Universidade Federal do Rio de Janeiro Centro de Ciências Matemáticas e da Natureza Observatório do Valongo Curso de Astronomia

Altair Ramos Gomes Júnior

Astrometria de Satélites Irregulares de Júpiter e Saturno

Rio de Janeiro 2012 Altair Ramos Gomes Júnior

Astrometria de Satélites Irregulares de Júpiter e Saturno

Monografia apresentada ao Curso de Astronomia da UFRJ, como requisito para a obtenção parcial do grau de BACHAREL em Astronomia.

> Orientador: Marcelo Assafin Professor Doutor

Rio de Janeiro 2012

Gomes Júnior, Altair Ramos

Astrometria de Satélites Irregulares de Júpiter e Saturno / Altair Ramos Gomes Júnior - 2012 126.p

Astrometria. I.Título.

CDU 521.9

Altair Ramos Gomes Júnior

Astrometria de Satélites Irregulares de Júpiter e Saturno

Monografia apresentada ao Curso de Astronomia da UFRJ, como requisito para a obtenção parcial do grau de BACHAREL em Astronomia.

Aprovado em 05 de Março de 2012

BANCA EXAMINADORA

Marcelo Assafin Professor Doutor

Roberto Vieira Martins

 Doutor

Júlio Camargo

Doutor

Agradecimentos

Inicialmente aos meus pais, que me incentivaram a estudar astronomia, mesmo sendo em uma faculdade distante e das dificuldades de nos vermos pessoalmente. Pela compreensão das vezes em que não pude visita-los por causa dos estudos. Pelos conselhos que me deram.

Ao meu orientador Marcelo Assafin, pela paciência que teve ao orientar um aluno novato como eu e pela base de conhecimentos que me deu ao longo da graduação nessa área que tenho bastante interesse.

Por fim, aos meus amigos e colegas, pela troca de conhecimentos e pela amizade que sempre pude contar nas horas de aperto.

Resumo

O estudo da estrutura e evolução do Sistema Solar tem muita importância atualmente, por exemplo, na compreensão dos mecanismos de formação dos planetas trazendo em seus desdobramentos valiosas informações quanto a viabilidade de formação de ambientes que comportem vida.

Praticamente cada satélite é um problema particular de Mecânica Celeste. Dessa forma, a observação de seus movimentos é muito útil por razões teóricas. A preparação e realização de missões espaciais para alguns satélites requer observações frequentes e posições muito acuradas.

Os satélites irregulares de planetas gigantes, principalmente de Júpiter e de Saturno, são substancialmente menores do que os satélites regulares e possuem forma irregular com órbitas mais distantes, excêntricas e retrógradas. Explicar a existência dos satélites irregulares dos planetas gigantes é um estudo interessante em dinâmica orbital. É amplamente aceito que eles, devido à configuração orbital, foram capturados por seus planetas. Existem várias hipóteses para a permanência destes satélites, sendo a mais aceita a do arrasto gasoso durante a fase de formação desses sistemas planetários. A compreensão dos mecanismos de captura dos satélites irregulares nos fará entender melhor o nosso próprio sistema solar e, possivelmente, de sistemas extra-solares.

Com o pacote astrométrico PRAIA o tempo empregado na redução de grandes quantidades de imagens foi diminuído significativamente. Os objetivos científicos dos nossos programas observacionais agora tem sido atingidos em curtíssimo prazo, em consonância com a atual demanda astronômica e astrofísica de nossa área.

Em uma base de dados com 24 mil imagens obtidas entre 1998 e 2008 no telescópio de 1,20m (1m20) do Observatoire de Haute Province, França, mais de 3 mil contem satélites irregulares de Júpiter e Saturno. Reduzir essa grande quantidade de observações com precisão só foi possível com a utilização do PRAIA. Como é possível ver nos resultados obtidos, os offsets de posição refletem o erro natural da astrometria e o erro das efemérides dos satélites mais fracos, e sugerem que estamos contribuindo para melhorar as efemérides - objetivo deste trabalho. Palavras-chave: Astrometria, Satélites Irregulares

Abstract

The study of the Solar System's structure and evolution is very important, for example, in the comprehension of the mechanisms of the planetary formation bringing valuable information about the viability of environments which could support life.

In practice, each satellite is a special problem of Celestial Mechanics. This way, the observation of their moviments is very useful for theoretical reasons. The preparation and realization of spacial missions for some satellites require frequent observations and very precise positions.

The irregular satellites of giant planets, mainly from Jupiter and Saturn, are much smaller than regulars and they have irregular shapes with more distant, eccentric and retrograde orbits. To explain the existence of irregular satellites in giant planets is an interesting study in orbital dynamics. It's largely accepted that, due to their orbital configuration, they were captured by their planets. There are many hypothesis for the their permanence, the most accepted being gaseous drag during the formation period of this planetary systems. The comprehension of the capture mechanism of the irregular satellites will make us understand our own solar system and, problably, the extra-solar systems.

The time consumption in the reduction of large amounts of images was significantly shorttened with the use of the astrometric package PRAIA. The scientific purposes of our observacional program are now reached in due time, in cope with the current astronomical and astrophisical demands.

In a database with 24 thousand images taken between 1998 and 2008 at the 1.20m telescope (1m20) of the Observatoire de Haute Province, France, more than 3 thousand contains irregular satellites of Jupiter and Saturn. Reducing this considerable amount of images with precision was only possible with the use of PRAIA. As shown by the results, the position offsets reflect the natural error of the astrometry and ephemeris error of the faint satellites, and suggest we are helping to improve the ephemeris - objective of this work.

Keywords: Astrometry, Irregular Satellites

Sumário

Li	sta d	le Figu	ras	8						
1	Introdução 1									
2	Obs	servaçõ	es	14						
	2.1	Progra	nma OHP	14						
	2.2	Telesc	ópio 1m20	14						
	2.3	Observ	vações	16						
3	Tra	tament	to de Imagens. Obtenção de Posições $(lpha,\delta)$	18						
	3.1	Efemé	rides	18						
	3.2	UCAC	22	18						
	3.3	Reduç	ão de Bias e Flats	20						
	3.4	O pac	ote de tratamento e redução de dados PRAIA	21						
		3.4.1	Extração de dados das Imagens	24						
		3.4.2	Detecção Automática de objetos	24						
		3.4.3	Identificação Automática de Estrelas de Catálogo	24						
		3.4.4	Identificação Automática dos Alvos	25						
	3.5	Reduç	ão de $lpha$ e δ	25						
4	Res	ultado	s	28						
5	Aná	ălise		33						
6	Con	nclusõe	S	37						

A Gráficos de Erro Gaussiano

	A.1	Satélit	es de Júpiter	38
		A.1.1	Galileanos	38
		A.1.2	Grupo Irregular Prógrado Himalia	42
		A.1.3	Grupo Irregular Retrógrado Ananke	45
		A.1.4	Grupo Irregular Retrógrado Carme	46
		A.1.5	Grupo Irregular Retrógrado Pasiphae	47
	A.2	Satélit	es de Saturno	49
		A.2.1	Grupo de Satélites Regulares	49
		A.2.2	Grupo de Satélites Irregulares	52
в	Tab	elas de	e Estatística Noite a Noite	54
	B.1	Satélit	es de Júpiter	55
		B.1.1	Galileanos	55
		B.1.2	Grupo Irregular Prógrado Himalia	57
		B.1.3	Grupo Irregular Retrógrado Ananke	65
		B.1.4	Grupo Irregular Retrógrado Carme	66
		B.1.5	Grupo Irregular Retrógrado Pasiphae	69
	B.2	Satélit	es de Saturno	73
		B.2.1	Satélites Regulares	73
		B.2.2	Satélites Irregulares	77
\mathbf{C}	Grá	ficos O	offset x Anomalia Verdadeira	82
	C.1	Satélit	es de Júpiter	83
		C.1.1	Galileanos	83
		C.1.2	Grupo Irregular Prógrado Himalia	87
		C.1.3	Grupo Irregular Retrógrado Ananke	91
		C.1.4	Grupo Irregular Retrógrado Carme	92

		C.1.5	Grupo Irregular Retrógrado Pasiphae	93
	C.2	Satélit	es de Saturno	96
		C.2.1	Satélites Regulares	96
		C.2.2	Satélites Irregulares	99
D	Grá	ficos d	os Offsets projetados no céu ao longo da Órbita	101
	D.1	Satélit	es de Júpiter	101
		D.1.1	Grupo Irregular Prógrado Himalia	101
		D.1.2	Grupo Irregular Retrógrado Ananke	114
		D.1.3	Grupo Irregular Retrógrado Carme	117
		D.1.4	Grupo Irregular Retrógrado Pasiphae	122
	D.2	Satélit	es de Saturno	124
		D.2.1	Satélites Regulares	124
		D.2.2	Satélites Irregulares	128

Referências Bibliográficas

136

Lista de Figuras

1.1	Esquema ilustrativo das órbitas dos satélites irregulares	13
2.1	Fotos do Telescópio 1m20 do OHP	15
2.2	Gráfico: Número de Observações por satélite	16
2.3	Quantidade de Imagens por Satélite por Ano	17
3.1	Esquema ilustrativo do pacote PRAIA	23
3.2	Erro Gaussiano Por Magnitude dos Satélites de Júpiter	26
3.3	Erro Gaussiano Por Magnitude dos Satélites de Saturno	27
4.1	Offset de Efemérides dos Satélites de Júpiter	30
4.2	Offset de Efemérides dos Satélites de Saturno	31
5.1	Gráfico Offset x Anomalia Verdadeira - Carme	34
5.2	Gráficos das órbitas de Carme	36
A.1	Erro Gaussiano Por Magnitude de Callisto	39
A.2	Erro Gaussiano Por Magnitude de Europa	39
A.3	Erro Gaussiano Por Magnitude de Ganymede	40
A.4	Erro Gaussiano Por Magnitude de Io	41
A.5	Erro Gaussiano Por Magnitude dos Satélites Galileanos	41
A.6	Erro Gaussiano Por Magnitude de Himalia	42
A.7	Erro Gaussiano Por Magnitude de Elara	43
A.8	Erro Gaussiano Por Magnitude de Leda	43
A.9	Erro Gaussiano Por Magnitude de Lysithea	44
A.10	Erro Gaussiano Por Magnitude de Ananke	45

A.11 Erro Gaussiano Por Magnitude de Carme	46
A.12 Erro Gaussiano Por Magnitude de Pasiphae	47
A.13 Erro Gaussiano Por Magnitude de Sinope	48
A.14 Erro Gaussiano Por Magnitude dos Satélites Irregulares de Júpiter	48
A.15 Erro Gaussiano Por Magnitude de Hyperion	49
A.16 Erro Gaussiano Por Magnitude de Iapetus	50
A.17 Erro Gaussiano Por Magnitude de Titan	51
A.18 Erro Gaussiano Por Magnitude de Phoebe	52
A.19 Erro Gaussiano Por Magnitude de Siarnaq	53
C.1 Gráfico Offset x Anomalia Verdadeira - Callisto	83
C.2 Gráfico Offset x Anomalia Verdadeira - Europa	84
C.3 Gráfico Offset x Anomalia Verdadeira - Ganymede	85
C.4 Gráfico Offset x Anomalia Verdadeira - Io	86
C.5 Gráfico Offset x Anomalia Verdadeira - Himalia	87
C.6 Gráfico Offset x Anomalia Verdadeira - Elara	88
C.7 Gráfico Offset x Anomalia Verdadeira - Leda	89
C.8 Gráfico Offset x Anomalia Verdadeira - Lysithea	90
C.9 Gráfico Offset x Anomalia Verdadeira - Ananke	91
C.10 Gráfico Offset x Anomalia Verdadeira - Carme	92
C.11 Gráfico Offset x Anomalia Verdadeira - Pasiphae	93
C.12 Gráfico Offset x Anomalia Verdadeira - Callirrhoe	94
C.13 Gráfico Offset x Anomalia Verdadeira - Sinope	95
C.14 Gráfico Offset x Anomalia Verdadeira - Titan	96
C.15 Gráfico Offset x Anomalia Verdadeira - Hyperion	97
C.16 Gráfico Offset x Anomalia Verdadeira - Iapetus	98
C.17 Gráfico Offset x Anomalia Verdadeira - Siarnaq	99

C.18	Gráfico O	offset x A	noma	alia Verda	d	eir	a -	. A	lb	ioı	rix	•	•	• •		•	•	 •	•	•	•	 100)
D.1	Gráficos d	las órbita	as de	Himalia		•	•		•	•				•		•	•	 •		•		 107	7
D.2	Gráficos d	las órbita	as de	Elara			•															 111	L
D.3	Gráficos d	las órbita	as de	Leda		•	•		•	•			•	•	•	•	•		•	•		 112	2
D.4	Gráficos d	las órbita	as de	Lysithea		•	•		•	•			•	•	•	•	•		•			 113	}
D.5	Gráficos d	las órbita	as de	Ananke		•	•	• •	•			•	•	•	•	•	•		•	•		 117	7
D.6	Gráficos d	las órbita	as de	Carme .	•	•	•		•	•		•	•	•	•	•	•	 •	•	•	•	 121	L
D.7	Gráficos d	las órbita	as de	Sinope .		•	•		•	•			•	•	•	•	•		•	•		 124	1
D.8	Gráficos d	las órbita	as de	Iapetus			•		•	•				•	•	•	•		•	•	•	 128	3
D.9	Gráficos d	las órbita	as de	Phoebe		•	•		•						•	•	•		•	•	•	 134	1
D.10	Gráficos d	las órbita	as de	Siarnaq		•			•	•			•	• •							•	 135	5

1 Introdução

O estudo do Sistema Solar teve início com o mapeamento cinemático de seus constituintes e posteriormente com o estudo de sua dinâmica. A Astronomia Fundamental e a Mecânica Celeste desempenham papel importante no seu estudo, por exemplo, sem a contribuição dessas ciências, não seria possível realizar os ensaios modernos baseados na integração direta das equações de movimento, que recentemente tanto tem ampliado nosso entendimento dos cenários de formação do Sistema Solar e de sua evolução, como a migração dos planetas gigantes e os efeitos da evolução das regiões de ressonância sobre os pequenos corpos[5].

Por outro lado, o leque de modernas técnicas baseadas em observações do espaço, e mesmo a prospecção mineral em loco com sondas, têm permitido descortinar novos problemas, levantando questões relacionadas à composição química dos planetas, asteróides, cometas e satélites, que remetem a questões básicas da origem e evolução do Sistema Solar. De custo comparativamente irrisório, o uso de técnicas espectroscópicas e fotométricas, a partir de observações do solo, também tem contribuído para desvendar o quadro das composições químicas do Sistema Solar. Esse quadro é essencial para entender, ou mesmo selecionar, os mecanismos mais prováveis para a evolução do sistema até o seu estado atual, e futuro.

Com a recente descoberta de planetas extra-solares, redobrou-se a importância do estudo da estrutura e evolução do Sistema Solar. Por exemplo, o aprofundamento da compreensão dos mecanismos de formação dos planetas traz em seus desdobramentos valiosas informações quanto a viabilidade de formação de ambientes que comportem vida.

Nosso grupo tem estudado desde a década de 80 a cinemática e a dinâmica de satélites do Sistema Solar. Em paralelo, grandes esforços também foram - e vem sendo - feitos para melhor caracterizar o próprio referencial astrométrico, em relação ao qual essas posições e efemérides são obtidas. O melhor conhecimento cinemático e dinâmico dos constituintes de nosso sistema sem dúvida contribui para aprimorar os estudos de evolução do Sistema Solar, refinando as condições de contorno (massas, geometria) nas teorias semi-analíticas e nos processos de integração numérica das equações.

Hoje em dia, no contexto da astrometria CCD de pequenos campos, a de-

manda por precisão funde-se com a necessidade estatística de geração de grandes volumes de dados. De fato, temos lidado com volumes de dados cada vez maiores, provenientes dos programas observacionais conduzidos pelo grupo de Astrometria do Rio de Janeiro em observatórios astronômicos no país e no exterior, em parceria com colaboradores de instituições nacionais e estrangeiras. Como exemplo, citamos o programa de astrometria de satélites naturais, planetas, estrelas rádio-emissoras e fontes rádio do ICRF, observadas nos telescópios do Laboratório Nacional de Astrofísica/MCT (LNA), o projeto de astrometria de fontes ICRF observadas no infra-vermelho com o 3.6m NTT/SOFI (ESO, Chile), os quasares ICRF do projeto RORF (USNO) observados no 0.9m do CTIO (Chile) e 0.6m na Romênia, e finalmente as observações de quasares do ICRF no 4m SOAR/SOI (Chile).

Recentemente, conseguimos produzir um pacote de redução astrométrica automatizada de imagens astronômicas digitalizadas que calcula posições com grande precisão, acurácia e velocidade, para uma grande quantidade de imagens. É o PRAIA – Plataforma de Redução Automática de Imagens Astronômicas. Com grants do CNPq, concretizamos a organização de uma estrutura computacional que permite acomodar de forma adequada todo o volume de imagens astronômicas produzido, permitindo a efetiva utilização do PRAIA em todo seu potencial. Por outro lado, a recente automatização da captura de efemérides de corpos do sistema solar via internet e a incorporação de novos catálogos astrométricos ao pacote também foram viabilizadas e já têm permitido a obtenção rápida e eficiente de resultados científicos dentro de nossos programas observacionais do sistema solar.

Praticamente cada satélite é um problema particular de Mecânica Celeste. Dessa forma, a observação de seus movimentos é muito útil por razões teóricas. A preparação e realização de missões espaciais para alguns satélites requer observações frequentes e posições muito acuradas.[6]

Os satélites irregulares de planetas gigantes, principalmente de Júpiter e de Saturno, são substancialmente menores do que os satélites regulares e possuem forma irregular (como o próprio nome indica), possuindo órbitas mais distantes, excêntricas e retrógradas. Explicar a existência dos satélites irregulares dos planetas gigantes é um estudo interessante em dinâmica orbital. É amplamente aceito que eles, devido à configuração orbital, foram capturados por seus planetas[8]. O modelo de captura gravitacional explica como ocorre a aproximação do satélite até o planeta, porém, esta captura é temporária. Existem várias hipóteses para a permanência destes satélites, sendo a mais aceita a do arrasto gasoso durante a fase de formação desses sistemas planetários, quando a presença de gás viscoso ainda era significativa. A compreensão dos mecanismos de captura dos satélites irregulares nos fará entender melhor o nosso próprio sistema solar e, possivelmente, de sistemas extra-solares.[7]

As órbitas dos satélites irregulares de Júpiter e de Saturno, respectivamente, são mostrados na Figura 1.1, esquematicamente, por eixo semi-maior (o eixo horizontal em milhões de kilômetros), pela inclinação orbital (o eixo vertical) e pela excentricidade (linhas amarelas). Os tamanhos relativos são indicados pelos círculos.

Figura 1.1: Esquema ilustrativo das órbitas dos satélites irregulares: a escala vertical se refere à inclinação em graus da órbita dos satélites em relação ao planeta; a escala horizontal é a distância em milhões de Km ao planeta; as linhas representam a variação de distância do satélite ao planeta durante o período orbital; os círculos são os tamanhos relativos dos satélites.(Fonte da imagem: Wikipedia)

2 Observações

2.1 Programa OHP

Para a melhoria das efemérides dos satélites planetários e para a compreensão da dinâmica do Sistema Solar, foi realizado campanhas de observações astrométricas no *Observatoire Haute-Provence*, em particular para os satélites irregulares de Júpiter e Saturno, pouco observados e mal conhecidos.

Um banco de dados com mais de 24000 (vinte e quatro mil) imagens foi obtido no período de 1998 a 2008. Essa grande quantidade de imagens só pôde ser reduzida agora graças à disponibilidade do PRAIA.

As imagens foram gentilmente cedidas pelo Dr. Jean-Eudes Arlot do Observatoire de Paris/France para o grupo do Rio. Como essas observações compreendem uma larga base de tempo com muitas imagens, o conjunto de posições precisas que foram obtidas contribuirá significativamente para a melhoria das efemérides destes satélites, de forma independente das medidas indiretas oriundas de sondas. Para se ter uma ideia, este número de observações representa mais de 10 vezes a quantidade de posições óticas publicadas para estes satélites no mesmo período.

2.2 Telescópio 1m20

O telescópio de 1m20 (de origem parisiense, construído em 1875), o primeiro a ser instalado em Saint Michel, entrou em serviço em 1943. Tem focal f/6 e o seu foco newtoniano. Sua distância focal é de 7,20 metros, o que corresponde a uma escala de placa de 35 µm por segundo de arco. Uma câmera CCD para imagem direta está montada em permanência no foco Newtoniano. Um conjunto ocular especial foi construído em 1988 para receber o criostato com o CCD. Este conjunto contém uma roda de filtros de 6 posições, um obturador e um sistema de guiagem automática. Todas as funções do conjunto ocular e do CCD são controladas por computador localizado na sala de controle. Apenas a operação do telescópio e a rotação da cúpula necessitam da presença de uma

pessoa.

Figura 2.1: Fotos do Telescópio 1m20 do Observatoire Haute-Provence

Uma câmera CCD Tektronix está disponível no telescópio 1m20 desde 12 de Janeiro de 1996. Esta câmera utiliza um detector CCD 1024x1024 de SITe (TK1024 #2) afinado e tratado com uma camada anti-reflexo otimizada para os comprimentos de onda correstondentes ao visível. O tamanho dos pixels é de 24µm, que dá 0.69"no céu. O campo do CCD é de 11.8'x11.8'. A eficiência quântica do TK1024 é 70% à 4000Å, 80% à 7000 Å e 45% à 9000 Å. O detector é pilotado por um controlador tipo ESO.

O ruído de leitura é de 6.8 e- para uma leitura lenta (em 115 sec) e de 8.5 epara uma leitura rápida (em 75 sec). O ganho recomendado é 3.5 e-/ADU. A saturação numérica é de 65537 ADU. A linearidade do CCD foi medida e é melhor que $\pm 0.7\%$ no intervalo até 60000 ADU.

A roda de filtros no conjunto ocular permite receber 6 filtros redondos de 50 mm de diâmetro e de 10.5 mm de espessura máxima. Filtros de banda larga (U'; Cousins B, V, R; Gunn u, v, g, r, i, z) e filtros de interferência estreitas, centrados nos raios de emissão de interesse geral, estão disponíveis. No nosso banco de dados não foi utilizado nenhum filtro.

Um setor do obturador fornece uma iluminação constante sobre todo o CCD, mesmo para tempo de exposição curto. O tempo de exposição efetivo é preciso próximo à 0.05 segundos. O tempo de abertura/fechamento é de 0.16 segundos.

A aquisição se faz via uma estação de trabalho Unix com a ajuda de um pro-

grama interativo e amigável (LIDO). Duas telas constituem o posto de observação. Diferentes menus guiam o usuário durante seu trabalho e permitem uma exploração completa do CCD (janelas, exposições fracionadas, ciclos de poses automáticas, etc). A visualização e o pré-tratamento se fazem na outra tela. SAOimage e MIDAS estão disponíveis. As imagens brutas resultantes da câmera são escritas no disco em formato FITS e arquivadas.

O controle do conjunto ocular e da câmera CCD são feitas com a ajuda de LIDO. O programa permite girar a roda de filtros, iniciar e interromper uma exposição do céu, encurtá-la ou de prolongá-la ao longo do tempo de exposição especificada inicialmente, fazer os bias e flats, abrir ou fechar o obturador em caso de urgente necessidade e permite fazer as poses "fragmentadas" para o apontamento. Ele permite também preparar e lançar séries de poses em diferentes filtros. O tempo morto entre duas poses consecutivas varia segundo o modo de leitura utilizado. Cada imagem obtida é escrita em dois discos diferentes. Uma cópia é disponibilizada para o pré-processamento e a outra é destinada para backup.[?]

2.3 Observações

Dos 24 mil campos reduzidos, o PRAIA efetivamente identificou 3158 imagens CCD úteis de satélites. A Figura 2.2 ilustra a quantidade de imagens encontradas para cada satélite:

Figura 2.2: Gráfico do Número de Observações por Satélite

Agrupamos esses satélites em 3 conjuntos:

• Satélites Externos de Saturno e Júpiter: englobam os satélites irregulares cujas órbitas podem ser melhoradas com o nosso trabalho;

- Satélites Principais: são os maiores satélites, conhecidos há mais de 300 anos e que tem suas órbitas melhor conhecidas, eles servirão de base para o direcionamento do nosso estudo;
- Satélites Raros: são os satélites com brilho mais fraco, difíceis de serem observados, Albiorix, Callirrhoe e Siarnaq, cujas magnitudes são 20.5, 20.7, e 20.1, respectivamente. Os resultados do nosso trabalho trarão valiosa contribuição para a determinação da órbita desses satélites.

Na Fig. 2.3 é mostrada a distribuição do número de observações por ano para cada satélite de Júpiter e Saturno.

Figura 2.3: Esse Gráfico mostra o número de imagens feitas para cada satélite ano a ano.

3 Tratamento de Imagens. Obtenção de Posições (α, δ)

3.1 Efemérides

Uma efeméride de um dado corpo em movimento orbital é uma tabela de suas posições e velocidades calculadas em instantes específicos.[1]

Efemérides de alta precisão para corpos do Sistema Solar estão disponíveis online usando o sistema HORIZONS do JPL. O sistema HORIZONS pode também ser usado para saída de efemérides na forma de elementos orbitais osculadores e/ou vetores de estado (posição e velocidade).

Profissionais que necessitam de efemérides de alta precisão dispõem de um software de dados de efemérides (no formato SPK: Spacecraft and Planet Kernel) e de um kit de softwares necessários para ler esses arquivos do site NAIF (Navigation and Ancillary Information Facility) do JPL. Arquivos SPK para efemérides planetárias e satélites planetários estão disponíveis no NAIF. Esses softwares e "kernels" como SOFA e SLALIB (para rotaçao da Terra e vetores topocêntricos) foram usados no presente trabalho (Camargo, com. priv.).

3.2 UCAC2

O UCAC2 é um catálogo astrométrico de alta densidade, altamente acurado e conveniente para a banda ótica no quesito de materialização de referencial celeste, com 48.330.571 estrelas que cobre toda a área do Hemisfério Sul Celeste até $+40^{\circ}$ de declinação podendo chegar a $+52^{\circ}$ em algumas áreas. O limite da parte norte depende da ascensão reta. Movimentos próprios e magnitudes são fornecidos para todas as estrelas. Posições e movimentos próprios estão referidos ao ICRS (International Celestial Reference System) e são dados na época J2000.0.[11]

O UCAC foi um programa observacional que fez uso do Astrógrafo Duplo do U.S. Naval Observatory (USNO) e uma câmera CCD de 4k por 4k, cobrindo cerca de um grau quadrado por campo com uma escala de 0,9"/pixel.

O UCAC2 não é completo, nem na cobertura do céu acima mencionado, nem para um intervalo individual de magnitude por uma série de razões:

- Estrelas cuja imagens estavam saturadas no detector não foram incluídas. Se uma estrela é mais brilhante que R=8.0, é provável que ela não esteja no UCAC2.
- Estrelas múltiplas com separação de 3"ou menos foram excluídos (requisito da condição inicial). A maioria das estrelas na faixa entre 3 e 6 arcsec de separação estão provavelmente faltando devido ao processo de combinação de imagens.
- Todas as "estrelas problema", por exemplo com grandes erros internos no processo de combinação de imagens, foram excluídas.
- Estrelas com menos de 2 observações foram excluídas para manter os padrões de qualidade UCAC.
- Se o movimento próprio de uma estrela foi computada como sendo maior que 180 mas/ano em qualquer coordenada, mas não era uma estrela NLTT¹ conhecida, nem se encontrava no catálogo Hipparcos, ela foi excluída do UCAC2.
- Se o movimento próprio não pôde ser determinado devido a falta de dados da primeira época, qualquer um sendo inexistente ou menos de 10 anos a partir da observação UCAC, a estrela é excluída.
- Se o erro de movimento próprio baseado na dispersão dos dados posicionais excedeu 20 mas/ano em qualquer coordenada, ele é excluído.

A astrometria fornecida no UCAC2 está no sistema Hipparcos, ou seja, no Sistema de Referência Celeste Internacional (ICRS). As posições são dadas na época padrão de data Juliana 2000.0, logo o UCAC2 é um catálogo compilado.

A variação de magnitude do UCAC2 está entre 8 e 16, na faixa de 579-642 nm. Isto é, entre o amarelo central (V) e o vermelho (R). As magnitudes UCAC estão com um erro estimado de aproximadamente 0,3 mag.

O erro das posições observadas está em torno de 20 mas para as estrelas na faixa de magnitudes entre 10 e 14, e cerca 70 mas no limite de magnitude $R\sim16$.

¹New Luyten Catalogue of Stars with Proper Motions Larger than Two Tenths of an Arcsecond

3.3 Redução de Bias e Flats

IRAF (Image Reductions and Analysis Facility) é uma coleção de softwares voltados para a redução e análise de dados astronômicos[10]. É um projeto originado e mantido pelo National Optical Astronomy Observatory (NOAO). Ele foi primeiramente usado em distribuições Linux, mas é agora acessível a todos os principais sistemas operacionais.

Os comandos do IRAF são organizados em estruturas de pacotes. Pacotes adicionais podem ser inseridos ao IRAF. Os pacotes de redução de bias e flats já vem na instalação do sistema e são de fácil utilização.

Todos as imagens foram calibradas de bias e flatfields com o pacote IRAF, previamente ao processamento astrométrico. Algumas poucas noites não foram calibradas devido à ausência imagens de bias e flatfields.

Bias ou imagens de zero são imagens com tempo de exposição de 0 (zero) segundos e 0 (zero) fótons contados. O número de contagens gravadas para cada pixel da imagem é atribuída à tensão de corrente contínua mantida na eletrônica da câmera para influenciar os semicondutores e conservar o sinal detectado pelo conversor analógicodigital. Essa contagem registrada em cada pixel da imagem representa a base sobre a qual a contagem nas imagens de ciência se acumula. Ele não representa carga acumulada no chip.[2]

A calibração de bias é feita pela sua subtração de todas as imagens de ciência e flats. Essa operação deve ser a primeira a ser feita, uma vez que corresponde ao ruído mais básico, presente em todas as imagens e só depende da câmera.

Flatfield é a resposta do detector a uma fonte que ilumina uniformente o CCD. Isso normalmente é feito expondo o chip a uma tela iluminada por um projetor de lâmpada. Se a sensibilidade de cada pixel for idêntica, e não houver outros efeitos, o flatfield terá valor constante. Porém, pixeis diferentes têm diferentes eficiências quânticas devido a pequenas variações estruturais no CCD. Filtros ou outros elementos no caminho ótico do instrumento, como resíduos, também podem gerar variações.

O flatfield mede as variações de sensibilidade resultante pixel a pixel. Ao contrário da correção de bias, que foi aditiva, a correção de flatfield é multiplicativa. Portanto as imagens de ciência deve ser dividido pelo flatfield. Essa operação procura tornar plano a sensibilidade do CCD.

3.4 O pacote de tratamento e redução de dados PRAIA

O PRAIA (Pacote de Redução Automática de Imagens Astronômicas) é um pacote de softwares criado pelo Professor Marcelo Assafin com a colaboração de outros pesquisadores do grupo de Astrometria do Rio de Janeiro. Foi o pacote utilizado neste trabalho para o tratamento das imagens e para a obtenção das posições observadas (α , δ) dos satélites. A seguir, descreveremos as características e as tarefas do pacote, utilizadas no trabalho.

Um fator importante do trabalho está na utilidade estatística de se usar uma base de dados com um número extremamente elevado de observações (imagens). Esta é a maneira pela qual os efeitos atmosféricos de turbulência e extinção são efetivamente alisados e as informações de posição e de brilho são corretamente extraídas das imagens CCD. O tratamento astrométrico e fotométrico do PRAIA é capaz de lidar com uma imensa quantidade de dados de forma rápida, sendo capaz de obter a qualidade necessária para atingir os objetivos científicos dos programas observacionais em tempo recorde de processamento. As implementações incorporadas no software refletem experiência de mais de 20 anos de atuação na área da redução astrométrica e fotométrica de imagens astronômicas digitalizadas. Os aspectos principais do pacote são dados a seguir.

- Portabilidade: Roda em Linux ou Windows, foi desenvolvido inteiramente em FOR-TRAN 77, sem interfaces gráficas iterativas, e atua em imagens digitalizadas no formato padrão FITS.
- Flexibilidade: Cada módulo do programa, da astrometria à fotometria, pode ser livremente adaptado e/ou desenvolvido, independendo dos demais.
- 3. Automatização: Os programas foram desenvolvidos de forma que todos os parâmetros astrométricos e fotométricos sejam automaticamente calculados a partir do tratamento das imagens, com um mínimo de acesso às informações dos cabeçalhos FITS. As informações nos cabeçalhos são listadas e podem ser editadas. Ao usuário, cabe basicamente o preenchimento de nomes de arquivos de entrada e de saída de resultados. Também são preenchidos informações de controle como erros, modelos polinomiais desejados, etc. Não há qualquer interação do usuário com os programas durante o processo. A identificação de objetos no campo, ajustes de medidas (x,y), redução de posições e determinação de magnitudes instrumentais (e erros) é

totalmente automatizada. O usuário pode controlar os níveis de tolerância de seeing, escala, erros de reconhecimento de estrelas de catálogo e de alvos, e erros de eliminação de estrelas de referência nos ajustes de posição.

- 4. Velocidade: O processamento em um Intel 3.4GHz com 2GB de RAM é de 40 campos/hora para imagens de 1000x1000 pixeis com milhares de estrelas e manipulação dos catálogos UCAC2 e 2MASS completos. Essa velocidade abre a possibilidade de processamento em tempo real, junto ao telescópio.
- 5. Precisão e Acurácia: foram implementados algoritmos de identificação rápida e eficiente de objetos nas imagens, via pesquisa de máximos locais, demarcação de perímetro por histograma de contagens e comparação com fundo de céu. Esse procedimento é particularmente eficiente como deblending de objetos superpostos. Máscaras para eliminar pixels ruins podem ser utilizadas. A porcentagem máxima de identificações espúrias fica tipicamente abaixo de 0,5%, frequentemente indo virtualmente a zero. As medidas são feitas utilizando ajustes Gaussianos bidimensionais, com técnicas de trimming em 1 FWHM (largura a meia altura). Os campos são reduzidos em relação aos catálogos UCAC2 e 2MASS. Há eliminação de estrelas outliers, uma a uma, nas reduções polinomiais. É usada a técnica de correção de catálogo no plano tangente[3] para o 2MASS, associada a correção de Apex e rotação Galática local, via cálculo de movimento próprio médio com estrelas UCAC2 comuns.
- 6. Extração automática de Efemérides: As efemérides de qualquer corpo do Sistema Solar são automaticamente extraídas para a data e região observada, e os offsets de posição entre as efemérides e a posição ótica reduzida são registrados automaticamente para análise posterior.

Há ainda o cálculo de magnitudes instrumentais via fotometria de abertura e PSF, calculando-se o ponto zero em relação ao sistema fotométrico do UCAC2 (o ponto zero pode ser re-definido). A magnitude do fundo de céu também é calculada. A FWHM das estrelas (seeing) é calculada automaticamente, sendo dados valores individuais por estrela, e valores médios, com as respectivas incertezas. Offsets (dx,dy) entre imagens sucessivas de um mesmo campo são também computados alternativamente. Todos esses parâmetros auxiliaram num tratamento fotométrico posterior e complementar das imagens com IRAF. Todas as informações fotométricas e astrométricas da redução, para todos os catálogos, e para cada campo, são guardadas em arquivos de dados. Também são gerados arquivos listando as estatísticas gerais de todos os campos. Os arquivos são de fácil manuseio nas tarefas de análise numérica e gráfica dos resultados. Além das posições obtidas, listam-se os parâmetros Gaussianos dos ajustes de cada estrela, os erros de medida em (x,y) e em posição, número de estrelas de referência, movimentos próprios, época da observação, magnitudes UCAC2, 2MASS, magnitudes instrumentais, informações da observação (filtros usados, tempo de exposição, etc). Em particular, são listados em arquivos separados os dados pertinentes aos alvos identificados nos campos, incluindose os offsets de posição entre os (a,d) observados reduzidos com UCAC2 e 2MASS e as coordenadas de referência fornecidas previamente pelo usuário em arquivo (efeméride, catálogo, etc.).

Um esquema ilustrativo do PRAIA é mostrado na Fig 3.1. A descrição de cada etapa está descrito nas subseções 3.4.1 à 3.4.4

Figura 3.1: Esquema ilustrativo do pacote PRAIA: a sequencia a ser seguida pelo PRAIA está no sentido horário, desde a extração dos dados das imagens, até a identificação dos alvos nos campos CCD e, consequentemente, a obtenção de resultados.

3.4.1 Extração de dados das Imagens

O PRAIA retira todas as informações localizadas no header das imagens e disponibiliza em arquivos em um formato próprio, pronto para ser usado pelas outras partes do software. Esses arquivos de saída são tabelas organizadas em que o usuário pode ter uma noção geral e rápida de todo o banco de imagens.

Os arquivos podem ser editados de forma a corrigir ou atualizar as informações. neles estão contidos dados como o centro (α , δ) das imagens, instante central da observação (em Data Juliana e em formato Gregoriano), tempo de exposição, filtro usado, nome do arquivo e nome do alvo.

3.4.2 Detecção Automática de objetos

A identificação das fontes nos campos CCD é feita localizando-se os objetos acima do fundo do céu que é ajustado segundo um modelo polinomial bivariado de grau n, com n podendo variar de zero (fundo constante) à 15. Constituem objetos identificados os conjuntos de pixels com contagem acima do fundo de céu superior a 2,5 vezes o erro médio quadrático do ajuste polinomial (este valor de 2,5 pode ser alterado pelo usuário). O modelo de perfil de distribuição de luz ou Point Spread Function (PSF) das fontes usado pelo PRAIA é o da Gaussiana Simétrica que, segundo simulações feitas por Stone (1989), fornece melhores determinações dos centros (x_c, y_c) , para várias condições de magnitudes e fundo de céu.[9]

O fotocentro é determinado fazendo-se um ajuste de uma função Gaussiana com um plano de fundo de céu. A equação básica da distribuição é dado por:

$$F = C + Hexp \frac{-1}{2} \left[\frac{(x - x_c)^2 + (y - y_c)^2}{s^2} \right]$$
(3.1)

onde H é a altura da Gaussiana, o s é o sigma da Gaussiana. Para encontrar os parâmetros da equação 3.1 é utilizado a técnica de mínimos quadrados não-linear, seguindo o Método de Marquardt[4].

3.4.3 Identificação Automática de Estrelas de Catálogo

O PRAIA toma os pares de medidas (x,y) das N estrelas medidas mais brilhantes (N fornecido pelo usuário) e faz uma identificação cruzada com as coordenadas (X,Y) projetadas dos objetos mais brilhantes do catálogo utilizando mínimos quadrados com um modelo de 4 constantes, para modelar as distorções mais básicas do campo CCD. Mais estrelas comuns são então identificadas. Em seguida, usa-se um modelo mais completo para fazer o cruzamento, começando pelo polinômio de grau 1 indo até grau 3 (se houver um número suficiente de estrelas de referência), em um processo iterativo até que todas as estrelas de catálogo medidas no CCD sejam reconhecidas.

3.4.4 Identificação Automática dos Alvos

Foram geradas efemérides (posições RA, DEC teóricas) para 125 satélites, sendo 63 de Saturno e 62 de Júpiter para todos os instantes de observação das 24 mil imagens. Para isso foi utilizado o pacote NAIF fornecido pelo JPL. Foram utilizadas as teorias orbitais mais recentes (até Novembro de 2009) de cada satélite.

Como o nosso banco de dados corresponde a um intervalo de tempo de 12 anos (1997-2008) e em muitas noites eram observados vários astros, as informações extraídas dos cabeçalhos das imagens eram, muitas vezes, genéricas e incompletas. Não seria prática a inspeção visual das imagens para selecionar os satélites objetivados neste trabalho. Por outro lado, o PRAIA tem a capacidade de detectar automaticamente os alvos fornecidos pelas suas efemérides. Assim, para se evitar a perda de imagens úteis, resolvemos trabalhar em cima do banco de dados completo. O PRAIA automaticamente detectou, dentre os 24mil campos tratados, aqueles que efetivamente correspondiam a algum dos 125 satélites, pela comparação entre todas as coordenadas (α , δ) medidas de todos os objetos de todos os campos com as coordenadas extraídas das efemérides. Essa busca é feita dentro de um erro fornecido pelo usuário. Pode ser feita para qualquer número de alvos, mesmo que exista mais de um alvo numa mesma imagem.

3.5 Redução de $\alpha \in \delta$

Utilizamos o pacote PRAIA para tratar todas as imagens e obter as posições observadas de todos os satélites identificados.

Usamos o catálogo UCAC2 como sistema de referência e o polinômio de grau 1 para relacionar as medidas (x,y) com as coordenadas de catálogo (X,Y) projetadas no plano tangente. A conversão entre coordenadas projetadas e posições (α , δ) é feita usando projeções gnomônicas. Dependendo do campo, tipicamente 12 estrelas UCAC2 por CCD foram usadas nas reduções de (α, δ) . Estrelas de referência foram eliminadas uma a uma em um processo iterativo, até que nenhuma apresentasse resíduos de posição (O-C) maiores que 120 mas (equivalente a 2-3 vezes o erro do UCAC2). O erro médio das posições obtido a partir da redução dos (α, δ) ficou tipicamente em 70 mas para ambas as coordenadas.

Os erros Gaussianos (erro da curva gaussiana descrita na subseção 3.4.2) das medidas (x,y) ficaram abaixo de 50 mas para os satélites de Júpiter e de Saturno, como mostram as Figs. 3.2 e 3.3.

Figura 3.2: Erro Gaussiano Por Magnitude dos Satélites de Júpiter

Figura 3.3: Erro Gaussiano Por Magnitude dos Satélites de Saturno

Como esperado, ocorre aumento significativo de pontos com erros Gaussianos em x e y mais altos para as magnitudes mais fracas. O grupo de magnitudes brilhantes refere-se as Galileanos na Fig. 3.2 e aos satélites principais de Saturno na Fig. 3.3. Os gráficos individuais por satélite estão no Apêndice A

Os offsets entre as posições observadas e as extraídas das efemérides foram guardadas para cada satélite, e serão discutidas no capítulo de Resultados.

4 Resultados

Todos os satélites estão representados nas Tabelas 4.1 e 4.2. Nas tabelas são fornecidos os números de imagens por satélite, a média e desvio padrão das diferenças entre as posições observada e da efeméride e a classificação do satélite. Classificamos os satélites como P (Principal), E (Externo) e R (Raro). Essa estatística é sobre as médias das noites já com eliminação de medidas ruins.

A eliminação das medidas ruins foi feita utilizando uma tarefa do pacote PRAIA desenvolvida durante o projeto, que tem como objetivo fazer a estatística noite a noite e a eliminação de medidas ruins. Procuram-se posições que estejam agrupadas dentro de um intervalo de 10 horas, que representa uma noite, tira-se as médias e os erros dos offsets e elimina-se offsets fora dos limites dado pelo usuário dado por um fator baseado no sigma da estatística e/ou em valor absoluto.

Foram eliminados offsets que excederam 120 mas da média e que excederam a 2 vezes o sigma da estatística da noite. Após a primeira eliminação, é tomada uma nova estatística da noite, e assim por diante, até que tudo esteja dentro dos limites escolhidos. As tabelas com os dados da eliminação estão no Apêndice B.

	Júpiter														
Satélite	NI	ME AR	DP AR	ME DEC	DP DEC	Mag	Ncat	TIPO							
Callisto	79	38	83	48	83	5,7	6	G							
Europa	23	-13	121	29	111	5,2	4	G							
Ganymede	57	14	131	37	80	4,7	4	G							
Io	13	45	86	90	132	4,7	5	G							
Ananke	156	29	99	-8	76	18,7	36	Е							
Carme	222	-2	88	-52	75	17,7	29	Е							
Elara	203	-9	71	-26	75	16,6	22	Е							
Himalia	401	-4	61	5	71	15,1	28	Е							
Leda	54	3	129	152	83	19,5	8	Е							
Lysithea	91	6	67	-46	61	18,0	40	Е							
Pasiphae	258	-49	86	-63	88	17,2	23	Е							

Sinope	189	-67	199	-21	92	18,2	30	Е
Callirrhoe	4	-	-	-	-	20,8	23	R

Tabela 4.1: Estatística dos Satélites Reduzidos de Júpiter sobre as médias das noites já com eliminação de medidas ruins. NI: Número de Imagens; ME AR: Média dos offsets no sentido "posição PRAIA menos efeméride" em Ascensão Reta (mas); DP AR: Desvio Padrão em Ascensão Reta (mas); ME DEC: Média dos offsets em Declinação (mas); DP DEC: Desvio Padrão em Declinação (mas); Mag: magnitude média; Ncat: Número médio de estrelas de catálogo; A última coluna é o tipo: Galileanos (G), Externos (E) e Raros (R).

Saturno														
Satélite	NI	ME AR	DP AR	ME DEC	DP DEC	Mag	Ncat	TIPO						
Iapetus	284	-16	70	3	63	10,5	14	Р						
Titan	105	22	66	-17	70	8,0	13	Р						
Hyperion	46	-9	58	25	59	14,1	6	Е						
Phoebe	590	-4	44	5	44	16,3	42	Е						
Albiorix	3	-	-	-	-	20,6	47	R						
Siarnaq	23	-155	132	-125	114	20,0	23	R						

Tabela 4.2: Estatística dos Satélites Reduzidos de Saturno sobre as médias das noites já com eliminação de medidas ruins. NI: Número de Imagens; ME AR: Média dos offsets no sentido "posição PRAIA menos efeméride"em Ascensão Reta (mas); DP AR: Desvio Padrão em Ascensão Reta (mas); ME DEC: Média dos offsets em Declinação (mas); DP DEC: Desvio Padrão em Declinação (mas); Mag: magnitude média; Ncat: Número médio de estrelas de catálogo; A última coluna é o tipo: Principais (P), Externos (E) e Raros (R). Nas figuras 4.1 e 4.2 temos os gráficos de "offset de efeméride"em mas por magnitude. Para cada satélite é possível ter imagens com magnitudes distintas. Isso se deve principalmente à variação de distância entre o satélite e a Terra, resultante do movimento orbital do satélite em em volta do planeta, do planeta ao redor do Sol e da Terra ao redor do Sol. Esses gráficos devem nos dar uma ideia se os resultados equivalem a uma boa redução astrométrica, onde offsets para maiores magnitudes devem ter valores maiores do que os de menores magnitudes.

Figura 4.1: Offset de Efemérides dos Satélites de Júpiter

Como esperado nas Figuras 4.1 e 4.2, os offsets tendem a se espalhar mais para as magnitudes mais fracas, refletindo o erro natural da astrometria e o erro das efemérides dos satélites mais fracos.

O grupo das magnitudes brilhantes nos gráficos de offsets (Fig. 4.1), referem-

Figura 4.2: Offset de Efemérides dos Satélites de Saturno

se aos satélites Galileanos. Os offsets desses satélites estão obviamente mais alto do que o esperado. Isso não é causado pelas medidas, pois os gráficos dos erros Gaussianos (Figuras 3.2 e 3.3) indicam que a qualidade das medidas (x,y) estão equivalentes aos demais satélites mais fracos. Isto é, a saturação na imagem dos satélites galileanos foi bem contornada pelo PRAIA, pois os pixels saturados são eliminados automaticamente dos ajustes, muito embora isso faça com que apenas pixels mais adjacentes ao centro das imagens seja aproveitado, enquanto que para os satélites fracos, sem imagens saturadas, os pixels centrais são ajustados (mas em compensação, menos pixels acima do fundo de céu são aproveitados). A provável razão para os maiores offsets podem vir do pequeno numero de estrelas UCAC2 de referência disponíveis nesses campos, pois as imagens são tomadas com tempos curtos para não saturar completamente as imagens dos Galileanos, portanto apenas as estrelas UCAC2 mais brilhantes podem ser efetivamente medidas. Como é possível observar na Tabela 4.1, a média de estrelas de catálogo por pose dos Galileanos não passa de 6 estrelas.
5 Análise

Para análise dos resultados, foram feitos gráficos dos offsets das posições óticas em relação às efemérides, no sentido "PRAIA menos efeméride". O primeiro deles é o gráfico "offsets em relação às efemérides por anomalia verdadeira", sendo a anomalia verdadeira o ângulo de posição na órbita a partir da menor distância entre o satélite e o planeta (periastro) na direção de movimento do satélite. Na Fig 5.1 temos como exemplo para o satélite Carme. Para os demais satélites, os gráficos estão no Apêndice C.

A Figura 5.2 mostra uma projeção da órbita de Carme como vista da Terra durante um período orbital do mesmo centrado em Júpiter. A linha é a posição do satélite dado pela efeméride em relação ao planeta, que está centrado no gráfico, os vetores são os offsets das posições observadas em relação às efemérides e aponta na direção da posição observada. Duas setas nos dizem a direção do movimento do satélite. No Apêndice D é mostrado os gráficos das órbitas dos demais satélites.

Utilizando como exemplo os gráficos de Carme Fig 5.2, pode-se perceber que em declinação há uma variação significativa com uma tendência aos offsets negativos próximos ao apoastro (180° de Anomalia Verdadeira) e offsets positivos quando se dirige ao periastro (0°). Juntamente com os gráficos das órbitas e pelo fato de, como pode-se ver na Fig 1.1(a), Carme ter baixa inclinação (em relação aos demais), conclui-se, observandoos, de que o erro mostrado no gráfico de declinação deve-se, principalmente, à um erro de inclinação da órbita deste satélite.

A exceção da inclinação, os erros nos outros elementos orbitais são de mais difícil percepção com gráficos como os da Fig. 5.1, sendo que correções a esses elementos serão obtidas após novas integrações numéricas com as novas posições óticas aqui obtidas, e que estão sendo feitas pelo grupo do Observatoire de Paris.

Como esperado nas Figuras 4.1 e 4.2, os offsets tendem a se espalhar mais para as magnitudes mais fracas, refletindo o erro natural da astrometria e o erro das efemérides dos satélites mais fracos.

Figura 5.1: Gráfico Offset x Anomalia Verdadeira - Carme: os dois primeiros são offsets em Declinação e os dois últimos os offsets em Ascensão Reta; o primeiro e o terceiro gráficos mostram os offsets de todas as poses enquanto o segundo e quarto gráfico mostram a média, com respectivo desvio-padrão, dos offsets de cada noite.

Carme - Orb4: Out/02 - Set/04 por dia

Figura 5.2: Gráfico das órbitas de Carme: Esses gráficos são uma projeção da órbita de Carme como visto da Terra durante um período orbital do mesmo centrado em Júpiter. A linha é a posição do satélite dado pela efeméride em relação ao planeta, que está centrado no gráfico, os vetores são os offsets das posições observadas em relação às efemérides e aponta na direção da posição observada. Duas setas nos dizem a direção do movimento do satélite. O primeiro e terceiro gráfico utilizam os offsets de todas as poses enquanto o segundo e quarto gráfico utilizam as médias dos offsets de cada noite.

6 Conclusões

Com o pacote PRAIA, agora posto para funcionar em toda sua capacidade, o tempo empregado na redução de grandes quantidades foi diminuído significativamente, e nossa produtividade já está dando o salto esperado. Os objetivos científicos dos nossos programas observacionais agora tem sido atingidos em curtíssimo prazo, em consonância com a atual demanda astronômica e astrofísica de nossa área.

Em uma base de dados com 24 mil imagens, mais de 3 mil pertenciam aos satélites de Júpiter e Saturno. Reduzir essa grande quantidade com precisão só foi possível com a utilização do PRAIA. Como é possível ver nos gráficos obtidos, por exemplo nas Figuras 4.1 e 4.2, onde os offsets reflete o erro natural da astrometria e o erro das efemérides dos satélites mais fracos, e os gráficos de offsets por anomalia do Apêndice C e de projeção na órbita do Apêndice D sugerem que estamos contribuindo para melhorar as efemérides.

O proximo passo é o de organizar e reduzir as imagens CCD dos satélites irregulares de Saturno e Júpiter, observadas com os telescópios de 1.6m e de 0.6m do Laboratório Nacional de Astrofísica do Brasil. São mais de 4 mil imagens obtidas do banco de dados do LNA, compreendendo o período de 1995 a 2010, feitas pelo nosso grupo. Compreendendo, portanto, a mesma base de tempo das observações em Hauté de Provance, França, o conjunto de posições astrométricas brasileiras precisas a ser obtido complementará de maneira muito conveniente a cobertura orbital dos satélites feita com o programa francês.

Os resultados destes trabalhos serão publicados em periódico de circulação internacional.

A Gráficos de Erro Gaussiano

Para cada satélite, no lugar de uma concentração de pontos em torno de uma mesma magnitude, nota-se que os pontos distribuem-se dentro de uma faixa de magnitudes, que varia um pouco de satélite a satélite. Isto se dá porque a magnitude dos satélites varia de acordo com a distância do satélite à Terra, devido aos seus movimentos orbitais, e com erros de ponto zero da fotometria, já que a fotometria eh feita pelo PRAIA tomando o UCAC2 como referência, e o mesmo não é um catálogo com magnitudes fotométricas, e o comprimento de onda do astrógrafo do UCAC2 é diferente do comprimento de onda das observações do CCD usado no 1m20 do OHP.

Nos gráficos, o eixo vertical representa o valor do erro gaussiano (erro da curva gaussiana, como descrito na subseção 3.4.2.

A.1 Satélites de Júpiter

A.1.1 Galileanos

Figura A.2: Erro Gaussiano Por Magnitude de Europa

Figura A.3: Erro Gaussiano Por Magnitude de Ganymede

Figura A.5: Erro Gaussiano Por Magnitude dos Satélites Galileanos

A.1.2 Grupo Irregular Prógrado Himalia

Figura A.8: Erro Gaussiano Por Magnitude de Leda

Figura A.9: Erro Gaussiano Por Magnitude de Lysithea

A.1.3 Grupo Irregular Retrógrado Ananke

Figura A.10: Erro Gaussiano Por Magnitude de Ananke

A.1.4 Grupo Irregular Retrógrado Carme

Figura A.11: Erro Gaussiano Por Magnitude de Carme

A.1.5 Grupo Irregular Retrógrado Pasiphae

Figura A.13: Erro Gaussiano Por Magnitude de Sinope

Figura A.14: Erro Gaussiano Por Magnitude dos Satélites Irregulares de Júpiter

A.2 Satélites de Saturno

A.2.1 Grupo de Satélites Regulares

Figura A.15: Erro Gaussiano Por Magnitude de Hyperion

Figura A.16: Erro Gaussiano Por Magnitude de Iapetus

Figura A.17: Erro Gaussiano Por Magnitude de Titan

A.2.2 Grupo de Satélites Irregulares

Figura A.18: Erro Gaussiano Por Magnitude de Phoebe

Figura A.19: Erro Gaussiano Por Magnitude de Siarnaq

B Tabelas de Estatística Noite a Noite

As tabelas neste anexo foram obtidas utilizando uma tarefa do pacote PRAIA, que fez a estatística dos dados noite a noite. Foram eliminados offsets entre posição e efeméride que excederam 120 mas da média e aquelas que excederam a 2 vezes o sigma da estatística da noite (tais fatores podem ser modificados pelo usuário). Após a primeira eliminação, é tomada uma nova estatística da noite, e assim por diante, até que ela esteja dentro dos limites escolhidos.

As 5 primeiras colunas são os dados obtidos após todo o processo. É fornecida as médias em Ascensão Reta (off_ra) e Declinação (off_de) e seus respectivos erros ("E_a"para Ascensão Reta e "E_d"para Declinação) em mas. A coluna "Nfr"se refere à quantidade de imagens que foram utilizadas. Após elas há mais 5 colunas com os resultados sem eliminação de dados (off_ra_t, off_de_t, E_a_t e E_d_t) e a quantidade total de imagens da noite (Nfr_t). Para completar as informações, temos as colunas de Data Juliana (JD) e Ano, dadas pelo tempo médio das observações, os erros médios em Alfa (S_a) e Delta (S_d) dado em mili-segundo de arco das estrelas do catálogo de referência e, por último, o número médio de estrelas de referência por imagem.

B.1 Satélites de Júpiter

B.1.1 Galileanos

							Call	isto						
off_ra	off_de	E_a	E_d	Nfr	off_ra_t	off_de_t	E_a_t	E_d_t	Nfr_t	JD	Ano	S_a	S_d	Ncat
43.0	35.0	-1.0	-1.0	1	43.0	35.0	-1.0	-1.0	1	2452229.574733	2001.875632	0.0	0.0	3
27.0	144.0	-1.0	-1.0	1	27.0	144.0	-1.0	-1.0	1	2452233.677142	2001.886864	40.0	41.0	15
52.5	35.2	71.2	32.8	18	37.3	77.9	122.6	79.5	26	2452237.502864	2001.897338	55.7	62.9	5
52.3	9.3	105.1	92.7	9	96.3	-15.9	161.7	159.5	11	2452262.472478	2001.965701	36.8	46.3	4
-50.0	129.0	-1.0	-1.0	1	-50.0	129.0	-1.0	-1.0	1	2452264.423027	2001.971041	0.0	0.0	3
-21.5	126.3	92.0	84.3	10	21.7	102.9	130.9	133.9	12	2452265.371871	2001.973639	38.9	41.2	6
26.8	100.6	35.5	29.2	9	17.3	75.1	45.0	85.1	10	2452283.582341	2002.023497	56.0	52.6	9
29.1	51.1	50.1	113.3	8	29.1	51.1	50.1	113.3	8	2452285.571396	2002.028942	69.5	58.1	6
68.4	16.2	113.2	100.3	16	44.5	21.5	147.6	99.5	17	2452286.369742	2002.031128	63.9	62.2	6
44.0	1.0	29.2	24.0	6	29.1	29.6	47.5	78.7	7	2452621.606013	2002.948955	30.5	52.3	7

Tabela B.1: Big Table Callisto

	Europa													
off_ra	off_de	E_a	E_d	Nfr	off_ra_t	off_de_t	E_a_t	E_d_t	Nfr_t	JD	Ano	S_a	S_d	Ncat

122.0	-44.0	-1.0	-1.0	1	122.0	-44.0	-1.0	-1.0	1	2452233.679483	2001.886870	27.0	31.0	9
27.3	-46.1	76.8	98.0	7	-11.6	32.2	106.8	165.1	10	2452262.473264	2001.965703	38.0	47.4	3
-3.3	62.5	55.0	80.4	6	-3.3	62.5	55.0	80.4	6	2452283.594398	2002.023530	49.2	48.8	6
-155.0	9.8	112.4	74.7	6	-62.9	-31.2	203.5	146.2	8	2452285.555504	2002.028899	70.2	28.3	4
108.0	130.0	-1.0	-1.0	1	108.0	130.0	-1.0	-1.0	1	2452286.357958	2002.031096	37.0	34.0	7
115.0	243.5	99.0	46.0	2	97.3	77.7	76.4	289.1	3	2452621.536452	2002.948765	0.0	0.0	3

Tabela B.2: Big Table Europa

							Gany	mede						
off_ra	off_de	E_a	E_d	Nfr	off_ra_t	off_de_t	E_a_t	E_d_t	Nfr_t	JD	Ano	S_a	S_d	Ncat
124.4	7.5	89.6	57.7	11	96.8	22.3	128.2	74.9	12	2452237.508983	2001.897355	57.3	73.5	6
5.9	28.9	97.3	51.8	7	1.4	11.7	184.6	111.9	10	2452262.472944	2001.965702	23.3	43.1	4
-145.0	63.2	94.9	83.8	5	-126.0	11.0	96.8	148.2	6	2452263.417913	2001.968289	31.6	42.2	4
4.5	181.0	78.5	29.7	2	9.7	212.8	234.7	162.3	4	2452264.416536	2001.971024	7.5	22.0	3
-38.5	18.5	16.3	95.5	2	-38.5	18.5	16.3	95.5	2	2452283.585104	2002.023504	67.0	26.5	7
20.6	75.8	114.0	52.8	12	37.8	89.0	119.7	119.4	14	2452284.578784	2002.026225	50.8	39.4	5
-168.7	19.5	78.4	64.8	6	-76.9	52.9	189.0	85.0	8	2452285.553306	2002.028893	75.0	33.0	4
79.0	9.2	96.0	113.5	12	79.0	9.2	96.0	113.5	12	2452621.538729	2002.948771	41.4	47.9	3

								Io						
off_ra	off_de	E_a	E_d	Nfr	off_ra_t	off_de_t	E_a_t	E_d_t	Nfr_t	JD	Ano	S_a	S_d	Ncat
26.5	56.0	51.6	63.6	2	26.5	56.0	51.6	63.6	2	2452237.495742	2001.897318	25.5	48.5	6
47.0	397.0	-1.0	-1.0	1	47.0	397.0	-1.0	-1.0	1	2452262.463056	2001.965675	139.0	109.0	4
228.0	-174.0	-1.0	-1.0	1	228.0	-174.0	-1.0	-1.0	1	2452263.408319	2001.968263	46.0	58.0	5
15.8	75.5	33.5	75.5	4	35.0	126.2	51.9	130.9	5	2452283.596202	2002.023535	59.8	40.8	6
-31.0	99.0	-1.0	-1.0	1	-31.0	99.0	-1.0	-1.0	1	2452284.575349	2002.026215	65.0	17.0	5
11.0	85.5	161.2	129.4	2	11.0	85.5	161.2	129.4	2	2452285.553249	2002.028893	61.5	16.5	4
103.5	137.5	72.8	7.8	2	80.0	51.0	65.6	149.9	3	2452621.538444	2002.948770	46.0	73.5	3

Tabela B.4: Big Table Io

B.1.2 Grupo Irregular Prógrado Himalia

							Hin	nalia						
off_ra	off_ra off_de E_a E_d Nfr off_ra_t off_de_t E_a_t E_d_t Nfr_t JD Ano S_a S_d Ncat													
-38.6	-102.6	66.2	28.3	8	-18.2	-28.2	93.3	201.2	12	2451037.478419	1998.611850	0.0	0.0	3

											T			
-57.2	-62.7	19.3	31.5	18	-57.2	-62.7	19.3	31.5	18	2451038.513344	1998.614684	23.4	35.7	5
-123.3	-79.0	119.2	40.0	3	-123.3	-79.0	119.2	40.0	3	2451043.541355	1998.628449	60.7	44.3	14
63.0	-33.0	2.8	69.3	2	63.0	-33.0	2.8	69.3	2	2451088.298697	1998.750988	49.5	60.0	8
-35.5	20.2	36.6	24.8	13	-29.4	14.5	41.9	32.1	14	2451164.249705	1998.958931	30.6	40.5	6
-16.9	103.2	13.5	22.2	10	-21.3	100.1	33.7	22.7	12	2451460.585474	1999.770254	29.8	31.9	11
-39.7	105.7	26.3	18.1	10	-39.7	105.7	26.3	18.1	10	2451463.396507	1999.777950	42.4	41.3	13
-9.1	-3.5	9.7	17.4	8	-5.7	-4.0	13.8	16.4	9	2451516.308380	1999.922815	31.4	48.6	12
-21.6	-21.4	23.5	23.1	7	-21.6	-21.4	23.5	23.1	7	2451518.401131	1999.928545	50.3	33.3	11
4.9	-19.8	10.3	10.4	13	4.9	-19.8	10.3	10.4	13	2451519.377125	1999.931217	35.2	44.5	5
12.2	17.2	13.4	15.4	5	12.2	17.2	13.4	15.4	5	2451521.258479	1999.936368	31.2	40.6	11
19.9	-3.9	18.7	10.0	8	39.1	-14.0	46.4	30.9	10	2451858.543380	2000.859803	46.2	48.9	19
-1.6	12.0	70.2	11.1	5	-1.6	12.0	70.2	11.1	5	2451868.517006	2000.887110	44.4	53.4	11
50.9	56.2	17.4	16.7	14	60.7	47.2	84.6	24.1	18	2451869.567399	2000.889986	48.9	44.7	17
43.4	48.6	5.1	4.5	7	44.6	50.6	5.8	7.1	8	2451873.445515	2000.900603	34.4	52.9	20
50.7	62.8	94.1	23.4	4	50.7	62.8	94.1	23.4	4	2451876.445126	2000.908816	34.2	37.5	21
-10.5	2.0	9.2	21.2	2	-10.5	2.0	9.2	21.2	2	2452230.588416	2001.878407	42.5	38.5	88
-27.8	-0.2	49.3	31.5	4	-27.8	-0.2	49.3	31.5	4	2452231.630013	2001.881259	44.0	41.5	60
-24.9	38.8	10.8	18.8	9	-28.1	41.6	14.4	19.8	10	2452233.622886	2001.886715	43.3	43.2	83
-24.7	18.3	20.4	33.4	7	-18.6	-1.6	25.5	64.2	8	2452236.489976	2001.894565	44.9	35.6	67
49.2	48.0	7.6	7.9	9	45.8	48.4	13.0	7.6	10	2452263.596659	2001.968779	38.8	34.4	104

38.0	57.8	7.5	11.3	6	38.0	57.8	7.5	11.3	6	2452265.388718	2001.973685	43.8	42.7	87
35.6	-0.7	13.6	9.6	12	37.4	4.1	14.5	19.4	13	2452285.442193	2002.028589	38.8	36.5	56
17.0	-8.2	7.9	10.0	5	17.0	-8.2	7.9	10.0	5	2452313.248249	2002.104717	43.0	37.0	103
21.0	-19.2	31.0	20.2	4	21.0	-19.2	31.0	20.2	4	2452314.318079	2002.107647	43.5	41.5	97
-3.2	-41.0	25.2	17.5	10	-3.2	-41.0	25.2	17.5	10	2452358.380484	2002.228283	41.4	41.7	80
22.0	-20.4	24.4	9.3	8	18.6	-15.6	25.1	16.9	9	2452361.337806	2002.236380	45.9	40.6	87
-5.3	14.7	29.0	23.7	6	-5.3	14.7	29.0	23.7	6	2452362.372286	2002.239212	39.5	42.7	90
-16.2	-62.5	27.4	4.1	6	-16.2	-62.5	27.4	4.1	6	2452637.505930	2002.992487	29.8	47.0	11
-14.7	-31.5	7.7	8.2	11	-14.7	-31.5	7.7	8.2	11	2452638.513982	2002.995247	29.7	36.1	12
30.6	62.4	38.3	32.0	14	27.3	67.7	38.9	37.0	15	2452654.439314	2003.038848	39.2	53.1	13
48.6	44.8	21.8	18.8	8	48.6	44.8	21.8	18.8	8	2452655.490343	2003.041725	39.9	41.2	17
-162.0	-390.5	219.2	85.6	2	-162.0	-390.5	219.2	85.6	2	2452657.398605	2003.046950	46.0	38.0	11
-63.7	53.8	32.1	20.5	6	-63.7	53.8	32.1	20.5	6	2452675.390496	2003.096209	53.3	38.0	10
-27.3	60.5	83.6	59.6	6	-27.3	60.5	83.6	59.6	6	2452726.450203	2003.236003	45.3	40.8	25
102.0	45.0	93.3	66.5	2	102.0	45.0	93.3	66.5	2	2452727.421971	2003.238663	36.5	43.0	27
-28.0	56.0	15.4	7.6	6	0.7	53.3	77.3	10.0	7	2452731.298902	2003.249278	38.8	34.5	29
2.0	-1.7	47.3	48.5	3	60.0	17.8	122.3	55.5	4	2452771.444808	2003.359191	57.7	49.3	14
4.1	-44.0	30.9	43.8	9	4.1	-44.0	30.9	43.8	9	2452772.359919	2003.361697	45.2	47.3	21
36.1	-32.6	18.2	17.6	10	38.8	-25.9	19.5	27.7	11	2452773.356938	2003.364426	48.3	48.2	25
82.0	-49.0	-1.0	-1.0	1	82.0	-49.0	-1.0	-1.0	1	2453025.555423	2004.054908	110.0	21.0	4

16.8	-20.2	106.5	22.1	4	16.8	-20.2	106.5	22.1	4	2453090.472372	2004.232641	41.5	16.5	4
-61.7	66.1	27.2	17.5	7	-62.8	74.2	25.3	28.1	8	2453115.348922	2004.300749	46.7	36.3	9
-57.3	87.0	15.9	10.6	9	-57.3	87.0	15.9	10.6	9	2453116.331356	2004.303439	58.7	32.8	9
-39.7	38.8	19.1	15.7	12	-34.3	36.0	26.6	18.2	13	2453143.354052	2004.377423	36.4	54.0	12
-113.0	-254.0	132.9	127.3	2	-90.5	-229.5	237.9	198.4	4	2453145.439543	2004.383133	52.5	70.0	8
4.7	42.7	18.8	19.5	9	18.3	51.4	46.6	33.2	10	2453146.382893	2004.385716	54.4	64.1	8
-60.4	-64.1	25.7	39.6	10	-60.4	-64.1	25.7	39.6	10	2453437.458149	2005.182636	40.9	47.1	9
-25.0	-85.4	42.5	18.4	9	-25.0	-85.4	42.5	18.4	9	2453438.478716	2005.185431	43.4	46.4	10
-15.3	-25.0	25.3	18.1	12	-15.3	-25.0	25.3	18.1	12	2453440.488871	2005.190934	55.1	51.8	14
204.5	-9.0	164.8	48.1	2	204.5	-9.0	164.8	48.1	2	2453463.389675	2005.253633	60.5	35.0	6
31.4	64.2	38.1	15.8	5	31.4	64.2	38.1	15.8	5	2453467.471429	2005.264808	52.0	38.6	10
-80.1	75.9	25.5	18.8	7	-82.4	73.0	161.8	34.1	10	2453474.440505	2005.283889	52.9	47.6	13
-27.7	102.5	57.8	11.0	6	-62.2	102.9	119.0	51.1	8	2453475.400050	2005.286516	73.0	58.2	8
3.0	32.0	196.6	226.3	2	3.0	32.0	196.6	226.3	2	2453839.511531	2006.283399	76.0	63.5	9
251.2	-226.7	84.7	33.0	4	251.2	-226.7	84.7	33.0	4	2454704.347246	2008.651190	56.5	59.5	141

Tabela B.5: Big Table Himalia

							Ela	ıra						
off_ra	off_de	E_a	E_d	Nfr	off_ra_t	off_de_t	E_a_t	E_d_t	Nfr_t	JD	Ano	S_a	S_d	Ncat

103.0	-47.5	210.7	105.4	2	103.0	-47.5	210.7	105.4	2	2451038.543512	1998.614766	61.0	59.0	6
-92.0	291.0	-1.0	-1.0	1	-92.0	291.0	-1.0	-1.0	1	2451039.452012	1998.617253	65.0	80.0	9
85.6	70.2	25.9	23.1	10	85.6	70.2	25.9	23.1	10	2451040.622469	1998.620458	37.2	55.1	9
-47.9	-2.0	13.4	21.9	11	-44.9	0.1	16.4	22.1	12	2451045.450497	1998.633676	33.5	45.0	10
26.1	-16.4	20.5	37.2	7	37.2	-11.9	36.7	36.8	8	2451163.339444	1998.956439	42.7	49.7	7
-28.6	-86.7	37.9	31.0	11	-19.0	-85.7	49.2	29.8	12	2451460.426980	1999.769820	61.8	33.3	6
-53.2	-71.4	20.2	18.5	9	-42.7	-70.4	38.3	17.8	10	2451463.430328	1999.778043	43.4	39.6	5
-26.2	41.4	28.1	42.3	5	-26.2	41.4	28.1	42.3	5	2451492.555795	1999.857784	33.4	41.2	10
3.6	25.4	42.6	13.1	12	11.1	42.1	44.9	76.3	14	2451497.386755	1999.871010	48.6	49.5	10
-177.3	-113.9	111.5	87.1	7	-177.3	-113.9	111.5	87.1	7	2451515.461624	1999.920497	66.6	46.7	7
-58.1	-66.3	31.9	30.4	7	-60.5	-23.7	30.3	123.6	8	2451516.356380	1999.922946	39.4	11.7	4
-61.0	-46.4	30.7	17.8	5	-61.0	-46.4	30.7	17.8	5	2451518.457980	1999.928700	55.0	40.2	11
30.6	-35.4	22.1	22.1	9	9.5	-50.9	51.3	43.1	11	2451869.619643	2000.890129	35.3	38.7	17
-71.4	27.9	12.4	20.7	8	-71.4	27.9	12.4	20.7	8	2451873.426129	2000.900550	22.4	35.4	22
61.0	-29.3	17.0	14.8	6	61.0	-29.3	17.0	14.8	6	2451877.445342	2000.911554	32.5	36.3	20
-12.0	-90.9	10.2	18.4	8	3.7	-88.9	29.4	17.0	11	2452263.485600	2001.968475	41.1	44.9	73
-1.2	-32.2	50.7	67.5	4	-1.2	-32.2	50.7	67.5	4	2452265.401285	2001.973720	36.8	40.8	72
34.8	-25.5	9.1	8.2	8	29.4	-21.2	15.3	11.9	10	2452285.394184	2002.028457	41.2	45.6	96
-65.3	-1.8	37.9	12.7	6	-55.9	9.4	42.7	32.0	7	2452313.372621	2002.105058	44.3	45.3	91
-17.3	-12.7	47.0	41.5	3	-17.3	-12.7	47.0	41.5	3	2452314.365107	2002.107775	36.7	35.3	103

B.1 Satélites de Júpiter

-9.0	142.0	-1.0	-1.0	1	-9.0	142.0	-1.0	-1.0	1	2452656.669363	2003.044953	35.0	24.0	10
48.8	-33.2	61.9	39.1	5	48.8	-33.2	61.9	39.1	5	2452668.478526	2003.077285	41.0	56.8	19
7.3	-1.0	14.5	28.0	6	7.3	-1.0	14.5	28.0	6	2452669.474589	2003.080012	35.8	42.5	12
-6.2	31.3	81.6	45.0	6	-6.2	31.3	81.6	45.0	6	2452699.324120	2003.161736	43.8	38.5	16
-30.4	-69.0	36.4	28.2	5	-30.4	-69.0	36.4	28.2	5	2452723.307723	2003.227399	40.6	51.6	20
-26.8	-102.0	29.1	23.5	11	-26.8	-102.0	29.1	23.5	11	2452725.499244	2003.233399	35.3	34.5	20
23.5	-84.5	54.1	24.3	4	23.5	-84.5	54.1	24.3	4	2453026.627425	2004.057843	40.5	43.5	5
-30.0	135.0	-1.0	-1.0	1	-30.0	135.0	-1.0	-1.0	1	2453115.360721	2004.300782	51.0	32.0	11
-44.4	143.4	15.1	13.8	7	-41.6	149.8	16.1	22.0	8	2453116.331227	2004.303439	57.7	33.0	9
20.0	48.0	-1.0	-1.0	1	20.0	48.0	-1.0	-1.0	1	2453143.386343	2004.377512	30.0	32.0	9
366.0	39.0	-1.0	-1.0	1	366.0	39.0	-1.0	-1.0	1	2453146.397039	2004.385755	47.0	66.0	10
11.6	-73.7	47.4	34.4	7	11.6	-73.7	47.4	34.4	7	2453473.396964	2005.281032	45.6	52.6	11
-42.0	-107.0	-1.0	-1.0	1	-42.0	-107.0	-1.0	-1.0	1	2453475.412265	2005.286549	66.0	38.0	10
71.8	-162.2	54.5	6.4	6	79.0	-159.8	48.9	27.9	8	2453494.426158	2005.338606	49.2	34.5	10
16.5	-124.5	27.6	47.4	2	16.5	-124.5	27.6	47.4	2	2453496.461519	2005.344179	59.5	16.5	8

Tabela B.6: Big Table Elara

							L	eda						
off_ra	off_de	E_a	E_d	Nfr	off_ra_t	off_de_t	E_a_t	E_d_t	Nfr_t	JD	Ano	S_a	S_d	Ncat

231.5	141.5	301.9	54.4	2	231.5	141.5	301.9	54.4	2	2451461.517313	1999.772805	40.5	38.5	7
170.6	128.4	95.0	89.9	5	170.6	128.4	95.0	89.9	5	2451462.553484	1999.775642	35.8	50.6	9
10.0	89.0	62.2	67.9	2	10.0	89.0	62.2	67.9	2	2451492.440255	1999.857468	64.5	38.0	5
-35.6	130.4	81.0	78.9	7	-18.8	168.6	88.8	130.4	8	2451493.434914	1999.860191	32.6	55.9	7
-97.8	192.5	100.8	84.9	10	-97.8	192.5	100.8	84.9	10	2451512.371906	1999.912038	36.2	55.1	7
50.6	205.5	51.8	27.3	10	46.5	216.3	51.0	44.1	11	2451513.332008	1999.914666	54.0	39.9	7
-94.5	195.7	81.4	52.4	4	-94.5	195.7	81.4	52.4	4	2451514.337469	1999.917419	29.8	53.8	13
-18.4	126.8	43.7	53.0	5	-18.4	126.8	43.7	53.0	5	2451515.354693	1999.920204	30.2	35.4	10
78.0	242.0	-1.0	-1.0	1	78.0	242.0	-1.0	-1.0	1	2451519.401313	1999.931283	22.0	69.0	6
8.6	91.8	99.3	78.7	5	8.6	91.8	99.3	78.7	5	2451520.401956	1999.934023	69.0	61.4	7
-210.0	70.0	-1.0	-1.0	1	-210.0	70.0	-1.0	-1.0	1	2452654.656474	2003.039442	58.0	49.0	14
-99.0	187.0	-1.0	-1.0	1	-99.0	187.0	-1.0	-1.0	1	2452655.535718	2003.041850	73.0	57.0	9
227.0	-114.0	-1.0	-1.0	1	227.0	-114.0	-1.0	-1.0	1	2453440.4581196	2005.190850	26.0	35.0	8

Tabela B.7: Big Table Leda

	Lisythea													
off_ra	off_de	E_a	E_d	Nfr	off_ra_t	off_de_t	E_a_t	E_d_t	Nfr_t	JD	Ano	S_a	S_d	Ncat
-57.0	-73.6	41.6	10.2	9	-41.1	-58.8	62.5	28.4	12	2451042.512928	1998.625634	42.7	25.3	9
-29.7	-44.0	62.8	42.9	7	-29.7	-44.0	62.8	42.9	7	2451163.258094	1998.956216	41.0	37.9	8

50.0	-10.0	17.0	53.7	2	50.0	-10.0	17.0	53.7	2	2451460.480297	1999.769966	39.0	31.0	11
42.8	16.5	89.5	47.5	8	71.7	27.2	120.6	54.9	9	2451462.455613	1999.775374	50.1	36.8	10
46.0	-15.6	39.7	18.0	8	56.9	-7.4	65.8	50.3	11	2451466.499081	1999.786445	38.9	55.2	12
37.9	-43.1	16.2	13.2	7	48.9	-50.1	34.6	23.2	8	2451493.381764	1999.860045	39.6	50.4	10
112.5	-113.8	75.8	103.7	4	112.5	-113.8	75.8	103.7	4	2451514.462886	1999.917762	28.7	37.2	9
-82.7	88.0	53.9	20.2	6	-82.7	88.0	53.9	20.2	6	2451901.290270	2000.976838	44.8	42.3	25
-31.8	-81.7	28.0	22.6	4	-31.8	-81.7	28.0	22.6	4	2452234.572822	2001.889316	43.3	39.2	61
27.3	-90.5	40.0	25.7	10	27.3	-90.5	40.0	25.7	10	2452235.554493	2001.892004	43.7	42.0	62
62.0	-76.3	50.3	24.0	3	62.0	-76.3	50.3	24.0	3	2452262.587747	2001.966017	44.3	37.3	79
38.0	-79.8	28.9	14.4	4	38.0	-79.8	28.9	14.4	4	2452263.623770	2001.968853	37.5	38.2	80
-55.0	-151.0	-1.0	-1.0	1	-55.0	-151.0	-1.0	-1.0	1	2452264.621884	2001.971586	29.0	28.0	96
-11.5	-83.1	59.1	22.8	11	-11.5	-83.1	59.1	22.8	11	2452283.398861	2002.022994	40.8	41.6	114
23.0	-97.0	17.0	12.7	2	23.0	-97.0	17.0	12.7	2	2452313.332342	2002.104948	28.5	38.0	59
-30.0	-48.5	45.3	30.4	2	-30.0	-48.5	45.3	30.4	2	2452314.503785	2002.108155	42.5	48.5	49
0.3	36.7	67.9	22.5	3	0.3	36.7	67.9	22.5	3	2452723.477177	2003.227863	42.3	46.7	21

Tabela B.8: Big Table Lysithea

							Ana	nke						
off_ra	off_de	E_a	E_d	Nfr	off_ra_t	off_de_t	E_a_t	E_d_t	Nfr_t	JD	Ano	S_a	S_d	Ncat
257.0	107.8	73.1	34.3	5	257.0	107.8	73.1	34.3	5	2451045.491352	1998.633788	53.4	36.8	8
116.0	119.2	54.9	50.1	14	111.9	125.0	99.7	53.8	16	2451087.441380	1998.748641	44.0	36.4	8
6.6	-42.2	50.4	23.6	8	6.6	-42.2	50.4	23.6	8	2451461.655209	1999.773183	50.9	51.4	13
22.3	-43.3	41.7	37.2	9	22.3	-43.3	41.7	37.2	9	2451462.636221	1999.775869	36.3	35.3	15
113.7	-32.3	111.7	21.3	7	136.0	-28.9	126.5	51.9	9	2451467.494077	1999.789169	40.6	49.4	11
-78.8	-37.6	117.7	106.2	5	-78.8	-37.6	117.7	106.2	5	2451492.411426	1999.857389	47.4	30.4	7
52.8	17.6	44.8	22.3	10	52.2	11.3	42.6	29.8	1	2451493.521432	1999.860428	40.4	54.5	12
28.3	-39.6	29.6	39.0	7	41.7	-14.9	46.9	78.6	8	2451512.474382	1999.912318	37.7	59.3	4
48.0	-41.3	54.8	54.1	6	48.0	-41.3	54.8	54.1	6	2451513.366603	1999.91476	0.0	0.0	3
58.7	-43.4	83.3	50.6	7	58.7	-43.4	83.3	50.6	7	2451514.354038	1999.917464	23.4	61.7	4
-72.2	-60.5	62.3	51.6	4	-72.2	-60.5	62.3	51.6	4	2451519.493140	1999.931534	60.8	68.0	6
81.9	-45.2	39.6	12.8	8	86.1	-40.6	38.4	34.5	10	2451520.335291	1999.933840	50.6	43.7	4
50.5	-167.0	145.0	104.7	2	50.5	-167.0	145.0	104.7	2	2451876.661842	2000.909409	47.0	39.5	17
30.3	-24.4	31.5	21.8	7	-20.3	-14.6	91.1	43.1	10	2452234.531351	2001.889202	33.4	40.6	73
19.2	-47.0	34.0	14.0	10	19.2	-47.0	34.0	14.0	10	$2452235.638\overline{3}45$	2001.892233	39.8	41.4	82
11.4	11.9	40.8	12.6	9	-0.1	15.6	53.0	16.7	10	2452261.587875	2001.963279	44.1	47.9	101
-97.0	-23.0	88.0	74.1	4	-44.8	-12.8	139.4	68.1	5	2452264.575131	2001.971458	37.8	42.2	109

B.1.3 Grupo Irregular Retrógrado Ananke

8.5	8.0	43.7	27.6	4	8.5	8.0	43.7	27.6	4	2452265.445641	2001.973841	39.2	43.0	109
-44.5	-19.8	77.9	19.6	6	-44.5	-19.8	77.9	19.6	6	2452284.538495	2002.026114	37.3	43.0	109
91.8	-1.2	103.8	49.7	6	91.8	-1.2	103.8	49.7	6	2452286.408225	2002.031234	44.2	46.0	84
-129.5	149.8	79.2	90.6	4	-129.5	149.8	79.2	90.6	4	2452313.447368	2002.105263	43.5	45.0	85
-20.0	9.5	155.6	125.2	2	-20.0	9.5	155.6	125.2	2	2452637.614479	2002.992784	48.0	53.0	13
-15.0	-143.5	67.9	85.6	2	-108.0	-121.3	168.1	71.7	3	2452654.492598	2003.038994	39.0	38.5	7
171.0	114.0	-1.0	-1.0	1	171.0	114.0	-1.0	-1.0	1	2452669.571230	2003.080277	60.0	53.0	17
-158.3	-69.3	33.3	20.6	3	-158.3	-69.3	33.3	20.6	3	2452723.431960	2003.227739	47.7	60.7	9
-89.0	-120.0	36.8	63.6	2	-107.0	-42.3	40.6	141.8	3	2453437.605847	2005.183041	42.0	64.5	8
-100.0	33.0	69.3	25.5	2	-100.0	33.0	69.3	25.5	2	2453462.473422	2005.251125	49.0	81.5	12
-25.0	-26.5	31.1	29.0	2	-97.4	24.2	250.0	76.7	5	2453473.460274	2005.281205	68.0	50.0	10

rassia pier pig rasie rinamie	Tabela	B.9:	Big	Table	Ananke
-------------------------------	--------	------	-----	-------	--------

B.1.4 Grupo Irregular Retrógrado Carme

	Carme													
off_ra	off_de	E_a	E_d	Nfr	off_ra_t	off_de_t	E_a_t	E_d_t	Nfr_t	JD	Ano	S_a	S_d	Ncat
-4.9	40.0	26.8	13.2	7	-60.4	50.5	122.2	60.2	10	2451039.626178	1998.617730	61.4	43.1	8
-66.2	12.9	53.6	58.8	9	-83.6	-3.5	74.6	75.9	10	2451044.436133	1998.630899	46.6	42.8	11

-22.0	-13.5	173.9	137.9	2	-22.0	-13.5	173.9	137.9	2	2451164.295536	1998.959056	56.0	32.0	14
34.5	50.5	92.6	31.8	2	34.5	50.5	92.6	31.8	2	2451165.326348	1998.961879	48.5	33.5	16
95.4	-56.6	51.3	11.3	9	67.0	-69.3	66.9	39.8	13	2451460.627446	1999.770369	52.1	39.6	12
-37.8	-109.4	65.3	38.8	5	-37.8	-109.4	65.3	38.8	5	2451463.578213	1999.778448	49.4	53.6	12
83.0	-14.9	19.1	30.0	7	83.0	-14.9	19.1	30.0	7	2451493.479065	1999.860312	49.4	57.1	12
20.9	-71.1	38.8	43.7	7	20.9	-71.1	38.8	43.7	7	2451513.400156	1999.914853	25.6	38.0	5
51.8	-69.8	21.2	4.6	6	49.6	-65.7	20.3	11.7	7	2451515.305478	1999.920069	46.8	18.5	7
88.6	-93.4	43.3	32.4	7	88.6	-93.4	43.3	32.4	7	2451518.294389	1999.928252	31.3	20.7	14
96.8	-64.2	19.9	18.7	4	96.8	-64.2	19.9	18.7	4	2451521.291127	1999.936457	41.5	37.5	11
100.5	122.2	78.2	59.1	4	100.5	122.2	78.2	59.1	4	2451876.601487	2000.909244	51.8	59.5	15
-16.5	-54.2	11.3	9.6	10	-16.5	-54.2	11.3	9.6	10	2452233.652339	2001.886796	41.0	39.4	65
-39.0	-105.4	87.4	35.4	5	-39.0	-105.4	87.4	35.4	5	2452236.554613	2001.894742	34.2	40.6	47
-52.6	-139.1	35.6	6.8	9	-50.7	-133.0	35.6	16.1	11	2452263.452132	2001.968383	38.2	36.2	82
26.8	-157.5	89.5	18.2	4	89.8	-168.0	160.9	28.3	5	2452265.421290	2001.973774	41.5	40.0	91
-9.7	-113.1	20.7	10.3	10	-9.2	-117.5	19.7	17.5	11	2452283.545420	2002.023396	43.1	45.4	82
17.4	-86.0	21.9	26.2	5	17.4	-86.0	21.9	26.2	5	2452313.419337	2002.105186	39.2	41.8	124
13.0	-112.5	25.7	26.9	6	13.0	-112.5	25.7	26.9	6	2452314.524645	2002.108212	39.3	42.5	116
-3.3	11.7	103.0	63.5	3	58.0	51.5	148.7	95.1	4	2452359.371027	2002.230995	40.7	39.3	117
-36.0	-52.3	108.5	22.1	3	-36.0	-52.3	108.5	22.1	3	2452362.330900	2002.239098	40.7	42.3	118
89.5	157.5	51.6	48.8	2	89.5	157.5	51.6	48.8	2	2452624.544158	2002.956999	58.0	40.5	15

49.4	24.1	17.6	25.9	7	59.2	12.5	32.2	40.7	8	2452637.565256	2002.992649	20.9	17.3	8
117.5	43.5	60.4	111.8	6	117.5	43.5	60.4	111.8	6	2452668.543418	2003.077463	44.7	43.2	13
83.0	53.8	47.3	61.1	5	83.0	53.8	47.3	61.1	5	2452669.503302	2003.080091	33.6	49.6	18
6.0	1.0	-1.0	-1.0	1	6.0	1.0	-1.0	-1.0	1	2452725.458616	2003.233288	41.0	41.0	20
-161.1	-9.3	42.0	30.8	10	-161.1	-9.3	42.0	30.8	10	2453089.367644	2004.229617	44.8	47.1	13
-327.0	-14.0	-1.0	-1.0	1	-327.0	-14.0	-1.0	-1.0	1	2453115.455167	2004.301040	42.0	56.0	10
-12.4	-53.9	73.6	35.5	9	-12.4	-53.9	73.6	35.5	9	2453119.407425	2004.311861	38.1	29.3	7
-51.3	-57.7	39.4	45.1	7	-69.1	-57.5	62.3	41.7	8	2453437.644633	2005.183147	53.0	44.3	11
-169.3	-77.0	52.2	64.3	3	-169.3	-77.0	52.2	64.3	3	2453438.655255	2005.185914	53.7	21.7	6
-113.7	-34.6	22.1	39.7	11	-104.7	-35.0	37.8	37.9	12	2453439.543597	2005.188346	68.3	37.3	6
-24.0	-89.2	75.3	18.2	8	-24.0	-89.2	75.3	18.2	8	2453474.504646	2005.284064	82.6	51.6	7
9.0	-64.3	74.7	67.6	3	9.0	-64.3	74.7	67.6	3	2453495.372358	2005.341197	84.3	64.3	4
69.0	-167.0	24.0	40.4	4	69.0	-167.0	24.0	40.4	4	2453497.453190	2005.346894	34.8	48.5	6
36.2	-155.8	22.1	18.7	6	36.2	-155.8	22.1	18.7	6	2453499.449075	2005.352358	42.7	20.2	9
-43.4	-114.4	49.6	23.1	8	-43.4	-114.4	49.6	23.1	8	2453505.415139	2005.368693	25.4	46.6	8
47.4	-31.6	109.9	95.7	7	47.4	-31.6	109.9	95.7	7	2453881.392488	2006.398062	59.6	63.0	16

Tabela B.10: Big Table Carme

B.1 Satélites de Júpiter
							Pasi	phae						
off_ra	off_de	E_a	E_d	Nfr	off_ra_t	off_de_t	E_a_t	E_d_t	Nfr_t	JD	Ano	S_a	S_d	Ncat
37.2	44.7	31.7	38.1	11	54.3	45.7	66.6	36.5	12	2451039.496054	1998.617374	44.0	33.8	10
5.8	-155.2	116.7	50.0	8	29.3	-155.7	130.1	46.8	9	2451460.545875	1999.770146	48.1	54.1	11
20.0	-46.8	55.6	15.7	10	20.0	-46.8	55.6	15.7	10	2451463.479312	1999.778177	21.4	26.1	10
60.5	-55.1	16.8	8.4	8	52.0	-48.1	24.9	44.4	13	2451492.368219	1999.857270	34.6	38.7	6
-190.5	-176.5	74.2	210.0	2	-190.5	-176.5	74.2	210.0	2	2451497.562633	1999.871492	42.0	52.0	7
13.1	-12.1	28.4	18.4	7	13.1	-12.1	28.4	18.4	7	2451514.406024	1999.917607	37.3	41.4	10
-1.2	-92.5	18.0	36.4	8	-7.8	-95.6	25.8	35.3	9	2451516.468561	1999.923254	40.4	55.9	6
-18.2	-82.3	26.8	40.7	9	-18.2	-82.3	26.8	40.7	9	2451517.459758	1999.925967	34.4	33.6	9
-0.4	-76.0	29.1	12.6	5	-0.4	-76.0	29.1	12.6	5	2451521.309475	1999.936507	50.8	33.2	12
47.4	36.8	24.4	10.5	5	47.4	36.8	24.4	10.5	5	2451873.458846	2000.900640	44.8	48.2	23
256.0	-14.0	-1.0	-1.0	1	256.0	-14.0	-1.0	-1.0	1	2451875.338809	2000.905787	34.0	29.0	19
7.9	-102.4	14.5	11.1	10	7.9	-102.4	14.5	11.1	10	2452235.518075	2001.891904	47.6	45.0	70
-12.9	-56.1	14.4	13.1	10	-14.3	-52.7	14.4	16.7	11	2452261.439238	2001.962872	46.6	46.6	97
-28.7	-62.5	24.5	20.6	6	-28.7	-62.5	24.5	20.6	6	2452264.602591	2001.971533	46.3	43.0	80
-44.8	-47.0	26.4	7.6	8	-44.9	-48.1	23.3	17.3	10	2452285.423488	2002.028537	36.1	41.7	85
1.8	-17.4	30.7	55.2	5	1.8	-17.4	30.7	55.2	5	2452313.489713	2002.105379	42.6	41.2	72
1.0	-64.7	16.1	35.4	3	1.0	-64.7	16.1	35.4	3	2452314.413802	2002.107909	41.3	48.3	88

B.1.5 Grupo Irregular Retrógrado Pasiphae

-37.8	11.5	62.0	22.0	4	-37.8	11.5	62.0	22.0	4	2452362.353112	2002.239159	44.8	42.2	85
-66.6	-58.2	27.8	25.5	5	-66.6	-58.2	27.8	25.5	5	2452637.634267	2002.992838	42.2	33.6	10
-10.6	-45.5	36.5	24.0	11	-10.6	-45.5	36.5	24.0	11	2452638.665984	2002.995663	67.2	71.8	8
-14.7	-100.0	21.6	22.9	7	-14.7	-100.0	21.6	22.9	7	2452654.468214	2003.038927	46.6	52.9	13
-15.7	-54.7	67.1	55.5	3	-15.7	-54.7	67.1	55.5	3	2452675.623313	2003.096846	41.3	64.7	9
-39.2	-110.3	26.0	5.1	6	-9.3	-116.7	82.6	17.5	7	2452724.366695	2003.230298	36.2	51.5	14
-22.4	-121.0	9.0	38.0	8	-31.0	-118.1	31.0	35.9	11	2452726.412898	2003.235901	60.0	68.5	10
-67.6	-265.6	91.0	118.5	7	-119.1	-209.3	138.1	156.0	10	2452772.389976	2003.361779	49.7	48.7	20
21.0	-41.0	-1.0	-1.0	1	21.0	-41.0	-1.0	-1.0	1	2452790.392076	2003.411066	62.0	49.0	18
-215.0	23.0	-1.0	-1.0	1	-215.0	23.0	-1.0	-1.0	1	2453026.649435	2004.057903	55.0	34.0	8
-58.2	-36.6	60.2	75.7	8	-58.2	-36.6	60.2	75.7	8	2453090.578640	2004.232932	58.0	52.2	10
-181.0	17.5	27.8	13.6	8	-192.1	9.7	42.3	26.7	9	2453115.381655	2004.300839	24.0	25.6	9
-189.0	34.2	20.0	33.1	9	-189.0	34.2	20.0	33.1	9	2453116.361331	2004.303521	36.9	32.4	7
-55.9	75.6	38.8	55.8	9	-79.0	95.2	64.3	71.3	11	2453143.425577	2004.377619	51.9	58.7	10
-161.6	70.0	82.9	69.6	8	-161.6	70.0	82.9	69.6	8	2453147.369134	2004.388416	61.5	75.4	9
-79.8	-156.4	38.3	25.2	9	-79.8	-156.4	38.3	25.2	9	2453437.540395	2005.182862	65.1	51.7	9
-127.6	-60.1	35.5	29.7	9	-127.6	-60.1	35.5	29.7	9	2453440.554039	2005.191113	43.2	44.1	13
-85.0	-346.5	80.6	54.4	2	-23.3	-297.0	121.1	94.0	3	2453463.479277	2005.253878	62.0	50.0	8
-122.5	-119.0	3.5	19.8	2	-122.5	-119.0	3.5	19.8	2	2453469.599105	2005.270634	49.0	51.0	10
-167.0	-207.0	62.2	64.1	5	-167.0	-207.0	62.2	64.1	5	2453473.556291	2005.281468	69.8	40.8	5

-103.8	-145.0	61.1	21.0	8	-103.8	-145.0	61.1	21.0	8	2453494.462512	2005.338706	99.2	24.0	4
-175.2	-106.6	26.6	25.9	8	-134.1	-141.3	125.9	106.9	9	2453503.416284	2005.363220	30.6	41.3	6
-225.7	-123.2	14.7	47.2	4	-279.4	-141.8	120.6	58.2	5	2453880.419969	2006.395400	57.0	47.5	16

Tabela B.11: Big Table Pasiphae

							Sir	nope						
off_ra	off_de	E_a	E_d	Nfr	off_ra_t	off_de_t	E_a_t	E_d_t	Nfr_t	JD	Ano	S_a	S_d	Ncat
98.4	-79.7	39.8	24.1	10	99.4	-87.2	55.7	48.4	13	2451040.480727	1998.620070	27.0	46.8	10
194.2	110.2	35.1	17.0	12	194.2	110.2	35.1	17.0	12	2451461.463411	1999.772658	22.0	45.2	12
206.7	90.9	69.8	48.2	7	172.3	106.5	116.9	62.8	8	2451465.472095	1999.783633	41.3	41.3	7
231.7	77.2	45.2	31.7	6	231.7	77.2	45.2	31.7	6	2451467.546304	1999.789312	33.0	35.0	7
200.5	69.6	30.7	40.1	10	200.5	69.6	30.7	40.1	10	2451493.347998	1999.859953	57.9	49.0	16
106.7	37.8	21.4	23.4	8	106.7	37.8	21.4	23.4	8	2451515.391969	1999.920306	34.8	45.9	8
141.0	-19.0	55.2	38.2	2	189.7	-125.7	92.9	186.7	3	2451517.379354	1999.925747	0.0	0.0	3
198.7	25.0	23.9	85.5	3	198.7	25.0	23.9	85.5	3	2451518.340234	1999.928378	28.0	53.3	7
169.2	45.6	60.1	80.7	5	169.2	45.6	60.1	80.7	5	2451520.506684	1999.934309	42.2	68.6	8
119.4	75.8	91.0	101.7	5	119.4	75.8	91.0	101.7	5	2451521.394301	1999.936740	35.0	57.0	5
12.0	-28.0	-1.0	-1.0	1	12.0	-28.0	-1.0	-1.0	1	2451873.609280	2000.901052	30.0	32.0	13
-54.7	-122.0	48.7	44.3	7	-54.7	-122.0	48.7	44.3	7	2451900.317299	2000.974174	54.7	48.4	25

										1				
-95.3	-91.5	52.7	41.6	6	-95.3	-91.5	52.7	41.6	6	2451901.513339	2000.977449	46.8	36.2	11
-289.6	1.5	50.3	76.7	8	-289.6	1.5	50.3	76.7	8	2452234.681407	2001.889613	49.9	44.6	60
-8.3	88.0	49.7	115.9	4	-8.3	88.0	49.7	115.9	4	2452236.640581	2001.894977	38.2	42.7	56
-254.5	-35.1	39.7	19.8	12	-254.5	-35.1	39.7	19.8	12	2452262.613849	2001.966088	43.1	44.2	60
-229.7	-59.2	64.1	42.9	6	-229.7	-59.2	64.1	42.9	6	2452264.438608	2001.971084	43.5	41.5	65
-284.3	-49.9	27.7	15.8	9	-284.3	-49.9	27.7	15.8	9	2452284.400070	2002.025735	55.9	45.7	87
-328.3	-29.3	65.7	52.2	3	-263.0	-78.7	141.2	107.6	4	2452286.552015	2002.031627	39.7	39.0	100
-283.8	-60.2	57.3	34.1	6	-277.3	-83.3	55.1	68.6	7	2452313.507639	2002.105428	40.5	39.0	103
-260.6	-97.8	22.9	20.4	5	-260.6	-97.8	22.9	20.4	5	2452314.437261	2002.107973	36.8	43.2	108
-201.0	-107.0	-1.0	-1.0	1	-201.0	-107.0	-1.0	-1.0	1	2452638.491512	2002.995185	44.0	36.0	16
-187.0	-74.6	32.2	47.9	5	-187.0	-74.6	32.2	47.9	5	2452668.499939	2003.077344	37.4	30.0	15
-77.5	-40.0	253.9	38.2	2	-77.5	-40.0	253.9	38.2	2	2452783.368830	2003.391838	52.5	50.5	13
-225.6	18.6	26.1	65.8	7	-201.5	26.5	72.2	64.9	8	2453144.359710	2004.380177	37.0	68.9	11
-302.0	-58.5	147.1	57.3	2	-302.0	-58.5	147.1	57.3	2	2453147.416985	2004.388547	51.5	53.5	7
-455.0	-17.0	-1.0	-1.0	1	-455.0	-17.0	-1.0	-1.0	1	2453437.583528	2005.182980	43.0	44.0	13
-126.2	-94.9	67.9	34.7	9	-156.4	-102.4	114.9	40.4	10	2453440.595626	2005.191226	51.9	63.0	14
-208.5	-20.7	66.7	55.0	6	-208.5	-20.7	66.7	55.0	6	2453473.502552	2005.281321	51.8	53.7	10
-159.4	-72.6	89.3	33.6	5	-203.0	-92.8	133.4	58.0	6	2453474.551959	2005.284194	63.4	61.6	12
-187.5	-81.0	31.0	47.1	4	-244.0	-121.4	129.2	99.1	5	2453494.504424	2005.338821	117.0	119.2	4
-153.3	-57.7	27.5	59.9	3	-210.8	-145.8	117.0	182.8	4	2453499.487338	2005.352463	47.7	41.7	10

 $\overline{2}$

-57.5 -1	-181.3	19.6	15.5	6	-82.0	-199.5	127.9	36.9	8	2453880.461577	2006.395514	50.8	56.3	8
-389.0 -4	-455.0	-1.0	-1.0	1	-389.0	-455.0	-1.0	-1.0	1	2453881.478949	2006.398299	40.0	60.0	16

Tabela B.12: Big Table Sinope

							Call	irrhoe						
off_ra	off_de	E_a	E_d	Nfr	off_ra_t	off_de_t	E_a_t	E_d_t	Nfr_t	JD	Ano	S_a	S_d	Ncat
42.0	-212.0	-1.0	-1.0	1	42.0	-212.0	-1.0	-1.0	1	2451867.450657	2000.884190	40.0	40.0	16
461.0	-396.0	-1.0	-1.0	1	461.0	-396.0	-1.0	-1.0	1	2452283.437252	2002.023099	51.0	43.0	53
-271.0	-71.5	11.3	47.4	2	-271.0	-71.5	11.3	47.4	2	2452621.647166	2002.949068	42.5	40.5	11

Tabela B.13: Big Table Callirrhoe

B.2 Satélites de Saturno

B.2.1 Satélites Regulares

							Ti	tan						
off_ra	$ ff_ra \ off_de \ E_a \ E_d \ Nfr \ off_ra_t \ off_de_t \ E_a_t \ E_d_t \ Nfr_t \ JD \qquad Ano \qquad S_a \ S_d \ Ncat \ Ano \ S_a \ S_d \ Ncat \ S_b \ \ S_b \ S_b$													
-17.0	-69.0	-1.0	-1.0	1	-17.0	-69.0	-1.0	-1.0	1	2451782.625053	2000.651950	69.0	49.0	7

B.2 Satélites de Saturno

166.0	120.0	-1.0	-1.0	1	166.0	120.0	-1.0	-1.0	1	2452236.461370	2001.894486	11.0	24.0	4
40.8	33.4	22.8	44.1	14	29.4	38.3	39.1	43.4	16	2452263.314484	2001.968006	49.1	46.9	6
18.6	50.9	42.1	43.8	8	-27.1	62.0	109.5	56.4	10	2452264.300710	2001.970706	64.6	54.4	6
-31.3	66.4	36.8	16.2	7	-33.1	58.0	34.5	28.1	8	2452265.305549	2001.973458	73.3	56.4	6
-45.0	49.0	-1.0	-1.0	1	-45.0	49.0	-1.0	-1.0	1	2452284.264284	2002.025364	27.0	39.0	8
-41.0	56.0	-1.0	-1.0	1	-41.0	56.0	-1.0	-1.0	1	2452285.266657	2002.028108	27.0	54.0	12
-18.0	31.0	-1.0	-1.0	1	-18.0	31.0	-1.0	-1.0	1	2452286.255009	2002.030814	56.0	39.0	6
-13.3	-5.5	46.2	43.6	6	-31.7	29.0	64.4	99.6	7	2452638.359536	2002.994824	45.3	49.2	25
-169.5	38.5	85.6	159.1	2	-21.3	50.0	263.7	114.2	3	2452877.600063	2003.649829	59.0	73.0	7
55.2	-30.2	44.0	58.9	8	-27.0	-43.5	146.4	55.7	11	2452917.615437	2003.759385	66.9	54.2	11
10.6	-52.6	58.0	23.1	25	22.1	-65.4	92.6	93.6	40	2452918.655909	2003.762233	59.7	51.8	11
51.8	-66.5	60.5	51.9	26	43.5	-65.1	72.2	68.1	31	2452919.659802	2003.764982	53.0	55.7	24
-60.5	-129.0	109.6	100.4	2	-60.5	-129.0	109.6	100.4	2	2453092.328190	2004.237722	79.0	64.0	10
141.0	89.0	21.2	169.7	2	141.0	89.0	21.2	169.7	2	2453759.495438	2006.064327	101.0	36.0	4

Tabela B.14: Big Table Titan

							Нур	erion						
off_ra														
-24.2	-12.2	84.0	91.2	9	-24.2	-12.2	84.0	91.2	9	2451164.440619	1998.959454	39.6	50.2	4

3.3	79.0	24.2	14.8	3	3.3	79.0	24.2	14.8	3	2451782.627493	2000.651957	57.7	54.0	8
-76.3	-3.7	56.1	25.7	3	-76.3	-3.7	56.1	25.7	3	2452234.421921	2001.888903	37.7	57.3	8
-4.0	48.7	17.4	34.6	12	-15.3	49.6	32.9	38.9	14	2452263.314668	2001.968007	53.1	52.3	6
-36.4	71.8	69.9	40.6	8	-18.3	86.7	84.9	58.7	9	2452264.300560	2001.970706	63.5	54.4	6
42.5	3.5	21.9	41.7	2	42.5	3.5	21.9	41.7	2	2452284.262313	2002.025358	40.0	43.0	6
51.7	2.3	10.8	9.2	6	51.7	2.3	10.8	9.2	6	2452314.337609	2002.107700	7.8	4.8	3
-17.7	-34.0	23.9	22.6	3	-17.7	-34.0	23.9	22.6	3	2452917.619694	2003.759396	46.7	40.3	14

Tabela B.15: Big Table Hyperion

							Iape	etus						
off_ra	off_de	E_a	E_d	Nfr	off_ra_t	off_de_t	E_a_t	E_d_t	Nfr_t	JD	Ano	S_a	S_d	Ncat
-10.0	-8.8	62.7	37.7	19	-10.0	-8.8	62.7	37.7	19	2451160.328248	1998.948195	46.5	50.3	4
31.2	-8.6	29.5	33.4	8	31.4	8.9	27.6	61.1	9	2451162.420259	1998.953922	49.6	56.4	5
51.7	-121.7	55.5	112.3	6	51.7	-121.7	55.5	112.3	6	2451163.441502	1998.956718	35.3	61.2	5
-8.8	-20.2	105.8	119.8	6	105.0	-61.5	229.4	157.8	8	2451164.418668	1998.959394	16.0	35.0	3
-5.1	-5.3	18.6	43.3	7	-49.9	-39.2	164.3	111.1	9	2451165.432294	1998.962169	60.7	41.3	6
19.3	24.1	37.5	33.2	9	23.1	14.3	37.3	44.1	10	2451492.574657	1999.857836	55.1	50.8	14
19.2	-51.8	31.9	40.8	5	19.2	-51.8	31.9	40.8	5	2451493.558142	1999.860528	46.6	38.4	11
-92.3	43.7	103.6	86.9	3	-92.3	43.7	103.6	86.9	3	2451781.574282	2000.649074	32.3	43.3	11

B.2 Satélites de Saturno

-10.2	26.5	4.0	12.2	12	-7.1	22.0	28.4	17.1	21	2451782.616621	2000.651927	29.0	45.4	7
18.8	109.2	43.2	24.9	5	18.8	109.2	43.2	24.9	5	2451783.597970	2000.654614	42.6	43.6	12
-82.9	15.1	40.3	30.5	11	-89.8	32.1	52.5	50.0	13	2452234.409006	2001.888867	48.3	41.2	8
-50.9	27.2	25.2	47.7	12	-65.0	57.4	43.5	104.1	14	2452235.456015	2001.891734	45.4	45.9	13
50.1	54.0	19.6	36.4	13	40.5	57.6	31.5	36.3	15	2452263.313524	2001.968004	50.1	48.0	6
28.9	51.4	24.7	44.6	7	16.7	56.4	41.2	43.6	8	2452264.302626	2001.970712	63.1	52.1	6
-34.0	22.3	12.6	9.2	6	-47.4	21.6	37.3	8.7	7	2452283.304118	2002.022735	44.5	29.3	12
-102.7	58.1	21.0	19.9	11	-116.3	68.2	61.5	47.8	15	2452284.271789	2002.025384	35.9	38.1	9
-100.0	38.5	34.6	24.5	11	-100.0	38.5	34.6	24.5	11	2452285.266122	2002.028107	44.6	42.1	11
-34.7	9.5	13.0	32.6	11	-34.7	9.5	13.0	32.6	11	2452286.258496	2002.030824	34.9	44.4	5
58.0	-20.8	59.4	8.5	6	58.0	-20.8	59.4	8.5	6	2452314.337609	2002.107700	7.8	4.8	3
46.9	37.3	52.3	26.1	7	43.6	49.8	49.3	42.8	8	2452362.294727	2002.238999	64.6	63.0	13
-375.0	410.0	-1.0	-1.0	1	-375.0	410.0	-1.0	-1.0	1	2452877.585458	2003.649789	76.0	61.0	9
9.8	-12.9	38.4	67.6	8	64.1	-17.2	145.0	166.7	13	2452917.616763	2003.759388	61.0	52.1	12
8.6	0.7	110.4	70.0	25	-0.8	-16.6	182.6	116.7	39	2452918.646875	2003.762209	60.6	55.0	11
-13.7	-35.2	28.1	36.3	64	-6.8	-24.1	54.8	67.0	105	2452919.648100	2003.764950	52.9	54.0	32
-250.0	176.0	-1.0	-1.0	1	-250.0	176.0	-1.0	-1.0	1	2453026.407753	2004.057242	17.0	38.0	12
-113.8	-6.5	16.1	20.2	6	-113.8	-6.5	16.1	20.2	6	2453839.363667	2006.282994	56.7	36.2	16
-76.0	-17.0	102.1	38.6	4	-76.0	-17.0	102.1	38.6	4	2453879.354359	2006.392482	25.5	19.2	4

B.2.2 Satélites Irregulares

	Albiorix													
off_ra	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												Ncat	
-96.0	-158.0	41.0	9.9	2	-164.3	-200.7	121.9	74.2	3	2452235.402734	2001.891588	48.5	47.0	30

Tabela B.17: Big Table Albiorix

	Phoebe													
off_ra	off_de	E_a	E_d	Nfr	off_ra_t	off_de_t	E_a_t	E_d_t	Nfr_t	JD	Ano	S_a	S_d	Ncat
-33.0	32.3	21.3	24.8	9	-42.9	34.9	35.8	55.3	11	2451037.542709	1998.612026	45.3	53.2	13
3.0	103.0	-1.0	-1.0	1	3.0	103.0	-1.0	-1.0	1	2451039.528573	1998.617463	22.0	31.0	11
-72.8	18.6	19.2	48.2	10	-79.7	18.7	29.3	45.7	11	2451040.544046	1998.620243	52.0	47.5	16
-49.0	71.0	15.4	58.7	10	-51.2	54.1	16.3	79.1	11	2451041.605925	1998.623151	49.9	48.3	14
78.6	89.9	5.9	24.2	8	78.6	89.9	5.9	24.2	8	2451042.599476	1998.625871	51.7	55.9	15
-83.9	29.3	18.1	16.4	10	-84.6	34.3	17.4	22.7	11	2451044.633968	1998.631441	52.0	42.2	15
-43.7	17.8	14.3	6.5	6	-36.8	18.0	21.5	27.0	8	2451045.650113	1998.634223	53.7	54.8	15

-26.0	20.0	15.4	16.6	6	-26.0	20.0	15.4	16.6	6	2451062.586266	1998.680592	39.0	46.5	11
-48.8	26.2	50.0	29.8	5	-48.8	26.2	50.0	29.8	5	2451065.616173	1998.688887	39.6	27.4	16
-28.4	-22.6	23.1	19.4	5	-28.4	-22.6	23.1	19.4	5	2451066.621631	1998.691640	51.6	60.6	11
20.0	172.0	-1.0	-1.0	1	20.0	172.0	-1.0	-1.0	1	2451160.399735	1998.948390	34.0	88.0	4
-16.0	14.7	5.1	47.6	6	-14.8	18.9	58.9	68.5	9	2451162.360196	1998.953758	36.0	34.7	7
-34.6	57.9	17.1	14.9	12	-34.6	57.9	17.1	14.9	12	2451163.403509	1998.956614	45.3	63.2	7
-12.6	1.6	21.4	12.4	7	-12.6	1.6	21.4	12.4	7	2451164.366325	1998.959250	40.4	71.9	7
-19.5	42.9	36.9	56.2	11	-19.5	42.9	36.9	56.2	11	2451165.381801	1998.962030	57.7	74.8	8
0.3	30.7	11.3	22.6	6	11.3	33.3	30.8	21.7	7	2451460.667577	1999.770479	35.2	43.0	17
-23.4	16.4	14.3	14.2	8	-31.4	12.2	27.7	18.2	9	2451462.672541	1999.775968	34.6	36.1	13
-47.8	34.2	50.5	19.0	5	-47.8	34.2	50.5	19.0	5	2451465.521748	1999.783769	39.2	54.4	12
67.1	105.8	81.5	58.0	9	55.8	87.9	84.8	78.7	10	2451492.574300	1999.857835	55.3	53.7	14
50.0	-4.2	37.8	42.8	5	50.0	-4.2	37.8	42.8	5	2451493.558142	1999.860528	46.6	38.4	11
52.0	-57.0	39.6	1.4	2	52.0	-57.0	39.6	1.4	2	2451870.381706	2000.892215	37.0	35.0	12
3.4	-39.0	38.5	11.1	9	3.4	-39.0	38.5	11.1	9	2451873.397762	2000.900472	33.4	37.6	25
22.8	-53.3	47.9	25.6	4	22.8	-53.3	47.9	25.6	4	2451876.461372	2000.908860	31.8	42.2	24
-3.0	-102.7	34.5	22.4	6	1.0	-85.1	33.2	50.7	7	2451877.422164	2000.911491	44.3	54.5	16
-34.0	-1.1	21.2	45.5	9	-34.0	-1.1	21.2	45.5	9	2451900.281205	2000.974075	44.7	37.7	19
67.2	74.2	58.6	70.1	4	67.2	74.2	58.6	70.1	4	2451991.303010	2001.223279	36.8	38.2	11
-20.2	-19.6	13.1	22.3	13	-20.2	-19.6	13.1	22.3	13	2452145.629965	2001.645804	41.7	51.8	44

-21.4	-26.0	31.3	24.2	7	-21.9	-41.9	29.0	50.2	8	2452146.578218	2001.648400	51.9	53.1	43
-17.7	56.0	8.5	9.7	9	-20.3	57.9	11.6	10.9	10	2452231.578383	2001.881118	54.0	50.6	30
41.3	16.2	63.4	27.0	11	41.3	16.2	63.4	27.0	11	2452233.592345	2001.886632	44.8	38.0	37
-17.5	22.2	13.6	4.6	14	-16.2	23.8	17.7	19.5	21	2452234.414098	2001.888881	43.7	41.9	36
4.7	-9.5	20.7	10.6	10	1.5	-5.5	22.4	16.5	11	2452235.406013	2001.891597	51.4	49.8	30
-21.2	-20.4	29.7	19.1	10	-21.2	-20.4	29.7	19.1	10	2452236.438643	2001.894424	48.3	47.4	19
-26.1	1.6	13.1	16.5	15	-25.2	-5.4	39.4	28.8	20	2452237.420164	2001.897112	41.3	52.9	22
15.7	-11.8	19.2	17.8	14	19.4	-10.4	23.4	17.9	15	2452262.366251	2001.965410	56.9	43.0	18
7.7	26.0	22.2	5.2	7	7.2	21.8	20.6	12.9	8	2452263.377974	2001.968180	60.3	36.0	19
17.1	-6.9	18.5	7.5	11	17.1	-6.9	18.5	7.5	11	2452264.327421	2001.970780	59.5	47.0	16
8.4	9.2	24.1	13.8	5	8.4	9.2	24.1	13.8	5	2452265.320476	2001.973498	53.2	39.2	21
-47.2	-1.4	16.2	21.6	9	-52.3	0.4	22.2	21.2	10	2452283.266146	2002.022631	46.3	39.1	22
-45.8	-43.2	31.8	18.4	6	-45.8	-43.2	31.8	18.4	6	2452284.299689	2002.025461	35.0	49.3	19
-25.6	3.2	16.9	4.2	5	-25.6	3.2	16.9	4.2	5	2452285.285142	2002.028159	31.4	41.4	19
-30.3	-5.0	29.5	11.0	4	-30.3	-5.0	29.5	11.0	4	2452286.273507	2002.030865	34.5	47.5	21
18.3	7.5	7.4	13.9	6	18.3	7.5	7.4	13.9	6	2452621.564266	2002.948841	40.3	44.5	78
-11.5	48.4	57.6	19.2	11	-11.5	48.4	57.6	19.2	11	2452624.464261	2002.956781	41.9	41.6	80
51.0	-32.7	20.6	14.9	6	51.0	-32.7	20.6	14.9	6	2452637.423755	2002.992262	41.2	36.7	51
24.4	-32.0	11.2	14.1	7	30.5	-32.6	20.1	13.2	8	2452638.454311	2002.995083	41.3	49.9	61
29.5	13.2	17.2	17.0	10	32.8	18.3	19.7	23.3	11	2452668.375168	2003.077002	42.1	42.1	74

0.4	25.6	19.5	13.0	7	0.4	25.6	19.5	13.0	7	2452699.28418	2003.161626	38.3	39.3	81
-15.9	15.4	14.3	16.5	7	-15.9	15.4	14.3	16.5	7	2452726.323591	2003.235656	44.6	40.1	60
47.2	22.8	63.0	53.1	11	24.9	23.0	97.8	50.6	12	2452990.415488	2003.958700	44.3	45.7	95
-8.9	-33.8	21.4	15.7	10	-8.9	-33.8	21.4	15.7	10	2453024.359704	2004.051635	51.7	49.1	121
16.6	-41.2	48.9	37.5	14	15.9	-54.5	57.9	50.5	16	2453025.397132	2004.054475	47.6	47.1	97
11.6	4.8	68.0	41.9	30	-1.5	28.3	85.5	76.3	37	2453026.376947	2004.057157	47.0	43.9	122
12.0	-40.0	12.4	15.5	8	24.4	-37.8	48.9	34.9	14	2453027.371920	2004.059882	48.6	41.6	114
2.2	-3.1	20.0	19.3	9	7.8	-4.6	54.7	37.1	13	2453437.342383	2005.182320	48.1	41.7	54
-7.6	-11.9	13.3	14.0	9	-4.8	-4.8	15.2	26.0	10	2453438.314592	2005.184981	48.9	44.7	54
-2.5	-21.1	14.8	31.9	10	-9.3	-23.7	26.5	31.5	11	2453439.327490	2005.187754	54.9	44.0	50
-21.4	-25.2	4.4	16.4	8	-25.2	-6.6	9.0	58.3	10	2453440.302309	2005.190423	50.9	46.5	58
25.6	28.3	30.0	14.5	7	64.5	66.9	113.5	110.0	8	2453462.395818	2005.250912	43.7	39.4	57
15.9	-3.9	28.8	22.5	8	15.9	-3.9	28.8	22.5	8	2453463.351565	2005.253529	45.6	38.5	61
9.2	1.2	23.5	12.9	6	9.2	1.2	23.5	12.9	6	2453467.309936	2005.264366	44.7	43.0	55
-7.5	9.2	17.8	4.4	6	-32.6	2.0	48.9	27.5	9	2453469.346306	2005.269941	45.0	47.8	57
-36.0	-31.0	-1.0	-1.0	1	-36.0	-31.0	-1.0	-1.0	1	2453470.338433	2005.272658	53.0	42.0	57
19.3	-20.6	19.0	10.0	7	1.6	-35.2	52.9	42.5	8	2453473.319645	2005.280820	36.1	47.0	58
-16.0	-45.7	38.2	26.0	6	-16.0	-45.7	38.2	26.0	6	2453474.321443	2005.283563	40.7	47.0	50
-6.3	-43.1	20.7	13.6	7	-6.3	-43.1	20.7	13.6	7	2453475.313125	2005.286278	38.1	43.3	44
7.8	15.4	30.8	67.4	8	7.8	15.4	30.8	67.4	8	2453495.347587	2005.341129	29.4	46.1	16

-11.3	-4.7	34.9	36.0	7	-11.3	-4.7	34.9	36.0	7	2453496.355339	2005.343888	44.1	41.4	54
-37.4	4.8	36.2	26.0	9	-37.4	4.8	36.2	26.0	9	2453499.347578	2005.352080	40.0	41.2	45
-34.0	31.0	-1.0	-1.0	1	-34.0	31.0	-1.0	-1.0	1	2453839.343301	2006.282938	68.0	31.0	10
-11.6	-54.5	35.8	23.7	12	-11.6	-54.5	35.8	23.7	12	2454214.379396	2007.309731	54.1	42.4	12
30.5	85.5	101.1	51.6	2	30.5	85.5	101.1	51.6	2	2454215.341801	2007.312366	52.5	73.5	9

Tabela B.18: Big Table Phoebe

	Siarnaq													
off_ra	off_de	E_a	E_d	Nfr	off_ra_t	off_de_t	E_a_t	E_d_t	Nfr_t	JD	Ano	S_a	S_d	Ncat
-180.7	-78.7	27.3	76.4	3	-114.7	-72.8	133.7	63.5	4	2452262.435692	2001.965600	48.7	43.3	22
-129.0	-143.0	45.3	26.9	2	-49.7	-125.0	141.1	36.5	3	2452263.366269	2001.968148	33.0	49.0	25
-131.8	-95.2	115.7	96.3	4	-131.8	-95.2	115.7	96.3	4	2452264.367459	2001.970889	34.5	57.0	29
-185.0	-117.3	45.0	41.3	3	-185.0	-117.3	45.0	41.3	3	2452283.344771	2002.022846	55.0	61.0	20
-298.0	-132.0	24.0	15.6	2	-298.0	-132.0	24.0	15.6	2	2452284.347128	2002.025591	47.5	72.0	15
-228.0	-34.0	5.0	84.3	3	-228.0	-34.0	5.0	84.3	3	2452285.334402	2002.028294	69.3	59.3	12
-194.7	-106.5	76.1	54.2	4	-141.2	-116.6	136.7	52.1	5	2452286.314715	2002.030978	58.2	52.3	14
178.5	-423.5	159.1	87.0	2	178.5	-423.5	159.1	87.0	2	2452637.470200	2002.992389	45.5	41.0	62

Tabela B.19: Big Table Siarnaq

C Gráficos Offset x Anomalia Verdadeira

Os gráficos "offsets em relação às efemérides por anomalia verdadeira", sendo a anomalia verdadeira o ângulo de posição na órbita a partir da menor distância entre o satélite e o planeta (periastro) na direção de movimento do satélite, também descrito no Capítulo 5, são mostrados para todos os satélites. É primeiramente mostrado os gráficos que utilizam os offsets de todas as poses e logo após os que utilizam a média dos offsets de cada noite. Para cada satélite, os dois gráficos de cima são os offsets da coordenada de Declinação enquanto os dois de baixo são os da coordenada de Ascensão Reta. A escala dos offsets está em mas (mili-segundo de arco) e a da Anomalia Verdadeira está em graus.

C.1 Satélites de Júpiter

C.1.1 Galileanos

Figura C.1: Gráfico Offset x Anomalia Verdadeira - Callisto

Figura C.2: Gráfico Offset x Anomalia Verdadeira - Europa

Figura C.3: Gráfico Offset x Anomalia Verdadeira - Ganymede

Figura C.4: Gráfico Offset x Anomalia Verdadeira - Io

Figura C.5: Gráfico Offset x Anomalia Verdadeira - Himalia

Figura C.6: Gráfico Offset x Anomalia Verdadeira - Elara

Figura C.7: Gráfico Offset x Anomalia Verdadeira - Leda

Figura C.8: Gráfico Offset x Anomalia Verdadeira - Lysithea

Figura C.9: Gráfico Offset x Anomalia Verdadeira - Ananke

Figura C.10: Gráfico Offset x Anomalia Verdadeira - Carme

Figura C.11: Gráfico Offset x Anomalia Verdadeira - Pasiphae

Figura C.12: Gráfico Offset x Anomalia Verdadeira - Callirrhoe

Figura C.13: Gráfico Offset x Anomalia Verdadeira - Sinope

C.2 Satélites de Saturno

C.2.1 Satélites Regulares

Figura C.14: Gráfico Offset x Anomalia Verdadeira - Titan

Figura C.15: Gráfico Offset x Anomalia Verdadeira - Hyperion

Figura C.16: Gráfico Offset x Anomalia Verdadeira - Iapetus

C.2.2 Satélites Irregulares

Figura C.17: Gráfico Offset x Anomalia Verdadeira - Siarnaq

Figura C.18: Gráfico Offset x Anomalia Verdadeira - Albiorix

D Gráficos dos Offsets projetados no céu ao longo da Órbita

Os gráficos deste anexo são projeções da órbita dos satélites de Júpiter e Saturno como visto da terra durante um período orbital do mesmo centrado no planeta. A linha é a posição do satélite dado pela efeméride em relação ao planeta, que está centrado no gráfico, os vetores são os offsets das posições observadas em relação às efemérides e aponta na direção da posição observada. Para cada período orbital há um gráfico com os offsets de todas as observações e outro com as médias dos offsets noite a noite.

D.1 Satélites de Júpiter

D.1.1 Grupo Irregular Prógrado Himalia

Himalia - orb9: Dez/03 - Ago/04

Figura D.1: Gráfico das órbitas de Himalia

Figura D.2: Gráfico das órbitas de Elara

Figura D.3: Gráfico das órbitas de Leda

Figura D.4: Gráfico das órbitas de Lysithea

D.1.2 Grupo Irregular Retrógrado Ananke

Figura D.5: Gráfico das órbitas de Ananke

D.1.3 Grupo Irregular Retrógrado Carme

Carme - Orb1: Set/96 - Set/98

Carme - Orb1: Set/96 - Set/98

Carme - Orb2: Set/98 - Set/00 por dia

Carme - Orb4: Out/02 - Set/04

Carme - Orb4: Out/02 - Set/04 por dia

Carme - Orb5: Set/04 - Set/06

Figura D.6: Gráfico das órbitas de Carme

D.1.4 Grupo Irregular Retrógrado Pasiphae

Figura D.7: Gráfico das órbitas de Sinope

D.2 Satélites de Saturno

D.2.1 Satélites Regulares

Figura D.8: Gráfico das órbitas de Iapetus

D.2.2 Satélites Irregulares

Figura D.10: Gráfico das órbitas de Siarnaq

Referências Bibliográficas

- [1] http://ssd.jpl.nasa.gov/?glossary.
- [2] http://www.phys.unm.edu/~cpo/html/twhtml/iraf.
- [3] ASSAFIN, M., VIEIRA MARTINS, R., AND ANDREI, A. H. A method to improve guide star catalogue positions with astrometric catalogues. *The Astronomical Journal* 113 (1997), 1451.
- [4] BEVINGTON, P. R. Data Reduction and Error Analysis for the Physical Sciences. McGraw-Hill Science, New York, 1969.
- [5] GOMES DA SILVA, M., ET AL. The chaotic capture of jovian trojan asteroids during the early dynamical evolution of the solar system. *Nature* 435 (2005), 462–466.
- [6] KOVALEVSKY, J. Modern Astrometry. Springer-Verlag, Berlim, Heidelberg, 1995.
- SHEPPARD, S. S. Outer irregular satellites of the planets and their relationship with asteroids, comets and kuiper belt objects. *Proceedings IAU Symposium 229* (2006), 319–334.
- [8] SHEPPARD, S. S., AND JEWITT, D. C. An abundant population of small irregular satellites around jupiter. *Nature* 423 (2003), 261–263.
- [9] STONE, R. C. A comparison of digital centering algorithms. The Astronomical Journal 97, 4 (1989), 1227–1237.
- [10] TODY, D. Iraf in the nineties, in astronomical data analysis software and systems
 ii. ASP Conf. Ser. 52 (1993), 173.
- [11] ZACHARIAS, N., ET AL. The second us naval observatory ccd astrograph catalog. Astronomical Journal 127 (2004), 3043.