UNIVERSIDADE FEDERAL DO RIO DE JANEIRO CENTRO DE CIÊNCIAS MATEMÁTICAS E DA NATUREZA OBSERVATÓRIO DO VALONGO

ABUNDÂNCIAS DE LÍTIO, ATIVIDADE CROMOSFÉRICA E EVOLUÇÃO ROTACIONAL EM ESTRELAS DE TIPO SOLAR

Aluno: Tales Roberto Teixeira Carneiro (OV/UFRJ) Orientador: Dr. Gustavo F. P. De Mello

> Rio de Janeiro Dezembro de 2012

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO CENTRO DE CIÊNCIAS MATEMÁTICAS E DA NATUREZA OBSERVATÓRIO DO VALONGO

L

ABUNDÂNCIAS DE LÍTIO, ATIVIDADE CROMOSFÉRICA E EVOLUÇÃO ROTACIONAL EM ESTRELAS DE TIPO SOLAR

Projeto de Conclusão de Curso para a obtenção do título de Astrônomo

Rio de Janeiro Dezembro de 2012 III Carneiro, Tales R. T.

Abundâncias de Lítio, Atividade Cromosférica e Evolução Rotacional em Estrelas de Tipo Solar

Tales Roberto Teixeira Carneiro

- Rio de Janeiro: UFRJ/OV, 2012

Orientador: Gustavo Frederico Porto de Mello

Monografia (Graduação) - UFRJ / OV / Graduação em Astronomia, 2012

Referências Bibliográficas: f: 124 e 125.

1. Estrelas 2. Tipo Solar 3. Abundâncias 4. Lítio 5. Atividade Cromosférica 6. Evolução Rotacional I. Porto de Mello, Gustavo F. II. Universidade Federal do Rio de Janeiro, Observatório do Valongo, Graduação em Astronomia, 2012 III. Título

AGRADECIMENTOS

Ao Observatório do Valongo e à Universidade Federal do Rio de Janeiro pela excelência do ensino e pela oportunidade de desenvolvimento intelectual fornecida a todos os seus alunos.

Ao Observatório Pico dos Dias e ao Laboratório Nacional de Astrofísica por fornecer as ferramentas necessárias ao desenvolvimento deste trabalho.

À FAPERJ, Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro por financiar as atividades deste projeto desenvolvidas durante o ano de 2007 e parte do ano de 2008.

Aos professores e funcionários do Observatório do Valongo, assim como de toda UFRJ, pelo esforço e dedicação prestados à todos os seus alunos.

Aos colegas estudantes pela motivação mútua e pelos momentos nos quais dividimos nosso conhecimento, nossas alegrias e também nossas dificuldades.

Agradecimentos especiais ao meu orientador, Gustavo, e ao amigo Diego, por estarem presentes e pelo auxílio prestado no decorrer deste projeto.

E finalmente, agradecimentos mais que especiais aos meus pais e familiares, pela paciência, dedicação e apoio incondicional nos momentos mais difíceis.

RESUMO

Na evolução das estrelas de tipo solar da sequência principal, ocorre o aprofundamento da zona de convecção e o aumento da diluição do Li. Observa-se, nessa etapa, uma grande dispersão nas abundâncias de lítio, além de um grande desacordo com a teoria. Existem evidências de que subgigantes isoladas apresentam abundâncias de lítio muito menos depletadas que o esperado. Esses fatos sugerem a atuação de mecanismos extras de destruição ou preservação desse elemento, provavelmente conectados com a difusão e a circulação meridional e, portanto, com a evolução rotacional.

A destruição e diluição do lítio nos envoltórios estelares convectivos, através de reações nucleares, fornecem uma ferramenta observacional para o estudo tanto da convecção quanto da evolução rotacional estelar. Neste contexto, a obtenção de fluxos cromosféricos, enquanto indicadores rotacionais, e estados evolutivos para uma extensa amostra de estrelas pode contribuir para o estabelecimento quantitativo da conexão entre a depleção do lítio e a evolução de momento angular estelar.

Neste trabalho, procedemos a uma busca extensiva na literatura para as temperaturas efetivas, metalicidades, gravidades superficiais, fotometria, abundâncias do lítio, massas, idades e fluxos cromosféricos absolutos. Estabelecemos uma escala corrigida de abundâncias do Li com base em escalas homogêneas de temperatura efetiva obtidas a partir do perfil de Hα. Estudamos a conexão entre o Li e a atividade cromosférica. Também estudamos a conexão entre o Li e os demais parâmetros astrofísicos de interesse. Fizemos isso com base em diagramas H-R, trajetórias evolutivas por massa e idades. Procedemos ainda a uma análise multiparamétrica, usando regressões lineares das abundâncias corrigidas de Li em função dos nossos dados, evidenciando uma conexão do Li com a atividade cromosférica, enquanto indicador de idades, principalmente em estrelas jovens. A conexão entre Li e evolução rotacional, conectados com a difusão e circulação meridional, não se mostrou evidente.

Palavras-chave: estrelas, atividade cromosférica, abundâncias, lítio, tipo solar, evolução rotacional, convecção.

ABSTRACT

On the stellar evolution to the subgiant branch occurs the deepening of convection and lithium astration. We observe, at this stage, a great scatter in lithium abundances, besides a great disagreement with the theory since the astration is bigger than expected. On the other hand, there is evidence that isolated subgiants present lithium abundances much less depleted than expected. These two facts suggest the action of additional mechanisms of lithium destruction or preservation probably connected to diffusion and meridional circulation, and hence, with rotational evolution.

Therefore lithium astration in the convective shells by nuclear reactions provides an observational tool to the study of the convection and rotational evolution. In this context the determination of cromospheric fluxes and evolutionary states for an extensive sample is important to establish a quantitative connection between lithium astration and stellar angular momentum evolution.

In this work we carried out an extensive search on the literature for effective temperatures, metalicities, gravities, photometry, and lithium abundances. Effective temperatures from Ha, from photometry, mass, ages and cromospheric flux were obtained. We obtained a corrected scale for the lithium abundances based on homogenous temperatures. We studied the connection between Li, cromospheric activity, this last as rotational indicator, and other astrophysical parameters of interest based on H-R diagrams, evolutionary tracks by mass and ages. We performed a multiparametic analysis based on the linear regression of our data versus the corrected lithium abundances. This showed a connection between Li and cromospheric activity, mainly in young stars, but only as age diagnostic. The connection between Li and rotational evolution, connected with diffusion and meridional circulation is not evident.

Keywords: stars, cromospheric activity, abundances, lithium, solar-type, rotational evolution, convection.

ÍNDICE

1.	Introdução: O problema do Li	1
2.	Amostra	6
2.1	Descrição da amostra	6
2.2	Dados da literatura	8
	(a) Artigos do Li	8
	(b) Ferreira (2010)	9
3.	Parâmetros atmosféricos e abundâncias do Li	12
3.1	Estudo das incertezas	12
3.2	Abundâncias do Li corrigidas	13
3.3	A escala homogênea de temperaturas efetivas	14
4.	Massas, idades e fluxos cromosféricos	23
5.	Resultados	38
5.1	Análise preliminar	38
	(a) Massas, Temperaturas Efetivas e Abundâncias do Li	38
	(b) O Li Dip	40
	(c) Abundâncias do Li e Atividade Cromosférica	45
5.2	Ajuste linear simples - Abundâncias do Li e fluxos cromosféricos	46
5.3	Regressão multiparamétrica, testes de hipótese e significância - Amostra Geral	50
5.4	ZAMS e objetos mais jovens que dois Gano	60
5.5	Subgigantes	67
5.6	Anās mais velhas que dois Gano	73
5.7	Conclusões	79
6.	Conclusões e perspectivas	82
Α.	Parâmetros Atmosféricos e Abundâncias do Li	85
В.	Metalicidades Corrigidas e Escalas de Temperatura	92
C.	Parâmetros Evolutivos	99
D.	Fluxos Absolutos, Fotosféricos e Cromosféricos	106
E.	Abundâncias Corrigidas do Li	113
F.	Parâmetros Evolutivos e Abundâncias do Li	120
G.	Bibliografia	124

INTRODUÇÃO: O PROBLEMA DO LÍTIO

O Li é um elemento químico de grande relevância na astrofísica. Dos elementos químicos de ocorrência natural somente quatro foram sintetizados durante a nucleossíntese primordial: o hidrogênio, o hélio e em menor quantidade, o lítio e o berílio. As abundâncias cósmicas do Li1, segundo evidenciado pelas observações de estrelas de População I², do meio interestelar e amostras de meteoritos; apresentam-se em valores em torno de $\log \epsilon(\text{Li}) \sim 3.0$ numa escala onde $\log \epsilon(\text{H}) \sim 12.0$ ($\log \epsilon[\text{X}] = \log [\text{N}_{\text{X}}/\text{N}_{\text{H}}] + 12.0$), onde N_x = DENSIDADE NUMÉRICA DE ÁTOMOS do elemento X. As estrelas, por ocasião de sua formação, apresentam concentrações de Li muito semelhantes e próximas daquele valor (Balachandran 1990). As gradativas diluições do lítio, nas superfícies de estrelas de baixa massa (≤ 1.6 massas solares) e tipo espectral³ F, G e K, se devem a processos de destruição/depleção ocorrendo internamente. Isso ocorre em taxas significativamente maiores guando comparadas a sua formação. Nos interiores estelares, o lítio é depletado à temperatura de 106 K, bastante modesta para os valores comumente encontrados. Entretanto, na superfície as temperaturas não são altas o suficiente. A depleção do lítio nessa região é consequência da mistura com o material proveniente da base da camada convectiva, onde o Li é parcialmente destruído devido às temperaturas mais altas. A convecção, em particular, exerce papel muito relevante no que diz respeito à depleção do lítio em estrelas moderadamente frias. Chamamos de moderadamente frias as temperaturas de aproximadamente 6000 K ou menores.

¹As abundâncias dos principais elementos químicos são semelhantes, tanto no sistema solar, quanto nas estrelas, nebulosas e galáxias. Define-se daí o conceito de abundância cósmica. As abundâncias cósmicas correspodem as abundâncias médias de cada elemento, ou isótopos, encontradas no sistema solar e nos demais objetos astronómicos.

²As estrelas são classificadas como de população I, II, III. As estrelas de população III são as primeiras estrelas formadas no universo. As estrelas de população II são mais jovens e formadas a partir do material enríquecido resultante dos remanescentes da população III. Estrelas de população I são ainda mais jovens e mais ricas em metais.

³O tipo espectral consiste de um esquema adotado para a classificação das estrelas conforme suas cores e temperaturas. Assim, as estrelas são classificadas em tipos espectrais O,B,A,F,G,K,M em uma escala decrescente de temperaturas. As estrelas de tipo mais próximo de O, no início da sequência são chamadas estrelas de primeiros tipos (do inglês early type), enquanto que os tipos mais próximos de M, no final da sequência são chamados tipos tardios (late type).

É importante neste momento salientar que o comportamento dos envoltórios convectivos no que diz respeito à profundidade é função de parâmetros astrofísicos de interesse, sendo eles massas, metalicidades¹, e idades. E ainda função de outros parâmetros, por sua vez derivados destes últimos. Citamos neste caso as temperaturas efetivas², gravidades e raios. Entretanto em estrelas mais tardias a profundidade dos envoltórios convectivos não é suficiente para explicar a depleção do Li observada e mecanismos de "mistura adicional" deveriam estar presentes a fim de levar o material da superfície até regiões abaixo da zona convectiva (Weymann e Sears 1965). Outros estudos sugerem que a depleção do Li não é tão somente uma função de idades, tipos espectrais e temperaturas efetivas (Balachandran 1990), mas também do histórico de evolução rotacional estelar.

Na evolução estelar de estrelas de baixa massa, de tipo solar, principalmente de tipos F e G, para o ramo das subgigantes ocorre o aprofundamento da zona de convecção e aumento da diluição do lítio. Observa-se, nessa etapa, uma grande dispersão nas abundâncias de lítio, além de um grande desacordo com a teoria, sendo a diluição observada sempre maior que a esperada. Por outro lado, existem evidências de que subgigantes isoladas apresentam abundâncias de lítio muito menos depletadas que o esperado (Dravins et al. 1993, del Peloso et al. 2000). Esses dois fatos sugerem a atuação de mecanismos extras de destruição ou preservação desse elemento, provavelmente conectados com a difusão e a circulação meridional, e, portanto, com a evolução rotacional. A circulação meridional que ocorre na zona convectiva estelar à superfície faz-se em direção aos pólos, enquanto que na base da zona convectiva faz-se em direção ao equador (vide Fig. 1.1).

¹A metalicidade, ou [Fe/H], é formalmente definida por: [Fe/H] = log [N(Fe)/N(H)]_{estrela} – log [N(Fe)/N(H)]_{sol}, onde N(Fe) e N(H) são respectivamente a densidade numérica de átomos de ferro e hidrogênio.

²A temperatura efetiva, ou T_{el}, é a temperatura de um corpo negro que emite o mesmo fluxo bolométrico que a estrela. Aproveitamos para citar Balachandran 1990 com respeito à difusão microscópica do Li:

"A difusão microscópica é resultante da aceleração radiativa e da atração gravitacional. De acordo com Michaud (1986), o Li é impulsionado em direção à superfície pela aceleração radiativa em estrelas com temperaturas efetivas maiores que 6900 K e decanta gravitacionalmente em estrelas mais frias. Charbonneau e Michaud (1988) estenderam o modelo de circulação meridional (Tassoul 1982) para estrelas F e mostraram que a circulação meridional devido à rotação tende a inibir a difusão do Li. As velocidades rotacionais a partir das quais a circulação meridional torna-se mais importante que a difusão decresce de 50 km.s⁻¹ em 7250 K para 5 km.s⁻¹ em 6400 K. No extremo superior de temperaturas efetivas, velocidades rotacionais em excesso, além da velocidade crítica, deverão inibir uma sobreabundância do Li observada na superfície e favorecer a circulação do material no envoltório convectivo com camadas mais quentes da estrela. No extremo inferior de temperaturas efetivas velocidades rotacionais em excesso deverão inibir a decantação gravitacional do Li."

Para as estrelas de Nascimento Jr. (2003) e para as que pretendemos estudar, o mecanismo atuante no extremo inferior de temperaturas efetivas do modelo de Charbonneau e Michaud (1988) é o relevante. Isso sugere que uma rotação mais baixa favorece a difusão e, portanto, uma maior depleção do lítio. Evidências de que a diluição do lítio em subgigantes está correlacionada com a atividade cromosférica (do Nascimento Jr. et al. 2003), no sentido de que estrelas menos ativas tendem a destruir o lítio mais eficientemente, reforçam essa possível conexão.

Portanto, a destruição e diluição do lítio nos envoltórios estelares convectivos, através de reações nucleares, fornece também uma ferramenta observacional para o estudo tanto da convecção quanto da evolução rotacional estelar (de Medeiros et al. 2000, Lambert & Reddy 2004). E, ainda neste contexto, a obtenção de fluxos cromosféricos, correlacionados com a rotação estelar, e estados evolutivos para uma extensa e homogênea amostra pode contribuir para o estabelecimento quantitativo da possível conexão entre a depleção do lítio e a evolução de momento angular estelar.

No capítulo 2, procedemos a uma ampla busca na literatura para as temperaturas efetivas, metalicidades, gravidades superficiais, fotometria e abundâncias do lítio. Temperaturas efetivas de H α , fotométricas, massas, idades e fluxos cromosféricos absolutos foram obtidos por Ferreira (2010). No capítulo 3, obtivemos uma escala corrigida de abundâncias do Li com base na escala homogênea de temperaturas efetivas obtidas por Ferreira (2010). No capítulo 4, construímos diagramas H-R teóricos, trajetórias evolutivas por massa e idades a partir dos modelos evolutivos de Yi et al 2003. No capítulo 5, estudamos a conexão entre a abundância do Li, a atividade cromosférica, enquanto indicador rotacional, e demais parâmetros astrofísicos de interesse com base nos diagramas previamente construídos. Ainda neste capítulo procedemos a uma análise multiparamétrica usando regressões lineares das abundâncias corrigidas de Li em função dos nossos dados. Por fim, no capítulo 6, apresentamos nossas conclusões.

4

Fig. 1.1.: Na figura o "looping" exemplifica a circulação meridional nos interiores estelares. As setas indicam o sentido da circulação.

CAPÍTULO 2

A AMOSTRA

2.1. Descrição da amostra

Nossa amostra inicial constitui-se de **252** estrelas de tipos espectrais F, G e K, anãs e subgigantes, de campo e membros de grupos cinemáticos de idades conhecidas. As metalicidades encontram-se no intervalo de -1.0 < [Fe/H] < +0.5 e as temperaturas efetivas entre **4500 K** < T_{ef} < 6500 K. Destas, apenas 152 foram selecionadas como objeto final de estudo deste trabalho. A figura 2.1 fornece o histograma das metalicidades corrigidas (vide seção 2.2) obtidas por Ferreira (2010). As estrelas selecionadas possuem o conjunto completo dos parâmetros necessários à nossa análise: massas, idades, metalicidade, gravidades superficiais, raios, abundâncias de Li e fluxos cromosféricos. A amostra completa e todos os parâmetros pesquisados estarão disponíveis, quando houver, nas tabelas apresentadas nos apêndices.

Figura 2.1.: Histograma de metalicidades corrigidas obtidas por Ferreira (2010)(vide seção 2.2) para as 252 estrelas da amostra inicial.

A fig. 2.2 ilustra o diagrama HR representativo da amostra inicial de 252 estrelas, distribuídas entre anãs e subgigantes. Os círculos preenchidos correspondem as 152 estrelas com abundâncias de Li obtidas da literatura. O parâmetro **log L/L**_{sol} corresponde à razão das luminosidades estelares pela luminosidade solar. O parâmetro T_{ef.med} corresponde a uma escala de temperaturas efetivas obtidas por Ferreira (2010) (vide seção 2.2). A figura 2.3 fornece o histograma das metalicidades corrigidas para as 152 estrelas da amostragem final.

Figura 2.2.: Diagrama HR representativo da amostra inicial de 252 estrelas. Os círculos preenchidos correspondem as 152 estrelas com abundâncias de Li obtidas da literatura. Os círculos vazados correspondem as demais estrelas sem abundâncias do Li obtidas da literatura. As metalicidades utilizadas também foram corrigidas com base na escala de temperaturas efetivas a partir de Hα.

Figura 2.3.: Histograma de metalicidades corrigidas para a seleção de 152 estrelas retiradas da amostra inicial e com abundâncias do lítio obtidas a partir da literatura.

2.2. Dados da literatura

(a) Artigos do Li

Realizamos uma ampla busca na literatura para as abundâncias do lítio, com as respectivas gravidades superficiais, metalicidades, temperaturas efetivas e fotometria (vide apêndice A). Selecionamos preferencialmente os trabalhos que forneciam parâmetros exatos para as abundâncias do Li. Os casos em que utilizamos os limites superiores estarão indicados no curso deste trabalho.

Em segundo, escolhemos preferencialmente os artigos que forneciam temperaturas efetivas obtidas a partir da espectroscopia. Os casos em que utilizamos as temperaturas efetivas obtidas por fotometria estarão indicados nos apêndices (apêndice A). Esse cuidado é importante porque as abundâncias do lítio são particularmente sensíveis a alterações das temperaturas efetivas. Isso nós discutiremos adiante quando procedermos a homogeneização de nossos dados (vide capítulo 3).

As temperaturas efetivas derivadas a partir de ajustes teóricos aos perfis da linha H α , temperaturas efetivas fotométricas, massas, idades e fluxos cromosféricos absolutos foram obtidos por Ferreira (2010) (vide apêndices B, C e D). Neste trabalho a autora obteve uma escala bastante homogênea de temperaturas efetivas, aqui T_{er.H α}, a partir dos ajustes de modelos teóricos às asas da linha H α na Série de Balmer. As incertezas são em torno de $\sigma \sim 90$ K para as estrelas mais frias e de $\sigma \sim 50$ K para as demais. Aplicou-se uma correção a fim de uniformizar a escala de metalicidade obtida da literatura. As metalicidades corrigidas, doravante [Fe/H], foram obtidas com base na relação:

 $\Delta [Fe/H]/\Delta T_{ef} = 0.06 \,dex/100 \,K$

Onde ΔT_{ef} é a diferença entre a temperatura obtida na literatura e a temperatura $T_{ef,H\alpha}$.

De posse da nova escala de metalicidades corrigidas, Ferreira (2010) obteve as temperaturas efetivas fotométricas através de calibrações de Porto de Mello (1996). Nós iremos mostrá-las a seguir, com as respectivas incertezas associadas:

$$\begin{split} T_{ef}(K) &= 7747 - 3016(B - V)(1 - 0.15[Fe/H])\sigma \approx 65K\\ T_{ef}(K) &= 7751 - 2406(B_T - V_T)(1 - 0.20[Fe/H])\sigma \approx 64K\\ T_{ef}(K) &= 8481 - 6516(b - y)1 - 0.09[Fe/H]\sigma \approx 55K \end{split}$$

Os índices de cor (B - V) e ($B_T - V_T$) foram obtidos do catálogo Hipparcos (ESA 1997) e as cores (b - y) foram levantadas da literatura, dando preferência ao sistema fotométrico de Olsen (1993, 1994) e Olsen (1983). Os demais catálogos foram convertidos utilizando a fórmula:

 $(b - y)_{corrigido} = 0.8858 \times (b - y) + 0.0532$

A temperatura efetiva fotométrica final, aqui T_{ef.fot}, foi obtida a partir da média ponderada das temperaturas efetivas obtidas pelas três calibrações, usando o inverso do quadrado dos desvios padrão como peso:

$$T_{ef,fot}(K) = [\Sigma_{i=1}^{N} (T_{ef,i})/\sigma_{i}^{2}]/[\Sigma_{i=1}^{N} 1/\sigma_{i}^{2}]$$

A incerteza da temperatura fotométrica final foi obtida através da expressão:

$$\sigma(T_{ef.fot}) = \sqrt{\sum_{(i=1)}^{N} \sigma_i^2/N^2}$$

-

Em princípio, as temperaturas efetivas fotométricas são suficientemente homogêneas, entretanto, as calibrações de Porto de Mello (1996) são dependentes do parâmetro [Fe/H]. Isso justifica a correção das metalicidades heterogêneas da literatura com base numa escala mais homogênea de temperaturas efetivas, no caso, aquelas derivadas a partir do perfil da linha Ha. A incerteza de T_{ef.fot} é estimada como em torno de $\sigma \sim 40$ K. Ferreira (2010) mostrou uma boa concordância entre as escalas de temperatura efetiva fotométrica e de Ha. A dispersão entre as duas escalas é de 83 K. A temperatura efetiva final Tef.med para cada estrela foi obtida a partir da média aritmética de ambas as temperaturas efetivas supracitadas (vide apêndice B). Em virtude da homogeneidade de ambas as escalas obtidas, aqui Termed, também pode ser considerada homogênea. As incertezas típicas de Tef.med, doravante T_{ef}, são em torno de $\sigma \sim 50$ K. As maiores incertezas de T_{ef.Ha} foram encontradas nas estrelas mais frias do intervalo de temperaturas. Para estas foram adotadas como incertezas o valor de $\sigma \sim 90$ K. Para as demais estrelas, tal que o erro $\sigma(T_{ef,H\alpha}) \sim 50$ K superava a estimativa para o erro de $T_{ef,fot}$, Ferreira (2010) utilizou o valor de 50 K.

Por fim, foram obtidas massas, idades, raios e novas gravidades superficiais, aqui gravidades evolutivas, para todas as estrelas da amostra. As massas e idades foram calculadas, respectivamente, por meio de trajetórias de massa e trajetórias de idade (isócronas). Estas foram obtidas a partir das trajetórias evolutivas de Yi et al. (2003) e Kim et al. (2002). A determinação das massas e idades através do diagrama H-R exige que sejam obtidas as temperaturas efetivas, as luminosidades e as metalicidades. As temperaturas efetivas T_{ef} e as metalicidades **[Fe/H]** foram obtidas conforme o descrito acima. As luminosidades L/L_{sol} foram obtidas pela relação:

$$\log\left(\frac{L}{L_{Sol}}\right) = -0.4(V + 5 + 5\log\pi + CB - M_{bol}^{Sol}),$$

onde V é a magnitude visual da estrela na banda V e π é a paralaxe, ambos retirados do catálogo HIPPARCOS. CB é a correção bolométrica que foi obtida por Flower (1996). E, finalmente, $M_{bol}^{Sol} = 4,75$ é a magnitude bolométrica do Sol conforme utilizada em Ferreira (2010).

As gravidades superficiais evolutivas foram obtidas por meio da equação:

$$\log\left(\frac{g}{g_{Sol}}\right) = \log\left(\frac{M}{M_{Sol}}\right) + 4\log\left(\frac{T_{ef}}{T_{ef_{Sol}}}\right) - \log\left(\frac{L}{L_{Sol}}\right),$$

onde a temperatura efetiva T_{ef} corresponde a escala de temperatura efetiva adotada $T_{ef.med}$. As massas M/M_{sol} foram obtidas por meio das trajetórias evolutivas por massa conforme descritas acima. Os raios R/R_{sol} foram estimados por meio da equação:

$$\left(\frac{R_{Sol}}{R}\right)^2 = \left(\frac{L_{Sol}}{L}\right) \left(\frac{T_{ef}}{T_{efSol}}\right)^4$$

Esse será o nosso ponto de partida quando procedermos à correção e homogeneização de nossa amostra (vide capítulo 3).

CAPÍTULO 3

PARÂMETROS ATMOSFÉRICOS E ABUNDÂNCIAS DO LI

3.1. Estudo das incertezas

As incertezas na determinação das abundâncias do Li não ocorrem tão somente devido aos erros associados à medida das larguras equivalentes (W_λ) ou ao processo de síntese espectral. Estudos anteriores (ex.: Balachandran 1990) da correlação entre as abundâncias do Li e parâmetros atmosféricos estelares, tais como metalicidades, gravidades superficiais, velocidades de microturbulência e temperaturas efetivas, mostraram que erros na determinação destas medidas incorrem em erros sistemáticos na determinação das abundâncias do Li.

As incertezas nas determinações das abundâncias do Li e metalicidades devidas a erros nos parâmetros atmosféricos são (Balachandran 1990):

1. Incertezas nas temperaturas efetivas de $\Delta T_{ef}(K) = \pm 80 \text{ K}$ produzem incertezas nas abundâncias de $\Delta \log \epsilon(\text{Li}) = \pm 0.08$ dex e incertezas nas metalicidades de Δ [Fe/H] = ± 0.07 dex;

2. Incertezas nas gravidades superficiais de $\Delta \log g = \pm 0.2$ dex produzem incertezas nas abundâncias de $\Delta \log \epsilon(\text{Li}) = \mp 0.00$ dex e incertezas nas metalicidades de Δ [Fe/H] = ∓ 0.01 dex;

3. Incertezas na velocidade de microturbulência $\Delta \xi_{mic}(km.s^{-1}) = \pm 0.5 \ km.s^{-1}$ produzem incertezas nas abundâncias de $\Delta \log \epsilon(Li) = \pm 0.02 \ dex e$ nas metalicidades de Δ [Fe/H] = $\pm 0.13 \ dex$.

Estas incertezas foram utilizadas por se tratarem de incertezas típicas e normalmente encontradas na literatura. Cuidados especiais são exigidos nas estimativas de temperaturas efetivas uma vez que as abundâncias de Li mostram-se particularmente sensíveis a este parâmetro. A nossa amostra para as abundâncias de Li é uma compilação de resultados obtidos a partir de fontes heterogêneas. Assim, é desejável corrigir as estimativas para uma escala de temperatura efetiva mais homogênea.

As incertezas nas abundâncias do Li associadas com as incertezas das gravidades superficiais e das velocidades de microturbulência são bastante menores do que as associadas com a temperatura efetiva. Portanto, vamos desprezá-las para os fins de nossa análise.

3.2. Abundâncias de Li corrigidas

Ferreira (2010) obteve metalicidades corrigidas para uma escala homogênea de temperaturas efetivas obtidas a partir do perfil da linha Hα. Nós, similarmente, vamos obter abundâncias corrigidas do Li para uma escala homogênea de temperaturas efetivas.

A fim de corrigir nossas abundâncias, e a partir de nosso estudo das incertezas (vide seção 3.1), podemos construir a equação:

$$\log \varepsilon(Li)_{corr} - \log \varepsilon(Li)_{publ} = (0.08/80) \times [T_{ef.hom}(K) - T_{ef.publ}(K)]$$

O parâmetro T_{ef.hom}(K) corresponde a nossa escala de temperaturas efetivas homogêneas. As temperaturas efetivas publicadas T_{ef.publ}(K) foram obtidas a partir dos artigos de onde obtivemos as respectivas abundâncias do Li.

Para a escolha da escala homogênea de temperaturas efetivas temos duas possibilidades: temperaturas efetivas $T_{ef,H\alpha}$ obtidas a partir do perfil da linha H α ou uma escala de temperaturas efetivas $T_{ef,med}$ conforme descritas na seção 2.2. Então, as duas transformações possíveis são:

$$\log \varepsilon(Li)_{H\alpha} - \log \varepsilon(Li)_{publ} = (0.08/80) \times [T_{ef,H\alpha}(K) - T_{ef,publ}(K)]$$

 $\log \varepsilon(Li)_{med} - \log \varepsilon(Li)_{publ} = (0.08/80) \times [T_{ef.med}(K) - T_{ef.publ}(K)]$

3.3. Escala homogênea de temperaturas efetivas

Conforme descrevemos na seção 3.1 nós vamos corrigir as abundâncias de Li com base em uma escala homogênea de temperaturas efetivas. Nesta seção nós vamos estabelecê-la.

Os parâmetros $\Delta \log \epsilon(Li)_{H\alpha} \in \Delta \log \epsilon(Li)_{med}$ correspondem à diferença entre as abundâncias corrigidas do Li e aquelas obtidas da literatura. Sejam eles:

 $\Delta log \varepsilon(Li)_{H\alpha} = \log \varepsilon(Li)_{H\alpha} - \log \varepsilon(Li)_{publ}$

$$\Delta log \varepsilon(Li)_{med} = \log \varepsilon(Li)_{med} - \log \varepsilon(Li)_{publ}$$

Nós vamos verificar os comportamentos de $\Delta \log \epsilon(Li)_{H\alpha} e \Delta \log \epsilon(Li)_{med}$ com respeito aos seguintes parâmetros: metalicidades corrigidas [Fe/H], temperaturas efetivas (T_{ef.med} e T_{ef.Hα}) e gravidades superficiais evolutivas, aqui log g.

Estudamos o comportamento de $\Delta \log \epsilon(Li)$ com respeito a cada uma das respectivas escalas de temperaturas efetivas (vide fig. 3.1 e 3.2). Alguns poucos pontos escapam bastante do intervalo de confiança de 95% (linhas azuis) ou 2 σ . O desvio padrão é de $\sigma \sim 0.1$ dex para ambos os ajustes lineares. Os ajustes lineares conforme a equação Y = [$a \pm \sigma_a$] + [$b \pm \sigma_b$]X (linha vermelha central) são dados por $\Delta \log \epsilon(Li)_{med} = [0.05 \pm 0.15] + [-1.22 \times 10^5 \pm$ 2.67 × 10⁻⁵]T_{ef.med} (vide fig. 3.1) e $\Delta \log \epsilon(Li)_{H\alpha} = [-0.1 \pm 0.2] + [-3.16 \times 10^{-5} \pm$ 3.57 × 10⁻⁵]T_{ef.Ha} (vide fig. 3.2). Em ambos os casos os coeficientes não possuem significância estatística, i.e, os coeficientes **a** e **b** não são significativamente diferentes de zero. A significância estatística ocorre quando para um coeficiente **a** temos | **a** | > 2 σ_a . Portanto, acreditamos não existir diferenças que permitam privilegiar umas das escalas de temperatura efetiva.

Figura 3.1.: Diagrama $\Delta \log \epsilon(Li)_{med}$ vs. $T_{ef.med}$. O desvio padrão é de $\sigma \sim 0.1$ dex para $\Delta \log \epsilon(Li)$. O ajuste linear $\mathbf{Y} = [\mathbf{a} \pm \sigma_{\mathbf{a}}] + [\mathbf{b} \pm \sigma_{\mathbf{b}}]\mathbf{X}$ (linha vermelha central) é dado por $\Delta \log \epsilon(Li)_{med} = [0.05 \pm 0.15] + [-1.22 \times 10^5 \pm 2.67 \times 10^5]T_{ef.med}$ e o intervalo de confiança é de 2σ (linhas azuis).

Figura 3.2.: Diagrama $\Delta \log \epsilon(Li)_{H\alpha}$ vs. $T_{efH\alpha}$. O desvio padrão é de $\sigma \sim 0.1$ dex para $\Delta \log \epsilon(Li)$. O ajuste linear $Y = [a \pm \sigma_a] + [b \pm \sigma_b]X$ (linha vermelha central) é dado por $\Delta \log \epsilon(Li)_{H\alpha} = [0.1 \pm 0.2] + [-3.16 \times 10^{-5} \pm 3.57 \times 10^{-5}]T_{ef.H\alpha}$ e o intervalo de confiança é de 2σ (linhas azuis).

Estudamos o comportamento de $\Delta \log \epsilon(Li)_{H\alpha}$ e $\Delta \log \epsilon(Li)_{med}$ contra as gravidades evolutivas log g determinadas por Ferreira (2010) (vide fig. 3.3 e 3.4). O desvio padrão é de $\sigma \sim 0.1$ dex para ambos. Os ajustes lineares conforme a equação Y = [a ± σ_a] + [b ± σ_b]X (linha vermelha central) são dados por $\Delta \log \epsilon(Li)_{med}$ = [-0.4 ± 0.1] + [0.09 ± 0.03]log g. (vide fig. 3.3) e $\Delta \log \epsilon(Li)_{H\alpha}$ = [-0.7 ± 0.1] + [0.15 ± 0.03]log g. (vide fig. 3.4). Os coeficientes a e b são significantes. Graficamente, a tendenciosidade é bem evidente para ambos os ajustes. No extremo inferior de gravidades evolutivas, as abundâncias corrigidas do Li são, em média, menores do que aquelas obtidas na literatura. Neste caso, as correções $\Delta \log \epsilon(Li)_{H\alpha} e \Delta \log \epsilon(Li)_{med}$ tornam-se, em média, maiores. O grau de tendenciosidade é similar, mas ligeiramente menor para o ajuste $\Delta \log \epsilon(Li)_{med}$ vs. $\log g$.

A precisão do método de determinação de temperaturas efetivas a partir de ajustes teóricos do perfil da linha Hα é menor para as estrelas mais frias. Ferreira (2010) utilizou-se do programa desenvolvido por Lyra & Porto de Mello (2005) para fazer a comparação automática entre os espectros observados do perfil de Hα e os modelos teóricos. Nas estrelas excessivamente frias (T_{ef} < 5200K), as larguras equivalentes do hidrogênio são menos intensas. Neste caso, as asas do perfil de Hα tornam-se rasas o suficiente para que a sensibilidade à temperatura seja afetada. Ademais, a contaminação por linhas metálicas é mais expressiva. Para estrelas progressivamente mais frias que 5200K, os perfis teóricos se afastaram significativamente dos perfis observados. Por sua vez, a escala de temperaturas efetivas T_{ef.med} possui a contribuição das temperaturas efetivas fotométricas, que são mais precisas no intervalo de estrelas mais frias. Isso parece estar explicando a maior tendenciosidade para os ajustes **[Δlog ε(Li)_{Hα}]** vs. **log g** (vide fig. 3.3 e 3.4) e **[Δlog ε(Li)_{Hα}]** vs. T_{ef.Hα} (vide fig. 3.1 e 3.2).

Figura 3.3.: Diagrama $\Delta \log \varepsilon(Li)_{med}$ vs. $\log g$. O desvio padrão é de $\sigma \sim 0.1$ dex. O ajuste linear $\mathbf{Y} = [\mathbf{a} \pm \sigma_{\mathbf{a}}] + [\mathbf{b} \pm \sigma_{\mathbf{b}}] \mathbf{X}$ (linha vermelha central) é dado por $\Delta \log \varepsilon(Li)_{med} = [-0.4 \pm 0.1] + [0.09 \pm 0.03] \log g$ e o intervalo de confiança é de 2σ (linhas azuis).

Figura 3.4.: Diagrama log $\varepsilon(Li)_{H\sigma}$ vs. log g. O desvio padrão é de $\sigma \sim 0.1$. O ajuste linear $\mathbf{Y} = [\mathbf{a} \pm \sigma_{\mathbf{a}}] + [\mathbf{b} \pm \sigma_{\mathbf{b}}]\mathbf{X}$ (linha vermelha central) é dado por $\Delta \log \varepsilon(Li)_{H\sigma} = [-0.7 \pm 0.1] + [0.15 \pm 0.03]\log g$ e o intervalo de confiança é de 2σ (linhas azuis).

Nas figuras 3.5 e 3.6 exibimos o comportamento de $\Delta \log \epsilon(Li)$ contra as metalicidades corrigidas para as escalas de temperaturas efetivas $T_{ef,H\alpha}$. O desvio padrão é de $\sigma \sim 0.1$ dex em ambos os casos. As Metalicidades corrigidas para a escala de temperaturas efetivas $T_{ef,med}$ podem ser obtidas. Isso é desnecessário uma vez que Ferreira (2010) mostrou que existe bom acordo entre ambas as escalas de temperatura efetiva. O desvio padrão entre elas é de $\sigma \sim 45$ K (vide figura 3.7). Essa estimativa está em perfeito acordo com os erros individuais (vide seção 2.2).

Figura 3.5.: Diagrama $\Delta \log \epsilon(Li)_{med}$ vs. [Fe/H]. O desvio padrão é de $\sigma \sim 0.1$ dex. O ajuste linear Y = [$\mathbf{a} \pm \sigma_{\mathbf{a}}$] + [$\mathbf{b} \pm \sigma_{\mathbf{b}}$]X (linha vermelha central) é dado por $\Delta \log \epsilon(Li)_{med}$ = [-0.016 ± 0.008] + [0.07 ± 0.03][Fe/H] e o intervalo de confiança é de 2σ (linhas azuis).

(

((

 \cap

0

 \cap

0

((

(((

0

 \cap

0

(

Figura 3.6.: Diagrama $\Delta \log \epsilon(Li)_{Ha}$ vs. [Fe/H]. O desvio padrão é de $\sigma \sim 0.1$. O ajuste linear $\mathbf{Y} = [\mathbf{a} \pm \sigma_{\mathbf{a}}] + [\mathbf{b} \pm \sigma_{\mathbf{b}}]\mathbf{X}$ (linha vermelha central) é dado por $\Delta \log \epsilon(Li)_{Ha} = [-0.03 \pm 0.01] + [-0.03 \pm 0.04]$ [Fe/H] e o intervalo de confiança é de 2σ (linhas azuis).

Figura 3.7.: $T_{et.med}$ vs. $T_{ef.Ha}$. O desvio padrão é de $\sigma \sim 45$ K. O ajuste linear $Y = [a \pm \sigma_a] + [b \pm \sigma_b]X$ (linha vermelha central) é dado por $T_{ef.med}(K) = [3 \pm 60] + [1.00 \pm 0.01] T_{ef.Ha} e o$ intervalo de confiança é de 2σ (linhas azuis).

19

Por último comparamos as abundâncias de Li corrigidas por ambos os métodos em um único ajuste (vide figura 3.8). O bom acordo entre ambas as correções é evidente. Como não temos motivos para privilegiar uma delas escolhemos a escala de temperaturas efetivas T_{ef.med} uma vez que Ferreira (2010) derivou desta os parâmetros evolutivos que serão relevantes em nosso estudo.

Comparamos as temperaturas efetivas da literatura e a nossa escolha para a escala de temperaturas efetivas $T_{ef.med}$. O espalhamento quando comparado ao ajuste $T_{ef.H\alpha}$ vs. $T_{ef.med}$ é decisivamente maior. O desvio padrão $\sigma \sim 97$ K mostra a grande heterogeneidade dos valores publicados (vide fig. 3.9).

Finalmente, comparamos as abundâncias do Li obtidas na literatura log $\epsilon(Li)_{publ}$ e suas respectivas correções, log $\epsilon(Li)_{med}$ e log $\epsilon(Li)_{H\alpha}$. O espalhamento das abundâncias do Li é menor para o ajuste log $\epsilon(Li)_{med}$ vs. log $\epsilon(Li)_{H\alpha}$ (vide fig. 3.8, fig. 3.10 e fig. 3.11).

Figura 3.8.: Diagrama log $\varepsilon(Li)_{med}$ vs. log $\varepsilon(Li)_{Ha}$. O ajuste linear $Y = [a \pm \sigma_a] + [b \pm \sigma_b]X$ (linha vermelha central) é dado por log $\varepsilon(Li)_{med} = [0.00 \pm 0.01] + [1.006 \pm 0.005] \log \varepsilon(Li)_{Ha}$ e o intervalo de confiança é de 2σ (linhas azuis). O desvio padrão é de $\sigma \sim 0.05$ dex.

Figura 3.9.: Diagrama $T_{ef,publ}$ vs. $T_{ef,med}$. O ajuste linear $Y = [a \pm \sigma_a] + [b \pm \sigma_b]X$ (linha vermelha central) é dado por $T_{ef,publ} = [0.00 \pm 154] + [1.01 \pm 0.03]T_{ef,med}$ e o intervalo de confiança é de 2σ (linhas azuis). O desvio padrão $\sigma \sim 97$ K.

Figura 3.10.: Diagrama log $\varepsilon(Li)_{publ}$ vs. log $\varepsilon(Li)_{med}$. O ajuste linear $Y = [a \pm \sigma_a] + [b \pm \sigma_b]X$ (linha vermelha central) é dado por log $\varepsilon(Li)_{publ} = [0.02 \pm 0.02] + [0.998 \pm 0.009]$ log $\varepsilon(Li)_{H\alpha}$ e o intervalo de confiança é de 2σ (linhas azuis). O desvio padrão é de $\sigma \sim 0.1$ dex

Acreditamos que com esses resultados nossa escala T_{ef.med}, embora não totalmente homogênea, reduzirá sensivelmente os efeitos de uma amostra heterogênea sobre os resultados de nossa análise. Obtivemos as abundâncias corrigidas do Li a partir da equação:

$$\log \varepsilon(Li)_{med} = (0.08/80) \times [T_{ef.med}(K) - T_{ef.mubl}(K)] + \log \varepsilon(Li)_{mubl}$$

A correlação entre abundâncias de Li e temperaturas efetivas é bem estabelecida na literatura (Balachandran 1990). Na figura 3.11 apresentamos as abundâncias corrigidas **log** ϵ (Li)_{med} versus a escala de temperaturas efetivas T_{ef.med}. Em nosso intervalo de temperaturas efetivas e metalicidades, as estrelas mais frias apresentam abundâncias de Li sistematicamente menores. A grande dispersão nos pontos observados denotam a complexidade e a dependência de múltiplas variáveis para a determinação das abundâncias do Li.

Figura 3.11.: Abundâncias corrigidas log ε(Li)_{med} vs. T_{ef.med}. Os círculos preenchidos correspondem as 152 estrelas com abundâncias de Li obtidas da literatura. Os círculos vazados correspondem as demais estrelas que não possuem abundâncias de Li obtidas.

CAPÍTULO 4

MASSAS, IDADES E FLUXOS CROMOSFÉRICOS

Com o objetivo de estudar o comportamento das abundâncias do lítio e sua conexão com a atividade cromosférica, massas e idades, construíremos diagramas H-R e trajetórias evolutivas teóricas a partir dos modelos teóricos de Yi et al. (2003). Analisaremos concomitantemente o nível de atividade cromosférica e as abundâncias do Li. Os erros médios de luminosidade são baseados nas precisas paralaxes do Hipparcos (ESA 1997) e, portanto, as incertezas na determinação das temperaturas efetivas tornam-se as fontes dominantes de erro. Os erros médios de T_{ef.med} são de aproximadamente **50 K**.

A próxima etapa será dividir nossa amostra em subintervalos de metalicidade. Antes de construírmos nossos diagramas H-R, precisamos estudar o histograma de metalicidades corrigidas (somente para as estrelas com abundâncias do lítio obtidas da literatura; i.e, 152 estrelas) a fim de determinar os subintervalos adequados. Diagramas H-R, trajetórias evolutivas por massa e idade, representativos de cada subintervalo, serão determinados usando uma metalicidade que represente satisfatoriamente a subamostra de estrelas nele contida. Usaremos a metalicidade que define o centro de cada um deles.

Como ponto de partida não é conveniente escolher subintervalos de tamanho menor que os erros associados aos valores de metalicidade. Portanto, eliminamos os subintervalos menores que **0.1 dex**. Devemos escolher os subintervalos, se possível, de forma que a subamostra de estrelas seja representativa para os fins da nossa análise. Os intervalos pouco povoados não são interessantes porque não permitem conclusões estatísticas definitivas. Intervalos muito extensos também não são interessantes porque se toma difícil determinar uma metalicidade que represente razoavelmente bem todas as estrelas nele contidas. Neste caso, não seremos capazes de caracterizar a importância do parâmetro metalicidade na definição das abundâncias do Li.

Um subintervalo de 0.1 dex, em princípio, parece ser a melhor escolha, pois não é menor que o erro associado. E também é o menor possível com base no que foi discutido no parágrafo anterior. Entretanto, na faixa de metalicidades -0.75 < [Fe/H] < -0.3 e [Fe/H] > +0.35 o povoamento torna-se demasiadamente pequeno (vide fig. 4.1 e fig. 4.2). Introduzimos a fig. 4.2 a fim de identificar com mais precisão as metalicidades a partir das quais o povoamento torna-se pequeno.

Figura 4.1.: Histograma das metalicidades corrigidas tomadas em intervalos com largura de 0.1 dex.

Figura 4.2.: Histograma das metalicidades corrigidas tomadas em intervalos com largura de 0.05 dex.

A proministra a social um surranterezar un 6,7 mais 1,8 un hante sura a problèma do povosimente es esta fisiale y dans municipa esta marte da matelicidades permaneca servismi una trancia da 2.7 O povoamento nos subintervalos de 0.1 dex, tomados de um intervalo inicial -0.75 ≤ [Fe/H] < +0.45, é como se segue:

SUBINTERVALOS DE METALICIDADE	Nº DE ESTRELAS
-0.75 ≤ [Fe/H] < -0.65	5
-0.65 ≤ [Fe/H] < -0.55	2
-0.55 ≤ [Fe/H] < -0.45	2
-0.45 ≤ [Fe/H] < -0.35	3
-0.35 ≤ [Fe/H] < -0.25	8
-0.25 ≤ [Fe/H] < -0.15	14
-0.15 ≤ [Fe/H] < -0.05	23
-0.05 ≤ [Fe/H] < +0.05	27
+0.05 ≤ [Fe/H] < +0.15	33
+0.15 ≤ [Fe/H] < +0.25	20
+0.25 ≤ [Fe/H] < +0.35	14
+0.35 ≤ [Fe/H] < +0.45	1

Tabela 4.1.: A tabela acima exibe o povoamento estelar no intervalo de metalicidades -0.75 ≤ [Fe/H] < +0.45 tomados em subintervalos de 0.1 dex.

A alternativa é adotar um subintervalo de **0.2 dex**, mas neste caso o problema do povoamento na extremidade inferior do nosso intervalo de metalicidades permanece sem solução (vide fig. 4.3).

Figura 4.3.: Histograma de metalicidades corrigidas tomadas em intervalos com largura de **0.2 dex**.

Sendo o erro de **[Fe/H]** ~ 0.1 dex, uma largura de bin de 0.2 dex equivale a uma dispersão em torno de um valor central de \pm 0.1 dex, ou seja, de um sigma para cada um dos lados. Portanto, com base em nosso estudo vamos adotar binagens de 0.2 dex no intervalo -0.75 \leq **[Fe/H]** < +0.35 no intuito de construir nossos diagramas H-R e trajetórias evolutivas por massa.

Para procedermos a nossa análise multiparamétrica, precisamos determinar subintervalos de fluxos cromosféricos e abundâncias de Li adequados. Criaremos uma escala de cores e tamanhos dos símbolos nos gráficos para caracterizar a intensidade dos fluxos cromosféricos absolutos e abundâncias de Li, respectivamente, em nossos diagramas H-R e ao longo das trajetórias evolutivas. As regras para a escolha dos subintervalos, representados nesta escala de cores e tamanhos, devem ser tais que seja possível identificar com clareza o comportamento das variáveis ao longo do diagrama e trajetórias evolutivas, i.e, identificar a correlação entre as variáveis estudadas: a atividade cromosférica, abundâncias do Li, luminosidades, temperaturas efetivas, massas e idades. A amostragem de cada subintervalo deve ser adequada, ao mesmo tempo em que a quantidade de cores e tamanhos de símbolos não deve dificultar a visualização, interpretação dos

resultados ou permitir perda de informações. Queremos evidenciar a ocorrência de padrões em nossas variáveis ao longo do diagrama e trajetórias evolutivas. Para este objetivo a escolha de uma quantidade muito limitada de cores e de tamanhos também é prejudicial.

O histograma do fluxo cromosférico absoluto de H α de Ferreira (2010), doravante F_{crom}, para as 152 estrelas de nossa amostra inicial com abundâncias de Li obtidas da literatura mostra amostragens satisfatórias no intervalo $0 \le F_{crom} < 12 (x10^5 \text{ erg.cm}^{-2}.\text{s}^{-1})$. A amostragem no intervalo $F_{crom} \ge$ 12 (x10⁵ erg.cm⁻².s⁻¹) é inadequada e, portanto, vamos reunir os dois últimos subintervalos de nosso histograma em um único (vide fig. 4.4).

Figura 4.4.: Histograma dos fluxos cromosféricos absoluto de H α , doravante F_{crom} , em intervalos com largura de 3 x10⁵ erg.cm⁻².s⁻¹.
Baseado em nosso estudo vamos sugerir os seguintes subintervalos de fluxo cromosférico absoluto a serem representados por cores:

SUBINTERVALOS DE FLUXO ABSOLUTO DE H _a	ESCALA DE CORES
$F_{crom} < 3 (x10^5 \text{ erg. cm}^{-2} \cdot \text{s}^{-1})$	VERMELHO
$3 \le F_{crom} \le 6 (x10^5 \text{ erg.cm}^2.\text{s}^{-1})$	AMARELO
$6 \le F_{crom} < 9 (x10^5 \text{ erg.cm}^{-2}.\text{s}^{-1})$	VERDE
$F_{crom} \ge 9 (x10^5 erg.cm^{-2}.s^{-1})$	AZUL

Tabela 4.2.: A tabela acima exibe os subintervalos de fluxos cromosféricos a serem representados por cores.

Os erros associados às medidas de F_{crom} são da ordem de $\sigma \sim 0.5$ a 1.0 (x10⁵ erg.cm⁻².s⁻¹) e, portanto, menores que as dimensões dos subintervalos de fluxo cromosférico adotados.

O histograma das abundâncias do Li mostra uma boa amostragem em todos os subintervalos com largura de **1.0 dex** tomados no intervalo inicial **-0.5** dex $\leq \log \varepsilon(\text{Li}) \leq +3.5$ dex (vide fig. 4.5). Inadvertidamente, foram incluídos alguns limites superiores para as abundâncias de Li. Os limites superiores estarão indicados nas tabelas (vide apêndices A e E) pelo sinal < (menor que). Discutiremos mais sobre eles no capítulo 5.

29

Figura 4.5.: Histograma das abundâncias de Li em intervalos com largura de 1.0 dex.

Os subintervalos de abundâncias de Li a serem representados por tamanhos são os seguintes:

SUBINTERVALOS DE ABUNDÂNCIAS DO LI	ESCALA DE TAMANHOS DOS SÍMBOLOS
log ε(Li) < 0.5	PEQUENO
0.5 ≤ log ε(Li) < 1.5	MÉDIO PEQUENO
1.5 ≤ log ε(Li) < 2.5	MÉDIO GRANDE
log ε(Li) ≥ 2.5	GRANDE

Tabela 4.2.: A tabela acima exibe os subintervalos de abundâncias do Li a serem representados por uma escala de tamanhos.

Os erros associados às medidas das abundâncias do Li não são tipicamente maiores que $\sigma \sim 0.1$ dex. E, portanto, menores que a dimensão dos subintervalos de **log** ϵ (Li) adotados. Entende-se por típicos os erros nas

abundâncias do Li comumente encontrados na literatura (Ex. da Silva & Porto de Mello 2000).

0

0

0

0

Apresentamos a seguir os diagramas H-R e trajetórias evolutivas para os intervalos de metalicidade -0.75 \leq [Fe/H] < -0.55, -0.55 \leq [Fe/H] < -0.35, -0.35 \leq [Fe/H] < -0.15, -0.15 \leq [Fe/H] < +0.05, +0.05 \leq [Fe/H] < +0.25, +0.25 \leq [Fe/H] < +0.45 usando respectivamente, para as metalicidades que melhor representam os centros dos intervalos, os valores -0.65, -0.45, -0.25, -0.05, +0.15, +0.35. Os diagramas foram construídos usando o programa Python TRAJOCRONAS, cedidos por D. L. de Oliveira da pós-graduação em astronomia do Observatório do Valongo (UFRJ) (vide fig. 4.6 a 4.11). Nestes gráficos as linhas negras cheias representam as trajetórias evolutivas de mesma massa a partir de 0.8 massas solares e acrescidas de 0.1 massas solares a cada passo. As linhas azuis representam as isócronas a partir de 2 Gano no extremo inferior e também espaçadas por 2 Gano*.

(Ferri) a violation of magnetic construction of the constructio

* O Gano corresponde a abreviação para Giga-ano e equivale a 10º anos.

Figura 4.6.: Diagrama H-R (log L/L_{sol} vs. Log $T_{ef.med}$) para metalicidades em torno de [Fe/H] = +0.35 dex, mostrando as trajetórias evolutivas por massa (linhas negras cheias), isócronas (linhas azuis), ZAMS^{*} (linha tracejada vermelha). Abundâncias do Li: log ε (Li) < 0.5 (pequeno), 0.5 ≤ log ε (Li) < 1.5 (médio pequeno), 1.5 ≤ log ε (Li) < 2.5 (médio grande), log ε (Li) ≥ 2.5 (grande). Fluxo cromosférico absoluto de Ha: F_{crom} < 3 (x10⁵erg.cm⁻².s⁻¹) (vermelho), 3 ≤ F_{crom} < 6 (x10⁵erg.cm⁻².s⁻¹)(amarelo), 6 ≤ F_{crom} < 9 (x10⁵erg.cm⁻².s⁻¹)(verde), F_{crom} ≥ 9 (x10⁵erg.cm⁻².s⁻¹)(azul). A linha tracejada preta corresponde a linha de esgotamento central e que define a transição para o ramo das subgigantes.

* ZAMS (abreviação em inglês para Zero Age Main Sequence) corresponde no diagrama H-R ao ponto de entrada da estrela na sequência principal, marcando início da queima do hidrogênio central através de reações de fusão nuclear. Imediatamente após esta fase a evolução estelar é estável, ocorrendo a gradual queima do hidrogênio central em hélio.

Figura 4.7.: Diagrama H-R (log L/L_{sol} vs. Log $T_{et.med}$) para metalicidades em torno de [Fe/H] = +0.15 dex, mostrando as trajetórias evolutivas por massa (linhas negras cheias), isócronas (linhas azuis), ZAMS (linha tracejada vermelha). Abundâncias do Li: log $\varepsilon(Li) < 0.5$ (pequeno), $0.5 \le \log \varepsilon(Li) < 1.5$ (médio pequeno), $1.5 \le \log \varepsilon(Li) < 2.5$ (médio grande), log $\varepsilon(Li) \ge$ 2.5 (grande). Fluxo cromosférico absoluto de Ha: $F_{crom} < 3$ (x10⁵ erg.cm⁻².s⁻¹) (vermelho), $3 \le$ $F_{crom} < 6$ (x10⁵ erg.cm⁻².s⁻¹)(amarelo), $6 \le F_{crom} < 9$ (x10⁵ erg.cm⁻².s⁻¹)(verde), $F_{crom} \ge 9$ (x10⁵ erg.cm⁻².s⁻¹)(azul). A linha tracejada preta corresponde a linha de esgotamento central e que define a transição para o ramo das subgigantes.

Figura 4.8.: Diagrama H-R (log L/L_{sol} vs. Log T_{etmed}) para metalicidades em torno de [Fe/H] = -0.05 dex, mostrando as trajetórias evolutivas por massa (linhas negras cheias), isócronas (linhas azuis), ZAMS (linha tracejada vermelha). Abundâncias do Li: $0.5 \le \log \varepsilon$ (Li) < 1.5 (médio pequeno), $1.5 \le \log \varepsilon$ (Li) < 2.5 (médio grande), log ε (Li) ≥ 2.5 (grande). Fluxo cromosférico absoluto de Ha: $F_{crom} < 3$ (x10⁵ erg.cm⁻².s⁻¹) (vermelho), $3 \le F_{crom} < 6$ (x10⁵ erg.cm⁻² 2.s⁻¹)(amarelo), $6 \le F_{crom} < 9$ (x10⁵ erg.cm⁻².s⁻¹)(verde), $F_{crom} \ge 9$ (x10⁵ erg.cm⁻².s⁻¹)(azul). A linha tracejada preta corresponde a linha de esgotamento central e que define a transição para o ramo das subgigantes.

Figura 4.9.: Diagrama H-R para (log L/L_{Sol} vs. Log $T_{et\,med}$) metalicidades em torno de [Fe/H] = -0.25 dex, mostrando as trajetórias evolutivas por massa (linhas negras cheias), isócronas (linhas azuis), ZAMS (linha tracejada vermelha). Abundâncias do Li: log $\varepsilon(Li) < 0.5$ (pequeno), $0.5 \le \log \varepsilon(Li) < 1.5$ (médio pequeno), $1.5 \le \log \varepsilon(Li) < 2.5$ (médio grande), log $\varepsilon(Li) \ge$ 2.5 (grande). Fluxo cromosférico absoluto de Ha: $F_{crom} < 3$ (x10⁵ erg.cm⁻².s⁻¹) (vermelho), $3 \le$ $F_{crom} < 6$ (x10⁵ erg.cm⁻².s⁻¹)(amarelo). A linha tracejada preta corresponde a linha de esgotamento central e que define a transição para o ramo das subgigantes.

Figura 4.10.: Diagrama H-R para (log L/L_{Sol} vs. Log $T_{et.med}$) metalicidades em torno de [Fe/H] = -0.45 dex, mostrando as trajetórias evolutivas por massa (linhas negras cheias), isócronas (linhas azuis), ZAMS (linha tracejada vermelha). Abundâncias do Li: log $\varepsilon(Li) < 0.5$ (pequeno), $0.5 \le \log \varepsilon(Li) < 1.5$ (médio pequeno), $1.5 \le \log \varepsilon(Li) < 2.5$ (médio grande). Fluxo cromosférico absoluto de Ha: $F_{crom} < 3 (x10^5 \text{ erg. cm}^{-2} \text{ s}^{-1})$ (vermelho), $3 \le F_{crom} < 6 (x10^5 \text{ erg. cm}^{-2} \text{ s}^{-1})$ (amarelo). A linha tracejada preta corresponde a linha de esgotamento central e que define a transição para o ramo das subgigantes.

CAPITULO 5

Figura 4.11.: Diagrama H-R (log L/L_{sol} vs. Log T_{et.med}) para metalicidades em torno de [Fe/H] = -0.65 dex, mostrando as trajetórias evolutivas por massa (linhas negras cheias), isócronas (linhas azuis), ZAMS (linha tracejada vermelha). Abundâncias do Li: log $\varepsilon(Li) < 0.5$ (pequeno), $0.5 \le \log \varepsilon(Li) < 1.5$ (médio pequeno), $1.5 \le \log \varepsilon(Li) < 2.5$ (médio grande). Fluxo cromosférico absoluto de Ha: $F_{crom} < 3$ (x10⁵ erg.cm⁻².s⁻¹) (vermelho). A linha tracejada preta corresponde a linha de esgotamento central e que define a transição para o ramo das subgigantes.

decreasemps ussin, denor optimizer in a contract of the device for a set of the second metallicitation material a spatiality of the second metallicitation material a spatiality of the second metallicitation material and the second metallicitation material and the second metallicitation material and the second metallicitation of the second metallicitation and the second metallicitation and the second metallicitation and the second metallicitation of the second metallicitation and the second m

CAPÍTULO 5

RESULTADOS

5.1 Análise Preliminar

(a) Massas, Temperaturas Efetivas e Abundâncias do Li

Uma análise preliminar dos diagramas (fig. 4.6 - 4.11) revela uma descontinuidade nas abundâncias do Li bastante conhecida na literatura (Lambert et al 2004, Gonzalez et al 2010, Lebre et al 1999, Israelian et al 2004), e que tem o seu valor máximo para estrelas jovens e de metalicidades solares. No diagrama [Fe/H] = -0.05 (fig. 4.8) o valor máximo está localizado em T_{ef} ~ 6000 K (log 6000 ~ 3.778) e aproximadamente 1.1 massas solares. É possível observar uma abrupta diminuição nas abundâncias do Li para abaixo do valor primordial no sentido das temperaturas efetivas mais frias e idades mais avançadas. Para valores menores de temperaturas efetivas a depleção do Li é significativa ao longo da evolução na sequência principal. As profundidades dos envoltórios convectivos são funções muito sensíveis das massas, metalicidades e temperaturas efetivas para as estrelas pouco evoluídas, nas quais os efeitos cronológicos ainda não são importantes, sendo a convecção mais eficiente no sentido das massas e temperaturas efetivas decrescentes assim como das metalicidades crescentes. Quanto maior a metalicidade, maior a opacidade no interior estelar, na medida em que os metais absorvem fótons em determinados comprimentos de onda e os emitem sem direcões preferenciais. Portanto, a maior concentração de metais aumenta a opacidade, somando-se à opacidade do hidrogênio e do hélio, e interpondose à transferência radiativa. Similarmente, guanto menor a massa na seguência principal, mais próximo ao núcleo estelar o fluxo de energia radiativa é suplantado pelo fluxo convectivo. As duas situações possuem o efeito de aprofundar o envoltório convectivo. O extremo superior para os valores de abundância do Li no intervalo de temperaturas efetivas abaixo de 6000 K (log 6000 ~ 3.778) e ou 1.1 massas solares, apresenta abundâncias muito próximas das que acreditamos serem as abundâncias iniciais com as quais as

estrelas são formadas. A massa que define o valor superior para as abundâncias do Li cresce para metalicidades crescentes. Nos diagramas para metalicidades em torno de [Fe/H] ~ +0.15 a massa que define o valor máximo para as abundâncias do Li encontra-se em aproximadamente 1.2 massas solares. Os demais diagramas são demasiadamente pouco povoados para estabelecermos uma conclusão definitiva. Vimos que no caso do diagrama com [Fe/H] ~ -0.05, este é de 1.1 massas solares, ou seja, estrelas com menor metalicidade e, portanto, menor eficiência convectiva; preservam o Li com mais facilidade. Por outro lado, uma maior metalicidade deve afetar as abundâncias de Li na medida em que, agindo sobre a opacidade, ela altera o comportamento do envoltório convectivo (Spite & Spite 1982), tornando o processo convectivo mais eficiente e aumentando a depleção do Li. Lyra & Porto de Mello (2005), encontram uma dependência de fluxo cromosférico e metalicidades exatamente nesta direção, ou seja, maior eficiência convectiva para maiores metalicidades, se as demais variáveis permanecem inalteradas. Isso é absolutamente esperado visto que o efeito dínamo é resultado do acoplamento entre a rotação estelar e a convecção. Uma vez que a convecção desempenha papel relevante na composição do dínamo, somos levados a considerar a massa e a metalicidade como sendo fundamentais para a determinação da atividade cromosférica estelar.

A correlação entre as abundâncias de Li e Tef é bem conhecida na literatura, sendo que estrelas frias possuem abundâncias de Li sistematicamente menores. Entretanto, uma grande dispersão é sempre observada. Inicialmente e para cada valor de Tef essas diferenças eram atribuídas a um espalhamento nas idades das estrelas de campo (Herbig 1965). Pensava-se nas estrelas mais ricas em Li como mais jovens que as menos ricas, uma vez que o gradual decréscimo nas abundâncias de Li era tido como excelente indicador de idade. Entretanto, estudos posteriores questionaram a validade dessa informação em sua totalidade (Duncan 1981, Pallavicini 1987) uma vez que foram encontradas estrelas velhas abundantes em Li (log ε (Li) > 2.0) (Dravins et al. 1993). Analogamente Pasquini et al. (1994) mostraram que desde que o fluxo cromosférico observado na linha do Ca II seja um bom indicador de idades para estrelas jovens de tipo solar, o espalhamento das abundâncias do Li em torno de um mesmo fluxo cromosférico não se deve unicamente à idade. Pasquini et al. (1994) também encontraram alguns objetos abundantes em Li (log $\varepsilon(Li) > 2$) e possuidores de

baixo fluxo cromosférico. O inverso, i.e, objetos com alto fluxo cromosférico (> $6.0 \times 10^5 \text{ erg.cm}^{-2} \cdot \text{s}^{-1}$) e abundâncias de Li reduzidas (log ϵ (Li) < 0.1) também foi observado. E ainda, existem evidências de subgigantes isoladas com abundâncias de Li muito menos depletadas do que o esperado (Dravins et al. 1993, del Peloso et al. 2000). Algumas destas ocorrências estão representadas em nossos diagramas.

No diagrama relativo à [Fe/H] = -0.05 encontramos uma estrela (HD 126868) particularmente rica em Li e bastante ativa no ramo das subgigantes em torno de 1.8 - 1.9 massas solares, $T_{ef} = 5600$ K, $log(L/L_{Sol}) = 1.3$. Entretanto, na região em torno de duas massas solares, as estrelas preservam com bastante eficiência o Li na sequência principal e a evolução no ramo das subgigantes é bastante rápida. O aumento da diluição e da depleção do Li ocorrendo nas subgigantes é ainda recente nessas estrelas para as escalas de tempo evolutivas, tal que podemos justificar em princípio a abundância observada.

A existência de um intervalo de depleção severa do Li ocorre em estrelas de tipo solar no intervalo 5600 K < T_{ef} < 5900 K conforme descrito na literatura (Pasquini et al. 1994, Chen et al. 2001). O Sol (log ϵ (Li) ~ 1.15) (da Silva & Porto de Mello 2000) inclui-se neste grupo e segundo Pasquini et al. (1994) 50% destas estrelas possuindo idade e temperaturas efetivas semelhantes à do Sol sofreram depleção igualmente severa durante a evolução ao longo da sequência principal.

(b) O Li Dip

Em princípio, o lítio é preservado de um modo que independe de massas ou temperaturas efetivas no extremo superior do nosso intervalo (T_{ef} maior que 6000 K). Foi descrita por Boesgaard & Trippico (1986) entre as estrelas da sequência principal no aglomerado Híades uma região cuja depleção do Li é particularmente severa (Li Dip). Estrelas do aglomerado em uma estreita faixa de temperaturas efetivas centradas em T_{ef} = 6600 K apresentam depleção de até 2.0 dex quando comparadas às estrelas no intervalo T_{ef} > 6400 K. Observamos um comportamento similar em nossa amostra para estrelas plotadas nos diagramas H-R de metalicidade [Fe/H] = -0.05, em torno da massa de 1.35 massas solares e temperaturas efetivas de

6125 K (log 6125 ~ 3.787) (vide fig. 5.1). Para a metalicidade e [Fe/H] = +0.15, isso ocorre em torno de 1.45 massas solares e temperaturas efetivas de 6100 K (log 6100 ~ 3.785) (vide fig. 5.2). Estas estrelas evoluíram a partir de temperaturas efetivas definidas na sequência principal próximas de 6840 K (log 6840 ~ 3.835) e de 6760 K (log 6680 ~ 3.830) K, respectivamente.

MUCK CCCC

Figura 5.1.: Diagrama H-R (log L/L_{Sol} vs. Log $T_{ef.med}$) para metalicidades em torno de [Fe/H] = -0.05 dex, mostrando as trajetórias evolutivas por massa (linhas negras cheias), isócronas (linhas azuis), ZAMS (linha tracejada vermelha). Abundâncias do Li: $0.5 \le \log \varepsilon(Li) <$ 1.5 (médio pequeno), $1.5 \le \log \varepsilon(Li) < 2.5$ (médio grande), log $\varepsilon(Li) \ge 2.5$ (grande). Fluxo cromosférico absoluto de Ha: $F_{arom} < 3$ (x10⁵ erg.cm⁻².s⁻¹) (vermelho), $3 \le F_{arom} < 6$ (x10⁵ erg.cm⁻².s⁻¹)(amarelo). Em detalhe, no interior da circunferência em verde, a região do "dip" ocorrendo em torno de 1.35 M_{Sol} e 6125 K para temperaturas efetivas. A linha tracejada preta corresponde a linha de esgotamento central e que define a transição para o ramo das subgigantes.

41

Figura 5.2.: Diagrama H-R (log L/L_{Sol} vs. Log $T_{et.med}$) para metalicidades em torno de [Fe/H] = +0.15 dex, mostrando as trajetórias evolutivas por massa (linhas negras cheias), isócronas (linhas azuis), ZAMS (linha tracejada vermelha). Abundâncias do Li: $0.5 \le \log \varepsilon(Li) \le$ 1.5 (médio pequeno), $1.5 \le \log \varepsilon(Li) \le 2.5$ (médio grande), log $\varepsilon(Li) \ge 2.5$ (grande). Fluxo cromosférico absoluto de Ha: $F_{crom} \le 3$ (x10⁵ erg.cm⁻².s⁻¹) (vermelho), $3 \le F_{crom} \le 6$ (x10⁵ erg.cm⁻² ².s⁻¹)(amarelo), $F_{crom} \ge 9$ (x10⁵ erg.cm⁻².s⁻¹)(azul). Em detalhe, no interior da circunferência em verde, a região do "dip" ocorrendo em torno de 1.45 $M_{Sol} = 6100$ K para temperaturas efetivas. A linha tracejada preta corresponde a linha de esgotamento central e que define a transição para o ramo das subgigantes.

Quando analisamos o "dip" para metalicidades em torno de [Fe/H] = -0.25 (vide fig. 5.3) podemos estabelecer o valor central para a massa estelar no qual ocorre o centro do "dip" em torno de 1.3 massas solares. Podemos estabelecer para as temperaturas efetivas um valor central em torno de 6165 K (log 6165 ~ 3.790). Para as temperaturas efetivas tomadas na sequência principal temos o valor central em torno de 6840 K (log 6840 ~ 3.835). Essa análise é válida se ignorarmos o objeto com severa depleção do Li presente no extremo superior da área em destaque na figura 5.3.

CHARGERC

[Fe/H] = -0.25 dex, mostrando as trajetórias evolutivas por massa (linhas negras cheias), isócronas (linhas azuis), ZAMS (linha tracejada vermelha). Abundâncias do Li: $0.5 \le \log \varepsilon(Li) <$ 1.5 (médio pequeno), 1.5 $\le \log \varepsilon(Li) < 2.5$ (médio grande), log $\varepsilon(Li) \ge 2.5$ (grande). Fluxo cromosférico absoluto de Ha: $F_{crom} < 3$ (x10⁵ erg.cm⁻².s⁻¹) (vermelho), $3 \le F_{crom} < 6$ (x10⁵ erg.cm⁻².s⁻¹) (amarelo). Em detalhe, no interior da circunferência em verde, a região do "dip" ocorrendo em torno 6165 K para temperaturas efetivas. A linha tracejada preta corresponde a linha de esgotamento central e que define a transição para o ramo das subgigantes.

Balachandran (1990) descreve o fenômeno conhecido por "Li dip" ocorrendo em torno de 1.35 massas solares em metalicidades solares para estrelas na sequência principal. Para a autora, o centro do "Li dip" parece deslocar-se de 6700 K em metalicidades solares para 6400 K em metalicidades menores. Não fomos capazes de confirmar se este é um comportamento real ou apenas devido às incertezas na determinação das massas estelares próximas a região do "gancho", localizado próximo à região de esgotamento do hidrogênio central e que define a transição para o ramo das subgigantes (linha escura tracejada) nos diagramas de metalicidades [Fe/H] = +0.35, [Fe/H] = +0.15, [Fe/H] = -0.05 e [Fe/H] = -0.25. Faz-se, portanto, necessária a amostragem de objetos, dos quais não dispomos, localizados na região do "dip" e que estejam efetivamente localizados na sequência principal. Para metalicidades maiores que a do Sol Balachandran ainda esclarece que não foi capaz de verificar a ocorrência do "dip". Em nosso trabalho é possível verificá-lo para as metalicidades em torno de [Fe/H] = + 0.15. A tabela a seguir faz um comparativo entre as temperaturas efetivas tomadas sobre a sequência principal e que definem uma temperatura central a partir da qual as estrelas do "dip" evoluíram:

Referência	[Fe/H] > [Fe/H] _{Sol}	[Fe/H] ~ [Fe/H] _{Sol}	[Fe/H] < [Fe/H] _{Sol}	
Balachandran 1990	-	6700 K	6400 K	
Este Trabalho	6760 K	6840 K	6840 K	

Tabela 5.1.: A tabela acima exibe as temperaturas efetivas centrais, tomadas na sequência principal, a partir das quais as estrelas do "dip" evoluíram.

E para as massas que definem a trajetória evolutiva central para a ocorrência do "dip" temos:

Referência	[Fe/H] > [Fe/H] _{Sol}	[Fe/H] ~ [Fe/H] _{Sol}	[Fe/H] < [Fe/H] _{Sol}	
Balachandran 1990		1.35 M _{Sol}	· Incarper without	
Este Trabalho	1.45 M _{Sol}	1.35 M _{Sol}	1.3 Msol	

Tabela 5.2.: A tabela acima exibe as massas centrais para a ocorrência do "dip".

Lambert et al (2004) afirmam que o centro do "dip" ocorre para a mesma temperatura efetiva para as estrelas próximas da ZAMS, em torno de 6500 K. Neste caso, a massa correspondente ao centro do "dip" torna-se uma função da metalicidade. Lambert verifica a ocorrência "dip" em torno de **1.3 massas solares** para metalicidades em torno de **[Fe/H]** ~ **0.0**.

Muito embora nossos dados sustentem um deslocamento do centro do "dip" em massas como uma função das metalicidades, este comportamento não pode ser afirmado categoricamente em virtude dos erros associados a determinação das massas próximas a região de esgotamento do hidrogênio central. Entretanto, a conclusão geral é que todas as estrelas na sequência principal em torno da temperatura efetiva que define a ocorrência do "dip" 0 0

apresentam severa depleção do Li. As abundâncias reduzidas deste elemento as quais somos capazes de observar próximo à região de esgotamento do hidrogênio central devem ser resultantes da depleção do Li ocorrida na fase de sequência principal.

(c) Abundâncias do Li e atividade cromosférica

Considerados os erros associados em luminosidade e temperatura efetiva observa-se em uma primeira análise que, em média, os objetos mais ativos apresentam abundâncias de Li sistematicamente maiores. A conexão entre atividade cromosférica e idades por evolução rotacional e perda de momento angular é bem estabelecida em nosso intervalo de temperaturas efetivas, exceto para as estrelas mais frias, nas quais a evolução é tão lenta que os efeitos de idade não são perceptíveis.

Na ZAMS, para estrelas jovens frias e moderadamente frias (Tef < 6000 K) a conexão entre atividade cromosférica e abundâncias do Li não é satisfatória para confirmar nossa hipótese de que uma rotação mais lenta favorece a difusão e depleção do Li. Neste caso as abundâncias obedecem, principalmente, a efeitos de idade cuja conexão com a atividade cromosférica para estrelas jovens é bem conhecida na literatura (Lyra et al 2005). As idades isocronais não são muito precisas nessa região do diagrama H-R, devido à alta densidade das isócronas e à lenta evolução em luminosidade de tais estrelas de baixa massa e é razoável admitir que eventuais diferencas de atividade sejam devidas tão somente a diferenças de idade dentro da margem de erro associada. Seria necessário definir entre as estrelas mais evoluídas (ramo das subgigantes), onde a determinação de idades pelo método isocronal é possível e a conexão atividade-idade menos intensa; grupos de mesma massa, idade e metalicidade que mostrassem, em média, uma maior depleção do Li para os objetos menos ativos. De fato, estrelas evoluídas com mesma massa, idade isocronal e metalicidade ao longo dos diagramas parecem não mostrar, em análise visual e qualitativa, qualquer conexão entre atividade cromosférica e abundâncias do Li. Admitimos a nossa amostra como inadequada para julgar esse efeito por ela não possuir objetos mais evoluídos em quantidade suficiente para uma boa estatística e não podemos, em princípio, rejeitar a hipótese. Iremos prosseguir com uma análise mais detalhada nas próximas seções.

5.2 Ajuste Linear Simples – Abundâncias do Li e fluxos cromosféricos

Nesta seção vamos investigar a correlação entre a abundância de Li e a atividade cromosférica por meio de uma regressão linear simples. Para a amostra completa de 152 estrelas com abundâncias de Li observadas, procedemos a um ajuste linear log ϵ (Li)_{med} vs. F_{crom}. Investigamos os parâmetros estatísticos de interesse com fins de estabelecer a significância da variável cromosférica (vide figura 5.4).

O coeficiente de correlação R pode ser utilizado para medir o grau de relação linear entre duas variáveis X e Y. É definido, genericamente, pela equação:

$$R = \sum (X_i - X_{med}) (Y_i - Y_{med}) / [\sum (X_i - X_{med})^2 \sum (Y_i - Y_{med})^2]^{1/2}$$

O parâmetro R assume valores de -1 até 1. Se o parâmetro R é aproximadamente -1, a relação é de anti-correlação. Se R é aproximadamente 1, a relação é de correlação. No caso em que R desvia-se de ambos ou R é aproximadamente 0, torna-se respectivamente, menos correlata ou não correlata. Na figura 5.4, o parâmetro R de aproximadamente 0.1 não indica a existência de uma correlação entre as abundâncias do Li e atividade cromosférica. Este fato e o grande espalhamento contradizem nossa hipótese quando examinamos o universo de nossa amostra.

Quando removemos os objetos (aproximadamente 41 estrelas) cujas abundâncias do Li são dadas por limites superiores (fig. 5.5) o coeficiente de correlação R é de aproximadamente 0.3. Os limites superiores são encontrados em sua quase totalidade entre as estrelas mais velhas. A remoção deles faz com que a presença dos objetos mais jovens seja predominante. No próximo teste estará evidente que para o caso das estrelas jovens a variável cromosférica é mais significante. Isso pode, em princípio, estar explicando a melhor correlação aqui observada.

Figura 5.4.: Diagrama log $\varepsilon(Li)_{med}$ vs. F_{crom} para todas as 152 estrelas da amostra. O ajuste linear do tipo y = a + bx é dado pela equação log $\varepsilon(Li)_{med}$ = (1.5 ± 0.1) + (0.04 ± 0.03) F_{crom} . O parâmetro R é de aproximadamente 0.1.

Figura 5.5.: Diagrama log $\varepsilon(Li)_{med}$ vs. F_{crom} após removidos os objetos cujas abundâncias do Li são dadas por limites superiores. O ajuste linear do tipo y = a + bx é dado pela equação log $\varepsilon(Li)_{med} = (1.7 \pm 0.1) + (0.07 \pm 0.02) F_{crom}$. O parâmetro R é de aproximadamente 0.3.

Repetimos o mesmo teste apenas para as estrelas na ZAMS (inclusive sem determinações de idade), com idades inferiores a 2 (dois) Gano ou incertezas na determinação das idades que permitam assim classificá-las (i. e. estrelas jovens). O **parâmetro R** de aproximadamente **0.4** estabelece uma correlação moderada, tal como o esperado, e bem explicada pela conexão idade-atividade característica das estrelas jovens (vide figura 5.6). Entretanto esta situação não favorece em nada a nossa hipótese conforme argumentos na seção anterior. O espalhamento nas abundâncias de Li parece maior entre as estrelas moderamente ativas e inativas ($F_{crom} \leq 8 \text{ ergs.cm}^{-2}.\text{s}^{-1}$). No entanto, a estatística das estrelas ativas é ruim e não podemos afirmar que o menor espalhamento aqui é significativo.

As estrelas de baixa massa e mais frias em nosso intervalo podem apresentar com frequência Li pouco abundante em virtude dos envoltórios convectivos espessos e idades muito avançadas. Lembramos que, para os objetos do extremo inferior de massas, não ocorre a conexão entre as idades e os efeitos evolutivos, por serem de evolução muito lenta. Neste sentido não encontramos ainda argumentos suficientes para a validação da hipótese.

Neste caso, os limites superiores já foram praticamente removidos. A remoção dos seis objetos deste tipo restantes (HD 209100, HD 4391, HD 16160, HD28099, HD 120237, HD196761) fornece um parâmetro **R** de aproximadamente **0.4**. Os coeficientes angulares, dentro das margens de erro associadas, são iguais (vide fig. 5.6 e 5.7). É razoável admitir que os ajustes sejam estatisticamente iguais para as estrelas jovens.

Figura 5.6.: Diagrama log $\varepsilon(Li)_{med}$ vs. F_{crom} para estrelas localizadas na ZAMS e para as quais os dados sugerem idades inferiores a 2 Gano. O ajuste linear do tipo y = a + bx é dado pela equação log $\varepsilon(Li)_{med} = (0.5 \pm 0.6) + (0.17 \pm 0.07) F_{crom}$. O parâmetro R é de aproximadamente 0.4.

Figura 5.7.: Diagrama log $\varepsilon(Li)_{med}$ vs. F_{crom} para estrelas localizadas na ZAMS e para as quais os dados sugerem idades inferiores a 2 Gano. Removidos os limites superiores. O ajuste linear do tipo y = a + bx é dado pela equação log $\varepsilon(Li)_{med}$ = (0.9 ± 0.4) + (0.14 ± 0.06) F_{crom} . O parâmetro R é de aproximadamente 0.4.

5.3 Regressão Multiparamétrica, Testes de Hipótese e Significância

Nas próximas seções vamos proceder a uma regressão multiparamétrica a fim de investigar a importância relativa das variáveis envolvidas no problema e verificar por meio de testes estatísticos a existência de uma conexão mais ampla entre as abundâncias do Li e a atividade cromosférica. Nas regressões que se seguem, inadvertidamente, não retiramos os limites superiores. A inclusão dos limites superiores é incorreta, uma vez que eles não fornecem os valores exatos para as abundâncias do Li. Uma análise mais cuidadosa exige sua remoção. Não o fizemos por estarmos próximos da conclusão deste trabalho*.

A remoção dos limites superiores e a obtenção de novas regressões exige grande esforço computacional. No final da seção 5.4 refizemos as regressões para os melhores casos, a partir de estrelas na ZAMS e mais jovens que 2 Gano. Vamos mostrar que para o melhor caso, i.e, estrelas jovens; que os desvios produzidos são estatisticamente iguais. E ainda, incompatíveis com os erros observacionais do Li. Nos demais casos, provavelmente, também não serão capazes de explicar a dispersão observada. Entretanto, é essencial em futuros trabalhos remover os limites superiores. Isto permitirá verificar a interpretação estatística das variáveis para cada um dos demais casos.

50

Nosso primeiro teste consiste em calcular uma regressão para a amostra completa de 153 estrelas (152 estrelas + o Sol) usando um ajuste linear a partir de variáveis que consideramos em principio relevantes: ¹M/M_{sol}, [Fe/H]_{corr}, ²R/R_{zams}, log g, T_{ef.med}, log (L/L_{sol}), F_{crom}. Para cada um dos coeficientes obtidos vamos testar hipóteses de significância. As hipóteses para testar a significância de quaisquer dos coeficientes a_i da regressão são:

$$H_0: a_i = 0$$

 $H_1: a_i \neq 0$

Se H₀ não for rejeitada então isso significa que o regressor poderá ser retirado do modelo. A estatística de teste é o chamado t-value:

$$t_i = a_i / \sigma_i$$

onde σ_i é o desvio padrão de a_i . Quanto maior o valor de t_i maior a probabilidade de significância de a_i . O valor P para um teste t é o menor nível de significância no qual a hipótese nula seria rejeitada, i.e; se P < 0,05 rejeitamos a hipótese nula com 95% de certeza. Para nós então se P > 0,05 retiramos a variável do modelo.

¹M/M_{Sol} é a massa estelar em unidades de massa solar.

²R/R_{zams} é o raio da estrela em unidades do raio possuído por essa mesma estrela durante sua permanência na ZAMS. Define o grau de expansão do raio, em número de vezes o raio das ZAMS, durante a trajetória evolutiva. Sejam as abundâncias de Li uma função de parâmetros evolutivos e atmosféricos tal que:

log ε(Li) ~ f(M/M_{sol}, [Fe/H], R/R_{zams}, log g, T_{ef.med}, log (L/L_{sol}), F_{crom}).

Supomos a função F na forma:

 $log \ \epsilon(Li) \sim a_0 + a_1.M/M_{sol} + a_2.[Fe/H] + a_3.R/R_{zams} + a_4.log \ g + a_5.T_{ef.med} + a_6.log \ (L/L_{sol}) + a_7. \ F_{crom}.$

Procedemos a uma regressão multiparamétrica que nos fornece para os coeficientes, t e P os valores:

i	a _i e e	ti	Pi
0	-27.496	-2.54	0.01 < 0.05
	0.515	0.28	0.78 > 0.05
2	0.013	0.03	0.07 > 0.05
3	1.884	1.86	0.06 > 0.05
4	4.322	1.06	0.29 > 0.05
5	0.001	0.81	0.41 > 0.05
6	2.385	0.56	0.56 > 0.05
7	0.094	3.27	0.00* < 0.05

Tabela 5.3.: A tabela acima fornece os resultados para os coeficientes a_{i} , para a estatística de teste t_i e os respectivos valores de P_i para o modelo log $\epsilon(Li) \sim a_0 + a_1.M/M_{sol} + a_2.[Fe/H] + a_3.R/R_{zams} + a_4.log g + a_5.T_{ef.med} + a_6.log (L/L_{sol}) + a_7. F_{crom}$.*Este valor é aproximado, entretanto, é menor que 0.01 dex.

O desvio padrão do ajuste é de 0.63 **dex** >> 0.05 **dex** (que era o erro médio de nossas abundâncias de lítio corrigidas), o perfil não gaussiano e a grande dispersão dos resíduos (vide figura 5.6) mostram a inadequação do ajuste e das variáveis envolvidas. O teste de hipóteses sugere a rejeição de todas, exceto F_{crom}, como variáveis significativas. Neste aspecto salientamos que é necessário cuidado, pois a regressão linear pressupõe o uso de variáveis independentes. O uso de variáveis dependentes torna os coeficientes e os testes não confiáveis. A superposição dos efeitos de cada uma das variáveis, caso existente, as torna pouco significativas quando consideradas

isoladamente sugerindo que as temos em grande quantidade e desnecessariamente em nosso modelo. Entretanto, para afirmarmos isso com confiança seria preciso construir a matriz de covariância, assim como testar um modelo mais complexo, de segundo grau, com termos cruzados entre as variáveis.

Fig. 5.6.: Histograma dos resíduos para log $\epsilon(Li) \sim f(M/M_{Sol}, [Fe/H], R/R_{zams}, \log g, T_{ef.med}, Log (L/L_{Sol}), F_{crom}$.

Ferreira (2010) discute as dependências mútuas de **log g**, ¹R/R_{sol}, T_{ef}, **log L/L**_{sol} e **M/M**_{sol}. A luminosidade não é uma boa variável para descrever o estado evolutivo de uma estrela, pois sua evolução depende muito de outros fatores, como a massa, por exemplo, além de, obviamente, o tempo. Por outro lado a temperatura efetiva não se mostra um bom parâmetro para descrever o estado evolutivo de uma estrela, já que sofre variações substanciais ao longo da evolução estelar, para todas as massas envolvidas em nosso estudo. As gravidades superficiais estão intrinsicamente relacionadas com massas e raios por meio da mesma equação: $g = GM/R^2$, onde a constante gravitacional G = $6.67398 \times 10^{-11} \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-2}$.

¹*R*/*R*_{Sol} equivale ao raio da estrela medido em unidades de raio solar. Neste trabalho utilizaremos *R*/*R*_{zams} que fornece uma medida normalizada dos raios estelares com relação ao raio possuído na ZAMS. O raio solar *R*_{Sol} = 6,960 $\times 10^8$ m.

Tencionamos eliminar as variáveis que sejam eventualmente dependentes entre si ou inadequadas e, portanto, repetimos o teste da regressão usando log $\epsilon(Li) \sim f(M/M_{sol}, [Fe/H], R/R_{zams}, F_{crom})$ na forma log $\epsilon(Li) \sim a_0 + a_1.M/M_{sol} + a_2.[Fe/H] + a_3.R/R_{zams} + a_4. F_{crom}$. Temos:

i	ai	ti	Pi
0	0.051	0.09	0.93 > 0.05
1	2.051	4.70	0.00* < 0.05
2	-0.848	-2.31	0.02 < 0.05
3	-0.660	-2.23	0.03 < 0.05
4	0.034	1.05	0.29 > 0.05

Tabela 5.4.: A tabela acima fornece os resultados para os coeficientes a_{i} , para a estatística de teste t_i e os respectivos valores de P_i para o modelo log $\varepsilon(Li) \sim a_0 + a_1 M/M_{sol} + a_2$.[Fe/H] + $a_3 R/R_{zams} + a_4$. F_{crom}, *Este valor é aproximado, entretanto, é menor que 0.01 dex.

Ocorrem ainda variáveis/coeficientes que não significativos. O desvio padrão de 0.79 revela o ajuste como inferior comparado ao anterior. O desvio e a significância das variáveis permanecem inalterados se retiramos F_{crom}.

Se usarmos M/M_{sol}, R/R_{zams}, F_{crom} temos a₀ e F_{crom} rejeitados. O desvio permanece 0.79. A qualidade do ajuste para este conjunto de variáveis é inadequada frente a nossa primeira tentativa.

Agora repetimos o teste usando T_{ef} como alternativa às variáveis M/M_{sol} e [Fe/H]. Em uma situação ideal, quando determinadas as massas iniciais e a composição química, a estrela descreve uma trajetória unívoca ao longo do diagrama HR, o que é um enunciado conhecido como o teorema de Russell-Vogt. A variável T_{ef} reúne inclusive informações com respeito à massa e metalicidade. F_{crom} reúne informações de evolução da estrutura estelar e idades, sendo que esta última variável; excluímos de nossa análise em virtude dos grandes erros associados. Portanto seja log ε (Li) ~ a_0 + a_1 .R/R_{zams} + a_2 .T_{ef.med} + a_3 .F_{crom}; os coeficientes e os testes de significância são:

i	ai	ti	Pi
0	-11.086	-8.89	0.00* < 0.05
1 1	0.660	2.86	0.00* < 0.05
2	0.002	10.78	0.00* < 0.05
3 3 3	0.109	4.16	0.00* < 0.05

Tabela 5.5.: A tabela acima fornece os resultados para os coeficientes a_i , para a estatística de teste t_i e os respectivos valores de P_i para o modelo **log** ε (Li) ~ $a_0 + a_1.R/R_{zams} + a_2.T_{ef.med} + a_3.F_{crom}$, *Estes valores são aproximados, entretanto, são menores que 0.01 dex.

O desvio padrão do ajuste é 0.63 e a distribuição dos resíduos segue:

Figura 5.7.: Histograma dos resíduos para Log ɛ(Li) ~ f(R/Rzams, Tet.med, Fcrom).

A qualidade do ajuste acima é quase equivalente à inicial. Entretanto, usamos um número reduzido de variáveis significativas. O parâmetro t revela a importância relativa das variáveis quando comparadas entre si, sendo T_{ef.med} a mais significativa e então F_{crom}, R/R_{zams} em ordem decrescente. O melhor ajuste parece revelar que T_{ef.med} reúne mais informações relevantes ao problema do que M/M_{sol} e [Fe/H]. Lembramos novamente que apenas com um modelo matemático mais completo e complexo seria possível fazer declarações mais fortes.

Acrescentam-se quaisquer das outras variáveis ao conjunto F_{crom}, R/R_{zams}, T_{ef.med} e estas se mostram não significativas. Ao retirarmos F_{crom} o desvio torna-se 0.66 e o teste de hipótese fornece T_{ef.med} sem significância.

Se retirarmos R/R_{zams} temos log ε(Li) ~ a₀ + a₁.T_{ef.med} + a₂.F_{crom}; e para os coeficientes e testes de hipóteses segue:

o dor i cher	ai	ti i	Pi
0	-9.033	-8.67	0.00* < 0.05
80.01 00.0	0.002	10.18	0.00* < 0.05
2	0.061	2.96	0.00* < 0.05

Tabela 5.6.: A tabela acima fornece os resultados para os coeficientes a, para a estatística de teste t, e os respectivos valores de P, para o modelo **log** ε (Li) ~ $a_0 + a_1$. $T_{er.med} + a_2$. F_{crom} . *Estes valores são aproximados, entretanto, são menores que 0.01 dex.

O desvio padrão é 0.64 e a distribuição dos resíduos segue:

Figura 5.8.: Histograma dos resíduos para log ε(Li) ~ f(T_{ef.med}, F_{crom}).

O ajuste fomecido pelo conjunto de variáveis independentes R/R_{zams}, T_{ef.med} e F_{crom} até aqui foi o melhor que pudemos encontrar a partir de todo nosso conjunto de variáveis. Entretanto, T_{ef.med} e R/R_{zams} devem estar relacionadas durante a evolução estelar, em oposição ao pressuposto de que deveríamos utilizar variáveis absolutamente independentes. Usando R/R_{zams}, em princípio teríamos R/R_{zams}, [Fe/H] e M/M_{sol} não relacionados em nenhum instante de tempo. A massa e [Fe/H] são variáveis constitutivas que determinam as propriedades estelares, e suas respectivas alterações no tempo, de uma forma unívoca. Por sua vez, a variável R/R_{zams} é para nós uma variável cronológica, e que a partir do par massa/metalicidade, expressa uma medida para a evolução estelar e ou tempo. Assim, conhecidas a composição química e a massa estelar (variáveis constitutivas) por ocasião de sua formação, as estrelas em princípio, descrevem uma trajetória evolutiva no tempo (variáveis cronológicas) de forma unívoca. Juntamente com o par massa/metalicidade, as idades, as temperaturas efetivas e o fluxo cromosférico também podem desempenhar este papel de variáveis cronológicas.

Portanto, fisicamente, é razoável utilizar as massas e metalicidades, que pelo teorema de Russell-Vogt, são variáveis constitutivas quase invariantes e determinantes da estrutura e evolução estelar. Podemos testar essa hipótese realizando testes adicionais e utilizando log ε(Li) ~ f(M/M_{sol}, [Fe/H], F_{crom}, X), variando X como T_{ef}, log g, log L/L_{sol}, R/R_{zams} (este último previamente testado), que são as variáveis cronológicas e com maior caráter evolutivo, i.e., são variantes ao longo do tempo para um par fixo das variáveis M/M_{sol} e [Fe/H].

Portanto, iremos testar o ajuste log ϵ (Li) ~ $a_0 + a_1.M/M_{sol} + a_2.[Fe/H] + a_3.T_{ef.med} + a_4. F_{crom}$ no qual obtemos:

inn Family 6 Parallel an	and anyaney op of	autoco of t i i obicen	Pi Pi
0	-9.004	-8.58	0.00* < 0.05
1	0.394	1.08	0.28 > 0.05
2	-0.139	-0.48	0.63 > 0.05
3	0.002	8.83	0.03 < 0.05
4	0.067	2.88	0.00* < 0.05

Tabela 5.7.: A tabela acima fornece os resultados para os coeficientes a_{i} , para a estatística de teste t_i e os respectivos valores de P_i para o modelo log $\epsilon(Li) \sim a_0 + a_1.M/M_{sol} + a_2.[Fe/H] + a_3.T_{ef.med} + a_4. F_{crom}$. *Estes valores são aproximados, entretanto, são menores que 0.01 dex.

Os testes evidentam que uno voir to avairados reatas, mesterante luminositade e alividade cramatificar na recuração replane ao verecor massaimetalicidade. A lumindaciade epresenta concentrateorem semetavalir 20 de remperatura efetiva unactualido e depençosoritais do product. Peste caso, as estelas mais matativas o mais mais en usite en usite a ferminaciataria estelas transitivas e mais presentar objeta de enclarente en la depensive de juntamante com F_{erma} ejasta elementario este constructor presentario de mostram as variáveir contologico este constructor presas avenue from tradicio de Ferma e é acestação de mois presentarios este constructor de tradicio de Ferma e é acestação de mois presentativas

Figura 5.9.: Histograma dos resíduos para log ɛ(Li) ~ f(M/Msoli,[Fe/H], Tefmedi, Fcrom).

O teste de hipóteses revela que, apesar de obtermos um desvio padrão compatível com o fornecido pelo conjunto de variáveis R/R_{zams}, T_{ef.med} e F_{crom}, apenas as variáveis T_{ef.med} e F_{crom} são aceitas como significantes. O conjunto de variáveis M/M_{Sol}, [Fe/H], T_{ef.med}, F_{crom} é fisicamente mais interessante, entretanto estatisticamente mostra-se menos adequado. Idem para os testes utilizando log ϵ (Li) ~ f(M/M_{Sol}, [Fe/H], R/R_{zams}, F_{crom}), log ϵ (Li) ~ f(M/M_{Sol}, [Fe/H], log g, F_{crom}) e log ϵ (Li) ~ f(M/M_{Sol}, [Fe/H], log L/L_{Sol}, F_{crom}) nos quais os desvios padrão são, respectivamente, 0.79, 0.78 e 0.77. Nos testes log ϵ (Li) ~ f(M/M_{Sol}, [Fe/H], R/R_{zams}, F_{crom}) todas as variáveis foram aceitas pelo teste de significância, exceto F_{crom}. Se fizermos log ϵ (Li) ~ f(M/M_{Sol}, [Fe/H], log L/L_{Sol}, F_{crom}) apenas são aceitas log L/L_{Sol} e F_{crom}.

Os testes evidenciam que uma vez utilizadas massa, metalicidade, luminosidade e atividade cromosférica; os resultados rejeitam as variáveis massa/metalicidade. A luminosidade apresenta comportamento semelhante ao da temperatura efetiva, introduzindo a degenerescência no modelo. Neste caso, as estrelas mais massivas e mais ricas simulam a luminosidade de estrelas menos massivas e mais pobres. Quando testamos **log g** e **R/R**_{zams}, juntamente com **F**_{crom}, massa, metalicidade, e excluindo-se **T**_{ef}, elas se mostram as variáveis cronológicas mais significativas, levando à rejeição de **F**_{crom} e à aceitação de massa-metalicidade. O melhor modelo utiliza apenas a temperatura efetiva e a atividade cromosférica como regressores. Este modelo reproduz a menor dispersão observada, as variáveis são aceitas e utiliza o menor número de variáveis. Neste caso, o desvio era de **0.63** dex. A exclusão das estrelas cujas abundâncias do Li são dadas por limites superiores fornece um desvio para este modelo de **0.52** dex. A interpretação estatística das variáveis não é alterada. O aumento da precisão é de **0.11** dex. Este valor aproxima-se da estimativa para os erros observacionais do Li, que é de **0.1** dex. Os limites superiores são encontrados em sua quase totalidade entre as estrelas mais velhas. A remoção deles faz com que a presença dos objetos mais jovens seja predominante. Veremos adiante que para o caso das estrelas jovens, as variáveis evolutivas parecem possuir alguma relevância (seção 5.4). Podemos estender a análise da seção 5.2 e isso deve explicar, em princípio, a melhor precisão obtida.

Nossa conclusão geral para os testes acima é que a temperatura efetiva é claramente a variável mais fundamental das regressões. Entretanto, a expectativa teórica do **Teorema de Russell-Vogt** é bem clara: massa e metalicidade deveriam governar as propriedades dos interiores e, portanto também as convectivas. A hipótese para explicar isso, mas que não podemos demonstrar claramente no escopo deste trabalho, é que massa, metalicidade e temperatura efetiva estão degeneradas entre si. A massa e a metalicidade, conjuntamente, são capazes de reproduzir os efeitos obtidos pela temperatura efetiva. Neste caso, uma estrela mais massiva e mais rica pode ainda simular a temperatura efetiva de outra menos massiva e mais pobre. Isso poderia explicar a rejeição de massa e metalicidade, e a aceitação de T_{ef}. Tais argumentos constituem apenas uma especulação, que pode ser testada, mas que não faremos devido ao alcance que nos propomos neste trabalho.

No próximo capítulo vamos testar a subamostra de objetos na ZAMS e os mais jovens que dois Gano.

topso triodelo. A degeneritarifenen protezzela , ar mata el a mittelettaden fel daramente distutida na udasia foliofen de en el desta mitiko en el televentelet da tutica modelos tribianon nataka el trestructurelet el secili man el lance dara efeites

59

5.4 ZAMS E OBJETOS MAIS JOVENS QUE DOIS GANO

Agora procedemos à regressão para uma subamostra de 38 objetos próximos da ZAMS e mais jovens que dois Gano, onde esperamos uma maior importância da variável F_{crom} . Inicialmente, utilizamos o modelo completo das variáveis dado pelo modelo log $\epsilon(Li)_{zams} \sim a_0 + a_1.M/M_{sol} + a_2.[Fe/H] + a_3.R/R_{zams} + a_4.log g + a_5.T_{ef.med} + a_6.log (L/L_{sol}) + a_7.F_{crom}$:

ality at Links at	a mana ang ang ang ang ang ang ang ang ang	n con ro t i consci	Pi
0	-10.757	-0.33	0.75 > 0.05
1	-2.881	-0.53	0.60 > 0.05
2	-0.005	-0.01	0.99 > 0.05
3	-1.483	-0.29	0.77 > 0.05
4	4.999	0.86	0.39 > 0.05
5	-0.001	-0.41	0.68 > 0.05
6	7.522	1.18	0.25 > 0.05
7	0.137	3.85	0.00* < 0.05

Tabela 5.8.: A tabela acima fornece os resultados para os coeficientes a_{i} , para a estatística de teste t_i e os respectivos valores de P_i para o modelo $\log \varepsilon(Li)_{zams} \sim a_0 + a_1 M/M_{Sol} + a_2 [Fe/H] + a_3 R/R_{zams} + a_4 log g + a_5 T_{ef.med} + a_6 log (L/L_{Sol}) + a_7 F_{crom}$ *Este valor é aproximado, entretanto, é menor que 0.01 dex.

O teste apresenta um desvio padrão de 0.46, significativamente menor ao obtido para a amostra geral. Entretanto, rejeita todas as variáveis, com a exceção do fluxo cromosférico.

Agora vamos utilizar os ajustes do tipo **log** ϵ (Li) ~ f(T_{ef.med}, F_{crom}, X), variando X como **log g, log** L/L_{sol} e R/R_{zams}, que são as variáveis cronológicas e com maior caráter evolutivo, conforme já argumentamos anteriormente (seção 5.3). Aqui, utilizamos a temperatura efetiva em lugar das variáveis constitutivas, massa e metalicidade, objetivando reduzir a degenerescência do nosso modelo. A degenerescência produzida por massas e metalicidades foi claramente discutida na sessão anterior. Ao final desta seção vamos testar os outros modelos utilizando massa e metalicidade, e excluindo a temperatura efetiva.

Temos então como nosso modelo matemático inicial o ajuste log $\epsilon(Li)_{zams} \sim a_0 + a_1 R/R_{zams} + a_2 T_{ef.med} + a_3 F_{crom}$. Os resultados para os coeficientes, testes de hipótese e significâncias são:

-

0

((((

0

0

0

0

((

(

()

0

0

(((

0

()

0

0

 \cap

0

0

0.01 i 0.06	ai	ti	Pi
0	-12.178	-10.06	0.00* < 0.05
80 0 1 100 0	0.991	2.28	0.03 < 0.05
2	0.002	11.79	0.00* < 0.05
3	0.153	4.40	0.00* < 0.05

Tabela 5.9.: A tabela acima fornece os resultados para os coeficientes a_{i} , para a estatística de teste t_i e os respectivos valores de P_i para o modelo **log** $\epsilon(Li)_{zams} \sim a_0 + a_1 \cdot R/R_{zams} + a_2 \cdot T_{ef.med} + a_3 \cdot F_{crom}$ *Estes valores são aproximados, entretanto, são menores que 0.01 dex.

O desvio padrão é de 0.46 e o histograma dos resíduos é:

Figura 5.10.: Histograma dos resíduos para log ε(Li)_{zams} ~ f(R/R_{zams}, T_{ef.med}, F_{crom}).

Se retirarmos F_{crom} do modelo o desvio cresce para 0.57, se retiramos R/R_{zams} o desvio é de 0.48. A qualidade do ajuste é muito melhor para as estrelas jovens se consideramos conjuntamente F_{crom} , T_{ef} e R/R_{zams} , em comparação com ajustes anteriores (seção 5.3).

O próximo teste, faremos utilizando como ajuste log $\epsilon(Li)_{zams} \sim a_0 + a_1.log g + a_2.T_{ef.med} + a_3. F_{crom}$. Obtivemos:

i	ai	ti	Pi
0	-5.658	-2.57	0.01 < 0.05
1	-1.025	-2.63	0.01 < 0.05
2	0.002	10.83	0.00* < 0.05
3	0.146	4.37	0.00* < 0.05

Tabela 5.10.: A tabela acima fornece os resultados para os coeficientes a_i , para a estatística de teste t_i e os respectivos valores de P_i para o modelo **log** ϵ (Li)_{zams} ~ $a_0 + a_1$.log $g + a_2 T_{ef.med} + a_3$. F_{crom} . *Estes valores são aproximados, entretanto, são menores que 0.01 dex.

Para o desvio padrão temos o valor de 0.45 e a dispersão dos resíduos conforme a seguir:

Figura 5.11.: Histograma dos resíduos para log ε (Li)_{zams} ~ f(log g, T_{et.med}, F_{crom}).

Este teste aceita todas as variáveis envolvidas e fornece um desvio padrão ligeiramente melhor. No próximo teste vamos utilizar o ajuste log $\epsilon(Li)_{zams} \sim a_0 + a_1.T_{ef.med} + a_2.log (L/L_{Sol}) + a_3. F_{crom}$:

aneMildi) i - (i.l)a (of too a article sole	ion ao i t iao aon	Pi
0.00 ac 0.00 ac	-7.964	-5.59	0.00* < 0.05
+ 84. Fo t a paca 8	0.002	6.21	0.00* < 0.05
2	0.879	2.81	0.01 < 0.05
3	0.143	4.35	0.00* < 0.05

Tabela 5.11.: A tabela acima fornece os resultados para os coeficientes a_i , para a estatística de teste t_i e os respectivos valores de P_i para o modelo **log** $\varepsilon(Li)_{zams} \sim a_0 + a_1.T_{ef.med} + a_2.log (L/L_{sol}) + a_3$. F_{erom} . *Estes valores são aproximados, entretanto, são menores que 0.01 dex.

O teste aceita todas as variáveis envolvidas e desvio padrão obtido é de 0.44. Dentre as três variáveis estudadas (R/R_{zams}, log g, log L/L_{Sol}), conjuntamente com a temperatura e o fluxo cromosférico, a luminosidade mostra-se como a variável cronológica, até aqui, mais adequada para o modelo envolvendo as estrelas próximas da ZAMS.

Segue o histograma dos resíduos:

Figura 5.12.: Histograma dos resíduos para log ε(Li)zams ~ f(log L/Lsoh Tet.med, Fcrom).

E finalmente, se utilizarmos apenas a temperatura efetiva e o fluxo cromosférico, excluindo todas as demais como variáveis em nosso modelo, o desvio padrão obtido é de 0.48.

Por último, vamos testar os modelos obtidos por log $\epsilon(Li) \sim f(M/M_{sol}, [Fe/H], F_{crom}, X)$, variando X como T_{ef}, log g, log L/L_{sol}, R/R_{zams}. Iniciamos com o ajuste log $\epsilon(Li)_{zams} \sim a_0 + a_1.M/M_{sol} + a_2.[Fe/H] + a_3.T_{ef.med} + a_4. F_{crom}$ para a subamostra de objetos na ZAMS ou com idades menores que 2 Gano:

i	ai	ti	Pi
0	-10.373	-9.33	0.00* < 0.05
1	1.108	2.12	0.04 < 0.05
2	-0.074	-0.16	0.88 > 0.05
3	0.002	8.09	0.00* < 0.05
4	0.132	3.65	0.00* < 0.05

Tabela 5.12.: A tabela acima fornece os resultados para os coeficientes ai, para a estatística de teste ti e os respectivos valores de Pi para o modelo log $\varepsilon(Li)_{zams} \sim a_0 + a_1 M/M_{sol} + a_2 [Fe/H] + a_3 T_{ef.med} + a_4 F_{crom}$ *Estes valores são aproximados, entretanto, são menores que 0.01 dex.

O desvio padrão é 0.47 e o histograma dos resíduos é dado abaixo:

Figura 5.13.: Histograma dos resíduos para log ε(Li)_{zams} ~ f(M/M_{sob}, [Fe/H],T_{ef.med},

Fcrom)
Neste caso as variáveis M/M_{Sol}, T_{ef.med}, F_{crom} são aceitas, entretanto a variável [Fe/H] é rejeitada. Para os testes log ϵ (Li)_{zams} ~ f(M/M_{Sol}, [Fe/H], F_{crom}, R/R_{zams}), log ϵ (Li)_{zams} ~ f(M/M_{Sol}, [Fe/H], F_{crom}, log g) e log ϵ (Li)_{zams} ~ f(M/M_{Sol}, [Fe/H], F_{crom}, log L/L_{Sol}) os desvios padrão são, respectivamente, 0.78, 0.77 e 0.58. Nos testes log ϵ (Li)_{zams} ~ f(M/M_{Sol}, [Fe/H], F_{crom}, R/R_{zams}) e log ϵ (Li)_{zams} ~ f(M/M_{Sol}, [Fe/H], F_{crom}, R/R_{zams}) e log ϵ (Li)_{zams} ~ f(M/M_{Sol}, [Fe/H], F_{crom}, R/R_{zams}) e significant solution (M/M_{Sol}, [Fe/H], F_{crom}, log L/L_{Sol}) são aceitas todas as variáveis.

A análise regressiva para log $\epsilon(Li)_{zams} \sim f(M/M_{sol}, [Fe/H], F_{crom}, log L/L_{sol})$ é dada abaixo:

Ge li nst Jahna Ria	in ai ann a ma	ia sati is chis	Pi o entre
0	4.953	3.19	0.00* < 0.05
1	-3.942	-2.72	0.01 < 0.05
2	1.731	2.55	0.02 < 0.05
3	4.129	5.44	0.00* < 0.05
4	0.147	3.24	0.00* < 0.05

Tabela 5.13.: A tabela acima fornece os resultados para os coeficientes a_i , para a estatística de teste t_i e os respectivos valores de P_i para o modelo **log** ϵ (Li)_{zams} ~ f(M/M_{sol}, [Fe/H], F_{crom} , log L/L_{sol}). *Estes valores são aproximados, entretanto, são menores que 0.01 dex.

Para estrelas próximas da ZAMS e mais jovens que 2 Gano, após a temperatura efetiva, a luminosidade aparece como a melhor variável explicativa. E de fato, a luminosidade varia mais rapidamente na evolução estelar próxima da ZAMS quando comparada ao raio e à gravidade estelar. A dispersão em nossas abundâncias é abruptamente reduzida comparativamente a amostra geral.

A massa e a metalicidade são absolutamente relevantes, mas aumentam significativamente a dispersão nas abundâncias. Nessa faixa de idades onde a depleção do Li é mais significativa, as variáveis parecem estar explicando-a em nosso modelo linear simples, embora com uma dispersão significativa, do seguinte modo: as estrelas mais ativas e mais luminosas possuem maior abundância de Li. Por outro lado, massas e metalicidades produzem abundâncias do Li inversamente ao que está descrito na literatura. Isso pode ser explicado pela degenerescência introduzida em nosso modelo quando utilizamos a massa e a metalicidade juntamente com alguma das demais variáveis cronológicas.

A exclusão das estrelas cujas abundâncias do Li são dadas por limites superiores fornece um desvio para os modelos dados por **log** ϵ (Li) ~ f(T_{ef.med}, F_{crom}, X), variando X como **log g**, **log** L/L_{sol} e R/R_{zams}, de respectivamente 0.39, 0.38 e 0.39 dex. A interpretação estatística das variáveis não é alterada. Os desvios originais eram de 0.45, 0.44 e 0.46 dex. O aumento da precisão, em no máximo 0.07 dex, é menor que a estimativa para os erros observacionais do Li, que é de 0.1 dex. Considerados os erros observacionais podemos afirmar que os desvios são estatísticamente iguais. E, portanto, a remoção dos limites superiores ainda fornece desvios incompatíveis com os erros observacionais do Li. Nos demais casos, provavelmente, também não terão como explicar a dispersão observada. Nos demais casos, e nas regressões seguintes, os limites superiores não foram removidos.

Martin Parteland (Adda Martin A. 1999) "Control of a second of

Por subgigantes entendemos as estrelas além da linha de esgotamento do hidrogênio central, definida em nossos diagramas H-R (fig. 4.6 – 4.11) pela linha tracejada escura. Aqui iremos testar o modelo regressivo para uma subamostra de 43 objetos contidos no ramo das subgigantes conforme definido acima. Iniciamos com o modelo regressivo completo, i.e; para todas as variáveis.

Portanto, seja log ϵ (Li)_{SG} ~ a_0 + a_1 .M/M_{Sol} + a_2 .[Fe/H] + a_3 .R/R_{zams} + a_4 .log g + a_5 .T_{ef.med} + a_6 .log (L/L_{Sol}) + a_7 . F_{crom}:

I	ai	ti	Pi
0	-0.273	0.00	1.00 > 0.05
1	4.355	0.76	0.46 > 0.05
2	-0.897	0.83	0.41 > 0.05
3	0.270	0.11	0.91 > 0.05
4	-3.670	-0.16	0.87 > 0.05
5	0.002	0.42	0.67 > 0.05
6	-6.474	-0.33	0.74 > 0.05
7	0.039	0.50	0.62 > 0.05

Tabela 5.14.: A tabela acima fornece os resultados para os coeficientes a_i , para a estatística de teste t_i e os respectivos valores de P_i para o modelo $\log \varepsilon(Li)_{sc} \sim a_0 + a_1 M/M_{sol} + a_2 [Fe/H] + a_3 R/R_{zams} + a_4 \log g + a_5 T_{ef.med} + a_6 \log (L/L_{sol}) + a_7 F_{crom}$.

O desvio padrão é de 0.71 e o teste rejeita todas as variáveis. Em seguida procedemos à regressão a partir dos modelos dados por ajustes do tipo log $\epsilon(Li)_{SG} \sim f(T_{ef.med}, F_{crom}, X)$, variando X como log g, log L/L_{Sol} e R/R_{zams}. Iniciamos pelas variáveis T_{ef.med}, F_{crom} e R/R_{zams} para a subamostra de objetos classificados como subgigantes. Seja log $\epsilon(Li)_{SG} \sim a_0 + a_1.R/R_{zams} + a_2.T_{ef.med} + a_3.F_{crom}$, temos:

67

i	ai	ti Barri	Pi
0	-3.885	-0.94	0.35 > 0.05
1	-0.200	-0.30	0.76 > 0.05
2	0.001	1.77	0.08 > 0.05
3	0.045	0.64	0.52 > 0.05

Tabela 5.15.: A tabela acima fornece os resultados para os coeficientes a_{i} , para a estatística de teste t_i e os respectivos valores de P_i para o modelo **log** $\epsilon(Li)_{so} \sim a_0 + a_1 R/R_{zams} + a_2 T_{ef.med} + a_3 F_{crom}$.

O desvio padrão é de 0.68 e o histograma dos resíduos é como segue:

Figura 5.14.: Histograma dos resíduos para log ɛ(Li)so ~ f(R/Rzams, Tet.med, Fcrom).

Em seguida testamos o ajuste log ϵ (Li)_{SG} ~ a_0 + a_1 . log g + a_2 .T_{ef.med} + a_3 .F_{crom}, temos:

i	ai	ti	Pi
0	-6.140	-2.10	0.04 < 0.05
1	0.394	-0.64	0.52 > 0.05
2	0.001	2.67	0.01 < 0.05
3	0.055	0.89	0.38 > 0.05

Tabela 5.16.: A tabela acima fornece os resultados para os coeficientes a_i , para a estatística de teste t_i e os respectivos valores de P_i para o modelo ϵ (Li)_{sg} ~ a_0 + a_1 . log g + a_2 . $T_{ef.med}$ + a_3 . F_{crom} .

O desvio padrão é de 0.68 e apresentamos o histograma dos resíduos:

(

0

Figura 5.15.: histograma dos resíduos para log ε(Li)sg ~ f(log g,, Tef.med, Fcrom).

Por último testamos log $\epsilon(Li)_{SG} \sim a_0 + a_1.T_{ef.med} + a_2.log (L/L_{Sol}) + a_3.F_{crom}$. Neste caso temos:

we widay, dice	te elsainev es	a aniel tran ain	nionneit Pi magen
0	-5.126	-2.25	0.03 < 0.05
601 608 6 HO 6	0.001	2.95	0.01 < 0.05
2	-0.293	-0.64	0.53 > 0.05
3	0.059	0.95	0.35 > 0.05

Tabela 5.17.: A tabela acima fornece os resultados para os coeficientes a_i , para a estatística de teste t_i e os respectivos valores de P_i para o modelo log $\epsilon(Li)_{sG} \sim a_0 + a_1 T_{ef.med} + a_2 log (L/L_{sol}) + a_3 F_{crom}$.

o assesso O assesta partititado PTE En Flas, no esta a gundo relativita Entrelarita, os fastos demiçtituar pa arabizarii lontatago n grager faterilă act O desvio padrão é de 0.68. E finalmente apresentamos o histograma dos resíduos:

Figura 5.16.: Histograma dos resíduos para log ε(Li)sg ~ f(Tef.med, log (L/Lsol), Fcrom).

Os histogramas e os desvios evidenciam a pouca adequação dos modelos para os objetos no ramo das subgigantes. Os testes de hipóteses negam a significância estatística das variáveis envolvidas, exceto a temperatura efetiva. A insignificância da variável F_{crom} era esperada. E se retirarmos F_{crom} tampouco obtemos uma dispersão melhor e ou a aceitação das demais variáveis. Como exemplo, exibimos o teste utilizando o ajuste log $\epsilon(Li)_{SG} \sim a_0 + a_1.R/R_{zams} + a_2.T_{ef.med}$:

a survey is an and	ai	ti	Pi
0	-2.675	-0.73	0.47 > 0.05
1	-0.392	-0.67	0.50 > 0.05
2	0.001	1.67	0.10 > 0.05

Tabela 5.18.: A tabela acima fornece os resultados para os coeficientes a_i , para a estatística de teste t_i e os respectivos valores de P_i para o modelo **log** $\epsilon(Li)_{SG} \sim a_0 + a_1 R/R_{zams} + a_2 T_{ef.med.}$

O desvio permanece 0.68, i.e, F_{crom} de fato é pouco relevante. Entretanto, os testes de hipótese permanecem indicando a insignificância das variáveis envolvidas tomadas isoladamente. Idem para as demais variáveis **log** L/L_{sol} e **log g**. Portanto, vamos testar apenas a temperatura efetiva. Seja o ajuste log ε(Li)_{sg} ~ a₀ + a₁.T_{ef.med}, deste modo:

of the Line No	a, interest	en repr it lucido pe	Pi bere
0	-4.635	-2.10	0.04 < 0.05
a short calosi si	0.001	2.85	0.01 < 0.05

Tabela 5.19.: A tabela acima fornece os resultados para os coeficientes a_i , para a estatística de teste t_i e os respectivos valores de P_i para o modelo **log** $\epsilon(Li)_{sc} \sim a_0 + a_1 \cdot T_{ef.med.}$

O desvio apresenta-se em 0.67 e o histograma dos resíduos segue:

Figura 5.17.: Histograma dos resíduos para log ε(Li)sg ~ f(Tef.med).

Verifica-se que no ramo das subgigantes o melhor ajuste considera, dentre nossas variáveis, apenas a temperatura efetiva como variável significativa. Neste caso, F_{crom} mostra-se pouco relevante.

Fizemos ainda para as subgigantes os testes envolvendo os modelos obtidos por log $\epsilon(Li) \sim f(M/M_{sol}, [Fe/H], F_{crom}, X)$, variando X como T_{ef}, log g, log L/L_{sol}, R/R_{zams}, que consideramos fisicamente interessantes conforme discutimos previamente. O teste do modelo log $\epsilon(Li)_{SG} \sim a_0 + a_1.M/M_{sol} + a_2.[Fe/H] + a_3.T_{ef.med} + a_4. F_{crom}$ aceita apenas a variável T_{ef.med} e o desvio padrão é de 0.69. Para o teste log $\epsilon(Li)_{SG} \sim f(M/M_{sol}, [Fe/H], F_{crom}, R/R_{zams})$ apenas R/R_{zams} é aceita. Em log $\epsilon(Li)_{SG} \sim f(M/M_{sol}, [Fe/H], F_{crom}, log g)$ apenas F_{crom} é rejeitada. Por fim, para log $\epsilon(Li)_{SG} \sim f(M/M_{sol}, [Fe/H], F_{crom}, log g)$ L/L_{sol}) todas as variáveis são rejeitadas. Os desvios padrão são respectivamente 0.69, 0.68 e 0.75. Neste caso, como no caso das jovens, R/R_{zams} e **log g** parecem ser boas variáveis evolutivas. Quando utilizamos **log g** como variável evolutiva os resultados aceitam a massa e a metalicidade como variáveis significantes. Este resultado não pode ser reproduzido pelas variáveis R/R_{zams} e **log (L/L**_{sol}). No caso, a variável luminosidade torna-se pouco importante – pior que para as estrelas jovens. E finalmente, apenas a temperatura efetiva isoladamente é capaz de reproduzir totalmente a menor dispersão observada na amostra.

p. al-silaşi anazır arrab
p. al-silaşi arazır

5.6 ANÃS MAIS VELHAS QUE DOIS GANO

A atividade cromosférica medida a partir das linhas do perfil de H α é um bom indicador de evolução estelar para estrelas de até ~ 2 Gano, e é particularmente sensível à idade. Na subamostra das estrelas mais velhas a correlação entre as abundâncias do Li e a atividade não é esperada. Com o intuito de verificar este fato vamos investigar o comportamento das abundâncias do Li para a subamostra de estrelas anãs mais velhas com respeito à atividade cromosférica medida a partir do perfil de H α . E ainda seremos capazes de verificar se as variáveis evolutivas são tão importantes para a determinação das abundâncias do Li como demonstraram ser para as estrelas próximas da ZAMS.

Portanto, vamos realizar a regressão multiparamétrica para a subamostra das 67 estrelas anãs com idades maiores que dois Gano. Neste momento, iniciamos pelo modelo completo tal que log $\epsilon(Li)_{anās > 2 \text{ Gano}} \sim a_0 + a_1.M/M_{sol} + a_2.[Fe/H] + a_3.R/R_{zams} + a_4.log g + a_5.T_{ef.med} + a_6.log (L/L_{sol}) + a_7. F_{crom}$. Temos:

adis mele valuas	a and a a	LOV ANOLI t i social	Piol a sol
0	-95.939	-2.63	0.01 > 0.05
1	-4.854	-0.63	0.53 > 0.05
2	-0.325	0.43	0.67 > 0.05
3	4.515	1.11	0.27 > 0.05
4	24.627	1.71	0.09 > 0.05
5	-0.002	-0.38	0.70 > 0.05
6	-19.010	1.21	0.23 > 0.05
7	0.040	0.84	0.40 > 0.05

Tabela 5.20.: A tabela acima fornece os resultados para os coeficientes a_i , para a estatística de teste t_i e os respectivos valores de P_i para o modelo $\log \varepsilon(Li)_{an\bar{a}s > 2} g_{ano} \sim a_0 + a_1.M/M_{sol} + a_2.[Fe/H] + a_3.R/R_{zams} + a_4.log g + a_5.T_{ef.med} + a_6.log (L/L_{sol}) + a_7. F_{crom}$.

73

O teste rejeita todas as variáveis envolvidas e o desvio padrão obtido é de 0.62. Apresentamos o histograma dos resíduos:

Figura 5.18.: histograma dos resíduos para log $\varepsilon(Li)_{an\bar{a}s > 2} G_{ano} \sim f(M/M_{Sole} [Fe/H]_{corr}, R/R_{zams}, log g, T_{ef.med}, log (L/L_{Sol}), F_{crom}).$

Para a amostra geral, estrelas próximas da ZAMS e subgigantes testamos os modelos dados por log $\epsilon(Li) \sim f(T_{ef.med}, F_{crom}, X)$, variando X como log g, log L/L_{sol} e R/R_{zams}. Agora, vamos testá-los para as anãs mais velhas que 2 Ganos. Seja log $\epsilon(Li)_{an\bar{a}s > 2 \text{ Gano}} \sim a_0 + a_1 \cdot R/R_{zams} + a_2 \cdot T_{ef.med} + a_3 \cdot F_{crom}$:

Tabela 5.21.: A tabela acima fornece os resultados para os coeficientes a, para a estatística de teste t, e os respectivos valores de P, para o modelo log $\varepsilon(Li)_{anais > 2} c_{ano} \sim a_0 + a_1 \cdot R/R_{zams} + a_2 \cdot T_{ef.med} + a_3 \cdot F_{crom}$. Este valor é aproximado, entretanto, é menor que 0.01 dex.

74

O teste rejeita todas as variáveis com exceção da temperatura efetiva. O desvio é de 0.64 e apresentamos o histograma dos resíduos:

Figura 5.19.: Histograma dos resíduos para log $\varepsilon(Li)_{anãs > 2}$ Gano ~ $f(R/R_{zams}, T_{ef.med}, F_{crom})$.

Seja log ϵ (Li)_{anās > 2 Gano} ~ a₀ + a₁.log g + a₂.T_{ef.med} + a₃.F_{crom}:

i	ai	ti	Pi
0	-20.791	-3.91	0.00* < 0.05
1	0.038	1.35	0.18 > 0.05
2	0.003	5.79	0.00 < 0.05
3	0.061	1.37	0.18 > 0.05

Tabela 5.22.: A tabela acima fornece os resultados para os coeficientes a_i , para a estatística de teste t_i e os respectivos valores de P_i para o modelo **log** $\varepsilon(Li)_{anās > 2}$ _{Gano} ~ a_0 + $a_1.log g + a_2.T_{ef.med} + a_3.F_{crom}$. *Estes valores são aproximados, entretanto, são menores que 0.01 dex.

O teste aceita apenas a temperatura efetiva. Obtivemos para o desvio padrão o valor de 0.63. Apresentamos o histograma dos resíduos:

Figura 5.20.: Histograma dos resíduos para log ε(Li)_{anãs>2 Gano} ~ f(log g, T_{ef.med}, F_{crom}).

E finalmente, seja log $\epsilon(Li)_{an\bar{a}s > 2 \text{ Gano}} \sim a_0 + a_1 \cdot T_{ef.med} + a_2 \cdot \log (L/L_{sol}) + a_3 \cdot F_{crom}$:

i	ai	ti	Pi
0	-18.050	-4.68	0.00* < 0.05
1	0.003	5.05	0.00* < 0.05
2	-0.576	-1.24	0.22 > 0.05
3	0.065	1.46	0.15 > 0.05

Tabela 5.23.: A tabela acima fornece os resultados para os coeficientes a, para a estatística de teste t, e os respectivos valores de P, para o modelo log $\varepsilon(Li)_{anās > 2}$ $Gano \sim a_0 + a_1.T_{ef.med} + a_2.log (L/L_{so}) + a_3.F_{crom}$. *Estes valores são aproximados, entretanto, são menores que 0.01 dex.

O desvio padrão é de 0.63. Apresentamos o histograma dos resíduos:

Figura 5.21.: Histograma dos resíduos para log $\varepsilon(Li)_{an\bar{a}s} > 2 \text{ Gano} \sim f(T_{ef.med}, \log L/L_{Sol}, F_{crom}).$

Similarmente ao caso das subgigantes o histograma e o desvio evidenciam a pouca adequação dos modelos. Os testes de hipóteses negam a significância estatística das variáveis envolvidas, exceto T_{ef} . Em qualquer um dos casos se eliminarmos a variável F_{crom} as variáveis R/R_{zams} , log (L/L_{Sol}) e log g permanecem não sendo aceitas. Vide o exemplo para **log** ϵ (Li)_{anãs > 2 Gano} ~ a₀ + a₁.R/R_{zams} + a₂.T_{ef.med}:

(1993), 1. Passie	ai	b cloudert, o sou	Pi
0	-13.226	-5.40	0.00* < 0.05
and 1 - 1	-0.662	-0.83	0.41 > 0.05
2	0.003	6.08	0.00* < 0.05

Tabela 5.24.: A tabela acima fornece os resultados para os coeficientes a_i , para a estatística de teste t_i e os respectivos valores de P_i para o modelo $\log \varepsilon(Li)_{anãs > 2 \text{ } Gano} \sim a_0 + a_1 \cdot R/R_{zams} + a_2 \cdot T_{ef.med}$. *Estes valores são aproximados, entretanto, são menores que 0.01 dex.

O desvio é de 0.64 e os testes de hipótese permanecem indicando a insignificância das variáveis envolvidas tomadas isoladamente. Agora testamos apenas a temperatura efetiva. Seja log ϵ (Li)_{anãs > 2 Gano} ~ a₀ + a₁.T_{ef.med}:

i i	ai	ti	Pi
0	-13.325	-5.46	0.00* < 0.05
1	0.003	6.14	0.00* < 0.05

Tabela 5.25.: A tabela acima fornece os resultados para os coeficientes a_i , para a estatística de teste t_i e os respectivos valores de P_i para o modelo **log** $\epsilon(Li)_{anãs > 2}$ $_{Gano} \sim a_0 + a_1$. $T_{ef.med.}$ *Estes valores são aproximados, entretanto, são menores que 0.01 dex.

O desvio é 0.64 e o histograma dos resíduos segue:

Figura 5.22.: Histograma dos resíduos para log ɛ(Li)anās > 2 Gano ~ f(Tef.med)

Por fim, testamos o conjunto de variáveis (M/M_{sol}, [Fe/H], X, F_{crom}), sendo X qualquer variável entre T_{ef.med}, log g, log L/L_{sol}. O teste do modelo log ε (Li)_{anās > 2 Gano} ~ a₀ + a₁.M/M_{sol} + a₂.[Fe/H] + a₃.T_{ef.med} + a₄. F_{crom} apresenta um desvio padrão de 0.62 e aceita apenas as variáveis M/M_{sol} e T_{ef.med}. Para o teste log ε (Li)_{anās > 2 Gano} ~ f(M/M_{sol}, [Fe/H], F_{crom}, R/R_{zams}) apenas M/M_{sol} é aceita. Em log ε (Li)_{anās > 2 Gano} ~ f(M/M_{sol}, [Fe/H], F_{crom}, log g) apenas M/M_{sol} e [Fe/H] são aceitas. Por fim, para log ε (Li)_{anās > 2 Gano} ~ f(M/M_{sol}, [Fe/H], F_{crom}, log L/L_{sol}) todas as variáveis são rejeitadas. Os desvios padrão são respectivamente 0.76, 0.76 e 0.74.

As conclusões são análogas às obtidas para o ramo das subgigantes e o melhor ajuste considera dentre nossas variáveis apenas a temperatura efetiva como variável significativa.

5.7 CONCLUSÕES

A tabela a seguir sintetiza os resultados obtidos para o modelo log ϵ (Li) ~ f(M/M_{sol}, [Fe/H], R/R_{zams}, log g, T_{ef.med}, log (L/L_{sol}), F_{crom}) para cada uma das subamostras:

AMOSTRA	VAR. SIGN.	DESVIO
Geral	Fcrom	0.63
SG	Nenhuma	0.71
Anãs > 2 Gano	Nenhuma	0.62
ZAMS	Fcrom	0.46

Tabela 5.26.: A tabela acima exibe os resultados obtidos para o modelo log $\varepsilon(Li) \sim f(M/M_{Sol}, [Fe/H], R/R_{zams}, log g, T_{ef.med}, log (L/L_{Sol}), F_{crom})$. O campo VAR. SIGN. exibe as variáveis aceitas pelo modelo para cada uma das subamostras. O campo DESVIO exibe os desvios padrão.

A próxima tabela sintetiza os resultados obtidos pelos modelos log ϵ (Li) ~ f(M/M_{sol}, [Fe/H], F_{crom}, X); tal que X = [R/R_{zams}, log g, T_{ef.med}, log (L/L_{sol})]:

		VAR.	SIGN.		DESVIO				
Amostra	X = T _{ef.med}	X = log (L/L _{sol})	X = log g	X = R/R _{zams}	X = T _{ef}	X = log (L/L _{sol})	X = log g	X = R/R _{zams}	
Geral	F _{crom} , T _{ef}	log L/L _{Sol} , F _{crom}	M/M _{Sol} , [Fe/H], log g	M/M _{Sol} , [Fe/H], R/R _{zams}	0.64	0.77	0.78	0.79	
SG	T _{ef}	nenhuma	M/M _{Sol} , [Fe/H], log g	R/R _{zams}	0.69	0.75	0.68	0.69	
Anās > 2 GANO	R/Rzams, T _{ef}	nenhuma	M/M _{Sal} , [Fe/H]	R/R _{zams}	0.62	0.74	0.76	0.76	
ZAMS	M/M _{Sol} , R/R _{zams} ,	todas	M/M _{Sot}	M/M _{Sol}	0.47	0.58	0.77	0.78	

Tabela 5.27.: A tabela acima exibe os resultados obtidos para o modelo log $e(Li) \sim f(M/M_{Sol}, [Fe/H], F_{crom}, X)$; tal que $X = [R/R_{zams}, log g, T_{ef.med}, log (L/L_{Sol})]$. O campo VAR. SIGN. exibe as variáveis aceitas pelo modelo para cada uma das subamostras. O campo DESVIO exibe os desvios padrão.

E finalmente, apresentamos a tabela que sintetiza os resultados obtidos para os modelos log $\epsilon(Li) \sim f(T_{ef.med}, F_{crom}, X)$; X=[R/R_{zams}, log g, log (L/L_{sol})] e log e(Li) ~ f(T_{ef.med}):

Amostra		VAR.	SIGN.		DESVIO				
	X= log L/L _{Sol}	X=log g	X=R/R _{zams}	F(Tef)	X= log L/L _{Sol}	X=log g	X=R/R _{zams}	F(Ter)	
Geral	NT	NT	todas	NT	NT	NT	0.63	NT	
SG	Tef	Ter	nenhuma	todas	0.68	0.68	0.68	0.67	
Anãs > 2 GANO	T _{ef}	Tet	T _{ef}	todas	0.63	0.63	0.64	0.64	
ZAMS	todas	todas	todas	todas	0.44	0.45	0.46	0.48	

Tabela 5.28.: A tabela acima exibe os resultados obtidos para o modelo log $\varepsilon(Li) \sim f(T_{ef.med}, F_{crom}, X); X=[R/R_{zams}, log g, log (L/L_{Sol})] e log e(Li) ~ f(T_{ef.med}). O campo VAR. SIGN. exibe as variáveis aceitas pelo modelo para cada uma das subamostras. O campo DESVIO exibe os desvios padrão. NT= Não testado.$

Não testamos a amostra geral para todos os modelos na forma log $\varepsilon(Li)$ ~ f(T_{ef.med}, F_{crom}, X); tal que X=[R/R_{zams}, log g, log (L/L_{sol})] e log e(Li) ~ f(T_{ef.med}). Isso porque a amostra geral consiste na totalidade das estrelas encontradas nas subamostras acima descritas. E, portanto, não esperamos obter precisões melhores (considerados os erros observacionais nas abundâncias do Li) do que aquelas obtidas para o pior dos casos (subamostras) considerados. O pior deles é encontrado para as estrelas na subamostra das subgigantes (SG). Isso está evidente na tabela 5.27 quando foram compilados os resultados para os modelos da forma log $\varepsilon(Li) ~ f(M/M_{sol}, [Fe/H], F_{crom}, X)$; tal que X = [R/R_{zams}, log g, T_{ef.med}, log (L/L_{sol})]. Estes resultados podem ser estendidos para os modelos na forma $\varepsilon(Li) ~ f(T_{ef.med}, F_{crom}, X)$; tal que X=[R/R_{zams}, log g, log (L/L_{sol})] e log e(Li) ~ f(T_{ef.med}).

Em geral e para todas as subamostras, o conjunto de variáveis (M/M_{sol}, [Fe/H], X, F_{crom}), sendo X qualquer variável entre T_{ef.med}, log g, log L/L_{sol}, R/R_{zams}, é fisicamente mais interessante, entretanto estatisticamente mostrase menos adequado. É possível reproduzir a menor dispersão observada em todos os testes apenas a partir da variável T_{ef.med} e as variáveis F_{crom}, R/R_{zams}, **log (L/L**_{Sol}), log g não demonstraram ser significativas, exceto para as estrelas próximas da ZAMS.

A nossa hipótese inicial indicava algum efeito de F_{crom} como indicador de log ϵ (Li) para as estrelas jovens. A interpretação dos nossos testes demonstra que tal afirmativa é apenas parcialmente verdade, pois a variável F_{crom} não se apresenta como uma variável bastante significativa. É aceita para a subamostra de estrelas próximas da ZAMS apenas nos modelos log ϵ (Li) ~ f(T_{ef.med}, F_{crom}, X), variando X como log g, L/L_{sol} e R/R_{zams}. Para o conjunto (M/M_{sol}, [Fe/H], X, F_{crom}), sendo X qualquer variável entre T_{ef.med}, log g, log L/L_{sol}, R/R_{zams}, apenas F_{crom} é aceita no modelo tal que X = log (L/L_{sol}).

Embora todos os modelos matemáticos testados sejam inadequados, tal que a dispersão observada em quaisquer deles não é compatível com o erro observacional das abundâncias do Li, nossa conclusão geral é que para o caso das estrelas jovens, onde se concentra a depleção do Li, as variáveis evolutivas parecem ter alguma relevância. Isto servirá de ponto de partida para análises futuras.

Aproveitamos para salientar que, inadvertidamente, não removemos os limites superiores para a maioria dos casos. A inclusão dos limites superiores é incorreta, uma vez que eles não fornecem os valores exatos para as abundâncias do Li. Uma análise mais cuidadosa exige sua remoção. Mostramos (seção 5.4) que nos melhores casos para as estrelas jovens, os desvios produzidos são estatisticamente iguais e permanecem incompatíveis com os erros observacionais do Li. Nos demais casos, provavelmente, também não serão capazes de explicar a dispersão observada. Entretanto, é essencial em futuros trabalhos removê-los. Isto permitirá melhorar a interpretação estatística das variáveis.

dos diagramas, identificamés a consecurar an inno region ("a v 6000 Mi (a) descrità na ineratura, a parte de cuel de cuel numérico de la contrata na ineratura, a parte de contrato de la monotonicamente no sentido des tempo interios reutases della frica (contecido des estralas mais quentes ("a > 6068 kg, anter a el francia de reus" à trancio de la é trais facilmente presentador contrato a el francia de contecen de deficio dentre as estralas mais quentes de la tato conte servicio de tente de la contecentation dentre as estralas mais quentes de la tato conte servicio de trata de la contecentation

CAPÍTULO 6

CONCLUSÕES E PERSPECTIVAS

Neste trabalho buscamos evidenciar uma correlação entre as abundâncias do Li, atividade cromosférica (enquanto indicador rotacional) e demais parâmetros astrofísicos de interesse com base em diagramas H-R, trajetórias evolutivas por massa, metalicidades e idades. Procedemos ainda à uma análise multiparamétrica de nossos dados com base na regressão linear com relação às abundâncias corrigidas de Li evidenciando uma conexão do Li e a atividade cromosférica, enquanto indicador de idades, principalmente em estrelas jovens, embora essa conclusão seja limitada pelo fato de que a relevância da atividade cromosférica só aparece quando associada a determinadas variáveis.

De uma amostra inicial de 252 estrelas de tipos espectrais F, G e K, dentre anãs e subgigantes, estrelas de campo e de aglomerados com metalicidades no intervalo -1.0 < [Fe/H] < +0.5, temperaturas efetivas entre 4500 K < T_{ef} < 6500 K, com parâmetros atmosféricos, evolutivos e de atividade cromosférica obtidos por Ferreira (2010); obtivemos na literatura um conjunto completo de abundâncias do Li e respectivos parâmetros atmosféricos para 152 delas. Por fim, as abundâncias do Li foram corrigidas com base em um escala homogênea de temperaturas efetivas.

A partir de um conjunto completo de luminosidades, temperaturas efetivas homogêneas, metalicidades e abundâncias de Li corrigidas para tal escala homogênea construímos diagramas H-R teóricos com trajetórias evolutivas por massa e idade, separando as estrelas por níveis de atividade cromosférica e abundâncias de Li. Buscamos identificar padrões no comportamento das abundâncias e do grau de atividade cromosférica ao longo dos diagramas. Identificamos a existência de uma região (T_{ef} < 6000 K), já descrita na literatura, a partir da qual as abundâncias do Li caem monotonicamente no sentido das temperaturas efetivas mais frias. Na região das estrelas mais quentes (T_{ef} > 6000 K), onde a eficiência convectiva é menor, o Li é mais facilmente preservado. Entretanto, fomos capazes de identificar dentre as estrelas mais quentes de nossa amostra objetos que apresentavam abundâncias reduzidas do Li. Isto pode ser explicado pela existência de uma

~

região, descrita na literatura por "Li dip", onde a depleção do Li é particularmente severa. Muito embora nossos dados sustentem um deslocamento do centro do "dip" em massas como uma função das metalicidades, este comportamento não pode ser categoricamente afirmado em virtude dos erros associados à determinação das massas próximas à região de esgotamento do hidrogênio central. A conclusão geral é que todas as estrelas na sequência principal em torno da temperatura efetiva que define a ocorrência do "dip" apresentam severa depleção do Li. As abundâncias reduzidas deste elemento observadas próximo à região de esgotamento do hidrogênio central devem ser resultantes da depleção do Li ocorrida na sequência principal.

Pudemos identificar ao longo da ZAMS uma correlação entre atividade cromosférica e abundâncias do Li. Entretanto, este fato não é conclusivo para nossa análise. Para estrelas jovens a atividade cromosférica está fortemente conectada com as idades estelares. Os intervalos de erro associados com a pouca precisão do método isocronal para a determinação de idades estelares na ZAMS explicam a grande dispersão dos níveis de abundância do Li observados nesta etapa.

Em uma tentativa de conectar a atividade e abundâncias de Li num cenário mais abrangente fizemos uso de um método regressivo mais robusto. Procuramos identificar um subconjunto de variáveis independentes e significativas. Procedemos a um teste de hipóteses que nos fornecesse o melhor ajuste possível sem prejuízo de precisão. Analisamos o problema separando a amostra geral em subamostras (ZAMS, anãs mais velhas que 2 Gano, subgigantes) e estudando o comportamento das variáveis em cada uma delas.

Os testes de hipótese e a regressão multiparamétrica confirmaram nossas conclusões baseadas no estudo dos diagramas H-R. Para a amostra geral e a subamostra da ZAMS a atividade cromosférica mostrou-se importante e pudemos escolher um subconjunto de variáveis no qual ela fosse estatisticamente significativa. Isso é insuficiente para, segundo nossa hipótese, mostrar que a correlação entre atividade e abundâncias do Li seja devida a efeitos rotacionais, onde uma rotação mais baixa favorece a difusão e, portanto, uma maior depleção do lítio. Nenhum dos modelos regressivos conseguiu desvio padrão comparável aos erros de abundância do Li obtidos na literatura e são, portanto, insuficientes. Obviamente, modelos mais complexos precisam ser testados para tentar explicar quantitativamente melhor o problema. O **teorema de Russell-Vogt** estabelece que para uma situação ideal, quando determinadas as massas iniciais e a composição química, a estrela descreve uma trajetória unívoca ao longo do diagrama HR. Neste contexto, realizamos testes adicionais com base nas variáveis constitutivas M/M_{sol} e [Fe/H], acrescentando F_{crom} e alguma das variáveis cronológicas (T_{ef}, log g, L/L_{sol}, R/R_{zams}). Apesar de fisicamente interessantes, mostraram-se estatisticamente pouco adeguados.

Nossa amostra de 152 estrelas é bastante restrita por não possuir objetos evoluídos em número suficiente para uma boa estatística e o método regressivo linear utilizado pode ser pouco adequado. Neste aspecto salientamos que a regressão linear pressupõe o uso de variáveis independentes e o uso de variáveis dependentes torna os coeficientes e os testes não confiáveis. A superposição dos efeitos de cada uma das variáveis, caso existente, as torna pouco significativas quando consideradas isoladamente. Tampouco podemos garantir que a natureza do problema é estritamente linear ou que alguma variável importante não tenha sido considerada. Um estudo mais aprofundado e que leve em conta uma gama maior de variáveis e efeitos envolvidos é possível. É razoável admitir a utilização de uma regressão mais complexa, de segundo grau e envolvendo termos cruzados.

A atividade cromosférica obtida a partir da linha Ha é particularmente sensível à idade, mas somente até 2 Gano. Em estrelas mais velhas a relevância da atividade cromosférica para a determinação das abundâncias de Li também é significativamente menor. Isso possivelmente desempenha um papel muito importante no aumento significativo da dispersão observada em nossos ajustes. Na dissertação de mestrado para o Observatório do Valongo, UFRJ, Lorenzo D., A relação entre atividade cromosférica e idade em estrelas de tipo solar: O tripleto infravermelho do Ca II, 2011, estabeleceu-se que nas linhas do Ca II do tripleto infravermelho, a relação envolvendo a idade e a atividade pode ser identificada até 8-9 Ganos, caso massas e metalicidades sejam devidamente equacionadas. Não pretendemos entrar nos detalhes desta discussão devido ao escopo deste trabalho, mas é razoável sugerir em futuros trabalhos a substituição do fluxo cromosférico a partir de Ha pelo tripleto do Ca Il como indicador de atividade cromosférica. Além disso, inadvertidamente, incluímos em nossa análise os limites superiores para as abundâncias do Li. É essencial que eles sejam removidos.

APÊNDICE A: PARÂMETROS ATMOSFÉRICOS E ABUNDÂNCIAS DO Li

((

0

0

0

1

 $\left(\right)$

(

((((

Apresentamos as abundâncias de Li obtidas da literatura a partir determinações de temperaturas efetivas T_{ef.lit}, gravidades superficiais **log g**_{lit}, metalicidades [**Fe/H**]_{lit} com as respectivas referências e a metodologia **T** de obtenção das temperaturas (E – Espectroscópica, F – Fotométrica).

	HD	HR	HIP	Т	T _{ef.lit}	log giit	[Fe/H] _{tit}	log ε(Li)	Referência
	1461	72	1499	E	5708	4,28	0,21	< 0,89	Luck & Heiter 2006
	1581	77	1599	F	5956	4,39	-0,14	2,37	Santos 2004
	1835	88	1803	E	5821	4,36	0,23	2,65	Takeda 2010
	2151	98	2021						-
	3795	173	3185	E	5270	3,75	-0,70	0,00	Da Silva & Porto Mello 2000
	3823		3170	Е	5948	4,06	0,23	2,41	Santos 2004
	4307	203	3559	E	5648	3,75	-0,29	2,30	Takeda 2005
	4308		3497	E	5600	4,00	-0,40	< 1,30	Pompeia 2010
	4391	209	3583	E	5829	4,74	-0,03	< 1,09	Santos 2004
	7570	370	5862	E	6140	4,39	0,18	2,91	Santos 2004
	8291		6407						-
	9562	448	7276	E	5946	4,18	0,26	2,63	Takeda 2005
	10647	506	7978	E	6143	4,48	-0,03	2,80	Santos 2004
12	10697		8159	E	5641	4,05	0,14	1,96	Santos 2004
	10700	509	8102	Е	5350	4,50	-0,58	< -0,11	Luck & Heiter 2006
	11131		8486		5810	4,44	-0,06	2,55	Takeda 2010
	11964		9094	E	5265	3,74	0,12	1,19	Gonzalez 2010
	12235		9353	F	6180	4,10	0,30	< 1,30	Lebre 1999
	12264		9349	Е	5800	4,38	0,01	2,06	Takeda 2010
	13421	635	10212	F	6165	4,00	0,36	2,08	Balachandran 1990
	13531		10339						
	13612	650	10305	F	6097	4,15	-0,11	2,61	Balachandran 1990
	13724		10278						-
	14214	672	10723	Е	6062	4,16	0,17	3,09	Takeda 2005
	14680		10977						
	14802	695	11072	E	5830	3,97	0,03	2,33	Da Silva & Porto Mello 2000
	15335	720	11548	E	5846	3,80	-0,20	2,56	Takeda 2005
	15942		11941					-	-
	16160	753	12114	E	5000	4,50	-0,07	< -0,25	Luck & Heiter 2006
	16417	772	12186	E	5710	4,00	0,09	1,70	Da Silva & Porto Mello 2000
	16589		12300	F	6194	3,90	0,15	< 1,40	Randich 1999
191	16673	784	12444	Е	6321	4,43	0,05	3,17	Takeda 2005
	17051	810	12653	E	6252	4,61	0,26	2,66	Santos 2004

HD	HR	HIP	Т	T _{ef.lit}	log g _{lit}	[Fe/H] _{lit}	log ε(Li)	Referência
19308		14532						
19994	962	14954	E	6190	4,08	0,21	1,83	Gonzalez 2010
20010	963	14879	E	6170	3,93	-0,21	1,86	Gonzalez 2010
20630	996	15457	E	5749	4,51	0,08	1,75	Gonzalez 2010
20766	1006	15330	E	5733	4,55	-0,21	< 0,97	Santos 2004
20807	1010	15371	Е	5843	4,47	-0,23	< 1,07	Santos 2004
21411		16012					-	-
22049	1084	16537	Е	5000	4,30	-0,09	0,36	Gonzalez 2010
22484	1101	16852	Е	6022	4,06	-0,04	2,48	Takeda 2005
22879		17147	F	5790	4,28	-0,84	1,45	Lambert 2004
23249	1136	17378	E	5100	3,80	0,18	1,29	Luck & Heiter 2006
24040		17960						
24293		17748						
24616		18235						
25457	1294	18859	F	6162	4,28	-0,11	2,95	Lambert 2005
25874		18844						
25918		19301						-
26913	1321	19855	F	5630	3,90	-0,20	2,20	Lebre 1999
26923	1322	19859	F	5968	3,37	0	2,80	Lebre 1999
27685		20441	Е	5776	4,42	0,14	2,28	Takeda 2010
27859		20577			-			
28099		20741	Е	5802	4,33	0,16	2,41	Takeda 2010
28344		20899						-
28471		20625	Е	5745	4,37	-0,05	< 0,73	Souza 2010
28821		21172	Е	5633	4,29	-0,11	< 1,00	Takeda 2010
28992		21317						-
29859	1499	21961						
30495	1532	22263	Е	5925	4,63	0,01	2,39	Luck & Heiter 2006
30562	1536	22336	Е	5990	4,30	0,27	2,78	Da Silva & Porto Mello 2000
30606	1538	22325	F	6209	4,09	-0,01	< 1,65	Balachandran 1990
32147	1614	23311	Е	4900	4,25	0,36	< -0,09	Luck & Heiter 2006
32923	1656	23835	Е	5655	4,08	-0,01	1,64	Takeda et al 2005
33021		23852	F	5822	3,91	-0,20	2,00	Lebre 1999
34721	1747	24786	E	5960	4,21	-0,10	2,30	Da Silva & Porto Mello 2000
36553	1856	25768	E	6020	3,73	0,27	1,20	Da Silva & Porto Mello 2000
37986		26834		-				-
39587	2047	27913	Е	5947	4,50	-0,02	2,87	Takeda 2005
41593		28954						
43587	2251	29860	F	5740	3,40	-0,20	1,83	Lubin 2010
43834	2261	29271	E	5594	4,41	0,10	2,30	Santos 2004
43947		30067	F	5859	4,23	-0,33	2,33	Lambert 2004
44120	2274	29788						-

. 1	HD	HR	HIP	I	ef.lit	log g
	46569	2400	31079			
	50806		33094	F	5578	4,00
	52298		33495			
	53705	2667	34065	F	5810	4,40
	55720		34739			- 28
	57853	2814	- 20			- 55
	59984	2883	36640	E	5987	3,95
	61033		36832			
	62644		37606	F	5365	3,70
	63077	3018	37853	F	5831	4,19
	64114		38392			2 B
	65907	3138	38908	F	5940	4,56
	69809		40761			
	69830	3259	40693	E	5413	4,52
	71334		41317			030
	73350		42333	Е	5729	4,48
	74698		42532			
The second second	76151	3538	43726	E	5765	4.44
i	76932	3578	44075	E	5818	4.11
i	84117	3862	47592	E	6167	4.52
	85380	3901	48351	E	6162	4,36
	88084		49728	Е	5766	4.42
1	88218	3992	49769			
i	98649		55409			
	102365	4523	57443			
	103026	4548	57841	F	6183	4.26
i	104304	4587	58576	F	5690	4 45
i	105590		59272			
i	105901		59417			
i	108309	4734	60729	Е	5775	4.23
	111199	4856	62421	F	6148	3.89
1	111398		62536			
	112164	4903	63033			
1	114260		64219			
	114613	4979	64408	F	5729	3 97
	114710	4983	64394	E	6021	4.37
	115382		64794			
	115383	5011	64792	E	6120	4.25
	115617	5029	64924	F	5720	4 67
	117176	5072	65721	F	5502	3.89
	117939		66238	-		0,00
	118508		66530			
1	110090	a sale and	00000			

[Fe/H]_{lit}

-0,02

-0,19

-0,65

--

-0,06

-0,78

-0,29

-0,01

--

0,15

0,08

-0,90

-0,03

0,10

--

-0,06

0,35

0,12

-0,13

--

0,19

0,08

0,21

0,11

-0,07

87

log ε(Li)

1,38

1,04

--

2,46

< 0,71

1,32

--

< 0,98

0,75

2,33

--

1,79

2,03

2,64

1,62

--

--

2,72

< 0,63

--

< 0,94

< 0,64

--

2,69

2,50

--

2,91 < 0,86

1,78

Referência

Randich 1999

--Israelian 2004

--Takeda 2005

Randich 1999

Chen 2001

--

Israelian 2004

--

Gonzalez 2010

Takeda 2010

Luck & Heiter 2006

Takeda 2005 Santos 2004

Luck & Heiter 2006

Souza et al 2010

--Balachandran 1990

Luck & Heiter 2006

--

Souza 2010

Balachandran 1990

Souza 2010 Gonzalez 2010

Takeda 2005

Takeda 2005

Gonzalez 2010

HD	HR	HIP	Т	T _{ef.lit}	log g _{lit}	[Fe/H] _{lit}	log ε(Li)	Referência
119550		66974						AND ME APPLE IN A COMPANY
120066	5183	67246	E	5862	4,12	0,08	2,67	Gonzalez 2010
120136	5185	67275	E	6342	3,92	0,20	2,14	Gonzalez 2010
120237	5189	67408	F	6021	4,40	0,09	< 1,03	Randich 1999
121370	5235	67927	E	6085	3,70	0,28	1,57	Gonzalez 2010
121384		68101	F	5181	3,60	-0,51	0,68	Randich 1999
122862	5279	69090			-	-		
124553	5322	69564	F	6152	4,16	0,20	2,15	Balachandran 1990
124570		69536	Е	6109	3,85	0,07	< 1,17	Takeda 2005
124850	5338	69701	Е	6374	4,08	-0,01	< 1,64	Takeda 2005
125184		69881	E	5630	4,01	0,25	< 0,99	Takeda 2005
126868	5409	70755	F	5521	3,30	-0,06	2,64	Randich 1999
128620	5459	71683						
128621	5460	71681						
130948	5534	72567	F	5780	4,18	-0,20	2,69	Chen 2001
131117	5542	72772	F	6014	4,00	0,13	2,67	Chen 2001
131156		72659	Е	5595	4,70	-0,07	2,24	Gonzalez 2010
131923	5566	73241						
131977	5568	73184	E	4575	4,28	0,09	< -0,38	Luck & Heiter 2006
134664	A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.	74389						
136202		74975	F	6120	3,50	0,10	< 1,00	Lebre 1999
136352	5699	75181					-	
137510		75535	E	6139	4,33	0,43	< 1,38	Takeda 2005
138573		76114	E	5746	4,50	-0,00	0,91	Takeda 2010
140538	5853	77052	E	5735	4,52	0,05	1,53	Luck & Heiter 2006
140690		77282						
141004	5868	77257	E	5940	4,31	-0,06	1,82	Luck & Heiter 2006
142072		77749	Е	5860	4,59	0,23	2,70	Takeda 2010
143337		78466						
143761	5968	78459	E	5853	4,41	-0,21	1,46	Santos 2004
145825		79578	E	5795	4,43	0,05	1,85	Gonzalez 2010
146233	6060	79672	E	5818	4,45	0,04	1,64	Souza 2010
147513	6094	80337	E	5880	4,58	0,07	2,05	Israelian 2004
148577		80784						
150248		81746				NZ - 197		
152391		82588	E	5450	4,51	0,00	1,11	Gonzalez 2010
153458		83181	E	5841	4,51	0,13	2,14	Gonzalez 2010
154417	6349	83601	F	5925	4,30	-0,04	2,65	Chen 2001
154931		83863						-
154962	6372	83906	E	5827	4,17	0,32	2,39	Souza 2010
155114		84121						
156274	6416	84720						

\frown					
\cap	HD	HR	HIP	т	T _{ef.lit}
\bigcirc	156846	6441	84856	E	6068
\frown	157089		84905		
\frown	157750		85360		
\frown	158614		85667		
\sim	159222	6538	85810	E	5851
0	159332	6541	85912	F	6204
~	159656		86289		N 19
	160691	6585	86796	F	5780
\frown	161239		86731		
\cap	161612		87116		
\frown	161797		86974	F	5580
\frown	162396	6649	87523		
\sim	164507		88217	F	5590
~	164595		88194	F	5698
-	165185	6748	88694		
	165499	6761	89042	F	5033
\frown	167665	6836	89620	F	6127
\cap	169830	6907	90485	F	6395
\frown	170820	6950	00720	10000	0000
\sim	1710029	6994	90729		incent collow
\sim	172051	6998	91438	F	5700
0	175425	0000	92720	-	0100
-	177565	7222	02959	E	5510
	170040	7201	93030	F	6204
\cap	181321	7291	94045	E	0294
\frown	182572	7330	05447		5566
\frown	102572	1313	93447	F	5500
\cap	197013	7524	93420		GAEE
\sim	187237	1554	97295	E	5812
0	187601	7560	07675	E	6079
~	187023	7560	97767	L	0078
	107923	7503	91101		
\sim	1003/0	7597	98066	E	5546
\frown	109507	7044	90959	F	5750
\frown	109025	7005	98589	E	5646
\cap	190240	7672	99240		5844
\sim	190771	7683	08021	E	5044
\sim	101408	7703	00461	F	5025
~	101407	1103	00606		5025
	191407	7700	99020		
	193307	1100	100412		
\cap	194640		100925		
\cap	195564		101345	F	5614
\cap					
\cap					
0					
0					
-					

-0,51 ---------

log git

3,98

4,41

3,91

4,27

--

3,99

3,50

4,30

4,27

4,30

4,37

--

4,55

4,40

4,49

4,11

4,26

4,44

4,05

3,92

4,57

4,43

4,40

3,50

4,62

--

4,00

[Fe/H]it

0,20

0,16

-0,23

0,30

--

--

0,29

--

0,30

-0,07

--

-0,17

-0,27

0,06

-0,24

0.01

0,22

0,33

0,03

0,06

0,11

0,07

-0,23

0,18

0,06

0,00

0,02

log ε(Li)

1,07

--

--

1,93

< 1,50

--

< 0,98

--

1,33

--

< 0,50

0,96

1,98

2,48

< 0,89

1,29

< 0.56

2,59

< 0.47

2,37

2,22

2,63

2,22

<0,81

2,12

--

2,35

2,30

< 0,13

1,97

Referência

Gonzalez 2010

Gonzalez 2010

Chen 2001

--

Souza 2010

--Takeda 2005

Lebre 1999

Gonzalez 2010

Lambert 2004

Balachandran 1990

Luck & Heiter 2006

--

Luck & Heiter 2006

Randich 1999

Takeda 2005 --

Takeda 2005

Takeda 2005

Takeda 2010

Takeda 2005

Luck & Heiter 2006

Israelian 2004

Souza 2010

Takeda 2005

Lebre 1999

Israelian 2004

Randich 1999

HD	HR	HIP	Т	T _{ef.lit}	log glit	[Fe/H] _{lit}	log ε(Li)	Referência
195838	7855	101507	F	6059	4,12	-0,25	2,30	Balachandran 1990
196050		101806						1
196378	7875	101983						
196755		101916	Е	5750	3,83	0,09	1,64	Takeda et al 2005
196761	7898	101997	E	5465	4,41	-0,22	< 0,39	Luck&Heiter 2006
196800		102018						
196885	7907	101966	Е	6288	4,36	0,21	2,58	Gonzalez 2010
197210		102203						
198802	7994	103077						
199288		103458	F	5727	4,35	-0,82	0,50	Pasquini 1994
199960	8041	103682	E	5924	4,26	0,28	2,48	Takeda 2005
202072		104759						
203608	8181	105858	F	6109	4,34	-0,67	2,39	Chen 2001
205390		106696						- All All All - All All All All All All
206301		107095	F	5682	3,98	-0,04	2,35	Chen 2001
206860	8314	107350	F	5798	4,25	-0,20	2,73	Chen 2001
207043		107620						
207129	8323	107649	F	5910	4,53	-0,01	2,33	Israelian 2004
209100	8387	108870	F	4700	4,68	-0,06	< -0,39	Israelian 2004
210277		109378	Е	5532	4,29	0,19	< 0,30	Santos 2004
210460	8455	109439			and and and a	-	100 100	
210918		109821	Е	5755	4,35	-0,09	< 0,28	Souza 2010
211415	8501	110109	Ε	5890	4,51	-0,17	1,92	Santos 2004
211786		110205	E	5734	4,32	-0,22	1,09	Takeda 2010
211998	8515	110618						
212330		110649	F	5653	4,00	-0,04	1,65	Randich 1999
212708		110843						-
213042		110996					-	
213429	8581	111170						
213575		111274					-	-
214953	8635	112117	F	6069	4,26	-0,09	2,67	Pasquini 1994
215028		112042			-		-	
215942		112595						
216385	8697	112935	E	6229	3,87	-0,19	< 1,25	Takeda 2005
216435	8700	113044	Е	5890	3,92	0,19	2,55	Da Silva & Porto Mello 2000
216436		113113				11		
216437		113137	F	5781	4,10	0,21	1,98	Randich 1999
217014	8729	113357	E	5779	4,30	0,20	1,27	Takeda 2005
217107	8734	113421	Е	5575	4,18	0,31	< 1,26	Takeda 2005
219077	8829	114699						-
219834	8866	115126	F	5760	3,70	< -0,3	< 0,40	Lebre 1999
221343		116122					-	

HD	HR	HIP	T	f ef.lit	log glit	[Fe/H]iit	log ɛ(Li)	Referência
221420	8935	116250	E	5847	4,03	0,33	2,75	Souza 2010
221627		116277						
224022	9046	117880	F	6021	3,30	0,12	2,69	Randich 1999
282962								
282975					the second second			and a second
BD+15 3364	()	88766		10 J			amo <u>s</u> os (A)	encle 1 8610942
BD+23 52/	-	fold milde		10 27.17	the states	aibàn, sia	a standar	A A MARK

0 0

((

((((

APÊNDICE B: METALICIDADES CORRIGIDAS E ESCALAS DE TEMPERATURA EFETIVA

A tabela seguinte apresenta as metalicidades corrigidas, temperaturas fotométricas T_{ef.fot} (K), espectroscópicas a partir de H α T_{ef.H α} (K) e temperaturas médias T_{ef.med} (K) conforme obtidas por Ferreira L. A escala de temperatura T_{ef.med} (K) foi calculada pela média aritmética das escalas fotométrica e espectroscópica cujo erro da determinação é dado por σ (T_{ef.med}) (K) = 50 K, exceto HD 14680, HD 32147, HD 131977, HD 205390, HD 209100 tais que σ (T_{ef.med}) (K) = 90 K.

HD	[Fe/H]	T _{ef.fot} (K)	T _{ef.Hα} (K)	T _{ef.med} (K)
1461	0,22	5785	5803	5794
1581	-0,09	6027	5929	5978
1835	0,18	5798	5846	5822
2151	-0,07	5941	5863	5902
3795	-0,56	5424	5506	5465
3823	-0,41	5979	5802	5891
4307	-0,28	5856	5723	5789
4308	0,29	5738	5727	5733
4391	-0,06	5839	5829	5834
7570	0,17	6059	6122	6090
8291	0,01	5804	5860	5832
9562	0,28	5907	5986	5946
10647	-0,07	6069	6074	6072
10697	0,1	5646	5582	5614
10700	-0,45	5480	5409	5445
11131	-0,02	5833	5873	5853
11964	0,05	5252	5290	5271
12235	0,13	5981	5869	5925
12264	0,03	5817	5810	5813
13421	0,09	6112	5861	5987
13531	0,07	5654	5717	5685
13612	-0,2	6031	5955	5993
13724	0,22	5811	5790	5801
14214	0,07	6013	5902	5958
14680	-0,48	4875	4470	4740
14802	0,08	5925	5915	5920
15335	-0,24	5910	5785	5847
15942	0,39	5861	5890	5875
16160	-0.06	4901	5015	4939

HD	[Fe/H]	T _{ef.fot} (K)	T _{ef.Hα} (K)	T _{ef.med} (K)
16417	0,11	5803	5785	5794
16589	0,09	6206	6091	6148
16673	0,04	6252	6300	6276
17051	0,19	6110	6131	6121
18907	-0,57	5083	5028	5056
19308	0,14	5792	5808	5800
19994	0,22	6092	6157	6124
20010	-0,27	6069	6225	6147
20630	0,11	5772	5800	5786
20766	-0,19	5786	5701	5743
20807	-0,29	5895	5739	5817
21411	-0,09	5555	5516	5536
22049	-0,05	5124	5187	5156
22484	0,03	6071	6076	6073
22879	-0,73	5920	5976	5948
23249	0,28	5052	5268	5160
24040	0,19	5806	5902	5854
24293	-0,08	5748	5690	5719
24616	-0,69	4995	5036	5016
25457	-0,12	6183	5774	5978
25874	0,04	5767	5770	5769
25918	0,22	5656	5897	5777
26913	0,15	5771	5883	5827
26923	-0,03	6008	5938	5973
27685	0,11	5748	5759	5753
27859	0	5988	5810	5899
28099	0,11	5777	5812	5794
28344	0,08	5965	5835	5900
28471	0	5837		5789
28821	4,58	5687	5685	5686
28992	0,12	5907	5903	5905
29859	-0,03	6124	5929	6027
30495	-0,07	5819	5799	5809
30562	0,09	5875	5718	5796
30606	-0,08	6126	6011	6069
32147	0,11	4611	4612	4611
32923	-0,25	5728	5572	5650
33021	-0,16	5833	5823	5828
34721	-0,12	6009	5931	5970
36553	0,24	5980	5966	5973
37986	0,3	5467	5476	5471
39587	0,05	6003	5966	5985

HD	[Fe/H]	T _{ef.fot} (K)	T _{ef.Hα} (K)	T _{ef.med} (K)
41593	0,06	5307	5395	5351
43587	-0,04	5903	5859	5881
43834	0,11	5619	5614	5616
43947	-0,28	5984	5925	5955
44120	0,04	5993	5927	5960
46569	-0,23	6118	6090	6104
50806	0,04	5636	5636	5636
52298	-0,33	6285	6266	6276
53705	-0,21	5832	5821	5827
55720	-0,17	5576	5598	5587
57853	0,32	6076	5977	6026
59984	-0,73	5989	5866	5927
61033	0,05	5564	5650	5607
62644	-0,06	5416	5357	5387
63077	-0,75	5780	5761	5771
64114	0,16	5665	5653	5659
65907	-0,25	5986	5858	5922
69809	0,2	5785	5837	5811
69830	-0,07	5444	5345	5394
71334	-0,11	5767	5648	5707
73350	0,11	5838	5780	5809
74698	0,15	5798	5892	5845
76151	0,1	5797	5797	5797
76932	-0,75	5972	6025	5998
84117	-0,14	6091	6188	6140
85380	0,15	6087	6096	6091
88084	0,07	5861	5820	5841
88218	-0,18	5843	5806	5825
94340	0,13	5890	5847	5869
98649	0	5796	5775	5785
102365	-0,33	5692	5644	5668
103026	-0,21	6059	5934	5997
104304	0,24	5529	5510	5520
105590	0	5742	5760	5751
105901	0	5860	5850	5855
108309	0,07	5735	5697	5716
111199	-0,24	6068	5963	6016
111398	0,07	5775	5739	5757
112164	0,24	5927	5954	5940
114260	-0,04	5538	5514	5526
114613	0,19	5690	5732	5711
114710	-0.06	6029	5939	5984

HD	[Fe/H]	T _{ef.fot} (K)	T _{ef.Ha} (K)	T _{ef.med} (K)
115382	-0,08	5799	5787	5793
115383			5952	5998
115617	0,01	5640	5562	5601
117176	-0,12	5540	5493	5517
117939	-0,06	5761	5800	5781
118598	-0,02	5805	5730	5767
119550	-0,01	5832	5777	5805
120066	0,09	5888	5848	5868
120136	0,26	6362	6332	6347
120237	4,4	6156	6142	6149
121370	0,26	6026	6000	6013
121384	-0,44	5245	5279	5262
122862	-0,31	5974	5926	5950
124553	0,18	6012	5951	5982
124570	0,05	6155	6070	6113
124850	-0,19	6203	6081	6142
125184	0,22	5606	5546	5576
126868	-0,03	5651	5565	5608
128620	0,22	5676	5813	5745
128621	0,15	5095	5155	5125
130948	-0,03	5985	5981	5983
131117	0,07	5962	5946	5954
131156	0,06	5418	5483	5450
131923	0,1	5655	5692	5673
131977	0,12	4585	4620	4597
134664	0,14	5820	5827	5823
136202	0,03	6173	6083	6128
136352	-0,35	5731	5631	5681
137510	0,31	5946	5872	5909
138573	-0,01	5771	5740	5756
140538	0	5707	5659	5683
140690	0,06	5796	5785	5791
141004	-0,1	5925	5869	5897
142072	0,2	5799	5787	5793
143337	-0,18	5767	5760	5763
143761	-0,26	5818	5775	5797
145825	0,06	5861	5825	5843
146233	-0,11	5789	5665	5727
147513	0,02	5872	5840	5856
148577	0,01	5765	5736	5751
150248	-0,01	5781	5752	5766
152391	-0,02	5492	5475	5484

HD	[Fe/H]	T _{ef.fot} (K)	T _{ef.Hα} (K)	T _{ef.med} (K)
153458	0,18	5867	5820	5844
154417	-0,01	6019	5995	6007
154931	-0,15	5864	5829	5847
154962	-0,06	5619	5672	5646
155114	-0,03	5845	5810	5828
156274	-0,34	5278	5284	5281
156846	0,17	6050	6094	6072
157089	-0,45	5914	5852	5883
157750	0,21	5862	5845	5854
158614	0,07	5627	5573	5600
159222	0,15	5871	5860	5866
159332	-0,28	6211	6159	6185
159656	0,08	5856	5850	5853
160691	0,25	5734	5678	5706
161239	0,24	5789	5827	5808
161612	0,14	5572	5587	5580
161797	0,33	5559	5686	5623
162396	-0,41	6102	6001	6051
164507	0,07	5524	5450	5487
164595	-0,06	5817	5767	5792
165185	-0,02	5929	5876	5902
165499	0	5987	5934	5960
167665		-		
169830	-0,07			
170829		6167	6184	6175
171990	-0,13	5962	5734	5848
172051	-0,29	5654	5615	5634
175425	0,08	5755	5572	5664
177565	0,11	5661	5673	5667
179949	0,16	6197	6134	6165
181321	-0,04	5870	5845	5858
182572	0,35	5576	5587	5582
182619	0,05	5617	5761	5689
187013	-0,09	6361	6249	6305
187237	0,12	5836	5783	5809
187691	-0,03	6096	5924	6010
187923	-0,23	5738	5555	5647
188376	0	5496	5436	5466
189567	-0,22	5755	5697	5726
189625	0,23	5874	5810	5842
190248	0,42	5617	5674	5645
190406	4.3	5958	5907	5933

HD	[Fe/H]	T _{ef.fot} (K)	T _{ef.Hα} (K)	T _{ef.med} (K)
190771	0,18	5855	5820	5838
191408	-0,47	4992	5146	5069
191487	-0,01	5846	5820	5833
193307	-0,25	6025	5976	6001
194640	-0,02	5576	5543	5559
195564	0,01	5671	5598	5635
195838	-0,31	6124	5954	6039
196050	0,19	5833	5826	5830
196378	-0,2	6060	6030	6045
196755	-0,015	5664	5573	5619
196761	-0,17	5529	5544	5537
196800	-0,06	5899	5846	5873
196885	0,13	6143	6067	6105
197210	0,07	5629	5592	5611
198802	0,02	5776	5738	5757
199288	-0,54	5823	5871	5847
199960	0,27	5940	5945	5943
202072	-0,18	5767	5740	5754
203608	-0,7	6123	6010	6066
205390	-0,24	5016	4946	4993
206301	-0,12	5698	5556	5627
206860	4,6	6000	5964	5982
207043	0	5785	5760	5773
207129	-0,05	5922	5700	5811
209100	0,07	4636	4852	4708
210277	0,25	5531	5524	5527
210460	-0,26	5557	5422	5490
210918	-0,05	5771	5802	5786
211415	-0,18	5863	5864	5863
211786	-0,07	5809	5810	5809
211998	-1	5406	5121	5264
212330	-0,07	5708	5535	5621
212708	0,23	5623	5530	5576
213042	0,2	4550	4748	4616
213429	-0,13	6074	5986	6030
213575	-0,07	5734	5641	5688
214953	0,14	6067	6114	6091
215028	-0,36	5647	5889	5768
215942	-0,16	5742	5758	5750
216385	-0,21	6299	6194	6246
216435	0,21	5946	5917	5932
216436	-0,02	5748	5760	5754

HD	[Fe/H]	T _{ef.fot} (K)	T _{ef.Hα} (K)	T _{ef.med} (K)
216437	0,11	5715	5802	5758
217014	0,27	5837	5734	5785
217107	0,34	5623	5632	5627
219077	-0,13	5332	5367	5349
219834	0,29	5478	5292	5385
221343	0,02	5812	5710	5761
221420	0,27	5785	5745	5765
221627	0,19	5803	5815	5809
224022	0,05	6040	5964	6002
282962			5903	5903
282975			5575	5575
BD+15 3364	0,04	5791	5777	5784
BD+23 527			5773	5773

APÊNDICE C: PARÂMETROS EVOLUTIVOS

()

~

-

(

Apresentamos os parâmetros evolutivos e a classificação em anãs ou subgigantes conforme descrito em Ferreira (2010). Os valores de massa, raio e luminosidades são relativos ao Sol. As idades e respectivos erros estão em unidades de Gano.

HD	Tipo	M/Msol	σ(M/M _{Sol})	Idade	σ(idade)	log g	R/R _{Sol}	log L/Lsol	Σ log(L/Lsol)
1461	anã	1,09	0,02	3,2	1,4	4,39	1,09	0,0779	0,0175
1581	anã	1,04	0,03	3,2	1,5	4,41	1,04	0,0911	0,0055
1835	anã	1,10	0,01			4,49	0,97	-0,0128	0,0163
2151	SG	1,19	0,05	5,7	0,2	4,00	1,78	0,5380	0,0044
3795	SG	0,95	0,02	10,9	0,5	3,90	1,79	0,4100	0,0187
3823	SG	0,93	0,01	10,0	0,5	4,05	1,48	0,3760	0,0128
4307	SG	1,01	0,02	8,4	0,5	3,96	1,72	0,4730	0,0282
4308	anã	0,86	0,02	10,8	1,8	4,36	1,00	-0,0010	0,0110
4391	anã	1,03	0,01			4,50	0,93	-0,0477	0,0101
7570	anã	1,19	0,02	2,3	0,7	4,32	1,24	0,2760	0,0087
8291	anã	1,05	0,01			4,45	1,00	0,0157	0,0585
9562	anã	1,36	0,02	3,4	0,2	4,05	1,80	0,5610	0,0186
10647	anã	1,08	0,03	2,9	0,9	4,36	1,12	0,1800	0,0099
10697	SG	1,13	0,01	7,2	0,4	3,97	1,80	0,4580	0,0232
10700	anã	0,75	0,05	13,5	3,6	4,51	0,78	-0,3150	0,0057
11131	anã	1,05	0,02			4,51	0,93	-0,0421	0,0853
11964	SG	1,15	0,03	7,0	0,8	3,85	2,07	0,4720	0,0272
12235	anã	1,32	0,02	4,4	0,7	4,04	1,79	0,5470	0,0258
12264	anã	1,05	0,03			4,44	1,00	0,0130	0,0441
13421	SG	1,48	0,03	3,1	0,2	3,74	2,67	0,9150	0,0313
13531	anã						0,83	-0,1900	0,0204
13612	SG	1,43	0,07	2,8	0,3	3,66	2,88	0,9810	0,0645
13724	anã	1,12	0,01			4,44	1,05	0,0455	0,0314
14214	anã	1,20	0,04	5,0	0,9	4,09	1,62	0,4710	0,0198
14680	anã	0,75	0,15			4,44	0,86	-0,4790	0,0359
14802	anã	1,28	0,01	5,2	1,2	4,05	1,74	0,5240	0,0159
15335	SG	1,07	0,01	7,0	0,4	3,93	1,83	0,5430	0,0222
15942	anã	1,16	0,02	2,7	0,8	4,33	1,21	0,1940	0,0357
16160	anã	0,80	0,05			4,63	0,71	-0,5700	0,0175
16417	SG	1,17	0,04	6,5	0,4	4,07	1,63	0,4290	0,0144
16589	anã	1,48	0,03	3,3	0,6	3,93	2,14	0,7700	0,0317
16673	anã	1,22	0,01			4,40	1,13	0,2510	0,0153
17051	anã	1,23	0,01			4,39	1,15	0,2200	0,0083
18907	SG	0,97	0,05	9,4	2,2	3,56	2,67	0,6220	0,0205

HD	Tipo	M/M _{Sol}	σ(M/M _{sol})	Idade	σ(idade)	log g	R/R _{Sol}	log L/Lsol	Σ log(L/L _{sol})
19308	anã	1,12	0,02	5,0	0,6	4,24	1,31	0,2420	0,0314
19994	anã	1,36	0,01	3,0	0,4	4,08	1,73	0,5790	0,0146
20010	SG	1,23	0,05	4,8	0,2	3,94	1,95	0,6850	0,0083
20630	anã						0,90	-0,0855	0,0160
20766	anã	0,93	0,03	2,8	2,5	4,50	0,89	-0,1150	0,0067
20807	anã	0,90	0,03	8,0	1,8	4,40	0,98	-0,0073	0,0065
21411	anã	0,92	0,03			4,53	0,85	-0,2120	0,0268
22049	anã	0,84	0,01			4,63	0,72	-0,4790	0,0076
22484	anã	1,23	0,01	3,7	0,3	4,13	1,55	0,4680	0,0095
22879	anã	0,85	0,02	8,8	1,8	4,39	0,96	0,0172	0,0182
23249	SG	1,24	0,01	5,6	0,2	3,82	2,23	0,4980	0,0099
24040	anã	1,15	0,02	4,3	0,5	4,25	1,31	0,2570	0,0409
24293	anã	0,94	0,02	8,8	1,4	4,34	1,07	0,0443	0,0314
24616	SG	0,95	0,07	9,3	3,3	3,21	3,93	0,9430	0,0440
25457	anã	1,07	0,02	6,3	0,9	4,18	1,37	0,3310	0,0127
25874	anã	1,02	0,02	4,8	1,2	4,38	1,07	0,0525	0,0121
25918	anã						0,79	-0,2010	0,0262
26913	anã						0,77	-0,2120	0,0211
26923	anã	1,07	0,02			4,47	0,98	0,0389	0,0198
27685	anã	1,05	0,02		-	4,51	0,92	-0,0763	0,0441
27859	anã	1,04	0,02	5,6	1,3	4,31	1,17	0,1700	0,0525
28099	anã	1,08	0,01			4,44	1,02	0,0247	0,0605
28344	anã	1,09	0,02	3,4	1,3	4,36	1,13	0,1390	0,0433
28471	anã	1,00	0,02	5,5	1,7	4,39	1,05	0,0423	0,0239
28821	anã	0,93	0,06	9,3	1,6	4,34	1,06	0,0261	0,0322
28992	anã	1,10	0,02			4,48	0,99	0,0282	0,0473
29859	SG	1,35	0,03	3,5	0,2	3,79	2,41	0,8370	0,0305
30495	anã	1,00	0,03	2,8	1,9	4,46	0,97	-0,0219	0,0098
30562	SG	1,19	0,06	6,2	0,4	4,04	1,70	0,4650	0,0207
30606	SG	1,34	0,03	3,5	0,1	3,79	2,40	0,8430	0,0269
32147	SG	0,80	0,15			4,43	0,89	-0,4920	0,0241
32923	SG	0,96	0,01	10,6	0,4	3,99	1,61	0,3750	0,0134
33021	SG	1,02	0,02	8,4	0,6	4,08	1,50	0,3680	0,0203
34721	anã	1,06	0,01	6,4	0,9	4,18	1,36	0,3250	0,0166
36553	SG	1,60	0,02	2,4	0,2	3,67	3,00	1,0100	0,0214
37986	anã	1,00	0,03	4,7	2,3	4,43	0,99	-0,1040	0,0226
39587	anã	1,11	0,01			4,50	0,97	0,0335	0,0085
41593	anā						0,77	-0,3590	0,0133
43587	anã	1,02	0,01	6,8	1,0	4,25	1,23	0,2120	0,0132
43834	anã	1,00	0,03	3,4	1,9	4,46	0,97	-0,0789	0,0058
43947	anã	0,94	0,02	8,0	1,3	4,30	1,12	0,1520	0,0214
44120	anã	1,20	0,04	5,0	0,9	4,10	1,60	0,4610	0,0159
HD	Tipo	M/M _{Sol}	C						
--------	------	--------------------	------------						
46569	SG	1,27							
50806	SG	1,05							
52298	anã	1,04							
53705	anã	0,93	100						
55720	anã	0,91	STR.						
57853	anã	1,24	1000						
59984	SG	0,97							
61033	anã		12 Million						
62644	SG	1,34							
63077	SG	0,85							
64114	anã								
65907	anã	0,95							
69809	anã	1,12							
69830	anã	0,87	-						
71334	anã	0,94							
73350	anã	1,08							
74698	anã	1,12							
76151	anã	1,08	100						
76932	anã	0,88							
84117	anã	1,08							
85380	anã	1,39							
88084	anã	1.08							
88218	SG	1.03							
94340	anã	1.18							
98649	anã	1.01							
102365	anã	0.85							
103026	SG	1 15							
104304	anã	1.00							
105500	ana	1.03							
105901	ana	1,03							
108300	SG	1.04							
111100	SG	1.47							
111308	anã	1.03							
112164	ană	1,05							
112104	ana	0,00							
114200	ana	1.27							
114013	SG	1,27							
114/10	ana	1,05							
115382	ana	0,97							
115383	ana	1,20							
11561/	ana	0,94							
11/1/6	SG	1,07							
11/939	ana	0,99							

HD	Tipo	M/M _{Sol}	o(M/Msoi)	Idade	o(idade)	log g	R/Rsol	log L/Lsol	Σ log(L/L _{sol})
569	SG	1,27	0,02	3,8	0,1	3,81	2,30	0,8180	0,0154
806	SG	1,05	0,02	8,9	0,5	4,06	1,56	0,3420	0,0146
298	anã	1,04	0,02	3,8	0,8	4,32	1,15	0,2620	0,0165
3705	anã	0,93	0,02	9,0	1,1	4,29	1,13	0,1220	0,0152
5720	anã	0,91	0,03	5,0	3,0	4,50	0,88	-0,1720	0,0147
7853	anã	1,24	0,02	2,5	0,4	4,24	1,38	0,3550	0,0261
9984	SG	0,97	0,02	8,5	0,4	3,95	1,71	0,5100	0,0242
1033	anã						0,85	-0,1900	0,0166
2644	SG	1,34	0,03	3,7	0,2	3,72	2,61	0,7120	0,0177
3077	SG	0,85	0,05			4,21	1,19	0,1480	0,0080
4114	anã						0,88	-0,1460	0,0259
5907	anã	0,95	0,02	7,1	1,4	4,34	1,07	0,1000	0,0079
9809	anã	1,12	0,02	4,4	0,6	4,29	1,23	0,1890	0,0473
9830	anã	0,87	0,03	9,0	3,0	4,46	0,89	-0,2180	0,0100
1334	anã	0,94	0,02	7,6	1,8	4,39	1,01	-0,0124	0,0287
3350	anã	1,08	0,01			4,49	0,96	-0,0239	0,0215
1698	anã	1,12	0,01	4,4	0,5	4,28	1,25	0,2120	0,0274
6151	anã	1,08	0,01			4,48	0,98	-0,0123	0,0132
5932	anã	0,88	0,02	10,4	1	4,18	1,24	0,2510	0,0178
4117	anã	1,08	0,02	3,7	0,8	4,28	1,22	0,2790	0,0095
5380	anã	1,39	0,04	3,2	0,2	4,02	1,88	0,6380	0,0333
3084	anã	1,08	0,01		-	4,47	0,99	0,0095	0,0250
3218	SG	1,03	0,01	8,0	0,5	4,01	1,64	0,4430	0,0175
4340	anã	1,18	0,02	5,0	1	4,18	1,44	0,3440	0,0349
3649	anã	1,01	0,03	3,2	2,3	4,44	0,99	-0,0107	0,0366
2365	anã	0,85	0,04	11,4	2,1	4,41	0,94	-0,0889	0,0069
3026	SG	1,15	0,05	6,0	0,8	3,98	1,79	0,5680	0,0230
4304	anã	1,00	0,03	5,8	1,9	4,39	1,04	-0,0452	0,0100
5590	anã	1,03	0,05		-	4,35	1,11	0,0807	0,2420
5901	anã	1,03	0,02	3,1	2,1	4,42	1,02	0,0354	0,0429
8309	SG	1,04	0,01	8,4	0,6	4,14	1,42	0,2840	0,0168
1199	SG	1,47	0,04	2,6	0,2	3,62	3,08	1,0500	0,0433
1398	anā	1,03	0,02	7,8	1,1	4,22	1,28	0,2070	0,0298
2164	anā	1,46	0,09	3,5	0,6	3,88	2,27	0,7590	0,0262
4260	anã	0,90	0,03	8,1	2,9	4,43	0,94	-0,1270	0,0205
4613	SG	1,27	0,01	5,0	0,2	3,89	2,08	0,6150	0,0145
4710	anā	1,05	0,02	3,7	1,4	4,36	1,10	0,1450	0,0062
5382	anā	0,97	0,02	6,5	3	4,38	1,03	0,0316	0,0597
5383	anā	1,20	0,01	3,5	0,4	4,22	1,38	0,3460	0,0141
5617	anā	0,94	0,03	6,0	2	4,44	0,96	-0,0928	0,0068
71/6	SG	1,07	0,01	8,0	0,5	3,90	1,90	0,4780	0,0125
7939	ana	0,99	0,02	3,4	2,3	4,45	0,97	-0,0279	0,0219

HD	Tipo	M/M _{Sol}	$\sigma(M/M_{Sol})$	Idade	σ(idade)	log g	R/R _{sol}	log L/Lsol	$\Sigma \log(L/L_{Sol})$
118598	anã	0,99	0,02	5,6	2,2	4,39	1,03	0,0258	0,0410
119550	SG	1,27	0,06	4,1	0,6	3,82	2,27	0,7200	0,0477
120066	anã	1,15	0,04	5,6	1	4,15	1,47	0,3610	0,0218
120136	anã	1,35	0,02	1,4	0,4	4,24	1,45	0,4840	0,0098
120237	anã	1,21	0,01			4,43	1,09	0,1850	0,0237
121370	SG	1,61	0,08	2,5	0,3	3,75	2,76	0,9500	0,0077
121384	SG	1,13	0,03	5,0	0,7	3,58	2,83	0,7410	0,0229
122862	SG	1,07	0,02	6,7	0,5	4,08	1,54	0,4230	0,0143
124553	anã	1,38	0,03	3,5	0,2	4,02	1,88	0,6070	0,0377
124570	anã	1,38	0,08	3,5	0,6	3,92	2,10	0,7400	0,0213
124850	SG	1,38	0,02	3,0	0,1	3,73	2,61	0,9390	0,0162
125184	SG	1,12	0,09	7,7	0,5	4,02	1,68	0,3880	0,0283
126868	SG	1,85	0,04	1,6	0,1	3,39	4,48	1,2500	0,0355
128620	anã	1,11	0,01	5,2	0,6	4,27	1,26	0,1930	0,0040
128621	anã	0,85	0,05	13,1	3,1	4,43	0,92	-0,2830	0,0077
130948	anã	1,06	0,03	1,9	1,3	4,43	1,02	0,0784	0,0127
131117	anã	1,27	0,07	4,5	0,6	3,98	1,88	0,6000	0,0273
131156	anã	0,97	0,01			4,53	0,87	-0,2110	0,0066
131923	anã	1,03	0,02	8,5	1,2	4,23	1,27	0,1780	0,0184
131977	anã	0,75	0,10			4,54	0,76	-0,6360	0,0250
134664	anã	1,00	0,11			4,42	1,00	0,0139	0,0385
136202	anã	1,38	0,01	3,6	0,6	3,99	1,94	0,6770	0,0174
136352	anã	0,85	0,04	13,8	1,7	4,32	1,04	0,0008	0,0107
137510	anã	1,38	0,08	3,8	0,8	3,95	2,04	0,6560	0,0337
138573	anã	0,99	0,02	5,8	1,8	4,39	1,03	0,0215	0,0227
140538	anã	0,98	0,03	3,6	2,1	4,46	0,95	-0,0765	0,0119
140690	anã	1,03	0,02	4,5	2	4,38	1,07	0,0610	0,0493
141004	anã	1,03	0,02	7,4	0,8	4,18	1,34	0,2920	0,0086
142072	anã	1,11	0,02			4,45	1,02	0,0236	0,0354
143337	anã	0,91	0,02	9,1	2	4,34	1,05	0,0401	0,0505
143761	SG	0,93	0,01	10,8	0,8	4,15	1,33	0,2530	0,0113
145825	anã	1,07	0,01			4,49	0,96	-0,0174	0,0183
146233	anã	0,94	0,02	8,2	1,4	4,35	1,05	0,0293	0,0114
147513	anã	1,06	0,01			4,48	0,97	-0,0067	0,0101
148577	anã	1,00	0,02	8,8	0,9	4,20	1,30	0,2190	0,0537
150248	anã	0,99	0,11	5,5	1,9	4,39	1,03	0,0239	0,0247
152391	anã	0,94	0,01			4,56	0,83	-0,2500	0,0137
153458	anã	1,12	0,02			4,48	0,99	0,0125	0,0393
154417	anã	1,08	0,02	2,6	1,4	4,39	1,08	0,1310	0,0158
154931	SG	1,09	0,03	6,7	0,6	3,98	1,74	0,5020	0,0453
154962	SG	1,10	0,02	7,1	0,7	3,93	1,85	0,4950	0,0271
155114	anã	1,00	0,03	3,5	2,2	4,43	0,99	0,0072	0,0298

-

HD	Tipo	M/M _{Sol}	σ(M/M _{Sol})	Idade	σ(idade)	log g	R/R _{Sol}	log L/Lsol	Σ log(L/Lsei)
156274	anã	0,80	0,10			4,50	0,82	-0,3240	0,0121
156846	anã	1,43	0,03	3,4	0,5	3,98	2,01	0,6900	0,0389
157089	SG	0,89	0,02	11,1	0,8	4,09	1,39	0,3140	0,0314
157750	anã	1,12	0,02			4,50	0,97	-0,0005	0,0549
158614	SG	1,00	0,02	10,1	0,7	4,12	1,42	0,2500	0,0205
159222	anã	1,13	0,01			4,44	1,04	0,0627	0,0120
159332	SG	1,25	0,05	4,2	0,2	3,87	2,13	0,7730	0,0229
159656	anã	1,07	0,02	3,8	1,1	4,37	1,11	0,1100	0,0270
160691	anã	1,14	0,01	6,0	1,1	4,21	1,37	0,2530	0,0111
161239	SG	1,42	0,02	3,7	0,1	3,79	2,48	0,7990	0,0211
161612	anã	1,00	0,03	3,8	2,5	4,44	0,98	-0,0773	0,0268
161797	SG	1,21	0,07	5,8	1,1	4,04	1,71	0,4200	0,0061
162396	SG	1,00	0,02	7,6	0,4	4,04	1,56	0,4650	0,0253
164507	SG	1,39	0,04	3,6	0,2	3,73	2,62	0,7480	0,0288
164595	anã	0,98	0,02	5,5	2	4,40	1,02	0,0213	0,0183
165185	anã	1,07	0,01			4,47	0,98	0,0227	0,0120
165499	anã	1,07	0,02	5,1	1	4,28	1,22	0,2260	0,0108
167665	TOPPA-I	-							
169830	anã	1,33	0,02	4,1	0,3	4,00	1,88	0,6650	0,0285
170829			-	-				1	
171990	SG	1,18	0,02	5,4	0,2	3,88	2,03	0,6360	0,0207
172051	anã	0,85	0,03	7,0	2,9	4,49	0,86	-0,1740	0,0105
175425	SG	1,03	0,02	8,8	0,8	4,18	1,34	0,2210	0,0366
177565	anã	1,02	0,03	3,0	2	4,46	0,98	-0,0544	0,0142
179949	anã	1,22	0,02	1,1	0,8	4,36	1,20	0,2690	0,0185
181321	anā	1,04	0,01			4,50	0,94	-0,0316	0,0230
182572	anā	1,14	0,01	7,0	1,5	4,19	1,41	0,2360	0,0109
182619	anã						0,88	-0,1430	0,0275
187013	anā	1,24	0,01	3,5	0,4	4,13	1,56	0,5380	0,0098
187237	ana	1,09	0,01			4,47	0,99	0,0037	0,0160
187691	ana	1,16	0,02	5,5	0,5	4,12	1,54	0,4400	0,0131
187923	SG	0,95	0,01	10,9	0,5	4,01	1,58	0,3570	0,0192
188376	SG	1,46	0,03	3,1	0,2	3,67	2,90	0,8270	0,0199
189567	ana	0,90	0,03	9,0	1,8	4,36	1,02	0,0001	0,0118
189625	ana	1,14	0,01			4,45	1,04	0,0562	0,0278
190248	ana	1,08	0,01	5,0	1	4,33	1,16	0,0894	0,0055
190406	ana	1,09	0,03	2,0	1,3	4,42	1,05	0,0917	0,0120
190//1	ana	1,11	0,02			4,49	0,98	0,0029	0,0094
191408	ana	0,70	0,05			4,60	0,68	-0,5570	0,0093
19148/	ana	1,02	0,03	3,5	2,4	4,42	1,01	0,0272	0,0565
193307	SG	1,04	0,02	7,1	0,6	4,08	1,52	0,4310	0,0245
194640	ana	0,93	0,03	6,0	2	4,45	0,94	-0,1220	0,0143

HD	Tipo	M/M _{Sol}	$\sigma(M/M_{Sol})$	Idade	σ(idade)	log g	R/R _{Sol}	log L/L _{Sol}	Σ log(L/Lsol)
195564	SG	1,07	0,04	7,9	0,4	3,97	1,75	0,4440	0,0185
195838	SG	1,05	0,02	6,6	0,5	4,02	1,63	0,5000	0,0269
196050	anã	1,15	0,02	4,5	0,4	4,23	1,34	0,2670	0,0365
196378	SG	1,20	0,05	5,3	0,2	3,95	1,90	0,6350	0,0154
196755	SG	1,45	0,05	3,1	0,6	3,67	2,88	0,8680	0,0366
196761	anã	0,92	0,01			4,58	0,80	-0,2650	0,0114
196800	anã	1,04	0,02	7,3	0,7	4,17	1,36	0,2980	0,0326
196885	anã	1,24	0,01	3,0	0,6	4,22	1,40	0,3890	0,0229
197210	anã	1,00	0,01			4,52	0,90	-0,1440	0,0311
198802	SG	1,26	0,03	4,5	0,5	3,83	2,22	0,6850	0,0382
199288	anã	0,88	0,02	8,1	1,9	4,41	0,96	-0,0157	0,0155
199960	anã	1,19	0,01	3,3	0,5	4,27	1,30	0,2780	0,0230
202072	anã	0,90	0,02	9,5	1,7	4,33	1,06	0,0436	0,0433
203608	anã	0,90	0,02	8,1	1,1	4,31	1,09	0,1550	0,0054
205390	anã	0,75	0,10			4,54	0,75	-0,4990	0,0193
206301	SG	1,47	0,04	2,9	0,1	3,65	2,97	0,9000	0,0259
206860	anã	1,04	0,01			4,44	1,00	0,0596	0,0139
207043	anã	1,03	0,01			4,48	0,95	-0,0457	0,0262
207129	anã	0,98	0,02	6,6	1,3	4,34	1,09	0,0855	0,0109
209100	anã	1,08	0,01			4,62	0,99	-0,6770	0,0211
210277	anã	1,00	0,03	6,6	1,9	4,36	1,08	-0,0111	0,0151
210460	SG	1,53	0,04	2,4	0,1	3,55	3,38	0,9690	0,0316
210918	anã	0,98	0,02	7,9	1,2	4,29	1,15	0,1250	0,0140
211415	anã	0,94	0,02	6,4	1,7	4,38	1,02	0,0452	0,0090
211786	anã	1,00	0,03			4,46	0,96	-0,0228	0,0350
211998	SG							0,7990	0,0164
212330	SG	1,06	0,01	8,2	0,4	3,96	1,75	0,4390	0,0116
212708	anã	1,04	0,03	6,5	1,3	4,32	1,15	0,0607	0,0295
213042	anã	0,80	0,10			4,52	0,81	-0,5790	0,0272
213429	anã	1,05	0,02	5,6	1,2	4,25	1,25	0,2660	0,0397
213575	SG	0,98	0,01	10,0	0,7	4,12	1,40	0,2660	0,0263
214953	anã	1,19	0,02	2,0	0,9	4,34	1,21	0,2570	0,0150
215028	SG	0,90	0,03	12,6	1	4,17	1,27	0,2030	0,0414
215942									
216385	anã	1,25	0,06	4,3	0,2	3,96	1,91	0,6950	0,0177
216435	anã	1,33	0,02	4,3	0,8	4,04	1,79	0,5500	0,0210
216436	ana	0,98	0,02	7,0	1,9	4,34	1,09	0,0692	0,0509
216437	SG	1,02	0,01	8,8	0,6	4,07	1,53	0,3600	0,0137
217014	anā	1,10	0,02	3,8	0,9	4,35	1,15	0,1200	0,0106
217107	anã	1,07	0,01	5,1	1,8	4,35	1,13	0,0613	0,0135
219077	SG	1,05	0,02	8,6	0,4	3,86	1,96	0,4500	0,0163
219834	SG	1,22	0,08	6,8	2	3,87	2,09	0,5170	0,0898

HD	Tipo	M/Msol	σ(M/M _{Sol})	Idade	σ(idade)	log g	R/R _{Sol}	log L/Lsol	Σ log(L/Lsoi)
221343	anã	0,99	0,11	5,6	2,6	4,39	1,03	0,0203	0,0473
221420	SG	1,33	0,06	4,5	0,5	3,94	2,02	0,6040	0,0141
221627	SG	1,29	0,08	4,7	0,7	3,98	1,90	0,5680	0,0330
224022	anã	1,19	0,01	4,2	0,4	4,17	1,46	0,3920	0,0194
282962	anã	1,06	0,01	(and a set	10 - 10	4,54	0,91	-0,0477	0,0801
282975	anã	0,93	0,02	10	mas	4,25	1,19	0,0852	0,0801
BD+153364	anã	1,03	0,03	3,3	1,9	4,42	1,02	0,0162	0,0585
BD+23527	anã	1,03	0,02			4,50	0,94	-0,0590	0,0801

U 0 U U

APÊNDICE D: FLUXOS ABSOLUTOS, CROMOSFÉRICOS E FOTOSFÉRICOS

A tabela seguinte apresenta o fluxo absoluto $F_{abs.med}$ (cromosférico + fotosférico) com o respectivo erros $\sigma(F_{abs.med})$, o fluxo fotosférico F_{fot} e fluxo absoluto cromosférico total F_{crom} conforme obtidos por Ferreira (2010). No presente trabalho apenas o fluxo absoluto cromosférico total é relevante para nossa análise enquanto medida da atividade cromosférica/magnética estelar.

HD	Fabs.med	$\sigma(F_{abs.med})$	F _{fot}	Fcrom
1461	4,89146E6	7,23789E4	4,24299E6	6,48466E5
1581	4,85429E6	5,34673E3	4,5925E6	2,61791E5
1835	5,14935E6	9,30126E4	4,29688E6	8,52466E5
2151	4,4421E6	2,2136E4	4,44962E6	0
3795	3,72078E6	5,56445E4	3,57945E6	1,4133E5
3823	4,56579E6	6,5002E4	4,42843E6	1,37363E5
4307	4,37931E6	5,68612E4	4,23346E6	1,45849E5
4308	4,53863E6	6,23499E4	4,12228E6	4,16346E5
4391	4,88395E6	8,04314E4	4,32033E6	5,63622E5
7570	5,21955E6	7,51851E4	4,79989E6	4,19664E5
8291	5,06876E6	4,8313E4	4,31599E6	7,52766E5
9562	5,07818E6	7,31102E4	4,53382E6	5,44359E5
10647	5,19136E6	9,48056E4	4,76559E6	4,25777E5
10697	4,18962E6	6,4981E4	3,885E6	3,04613E5
10700	3,91052E6	1,17502E3	3,53667E6	3,73852E5
11131	5,55771E6	2,2428E4	4,35658E6	1,20113E6
11964	3,5461E6	3,14614E4	3,16546E6	3,80643E5
12235	4,80538E6	1,0621E4	4,49381E6	3,11565E5
12264	5,01922E6	8,15239E4	4,28005E6	7,39168E5
13421	4,83924E6	2,59852E4	4,60898E6	2,30257E5
13531	5,19592E6	4,93797E4	4,02854E6	1,16737E6
13612	4,85569E6	7,82408E4	4,62116E6	2,34527E5
13724	4,9254E6	6,43568E4	4,25514E6	6,70259E5
14214	5,05111E6	7,50014E4	4,55502E6	4,96085E5
14680	2,5728E6	1,4424E4	1,95052E6	6,22275E5
14802	5,07621E6	8,94744E4	4,48427E6	5,9194E5
15335	4,49408E6	1,25641E5	4,34554E6	1,48535E5
15942	5,02573E6	5,58864E4	4,39917E6	6,26561E5
16160	3,16184E6	2,37849E4	2,42138E6	7,40463E5
16417	4,57551E6	8,71206E4	4,2428E6	3,3271E5
16589	5,96058E6	1,30695E5	4,90437E6	1,0562E6

HD	Fabs.med	$\sigma(F_{abs.med})$	F _{fot}	Fcrom
16673	5,95146E6	9,50135E4	5,12947E6	8,21991E5
17051	5,54898E6	7,84567E4	4,85425E6	6,94732E5
18907	2,68315E6	3,3675E4	2,6881E6	0
19308	4,65986E6	5,88735E4	4,25397E6	4,05886E5
19994	5,07287E6	1,0458E5	4,8611E6	2,11772E5
20010	5,10232E6	5,70759E4	4,90223E6	2,00095E5
20630	5,09614E6	2,49615E5	4,22674E6	8,69399E5
20766	4,7189E6	2,12387E5	4,14364E6	5,75257E5
20807	4,53028E6	6,9457E4	4,28741E6	2,42871E5
21411	4,35727E6	5,31415E4	3,72546E6	6,31811E5
22049	3,88786E6	3,22319E4	2,91264E6	9,75221E5
22484	4,84002E6	1,13731E5	4,76896E6	7,10589E4
22879	4,73747E6	8,92211E4	4,53692E6	2,00545E5
23249	3,44944E6	2,82318E4	2,92175E6	5,27692E5
24040	5,11738E6	7,40469E4	4,35821E6	7,59164E5
24293	4,34847E6	5,88334E4	4,09533E6	2,53139E5
24616	2,60253E6	4,08006E4	2,59665E6	5,88297E3
25457	5,00904E6	8,39646E4	4,59362E6	4,15426E5
25874	4,56592E6	9,983E3	4,19277E6	3,73146E5
25918	4,81593E6	6,85557E4	4,2089E6	6,07035E5
26913	5,24062E6	7,42757E4	4,30644E6	9,34172E5
26923	5,34578E6	4,31713E5	4,58345E6	7,62329E5
27685	4,92604E6	6,53997E4	4,163E6	7,63049E5
27859	5,44907E6	4,78686E4	4,44402E6	1,00505E6
28099	5,02911E6	8,09919E4	4,24299E6	7,86115E5
28344	5,33343E6	1,05328E5	4,4461E6	8,87322E5
28471	4,54673E6	9,65922E4	4,2318E6	3,14929E5
28821	4,48801E6	5,29068E4	4,02984E6	4,58168E5
28992	5,14221E6	1,1524E5	4,45559E6	6,86622E5
29859	4,81862E6	6,91157E4	4,68316E6	1,35461E5
30495	4,93248E6	8,9954E4	4,27163E6	6,60856E5
30562	4,48059E6	1,19822E2	4,24688E6	2,33711E5
30606	4,92576E6	8,30263E4	4,75993E6	1,65832E5
32147	2,32363E6	1,84003E4	1,63766E6	6,85969E5
32923	4,09693E6	4,93356E4	3,95836E6	1,38576E5
33021	4,67587E6	8,11027E4	4,30837E6	3,67496E5
34721	4,75905E6	7,47292E4	4,57813E6	1,80926E5
36553	4,7548E6	9,29908E4	4,58392E6	1,70885E5
37986	4,11971E6	8,44662E4	3,59228E6	5,27424E5
39587	5,73427E6	9,77974E4	4,60545E6	1,12882E6
41593	4,37358E6	2,13196E4	3,33818E6	1,0354E6
43587	4.58054E6	6.98481E4	4.41005E6	1.70491E5

HD	Fabs.med	$\sigma(F_{abs.med})$	F _{fot}	Fcrom
43834	4,27088E6	5,56142E4	3,89006E6	3,80823E5
43947	4,80429E6	6,98472E4	4,54931E6	2,54986E5
44120	5,03998E6	6,04584E4	4,5597E6	4,80276E5
46569	4,84545E6	8,57109E4	4,82427E6	2,11838E4
50806	4,30965E6	9,11678E4	3,92991E6	3,79741E5
52298	5,58006E6	9,12305E4	5,12868E6	4,51375E5
53705	4,452E6	6,46061E4	4,30548E6	1,46523E5
55720	4,22718E6	4,08615E4	3,83042E6	3,96758E5
57853	5,8766E6	9,11392E4	4,68252E6	1,19408E6
59984	4,61445E6	1,07002E5	4,49787E6	1,16585E5
61033	5,51019E6	5,8946E4	3,87073E6	1,63946E6
62644	3,61178E6	3,96146E4	3,41422E6	1,97563E5
63077	4,4752E6	9,08767E4	4,19698E6	2,78227E5
64114	4,44674E6	5,07685E4	3,9759E6	4,70838E5
65907	4,74917E6	7,23461E4	4,48777E6	2,61402E5
69809	4,75379E6	6,30858E4	4,27579E6	4,77995E5
69830	3,92256E6	5,8101E4	3,43054E6	4,92022E5
71334	4,48176E6	5,60274E4	4,07246E6	4,093E5
73350	4,93565E6	8,94013E4	4,27192E6	6,63735E5
74698	4,70523E6	1,07222E5	4,34131E6	3,63914E5
76151	4,62804E6	1,34079E5	4,24795E6	3,80093E5
76932	4,8795E6	9,16136E4	4,63063E6	2,48871E5
84117	4,87978E6	7,42414E4	4,8886E6	0
85380	5,1027E6	4,5834E4	4,80161E6	3,01087E5
88084	4,93425E6	1,90929E3	4,33275E6	6,01497E5
88218	4,4795E6	8,38895E4	4,302E6	1,77492E5
94340	5,2164E6	7,38207E4	4,38656E6	8,29836E5
98649	4,70289E6	6,56741E4	4,22557E6	4,77317E5
102365	4,14466E6	5,41489E4	3,99372E6	1,50943E5
103026	4,75971E6	7,88603E4	4,62738E6	1,32329E5
104304	4,29527E6	5,53909E4	3,6928E6	6,0247E5
105590	4,46271E6	6,86851E4	4,15809E6	3,04626E5
105901	4,78122E6	7,27749E4	4,35994E6	4,21278E5
108309	4,38054E6	5,95492E4	4,0892E6	2,9134E5
111199	4,68042E6	7,76548E4	4,66277E6	1,76516E4
111398	4,54654E6	6,14328E4	4,16986E6	3,76675E5
112164	4,89786E6	3,5469E4	4,52236E6	3,75502E5
114260	4,19684E6	4,68268E4	3,70549E6	4,91357E5
114613	4,392E6	9,20573E4	4,07989E6	3,12111E5
114710	4,92879E6	8,46035E4	4,60461E6	3,24177E5
115382	4,64476E6	7,1997E4	4,24037E6	4,04396E5
115383	5,5853E6	2,6547E4	4,6298E6	9,55502E5

HD	Fabs.med	$\sigma(F_{abs.med})$	F _{fot}	Fcrom
115617	4,38549E6	6,11452E4	3,85917E6	5,26313E5
117176	3,84468E6	4,22406E4	3,68619E6	1,58488E5
117939	4,84139E6	7,38417E4	4,2167E6	6,24685E5
118598	4.71794E6	5.35037E4	4,19052E6	5.27417E5
119550	4.35424E6	5.57597E4	4.2631E6	9,11471E4
120066	4.79133E6	6.76419E4	4,38541E6	4.05919E5
120136	6.0477E6	5,50256E4	5,25129E6	7,96409E5
120237	5,44314E6	9,24607E4	4,90518E6	5,3796E5
121370	4,77783E6	7,93978E4	4,65796E6	1,19871E5
121384	3,14492E6	3,20452E4	3,14632E6	0
122862	4,7661E6	1,98668E4	4,54049E6	2,25614E5
124553	4,91572E6	7,39317E4	4,59986E6	3,15858E5
124570	5,24893E6	9,05188E4	4,84018E6	4,08747E5
124850	5,48599E6	9,14216E4	4,89291E6	5,93087E5
125184	4,1716E6	5,92062E4	3,80781E6	3,63793E5
126868	4,57172E6	5,22399E4	3,87326E6	6,98463E5
128620	4,6303E6	8,7168E4	4,14591E6	4,84992E5
128621	3,50984E6	3,15481E4	2,8442E6	6,65641E5
130948	5,51969E6	9,01084E4	4,60247E6	9,17218E5
131117	5,11237E6	2,39217E5	4,54809E6	5,6428E5
131156	4,67127E6	1,7167E4	3,61696E6	1,05431E6
131923	4,48801E6	6,60006E4	4,00451E6	4,83504E5
131977	2,39452E6	1,06763E4	1,60162E6	7,92901E5
134664	4,57059E6	8,86255E4	4,2993E6	2,71291E5
136202	5,17398E6	1,05656E5	4,86794E6	3,06039E5
136352	4,25183E6	1,09568E5	4,02017E6	2,31657E5
137510	4,74031E6	6,67911E4	4,46336E6	2,7695E5
138573	4,61595E6	2,3393E4	4,16761E6	4,48344E5
140538	4,29928E6	6,05113E4	4,02446E6	2,74822E5
140690	4,82466E6	8,27885E4	4,23589E6	5,88764E5
141004	4,6051E6	8,41414E4	4,44041E6	1,64692E5
142072	5,19612E6	7,01034E4	4,24085E6	9,55269E5
143337	4,52592E6	6,23911E4	4,1826E6	3,43325E5
143761	4,50842E6	6,38435E4	4,24776E6	2,60669E5
145825	4,91217E6	6,54938E4	4,33747E6	5,74702E5
146233	4,35949E6	2,9882E4	4,11074E6	2,4875E5
147513	5,11559E6	3,5218E4	4,36205E6	7,53541E5
148577	4,6401E6	8,47361E4	4,15799E6	4,82111E5
150248	4,67836E6	9,69281E4	4,18847E6	4,89894E5
152391	4,41643E6	7,7445E4	3,618E6	7,98427E5
153458	5,11925E6	8,16679E4	4,33843E6	7,80819E5
154417	5.57161E6	1.66893E4	4.64723E6	9.24388E5

6

U

U

0

U

U

HD	Fabs.med	$\sigma(F_{abs.med})$	F _{fot}	Fcrom
154931	4,56241E6	6,36577E4	4,34448E6	2,17926E5
154962	4,11534E6	6,04737E4	3,94922E6	1,66121E5
155114	4,90444E6	5,28889E4	4,30751E6	5,96933E5
156274	3,55409E6	3,071E4	3,1877E6	3,66383E5
156846	5,17637E6	1,03082E5	4,76631E6	4,10055E5
157089	4,64986E6	8,83667E4	4,41405E6	2,35805E5
157750	5,15487E6	9,08338E4	4,35764E6	7,97232E5
158614	4,5096E6	5,76501E4	3,85755E6	6,52055E5
159222	5,02157E6	8,34642E4	4,38082E6	6,4075E5
159332	5,28882E6	9,17235E4	4,96926E6	3,19562E5
159656	5,10472E6	8,66707E4	4,35649E6	7,48233E5
160691	4,49943E6	6,94625E4	4,06939E6	4,30038E5
161239	4,58881E6	6,46477E4	4,26988E6	3,18929E5
161612	4,45827E6	4,47908E4	3,81586E6	6,4241E5
161797	4,44827E6	4,81089E4	3,90299E6	5,45274E5
162396	4,93196E6	3,78351E3	4,72875E6	2,03215E5
164507	4,00803E6	4,68869E4	3,62445E6	3,83578E5
164595	4,60363E6	3,1016E4	4,23891E6	3,64722E5
165185	5,5008E6	8,6037E4	4,45047E6	1,05033E6
165499	4,84373E6	9,88386E4	4,56008E6	2,83654E5
167665				
169830	5,26065E6	9,1634E4	4,95238E6	3,08267E5
170829				-
171990	4,47295E6	1,28623E5	4,34641E6	1,26542E5
172051	4,27785E6	5,41749E4	3,92639E6	3,51464E5
175425	4,32611E6	5,91617E4	3,98512E6	3,40998E5
177565	4,49521E6	6,48335E4	3,99222E6	5,02993E5
179949	5,56635E6	1,10187E5	4,93484E6	6,3151E5
181321	5,82534E6	8,34788E4	4,36521E6	1,46013E6
182572	4,51557E6	1,3055E4	3,81963E6	6,95938E5
182619	4,66802E6	5,49621E4	4,03621E6	6,31809E5
187013	5,73447E6	1,0387E5	5,17968E6	5,54787E5
187237	4,86175E6	6,20946E4	4,27202E6	5,89737E5
187691	4,88607E6	1,90565E4	4,65259E6	2,33471E5
187923	4,15541E6	1,85191E4	3,95133E6	2,04087E5
188376	3,76322E6	6,54083E4	3,58071E6	1,82512E5
189567	4,39254E6	5,38427E4	4,10946E6	2,83083E5
189625	5,00769E6	7,34773E4	4,33506E6	6,72626E5
190248	4,63811E6	7,227E4	3,94872E6	6,89393E5
190406	4,81742E6	8,01359E4	4,50805E6	3,09366E5
190771	5,40058E6	6,74746E4	4,32717E6	1,07341E6
191408	3,28592E6	3,80898E4	2,71865E6	5,67268E5

HD	Fabs.med	$\sigma(F_{abs.med})$	Ffot	Fcrom
191487	4,86187E6	8,67705E4	4,31783E6	5,4404E5
193307	4,94395E6	8,45224E4	4,63499E6	3,08955E5
194640	4,27986E6	5,57886E4	3,7742E6	5,05666E5
195564	4,25501E6	4,57358E4	3,92689E6	3,28124E5
195838	4,95941E6	9,29233E4	4,70562E6	2,5379E5
196050	4,80005E6	5,57255E4	4,31146E6	4,88591E5
196378	4,97912E6	9,5305E4	4,71737E6	2,61745E5
196755	3,96399E6	5,02472E4	3,89471E6	6,92805E4
196761	4,20518E6	5,28799E4	3,72742E6	4,77765E5
196800	4,73571E6	7,71133E4	4,39421E6	3,41508E5
196885	5,26437E6	2,21395E4	4,82581E6	4,38558E5
197210	4,60442E6	5,08094E4	3,87832E6	7,26101E5
198802	4,39345E6	5,75422E4	4,16996E6	2,2349E5
199288	4,56122E6	6,77613E4	4,34544E6	2,15777E5
199960	5,09362E6	6,95503E4	4,52659E6	5,67032E5
202072	4,60949E6	7,55553E4	4,16358E6	4,45909E5
203608	5,01613E6	8,66955E4	4,75591E6	2,60222E5
205390	2,53455E6	2,44615E4	2,54447E6	0
206301	4,62747E6	3,11268E4	3,91137E6	7,16103E5
206860	5,90606E6	1,6913E4	4,60014E6	1,30592E6
207043	4,77379E6	5,21693E4	4,20079E6	5,73003E5
207129	5,26065E6	9,03645E4	4,27599E6	9,84661E5
209100	2,67747E6	8,50851E3	1,87411E6	8,03354E5
210277	4,25169E6	4,25359E4	3,70837E6	5,4332E5
210460	3,93152E6	4,54399E4	3,63047E6	3,01044E5
210918	4,66535E6	5,80316E4	4,22752E6	4,37829E5
211415	4,80119E6	7,87279E4	4,37613E6	4,25061E5
211786	4,72388E6	5,46828E4	4,2725E6	4,51378E5
211998	2,7534E6	1,76918E4	2,98839E6	0
212330	4,10702E6	1,87667E4	3,90006E6	2,06957E5
212708	4,43332E6	5,72642E4	3,80893E6	6,24385E5
213042	2,33238E6	2,42223E4	1,6493E6	6,83084E5
213429	5,22668E6	8,69669E4	4,6897E6	5,36977E5
213575	4,41723E6	5,22504E4	4,03332E6	3,83901E5
214953	5,35605E6	8,67727E4	4,80025E6	5,55802E5
215028	4,74054E6	8,07663E4	4,1918E6	5,48747E5
215942				
216385	5,51603E6	9,56177E4	5,07766E6	4,38368E5
216435	4,85741E6	1,52531E5	4,50626E6	3,51148E5
216436	4,63558E6	5,88504E4	4,16466E6	4,70914E5
216437	4,34363E6	6,88785E4	4,1728E6	1,70824E5
21/014	4,88666E6	7,20944E4	4,22577E6	6,60893E5

HD	Fabs.med	$\sigma(F_{abs.med})$	F _{fot}	Fcrom
217107	4,68011E6	6,10038E4	3,91248E6	7,67629E5
219077	3,62624E6	3,64906E4	3,33487E6	2,91371E5
219834	3,86072E6	2,87757E4	3,41093E6	4,49789E5
221343	4,76472E6	3,0643E4	4,1778E6	5,8692E5
221420	4,48912E6	5,98919E4	4,18563E6	3,03486E5
221627	4,74548E6	5,07157E4	4,27182E6	4,73658E5
224022	4,99478E6	8,01262E4	4,63731E6	3,57467E5
282962				
282975				
BD+15 3364	4,76886E6	6,21115E4	4,22265E6	5,46209E5
BD+23 527	-	-	-	
SUN	4,62433E6	2,2213E4	4,20938E6	4,14947E5

APÊNDICE E: ABUNDÂNCIAS CORRRIGIDAS DO LI

A tabela seguinte apresenta as temperaturas efetivas obtidas a partir das referências do Li na literatura, as temperaturas efetivas a partir de H α , temperaturas médias obtidas por Ferreira (2010) e abundâncias do Li corrigidas para cada uma das respectivas escalas de temperatura. $\Delta \log \epsilon(\text{Li})_{H\alpha} e \Delta \log \epsilon(\text{Li})_{\text{med}}$ representam as diferenças entre as abundâncias corrigidas e as obtidas da literatura.

HD	Tet.ix (K)	T _{ef.Ha} (K)	Tef.med (K)	log ε (Li) _{ik}	log ε(Li) _{Ha}	log ɛ(Li)med	$\Delta \log \epsilon(Li)_{H\alpha}$	Δ log ε(Li)med
1461	5708	5803	5794	< 0,89	< 0,98	< 0,98	0,09	0,09
1581	5956	5929	5978	2,37	2,34	2,39	-0,03	0,02
1835	5821	5846	5822	2,65	2,68	2,65	0,03	0,00
2151		5863	5902			S 6	2007 1999	
3795	5270	5506	5465	0,00	0,24	0,20	0,24	0,20
3823	5948	5802	5891	2,41	2,26	2,35	-0,15	-0,06
4307	5648	5723	5789	2,30	2,38	2,44	0,08	0,14
4308	5600	5727	5733	< 1,30	< 1,43	< 1,43	0,13	0,13
4391	5829	5878	5834	< 1,09	< 1,14	< 1,10	0,05	0,00
7570	6140	6122	6090	2,91	2,89	2,86	-0,02	-0,05
8291		5860	5832				1000 0000	1000 <u></u> 2005 - 3
9562	5946	5986	5946	2,63	2,67	2,63	0,04	0
10647	6143	6074	6072	2,80	2,73	2,73	-0,07	-0,07
10697	5641	5582	5614	1,96	1,90	1,93	-0,06	-0,03
10700	5350	5409	5445	< -0,11	< -0,05	< -0,01	0,06	0,10
11131	5810	5873	5853	2,55	2,61	2,59	0,06	0,04
11964	5265	5290	5271	1,19	1,21	1,20	0,02	0,01
12235	6180	5869	5925	< 1,30	< 0,99	< 1,04	-0,31	-0,26
12264	5800	5810	5813	2,06	2,07	2,07	0,01	0,01
13421	6165	5861	5987	2,08	1,78	1,90	-0,30	-0,18
13531		5717	5685		1,5		11 (T) (1) (1)	
13612	6097	5955	5993	2,61	2,47	2,51	-0,14	-0,10
13724		5790	5801				() 24 - 00gi	55
14214	6062	5902	5958	3,09	2,93	2,99	-0,16	-0,10
14680	0	4470	4740		6 5		- 688	
14802	5830	5915	5920	2,33	2,42	2,42	0,08	0,09
15335	5846	5785	5847	2,56	2,50	2,56	-0,06	0,00
15942		5890	5875			1 0 1 1 1 0 1 1		-
16160	5000	5015	4939	< -0,25	< -0,23	< -0,31	0,02	-0,06
16417	5710	5785	5794	1,70	1,77	1,78	0,07	0,08
16589	6194	6091	6148	< 1,4	< 1,30	< 1,35	-0,10	-0,05

HD	T _{ef.lik} (K)	T _{ef.Ha} (K)	T _{ef.med} (K)	log ε (Li) _{lit}	log ε(Li) _{Ha}	log ε(Li)med	Δ log ε(Li) _{Hα}	Δ log ε(Li)med
16673	6321	6300	6276	3,17	3,15	3,13	-0,02	-0,04
17051	6252	6131	6121	2,66	2,54	2,53	-0,12	-0,13
18907	5058	5020	5056	0,60	0,56	0,60	-0,04	-0,00
19308		5808	5800					
19994	6190	6157	6124	1,83	1,80	1,76	-0,03	-0,07
20010	6170	6225	6147	1,86	1,91	1,84	0,05	-0,02
20630	5749	5800	5786	1,75	1,80	1,79	0,05	0,04
20766	5733	5701	5743	< 0,97	< 0,94	< 0,98	-0,03	0,01
20807	5843	5739	5817	< 1,07	< 0,97	< 1,04	-0,10	-0,03
21411		5516	5536					
22049	5000	5187	5156	0,36	0,55	0,52	0,19	0,16
22484	6022	6076	6073	2,48	2,53	2,53	0,05	0,05
22879	5790	5976	5948	1,45	1,64	1,61	0,19	0,16
23249	5100	5268	5160	1,29	1,46	1,35	0,17	0,06
24040		5902	5854					
24293		5690	5719		-			
24616		5036	5016				1998 - 1899	
25457	6162	5774	5978	2,95	2,56	2,77	-0,39	-0,18
25874		5770	5769		1			
25918		5897	5777	-	-			
26913	5630	5883	5827	2,20	2,45	2,40	0,25	0,20
26923	5968	5938	5973	2,80	2,77	2,80	-0,03	0,00
27685	5776	5759	5753	2,28	2,26	2,26	-0,02	-0,02
27859		5872	5899	-				
28099	5802	5812	5794	2,41	2,42	2,40	0,01	-0,01
28344		5835	5900					
28471	5745	5740	5789	< 0,73	< 0,72	< 0,77	-0,01	0,04
28821	5633	5685	5686	< 1,00	< 1,05	< 1,05	0,05	0,05
28992		5903	5905				-	
29859		5929	6027				1	
30495	5925	5799	5809	2,39	2,26	2,27	-0,13	-0,12
30562	5990	5718	5796	2,78	2,51	2,59	-0,27	-0,19
30606	6209	6011	6069	< 1,65	< 1,45	< 1,51	-0,20	-0,14
32147	4900	4612	4611	< -0,09	< -0,38	< -0,38	-0,29	-0,29
32923	5655	5572	5650	1,64	1,56	1,64	-0,08	-0,00
33021	5822	5823	5828	2,00	2,00	2,01	0,00	0,01
34721	5960	5931	5970	2,30	2,27	2,31	-0,03	0,01
36553	6020	5966	5973	1,20	1,15	1,15	-0,05	-0,05
37986		5476	5471				-	
39587	5947	5966	5985	2,87	2,89	2,91	0,02	0,04
41593		5395	5351				- 17.	-
43587	5740	5859	5881	1.83	1.95	1.97	0.12	0,14

HD	Tef.tit (K)	T _{ef.Ha} (K)	Tef.med (K)	log ε (Li)ιε	log ɛ(Li) _{Ha}	log ɛ(Li)med	Δ log ε(Li) _{Ha}	Δ log ε(Li)med
43834	5594	5614	5616	2,30	2,32	2,32	0,02	0,02
43947	5859	5925	5955	2,33	2,40	2,43	0,07	0,10
44120		5927	5960	-				
46569		6090	6104			100	1978 1978	
50806	5578	5636	5636	1,38	1,44	1,44	0.06	0,06
52298		6266	6276				1488 5888	1000 AL
53705	5810	5821	5827	1,04	1,05	1,06	0.01	0.02
55720		5598	5587		100 Aug 10 300	61-16	1116 HONE	
57853	- 00	5977	6026	5- 5			10081 1000	0.00 1570
59984	5987	5866	5927	2,46	2,34	2,40	-0,12	-0,06
61033		5650	5607				N.96 36.70	
62644	5365	5357	5387	< 0,71	< 0,70	< 0,73	-0,01	0,02
63077	5831	5671	5771	1,32	1,16	1,26	-0,16	-0,06
64114		5653	5659			//		0 <u></u> Xeres
65907	5940	5858	5922	< 0,98	< 0,90	< 0,96	-0,08	-0,02
69809		5837	5811			2 2 4	1028 1006	
69830	5413	5345	5394	0,75	0,68	0,73	-0,07	-0,02
71334		5648	5707				1717 Sec.	
73350	5729	5780	5809	2,33	2,38	2,41	0,05	0,08
74698	-	5892	5845				1622 NTU	
76151	5765	5797	5797	1,79	1,82	1,82	0,03	0,03
76932	5818	6025	5998	2,03	2,24	2,21	0.21	0,18
84117	6167	6188	6140	2,64	2,66	2,61	0.02	-0.03
85380	6162	6096	6091	< 1,45	< 1,38	< 1,38	-0.07	-0.07
88084	5766	5820	5841	1,62	1,67	1,70	0,05	0,07
88218		5806	5825				10 0.1 10 M	
94340		5847	5869		1			-
98649	1	5775	5785				1542 ARA	
102365	9	5644	5668				9298 1852	
103026	6183	5934	5997	2,72	2,47	2,53	-0.25	-0.19
104304	5690	5510	5520	<0,63	<0,45	<0.46	-0,18	-0.17
105590	24	5760	5751				1873 - 0888	
105901	-	5850	5855			<u></u> 2		
108309	5775	5697	5716	< 0,94	< 0,86	< 0,88	-0,08	-0,06
111199	6148	5963	6016	< 0,64	< 0,46	< 0,51	-0.19	-0.13
111398		5739	5757	-		-	1098 9198	-
112164		5954	5940				1164 0861	-
114260		5514	5526					-
114613	5729	5732	5711	2,69	2,69	2,67	0.00	-0.02
114710	6021	5939	5984	2,50	2,42	2,46	-0.08	-0.04
115382	61	5787	5793	4	-	-	1500 - 1108P	-
115383	6120	5952	5998	2,91	2,74	2,79	-0,17	-0,12

U

HD	Ter.in (K)	T _{ef,Ha} (K)	Tef.med (K)	log ε (Li) _{IR}	log ε(Li) _{Hα}	log ɛ(Li)med	Δ log ε(Li) _{Hα}	Δ log ε(Li) _{med}
115617	5720	5562	5601	< 0,86	< 0,70	< 0,74	-0,16	-0,12
117176	5502	5493	5517	1,78	1,77	1,79	-0,01	0,01
117939		5800	5781					
118598		5730	5767					
119550		5777	5805				201	
120066	5862	5848	5868	2,67	2,66	2,68	-0,01	0,01
120136	6342	6332	6347	2,14	2,13	2,15	-0,01	0,00
120237	6021	6142	6149	< 1,03	< 1,16	< 1,16	0,12	0,13
121370	6085	6000	6013	1,57	1,48	1,50	-0,08	-0,07
121384	5181	5279	5262	0,68	0,78	0,76	0,10	0,08
122862		5926	5950					
124553	6152	5951	5982	2,15	1,95	1,98	-0,20	-0,17
124570	6109	6070	6113	< 1,17	< 1,13	< 1,17	-0,04	0,00
124850	6374	6081	6142	< 1,64	< 1,35	< 1,41	-0,29	-0,23
125184	5630	5546	5576	< 0,99	< 0,91	< 0,94	-0,08	-0,05
126868	5521	5565	5608	2,64	2,69	2,73	0,04	0,09
128620		5813	5745				1	
128621		5155	5125		8	1		
130948	5780	5981	5983	2,69	2,89	2,89	0,20	0,20
131117	6014	5946	5954	2,67	2,60	2,61	-0,07	-0,06
131156	5595	5483	5450	2,24	2,13	2,10	-0,11	-0,15
131923		5692	5673	-			-	
131977	4575	4772	4597	< -0,38	< -0,18	< -0,36	0,20	0,02
134664		5827	5823					
136202	6120	6083	6128	< 1,00	< 0,96	< 1,01	-0,04	0,01
136352		5631	5681					
137510	6139	5872	5909	< 1,38	< 1,11	< 1,15	-0,27	-0,23
138573	5746	5740	5756	0,91	0,90	0,92	-0,01	0,01
140538	5735	5659	5683	1,53	1,45	1,48	-0,08	-0,05
140690		5785	5791					
141004	5940	5869	5897	1,82	1,75	1,78	-0,07	-0,04
142072	5860	5787	5793	2,70	2,63	2,63	-0,07	-0,07
143337		5760	5763				-	
143761	5853	5775	5797	1,46	1,38	1,40	-0,08	-0,06
145825	5795	5825	5843	1,85	1,88	1,90	0,03	0,05
146233	5818	5665	5727	1,64	1,49	1,55	-0,15	-0,09
147513	5880	5840	5856	2,05	2,01	2,03	-0,04	-0,02
148577		5736	5751					
150248		5752	5766				-	-
152391	5450	5475	5484	1,11	1,14	1,14	0,02	0,03
153458	5841	5820	5844	2,14	2,12	2,14	-0,02	0,00
154417	5925	5995	6007	2,65	2,72	2,73	0,07	0,08

HD	T _{ef.in} (K)	T _{ef.Ha} (K)	Tef.med (K)	log £ (Li) _{iit}	log ε(Li) _{Hα}	log £(Li)med	Δ log ε(Li) _{Ha}	Δ log ε(Li)med
154931		5829	5847			100 0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		Ti 1888
154962	5827	5672	5646	2,39	2,24	2,21	-0,15	-0,18
155114		5810	5828			1 (1)	246230 CO-260	
156274		5284	5281				- 400	10 10 4 12 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
156846	6068	6094	6072	1,07	1,10	1,07	0,03	0,00
157089		5852	5883				- 55.85	0-8010
157750		5845	5854			10	100 900	
158614		5573	5600				08th	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -
159222	5851	5860	5866	1,93	1,94	1,95	0,01	0,01
159332	6204	6159	6185	< 1,50	< 1,46	< 1,48	-0,04	-0,02
159656	61	5850	5853				1018 - Call	
160691	5780	5678	5706	< 0,98	< 0,88	< 0,91	-0,10	-0,07
161239		5827	5808				17 m	10.128 729
161612	8	5587	5580		0		-	10. 10 (An The
161797	5580	5686	5623	1,33	1,44	1,37	0,11	0,04
162396		6001	6051				- 17	10 10 10 DI
164507	5590	5450	5487	< 0,50	< 0,36	< 0,40	-0,14	-0,10
164595	5698	5767	5792	0,96	1,03	1,05	0,07	0,09
165185	- 1	5876	5902	3 3		2	9876 0086	
165499	5933	5934	5960	1,98	1,98	2,01	0,00	0,03
167665	6127			2,48		-	9853 STR	700
169830	6395	6184		0,89	0,68		-0,21	2072-202
170829		5503	6175		0 <u></u> 01		CISI 0050	
171990	11	5734	5848	- 6 0				
172051	5700	5615	5634	1,29	1,21	1,22	-0,08	-0,07
175425		5572	5664					101-201 S
177565	5519	5673	5667	< 0,56	< 0,72	< 0,71	0,15	0,15
179949	6294	6134	6165	2,59	2,43	2,46	-0,16	-0,13
181321		5845	5858			0	- 1985 - 1999	2 11 4 11 2
182572	5566	5587	5582	< 0,47	< 0,49	< 0,49	0,02	0,02
182619		5761	5689			8 <u></u> 3	0520 0520	14
187013	6455	6249	6305	2,37	2,16	2,22	-0,21	-0,15
187237	5812	5783	5809	2,22	2,19	2,22	-0,03	-0,00
187691	6078	5924	6010	2,63	2,48	2,56	-0,15	-0,07
187923		5555	5647			0	-	25
188376	5546	5436	5466	2,22	2,11	2,14	-0,11	-0,08
189567	5750	5697	5726	< 0,81	< 0,76	< 0,79	-0,05	-0,02
189625	5846	5810	5842	2,12	2,08	2,12	-0,04	-0,00
190248		5674	5645	-			1990 0980	
190406	5844	5907	5933	2,35	2,41	2,44	0,06	0,09
190771		5820	5838	2,30	-		CLOS Press	015
191408	5025	5146	5069	< 0,13	< 0,25	< 0,17	0,12	0,04

 \cup

HD	T _{ef.lit} (K)	T _{ef.Ha} (K)	T _{ef.med} (K)	log ε (Li) _{iit}	log ε(Li) _{Ha}	log ɛ(Li)med	Δ log ε(Li) _{Hα}	Δ log ε(Li) _{med}
191487		5820	5833					
193307		5976	6001					
194640		5543	5559					
195564	5614	5598	5635	1,97	1,95	1,99	-0,02	0,02
195838	6059	5954	6039	2,30	2,19	2,28	-0,10	-0,02
196050		5826	5830		<u></u>			lisalita <u></u> Maria
196378		6030	6045					
196755	5750	5573	5619	1,64	1,46	1,51	-0,18	-0,13
196761	5465	5544	5537	< 0,39	< 0,47	< 0,46	0,08	0,07
196800		5846	5873					
196885	6288	6102	6105	2,58	2,39	2,40	-0,19	-0,18
197210		5592	5611					
198802		5738	5757			1		
199288	5727	5871	5847	0,50	0,64	0,62	0,14	0,12
199960	5924	5945	5943	2,48	2,50	2,50	0,02	0,02
202072		5740	5754					
203608	6109	6010	6066	2,39	2,29	2,35	-0,10	-0,04
205390		4946	4993				19.00 1988	
206301	5682	5556	5627	2,35	2,22	2,29	-0,13	-0,06
206860	5798	5964	5982	2.73	2,90	2,91	0,17	0,18
207043		5760	5773					
207129	5910	5700	5811	2,33	2,12	2,23	-0,21	-0,10
209100	4700	4852	4708	< -0,39	< -0,24	< -0,38	0,15	0,01
210277	5532	5524	5527	< 0,30	< 0,29	< 0,29	-0,01	-0,01
210460		5422	5490					
210918	5755	5802	5786	< 0.28	< 0.33	< 0.31	0.05	0,03
211415	5890	5864	5863	1.92	1.89	1.89	-0,03	-0,03
211786	5734	5810	5809	1.09	1,17	1,17	0,08	0,07
211998		5121	5264					
212330	5653	5535	5621	1,65	1,53	1,62	-0,12	-0,03
212708		5530	5576					
213042		4748	4616					
213429		5986	6030	-				
213575		5641	5688					-
214953	6069	6114	6091	2,67	2,71	2,69	0,04	0,02
215028		5889	5768	<u> </u>				
215942			5750					
216385	6229	6194	6246	< 1,25	< 1,22	< 1,27	-0,03	0,02
216435	5890	5917	5932	2,55	2,58	2,59	0,03	0,04
216436		5760	5754	-			-	
216437	5781	5802	5758	1,98	2,00	1,95	0,02	-0,02
217014	5779	5734	5785	1,27	1,23	1,28	-0,04	0,01

HD	Tef.iit (K)	Tet.Ha (K)	Tet.med (K)	log ɛ (Li)ıı	log ɛ(Li) _{Ha}	log £(Li)med	Δ log ε(Li) _{Ha}	Δ log ε(Li)med
217107	5575	5632	5627	< 1,26	< 1,32	< 1,31	0,06	0,05
219834	5760	5292	5385	< 0,40	< -0,07	< 0,03	-0,47	-0,38
221343		5710	5761			ante projectulas del	and denote sold	
221420	5847	5745	5765	2,75	2,65	2,67	-0,10	-0,08
221627		5815	5809	punit abbi	ton 1	biliti vitella	anufa-onabi	
224022	6021	5964	6002	2,69	2,63	2,67	-0,06	-0,02
282962		5903	5903					
282975		5657	5575					
BD+15 3364		5777	5784			-	-	
BD+23 527		5773	5773		300	-		

 \cup

0

 \cup

6

 \cup

APÊNDICE F: PARÂMETROS EVOLUTIVOS E ABUNDÂNCIAS DO LI

A tabela seguinte apresenta a compilação dos parâmetros evolutivos de interesse para a análise multiparamétrica das abundâncias do Li. São eles: HD, estágio evolutivo, massa, idade, metalicidade, raio, gravidade superficial, temperatura efetiva média, luminosidade, fluxo cromosférico absoluto, abundâncias de Li.

HD	ΠΡΟ	M/M _{Sol}	IDADE	[Fe/H]	R/R _{sol}	R/RZAMS	log g	T _{ef.med}	log (L/L _{sol})	Fcrom	log ε(Li) _{med}
1461	Anã	1,09	3,2	0,22	1,09	1,02	4,39	5794	0,0779	6,48466	0,98
1581	Anã	1,04	3,2	-0,09	1,04	0,993	4,41	5978	0,0911	2,61791	2,39
1835	Anā	1,10	-	0,18	0,97	0,905	4,49	5822	-0,0128	8,52466	2,65
3795	SG	0,95	10,9	-0,56	1,79	1,941	3,90	5465	0,4100	1,41330	0,20
3823	SG	0,93	10,0	-0,41	1,48	1,612	4,05	5891	0,3760	1,37363	2,35
4307	SG	1,01	8,4	-0,28	1,72	1,656	3,96	5789	0,4730	1,45849	2,44
4308	Ană	0,86	10,8	0,29	1,00	1,251	4,36	5733	-0,0010	4,16346	1,43
4391	Anä	1,03		-0,06	0,93	0,896	4,50	5834	-0,0477	5,63622	1,10
7570	Anä	1,19	2,3	0,17	1,24	1,025	4,32	6090	0,2760	4,19664	2,86
9562	Ană	1,36	3,4	0,28	1,80	1,19	4,05	5946	0,5610	5,44359	2,63
10647	Anã	1,08	2,9	-0,07	1,12	1,005	4,36	6072	0,1800	4,25777	2,73
10697	SG	1,13	7,2	0,10	1,80	1,579	3,97	5614	0,4580	3,04613	1,93
10700	Anā	0,75	13,5	-0,45	0,78	1,112	4,51	5445	-0,3150	3,73852	-0,01
11131	Anã	1,05	-	-0,02	0,93	0,898	4,51	5853	-0,0421	12,01130	2,59
11964	SG	1,15	7,0	0,05	2,07	1,776	3,85	5271	0,4720	3,80643	1,20
12235	Anã	1,32	4,4	0,13	1,79	1,205	4,04	5925	0,5470	3,11565	1,04
12264	Ană	1,05		0,03	1,00	0,978	4,44	5813	0,0130	7,39168	2,07
13421	SG	1,48	3,1	0,09	2,67		3,74	5987	0,9150	2,30257	1,90
13612	SG	1,43	2,8	-0,20	2,88	1,572	3,66	5993	0,9810	2,34527	2,51
14214	Anã	1,20	5,0	0,07	1,62	1,298	4,09	5958	0,4710	4,96085	2,99
14802	Anã	1,28	5,2	0,08	1,74	1,263	4,05	5920	0,5240	5,91940	2,42
15335	SG	1,07	7,0	-0,24	1,83	1,595	3,93	5847	0,5430	1,48535	2,56
16160	Anā	0,80	-	-0,06	0,71	0,952	4,63	4939	-0,5700	7,40463	-0,31
16417	SG	1,17	6,5	0,11	1,63	1,333	4,07	5794	0,4290	3,32710	1,78
16589	Anã	1,48	3,3	0,09	2,14		3,93	6148	0,7700	10,56200	1,35
16673	Anã	1,22		0,04	1,13	0,857	4,40	6276	0,2510	8,21991	3,13
17051	Anã	1,23		0,19	1,15	0,907	4,39	6121	0,2200	6,94732	2,53
18907	SG	0,97	9,4	-0,57	2,67	2,719	3,56	5056	0,6220	0,00000	0,60
19994	Anã	1,36	3,0	0,22	1,73	1,132	4,08	6124	0,5790	2,11772	1,76
20010	SG	1,23	4,8	-0,27	1,95	1,381	3,94	6147	0,6850	2,00095	1,84
20630	Anã	- 10	-	0,11	0,90		-	5786	-0,0855	8,69399	1,79
20766	Anã	0,93	2,8	-0,19	0,89	0,977	4,50	5743	-0,1150	5,75257	0,98
20807	Anã	0,90	8,0	-0,29	0,98	1,13	4,40	5817	-0,0073	2,42871	1,04

-

HD	TIPO	M/M _{Sol}	IDADE	[Fe/H]	R/Rsol	R/RZAMS	log g	Tef.med	log (L/Lsol)	Fcrom	log E(Li)med
22049	Anã	0,84	-	-0,05	0,72	0,918	4,63	5156	-0,4790	9,75221	0,52
22484	Anã	1,23	3,7	0,03	1,55	1,194	4,13	6073	0,4680	0,71059	2,53
22879	Anã	0,85	8,8	-0,73	0,96	1,196	4,39	5948	0,0172	2,00545	1,61
23249	SG	1,24	5,6	0,28	2,23	1,753	3,82	5160	0,4980	5,27692	1,35
25457	anã	1,07	6,3	-0,12	1,37	1,231	4,18	5978	0,3310	4,15426	2,77
26913	anā		-	0,15	0,77	10		5827	-0,2120	9,34172	2,40
26923	anã	1,07		-0,03	0,98	0,887	4,47	5973	0,0389	7,62329	2,80
27685	ană	1,05	10	0,11	0,92	0,906	4,51	5753	-0,0763	7,63049	2,26
28099	anã	1,08	-	0,11	1,02	0,948	4,44	5794	0,0247	7,86115	2,40
28471	ană	1,00	5,5	0,00	1,05	1,084	4,39	5789	0,0423	3,14929	0,77
28821	anã	0,93	9,3	-0,08	1,06	1,182	4,34	5686	0,0261	4,58168	1,05
30495	anã	1,00	2,8	-0,07	0,97	0,991	4,46	5809	-0,0219	6,60856	2,27
30562	SG	1,19	6,2	0,09	1,70	1,392	4,04	5796	0,4650	2,33711	2,59
30606	SG	1,34	3,5	-0,08	2,40	1,512	3,79	6069	0,8430	1,65832	1,51
32147	SG	0,80	-	0,11	0,89	1,196	4,43	4611	-0,4920	6,85969	-0,38
32923	SG	0,96	10,6	-0,25	1,61	1,681	3,99	5650	0,3750	1,38576	1,64
33021	SG	1,02	8,4	-0,16	1,50	1,44	4,08	5828	0,3680	3,67496	2,01
34721	anã	1,06	6,4	-0,12	1,36	1,261	4,18	5970	0,3250	1,80926	2,31
36553	SG	1,60	2,4	0,24	3,00	1,464	3,67	5973	1,0100	1,70885	1,15
39587	ană	1,11		0,05	0,97	0,862	4,50	5985	0,0335	11,28820	2,91
43587	anã	1,02	6,8	-0,04	1,23	1,196	4,25	5881	0,2120	1,70491	1,97
43834	ană	1,00	3,4	0,11	0,97	1,012	4,46	5616	-0,0789	3,80823	2,32
43947	anã	0,94	8,0	-0,28	1,12	1,215	4,30	5955	0,1520	2,54986	2,43
50806	SG	1,05	8,9	0,04	1,56	1,519	4,06	5636	0,3420	3,79741	1,44
53705	anã	0,93	9,0	-0,21	1,13	1,247	4,29	5827	0,1220	1,46523	1,06
59984	SG	0,97	8,5	-0,73	1,71	1,687	3,95	5927	0,5100	1,16585	2,40
62644	SG	1,34	3,7	-0,06	2,61	1,668	3,72	5387	0,7120	1,97563	0,73
63077	SG	0,85		-0,75	1,19	1,477	4,21	5771	0,1480	2,78227	1,26
65907	anã	0,95	7,1	-0,25	1,07	1,15	4,34	5922	0,1000	2,61402	0,96
69830	anã	0,87	9,0	-0,07	0,89	1,063	4,46	5394	-0,2180	4,92022	0,63
73350	anã	1,08	-	0,11	0,96	0,892	4,49	5809	-0,0239	6,63735	2,41
76151	ană	1,08		0,10	0,98	0,908	4,48	5797	-0,0123	3,80093	1,82
76932	anã	0,88	10,4	-0,75	1,24	1,459	4,18	5998	0,2510	2,48871	2,21
84117	anã	1,08	3,7	-0,14	1,22	1,092	4,28	6140	0,2790	0,00000	2,61
85380	anã	1,39	3,2	0,15	1,88	1,184	4,02	6091	0,6380	3,01087	1,38
88084	anã	1,08		0,07	0,99	0,908	4,47	5841	0,0095	6,01497	1,70
10302	SG	1,15	6,0	-0,21	1,79	1,443	3,98	5997	0,5680	1,32329	2,53
10430	anã	1,00	5,8	0,24	1,04	1,092	4,39	5520	-0,0452	6,02470	0,46
10830	SG	1,04	8,4	0,07	1,42	1,383	4,14	5716	0,2840	2,91340	0,88
11119	SG	1,47	2,6	-0,24	3,08	1,572	3,62	6016	1,0500	0,17652	0,51
11461	SG	1,27	5,0	0,19	2,08	1,512	3,89	5711	0,6150	3,12111	2,67
11471	ană	1,05	3,7	-0,06	1,10	1,056	4,36	5984	0,1450	3,24177	2,46

HD	ΠΡΟ	M/M _{Sol}	IDADE	[Fe/H]	R/R _{sol}	R/R _{ZAMS}	log g	T _{ef.med}	log (L/L _{sol})	Fcrom	log ε(Li) _{med}
11538	anā	1,20	3,5		1,38		4,22	5998	0,3460	9,55502	2,79
11561	anã	0,94	6,0	0,01	0,96	1,077	4,44	5601	-0,0928	5,26313	0,74
11717	SG	1,07	8,0	-0,12	1,90	1,712	3,90	5517	0,4780	1,58488	1,79
12006	anã	1,15	5,6	0,09	1,47	1,271	4,15	5868	0,3610	4,05919	2,68
12013	anã	1,35	1,4	0,26	1,45	0,98	4,24	6347	0,4840	7,96409	2,15
12023	anã	1,21	-	0,16	1,09	0,869	4,43	6149	0,1850	5,37960	1,16
12137	SG	1,61	2,5	0,26	2,76	1,318	3,75	6013	0,9500	1,19871	1,50
12138	SG	1,13	5,0	-0,44	2,83	2,23	3,58	5262	0,7410	0,00000	0,76
12455	anã	1,38	3,5	0,18	1,88	1,209	4,02	5982	0,6070	3,15858	1,98
12457	anã	1,38	3,5	0,05	2,10	1,307	3,92	6113	0,7400	4,08747	1,17
12485	SG	1,38	3,0	-0,19	2,61	1,517	3,73	6142	0,9390	5,93087	1,41
12518	SG	1,12	7,7	0,22	1,68	1,486	4,02	5576	0,3880	3,63793	0,94
12686	SG	1,85	1,6	-0,03	4,48	1,766	3,39	5608	1,2500	6,98463	2,73
13094	anã	1,06	1,9	-0,03	1,02	0,951	4,43	5983	0,0784	9,17218	2,89
13111	anã	1,27	4,5	0,07	1,88	1,327	3,98	5954	0,6000	5,64280	2,61
13115	anã	0,97	-	0,06	0,87	0,929	4,53	5450	-0,2110	10,54310	2,10
13197	anã	0,75	-	0,12	0,76	1,073	4,54	4597	-0,6360	7,92901	-0,36
13620	anā	1,38	3,6	0,03	1,94	1,21	3,99	6128	0,6770	3,06039	1,01
13751	anã	1,38	3,8	0,31	2,04	1,327	3,95	5909	0,6560	2,76950	1,15
13857	anã	0,99	5,8	-0,01	1,03	1,085	4,39	5756	0,0215	4,48344	0,92
14053	anã	0,98	3,6	0,00	0,95	1,008	4,46	5683	-0,0765	2,74822	1,48
14100	anã	1,03	7,4	-0,10	1,34	1,292	4,18	5897	0,2920	1,64692	1,78
14207	anã	1,11		0,20	1,02	0,928	4,45	5793	0,0236	9,55269	2,63
14376	SG	0,93	10,8	-0,26	1,33	1,461	4,15	5797	0,2530	2,60669	1,40
14582	anã	1,07		0,06	0,96	0,886	4,49	5843	-0,0174	5,74702	1,90
14623	anã	0,94	8,2	-0, 11	1,05	1,162	4,35	5727	0,0293	2,48750	1,55
14751	anã	1,06		0,02	0,97	0,907	4,48	5856	-0,0067	7,53541	2,03
15239	anā	0,94		-0,02	0,83	0,938	4,56	5484	-0,2500	7,98427	1,14
15345	anã	1,12		0,18	0,99	0,878	4,48	5844	0,0125	7,80819	2,14
15441	anã	1,08	2,6	-0,01	1,08	0,997	4,39	6007	0,1310	9,24388	2,73
15496	SG	1,10	7,1	-0,06	1,85	1,66	3,93	5646	0,4950	1,66121	2,21
15684	anã	1,43	3,4	0,17	2,01	1,198	3,98	6072	0,6900	4,10055	1,07
15922	anã	1,13		0,15	1,04	0,926	4,44	5866	0,0627	6,40750	1,95
15933	SG	1,25	4,2	-0,28	2,13	1,451	3,87	6185	0,7730	3,19562	1,48
16069	anã	1,14	6,0	0,25	1,37	1,22	4,21	5706	0,2530	4,30038	0,91
16179	SG	1,21	5,8	0,33	1,71	1,388	4,04	5623	0,4200	5,45274	1,37
16450	SG	1,39	3,6	0,07	2,62	1,615	3,73	5487	0,7480	3,83578	0,40
16459	anã	0,98	5,5	-0,06	1,02	1,058	4,40	5792	0,0213	3,64722	1,05
16549	anã	1,07	5,1	0,00	1,22	1,112	4,28	5960	0,2260	2,83654	2,01
17205	anã	0,85	7,0	-0,29	0,86	1,069	4,49	5634	-0,1740	3,51464	1,22
17756	anã	1,02	3,0	0,11	0,98	0,97	4,46	5667	-0,0544	5,02993	0,71
17994	anā	1,22	1,1	0,16	1,20	0,926	4,36	6165	0,2690	6,31510	2,46

-

(

HD	TIPO	M/M _{Sol}	IDADE	[Fe/H]	R/Rsol	R/R _{ZAMS}	log g	Tef.med	log (L/L _{sol})	Ferom	log ɛ(Li)med
18257	anã	1,14	7,0	0,35	1,41	1,257	4,19	5582	0,2360	6,95938	0,49
18701	anā	1,24	3,5	-0,09	1,56	1,138	4,13	6305	0,5380	5,54787	2,22
18723	anã	1,09	-	0,12	0,99	0,918	4,47	5809	0,0037	5,89737	2,22
18769	anã	1,16	5,5	-0,03	1,54	1,247	4,12	6010	0,4400	2,33471	2,56
18837	SG	1,46	3,1	0,00	2,90	1,578	3,67	5466	0,8270	1,82512	2,14
18956	anã	0,90	9,0	-0,22	1,02	1,183	4,36	5726	0,0001	2,83083	0,79
18962	anā	1,14		0,23	1,04	0,928	4,45	5842	0,0562	6,72626	2,12
19040	ană	1,09	2,0	0,05	1,05	0,966	4,42	5933	0,0917	3,09366	2,44
19140	anã	0,70	-	-0,47	0,68	1,038	4,60	5069	-0,5570	5,67268	0,17
19556	SG	1,07	7,9	0,01	1,75	1,599	3,97	5635	0,4440	3,28124	1,99
19583	SG	1,05	6,6	-0,31	1,63	1,506	4,02	6039	0,5000	2,53790	2,28
19675	SG	1,45	3,1	-0,01	2,88	1,593	3,67	5619	0,8680	0,69281	1,51
19676	anā	0,92		-0,17	0,80	0,886	4,58	5537	-0,2650	4,77765	0,46
19688	anã	1,24	3,0	0,13	1,40	1,087	4,22	6105	0,3890	4,38558	2,40
19928	anã	0,88	8,1	-0,54	0,96	1,14	4,41	5847	-0,0157	2,15777	0,62
19996	anã	1,19	3,3	0,27	1,30	1,089	4,27	5943	0,2780	5,67032	2,50
20360	anã	0,90	8,1	-0,70	1,09	1,249	4,31	6066	0,1550	2,60222	2,35
20630	SG	1,47	2,9	-0,12	2,97	1,547	3,65	5627	0,9000	7,16103	2,29
20686	anã	1,04	-	-0,05	1,00	0,961	4,44	5982	0,0596	13,05920	2,91
20712	anã	0,98	6,6	-0,05	1,09	1,132	4,34	5811	0,0855	9,84661	2,23
20910	anã	1,08	-	0,07	0,99	0,634	4,62	4708	-0,6770	8,03354	-0,38
21027	anã	1,00	6,6	0,25	1,08	1,133	4,36	5527	-0,0111	5,43320	0,29
21091	anã	0,98	7,9	-0,05	1,15	1,195	4,29	5786	0,1250	4,37829	0,31
21141	anã	0,94	6,4	-0,18	1,02	1,117	4,38	5863	0,0452	4,25061	1,89
21178	anã	1,00	-	-0,07	0,96	0,99	4,46	5809	-0,0228	4,51378	1,17
21233	SG	1,06	8,2	-0,07	1,75	1,632	3,96	5621	0,4390	2,06957	1,62
21495	anã	1,19	2,0	0,14	1,21	1,002	4,34	6091	0,2570	5,55802	2,69
21638	ană	1,25	4,3	-0,21	1,91	1,328	3,96	6246	0,6950	4,38368	1,27
21643	anã	1,33	4,3	0,21	1,79	1,234	4,04	5932	0,5500	3,51148	2,59
21643	SG	1,02	8,8	0,11	1,53	1,513	4,07	5758	0,3600	1,70824	1,95
21701	ană	1,10	3,8	0,27	1,15	1,074	4,35	5785	0,1200	6,60893	1,28
21710	anā	1,07	5,1	0,34	1,13	1,077	4,35	5627	0,0613	7,67629	1,31
21983	SG	1,22	6,8	0,29	2,09	1,641	3,87	5385	0,5170	4,49789	0,03
22142	SG	1,33	4,5	0,27	2,02	1,401	3,94	5765	0,6040	3,03486	2,67
22402	anã	1,19	4,2	0,05	1,46	1,183	4,17	6002	0,3920	3,57467	2,67
Sol	anã	1,00	4,5	0,00	1,00	1,036	4,44	5780	0,0000	4,14947	1,50

Astrophys. J., 716, 766

0

0

U

U

U

0

0

U

6

0

HILL SVIDOSUL

123

BIBLIOGRAFIA

Balachandran S., 1990, ApJ, 354, 310

Baumann, P., Ramirez, I., Meléndez, j., Asplund. M., Lind, K. 2010 A&A, 519, 87

Bensby T.; Feltzing S.; Lundstroem I., 2003, A&A, 410, 527

Chen Y.Q.; Nissen P.E.; Benoni T.; Zhao G., 2001, A&A, 371, 943

Chen, Y.Q.; Zhao, G., 2006, Astron. J., 131, 1816

Da Silva, L., Porto de Mello, G. F., Light Elements and Their Evolution, IAU Symposium no. 198 Proceedings, dezembro de 2000, páginas 495-497.

Del Peloso E.F.; da Silva L.; Porto de Mello G.F., 2000, A&A, 358, 233

De Medeiros J.R.; do Nascimento J.D.Jr.; Sankarankutty S.; Costa J.M.; Maia M.R.G., 2000, A&A, 363, 239

Do Nascimento Jr. J.D.; Canto Martins B.L.; Melo C.H.F.; Porto de Mello G.; De Medeiros J.R., 2003, A&A, 405, 723

Dravins D., Lindegren L., Nordlund A., VandenBerg D.A., 1993, ApJ, 403, 385

ESA, The Hipparcos and Tychos Catalogues, 1997a, ESA SP-1200

Ferreira L., 2010, A relação idade-atividade em estrelas de tipo solar a partir da linha Hα, Dissertação de Mestrado, UFRJ

Flower P. J., 1996, ApJ, 469, 355

Ghezzi, L., Cunha, K., Smith. V., & de la Reza, R. 2010, ApJ, 724, 154

Gonzalez, G.; Carlson, M.K.; Tobin, R.W., 2010, Mon. Not. R. Astron. Soc., 403, 1368

Hauck B., Mermilliod M., 1998, Institut d'Astronomie de l'Universite de Lausane Israelian G.; Santos N.C.; Mayor M.; Rebolo R., 2004, A&A, **414**, 601

Kim Y., Demarque P., Yi S. K., Alexander D. R., 2002, ApJS, 143, 499

Lambert, David L.; Reddy, Bacham E., 2004, 349, 757

Lebre A., de Laverny P., de Medeiros J.R., Charbonnel C., da Silva L., 1999, A&A, 345, 936

Lorenzo D., 2011, A relação entre atividade cromosférica e idade em estrelas de tipo solar: O tripleto infravermelho do Ca II, Dissertação de Mestrado, UFRJ.

Lubin, Dan; Tytler, David ; Kirkman, David, 2010, Astrophys. J., 716, 766

Luck, R.Earle; Heiter, Ulrike, 2006, 129, 1063

Lyra, W., Porto de Mello, G.F., 2005, A&A, 431, 329

Meléndez, J., Ramirez, I., Asplund, M., Baumann, P. 2010, IAU Symposium, 268, 341

Olsen E. H., 1983, A&A, Suppl. Ser., 54, 55

Olsen E. H., 1993, A&A., Suppl. Ser., 102, 89

Olsen E. H., 1994, A&A., Suppl. Ser., 106, 257

Olsen E. H., 1994, A&A., Suppl. Ser., 104, 429

Pasquini L., Liu Q., Pallavicini R., 1994, A&A, 287, 191

- Pompéia, Luciana; Barbuy, Beatriz; Grenon, Michel; Castilho, Bruno Vaz, 2010, Atrophys. J., **570**, 801
- Randich S., Gratton R., Pallavicini R., Pasquini L., Carretta E., 1999, A&A, 348, 487
- Santos N.C.; Israelian G.; Garcia Lopez R.J.; Mayor M.; Rebolo R.; Randich S.; Ecuvillon A.; Dominguez Cerdena C.; 2004, A&A, **427**, 1085
- Takeda Y.; Honda S.; Kawanomoto S.; Ando H.; Sakurai T.; 2010, A&A, **515**, A93
- Takeda Y., Ohkubo M., Sato B., Kambe E., Sadanake K., 2005, PASJ, 57, 27
- Weymann, R., and Sears, R. L., 1965, Ap. J., 142, 174

Xing, 2007, New Astronomy, 12, 265

Yi S. K., Kim Y., Demarque P., 2003, ApJS, 144, 259