ as a partial fulfillment of
the requirements for the degree of Automation and Control Engineering.

IDENTIFICATION OF A MECHATRONIC SYSTEM

Rafael Accácio Nogueira

July/2019

Advisor: Marcos Vicente de Brito Moreira

Course: Automation and Control Engineering

This work has as primary objective to propose tools and present the implementation
of a method for identification of discrete events systems using the Deterministic Automa-
ton with Outputs and Conditional Transitions (DAOCT) model, which can be used to
fault detection. In order to accomplish this, the control of a mechatronic system will
be designed, using Petri nets in a first phase and then converting it into Ladder logic.
Once the control is implemented, the inputs and outputs of the plant will be logged and
then fed to the DAOCT model identification algorithm. Each one of this steps will be
depicted in this work and the identified model will be discussed.

vi

Resumo do Projeto de Graduação apresentado à Escola Politécnica/ UFRJ
como parte dos requisitos necessários para a obtenção do grau de Engenheiro
de Controle e Automação.

IDENTIFICAÇÃO DE UMA PLANTA MECATRÔNICA DE MANUFATURA

Rafael Accácio Nogueira

Julho/2019

Orientador: Marcos Vicente de Brito Moreira

Curso: Engenharia de Controle e Automação

Este trabalho tem como objetivo propor ferramentas e mostrar a implementação
de um método para a identificação de sistemas a eventos discretos, utilizando o modelo
DAOCT, que poderá ser usado para detecção de falhas. Para tanto, será realizado o pro-
jeto de controle de uma planta mecatrônica de manufatura, utilizando em uma primeira
fase redes de Petri, depois convertendo na linguagem Ladder. Uma vez implementado
o controle os dados de entrada e saída da planta serão registrados e depois dados como
entrada para o algoritmo de identificação do modelo DAOCT. Cada um desses passos
será descrito nesse trabalho e o modelo identificado será discutido.

vii

Contents

List of Figures xi

List of Tables xiv

List of Acronyms xvi

List of Symbols xviii

1 Introduction 1
1.1 Work Outline . 2

2 Background 4
2.1 Systems . 4
2.2 Discrete Event Systems . 5
2.3 Languages . 5
2.4 Representation of Languages . 6

2.4.1 Automata . 7
2.4.2 Petri Nets . 8

2.5 Control Interpreted Petri Nets . 13
2.6 Implementation of Control Interpreted Petri Nets 17

2.6.1 Ladder Logic . 17
2.6.2 Conversion from Control Interpreted Petri Nets to Ladder Diagram 20
2.6.3 Control Interpreted Petri Net implemented in multiple PLCs . . . 23

2.7 Identification . 26
2.7.1 Deterministic Automaton with Outputs and Conditional Transitions 29

3 Didactic Manufacturing System 34
3.1 Magazine Unit . 36
3.2 Conveyor Belt . 37

viii

3.3 Sorting Unit . 37
3.4 Handling Unit . 39
3.5 Assembly Unit . 41
3.6 Storage Unit . 42

4 Control Logic 44
4.1 Control Interpreted Petri net for the manufacturing system 44

4.1.1 Initialization . 45
4.1.2 Metal Cube Half Sorting . 48
4.1.3 Plastic Cube Half Sorting . 51
4.1.4 Arm From Conveyor Belt to Assembly Unit 54
4.1.5 Assembly Unit . 57
4.1.6 Arm From Assembly Unit To Storage Unit 59
4.1.7 Storage Unit Positioning (y Axis) 62
4.1.8 Storage Unit Positioning (x Axis) 65
4.1.9 Cube Storage . 68
4.1.10 Arm Stop Logic . 71

4.2 Implementation of the Control . 74

5 Manufacturing System Identification 78
5.1 Data Acquisition . 78
5.2 Model Identification . 88

6 Identified Model 91
6.1 Identified Model . 91
6.2 Discussion about Paths . 96

7 Conclusion 100
7.1 Concluding Remarks . 100
7.2 Further Work . 100

Bibliography 102

A Complete Petri Net 105

B Tools 114
B.1 daoct . 114
B.2 dot2automata . 116

ix

B.3 dot2petri . 117

x

List of Figures

2.1 Input/Output Process model . 4
2.2 State Transition Diagram . 7
2.3 Diagram representing the automaton from example 2.1 8
2.4 Component nodes of a petri net. 9
2.5 Diagram representing the Petri net structure from example 2.2 9
2.6 Example of unmarked and marked Petri net graphs. 10
2.7 Example of Petri net Dynamic. 11
2.8 Labeled Petri net. 12
2.9 Example of Petri net with inhibitor arc. 13
2.10 Representation of new labeling function 14
2.11 Representation of a timed transition. 14
2.12 Representation of labeling of Actions. 15
2.13 Example of System to be controlled by the Petri Net 16
2.14 Example of Control Interpreted Petri Net to control system in Figure 2.13 16
2.15 Types of Contacts. 17
2.16 Types of Coils. 18
2.17 And logic in a Ladder rung. 19
2.18 Not logic in a Ladder rung. 19
2.19 Or logic in a Ladder rung. 19
2.20 Examples of function blocks. 20
2.21 Example of Control Interpreted Petri Net converted to Ladder. 23
2.22 Example of Petri Net implemented in 2 PLCs. 24
2.23 Example of Petri Net divided between 2 PLCs. 25
2.24 Observed Signals in a closed-Loop Discrete Event System (DES). 26
2.25 Relation between LOrig, LOrigNI , LObs, LExc and LIden 28
2.26 State transition diagram for identified model using k = 1. 32
2.27 State transition diagram for identified model using k = 2. 32

xi

3.1 Cube halves. 34
3.2 Units of the Manufacture System. 35
3.3 Magazine Unit. 36
3.4 Conveyor Belt. 37
3.5 Sorting Unit - Identification. 38
3.6 Sorting Unit - Discharging. 38
3.7 Handling Unit. 40
3.8 Assembly Unit. 42
3.9 Storage Unit. 43

4.1 Petri net of Initialization module. 47
4.2 Petri net of metal cube half sorting module. 50
4.3 Petri net of plastic cube half sorting module. 53
4.4 Petri net of manipulator taking a cube half from conveyor belt to assembly

unit module. 56
4.5 Petri net of assembly unit module. 58
4.6 Petri net of manipulator taking cube from assembly unit to storage module. 61
4.7 Petri net of storage unit positioning module (y-axis). 64
4.8 Petri net of storage unit positioning module (x-axis). 67
4.9 Petri net of cube storage module. 70
4.10 Arm Stop Logic Angles . 71
4.11 Petri net of manipulator Stop Logic module. 73
4.12 Siemens Programmable Logic Controller (PLC) S7-1500 74

5.1 DataLogCreate block. 79
5.2 DataLogOpen block. 79
5.3 DataLogWrite block. 79
5.4 DataLogClose block. 79
5.5 DataLogDelete block. 79
5.6 Example of DataBlock used to log data. 81
5.7 LOGDATA block. 82
5.8 Example of Data struct. 83
5.9 UpdateValues block. 84
5.10 Code inside UpdateValues block. 84
5.11 CompareArrays block. 85
5.12 PutInDataStruct block. 85

xii

5.13 Code inside PutInDataStruct block. 86
5.14 Inputs/Outputs from Handling-Assembly-Storage PLC. 87
5.15 Identified model from paths extracted from .csv file using k = 1. 90
5.16 Identified model from paths extracted from .csv file using k = 2. 90

6.1 Number of states of identified model for different values of k. 92
6.2 Comparison between the cardinality of the exceeding language generated

by the DAOCT and NDAAO. 93
6.3 Number of states of identified model for different values of k. 94
6.4 Comparison between the cardinality of the exceeding language generated

by the DAOCT and NDAAO. 95
6.5 Scheme of the example 6.1. 97
6.6 Identified model using [0 0 0]

T as initial state, k = 1. 98
6.7 Identified model using [1 0 0]

T as initial state, k = 1. 98
6.8 Identified model using [1 0 0]

T as initial state, k = 2. 98

B.1 daoct help dialog. 115
B.2 daoct csv input file. 115
B.3 daoct graphviz output. 115
B.4 daoct f function output. 115
B.5 dot2automata Help. 116
B.6 dot2automata output. 117
B.7 dot2petri Help. 117
B.8 dot2petri output. 118

xiii

List of Tables

2.1 Control Interpreted Petri Net Example Places. 16
2.2 Control Interpreted Petri Net Example Transitions. 16

4.1 Initialization Module Transitions. 45
4.2 Initialization Module Places. 46
4.3 Metal Half-cube Selection Module Transitions. 48
4.4 Metal Half-cube Selection Module Places. 49
4.5 Plastic Half-cube Selection Module Transitions. 51
4.6 Plastic Half-cube Selection Module Places. 52
4.7 Arm From Conveyor Belt to Press Module Transitions. 54
4.8 Arm From Conveyor Belt to Press Module Places. 55
4.9 Assembly Unit Module Transitions. 57
4.10 Assembly Unit Module Places. 57
4.11 Arm From Press To Storage Unit Module Transitions. 59
4.12 Arm From Press To Storage Unit Module Places. 60
4.13 Storage Unit (Y axis) Module Transitions. 62
4.14 Storage Unit (Y axis) Module Places. 63
4.15 Storage Unit (X axis) Module Transitions. 65
4.16 Storage Unit (X axis) Module Places. 66
4.17 Cube Storage Module Transitions. 68
4.18 Cube Storage Module Places. 69
4.19 Arm Stop Logic Module Transitions. 72
4.20 Arm Stop Logic Module Places. 72
4.21 Inputs Selection PLC . 74
4.22 Outputs Selection PLC . 75
4.23 Inputs Handling-Assembly-Storage PLC 76
4.24 Outputs Handling-Assembly-Storage PLC 76

xiv

A.1 Complete Places. 105
A.2 Complete Transitions. 108

xv

List of Acronyms

CCW
Counter Clockwise

CIPN
Control Interpreted Petri Net

CIPNs
Control Interpreted Petri Nets

CSV
Comma Separated Values

CW
Clockwise

DAOCT
Deterministic Automaton with Outputs and Conditional Transitions

DES
Discrete Event System

DOF
Degrees of Freedom

FBD
Function Block Diagram

xvi

IL
Instruction List

LCA
Control and Automation Laboratory

LD
Ladder Diagram

NDAAO
Non-Deterministic Autonomous Automaton with Output

PLC
Programmable Logic Controller

SCADA
Supervisory Control and Data Acquisition

SCL
Structured Control Language

SFC
Sequential Function Chart

ST
Structured Text

UFRJ
Federal University of Rio de Janeiro

xvii

List of Symbols

R : Set of path indices
X : Set of states
Xf : Set of final states
Ω : Set of IO vectors
Σ : Set of events
λ : State output function
θ : Path estimation function
f : Deterministic transition function
x0 : Initial State

xviii

Chapter 1

Introduction

In a world where the majority of the population lives in industrial societies, and
machines take part in the bulk of the production of almost all goods, from food to cos-
metics and drugs, from toothbrushes to automobiles, a well-paced throughput is crucial,
and any non-expected halt on the production or change can be disastrous, producing
sometimes multimillionaire debts, provoking a snowball effect, affecting the economy
and consequentially the welfare of the society.

A diverse number of causes of the halt or change of the throughput can be accounted
for. Some causes are simple as a power outage, or a component malfunction, but nowa-
days there are other players. As the industry walks, or even better runs, towards the so
called Fourth Industrial Revolution, it urges the use of connected sensors, and since the
Internet of Things is the fashion these days, the chances of a hacker attack increases.
All these kinds of failures, intended or not can interfere somehow with the production
throughput. There are two ways to attempt the reduction of the interference these agents
can cause: prevention (before the interference) and remedy (after the interference).

The most common means of prevention in the industry are through preventive main-
tenance (for the physical components) and cyber-security (for the software components).

Once the interference is caused, in order to remedy and reestablish the operation some
steps are necessary. Detect the fault, determine the faulty part, and finally intervene.
The crucial part of fixing something is to know how this thing should work1, because
when we know how it should work, we can distinguish when it is and when it is not.

The focus of this work is system identification aimed for fault detection and diagnosis.
As great part of the manufacture facilities uses discrete sensors and actuators, as

1“To determine why something has stopped working, it’s useful to know how it was supposed to work
in the first place” DAVIS and HAMSCHER (1988)

1

conveyor belts, pneumatic cylinders, limit switches and proximity sensors, it is very
common to see PLCs controlling those plants. And when a system is ruled by discrete
events and also its states are discrete it can be modeled as Discrete Event Systems.

On the literature, we can find an expressive number of articles using Discrete Event
Systems for identification, fault detection and fault diagnosis. CABRAL and MOREIRA
(2017); CARVALHO et al. (2017); KLEIN et al. (2005); KUMAR and TAKAI (2014);
SAMPATH et al. (1995); VERAS et al. (2018); VIANA and BASILIO (2019) can be
used as examples.

The procedure for detection and isolation of failure events proposed in SAMPATH
et al. (1995) is based on the complete system behaviour. Although this procedure is used
for small systems, applying the same procedure on larger systems can be challenging.
The difficulty on the implementation of the procedure for large systems is caused by
the concurrent behaviour they can present. As the procedure is based on the system
behaviour, it is necessary to know the system and also people that are familiar with
discrete-event modelling techniques. So, other approaches were created in order to make
the modelling process automatically repeatable and without the need of knowing the
system, using observation of the system and modelling algorithms.

This work is based on MOREIRA and LESAGE (2018), that develops an algorithm to
identify a model of the system using its inputs and outputs, using a black box approach,
also seen in other works as KLEIN et al. (2005) and ROTH et al. (2009). This identified
model can be later used to detect faults on the system.

The objective is to apply the identification algorithm shown in MOREIRA and
LESAGE (2018) in a Didactic Manufacturing System with a concurrent behaviour and
a moderate number of inputs and outputs (over 60) and show that the identification
method can be used on concurrent subsystems, so we can achieve scalability.

During this work all steps from the conception of the control of the system to its
identification will be described. So, in order to ease the path throughout this work we
have in the next section its outline.

1.1 Work Outline

Background
In chapter 2 a background to understand this work is presented. First are presented the
basic principles of Discrete Event Systems and two ways of modelling them (Automata
and Petri nets). After, a way to use Petri nets to design a controlled system and to

2

translate this control to Ladder Logic are depicted (as in MOREIRA and BASILIO
(2013)). And finally we present the identification algorithm, DAOCT (as in MOREIRA
and LESAGE (2018)).

Didactic Manufacturing System
In chapter 3 we present the manufacturing system, its devices, sensors and actuators.

Control Logic
In chapter 4 we describe the design process of the control and its implementation on the
PLCs.

Manufacturing System Identification
In chapter 5 we describe the process of identifying the system, logging its input and
output data and using the algorithm shown in chapter 2 to identify the model.

Identified Model
In chapter 6, the data acquired on the steps described on chapter 5 are discussed and fed
to the algorithm, then the output models are discussed and the behavior of the system
is addressed.

Conclusion
In chapter 7, the conclusions are drawn. The drawbacks presented during the imple-
mentation are collected, and other approaches on some specific parts of this work are
proposed as future works.

3

Chapter 2

Background

In this chapter the main topics needed to understand this work are presented. A
more detailed explanation of each topic can be found on the respective cited work.

2.1 Systems

A System as defined by the Cambridge’s dictionary is “a set of connected things or
devices that operate together”. As seen two basic properties of systems are :

• they are formed by grouping smaller parts

• the smaller parts when grouped work together to carry out a specific function

Usually, systems are modelled by an Input/Output process. The system is fed with
a set of inputs, it processes the inputs resulting on the output set, as we can see in
Figure 2.1.

ProcessInputs Outputs

Figure 2.1: Input/Output Process model

The states of the system can be continuous or discrete, and the systems can be
considered as Continuous, Discrete or Hybrid Systems, which combine both kind of
states.

4

The systems modelled in this work are Discrete Systems. More details about other
kinds of systems as well as examples and their analysis can be found on OPPENHEIM
et al. (1996) and KALOUPTSIDIS (1997).

2.2 Discrete Event Systems

Discrete Systems can be driven by time or by events, i.e., the states can change
continuously with the time or instantaneously with the occurrence of events.

In this work, we are interested in the event-driven type. Some basic mathemat-
ical formalisms, nomenclature and representations can be developed to facilitate the
understanding. Some of those will be presented in the following sections based on CAS-
SANDRAS and LAFORTUNE (2009); DAVID and ALLA (1989, 2005).

2.3 Languages

A language can be defined by the Merriam-Webster’s dictionary as “a systematic
means of communicating ideas or feelings by the use of conventionalized signs, sounds,
gestures, or marks having understood meanings”, and as it is defined by this dictionary
entry we pursue to communicate the complete behaviour of the DES. Firstly we need to
define a group, or set of marks to characterise the singular behaviour of the system. So,
we define a set Σ. This set contains all elements which combined can create a language.
Again in analogy with linguistics, each one of these marks, the events can be compared
to letters, provided that Σ can be called an “alphabet”, and the combination of its events
“words”. Words are also called “strings ” or even “traces”. Considering the use of the
word “string” as the variable type used on several programming languages used in this
work, we prefer the use of the terms “word” and “trace”. We can also define the empty
word, ε, that is, a word that is not formed by any event.

The operation to form words is called concatenation. For instance, given two events
a and b, the words ab and ba can be created concatenating these two events and there
is no particular reason to suppose that ab is equal to ba. The same goes for the words
“ten” and “net”, that have different meanings in English.

We can also concatenate two words to create a different one. For instance, we can
take the words ab and ba and create words like abba and baab.

As we extended the definition of concatenation to words, we define ε, the empty
word, as the identity element of concatenation: wε = εw = w for any word w.

5

Likewise, we can define the length of a word as the number of events contained by
this word. We denote the length with two vertical bars. Thus, given a word w its length
is equal to |w| and by definition |ε| = 0.

Definition 2.1 (Language)
A Language defined over an alphabet Σ is formed of finite-length words generated from
the concatenation of the events in Σ and ε.

Let us consider for example an alphabet Σ = {a, b, g}. We can define different
languages

L1 = {ε, a, abb}

L2 = {all possible words of length 3 starting with g}

L3 = {all possible words starting with g}

The cardinality of these sets are |L1| = 3, |L2| = 9, |L3| =∞. As we can see, from the
same alphabet several languages can be created and sometimes very different from each
other. Thus, we can define a way to encapsulate all possible languages generated from
the same alphabet Σ. Let us denote by Σ∗ the set containing all finite words composed
of the elements of Σ and ε. The * operation is called the Kleene-closure. Similarly to
L3, Σ∗ is countably infinite since it contains arbitrarily long words. For instance the
Kleene-closure of the alphabet Σ = {a, b, c} is:

Σ∗ = {ε, a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc, aaa, . . . }

2.4 Representation of Languages

Although languages can describe the behaviour of DESs, there are cases in which the
language is countably infinite, what makes them not so simple to express the behaviour of
the system. For this purpose, there are some other formalisms that are a more compact
way of expressing the system’s behaviour.

In the following subsections two of the most known representations will be presented:
Automata and Petri nets.

6

2.4.1 Automata

One of the most known representation of languages are automata. The notion of
automaton is basically the definition of DESs, as we saw in the section 2.2: a set of
events can change the state of the system. If we know all the events composing the
language of the system and its states, we can have its alphabet Σ, and we can create a
set X composed of all states. From Σ and X we can derive a function that represents
the transition from a state to other, this function is called transition function of the
automaton denoted as f : X × Σ → X. For example if a system have an alphabet
Σ = {a, b} and 2 states, we can name the states x and y, and then create the set
X = {x, y}. Knowing that the system begins at state x and that when event a happens
it changes to state z we can create a function f(x, a) and define it as y. Likewise, if we
know that when the system is at state y and event b happens, a function f(y, b) can be
defined as a.

A representation of the transition function can be made through a diagram, called
state transition diagram. In this kind of diagram the states are represented by circles
labeled with their names, and the functions as arcs labeled with the corresponding event,
connecting two states, with arrows in one of their extremities indicating the transition
from a state to other. The initial state of the automaton has an arc pointing towards it
coming from no other state. Figure 2.2 can represent the functions f(x, a) and f(y, b)

described in the last paragraph.

yx b
a

Figure 2.2: State Transition Diagram

Now, for a more complex example, from CASSANDRAS and LAFORTUNE (2009):

Example 2.1 (Simple Automaton)
Let Σ = {a, b, g}, X = {x, y, z} and the following transition functions (CASSANDRAS
and LAFORTUNE, 2009):

f(x, a) = x f(x, g) = z

f(y, a) = x f(y, b) = y

f(z, b) = z f(z, a) = f(z, g) = y

7

We can represent this automaton with the diagram of Figure 2.3

yx

z

b

a,g ba

a

g

Figure 2.3: Diagram representing the automaton from example 2.1

We can also mark states that have some special meaning, as for instance, a final
state. In this work, as in CASSANDRAS and LAFORTUNE (2009), the marked states
are identified by double circles.

Now a deterministic Automaton can be defined.

Definition 2.2 (Deterministic Automaton)
A Deterministic Automaton, denoted by G, is a five-tuple

G = (X,Σ, f, x0, Xm)

where:
X is the set of states
Σ is the finite set of events associated with G
f : X × Σ→ X is the transition function
x0 is the initial state
Xm ⊆ X is the set of marked states

2.4.2 Petri Nets

Another kind of representation of languages are Petri nets, whose concept was created
by C.A.Petri in the early 1960s. Differently from the automata representation, Petri nets
are bipartite graphs, formed by nodes called places and transitions. Transitions represent
the events that drive the system, and places represent the conditions for these events to
happen. The mechanism to represent the fulfilment of the conditions is named marking.
A Petri net is built over three basic concepts, the petri net graph/structure, its marking
and firing transitions. The next subsections will be based on DAVID and ALLA (2005)
and CASSANDRAS and LAFORTUNE (2009).

8

Petri Net Graph

Arcs are used to connect nodes and have arrowheads to identify the direction. All
arcs must have exclusively one node at each end, that means no arc is used to identify
the initial state of a Petri net. A Petri net is bipartite graph, which means that places
can only connect to transitions and vice versa. In this work, as in DAVID and ALLA
(2005) places are represented by circles and transitions by bars, as shown in Figure 2.4.

p0

(a) A place.

t1

(b) A transition

Figure 2.4: Component nodes of a petri net.

The same way a function was created to define the transitions of states in an au-
tomaton, two functions will be created to define the connections between places and
transitions. First we need to define the sets of places and transitions. P is the set
of places and T the set of transitions. With these two sets, we can then define those
functions. The first one represents the arcs from places to transitions, and is denoted
as Pre : P × T → N, the second one represents the arcs that connect transitions to
places, denoted as Post : P ×T → N. Where N = {0, 1, 2, . . . } is the set of non-negative
integers.

Example 2.2 (Simple Petri Net structure)
Given P = {p0, p1}, T = {t0, t1, t2} and the following functions:

Pre(p0, t0) = 0 Post(p0, t1) = 0 Pre(p1, t0) = 0 Post(p1, t1) = 2

Post(p0, t0) = 1 Pre(p0, t2) = 0 Post(p1, t0) = 0 Pre(p1, t2) = 1

Pre(p0, t1) = 1 Post(p0, t2) = 0 Pre(p1, t1) = 0 Post(p1, t2) = 0

We can represent this Petri net structure with the diagram of Figure 2.5

p0 p1 t2t0 t1

2
|

Figure 2.5: Diagram representing the Petri net structure from example 2.2

9

Marking

The marking is used as the mechanism to represent if the condition of occurrence of a
determined event is met or not. The marking also represents the state of the system. The
mechanism works as follows. Tokens can be assigned to places and the way the tokens
are distributed among places is called the marking of a Petri net graph. We can define
a marking function x : P → N that denotes the number of tokens in a determined place.
In this work, as in the majority of articles and books, the tokens will be represented as
black dots inside the places.

Figures 2.6a and 2.6b show an unmarked and a marked Petri net graph, respectively.

p2

p3

p0

p1

p6

p4

p5

t4

t5

t2

t3

t0 t1

(a) Unmarked

p3

p1

p6

p4 t4

t5

t2

t3

t0 t1

p5

p0 p2

(b) Marked

Figure 2.6: Example of unmarked and marked Petri net graphs.

The marking of a Petri net, can be represented as a vector of the function x applied
on all places, for example the marking of Figure 2.6b is the following vector.

x =



x(p0)

x(p1)

x(p2)

x(p3)

x(p4)

x(p5)

x(p6)


=



1

0

1

0

0

2

0


The marking of the Petri net, can be identified as the state of the Petri net. So,

different configurations of tokens mean different states of the system, now we only need
a way to change from one state to other.

10

Firing Transitions

When an event associated with a transition tj happens and tj is enabled, tj is fired
and a new marking is reached. We can define the functions I : T → 2P and O : T → 2P

that describe the set of places considered as inputs and outputs of a transition:

I(tj) = {p ∈ P : Pre(p, t) > 0}
O(tj) = {p ∈ P : Post(p, t) > 0}

Definition 2.3 (Enabled transition)
A transition is enabled if

x(pi) ≥ Pre(pi, tj) for all pi ∈ I(tj)

If I(tj) = ∅, tj is always enabled.

And we can define the dynamic of the Petri net as follows.

Definition 2.4 (Petri net dynamics)
It is possible to define a state transition function, f : Nn×T → Nn , where n is the size
of the state vector x. This function f is defined for a transition tj ∈ T if and only if
this transition is enabled. If f(x, tj) is defined, then we create a new state vector x′:

x′(pi) = x(pi)− Pre(pi, tj) + Post(pi, tj), i = 1, . . . n

As an example we can take Figure 2.7:

p0 p1t0

2
|

(a) Before firing of t0.

p0 t0
p1

2
|

(b) After firing of t0.

Figure 2.7: Example of Petri net Dynamic.

The state before firing transition t0 is x =
[
3 0

]T
and as we see Pre(p0, t0) = 2

and Post(p1, t0) = 1. So, applying the Petri net dynamic, we can find the next state

x′ =
[
1 1

]T
.

11

A Petri Net is defined as follows.

Definition 2.5 (Petri net)
A Petri net is defined as a five-tuple

PN = (P, T, Pre, Post,x0)

where:
P is the set of places
T is the set of transitions
Pre is the input incidence function
Post is the output incidence function
x0 is the initial marking of the net

And its dynamic is ruled by the state transition function f defined in Definition 2.4.

To make the connection between the Petri net and the events of the system, we can
define a labeling function, l : T ∗ → Σ∗ that makes the link between a sequence of firing
transitions and a sequence of events.

Definition 2.6 (Labelled Petri net)
A Labelled Petri net is defined as a seven-tuple

PN = (P, T, Pre, Post,x0,Σ, l)

where:
(P, T, Pre, Post,x0) is a Petri Net
Σ is the set of events
l is the labelling function

Usually, the events are represented in the Petri net graph over its respective transition
as shown in Figure 2.8. This system has an alphabet Σ = {a, b} and labelling functions
l(t0) = a and l(t1) = b.

p0

a

t0

b

t1

Figure 2.8: Labeled Petri net.

12

2.5 Control Interpreted Petri Nets

One of the important application of Petri nets, besides modelling a system, is its
ability to model the control of a system. For this intent we use Control Interpreted Petri
Nets (CIPNs). It is an extension of labelled Petri nets, in which we add actions to places,
so it is possible to change the outputs of the system, conditions to the transitions, so it
is possible to change the state of the control based on the inputs of the system, and the
ability to delay the firing transitions based on time.

Definition 2.7 (Control Interpreted Petri net)
A Control Interpreted Petri net is defined as a thirteen-tuple

PN = (P, T, Pre, Post,x0, In,Σ, C, lC , D, LD, A, IA)

where:
(P, T, Pre, Post,x0) is a Petri Net
In is the inhibitor arc function that prevents the enablement of transitions
Σ is the set of events associated to transitions
C is the set of conditions associated to transitions
lC is the labeling function that associates a transition with events and conditions

from Σ and C
D is the set of delays associated to timed transitions
lD is the labeling function that associates a transition with a delay from D

A is the set of actions associated to places
lA is the labeling function that assigns actions from A to a place

The definition of In : (P×T)→ N is that a transition tj is inhibited if x(pi) ≥ In(pi, tj).
Inhibitor arcs are not used in this work but usually they are represented with an arc
with a circle in one of its ends, as shown in Figure 2.9.

p0

p1
t0

t1

Figure 2.9: Example of Petri net with inhibitor arc.

As we can see from the definition there are two labeling functions to connect tran-
sitions, lC and lD. The lC is defined for transitions with no firing delay and lD for

13

transitions with firing delay.
The labeling function lC : T 0 → (Σ×C) defines a pair of event and boolean condition

from Σ and C respectively. A transition ti belonging to T 0 (a subset of T that represents
the transitions with no time delay) has a corresponding (event, condition) tuple (σi, ci)

For example, take a transition t0, Σ = {σ0} and C = {c0}. If a function lC(t0) = (σ0, c0)

is defined, transition t0 is fired when the condition c0 is true and the event σ0 happens,
but obviously, if and only if this transition is enabled. The transition t0 is represented
graphically as shown in Figure 2.10

p0 p1

σ0,c0

t0

Figure 2.10: Representation of new labeling function

If the event is missing from the representation of the transition, it is equal to λ, the
always occurring event. And if the condition is missing, that means it is equal to 1, i.e.
it is always true. If both are missing, that means the transition will be automatically
executed if it is enabled.

On the other hand, the labeling function lD : TD → D, defines a delay for the
transition to be fired. A timed transition ti ∈ TD (a subset of T that represents the
transitions with a time delay), has a corresponding delay di. As an example, consider
a timed transition t1 and D = {d1}. Then, after the enablement of the transition, it
takes d1 time units in order to be fired. In this work, timed transitions are represented
by white bars slightly larger than normal transitions. An example of this representation
we can see in Figure 2.11

p2 p3

d1

t1

Figure 2.11: Representation of a timed transition.

Another labelling function is lA : P → 2A, assigning a set of actions belonging to A
to a place. Actions can be impulse or continuous actions. A continuous action happens
when the marking of a place is greater than 0, x(pi) > 0. An impulse action, on the
other hand, happens only when the marking of the place changes from 0 to 1. Actions

14

are represented graphically as labels in places. Impulse actions are differed by a star (*)
at its end.

In Figure 2.12, a representation of a place with both kinds of actions is presented,
where F is continuous and B?.

F,B∗

p0t0 t1

Figure 2.12: Representation of labeling of Actions.

Although these representations exist, in this work events, conditions and action labels
are suppressed from the diagrams, and tables are added to the drawings showing the
meaning of the transitions (firing events and conditions) and places (Actions). This
choice was made because the CIPNs presented in this work are very large.

To illustrate how the tables are used to complement the information of the diagram,
we give an example based on one example from DAVID and ALLA (1989).

Example 2.3 (Loading of a wagon)
We consider the system represented by the scheme in Figure 2.13. A wagon can be
moved between the points a and b, using the inputs L and R (moving it to the left or
right, respectively). At point a there is a button M that can be pressed by an operator
and a limit switch called a that is activated when the wagon is on the left. At point b,
a homonym limit switch is placed and activated when the wagon is on the right. There
is a hopper that can be opened when the input Open is turned on and closed when not.
If it is opened its content is poured. There is also a button p that is activated when the
weight applied over the plate is equal or greater to the weight of a full wagon.

The objective of the control is, when the wagon is in its leftmost position and the
button m is pressed, it moves to the right, stops at b, the hopper is opened and the
wagon is loaded. When it is completely full it moves to the left and it stops at a waiting
to be unloaded and for a next press of m to re-initiate the loop.

15

p

m

ba L R

Open

Figure 2.13: Example of System to be controlled by the Petri Net

From the description of the control it is possible to create a Control Interpreted Petri
Net (CIPN) to represent it, as the one in Figure 2.14.

p2 p3p1 t2
t3

t0 t1
p0

Figure 2.14: Example of Control Interpreted Petri Net to control system in Figure 2.13

The meaning/description of each place and transition is given by the following tables:

Table 2.1: Control Interpreted Petri Net Example Places.

Places Meaning
p0 System Stopped
p1 R (Car Moving to the Right)
p2 Open (Container Opened)
p3 L (Car Moving to the Left)

Table 2.2: Control Interpreted Petri Net Example Transitions.

Transitions Meaning

t0 ↑ m (filling request)
t1 ↑ b (Right Limit Switch)
t2 ↑ p (Car is Full)
t3 ↑ a (Left Limit Switch)

16

In this work as in the usual boolean notation, when just the name of a variable is
given in a table it means the variable is equal to true, and when there is a bar in its top
it is equal to false, so they determine conditions. E.g.: b and b. And when a variable is
preceded by ↑ and ↓, they determine events corresponding to its rising and falling edge.

2.6 Implementation of Control Interpreted Petri Nets

Once the control of a system is modeled by a CIPN, it is needed to implement the
control in a real controller. The most used controllers in the industry are PLCs. The IEC
61131 standard, defines in its third part (IEC 61131-3) the five languages to program
PLCs: Ladder Diagram (LD), Function Block Diagram (FBD), Structured Text (ST),
Instruction List (IL) and Sequential Function Chart (SFC). One of the most used in the
industry is LD, because of its resemblance with electric connections. So we are going to
use LD to implement the control designed with the CIPN.

2.6.1 Ladder Logic

The ladder logic is based on two components, contacts and coils. Their terminals
are interconnected to transmit boolean signals. Ladder comes from the resemblance
between its structure (circuits formed in parallel one above the other) and a ladder, so
each circuit is called a Rung by analogy. The logic values in a LD rung are transmitted
from the left to the right of the diagram. The components let the logic “current” flow
from its left terminal to the right terminal depending on some conditions, and these
conditions vary from component to component. The rungs are executed one by one and
once the very last rung is executed, the first rung is re-executed, thus creating an infinite
loop. The graphical representation of the most used types of contacts and coils can be
seen in Figures 2.15 and 2.16

(a) Normally Open Contact. (b) Normally Closed Contact.

P
(c) Positive Edge Contact.

N
(d) Negative Edge Contact.

Figure 2.15: Types of Contacts.

17

(a) Coil. (b) Negated Coil.

S
(c) Set (latch) Coil.

R
(d) Reset (unlatch) Coil.

Figure 2.16: Types of Coils.

Contacts

Contacts represent the conditions of the ladder logic depending on inputs. These
inputs can be any variable in a PLC, an external input (sensors of the system to be
controlled), a variable stored in memory or the current value sent to an output from the
PLC. A normally open contact activates its right terminal (set it to true) if the logic
value in its left terminal is true and its corresponding input is equal to true A normally
closed contact activates its right terminal if the logic value in its left terminal is true
and its corresponding input is equal to false. The Positive Edge contact activates its
right terminal only in the instant that its input change from logic value false to true, if
the logic value in its left terminal is true. And the Negative Edge contact activates its
right terminal only in the instant that its input change from logic value true to false.

As we can see, positive and negative contacts can be used to represent rising (↑) and
falling edge (↓) events and normally open and closed contacts to represent conditions
(and their negation).

Coils

Coils, by the other side represent the actuation in outputs. These outputs can be a
variable stored in memory or the outputs of the controller (actuators of the system to
be controlled, for instance). A coil sets its output variable to true if the logic value of
its left terminal is true, and sets the output to false otherwise. A negated coil does
the exact opposite, sets the output value to true if the logic value of its left terminal is
false and sets it to true if the logic is true.

A set coil (or latch) sets its output variable to true if the logic value of its terminal
is true and it remains true until the variable is reset. And a reset coil (or unlatch) sets
its output variable to false if the logic value of its terminal is true and it remains false
until the variable is set.

18

Combinational Logic

In boolean logic, in order to show functional completeness, it is needed to show
a complete set of connectives (a set that can create all other logic connectives as a
combination of its elements). A well-know complete set is S = {AND,NOT}, binary
conjunction and negation. To show that the ladder logic is functional complete we need
only to present how to construct this two connectors in it. The conjunction of two
inputs, can be made using two contacts in series, as shown in Figure 2.17.

A B C

Figure 2.17: And logic in a Ladder rung.

In this case C will only be activated if A and B are equal to true. (C = AB)
The negation of a variable can be achieved by the use of a normally closed contact

(Figure 2.18).

A C

Figure 2.18: Not logic in a Ladder rung.

C will only by activated if A is false. (C = A)
Although all logic connectives can be constructed with this two connectors, the OR

connector can be achieved by using contacts in parallel (Figure 2.19).

A C

B

Figure 2.19: Or logic in a Ladder rung.

Function Blocks and extensions

In order to increase functionality some function blocks and extensions to contacts
were created. We can see examples of these blocks and contacts in the next figure:

19

CTU
CU
R
PV

Q
CV

BOOL
BOOL

INT

BOOL
INT

(a) Up counter.

TON
IN
PT

Q
ET

BOOL
TIME

BOOL
TIME

(b) On-delay timer.

≤

value1

value2

(c) Less or equal comparator.

Figure 2.20: Examples of function blocks.

Up counters (Figure 2.20a) save the value of a counter in a CV variable. Every
raising edge on input CU it increments CV value. If CV = PV , the logic value of
output Q is set to 0. When the input R is true CV value is set to 0 and the output Q
set to false.

On-delay timers (Figure 2.20a) set a timer when input IN is true and save it to ET .
If ET = PT , the logic value of output Q is set to true. But if, meanwhile the counting,
the value of IN returns to false, ET is reset to 0.

Comparator contacts as the less or equal comparator in Figure 2.20c, work similarly
to contacts, but instead of an input as a condition, there are two inputs (value1 and
value2) and the condition is a comparison between both of them. In this case, the
contact is activated once its left terminals’ logic value is true and value1 ≤ value2.

Other blocks and functions can be found in the IEC 61131-3, as adders, subtractors,
communication blocks etc.

2.6.2 Conversion from Control Interpreted Petri Nets to Ladder

Diagram

A simple method of conversion from CIPN to LD is presented in MOREIRA and
BASILIO (2013).

It consists in dividing the CIPN into 4 modules:

1. A module of external events
To create conditions to the firing of transitions based on external events (inputs)

2. A module of firing conditions
To indicate what condition can be fired using the Pre, and In functions, the
conditions found on the last module and time delays (if it is a timed transition)

20

3. A module of Petri Net dynamics
Uses the Pre and Post functions to determine the dynamics of the Petri net

4. A module of initialization
It determines the initial marking of the net.

5. A module of actions
It determines the places where each action is performed.

In this work, the external events and firing conditions was combined in order to reduce
the size of the program. But every module will be described as in MOREIRA and
BASILIO (2013).

External events

As external events are associated with positive and negative edges of the inputs of
the system, in this module, positive and negative edge contacts are used to detect the
rising and falling edge events. The variables are stored in variables using coils and a
variable is created for each event. For visibility’s and organisation’s sake a rung is used
for each event, resulting |Σ| rungs. This module is not necessary when using Siemens
PLCs. So it will not be used in this work.

Firing Conditions

As said in section 2.5, a transition tj fires, if it is enabled (x(pi) ≥ Pre(pi, tj) for all
pi ∈ I(tj)), not inhibited (x(pi) < In(pi, tj) for all pi ∈ I(tj)) and the conditions and
events σjcj are met or the delay dj has elapsed, depending on the kind of transition. As
places can have multiple tokens, we can use int variables to store the number of tokens,
and comparator contacts to determine if the transitions are enabled and not inhibited.
When a place can have at most one token for all reachable markings of the Petri net, a
boolean variable can be used to store the number of tokens. In this case a normally open
contact can be used to determine if there is a token in that place. The time delays are
implemented using on-delay timers. The state of fulfilment of the conditions is stored
in variables, one for each transition. Similarly, for organisation’s sake a rung is used for
each transition, resulting |T | rungs.

21

Petri Net Dynamics

In this module the dynamic of the Petri net is implemented. If the condition for
the firing of a transition is fulfilled (represented by normally open contacts), adders and
subtractors can be used to represent the change in the Petri net marking. These blocks,
increase and decrease the values from the int variables that represent the marking of
each place. If the capacity of the places is not greater than one, then the marking of
those places can be represented by boolean variables. Set and Reset coils can be used to
represent the marking of such places. Again, for organisation’s sake a rung is associated
for each transition, resulting |T | rungs.

Initialization

The Initialization module works similarly to the dynamics module. A initial transi-
tion is created and when this transition is fired, the marking of the Petri net is changed
to its initial marking. When the system is turned on, the condition for firing this initial
transition is true and it is disabled immediately, so this transition can only be fired once,
in the initialization phase.

Actions

In the Action module, we use coils to act on the outputs. Depending on the type
of action and the logic of the control, set/reset coils or normal coils can be used. The
condition to activate/deactivate the output is the presence of a token in the places where
the action is performed. This can be achieved by comparing the numbers of tokens in a
place. If the tokens of a place is represented by an int variable, we use “greater” or “equal
to” comparators, but if it is represented by a bool variable, a normally open contact can
be used.

Example

An example of this conversion can be given using the same CIPN from Example 2.3.
The external events and firing condition modules are grouped in the same module in
this work. The converted Ladder Logic is depicted in Figure 2.21.

22

p0

P
m b0

p1

P
b b1

p2

P
p b2

p3

P
a b3

b0

R
p0

S
p1

b1

R
p1

S
p2

b2

R
p2

S
p3

b3

R
p3

S
p1

bini

S
p0

S
bini

p1 R

p2 Open

p3 L

Module of firing conditions

Module of Petri Net dynamics

Module of Petri Net dynamics (cont.)

Initialization Module

Module of actions

Figure 2.21: Example of Control Interpreted Petri Net converted to Ladder.

2.6.3 Control Interpreted Petri Net implemented in multiple

PLCs

In some cases, the implementation of the control code must be carried out in several
PLCs. In Figure 2.22, it is shown an example of a CIPN implemented between 2 PLCs.
As we can see, in Figures 2.22a and 2.22b there are dotted transitions and places. In
this work, we will represent as dotted, transitions and places that are part of another
section of the Petri Net. Those transitions and places are not represented in the same
figure, but the arcs show the connection between the sections of the net, showing that
when connected they form a complete Petri net.

23

p0t1 t0
p1

(a) Petri Net on PLC 1.

p0p1t0 t1

(b) Petri Net on PLC 2.

Figure 2.22: Example of Petri Net implemented in 2 PLCs.

In order to solve the problem of communication caused by the division, there are
different ways, one of them is the method shown by FLORIANO (2019), where different
sections are synchronised in a distributed manner using common places. In this work,
a master/slave approach is used. CLP1 is considered as the master device and CLP2
as a slave. For the master, it is created another ladder module called “Data Sending/
Receiving”, divided in 2 parts. The first part is implemented before all modules of the
Ladder code, with the objective of getting all needed variables from other PLCs. The
second part, that is implemented after all modules of the Ladder code, with the objective
of sending variables to all other PLCs. On the other side, the slaves have 2 additional
modules, one at the beginning of the Ladder code, called “Prepare Received Data” and
another at the very end called “Prepare Data to Send”. Those modules are created in
order to avoid modification of variables in the middle of the program cycle. Change
on variables used by the slaves PLCs caused by the master during the logic can entail
unexpected behaviour.

The communication between PLCs can be accomplished by using Profinet protocol.
Siemens PLCs have two function blocks called “Get” and “Put”, that are used to establish
data transfer between two PLCs using the Profinet protocol. Tutorials on how to con-
figure those blocks can be found on (FLORIANO, 2019; OLIVEIRA, 2016; PEREIRA,
2019). The complete implementation of the CIPN depicted in Figure 2.22 using LD is
shown in Figure 2.23. In Figures 2.23a and 2.23b, we can see the conditions for transition
b0 being transmitted from PLC1 to PLC2, and the conditions for transition b1 being
transmitted from PLC2 to PLC 1. Since the dynamic of both conditions is divided in
the two PLCs.

24

GET
EN
REQ
ADDR_1
RD_1

Q
NDR

GETDB

CLK

TO_PLC1

FROM_PLC2

GETDB.NDR TO_PLC2.b0

R
TO_PLC2.b0

GETDB.NDR TO_PLC2.b1

R
TO_PLC2.b1

p0 b0

FROM_PLC2.b1aux b1

b0

R
p0

S
TO_PLC2.b0

b1

S
p0

bini

S
p0

S
bini

b1

S
TO_PLC2.b1

PUT
EN
REQ
ADDR_1
RD_1

Q
DONE

PUTDB

CLK

FROM_PLC1

TO_PLC2

Module of Data Sending/Receiving

Module of firing conditions

Module of Petri Net dynamics

Initialization module

Module of Data Sending/Receiving (cont.)

GET
EN
REQ
ADDR_1
RD_1

Q
NDR

GETDB

CLK

TO_PLC1

FROM_PLC2

GETDB.NDR TO_PLC2.b0

R
TO_PLC2.b0

GETDB.NDR TO_PLC2.b1

R
TO_PLC2.b1

p0 b0

FROM_PLC2.b1aux b1

b0

R
p0

S
TO_PLC2.b0

b1

S
p0

bini

S
p0

S
bini

b1

S
TO_PLC2.b1

PUT
EN
REQ
ADDR_1
RD_1

Q
DONE

PUTDB

CLK

FROM_PLC1

TO_PLC2

Module of Data Sending/Receiving

Module of firing conditions

Module of Petri Net dynamics

Initialization module

Module of Data Sending/Receiving (cont.)

(a) Ladder Logic on PLC 1.

P
FROM_PLC1.b0 b0

P
FROM_PLC1.b1 b1

R
b1aux

p1

S
b1aux

b0

S
p1

b1

R
p1

b1aux TO_PLC1b1aux

Prepare Received Data

Module of firing conditions

Module of Petri Net dynamics

Prepare Data to Send

P
FROM_PLC1.b0 b0

P
FROM_PLC1.b1 b1

R
b1aux

p1

S
b1aux

b0

S
p1

b1

R
p1

b1aux TO_PLC1b1aux

Prepare Received Data

Module of firing conditions

Module of Petri Net dynamics

Prepare Data to Send

(b) Ladder Logic on PLC 2.

Figure 2.23: Example of Petri Net divided between 2 PLCs.

The logic presented, using the master/slave approach, works well when there are 2
PLCs. When there are more PLCs, this centralised approach creates a single point of
failure. Since master PLC works as a hub, it increases the communication delay. When
there are more than two PLCs it is preferable to use a distributed approach as the one
shown in FLORIANO (2019).

25

2.7 Identification

Once the control is implemented and the system is working as expected, the identi-
fication of the system can be carried out. In MOREIRA and LESAGE (2018), a new
model for DES identification is proposed, called Deterministic Automaton with Outputs
and Conditional Transitions (DAOCT). This model is created with the aim of fault de-
tection based on the observation of the fault free behaviour of the system, as in ROTH
et al. (2009) and KLEIN et al. (2005), but the use of path indices increases the efficiency
for fault detection when compared with the latter articles.

The fault free observation is made by acquiring the observable signals of the system
(controller inputs and outputs) for a sufficiently long period while the system works
normally. Those signals can be seen on Figure 2.24.

Controller

Plant

Actuators Sensors

Observed
signals

Controller outputs Controller inputs

Figure 2.24: Observed Signals in a closed-Loop DES.

First, we assume the controller has mi binary inputs and mo binary outputs. We
create an Input/Output vector called u as follows:

u(t1) =
[
i1(t1) . . . imi

(t1) o1(t1) . . . omo(t1)
]T

Vector u(t) represents the status of the system in an instant t. In the DAOCT
model, only untimed system models are considered, thus the status of the system
can only be modified via system events, σ. The vector u(t) is also represented as
ut. The transition between status in ti and tj is represented as (ui, σ,uj). If a se-
quence of l input/output vectors is observed, then the observed path of the system
is p = (u1, σ1,u2, σ2, . . . , σl−1,ul). So, if we observe multiple paths in the observa-
tion process, multiple paths can be created pi = (ui,1, σi,1,ui,2, σi,2, . . . , σi,li−1,ui,li), for

26

i = 1, . . . , r, where r is the number of observed paths, and li is the number of vertices
in each path pi.

Supposing that all paths begin with the same I/O vector, that means, all observations
begin from the same status, it is possible to associate to each path pi a sequence of events
and a sequence of I/O vectors, called, si and ωi, defined as:

si = σi,1σi,2 . . . σi,li−1

ωi = ui,1ui,2 . . .ui,li

From the observed sequences of events si, we can define a language, called observed
language, LObs:

LObs :=
r⋃

i=1

{si} (2.2)

Remark 2.1 If any sequence si is the prefix of another sequence sj, the path pi should
be discarded, along with si and ωi, since it does not present any new information for the
identification process.

The objective of identification is to find a model that can simulate the observed language.
The language of the identified model is called LIden. We can describe the relation between
these languages as LObs ⊆ LIden. In MOREIRA and LESAGE (2018), it is shown that in
finite time only part of the sequences of events that the system can generate are observed.
So, we can define the never-known language LOrig, the original language generated by
the system.

From LOrig and LIden, another language can be defined, an exceeding language LExc.
The exceeding language represents the part of the identified language that is not pre-
sented in the original language, LExc = LIden\LOrig. The relation between LOrig and
LObs is LObs ⊂ LOrig. And from LOrig and LIden, LOrigNI can be defined. LOrigNI rep-
resents the part of the original language that is not identified, LOrigNI = LOrig\LIden.
The relation between all languages presented is shown in Figure 2.25.

27

LObsLOrigNI

LOrig

LExc

LIden

Figure 2.25: Relation between LOrig, LOrigNI , LObs, LExc and LIden

.

As LExc represents the part of the identified language that is not in the original
language, some faulty sequences will not be detected, as they are part of the identified
language. So in order to reduce the number of these non detected faults, LExc should
have a cardinality as close to 0 as possible.

As LOrigNI represents the part of the original system that is not identified, some
sequences in the fault-free behaviour of the system will be detected as faults, generating
false alarms. LOrigNI must also be reduced, so the false alarms generated are reduced.
As the original language of the system is never-known, it is very difficult to estimate if
LOrigNI is small or not. KLEIN et al. (2005) show that if a system is observed for a
sufficiently long time, there exists a number n0 ∈ N such that L≤n0

Orig\L≤n0

Obs ≈ ∅, where
L≤n0

Orig and L≤n0

Obs denote the languages formed of all sequences of events of length smaller
than or equal to n0 of LOrig and LOrig, respectively. Since LObs ⊆ LIden, L≤n0

OrigNI is also
approximately the empty set.

In this work we assume that all sequences of events that have length n0 + 1 were
observed, thus L≤n0

OrigNI = ∅. Thus, the identified model must reduce the language L≤n0

Exc .

28

2.7.1 Deterministic Automaton with Outputs and Conditional

Transitions

In this subsection the modified automaton model proposed by MOREIRA and LESAGE
(2018) is explained and the algorithm to construct it by the observed paths pi is de-
scribed.

Definition 2.8 (DAOCT)
A Deterministic Automaton with Outputs and Conditional Transitions, denoted by DAOCT,
is a nine-tuple

DAOCT = (X,Σ,Ω, f, λ, R, θ, x0, Xf)

where:
X is the set of states
Σ is the finite set of events
Ω ⊂ Nmi+mo

1 is the set of I/O vectors
f : X × Σ? → X is the deterministic transition function
λ : X → Ω is the state output function
R = 1, 2, . . . , r is the set of path indices
θ : X × Σ→ 2R is the path estimation function
x0 is the initial state
Xf ⊆ X is the set of final states

The sets of events and I/O vectors of each path pi are denoted by Σi and Ωi. Thus,
Σ and Ω can be calculated by the union of these sets: Σ =

⋃r
i=1 Σi and Ω =

⋃r
i=1 Ωi.

The states of the model are obtained from the vertices of the paths pi, the I/O vectors.
Each vertex is chosen as a new state. In some systems, certain I/O vectors are repeated
in the same path, but with different preceding vectors. In order to differentiate these
vectors, its preceding vectors are stored in a sequence of I/O vectors. To determine the
number of vectors stored in this sequence a free parameter k is used. The modified paths
created by substituting the vertices for these sequences of I/O vectors are denoted pki

and are defined as follows:

pki = (yi,1, σi,1, yi,2, σi,2, . . . , σi,l1−1, yi,li) (2.3)

where

yi,j =

(ui,j−k+1, . . . ,ui,j), if k ≤ j ≤ li

(ui,1, . . . ,ui,j), if j < k
(2.4)

29

Remark 2.2 Depending on the choice of the value of k, some characteristics can be
observed on pki . For instance, if k = 1, pki = pi. And if k is equal to the larger li, then
all yi,li are composed of all vertices of its corresponding path pi.

As an example of the computation of the paths pki , let us consider the following paths,
(MOREIRA and LESAGE, 2018):

p1 =

([
1
0
0

]
, a,

[
1
1
0

]
, b,

[
0
1
1

]
, c,

[
0
0
0

]
, d,

[
0
0
1

]
, e,

[
1
0
0

])

p2 =

([
1
0
0

]
, g,

[
0
0
0

]
, h,

[
1
1
0

]
, b,

[
0
1
1

]
, c,

[
0
0
0

]
, i,

[
1
0
0

]
, j,

[
0
1
1

]
, l,

[
1
0
0

])

p3 =

([
1
0
0

]
, g,

[
0
0
0

]
, h,

[
1
1
0

]
, b,

[
0
1
1

]
, i,

[
1
1
1

]
,m,

[
0
0
0

]
, d,

[
0
0
1

]
, n,

[
1
1
0

])

The events of each path is associated with the rising or the falling edges of the controller
signals. Event a represents the rising edge of the second controller signal, that is a =↑2
and event l the rising edge of the first controller signal and the falling edge of the second
and third controller signals, l =↑1↓2↓3.

Since pki = pi, for k = 1, in order to better illustrate the construction of pki , k = 2 is
chosen. Using Equations 2.3 and 2.4 we can obtain the following modified paths:

p21 =

([
1
0
0

]
, a,

[
1 1
0 1
0 0

]
, b,

[
1 0
1 1
0 1

]
, c,

[
0 0
1 0
1 0

]
, d,

[
0 0
0 0
0 1

]
, e,

[
0 1
0 0
1 0

])

p22 =

([
1
0
0

]
, g,

[
1 0
0 0
0 0

]
, h,

[
0 1
0 1
0 0

]
, b,

[
1 0
1 1
0 1

]
, c,

[
0 0
1 0
1 0

]
, i,

[
0 1
0 0
0 0

]
, j,

[
1 0
0 1
0 1

]
, l,

[
0 1
1 0
1 0

])

p23 =

([
1
0
0

]
, g,

[
1 0
0 0
0 0

]
, h,

[
0 1
0 1
0 0

]
, b,

[
1 0
1 1
0 1

]
, i,

[
0 1
1 1
1 1

]
,m,

[
1 0
1 0
1 0

]
, d,

[
0 0
0 0
0 1

]
, n,

[
0 1
0 1
1 0

])

The states of the system are obtained from these vertices. In order to do so, the
labelling function is defined, λ̃ : X → Ωk. Where Ωk is composed of all sequences of Ω of
length smaller than or equal to k. This function λ̃ associates a sequence of I/O vectors

30

ωk ∈ Ωk to each state x ∈ X. Let us denote λ̃l(x) as the last vector of λ̃(x). These
functions are used in the identification algorithm of the DAOCT model.

This identification algorithm, adapted from MOREIRA and LESAGE (2018), is pre-
sented in algorithm 1.

Algorithm 1: Identification Algorithm
Input: Modified observed paths pki , for i= 1,. . . ,r
Output: DAOCT = (X,Σ,Ω,f ,λ,R,θ,x0,Xf)

1 Create an initial state x0, and define λ(x0) = λ̃(x0) = y1,1

2 X = {x0}, Xf = ∅, R = ∅
3 for i = 1 to r do
4 R = R ∪ {i}
5 for j = 1 to li − 1 do
6 Find the State x ∈ X such that λ̃(x) = yi,j+1

7 if λ̃(s) 6= yi,j+1 for all s ∈ X then
8 Create state x′ and define λ̃(x′) = yi,j+1

9 X = X ∪ {x′}
10 λ(x′) = λ̃l(x

′)

11 else
12 Find x′ ∈ X such that λ̃(x′) = yi,j+1

13 end
14 f(x, σi,j) = x′

15 Add i to θ(x, σi,j)
16 if j = li − 1 then
17 Xf = Xf ∪ {x′}
18 end

19 end

20 end

In this algorithm, each state created represents an unique vertex of the modified
paths, and the states marked as final states represent the last vertex of each modified
path.

Using the modified paths p11, p12, p13, and p21, p22, p23 as inputs of algorithm 1, two models
can be identified, one for k = 1 and another for k = 2. The state transition diagrams

31

for the identified models are represented in Figures 2.26 and 2.27 respectively.

x2 x3x0

x1

x4

x5

n,{3}

j,{2}

i,{2}

a,{1}
b,{1,2,3}

l,{2}
c,{1,2}

h,{2,3}

i,{3} m,{3}

e,{1}

d,{1,3}

g,{2,3}

Figure 2.26: State transition diagram for identified model using k = 1.

x1x0

x8 x10x9

x3x2

x11 x12 x13x6 x7

x4 x5

n,{3}i,{3}

a,{1} c,{1,2}

j,{2}

h,{2,3}

i,{2}

g,{2,3}

m,{3}

b,{1}

d,{3}

e,{1}

l,{2}

b,{2,3}

d,{1}

Figure 2.27: State transition diagram for identified model using k = 2.

As expected, with a greater value of k, more states are created in the identification
process.

The path estimation function θ of each transition is represented besides the cor-
responding event of that transition. That is made with the purpose of showing the
“conditional transitions” part of the DAOCT model. A transition is enabled and can
occur if and only if all previous transitions are associated to the same path. To sum-
marise this in mathematical language it is needed to expand the domain of function θ

32

to consider sequence of events, instead of only one event. This new estimation function
will be denoted as θs : X × Σ? → 2R, and it is defined recursively as:

θs(x, ε) = R,

θs(x, sσ) =

θs(x, s) ∩ θ(x′, σ), where x′ = f(x, s), if f(x, sσ)!

undefined, otherwise.
(2.5)

Where ! denotes is defined.
The language generated by the identified DAOCT model is given by:

L(DAOCT) := {s ∈ Σ? : f(x0, s)! ∧ θs(x0, s) 6= ∅} (2.6)

Using a similar logic, it is possible to define the language formed of all subsequences
of events of length n generated by the identified model:

Ln
S(DAOCT) := {s ∈ Σ? : (|s| = n) [∃xi ∈ X, f(xi, s)! ∧ θs(xi, s) 6= ∅]} (2.7)

In order to calculate the exceeding language L≤nExc, another language is presented,
L≤n(DAOCT), since the definition of L≤nExc is L

≤n
Exc = L≤n(DAOCT)\L≤nOrig.

L≤n(DAOCT) :=

(
n⋃

i=0

Li
S(DAOCT)

)
∩ L(DAOCT) (2.8)

Assuming all sequences of events that have length n0 + 1 have been observed, then
L≤n0

Orig ≈ L≤n0

Obs . If n ≤ n0, then L≤nOrig ≈ L≤nObs. Thus, L≤nExc = L≤n(DAOCT)\L≤nObs, and
this formula will be used to calculate L≤nExc throughout this work.

33

Chapter 3

Didactic Manufacturing System

In this chapter, the system to be controlled and identified is presented. The mecha-
tronic system is a didactic manufacturing system assembled from submodules fabricated
by Christiani1. This manufacturing system is located at the Control and Automation
Laboratory (LCA), located at the Federal University of Rio de Janeiro (UFRJ).

The manufacturing system is a cube assembly system, where the different cube halves
shown in Figure 3.1 are put together to form cubes.

Figure 3.1: Cube halves.

The pieces can be of two materials, metal or plastic, and the plastic ones can be
white or black. The permutation of cube halves needed to form a cube is selected via
a type of sorting, selecting the type of piece by material and colour. The assembled
cubes are then stored. In order to perform these tasks (sorting, handling, assembling
and storing), 6 Units are used. These units can be seen in Figure 3.2.

1All images from the Christiani modules are present on its sales catalog, available at www.
christiani.de. All rights are reserved to Christiani.

34

www.christiani.de
www.christiani.de

(a) Magazine Unit (b) Conveyor Belt.

(c) Sorting Unit. (d) Handling Unit.

(e) Assembly Unit. (f) Storage Unit.

Figure 3.2: Units of the Manufacture System.

In the next sections each unit and their Inputs/Outputs will be detailed.

Remark 3.1 What is described in the next sections as an input of a certain module, it
is considered as an output for the controller and vice versa.

35

3.1 Magazine Unit

The magazine is a unit with the objective to store the cube halves to be used. There
are 2 types of magazines in the system, one to store pieces with connection pins in-
serted (the pins shown in Figure 3.1) and another to stock pieces without those pins.
These magazine units can stack 8 and 10 pieces and will be denominated MAG 1 and
MAG 2, respectively. Each magazine has a pneumatic cylinder and a limit switch sen-
sor. The cylinder serves to extract a piece from the bottom of the stack, and the limit
switch to know if the stack is empty or not. Each one of these cylinders have 2 in-
puts that are used to extend and retract the cylinders (if they are set to true). This
kind of cylinder is called double acting pneumatic cylinder. There are also 2 sensors
used to know if the cylinders are extended or retracted, the output is equal to true if
the respective condition is fulfilled. The inputs to control the cylinders are called in
this work Extend MAG 1/2 Cylinder and Retract MAG 1/2 Cylinder, and the out-
puts are called MAG 1/2 Cylinder Extended and MAG 1/2 Cylinder Retracted. The
limit switch of each magazine outputs a true value if the stack is empty and false,
otherwise. Thus, the limit switches are called in this work MAG 1/2 Empty, and their
localisation on the magazine can be seen in Figure 3.3.

Cylinder

Limit switch

Figure 3.3: Magazine Unit.

36

3.2 Conveyor Belt

The conveyor belt transports the pieces from a unit to another. It has 2 inputs and 1
output. The inputs are used to turn the belt on, in two possible directions. The output
is generated by a presence sensor located at the end of the belt (see Figure 3.4), and it
is equal to true if there is a piece in front of it and false otherwise. The directions of
the movement of the pieces is denominated Forward if it is going towards the presence
sensor and Reverse if not. Thus, the names given to the inputs that generate these
movements are Conveyor Belt Forward and Conveyor Belt Reverse. The input is
called Proximity Sensor End of Conveyor Belt.

Forward

Reverse

Presence Sensor

Figure 3.4: Conveyor Belt.

3.3 Sorting Unit

The sorting unit is used to sort the pieces according to their material and colour. In
order to denominate its inputs and outputs, we will divide them in 2 parts, identification
and discharging.

The identification part uses 3 sensors to identify the type of the half cube: a distance
sensor to identify the orientation of the concavity of the piece, an optic sensor to identify
the colour of the plastic piece, and an inductive sensor to identify the material of the
piece. The output of the inductive sensor is true if the piece is made of metal, and
false if it is not, thus this output is denoted as Metallic Sensor. The output of the
optic sensor is equal to true if the piece is reflexive (white) and false, otherwise (black),
thus it is denoted as White Color Sensor. The distance sensor outputs an integer
value corresponding to the distance between the piece and the sensor, it is denoted as
Distance Sensor, the logic used to find the orientation of the piece is discussed in
chapter 4. The placement of these 3 sensors can be seen in Figure 3.5.

37

Optic

Distance

Inductive

Figure 3.5: Sorting Unit - Identification.

The discharging part is formed by 3 groups of inputs and outputs, denoted Left,
Center and Right, as shown in Figure 3.6. Each group has a pneumatic cylinder and a
presence sensor, and uses them to discharge pieces depending on the logic of sorting and
the identified piece by the identification part of the sorting unit.

Left

Center

Right

Figure 3.6: Sorting Unit - Discharging.

Differently from MAG 1/2, each cylinder is a single acting pneumatic cylinder. When

38

the corresponding input is equal to true it extends, and when it is false it is automati-
cally retracted. A tag for each input is given depending on the group name, for instance,
to extend the left cylinder we use Extend Left Discharge Cylinder as input. Each
one of these cylinders has 2 outputs to determine if the cylinder is extended or retracted,
similarly the tags depend on the group, e.g.: Right Discharge Cylinder Extended

and Right Discharge Cylinder Retracted. The presence sensor of each group de-
tects if there is a piece in front of the cylinder, and its tag also depends on the group,
e.g.: Proximity Sensor Center Discharge Cylinder.

3.4 Handling Unit

The handling unit is a robotic manipulator that serves to transfer the pieces and
eventually assembled pieces, from a unit to another. By the definitions of robotic ma-
nipulators shown in KHALIL and DOMBRE (2004), this manipulator has 3 Degrees of
Freedom (DOF), and it is from the type called RPP, as it is formed by a Revolute joint
and two Prismatic joints. The latter joints being orthogonal regarding each other.

Since the position of its end-effector (the end of the robotic arm) can be described
using a cylindrical coordinate system, this kind of manipulator is also called cylindrical
shoulder. With the end of easing the understanding of the verbs used in this work to
describe the movements of the manipulator, in this section we will use beside these
verbs the cylindrical coordinate system (ρ, φ, z), where ρ is the axial distance, φ is the
azimuth and z is the height. The end-effector of this manipulator is equipped with a
vacuum suction device capable of holding the pieces, which is controlled by an input
called Turn Vacuum Gripper On that evidently turns the vacuum on when activated.

In order to control the position of the end-effector of the manipulator, called “arm”
throughout this work, there is a couple of pneumatic cylinders. The behaviour of these
cylinders is similar to the behaviour of the cylinders in the sorting unit (single acting
pneumatic cylinder). These cylinders are placed in each prismatic joint of the arm,
thus raising (increasing the height z) and extending (increasing the axial distance ρ) the
arm when they are activated, respectively. The respective inputs of these cylinders are
called Raise Arm and Extend Arm. Each cylinder also has 2 sensors to identify if the
are retracted or extended, and tags are given in the most mnemonic way possible, they
are called Arm Lowered, Arm Raised, Arm Retracted and Arm Extended.

In order to rotate the revolute joint, a motor is placed on the arm’s base. This motor
has two inputs that when activated makes the arm rotate in one direction or the other,

39

which will be called Clockwise (CW) and Counter Clockwise (CCW), and the inputs
that generate these kinds of movements denoted Turn Arm CW and Turn Arm CCW. In
order to identify what is considered CW and CCW it is needed to impose one of those
rotation directions. In this work we have imposed the CCW direction as shown by the
black arrow superposed to the arm in Figure 3.7. This same direction is considered as the
positive direction where the azimuth φ increases. The zero position of the arm azimuth
(φ = 0,), is considered when the end-effector is diametrically opposed to the calibration
pin shown in Figure 3.7. This pin as the name suggests is used for the calibration of
the arm. The arm has an inductive sensor in the opposite to the end-effector that is
activated when it is aligned to this pin. The azimuth of the arm in Figure 3.7 is φ = 180o.

An encoder is used to measure the azimuth angle, but as the angular velocity of
the arm is relatively high, and the resolution of the arm is very precise, the output of
this encoder is connected to a High Speed Counter, in order to correctly estimate the
angle. The configuration of the High Speed Counter can be seen in FLORIANO (2019);
PEREIRA (2019).

Calibration Pin

Figure 3.7: Handling Unit.

40

3.5 Assembly Unit

The assembly unit presses two pieces, resulting in a fully assembled cube. As a safety
measure, the assembly unit has a compartment made of acrylic, in which a pneumatic
cylinder is vertically arranged pointing downwards to work as a press. When the cylinder
is extended, this press is lowered exerting a considerable pressure on the pieces binding
them together. The inputs to lower and raise the press are called Lower Press and
Raise Press.

In order to open and close the compartment, there is an acrylic door combined with
a smaller pneumatic cylinder. When this cylinder is extended, the door closes and
when it is retracted the door opens. The inputs to open and close the door are called
Open Safety Door and Close Safety Door. There are a couple of sensors to verify if
the door is opened or closed based on the extension and retraction of the cylinder, and
their respective outputs are called Safety Door Opened and Safety Door Closed.

Since there is a safety compartment, where the cubes are assembled, there exists a
device with the purpose of transporting the pieces from outside to inside of the press
and vice-versa. This device is called in this work Assembly Unit Holder, and as the
name says it holds the pieces. This device is coupled with another pneumatic cylin-
der that when it is retracted it transports the Assembly Unit Holder to the inner
part of the compartment, and outside the compartment if it is extended. The inputs
that move the Assembly Unit Holder are called Extend Assembly Unit Holder and
Retract Assembly Unit Holder. The outputs that indicate the extension and retrac-
tion are called Assembly Unit Holder Extended and Assembly Unit Holder Retracted.
The position of the cylinders can be seen in Figure 3.8.

41

Door’s Cylinder Press’ Cylinder

Holder’s Cylinder

Figure 3.8: Assembly Unit.

3.6 Storage Unit

The storage unit is a storage and retrieval system, but in this work will be called
only storage unit, since it will be its sole use. The storage unit is a rack composed by
4 shelves, each one of them with enough space to store 7 pieces, resulting in a total of
28 storage spaces. In order to elevate the pieces, a motor with a spiral shaft is used to
raise and lower the device where the piece is placed to be stored. This piece holder is
also called as Storage Device and sometimes as Storage Unit, so when a movement
is given to the Storage Unit, that means that this holder is moved and not the rack
itself. There is also another motor that moves the Storage Unit horizontally from
Right to Left and vice versa. As a reference for the direction of the movements of the
Storage Unit used in this work, Figure 3.9 shows what is considered the Right, Left,
Top and Bottom of this unit.

42

RightLeft

Top

Bottom

Figure 3.9: Storage Unit.

To effectively store the piece in the rack it is needed to move the Storage Device

towards the rack. So, a pneumatic cylinder is coupled with this device, and when the
cylinder is extended, the device approaches the rack and it leaves the rack when the
cylinder is retracted. This cylinder is a single acting pneumatic cylinder and its input is
called Extend Storage Unit. There are also 2 outputs to tell if the cylinder is extended
or retracted, called Storage Unit Extended and Storage Unit Retracted.

The movement of the Storage Unit is controlled by 4 inputs called Move Storage

Unit Upwards, Move Storage Unit Downwards, Move Storage Unit to the Right and
Move Storage Unit to the Left.

In order to estimate the position of the Storage Device there are two encoders,
called Storage Unit Vertical Encoder and Storage Unit Horizontal Encoder, that
in conjunction with holes specifically placed, aligned with the store spaces can identify if
the device is aligned with the store spaces. There are also 4 limit switches whose outputs
are called Storage Unit Inferior Limit Switch, Storage Unit Superior Limit Switch,
Storage Unit Right Limit Switch and Storage Unit Left Limit Switch that have
the purpose to indicate if the Storage Device is in one of the limits of the rack.

43

Chapter 4

Control Logic

A CIPN can be used to represent the control of the system, and then this Petri net
can be converted into a LD, with the aim of being implemented in a PLC. So, this
chapter will be divided in two parts: the first part to describe the logic of the control
and its design using CIPN, and the second part for the implementation in the PLC.

4.1 Control Interpreted Petri net for the manufactur-

ing system

The logic of the control is to use the 6 units presented in chapter 3, to assemble cubes
made of a plastic half cube on top of a metallic half cube. Once the cube is assembled,
it is stored in one of the store spaces of the Storage Unit. The logic is divided in 10
modules: Initialization, Metal Cube half sorting, Plastic Cube half sorting, Arm From
Conveyor Belt to Assembly Unit, Assembly Unit, Arm From Assembly Unit to Storage
Unit, Storage Unit positioning (y-axis), Storage Unit positioning (x-axis), Cube Storage
and Arm Stop Logic.

Each module will be briefly described in the next subsections, and their Petri Nets will
be presented along with tables that describe the meaning of each place and transition.

Remark 4.1 Each Petri net shown in this chapter is a part of a complete Petri net.
The complete one is presented in Appendix A. The dotted places/transitions represent
places/transitions that belong to other parts of the complete Petri net.

44

4.1.1 Initialization

This module has as objective to make sure that all units are in order to begin the
assembling process, that means, all variables used are reset, the arm is calibrated, the
conveyor belt is free of pieces, all cylinders are retracted, the assembly unit is ready to
receive a piece and the storage unit is in its rightmost and lower position. The Petri
net used for this module can be seen in Figure 4.1 and the corresponding meaning of its
transitions and places can be seen in Tables 4.1 and 4.2

Table 4.1: Initialization Module Transitions.

Transitions Meaning

t0 Initialization Button
t1 MAG1’s Cylinder Retracted
t2 MAG2’s Cylinder Retracted
t3 Right Discharge Cylinder Retracted
t4 Center Discharge Cylinder Retracted
t5 Left Discharge Cylinder Retracted
t6

t7 T=12s
t8 T=2.5s
t9 Safety Door Opened
t10 Assembly Unit Holder Extended

t11
Storage Unit Retracted and Arm Lowered and

Retracted
t12 Storage Unit Right Limit Switch
t13 Storage Unit Inferior Limit Switch
t14 T=2s
t15 Inductive Sensor Arm
t16 T=1s
t17 ARMCOUNTER <= BELT_ANGLE_CW
t18

t19 Start Button

45

Table 4.2: Initialization Module Places.

Places Meaning

p0 System Stopped
p1 Retract MAG1’s Cylinder *
p2 MAG1’s Cylinder Retracted
p3 Retract MAG2’s Cylinder *
p4 MAG2’s Cylinder Retracted
p5 Retract Right Discharge Cylinder *
p6 Right Discharge Cylinder Retracted
p7 Retract Center Discharge Cylinder
p8 Center Discharge Cylinder Retracted
p9 Retract Left Discharge Cylinder *
p10 Left Discharge Cylinder Retracted
p11 Turn Conveyor Belt On (Reverse)
p12 No Pieces On Conveyor Belt
p13 Reset Variables
p14 Raise Press
p15 Open Safety Door
p16 Extend Assembly Unit Holder
p17 Assembly Unit Ready

p18
Arm Lowered and Retracted, and Storage Unit

Retracted
p19 Move Storage Unit to the Right
p20 Storage Unit ready (horizontal)
p21 Move Storage Device Downwards
p22 Storage Unit ready (vertical)
p23 Rotate Arm CCW
p24 Turn HSC Off (Arm Stopped)
p25 Rotate Arm CW
p26 Arm Stopped facing conveyor belt
p27 System Ready

46

t5

p27

p25p24

p0

p26

p21

p20 p23

p22

p138

t9

t16t14

p107

t15

t17

t10

t11 t12

t13

t18 t19

t162

t8

t7
p10

p11

p12

p13

p14 p15 p16 p17

p18 p19

p2

p3

p1

p6

p7

p4

p5

t6

t4

p9

t2

t3

t0

t1

p28

p8

Figure 4.1: Petri net of Initialization module.

47

4.1.2 Metal Cube Half Sorting

This module serves to sort the cube halves stacked in MAG 1. The piece is extracted
from the bottom of the stack to the conveyor belt, and the piece is transported by the
belt to the identification part of the sorting unit. If it is a metallic piece with an upwards
concavity the piece continues in the belt until it reaches the end of the belt, waiting to
be picked by the arm. Otherwise, the piece is discarded using the sorting unit and the
cycle recommences and stops only when a metallic piece is at the end of the belt. In
order to recognize the orientation of the pieces (upwards or downwards), the distance
sensor is combined with comparison blocks to create two variables ConcUP and ConcDWN.
The corresponding Petri net and tables can be seen in Figure 4.2 and Tables 4.3 and 4.4.

Table 4.3: Metal Half-cube Selection Module Transitions.

Transitions Meaning

t20 MAG1 Empty
t21

t22 ↑ MAG1’s Cylinder Extended
t23 ↑ MAG1’s Cylinder Retracted
t24 T=0.5s
t25 ↑ Presence T=0.5s
t26 Metallic Sensor
t27 White Color Sensor
t28 ↑ Proximity Sensor Left Discharge Cylinder
t29 Right Discharge Cylinder Extended
t30 Right Discharge Cylinder Retracted
t31 White Color Sensor
t32 ↑ Proximity Sensor Center Discharge Cylinder
t33 Center Discharge Cylinder Extended
t34 Center Discharge Cylinder Retracted
t35 Metallic Sensor
t36 Concavity Downwards
t37 ↑ Proximity Sensor Left Discharge Cylinder
t38 Left Discharge Cylinder Extended
t39 Left Discharge Cylinder Retracted
t40

Continued on next page

48

Continued from previous page

Transitions Meaning

t41 Concavity Upwards
t42 ↑ Proximity Sensor End Of Conveyor Belt
t43 T=0.5s
t44 ↓ Proximity Sensor End Of Conveyor Belt
t45

Table 4.4: Metal Half-cube Selection Module Places.

Places Meaning

p28 MAG1 Empty
p29 MAG1 Not Empty
p30 Extend MAG1’s Cylinder *
p31 Retract MAG1’s Cylinder *
p32 MAG1’s Cylinder Retracted
p33 Turn Conveyor Belt On
p34

p35 Plastic Half-cube
p36 Turn Conveyor Belt On
p37 Extend Right Discharge Cylinder *
p38 Retract Right Discharge Cylinder *
p39 Turn Conveyor Belt On
p40 Extend Center Discharge Cylinder *
p41 Retract Center Discharge Cylinder *
p42

p43 Metal Half-cube
p44 Turn Conveyor Belt On
p45 Extend Left Discharge Cylinder *
p46 Retract Left Discharge Cylinder *
p47 Turn Conveyor Belt On
p48 Turn Conveyor Belt On
p49 Metal Half-cube Ready
p50 Conveyor Belt Stopped

49

t42t41

t40

t45

t44

t19

p49p48p47

p46p45p44

p29p28

p41p40

p43

p107

p42

t38 t39t36 t37

t34

t35

t32 t33

t30

t31

t70

p51

p74

p38

p39

p32
p33

p30 p31
p36 p37

p34 p35

p50

t24

t25

t29t28

t43

t21t20 t23t22
t27

t26

Figure 4.2: Petri net of metal cube half sorting module.

50

4.1.3 Plastic Cube Half Sorting

This module is similar to its metallic counterpart. This module sorts the cube halves
stacked in Mag 2. Instead of metal pieces with upwards concavity, this module accepts
white plastic pieces with downwards concavity. The corresponding Petri net and tables
can be seen in Figure 4.3 and Tables 4.5 and 4.6.

Table 4.5: Plastic Half-cube Selection Module Transitions.

Transitions Meaning

t46 MAG2 Empty
t47

t48 ↑ MAG2’s Cylinder Extended
t49 ↑ MAG2’s Cylinder Retracted
t50 T=0.5s
t51 ↑ Presence T=0.5s
t52 Metallic Sensor
t53 ↑ Proximity Sensor Left Discharge Cylinder
t54 Left Discharge Cylinder Extended
t55 Left Discharge Cylinder Retracted
t56 Metallic Sensor
t57 White Color Sensor
t58 ↑ Proximity Sensor Right Discharge Cylinder
t59 Right Discharge Cylinder Extended
t60 Right Discharge Cylinder Retracted
t61 White Color Sensor
t62 Concavity Upwards
t63 ↑ Proximity Sensor Center Discharge Cylinder
t64 Center Discharge Cylinder Extended
t65 Center Discharge Cylinder Retracted
t66

t67 Concavity Downwards
t68 ↑ Proximity Sensor End Of Conveyor Belt
t69 T=0.5s
t70 ↓ Proximity Sensor End Of Conveyor Belt
t71

51

Table 4.6: Plastic Half-cube Selection Module Places.

Places Meaning

p51 MAG2 Empty
p52 MAG2 Not Empty
p53 Extend MAG2’s Cylinder *
p54 Retract MAG2’s Cylinder *
p55 MAG2’s Cylinder Retracted
p56 Turn Conveyor Belt On
p57

p58 Turn Conveyor Belt On
p59 Extend Left Discharge Cylinder *
p60 Retract Left Discharge Cylinder *
p61 Metal Half-cube
p62 Turn Conveyor Belt On
p63 Extend Right Discharge Cylinder *
p64 Retract Right Discharge Cylinder *
p65 White Half-Cube
p66 Turn Conveyor Belt On
p67 Extend Center Discharge Cylinder *
p68 Retract Center Discharge Cylinder *
p69

p70 Turn Conveyor Belt On
p71 Turn Conveyor Belt On
p72 Plastic Half-cube Ready
p73 Conveyor Belt Stopped

52

p61

p60t49t48

p65

p64

p67p66

t60

t64

t67

t66
t47t46

t63t62

t51t50

t68

p62

p69

p74

p107

t65

t70

t71

p68

t44

t58 t59

p72

p73

p70
p71

t61

t52 t53 t54 t55

t56 t57

p58 p59

t69

p54 p55 p56 p57

p51

p52 p53

p63

p28

Figure 4.3: Petri net of plastic cube half sorting module.

53

4.1.4 Arm From Conveyor Belt to Assembly Unit

This module uses the manipulator to remove a piece from the end of the conveyor
belt and place it in the assembly holder of the Assembly Unit. It places a metal piece
and then a plastic piece, so they can be assembled to form a cube using the press. The
corresponding Petri net and tables can be seen in Figure 4.4 and Tables 4.7 and 4.8.

Table 4.7: Arm From Conveyor Belt to Press Module Transitions.

Transitions Meaning

t72 Arm Raised
t73 T=1.5s
t74 T=1.5s and Arm Lowered
t75 T=1.5s and Arm Raised
t76 T=1.5s and Arm Raised
t77 ARMCOUNTER <= PRESS_ANGLE
t78 T=1.5s and Arm Raised
t79 T=1.5s and Arm Lowered
t80 T=1.5s
t81 T=1.5s and Arm Raised

t82
HALFPIECECOUNTER=1, Assembly Unit Holder

Extended and Safety Door Opened
t83 T=1.5s, HALFPIECECOUNTER=0 and Raised Arm
t84 ARMCOUNTER >= BELT_ANGLE_CCW
t85

54

Table 4.8: Arm From Conveyor Belt to Press Module Places.

Places Meaning

p74 Raise Arm
p75 Raise and Extend Arm, and Turn Vacuum On
p76 Extend Arm and Turn Vacuum On
p77 Raise and Extend Arm and Turn Vacuum On
p78 Raise Arm and Turn Vacuum On
p79 Raise Arm, Turn Vacuum On and Rotate Arm CW
p80 Raise and Extend Arm and Turn Vacuum On
p81 Extend Arm and Turn Vacuum On
p82 Extend Arm
p83 Raise and Extend Arm
p84 Raise Arm
p85 Raise Arm and Rotate Arm CCW

p86
Raise Arm and HALFPIECE-

COUNTER:=HALFPIECECOUNTER+1

55

p83p82p81p80

p86p85

p84t79t78t73

t84

t75

t82t45

t76

t85

p87

p107

t74t72 t77
p76 p77p74 p75

t71

p78 p79

p95

t80 t81

t83

Figure 4.4: Petri net of manipulator taking a cube half from conveyor belt to assembly unit module.

56

4.1.5 Assembly Unit

This module serves to press the two pieces, mounting a cube. Once both pieces
are placed in the Assembly Unit Holder, it is retracted, the safety door is closed and
the press is lowered, forming the cube. Then the press is raised, the door is opened,
and the holder extended, waiting for the cube to be removed by the manipulator. The
corresponding Petri net and tables can be seen in Figure 4.5 and Tables 4.9 and 4.10.

Table 4.9: Assembly Unit Module Transitions.

Transitions Meaning

t86 T=1s and Assembly Unit Holder Retracted
t87 T=1s and Safety Door Closed
t88 T=1s
t89 T=1s
t90 T=1s and Safety Door Opened
t91 T=1s and Assembly Unit Holder Extended
t92

t93 T=1.5s and Arm Extended

Table 4.10: Assembly Unit Module Places.

Places Meaning

p87 Retract Assembly Unit Holder *
p88 Close Safety Door *
p89 Lower Press *
p90 Raise Press *
p91 Open Safety Door *
p92 Extend Assembly Unit Holder *
p93 Cube Ready
p94 Extend Arm and Turn Vacuum On
p95 Raise and Extend Arm

57

p89p88 p90 p91 p92 p93p87

p95
t82

p94t86 t87
t93

p96
t91t90t88 t89 t92

Figure 4.5: Petri net of assembly unit module.

58

4.1.6 Arm From Assembly Unit To Storage Unit

This module uses the arm to move the cube from the Assembly Unit Holder to the
storage device of the Storage Unit. An additional encoder similar to Storage Unit

Horizontal Encoder was placed just beside this same encoder. In order to help the
alignment of the arm with the Storage Device. This new encoder is called Storage Unit

Arm Alignment Encoder, and is presented in the logic of this module. The correspond-
ing Petri net and tables can be seen in Figure 4.5 and Tables 4.11 and 4.12.

Table 4.11: Arm From Press To Storage Unit Module Transitions.

Transitions Meaning

t94 T=1.5s and Arm Lowered

t95
Arm Raised, Storage Unit Right and Inferior Limit

Switches
t96 Storage Unit Arm Alignement Encoder
t97 ARMCOUNTER <= STORAGE_ANGLE
t98 T=2s
t99 T=2s
t100 Arm Lowered

t101
Arm Raised, Storage Unit Right and Inferior Limit

Switches
t102 Inductive Sensor Arm
t103 T=1s
t104 ARMCOUNTER <= BELT_ANGLE_CW

59

Table 4.12: Arm From Press To Storage Unit Module Places.

Places Meaning

p96 Extend Arm e Turn Vacuum On
p97 Raise and Extend Arm and Turn Vacuum On

p98

Reset HALFPIECECOUNTER*, Raise and Extend
Arm, Turn Vacuum On and Move Storage Unit to the

Left

p99
Raise and Extend Arm, Turn Vacuum On and Rotate

Arm CW
p100 Raise and Extend Arm and Turn Vacuum On
p101 Extend Arm and Turn Vacuum On
p102 Extend Arm
p103 Raise and Extend Arm
p104 Turn Arm CCW
p105 Turn HSC Off (Arm Stopped)
p106 Turn Arm CW
p107 Arm Stopped facing conveyor belt

60

p105p104

p107

p106

p101p100

p103

p102

p139

t45

p108t94t93

t85

t99t98

p98

p99

t71

p96 p97

t101

t100

t102 t104

t95

t96 t97

t19

t103

Figure 4.6: Petri net of manipulator taking cube from assembly unit to storage module.

61

4.1.7 Storage Unit Positioning (y Axis)

This module sets the vertical position of the Storage Device. Once the cube is in the
Storage Device, it is raised until the device is vertically aligned with the corresponding
store space. The order of storage in the rack is from top to bottom, right to left. The
corresponding Petri net and tables can be seen in Figure 4.7 and Tables 4.13 and 4.14.

Table 4.13: Storage Unit (Y axis) Module Transitions.

Transitions Meaning

t105 T=2s
t106 Storage Unit Right Limit Switch
t107 COUNTER2=0
t108 COUNTER3=4 and Vertical Encoder
t109 COUNTER3<=4 and Vertical Encoder
t110 COUNTER2=1
t111 COUNTER3=3 and Vertical Encoder
t112 COUNTER3<=3 and Vertical Encoder
t113 COUNTER2=2
t114 COUNTER3=2 and Vertical Encoder
t115 COUNTER3<=2 and Vertical Encoder
t116 COUNTER2=3
t117 COUNTER3=1 and Vertical Encoder
t118 COUNTER3<=1 and Vertical Encoder
t119 Vertical Encoder
t120

62

Table 4.14: Storage Unit (Y axis) Module Places.

Places Meaning

p108 Cube on Storage Unit
p109 Move Storage Unit to the Right
p110

p111 Move Storage Unit Upwards
p112 Move Storage Unit Upwards
p113 Move Storage Unit Upwards
p114 Move Storage Unit Upwards
p115 COUNTER3:=COUNTER3+1
p116 RESET COUNTER3*
p117

63

p109p108t100

t116
t117

t114

t115

t112

t113

t110

t111

t118

t119

t145

p112

p113

p110

p111

p116 p117

p114

p115

t107

t106

t109

t108

p118

t120

t105

Figure 4.7: Petri net of storage unit positioning module (y-axis).

64

4.1.8 Storage Unit Positioning (x Axis)

This module sets the horizontal position of the Storage Device. This module and the
last module occurs simultaneously. Instead of raising the Storage Device, this module
makes it move from right to left until it is horizontally aligned with the corresponding
store space. The corresponding Petri net and tables can be seen in Figure 4.8 and
Tables 4.15 and 4.16.

Table 4.15: Storage Unit (X axis) Module Transitions.

Transitions Meaning

t121 COUNTER4=1
t122 COUNTER5=1 and Horizontal Encoder
t123 COUNTER5<=1 and Horizontal Encoder
t124 COUNTER4=2
t125 COUNTER5=2 and Horizontal Encoder
t126 COUNTER5<=2 and Horizontal Encoder
t127 COUNTER4=3
t128 COUNTER5=3 and Horizontal Encoder
t129 COUNTER5<=3 and Horizontal Encoder
t130 COUNTER4=4
t131 COUNTER5=4 and Horizontal Encoder
t132 COUNTER5<=4 and Horizontal Encoder
t133 COUNTER4=5
t134 COUNTER5=5 and Horizontal Encoder
t135 COUNTER5<=5 and Horizontal Encoder
t136 COUNTER4=6
t137 COUNTER5=6 and Horizontal Encoder
t138 COUNTER5<=6 and Horizontal Encoder
t139 COUNTER4=7
t140 COUNTER5=7 and Horizontal Encoder
t141 COUNTER5<=7 and Horizontal Encoder
t142

t143

t144 Horizontal Encoder

65

Table 4.16: Storage Unit (X axis) Module Places.

Places Meaning

p118
COUNTER1:=COUNTER1+1 e
COUNTER4:=COUNTER4+1

p119 Move Storage Unit to the Left
p120 Move Storage Unit to the Left
p121 Move Storage Unit to the Left
p122 Move Storage Unit to the Left
p123 Move Storage Unit to the Left
p124 Move Storage Unit to the Left
p125 Move Storage Unit to the Left
p126 COUNTER5:=COUNTER5+1
p127 Reset COUNTER5*
p128 Reset COUNTER4* , COUNTER2:=COUNTER2+1
p129

66

p127

p126

p125

p124

p123

p122

p121

p120

t141

p129

t140

t143

t142

t138

t139

t130

t131

t132

t133

t134
t135

t136

t137

t145

t106
p118 p119

p128

t129
t128

t123

t122

t121

t127

t126 t125
t124

t144

Figure 4.8: Petri net of storage unit positioning module (x-axis).

67

4.1.9 Cube Storage

This module has the objective of storing the cube in the correct space with which
the storage device is vertically and horizontally aligned. The corresponding Petri net
and tables can be seen in Figure 4.9 and Tables 4.17 and 4.18.

Table 4.17: Cube Storage Module Transitions.

Transitions Meaning

t145 T=2s
t146 T=3s
t147 T=0.25s
t148 T=3s
t149 T=7s
t150 Storage Unit Right Limit Switch
t151 Storage Unit Inferior Limit Switch
t152

t153 COUNTER1<28
t154 COUNTER1=28
t155 COUNTER1=28

68

Table 4.18: Cube Storage Module Places.

Places Meaning

p130 Extend Storage Unit

p131
Extend Storage Unit and Move Storage Unit

Downwards
p132 Extend Storage Unit
p133 Piece Stored
p134 Move Storage Unit to the Right
p135 Storage Unit Ready (horizontal)
p136 Move Storage Unit Downwards
p137 Storage Unit Ready (vertical)
p138

p139 Storage Unit Ready

p140
Reset COUNTER1, COUNTER2, COUNTER3,

COUNTER4 and COUNTER5*

69

p129

t152

t153

t150

t151

t154

p140

p134 p135

p136 p137

p130 p131 p132 p133

t96
p138 p139

t19

t155

p117

t148 t149t145 t146 t147

Figure 4.9: Petri net of cube storage module.

70

4.1.10 Arm Stop Logic

Since the arm is controlled by single acting pneumatic cylinders, if in any moment
the inputs of these cylinders is turned off voluntarily or not, they are going to retract,
which can damage the arm. So, in order to prevent these kinds of accidents this module
was created. This module creates different behaviours for the turning off of the arm
depending on the angle it is. Each behaviour turns the arm to a safe position before
retracting the cylinders. A transition is created from every place in all other modules
to the first place in this module. This transition corresponds to the will of stopping
the system and consequently the arm. For organisation’s sake all those transitions are
represented in the Petri net as the transition t156.

Some angles were chosen to divide the areas where the arm can be, and the rotation
logic is different for each one of them. These angles can be seen in Figure 4.10.

STORAGE_ANGLE_BEFORE

PRESS_ANGLE_AFTER

PRESS_ANGLE_BEFORE

Figure 4.10: Arm Stop Logic Angles

The corresponding Petri net and tables can be seen in Figure 4.9 and Tables 4.17
and 4.18.

71

Table 4.19: Arm Stop Logic Module Transitions.

Transitions Meaning

t156 Stop Button
t157 ARMCOUNTER < STORAGE_ANGLE_BEFORE

t158 Arm Raised and Extended
t159 ARMCOUNTER >= STORAGE_ANGLE_BEFORE

t160

(ARMCOUNTER >= STORAGE_ANGLE_BEFORE

and ARMCOUNTER < PRESS_ANGLE_AFTER) or
ARMCOUNTER >= PRESS_ANGLE_BEFORE

t161 Arm Raised and Retracted
t162 Inductive Sensor Arm

t163
ARMCOUNTER >= PRESS_ANGLE_AFTER and

ARMCOUNTER < PRESS_ANGLE_BEFORE

t164 Arm Retracted
t165 Arm Retracted

Table 4.20: Arm Stop Logic Module Places.

Places Meaning

p141

p142 Raise and Extend Arm
p143 Raise, Extend Arm and Turn CCW
p144 Raise Arm
p145 Raise Arm and Turn CCW
p146

72

t165

t164

t163

t157

t161

t160

t158
t159

p141

p143
p142

p145

p144

p146

t156

p0t162

Figure 4.11: Petri net of manipulator Stop Logic module.

73

4.2 Implementation of the Control

The implementation of the control in this work is carried out using PLCs. The units
shown in chapter 3 are divided in two groups. Each group is connected to a Siemens
PLC S7-1500, as the one shown in Figure 4.12.

Figure 4.12: Siemens PLC S7-1500

The first PLC is connected with both magazines,the conveyor belt and the sorting
unit. As those units are used to select the kind of pieces, this PLC is identified as
Selection. In order to program the Ladder logic it is needed to create tags to represent
every input and output. In Tables 4.21 and 4.22 we can see the correspondence between
the name of the input/output, the address in which it is connected and the name of the
tag created to represent it in the Ladder Logic.

Table 4.21: Inputs Selection PLC

Input Address Tag
MAG 1 Cylinder Extended I0.0 I_MAG1EXT
MAG 1 Cylinder Retracted I0.1 I_MAG1RET

MAG 1 Empty I0.2 I_MAG1EMPT
MAG 2 Cylinder Extended I0.3 I_MAG2EXT
MAG 2 Cylinder Retracted I0.4 I_MAG2RET

MAG 2 Empty I0.5 I_MAG2EMPT
Proximity Sensor Left Discharge Cylinder I2.0 I_PSLD

Proximity Sensor Center Discharge Cylinder I2.1 I_PSCD
Proximity Sensor Right Discharge Cylinder I2.2 I_PSRD

Continued on next page

74

Continued from previous page
Input Address Tag
Relay I2.3 I_RELAY1

Left Discharge Cylinder Extended I1.0 I_LDCEXT
Left Discharge Cylinder Retracted I1.1 I_LDCRET

Center Discharge Cylinder Extended I1.2 I_CDCEXT
Center Discharge Cylinder Retracted I1.3 I_CDCRET
Right Discharge Cylinder Extended I1.4 I_RDCEXT
Right Discharge Cylinder Retracted I1.5 I_RDCRET

White Color Sensor I1.6 I_WHIT
Metallic Sensor I1.7 I_METAL

Proximity Sensor End Of Conveyor Belt I0.6 I_PSEOC
Distance Sensor IW4 I_DS

Table 4.22: Outputs Selection PLC

Output Address Tag
Extend MAG 1 Cylinder Q1.0 O_MAG1EXT
Retract MAG 1 Cylinder Q1.1 O_MAG1RET
Extend MAG 2 Cylinder Q1.2 O_MAG2EXT
Retract MAG 2 Cylinder Q1.3 O_MAG2RET

Extend Right Discharge Cylinder Q0.2 O_RDCEXT
Extend Center Discharge Cylinder Q0.1 O_CDCEXT
Extend Left Discharge Cylinder Q0.0 O_LDCEXT

Conveyor Belt Forward Q1.4 O_CBFW
Conveyor Belt Reverse Q1.5 O_CBREV

The Distance Sensor outputs an integer so the variables ConcUP and ConcDWN were
created using the following comparisons:

ConcUP = Distance Sensor ≥ 1000 & Distance Sensor < 10000 (4.1)

ConcDWN = Distance Sensor ≥ 10000 (4.2)

The other units (Handling Unit, Assembly Unit and Storage Unit) are connected to
the second PLC, identified as Handling-Assembly-Storage. Tables 4.23 and 4.24 identify
the addresses and tags for this PLC.

75

Table 4.23: Inputs Handling-Assembly-Storage PLC

Input Address Tag
Safety Door Opened I1.0 I_SDO
Safety Door Closed I1.1 I_SDC

Assembly Unit Holder Extended I1.2 I_AUHEXT
Assembly Unit Holder Retracted I1.3 I_AUHRET

Inductive Sensor Arm I0.2 I_INDARM
Arm Lowered I0.4 I_ARMLOW
Arm Raised I0.3 I_ARMHIG

Arm Retracted I0.6 I_ARMRET
Arm Extended I0.5 I_ARMEXT

Storage Unit Vertical Encoder I2.0 I_SUVE
Storage Unit Inferior Limit Switch I2.2 I_SUILS
Storage Unit Superior Limit Switch I2.1 I_SUSLS

Storage Unit Extended I2.3 I_SUEXT
Storage Unit Retracted I2.4 I_SURET

Relay I2.5 I_RELAY2
Storage Unit Horizontal Encoder I1.4 I_SUHE
Storage Unit Right Limit Switch I1.5 I_SURLS
Storage Unit Left Limit Switch I1.6 I_SULLS

Storage Unit Arm Alignement Encoder I1.7 I_SUARMALE

Table 4.24: Outputs Handling-Assembly-Storage PLC

Output Address Tag
Open Safety Door Q0.6 O_SDO
Close Safety Door Q0.7 O_SDC

Retract Assembly Unit Holder Q1.1 O_AUHRET
Extend Assembly Unit Holder Q1.0 O_AUHEXT

Lower Press Q1.2 O_PRESSLOW
Raise Press Q1.3 O_PRESSHIG
Raise Arm Q0.0 O_ARMHIG

Turn Vacuum Gripper ON Q0.1 O_VACON
Extend Arm Q0.2 O_ARMEXT

Continued on next page

76

Continued from previous page
Output Address Tag

Turn Arm CCW Q0.3 O_ARMCCW
Turn Arm CW Q0.4 O_ARMCW

Extend Storage Unit Q0.5 O_SUEXT
Move Storage Unit Upwards Q1.6 O_SUUP

Move Storage Unit Downwards Q1.7 O_SUDWN
Move Storage Unit to the Right Q1.5 O_SURIGHT
Move Storage Unit to the Left Q1.4 O_SULEFT

To convert the CIPN from section 4.1 into LD the method presented in subsec-
tion 2.6.2 was used. And in order to implement the connection between the two PLCs
the method shown in subsection 2.6.3 was used. In order to configure the “Get” and “Put”
blocks and consequently the connection between the two PLCs, the tutorials shown in
section 3.4 of PEREIRA (2019) was used.

For brevity’s sake the ladder logic was concealed, but can easily be found at the
following link https://github.com/Accacio/docsTCC/tree/master/PLC/TCC, where
all files of the TIA Project used in this work is stored.

77

https://github.com/Accacio/docsTCC/tree/master/PLC/TCC

Chapter 5

Manufacturing System Identification

In this chapter, the identification process of the controlled system is explained. This
identification process can be divided in two parts: the data acquisition, where the inputs/
outputs of the system are acquired, and the model identification, where the acquired data
is used in the identification algorithm, algorithm 1, and the identified model is generated.

In the next sections these two parts are described.

5.1 Data Acquisition

There are multiple ways to obtain the values of the inputs/outputs of a system. The
data acquisition methods can be divided in two categories. In the first one, the data
is continuously registered, and in the second one the data is buffered and registered in
batches from time to time. The first one is usually used for online processes, where
the continuous flow of information is necessary, and processes that are repeated exten-
sively. Examples of these processes are control loops and fault detection modules. On
the other hand, the second one is usually used for offline processes, processes that are
computationally expensive and sporadic processes. An example of such processes can
be modelling a big system, what can be a resource-intensive task.

Since algorithm 1 takes as input a set of paths, all the data is acquired beforehand.
The data can be acquired in batches, and once all the data is collected, the algorithm
can be executed.

The most straightforward way to obtain the data from a Siemens PLC is by using
datalogs (SIEMENS, a). The Siemens PLC S7-1500 includes function blocks to use
inside a LD to store custom data in a Comma Separated Values (CSV) formatted file.
This file is saved in a SD card. In order to download this file to a computer, the SD

78

card can be connected to a PC, or the file can be downloaded using a web browser, if a
Web Server is configured in the PLC.

The five function blocks used to log data are called DataLogCreate, DataLogOpen,
DataLogWrite, DataLogClose and DataLogDelete. These blocks are shown in the LD
of Figures 5.1, 5.2, 5.3, 5.4 and 5.5.

Figure 5.1: DataLogCreate block. Figure 5.2: DataLogOpen block.

Figure 5.3: DataLogWrite block. Figure 5.4: DataLogClose block.

Figure 5.5: DataLogDelete block.

79

The DataLogCreate block creates the .csv file. The DataLogOpen block opens the
file, allowing it to be written. The DataLogWrite block writes the data to the file. The
DataLogClose block closes the file, forbidding it to be written. The DataLogDelete

block deletes the file if it is needed.
The inputs and outputs of these blocks are used to determine the information about

the .csv file and the data to be stored. So, the function of these inputs and outputs
will be presented in the following paragraphs.

The REQ input triggers the action to be performed using the rising edge of its cor-
responding variable. In order to identify the file to be manipulated, the ID and NAME

inputs are used. These inputs use a unique id number and a string, respectively. This
string is used as the name of the .csv stored in the SD card.

The DATA input receives the data to be stored in the .csv file. The data is structured
in a variable of type struct. The struct type can contain variables of different type and
size, for instance: a struct can contain a boolean, an int, a word and a string.

The HEADER input is a string to be prepended to the first line of the .csv file. The
first line of the file identifies the stored variables. As this string variable will be part of
the .csv file, it is needed to include commas “,” inside it to separate the identifiers of
the variables.

Remark 5.1 As the string type has variable size, it is important to take into account
its maximum size, that is 256 Bytes. That means that it can store up to 256 characters,
considering the commas.

The TIMESTAMP input is used to identify if a timestamp column will be inserted or
not in the .csv. A boolean variable is used to set the column. If the variable is true the
column is added, otherwise it is not.

The outputs DONE, BUSY, ERROR and STATUS are not used in this work, but they can
be used to identify the status of the action to be performed. The status of each data log
function block can be the following: the action is being performed (BUSY), the action is
done (DONE) or an error occurred (ERROR). Each status has its corresponding boolean
output. If an error occurred, STATUS outputs a code to identify the error. This code is
used for troubleshooting and can be found in the Siemens manual, SIEMENS (a).

In order to organise the data used for all these blocks, a DataBlock was used. The
structure of this DataBlock is shown in Figure 5.6. We can see in this DataBlock the
main variables used to create and write the log data: DATA, HEADER, ID and NAME.

80

Figure 5.6: Example of DataBlock used to log data.

In this work, we need to store the input/output vectors of the controller. The IOvec-
tors (input/output vectors) are composed by boolean variables. One restriction to the
storage of these vectors is that there must not be two consecutive vectors with the same
data.

In order to achieve the needs of the project, a function block was created to be used
in the LD. This new function block uses the data log function blocks from Figures 5.1
to 5.5 and some additional logic. This function block is called LOGDATA, and it is
depicted in Figure 5.7.

81

Figure 5.7: LOGDATA block.

The 12 inputs of the LOGDATA block will be briefly described in the following
paragraphs. And after that, the logic used to implement the block will be presented.

The startAcq, stopAcq and DeleteDL inputs are used to start and stop the acqui-
sition and to delete the .csv file, respectively. The DatalogName input represents the
name of the file. IOVECSIZE identifies the number of variables to be stored. In order
to avoid two equal consecutive IOvectors, two arrays are created : AcqValuesNew and
AcqValuesPrev. These two variables store the current IOvector and the preceding one,
respectively. These arrays are compared to each other, and if they differ, AcqValuesNew
is stored in the .csv file. The value of these arrays is changed from inside the block via
an update block.

IOVEC is also an input that is changed from inside the block. It is used as a buffer
for the vectors. The data of this buffer is periodically copied to the variable connected
to the DATA input. DATA, in turn, is internally connected to the DATA input of the data
log function blocks.

Instead of writing the tags of the variables in the HEADER input string, a DATA_HEADERS

82

input is created. An array of strings of size IOVECSIZE is created and connected to
DATA_HEADERS. This array contains the tags of all variables to be stored in DATA. The
contents of the array are concatenated with commas placed between them, and a new
string is created. This new string is assigned to the variable header, connected to the
HEADER of the data log function blocks.

An example of the data stored in this work can be seen in Figure 5.8. In this figure is
possible to notice that the data structure is composed of variables whose tags are shown
in section 4.2.

Figure 5.8: Example of Data struct.

The code inside the LOGDATA block uses the following logic. First the value of
AcqValuesNew is copied to AcqValuesPrev. Then AcqValuesNew is updated with the val-
ues of the inputs/outputs of the controller. After that, AcqValuesNew and AcqValuesPrev
are compared and if they differ, AcqValuesNew is prepared to be stored. Once the data
is prepared, it is stored in the file. The last step, storage in the file, is made using the
data log function blocks depicted in Figures 5.1 to 5.5. The other steps will be shown

83

in the next paragraphs.
The copy of the values from the AcqValuesNew array is made by using theMOVE_BLK

function block present in the Siemens PLC. In order to update the values of AcqValuesNew,
the custom function block called UpdateValues is created inside LOGDATA. This block
can be seen in Figure 5.9. The code of this block is programmed using the Struc-
tured Control Language (SCL) language. In Figure 5.10 we can see the code of the
UpdateValues function block.

Figure 5.9: UpdateValues block.

Figure 5.10: Code inside UpdateValues block.

In order to compare AcqValuesNew and AcqValuesPrev, a CompareArrays block is
created, in which all the values of both arrays are compared bitwise. And if they are
different, the AcqValuesNew is copied to the temporary variable input to IOVEC, the
buffer. This logic can be seen in Figure 5.11.

84

Figure 5.11: CompareArrays block.

Before using the blocks depicted in Figures 5.1 to 5.5 to create the .csv file and
store the data, the data in the temporary variable IOVEC is copied to DATA. The copy is
carried out by using the custom function block PutInDataStruct shown in Figure 5.12.
The code of this block is also programmed using SCL and it is represented in Figure 5.13.

Figure 5.12: PutInDataStruct block.

85

Figure 5.13: Code inside PutInDataStruct block.

Remark 5.2 Since the tags are divided between the 2 PLCs, in order to have all tags in
a same PLC, “Get” and “Put” blocks were used. Two Data blocks are used to store the
inputs and outputs of the Handling-Assembly-Storage PLC and send/receive data using
those function blocks. Each data block is located in a different PLC. The aspect of these
data blocks can be seen in Figures 5.14a and 5.14b

86

(a) IOVEC_FROMPLC2 DataBlock.

(b) IOVEC_FROMPLC2 DataBlock - Continuing.

Figure 5.14: Inputs/Outputs from Handling-Assembly-Storage PLC.

87

5.2 Model Identification

Once the data is logged, the .csv file can be downloaded from a Web Server or
from the SD card. Following the steps shown in the Siemens Manual, SIEMENS (b),
it is possible to configure a web server in the Siemens PLC S7-1500. And once the
web server is configured, the file can be downloaded in different ways, most of them are
shown in section 3.13 of the same manual, SIEMENS (b). In this work, the .csv file
was downloaded from the terminal of a computer connected to the same network of the
PLC. The commands that can be used to download the file from the terminal are the
following:

$ wget −−content−d i s p o s i t i o n − i " http : / /192 . 1 68 . 2 . 1 32/ DataLogs?Action=
LIST"

and
$ cu r l −k " https : / //192 . 168 . 2 . 1 32/ F i l ebrowser ?Path=/DataLogs/
name_of_the_file . csv&RAW" −H "Re fe r e r : https : / /192 . 1 68 . 2 . 1 32/ Porta l /
Porta l . mwsl?PriNav=Fi l ebrowser&Path=/DataLogs/"

Where the address “192.168.2.132” should be the address of the PLC in which the web
server is running and “name_of_the_file.csv” should be the name of the file.

Once the .csv file is downloaded to the PC, the paths can be obtained from the data
and the identification algorithm can be executed. The acquisition of the paths and the
identification algorithm, algorithm 1, were implemented in python.

Since the identification is performed by using a black box approach, we do not have
any previous information of what is considered a path in the file. So, the first vector is
considered as the initial vector, and every time it is repeated in the file another path is
created. Once the paths are obtained they are modified using Equations 2.3 and 2.4.

A brief example of this method of path acquisition can be presented. Consider the
observed data of the example shown in section 2.7, is in the following .csv file:

Listing 5.1: CSV file generated from example of section 2.7.

1 SeqNo , 1 , 2 , 3
1 ,1 ,0 ,0

3 2 ,1 ,1 ,0
3 ,0 ,1 ,1

5 4 ,0 ,0 ,0
5 ,0 ,0 ,1

7 6 ,1 ,0 ,0
7 ,0 ,0 ,0

9 8 ,1 ,1 ,0

88

9 ,0 ,1 ,1
11 10 ,0 ,0 ,0

11 ,1 ,0 ,0
13 12 ,0 ,1 ,1

13 ,1 ,0 ,0
15 14 ,0 ,0 ,0

15 ,1 ,1 ,0
17 16 ,0 ,1 ,1

17 ,1 ,1 ,1
19 18 ,0 ,0 ,0

19 ,0 ,0 ,1
21 20 ,1 ,1 ,0

//END, , ,

Using the method proposed, the vector [1 0 0]
T is considered as the initial vector and

4 paths are obtained from the file:

p1 =

([
1
0
0

]
, a,

[
1
1
0

]
, b,

[
0
1
1

]
, c,

[
0
0
0

]
, d,

[
0
0
1

]
, e,

[
1
0
0

])

p2 =

([
1
0
0

]
, g,

[
0
0
0

]
, h,

[
1
1
0

]
, b,

[
0
1
1

]
, c,

[
0
0
0

]
, i,

[
1
0
0

])

p3 =

([
1
0
0

]
, j,

[
0
1
1

]
, l,

[
1
0
0

])

p4 =

([
1
0
0

]
, g,

[
0
0
0

]
, h,

[
1
1
0

]
, b,

[
0
1
1

]
, i,

[
1
1
1

]
,m,

[
0
0
0

]
, d,

[
0
0
1

]
, n,

[
1
1
0

])

If we compare these paths with those shown in section 2.7, we can see that using this
method, 4 paths are obtained instead of the 3 paths presented in section 2.7. If we
analyse the path p2 from section 2.7, we can notice that the vector [1 0 0]

T is repeated
inside the path :

p2 =

([
1
0
0

]
, g,

[
0
0
0

]
, h,

[
1
1
0

]
, b,

[
0
1
1

]
, c,

[
0
0
0

]
, i,

[
1
0
0

]
, j,

[
0
1
1

]
, l,

[
1
0
0

])

Since it is not possible to have a repeated vector in a path using the method proposed,
this path p2 is divided in two, resulting on the p2 and p3 of this section.

89

The change in the number of paths is reflected on the identified model. Choosing
k = 1 and k = 2 for the modified paths and executing the identification algorithm, the
models depicted in Figures 5.15 and 5.16 were obtained. Comparing the state transition
diagram of these models with those shown in Figures 2.26 and 2.27, we can see the
difference caused by the additional path in the identified model.

x2 x3x0

x1
x4

x5

↑1↑2↓3,{4}

↓1↑2↑3,{3}

↑1,{2}

↑2,{1}
↓1↑3,{1,4}

↑1↓2↓3,{3}
↓2↓3,{1}

↑1↑2,{2,4}

↑1,{4} ↓1↓2↓3,{4}

↑1↓3,{1}

↑3,{1,4}

↓1,{2,4}

Figure 5.15: Identified model from paths extracted from .csv file using k = 1.

x1x0

x8x10x9

x3x2

x11 x12 x13x6 x7

x4 x5

↑1↑2↓3,{4}↑1,{4}

↑2,{1} ↓2↓3,{1}

↑1↑2,{2,4}

↑1,{2}

↓1,{2,4}

↓1↓2↓3,{4}

↓1↑3,{1}

↑3,{4}

↑1↓3,{1}

↑1↓2↓3,{3}

↓1↑3,{2,4}

↑3,{1}

↓1↑2↑3,{3}

Figure 5.16: Identified model from paths extracted from .csv file using k = 2.

The path acquisition method presented in this work is used in the identification of
the manufacturing system and its results are discussed in the next chapter. The tools
created to implement the path acquisition method and the identification algorithm are
presented in Appendix B.1.

90

Chapter 6

Identified Model

In this chapter the identified models generated by the algorithm 1 are discussed. The
models are obtained through the execution of the identification algorithm using modified
paths with different values of k.

6.1 Identified Model

In this work, as in other works KLEIN et al. (2005); MOREIRA and LESAGE
(2018), we make the assumption that all sequences of events that have length n0+1 were
observed, so L≤n0

OrigNI = ∅ can be true. In order to observe these sequences of events, the
observation of the system must be made for a sufficiently long time. Thus, an experiment
was made in order to observe the fault-free behaviour of the system. Normally, the
system is observed until there is no considerable change in the observed language, but
unfortunately, the experiment was interrupted by errors on the communication between
the 2 PLCs, errors that dead-locked the system. The origin of these communication
faults was not detected in this work and troubleshooting the communication can be
proposed as a future work.

So, due to these errors, the experiment lasted for 2 hours, time in which it was
possible to assemble and store over 100 cubes. A time-lapse of part of the experiment
can be seen in https://www.youtube.com/watch?v=ZtCCKJtA9pI.

The acquisition of the IOvectors started once the system was initialised, that means,
when the system was ready to begin the process. This corresponds to place p27 in Fig-
ure 4.1. The collected data1 of this experiment has 19751 entries using 65 variables, the

1Available at: https://raw.githubusercontent.com/Accacio/docsTCC/master/data/
2019-05-10/2019-05-10_1524.csv

91

https://www.youtube.com/watch?v=ZtCCKJtA9pI
https://raw.githubusercontent.com/Accacio/docsTCC/master/data/2019-05-10/2019-05-10_1524.csv
https://raw.githubusercontent.com/Accacio/docsTCC/master/data/2019-05-10/2019-05-10_1524.csv

inputs/outputs of the system and the auxiliary variables ConcUP and ConcDWN, presented
in section 4.2.

Once this data was collected, the paths were obtained from the .csv using the method
shown in section 5.2. The total number of paths obtained was equal to 2. This result can
be easily explained by the behaviour of the system and the duration of the observation.
The system is formed of different modules, and it presents a considerable concurrent
behaviour. Since these modules are not necessarily synchronised, it is very unlikely that
all the modules will return to their initial state at the same time. As presented in the
path acquisition method, in order to generate a new path it is needed that the IOvector
be the same as the initial vector. Thus, the concurrent behaviour of the system results in
a few long paths. Using such systems with strong concurrent behaviour, an observation
during 2 hours is not enough to observe the system in its completeness. If there were no
communication errors between the PLCs the observation should have lasted for days or
weeks, in order to observe better the system. However, as it was the longest duration
possible of observation, the analysis of the system and identification was made using this
dataset.

As expected, with a greater value of k, more states are identified. Figure 6.1 shows
the variation of the number of states with respect to the value of k.

1 2 3 4 5 6 7
k

0

1000

2000

3000

4000

5000

6000

S
ta
te
s

Figure 6.1: Number of states of identified model for different values of k.

The number of identified states for all values of k is greater than 1000. As state
transition diagrams representing the identified model would be almost incomprehensible,
a tool was developed to generate the f function of the identified model. This tool is
presented in Appendix B.1.

The f function generated using the original .csv file for k = 1 and k = 2 can be seen
in https://raw.githubusercontent.com/Accacio/docsTCC/master/figures/results/

92

https://raw.githubusercontent.com/Accacio/docsTCC/master/figures/results/all/flistk1.tex
https://raw.githubusercontent.com/Accacio/docsTCC/master/figures/results/all/flistk1.tex
https://raw.githubusercontent.com/Accacio/docsTCC/master/figures/results/all/flistk1.tex

all/flistk1.tex and https://raw.githubusercontent.com/Accacio/docsTCC/master/
figures/results/all/flistk2.tex respectively.

In order to analyse the exceeding language generated by the identified model using
the DAOCT model, it was compared with another model, the Non-Deterministic Au-
tonomous Automaton with Output (NDAAO) model, proposed by KLEIN et al. (2005).
The NDAAO model is very similar to the DAOCT model, but the difference resides
in the fact that NDAAO do not use path indices, what can increase considerably its
exceeding language when there are multiple paths. This comparison shows that even
for a considerable large system with more than 60 inputs/outputs, the DAOCT is more
tailored for fault detection. The cardinality of the exceeding language of the DAOCT
model is inferior to that of a NDAAO model of the same size (with a similar f function).

Figure 6.2 shows the comparison between both models using 2 values of k. In this
case, considering k = 1 and the sequences of length smaller or equal to n = 12 the
exceeding language of NDAAO is 1018 and for DAOCT it is 923. For k = 2, both are 0

for n ≤ 12. This mean in this case, with very long paths, both have a similar behaviour,
but DAOCT still have a smaller exceeding language. As there are only a few paths, the
difference between the exceeding language of both models is not very expressive.

1 3 5 7 9 11
n

0

200

400

600

800

1000

|L
≤
n

E
x
c|

k = 1

k = 1

k = 2k = 2

Figure 6.2: Comparison between the cardinality of the exceeding language generated by
the DAOCT (o) and NDAAO (×) models, for k = 1 and k = 2.

Since using the path acquisition method on the original .csv file could obtain only
2 paths, an experiment was made in order to increase the number of paths and see
how increasing the number of paths can reflect on the difference between the exceeding
language of both models.

The file was processed by a tool, where all vectors were sorted by the number of
duplicates in the file. The vector with most duplicates was elected to be the new initial
vector, consequently the initial state of the new model.

93

https://raw.githubusercontent.com/Accacio/docsTCC/master/figures/results/all/flistk1.tex
https://raw.githubusercontent.com/Accacio/docsTCC/master/figures/results/all/flistk1.tex
https://raw.githubusercontent.com/Accacio/docsTCC/master/figures/results/all/flistk1.tex
https://raw.githubusercontent.com/Accacio/docsTCC/master/figures/results/all/flistk2.tex
https://raw.githubusercontent.com/Accacio/docsTCC/master/figures/results/all/flistk2.tex

A new .csv file was created from the original one. The file was created by discarding
all vectors from the beginning of the file up to the first appearance of the new initial
vector. Then, this new initial vector is used for the path acquisition method.

Instead of the original 19751 entries, the new file had 19427 entries, since, some entries
were discarded from the original. The difference in number of entries was reflected in
the number of generated states.

Using the path acquisition method in the modified file resulted in 80 paths, 40 times
the number of paths of the original.

Figure 6.3 shows the variation of number of states with respect of the values of k.

1 2 3 4 5 6 7
k

0

1000

2000

3000

4000

5000

S
ta
te
s

Figure 6.3: Number of states of identified model for different values of k.

Although both Figures 6.1 and 6.3 have the same order of magnitude for each k, the
number of states diverges. Putting the values in a vector can be useful to compare them.
While for the original file the corresponding vector is [1321 2166 2962 3744 4508 5235 5939],
for the modified is [1294 2127 2904 3663 4395 5088 5746]. The difference in the number
of identified states can be caused by the difference in the number of entries in the .csv
files.

The list of f functions generated using the modified .csv file for k = 1 and k = 2 can
be seen in https://raw.githubusercontent.com/Accacio/docsTCC/master/figures/
results/all/best/flistk1.tex and https://raw.githubusercontent.com/Accacio/
docsTCC/master/figures/results/all/best/flistk2.tex respectively.

The same comparison between the DAOCT and NDAAO models from Figure 6.2 is
shown in Figures 6.4a to 6.4c. In this second case we can see that the difference between
the language of the DAOCT and NDAAO models is more substantial. For example, for
k = 1 and n = 12 the exceeding language of NDAAO is 465332 and for DAOCT it is

94

https://raw.githubusercontent.com/Accacio/docsTCC/master/figures/results/all/best/flistk1.tex
https://raw.githubusercontent.com/Accacio/docsTCC/master/figures/results/all/best/flistk1.tex
https://raw.githubusercontent.com/Accacio/docsTCC/master/figures/results/all/best/flistk2.tex
https://raw.githubusercontent.com/Accacio/docsTCC/master/figures/results/all/best/flistk2.tex

24866. For k = 2 and n = 12, it is 1943 and 3, for NDAAO and DAOCT respectively.
And if we take k = 3 and n = 12, it is 712 for NDAAO and 0 for the DAOCT. With
smaller and more numerous paths, we can see more clearly the difference between the
exceeding language of the models. It is proved in MOREIRA and LESAGE (2018) that
for acyclic paths the exceeding language of DAOCT is equal to 0, what can sustain the
idea that DAOCT is better suited for fault-detection. For instance if we want to detect
correctly the faults of the system for sequences of length equal to or smaller than 12,
using the DAOCT model it is needed only to use a k = 3, that makes the paths acyclic
and the exceeding language equal to 0 consequently. Meanwhile for the NDAAO, it is
needed to use a k greater than 7, since for k = 7 and n = 12 the exceeding language of
NDAAO is still equal to 47.

1 3 5 7 9 11
n

0

100000

200000

300000

400000

|L
≤
n

E
x
c|

k = 1

k = 1

(a) k = 1

1 3 5 7 9 11
n

0

500

1000

1500

2000

|L
≤
n

E
x
c|

k = 2

k = 2

(b) k = 2

1 3 5 7 9 11
n

0

100

200

300

400

500

600

700

|L
≤
n

E
x
c|

k = 3

k = 3

(c) k = 3

1 3 5 7 9 11
n

0

10

20

30

40

|L
≤
n

E
x
c|

k = 7

k = 7

(d) k = 7

Figure 6.4: Comparison between the cardinality of the exceeding language generated by
the DAOCT (o) and NDAAO (×) models.

Although the modified .csv generates more paths and shows a more considerable
difference in the exceeding language generated by both models, it does not mean that

95

the model identified from the modified .csv represents better the system than the model
identified from the original .csv.

The choice of the initial vector affect directly the paths used as input for the iden-
tification algorithm, and consequently the identified model and how it represents the
system. The effects on the modelling caused by the paths are discussed in the next
section.

6.2 Discussion about Paths

As discussed in section 2.7, paths are used to model the system. Normally, these paths
represent well the system behaviour. However, in the implementation phase, when the
paths are not given but obtained from the observation of a sequence of IOvectors it is
difficult to tell what paths represent well the system’s behaviour. In this section, an
example is presented in order to discuss how the choice of the initial vector for the path
acquisition method presented in section 5.2 can modify the obtained paths.

Let us consider the following system as an example :

Example 6.1 (Conveyor Belt with 3 sensors)
This simple system consists of a conveyor belt with three sensors S1, S2 and S3. A
scheme of the conveyor and its sensors can be seen in Figure 6.5. The conveyor belt is
used to transport boxes, from the left to the right. The boxes are placed one at a time, so
only a box can be over the conveyor. Once the box is over the conveyor and begin to be
transported, it activates and deactivates S1, then activates and deactivates S2 and finally
activates and deactivates S3. After S3 is deactivated and the box falls from the conveyor
belt, another box is placed over the belt restarting the cycle. Since only a box is placed
over the belt, it is impossible for 2 sensors to be activated at the same time. As the belt
is always turned on, this system only has outputs (inputs to the controller). The outputs
of the system are the signals of the three sensors S1, S2 and S3.

96

S1 S2 S3

Figure 6.5: Scheme of the example 6.1.

If we make the data acquisition of this system and compose a vector with the values of
S1, S2 and S3, we will have the following IOvectors :[

0
0
0

][
1
0
0

][
0
0
0

][
0
1
0

][
0
0
0

][
0
0
1

]
(6.1)

This pattern will be repeated multiple times on the .csv file forming cycles, and since
it forms cycles the pattern can be rewritten in how many ways as it has vertices. In this
case it can be written in 6 ways. To reduce the complexity of the analysis we will only
discuss 2 ways of writing it, the first one shown in Equation 6.1 and the second shown in
Equation 6.2. So, we can define two datasets of acquisition, one beginning with [0 0 0]

T

and other with [1 0 0]
T . [

1
0
0

][
0
0
0

][
0
1
0

][
0
0
0

][
0
0
1

][
0
0
0

]
(6.2)

If we take the first dataset, the one beginning with [0 0 0]
T , use the path acquisition

method and then execute the identification algorithm, the identified model for k = 1

would be equal to the model depicted in Figure 6.6.

97

x2

x3

x1

x0

↑2,{2}

↓1,{1}

↑1,{1}

↓2,{2}

↓3,{3}

↑3,{3}

Figure 6.6: Identified model using [0 0 0]T as initial state, k = 1.

From the arcs of the state transition diagram, we can distinguish three paths. Since
[0 0 0]

T is considered the first vector and it repeats thrice throughout the motif, every
time it is repeated another path is created.

But if we take the second dataset, the one beginning with [1 0 0]
T the identified

model for k = 1 can be seen in Figure 6.7.

x2

x3

x1x0 ↑1,{1}

↓1,{1}

↑2,{1}

↓2,{1}

↑3,{1}

↓3,{1}

Figure 6.7: Identified model using [1 0 0]T as initial state, k = 1.

Differently, only one path is created this time. In this figure we can see the vector
[0 0 0]

T represented as the state x1 in this state transition diagram. All other states
have arcs coming from or going to it. Using a greater value of k, k = 2, for instance, we
can have a better vision of this unique path, see Figure 6.8.

x2 x3x0 x1 x6x4 x5
↑1,{1}↑3,{1}↑2,{1} ↓2,{1} ↓3,{1}↓1,{1}

Figure 6.8: Identified model using [1 0 0]T as initial state, k = 2.

98

In the first case, using [0 0 0]
T as the initial vector, two more paths were created

when comparing with the second case, where [1 0 0]
T is used as the initial state. At

a first glance it could seem that these 2 additional paths increase the reliability of the
identified model, but actually, it does not. If we consider the allowed sequences on this
first case, we can see that the events ↑ 2 and ↑ 3 are allowed even before the event
↑ 1 is triggered, which is not part of the normal functioning of the system, described in
example 6.1.

So, even with only one path, the second case, using [1 0 0]
T as initial state, represents

better the system, since ↑ 3 can only happen after the ↓ 1 ↑ 2 ↓ 2 sequence, as described
in example 6.1. It is important to notice that this representation is not perfect, but
represents better the system than the model using [0 0 0]

T as initial state.
From this example we can verify that the choice of the first vector plays a very

important part on the path acquisition method and consequently on the identified model.

Remark 6.1 An important remark to make is to show that we could only tell which
identified system was more trustworthy because of the description of example 6.1. But
once we have some information about the system, the system ceases to be a black box,
and it becomes a grey box.

Remark 6.1 shows that the accuracy of the DAOCT model strongly depends on
a good choice of paths. And as in the implementation the initial vector is used to
determine the paths and the initial state of the system, this initial vector also plays a
part in the identification phase. A question remains to be answered: how can we be sure
if the initial state was well-chosen if we do not have any information about the system’s
original behaviour? Maybe the root of this problem resides on the fact that input/output
vectors are used to extract the paths and to create the events. An approach that could
fix the problem would be to use an identification model that uses the observation of
the events, instead of observing the inputs and outputs of the system. And through
the observation of the events the states and paths would be obtained, consequently,
identifying the system.

99

Chapter 7

Conclusion

7.1 Concluding Remarks

In this work a method for the control, observation and identification of a DES was
presented. First, the control logic was created using a CIPN, and then implemented in
LD to be used in a Siemens PLC (chapter 4). After that, the observation of the inputs
and outputs of the controller was made using data log function blocks that saved the
data in .csv files, and finally, these .csv files were used as the input of the identification
algorithm generating a DAOCT model (chapter 5). In chapter 6 we could see that if
the system was observed for a long time and the initial state of observation was well-
chosen, then the DAOCT is a good candidate for modelling, if the aim of this modelling
is fault-detection. The fact that the exceeding language of the DAOCT model drops to
0 more rapidly than other models, with a smaller value of the variable k, proves that
it is less resource intensive than the others, even for relatively big systems, with more
than 60 inputs/outputs with concurrent behaviour.

7.2 Further Work

An issue found in the implementation of the control is the use of LD to program the
logic. Although LD is very used in the industry, as it is a visual language, it creates a
difficulty for the automation of the conversion from Petri net. An approach that can
be used in future works would be to represent the Petri net in a text format, Petri net
markup language for instance (presented in WEBER and KINDLER (2003)), and create
a tool that automatically converts this file to a text based language standardised by the
IEC 61131-1, IL or ST. Since IL is less used, ST would be a better choice. Using a

100

text based language increases portability of the code and it helps the development, since
version control can be used in text files, allowing the collaboration of multiple people to
edit the code if needed, and track who made the changes, increasing the maintainability
of the code.

Another issue was about the observation. Although the acquisition of inputs/outputs
using data logs and saving the data in batches on .csv files can be used for the identi-
fication process, for fault-detection it is not optimal to use this approach, a better one
would be to acquire the data in real time, by using some API, snap7 for example, or
using Supervisory Control and Data Acquisition (SCADA) protocols.

As shown in chapter 6, the didactic manufacturing system used for the experiments
have a considerable concurrent behaviour, affecting the identified model, on the number
of states and extracted paths. As future work would be to divide the observation of the
system in its modules, and compare the multiple models generated by the identification
algorithm with the one using the observation of the complete system.

Another issue shown in chapter 6, is the choice of the first vector to be used as initial
state in the identification algorithm. Here we propose for future works a study on how
to find the optimal vector. Two scenarios could be considered: the first one taking a
grey box approach, where some behaviour is previously known, by a simple description
of the function of the system and another considering a black box approach.

Another proposition for a future work is made in chapter 6. Instead of using an
identification model based on the observation of inputs/outputs of the system, an alter-
native would be to create and use a model that uses the observation of the events of the
system.

101

Bibliography

CABRAL, F. G., MOREIRA, M. V. “Synchronous Codiagnosability of Modular
Discrete-Event Systems”, IFAC-PapersOnLine, v. 50, n. 1, pp. 6831–6836,
2017.

CARVALHO, L. K., MOREIRA, M. V., BASILIO, J. C. “Diagnosability of intermit-
tent sensor faults in discrete event systems”, Automatica, v. 79, pp. 315 –
325, 2017. ISSN: 0005-1098. doi: https://doi.org/10.1016/j.automatica.2017.
01.017. Available at: <http://www.sciencedirect.com/science/article/
pii/S0005109817300274>.

CASSANDRAS, C. G., LAFORTUNE, S. Introduction to discrete event systems.
Springer Science & Business Media, 2009.

DAVID, R., ALLA, H. L. Du Grafcet aux réseaux de Petri. Hermes, 1989.

DAVID, R., ALLA, H. Discrete, continuous, and hybrid Petri nets, v. 1. Springer,
2005.

DAVIS, R., HAMSCHER, W. “Model-based reasoning: Troubleshooting”. In: Exploring
artificial intelligence, Elsevier, pp. 297–346, 1988.

FLORIANO, L. A. Sincronização de Sistemas a Eventos Discretos Modelados por Re-
des de Petri Usando Lugares Comuns. Undergraduate Project, Universidade
Federal do Rio de Janeiro, 2019.

KALOUPTSIDIS, N. Signal processing systems: theory and design, v. 28. Wiley-
Interscience, 1997.

KHALIL, W., DOMBRE, E. Modeling, identification and control of robots.
Butterworth-Heinemann, 2004.

102

http://www.sciencedirect.com/science/article/pii/S0005109817300274
http://www.sciencedirect.com/science/article/pii/S0005109817300274

KLEIN, S., LITZ, L., LESAGE, J.-J. “Fault detection of discrete event systems using
an identification approach”, IFAC Proceedings Volumes, v. 38, n. 1, pp. 92–97,
2005.

KUMAR, R., TAKAI, S. “Comments on “Polynomial Time Verification of Decentral-
ized Diagnosability of Discrete Event Systems” versus “Decentralized Failure
Diagnosis of Discrete Event Systems”: Complexity Clarification”, IEEE Trans-
actions on Automatic Control, v. 59, n. 5, pp. 1391–1392, 2014.

MOREIRA, M. V., BASILIO, J. C. “Bridging the gap between design and implementa-
tion of discrete-event controllers”, IEEE Transactions on Automation Science
and Engineering, v. 11, n. 1, pp. 48–65, 2013.

MOREIRA, M. V., LESAGE, J.-J. “Enhanced Discrete Event Model for System Iden-
tification with the Aim of Fault Detection”, IFAC-PapersOnLine, v. 51, n. 7,
pp. 160–166, 2018.

OLIVEIRA, V. D. S. L. Protocolo de Comunicação Profinet para Redes de Automação.
Undergraduate Project, Universidade Federal do Rio de Janeiro, 2016.

OPPENHEIM, A. V., WILLSKY, A. S., NAWAB, S. “Signals and Systems (Prentice-
Hall signal processing series)”, 1996.

PEREIRA, A. P. R. Automação de uma Planta Mecatrônica de Montagem e Armazena-
mento de Cubos Utilizando Comunicação entre Controladores Lógicos Pro-
gramáveis. Undergraduate Project, Universidade Federal do Rio de Janeiro,
2019.

PITANGA CLETO DE SOUZA, R. Um Modelo Temporizado para a Identificação de
Sistemas a Eventos Discretos. Undergraduate Project, Universidade Federal
do Rio de Janeiro, 2019.

ROTH, M., LESAGE, J.-J., LITZ, L. “An FDI method for manufacturing systems based
on an identified model”, IFAC Proceedings Volumes, v. 42, n. 4, pp. 1406–1411,
2009.

SAMPATH, M., SENGUPTA, R., LAFORTUNE, S., et al. “Diagnosability of discrete-
event systems”, IEEE Transactions on Automatic Control, v. 40, n. 9,
pp. 1555–1575, Sep. 1995. ISSN: 0018-9286. doi: 10.1109/9.412626.

103

SIEMENS. S7-1500 Structure and Use of the CPU Memory. SIEMENS, a. Avail-
able at: <https://support.industry.siemens.com/cs/attachments/
59193101/s71500_structure_and_use_of_the_PLC_memory_function_

manual_en-US_en-US.pdf?download=true>.

SIEMENS. S7-1500 Web server Function Manual. SIEMENS, b. Available at: <https:
//support.industry.siemens.com/cs/attachments/59193560/s71500_

webserver_function_manual_en-US_en-US.pdf?download=true>.

VERAS, M. Z., CABRAL, F. G., MOREIRA, M. V. “Distributed Synchronous Di-
agnosability of Discrete-Event Systems”, IFAC-PapersOnLine, v. 51, n. 7,
pp. 88–93, 2018.

VIANA, G. S., BASILIO, J. C. “Codiagnosability of discrete event systems revisited:
A new necessary and sufficient condition and its applications”, Automatica,
v. 101, pp. 354 – 364, 2019. ISSN: 0005-1098. doi: https://doi.org/10.1016/
j.automatica.2018.12.013. Available at: <http://www.sciencedirect.com/
science/article/pii/S0005109818306198>.

WEBER, M., KINDLER, E. “The petri net markup language”. In: Petri Net Technology
for communication-based systems, Springer, pp. 124–144, 2003.

104

https://support.industry.siemens.com/cs/attachments/59193101/s71500_structure_and_use_of_the_PLC_memory_function_manual_en-US_en-US.pdf?download=true
https://support.industry.siemens.com/cs/attachments/59193101/s71500_structure_and_use_of_the_PLC_memory_function_manual_en-US_en-US.pdf?download=true
https://support.industry.siemens.com/cs/attachments/59193101/s71500_structure_and_use_of_the_PLC_memory_function_manual_en-US_en-US.pdf?download=true
https://support.industry.siemens.com/cs/attachments/59193560/s71500_webserver_function_manual_en-US_en-US.pdf?download=true
https://support.industry.siemens.com/cs/attachments/59193560/s71500_webserver_function_manual_en-US_en-US.pdf?download=true
https://support.industry.siemens.com/cs/attachments/59193560/s71500_webserver_function_manual_en-US_en-US.pdf?download=true
http://www.sciencedirect.com/science/article/pii/S0005109818306198
http://www.sciencedirect.com/science/article/pii/S0005109818306198

Appendix A

Complete Petri Net

Table A.1: Complete Places.

Places Meaning

p0 System Stopped
p1, p31 Retract MAG1’s Cylinder *
p2, p32 MAG1’s Cylinder Retracted
p3, p54 Retract MAG2’s Cylinder *
p4, p55 MAG2’s Cylinder Retracted

p5, p38, p64 Retract Right Discharge Cylinder *
p6 Right Discharge Cylinder Retracted
p7 Retract Center Discharge Cylinder
p8 Center Discharge Cylinder Retracted

p9, p46, p60 Retract Left Discharge Cylinder *
p10 Left Discharge Cylinder Retracted
p11 Turn Conveyor Belt On (Reverse)
p12 No Pieces On Conveyor Belt
p13 Reset Variables
p14 Raise Press
p15 Open Safety Door
p16 Extend Assembly Unit Holder
p17 Assembly Unit Ready

p18
Arm Lowered and Retracted, and Storage Unit

Retracted
Continued on next page

105

Continued from previous page

Places Meaning

p19, p109, p134 Move Storage Unit to the Right
p20 Storage Unit ready (horizontal)
p21 Move Storage Device Downwards
p22 Storage Unit ready (vertical)
p23 Rotate Arm CCW

p24, p105 Turn HSC Off (Arm Stopped)
p25 Rotate Arm CW

p26, p107 Arm Stopped facing conveyor belt
p27 System Ready
p28 MAG1 Empty
p29 MAG1 Not Empty
p30 Extend MAG1’s Cylinder *

p33, p36, p39, p44, p47, p48,
p56, p58, p62, p66, p70, p71

Turn Conveyor Belt On

p34, p42, p57, p69, p110, p117,
p129, p138, p141, p146

p35 Plastic Half-cube
p37, p63 Extend Right Discharge Cylinder *
p40, p67 Extend Center Discharge Cylinder *
p41, p68 Retract Center Discharge Cylinder *
p43, p61 Metal Half-cube
p45, p59 Extend Left Discharge Cylinder *
p49 Metal Half-cube Ready

p50, p73 Conveyor Belt Stopped
p51 MAG2 Empty
p52 MAG2 Not Empty
p53 Extend MAG2’s Cylinder *
p65 White Half-Cube
p72 Plastic Half-cube Ready

p74, p84, p144 Raise Arm
p75 Raise and Extend Arm, and Turn Vacuum On

p76, p81, p94, p101 Extend Arm and Turn Vacuum On
Continued on next page

106

Continued from previous page

Places Meaning

p77, p80, p97, p100 Raise and Extend Arm and Turn Vacuum On
p78 Raise Arm and Turn Vacuum On
p79 Raise Arm, Turn Vacuum On and Rotate Arm CW

p82, p102 Extend Arm
p83, p95, p103, p142 Raise and Extend Arm

p85 Raise Arm and Rotate Arm CCW

p86
Raise Arm and HALFPIECE-

COUNTER:=HALFPIECECOUNTER+1
p87 Retract Assembly Unit Holder *
p88 Close Safety Door *
p89 Lower Press *
p90 Raise Press *
p91 Open Safety Door *
p92 Extend Assembly Unit Holder *
p93 Cube Ready

p98

Reset HALFPIECECOUNTER*, Raise and Extend
Arm, Turn Vacuum On and Move Storage Unit to the

Left

p99
Raise and Extend Arm, Turn Vacuum On and Rotate

Arm CW
p104 Turn Arm CCW
p106 Turn Arm CW
p108 Cube on Storage Unit

p111, p112, p113, p114 Move Storage Unit Upwards
p115 COUNTER3:=COUNTER3+1
p116 RESET COUNTER3*

p118
COUNTER1:=COUNTER1+1 e
COUNTER4:=COUNTER4+1

p119, p120, p121, p122, p123,
p124, p125

Move Storage Unit to the Left

p126 COUNTER5:=COUNTER5+1
p127 Reset COUNTER5*

Continued on next page

107

Continued from previous page

Places Meaning

p128 Reset COUNTER4* , COUNTER2:=COUNTER2+1
p130, p132 Extend Storage Unit

p131
Extend Storage Unit and Move Storage Unit

Downwards
p133 Piece Stored
p135 Storage Unit Ready (horizontal)
p136 Move Storage Unit Downwards
p137 Storage Unit Ready (vertical)
p139 Storage Unit Ready

p140
Reset COUNTER1, COUNTER2, COUNTER3,

COUNTER4 and COUNTER5*
p143 Raise, Extend Arm and Turn CCW
p145 Raise Arm and Turn CCW

Table A.2: Complete Transitions.

Transitions Meaning

t0 Initialization Button
t1 MAG1’s Cylinder Retracted
t2 MAG2’s Cylinder Retracted

t3, t30, t60 Right Discharge Cylinder Retracted
t4, t34, t65 Center Discharge Cylinder Retracted
t5, t39, t55 Left Discharge Cylinder Retracted

t6, t18, t21, t40, t45, t47, t66,
t71, t85, t92, t120, t142, t143,

t152

t9 Safety Door Opened
t10 Assembly Unit Holder Extended

t11
Storage Unit Retracted and Arm Lowered and

Retracted
t12, t106, t150 Storage Unit Right Limit Switch
t13, t151 Storage Unit Inferior Limit Switch

t15, t102, t162 Inductive Sensor Arm
Continued on next page

108

Continued from previous page

Transitions Meaning

t17, t104 ARMCOUNTER <= BELT_ANGLE_CW
t19 Start Button
t20 MAG1 Empty
t22 ↑ MAG1’s Cylinder Extended
t23 ↑ MAG1’s Cylinder Retracted

t26, t56 Metallic Sensor
t27, t57, t61 White Color Sensor
t28, t37, t53 ↑ Proximity Sensor Left Discharge Cylinder
t29, t59 Right Discharge Cylinder Extended
t31 White Color Sensor

t32, t63 ↑ Proximity Sensor Center Discharge Cylinder
t33, t64 Center Discharge Cylinder Extended
t35, t52 Metallic Sensor
t36, t67 Concavity Downwards
t38, t54 Left Discharge Cylinder Extended
t41, t62 Concavity Upwards
t42, t68 ↑ Proximity Sensor End Of Conveyor Belt
t44, t70 ↓ Proximity Sensor End Of Conveyor Belt
t46 MAG2 Empty
t48 ↑ MAG2’s Cylinder Extended
t49 ↑ MAG2’s Cylinder Retracted
t58 ↑ Proximity Sensor Right Discharge Cylinder
t72 Arm Raised
t77 ARMCOUNTER <= PRESS_ANGLE

t82
HALFPIECECOUNTER=1, Assembly Unit Holder

Extended and Safety Door Opened
t84 ARMCOUNTER >= BELT_ANGLE_CCW

t95, t101
Arm Raised, Storage Unit Right and Inferior Limit

Switches
t96 Storage Unit Arm Alignement Encoder
t97 ARMCOUNTER <= STORAGE_ANGLE
t100 Arm Lowered

Continued on next page

109

Continued from previous page

Transitions Meaning

t107 COUNTER2=0
t108 COUNTER3=4 and Vertical Encoder
t109 COUNTER3<=4 and Vertical Encoder
t110 COUNTER2=1
t111 COUNTER3=3 and Vertical Encoder
t112 COUNTER3<=3 and Vertical Encoder
t113 COUNTER2=2
t114 COUNTER3=2 and Vertical Encoder
t115 COUNTER3<=2 and Vertical Encoder
t116 COUNTER2=3
t117 COUNTER3=1 and Vertical Encoder
t118 COUNTER3<=1 and Vertical Encoder
t119 Vertical Encoder
t121 COUNTER4=1
t122 COUNTER5=1 and Horizontal Encoder
t123 COUNTER5<=1 and Horizontal Encoder
t124 COUNTER4=2
t125 COUNTER5=2 and Horizontal Encoder
t126 COUNTER5<=2 and Horizontal Encoder
t127 COUNTER4=3
t128 COUNTER5=3 and Horizontal Encoder
t129 COUNTER5<=3 and Horizontal Encoder
t130 COUNTER4=4
t131 COUNTER5=4 and Horizontal Encoder
t132 COUNTER5<=4 and Horizontal Encoder
t133 COUNTER4=5
t134 COUNTER5=5 and Horizontal Encoder
t135 COUNTER5<=5 and Horizontal Encoder
t136 COUNTER4=6
t137 COUNTER5=6 and Horizontal Encoder
t138 COUNTER5<=6 and Horizontal Encoder
t139 COUNTER4=7

Continued on next page

110

Continued from previous page

Transitions Meaning

t140 COUNTER5=7 and Horizontal Encoder
t141 COUNTER5<=7 and Horizontal Encoder
t144 Horizontal Encoder
t153 COUNTER1<28

t154, t155 COUNTER1=28
t156 Stop Button
t157 ARMCOUNTER < STORAGE_ANGLE_BEFORE

t158 Arm Raised and Extended
t159 ARMCOUNTER >= STORAGE_ANGLE_BEFORE

t160

(ARMCOUNTER >= STORAGE_ANGLE_BEFORE

and ARMCOUNTER < PRESS_ANGLE_AFTER) or
ARMCOUNTER >= PRESS_ANGLE_BEFORE

t161 Arm Raised and Retracted

t163
ARMCOUNTER >= PRESS_ANGLE_AFTER and

ARMCOUNTER < PRESS_ANGLE_BEFORE

t164 Arm Retracted
t165 Arm Retracted
t7 T=12s
t8 T=2.5s

t14, t98, t99, t105, t145 T=2s
t16, t88, t89, t103 T=1s
t24, t43, t50, t69 T=0.5s

t25, t51 ↑ Presence T=0.5s
t73, t80 T=1.5s

t74, t79, t94 T=1.5s and Arm Lowered
t75, t76, t78, t81 T=1.5s and Arm Raised

t83 T=1.5s, HALFPIECECOUNTER=0 and Raised Arm
t86 T=1s and Assembly Unit Holder Retracted
t87 T=1s and Safety Door Closed
t90 T=1s and Safety Door Opened
t91 T=1s and Assembly Unit Holder Extended
t93 T=1.5s and Arm Extended

Continued on next page

111

Continued from previous page

Transitions Meaning

t146, t148 T=3s
t147 T=0.25s
t149 T=7s

112

Initialization

Metal Piece

Plastic Piece

Arm From Belt to Press

Press
Arm From Press to Storage

Storage (y)

Storage (x)

Store Piece

Arm Stop

p70 p71

p72

p73

p74 p75 p76 p77 p78 p79

p99

t88 t89

t67

t66

t65
t64t63t62t61

t60

p117

t7

t68

p132 p133p130 p131

p136

t80

p134 p135

p138

t81

t136
t137

t134
t135

t132

t133

t130
t131

t156

t14 t16

t138

t139

p63p62p61

p60

p67p66p65

p64

p69

p68

p118

t52 t53

t56 t57

t54 t55

t153

t58 t59

p115

t95

p109

p108

p107

t92

p105p104p103p102p101p100 t102t101t100

t107

t106

t128

p106

t109

t108

t152

t157

p58 p59p56 p57p54 p55p52 p53

p50

p51

p34

t49t48

t86

p35

t45

t44

t47t46

t41

t40

t42

t4

t5

t6

p37

t0

t1

t2

t3

p110

t27

p112

p113

p114

t9

p116

t26

t87

t119

t114

t115

t116 t117

t110

t111

t112

t113

p49

p48

p41p40

p43 p42
p45p44

p47

p46t38 t39

t30t31 t32 t33

t34
t35

t36 t37t24 t25

p140

p121

t161t160

t21

t162t165
t164

t159

p120

t147

t104

p137p125

t29t28 p38

p39

t23t22

p36

t20
p30 p31 p32 p33

t51t50

t83

p98 t97

t17
t15t12

t13

t10

t11

p128

t18

t19

t105

t8

p29

p28

p27p26p25p24p23

p22p21

p20

t43

t144

t143

t142t141

t140

p139

p129

p94

p143p142

p141

p124

p146
p145

p144

t146

t129

t145 t148 t149

p18
p19

p95

p12

p13

p10

p11

p16 p17
p14

p15

p92 p93p90 p91

p96 p97

t79t78

t158

t76t75t74t73

t103

p8

p9

t150

t96

p1 p2

p3 p4

p5 p6

p7

t94

t118

t91t90 t93

p119
t122

t99t98

t151

t77

t70

t71

t72

t154

t163

t155

p0

t69

p123

p122

p89p88

p127

p126

p85p84

p87

p86p81p80 p83p82

t125
t124

t127

t126

t121

t120

t123

p111

t82
t85

t84

113

Appendix B

Tools

The development of these tools used in this work was made using Ubuntu 18.04,
wrapping some Linux and Unix programs/utilities, 100% compatibility with other oper-
ating systems/platforms was not the primary objective of this part of the work, but can
be performed in some future work. The tools developed for this work are available at
https://github.com/Accacio/docsTCC/tree/master/tools, and the most used ones
will be presented in the following sections.

B.1 daoct

To implement the algorithm 1, presented in MOREIRA and LESAGE (2018), a
script was created by Ryan Pitanga as part of his undergraduate project, PITANGA
CLETO DE SOUZA (2019). His code was partially reimplemented, so it could be used
as a command line tool based in common Unix tools (that uses stdin and stdout1 to pipe2

processes). Some extra features were added, in order to represent the identified model
in two forms: as a graph or as a list. The graph is represented using the dot language3

and the list represents the f function of the identified automaton. The output in .dot

file format can be input in another script to draw the state transition diagram of the
identified models.

Figure B.1 depicts the help menu of the daoct program. An example of the most com-
mon usage of the daoct program can be presented. Considering the .csv file presented
in Figure B.2, it can be input to the daoct program in order to obtain the paths from the
file and identify the DAOCT model. The two outputs can be obtained by using the fol-

1http://man7.org/linux/man-pages/man3/stdin.3.html
2http://man7.org/linux/man-pages/man2/pipe.2.html
3language used by the program graphviz (https://graphviz.org/) to draw graphs

114

https://github.com/Accacio/docsTCC/tree/master/tools
http://man7.org/linux/man-pages/man3/stdin.3.html
http://man7.org/linux/man-pages/man2/pipe.2.html
https://graphviz.org/

lowing commands: daoct -i filename.csv -g and daoct -i filename.csv -f. The
first one generates the graph using dot language (shown in Figure B.3) and the second
one results in the f (shown in Figure B.4).

Figure B.1: daoct help dialog.

Figure B.2: daoct csv input file. Figure B.3: daoct graphviz output.

Figure B.4: daoct f function output.

115

B.2 dot2automata

In order to visualize the output of the daoct program, the script dot2automata was
created. This program is basically a wrapper of the dot2tex program, that is capable of
transforming a .dot file into a .tex file using tikz syntax. The program dot2automata

pre-process the .dot file so the tikz output can be drawn using an automaton style with
states, marked states and labelled arcs, similar to the style presented in MOREIRA
and LESAGE (2018). Figure B.5 shows the help menu of the dot2automata program,
describing how to operate it.

Figure B.5: dot2automata Help.

The output of the program daoct can be piped to the dot2automata program in the
following manner: daoct -i filename.csv -g | dot2automata - -o outputFilename

This program outputs a .tikz file, but it can also output a .pdf file. The .pdf file
is used as a preview of the image that is generated by the tikz figure. The tikz figure can
be included in a LATEX document and resized using the tikzscale package. So, including
a .tikz file in a LATEX document, as in Listing B.1, it can result in the diagram depicted
in Figure B.8.

Listing B.1: Include tikz file.

\ begin { f i g u r e } [H]
\ c en t e r i ng
\ i n c l udeg r aph i c s [width=\textwidth] { t o o l s /dot2automata/sampleData . t i k z }
\ capt ion {dot2automata output . }

\end{ f i g u r e }

116

x2 x3x0 x1 x4

↓Input1
{ 0 }

↑Input1
{ 0, 1 }

↑Output1
{ 0 }

↓Output1
{ 0, 1 }

Figure B.6: dot2automata output.

B.3 dot2petri

The dot2petri program is a similar to dot2automata.The working principle is the
same but the objective is different. For dot2petri program, the objective is to visualize
Petri nets. Its help dialogue is presented in Figure B.7:

Figure B.7: dot2petri Help.

The input .dot file has a syntax slightly different from plain vanilla dot language,
as we can see in the following listing:

Listing B.2: dot2petri input dot file.
digraph A {
rankd i r=LR;
r a t i o= f i l l
graph [pad="0.5" , nodesep ="0.25" , ranksep ="0 .2"] ;

p0m3
p1
ep3
t 1
t t 2
et 5
e t t 6

p0m3 −> t1 [l a b e l ="3"]
p1 −> t1 [s t y l e=" i n h i b i t o r "]

117

p1 −> tt 2
p1 −> et 5
t 1 −> p1
t t 2 −> ep3
t t 2 −> p0m3 [l a b e l ="3"]
e t t 6 −> p0m3

}

Using this modified syntax it is easy to define places, marked places, transitions,
timed transitions, and different kinds of arcs. Places are defined using ‘p’ followed by
an identification number. Marked places are similar to places but have the letter ‘m’
and a number appended, this number represents how many tokens are in this place.
Transitions are defined with a simple ‘t’ followed by its identification number and timed
transitions are created using ‘tt’ and the id. The arcs can be defined using ‘->’ between
two tags (between places and transitions and vice-versa). An inhibitor arc can be created
changing the style of the arc. A label can be used to represent the Pre and Post functions
of the Petri Net. A tikz style for external places and transitions is created in order to be
represented by dotted lines. External places and transitions use the same tags of normal
places and transitions, but with a letter ‘e’ prepended.

Such dot files can be created in two ways: manually writing them or using another
program called petriml2dot present in the same repository. The petriml2dot program
converts a file in petriml format, created using the Platform Independent Petri net Editor
2 (PIPE2)4 into the dot format. PIPE2 is a very powerful tool to design Petri nets,
since it is possible to simulate the net and it can generate reachability graphs, but in
its current version, it lacks a tool to export the graph as a .tikz file. So, petriml2dot
and dot2petri are used to fill the gap.

The code shown in Listing B.2 used as input for the dot2petri script outputs a
.tikz file. Including the .tikz in a similar fashion to the one shown in Listing B.1, can
result in the following figure:

p1 t5

t2
p3

t1

p0t6

3

3

Figure B.8: dot2petri output.

4http://pipe2.sourceforge.net/

118

http://pipe2.sourceforge.net/

	List of Figures
	List of Tables
	List of Acronyms
	List of Symbols
	Introduction
	Work Outline

	Background
	Systems
	Discrete Event Systems
	Languages
	Representation of Languages
	Automata
	Petri Nets

	Control Interpreted Petri Nets
	Implementation of Control Interpreted Petri Nets
	Ladder Logic
	Conversion from Control Interpreted Petri Nets to Ladder Diagram
	Control Interpreted Petri Net implemented in multiple PLCs

	Identification
	Deterministic Automaton with Outputs and Conditional Transitions

	Didactic Manufacturing System
	Magazine Unit
	Conveyor Belt
	Sorting Unit
	Handling Unit
	Assembly Unit
	Storage Unit

	Control Logic
	Control Interpreted Petri net for the manufacturing system
	Initialization
	Metal Cube Half Sorting
	Plastic Cube Half Sorting
	Arm From Conveyor Belt to Assembly Unit
	Assembly Unit
	Arm From Assembly Unit To Storage Unit
	Storage Unit Positioning (y Axis)
	Storage Unit Positioning (x Axis)
	Cube Storage
	Arm Stop Logic

	Implementation of the Control

	Manufacturing System Identification
	Data Acquisition
	Model Identification

	Identified Model
	Identified Model
	Discussion about Paths

	Conclusion
	Concluding Remarks
	Further Work

	Bibliography
	Complete Petri Net
	Tools
	daoct
	dot2automata
	dot2petri

