

ESTUDO DA ATIVAÇÃO DE METAIS DE UM VASO DE PRESSÃO DO REATOR QUANDO SUBMETIDOS À RADIAÇÃO DE PRÓTONS

Paulo Caixeta de Oliveira

Projeto de Graduação apresentado ao Curso de Engenharia Nuclear da Escola Politécnica, Universidade Federal do Rio de Janeiro, como parte dos requisitos necessários à obtenção do título de Engenheiro.

Orientador: Antonio Carlos Marques Alvim

Rio de Janeiro Agosto de 2015

ESTUDO DA ATIVAÇÃO DE METAIS DE UM VASO DE PRESSÃO DO REATOR QUANDO SUBMETIDOS À RADIAÇÃO DE PRÓTONS

Paulo Caixeta de Oliveira

PROJETO DE GRADUAÇÃO SUBMETIDO AO CORPO DOCENTE DO CURSO DE ENGENHARIA NUCLEAR DA ESCOLA POLITÉCNICA DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE ENGENHEIRO NUCLEAR.

Examinado por:

Prof. Antonio Carlos Marques Alvim

Prof. Paulo Fernando Ferreira Frutuoso e Melo

Prof. Dilson Silva dos Santos

RIO DE JANEIRO, RJ - BRASIL AGOSTO de 2015 Oliveira, Paulo Caixeta de

Estudo Da Ativação De Metais De Um Vaso De Pressão Do Reator Quando Submetidos À Radiação De Prótons/ Paulo Caixeta de Oliveira – Rio de Janeiro: UFRJ/ESCOLA POLITÉCNICA, 2015.

XI, 68 p.: il.; 29,7 cm.

Orientador: Antonio Carlos Marques Alvim

Projeto de Graduação – UFRJ/POLI/ Engenharia Nuclear, 2015.

Referencias Bibliográficas: p. 47

1. Ativação. 2. Decaimento. 3. Penetração de íons. 4. Radiação de prótons I. Antonio Carlos Marques Alvim. II. Universidade Federal do Rio de Janeiro, Escola Politécnica, Curso de Engenharia Nuclear. III. Estudo Da Ativação De Metais De Um Vaso De Pressão Do Reator Quando Submetidos À Radiação De Prótons

Per ardua ad alta

Agradecimentos

À minha família, que sempre me ofereceu todo o apoio necessário, em especial à minha mãe.

A todos os funcionários que viabilizam meu aprendizado: aos professores dos diversos departamentos da UFRJ envolvidos e aos funcionários que cuidam da limpeza e organização da universidade, e tantos outros que fazem tudo isso possível.

Ao meu orientador, prof. Alvim, e aos meus colegas de turma, que ao longo do curso sempre estiveram ao meu lado.

Ao CNPq, pela oportunidade de bolsa fornecida para a realização deste projeto.

Aos doutores Brian Connolly e Chris Cooper pela ajuda e orientação na execução do projeto.

Resumo do Projeto de Graduação apresentado à Escola Politécnica/ UFRJ como parte dos requisitos necessários para a obtenção do grau de Engenheiro Nuclear.

ESTUDO DA ATIVAÇÃO DE METAIS DE UM VASO DE PRESSÃO DO REATOR QUANDO SUBMETIDOS À RADIAÇÃO DE PRÓTONS

Paulo Caixeta de Oliveira

Agosto/2015

Orientador: Antonio Carlos Marques Alvim

Curso: Engenharia Nuclear

O objetivo deste projeto foi investigar os efeitos da exposição dos aços RR10D (0,05% em peso de Cu) e RR15F (0,3% em peso de Cu), que são usados na fabricação de vasos de pressão do reator, à radiação de prótons. Primeiramente eles foram expostos à prótons com energias de 1, 3, 9, 20 e 30 MeV e suas atividades foram medidas ao longo de vários dias para acompanhar seu decaimento. Este procedimento foi então repetido com camadas laminadas de Fe para investigar a penetração do íon no metal. O próton incidente tinha 3,9 e 20 MeV de energia e a temperatura de todos os experimentos foi mantida constante e por volta de 30°C.

Palavras-chave: Radiação de Prótons, Ativação, Decaimento, Penetração de Íons.

Abstract of Undergraduate Project presented to POLI/UFRJ as a partial fulfillment of the requirements for the degree of Nuclear Engineer.

STUDY OF REACTOR PRESSURE VESSEL METAL ACTIVATION WHEN SUBMITTED TO PROTON IRRADIATION

Paulo Caixeta de Oliveira

August /2015

Advisor: Antonio Carlos Marques Alvim

Course: Nuclear Engineering

The aim of this project was to investigate the effects of proton beam exposure on various aspects of reactor pressure vessel steels 10D (0.05 wt% Cu) and 15F (0.3wt% Cu). Firstly we investigated the effect of the exposure of the steel to 1, 3, 9, 20 and 30MeV proton beams and measured the activity over several days to track its decay. All of the experiments mentioned above were repeated with layered Fe foil to investigate the penetration of the ion beam into the steel. The proton beam incident energy was 3,9 and 20 MeV and temperature kept approximately at 30°C.

Keywords: Proton Beams Irradiation, Activation, Decay, Ion Penetration, Reactor Pressure Vessel Metal irradiation

1	INTRODUÇÃO	.1
2	REVISÃO BIBLIOGRÁFICA	.4
3	TEORIA 5	
	3.1 Interação da radiação com a matéria	.5
	3.1.1 Interação do nêutron com a matéria	.5
	3.1.2 Interação do próton com a matéria	.5
	3.1.3 Interação do fóton com a matéria	.6
	3.1.3.1 Absorção fotoelétrica	.7
	3.1.3.2 Espalhamento Compton	.7
	3.1.3.3 Produção de pares	.8
	3.2 Análise de um espectro	.9
	3.3 Diferenças entre radiação de nêutrons e íons	.9
	3.4 Considerações experimentais	10
4	APARELHAGEM	13
	4.1 Funcionamento e noções básicas de um cíclotron	13
	4.2 Detetor HPGe	14
	4.2.1 Calibração	14
	4.2.2 Resolução	15
	4.2.3 Eficiência	16
5	ANÁLISE DE SEGURANÇA	17
	5.1 Limites de dose	17
	5.2 Prática experimental	17
	5.3 Avaliação da dose	18
	5.3.1 Cálculos	19
	5.3.2 Comparação e conclusão	20
6	ŎATIVAÇÃO	21
	6.1 Modelagem	21

	6.1.1 Visão geral do processo de modelagem	21
	6.1.2 TRIM	21
	6.1.2 Código em Fortran	23
	6.2 Resultados e Análise	28
	6.2.1 Procedimentos de Irradiação	28
	6.2.2 Medindo as amostras	29
	6.2.3 Resultados	30
	6.2.3.1 Conclusões preliminares	30
	6.2.3.2 Alto teor de cobre (RR F15)	31
	6.2.3.3 Baixo teor de cobre (RR D10)	33
	6.2.3.4 Folhas de ferro	35
-	7 CONCLUSÃO	37

eferências

Apêndice I	41
Apêndice II	44

Lista de Figuras

Figura 1 - Esquema de um vaso de pressão de um reator à água pressurizada1
Figura 26
Figura 3 – As três principais interações entre fótons e a material7
Figura 4 – Espalhamento Compton entre um fóton e um elétron8
Figura 5 – Foto da tela do programa Maestro, mostrando um espectro da amostra
irradiada (Baixo teor de cobre, a 30 MeV)9
Figura 6 – Perfil de dano para nêutrons de 1MeV, prótons de 3,2 MeV e íons de
Ni+2 a 5MeV no aço inoxidável11
Figura 7 – Comportamento dos parâmetros do feixe-alvo como função de um feixe
de prótons irradiados a 360°C12
Figura 8 – Desenho feito para explicar a esquemática do cyclotron MC4013
Figura 9 – Potenciais do D1 e D2 numa órbita circular
(http://www.np.ph.bham.ac.uk/pic/cyclotron - acessado em 04/05/2014)14
Figura 10 – Gráfico dos resultados obtidos para a calibração15
Figura 11 – Gráfico dos resultados obtidos para a resolução16
Figura 12 – Gráfico dos resultados obtidos para a eficiência17
Figura 13 –Dados medidos da taxa de dose para a amostra irradiada a 9MeV19
Figura 14 –Decaimento da taxa de dose para amostra de alto teor de cobre, irradiada
a 9MeV20
Figura 15 – Tela do TRIM, pronto para a simulação22
Figura 16 – Evolução da energia do próton conforme ele adentra o alvo23
Figura 17 – Atividade X profundidade após 1 semana da irradiação24
Figura 18 – Atividade simulada ao longo de uma semana usando a atividade à
maior profundidade
Figura 19 – Comparação entre o pico de Bragg do FORTRAN e do SRIM25
Figura 20 – Atividade inicial X energia do feixe
Figura 21 – Decaimento das energias do 55Co27
Figura 22 – Vista geral do Maestro
Figura 22 – Vista geral do Maestro
Figura 22 – Vista geral do Maestro
Figura 22 – Vista geral do Maestro
Figura 22 – Vista geral do Maestro

Figura 27 – Atividade X profundidade para as amostras irradiadas a 9 Me	V, no dia
13 de fevereiro de 2014	36
Figura 28 - Atividade X profundidade para as amostras irradiadas a 9 Me	V, no dia
17 de fevereiro de 2014	36
Figura 29 - Atividade X profundidade para as amostras irradiadas a 9 Me	V, no dia
20 de fevereiro de 2014	37

Lista de Tabelas

Tabela 1 - Composições dos aços do VPR que foram estudados	2
Tabela 2 - Comparação entre os diferentes tipos de radiação	.10
Tabela 3 - Atividades dos isótopos (20MeV, imediatamente ao fim da irradiação)	.27
Tabela 4 - Contagens X Tempo decorrido para cada energia	28
Tabela 5 - Contagens da radiação de fundo para os picos de interesse	.31

Lista de Siglas

D – Amostra com baixo teor de cobre
F – Amostra com alto teor de cobre
HPGe – Hyper-Pure Germanium Detector
PWR – Pressurized water reactor
VP – Vaso de Pressão
VPR – Vaso de Pressão do Reator

1 INTRODUÇÃO

O vaso de pressão do reator (VPR) de um reator a água pressurizada (PWR) é um componente do circuito primário.

Ele fornece uma barreira de pressão onde o núcleo e todos os seus componentes estão contidos, e é uma das barreiras de segurança, impedindo que os produtos de fissão se espalhem pelo ambiente. A figura 1 ilustra um vaso de pressão.

Figura 1 - Esquema de um vaso de pressão de um reator à água pressurizada (<u>http://2.bp.blogspot.com/-</u> <u>QcigtXk9RQA/TZ2EnLIOiGI/AAAAAAABfA/7BAIXcs9ldg/s1600/reator.jpg</u> -

acessado em 10/08/2015)

O VPR normalmente é formado de aço ferrítico ou bainítico temperado e revenido, que possui boa dureza. Os padrões mais comumente utilizados são o A533B Classe 1 ou o A508 Classe 3. Buscando criar materiais mais resistentes aos danos da radiação, a empresa Rolls Royce desenvolveu duas ligas protótipo (RR 10D e RR 15F) e solicitou ao Departamento de Metalurgia e ao Departamento de Engenharia Nuclear da Universidade de Birmingham que fizesse estudos de ativação e de resistência ao dano causado pela radiação nestes aços. As composições dos aços utilizados neste experimento estão dispostas na tabela 1.

Densidade (g/cm ³)	Massa (Uma)	Elemento	10 D	Porcentagem Atômica	15 F	Porcentagem Atômica
7.86	55.847	Fe	93.893	93.18165475	100	93.17992854
2.62	12.011	С	0.25	1.153607028	0.2	0.92483851
2.329	28.086	Si	0.2	0.394672763	0.2	0.395507916
7.43	54.938	Mn	1.5	1.513266666	1.5	1.516468839
1.82	30.974	Р	0.007	0.012525579	0.00 7	0.012552084
7.19	51.996	Cr	0.1	0.106592615	0.1	0.106818172
10.22	95.94	Мо	0.5	0.288846654	0.5	0.289457873
8.9	58.69	Ni	3.5	3.305224676	3.5	3.312218751
8.96	63.546	Cu	0.05	0.043609272	0.3	0.262209313

Tabela 1 – Composições dos aços do VPR que foram estudados

Fonte: Dr. Chris Cooper

Para realizar este experimento, foi formado um grupo de 5 alunos (comigo incluso), além dos professores Dr. Brian Connolly, Dr. Chris Copper e Dr. Martin Freer.

Um VPR recebe ao longo de sua vida aproximadamente 0,015 dpa (deslocamentos por átomo) devido à irradiação de nêutrons, e pode-se simular este dano usando radiação de prótons. Esta opção normalmente é adotada pois, para se saber com precisão o quanto uma amostra de material receberia de dano, esta teria que ser colocada dentro de um VPR, o que levaria muito tempo e é muito custoso. Outra vantagem de se utilizar prótons acelerados para simular o dano causado por nêutrons é que outras variáveis (como por exemplo, dose recebida, ativação, dureza, temperatura etc) podem ser investigadas também. Neste experimento, um cíclotron modelo MC40 foi usado para

acelerar os prótons e irradiar as amostras. Para medir a atividade das peças, um detector de Germânio Hiper-Puro (HPGe) foi usado.

Para inserção no cíclotron, as amostras foram laminadas de forma que sua área superficial fosse compatível com o feixe emitido pelo acelerador. Além disso, elas tinham espessuras diferentes, para uma possível relação entre espessura e ativação (e identificar se uma amostra mais fina fica mais ou menos ativa que a mais espessa). Para simular a atividade que as peças receberiam do núcleo, as amostras foram irradiadas em diversas energias (1, 3, 9, 20 e 30 MeV).

Quando os prótons interagem com os elementos que constituem a amostra, novos elementos se formam, e em sua maioria são altamente instáveis. Para se estabilizar, eles decaem e emitem diversas radiações, em especial a radiação gama. Esta radiação emitida é detectada pelo HPGe e sua energia medida. Como cada elemento emite um raio gama de energia específica, podemos identificar os elementos criados após a irradiação, além de acompanhar o decaimento das emissões ao longo do tempo para determinar após quanto tempo uma amostra estará segura o suficiente para ser trabalhada.

Este método requer um detector de alta resolução, para que, caso haja dois picos de energia muito próximos, eles não sejam confundidos e haja imprecisão na contagem. Por este motivo o HPGe foi escolhido.

Além do procedimento experimental, simulações computacionais foram feitas, usando dois programas: SRIM/TRIM e o código escrito por Ben Palmer (Palmer, 2010) em sua tese de mestrado, em G FORTRAN. O primeiro fornece um mapa de como a radiação se espalhará dentro da peça, e gera um arquivo chamado EXYZ. Este arquivo foi então usado como entrada para o código e como saída obteve-se uma simulação de quais elementos foram gerados após a interação do próton com a amostra, incluindo meia vida, atividade e etc.

Concomitantemente a todos os procedimentos, também sempre esteve em mente a segurança. Por isso, várias medidas dos níveis de radiação de todos os locais que continham radiação foram feitas para garantir a segurança de todos os envolvidos.

Ao final do experimento, constatou-se que os aços ficam pouco ativados, podendo ser manuseados logo após o fim da radiação. Não foram obtidos dados para analisar o dano causado ao material.

2 REVISÃO BIBLIOGRÁFICA

Antes de começar o experimento, pesquisou-se na literatura sobre a compatibilidade de se usar prótons para simular danos causados por nêutrons.

Was et al. (2005) em sua pesquisa concluíram que os danos causados tanto por prótons quanto por nêutrons a metais do VP eram muito similares, embora os prótons devam ter energias maiores para atingir o mesmo efeito.

Zhang et al. (2012) concluíram que as radiações de aços do VP com prótons não causavam alterações no módulo de Young da peça, mas um aumento muito grande na dureza. Resultados similares também foram obtidos quando se fazia o tratamento de temperatura.

Baseado nisto, concluiu-se que seria possível usar prótons para simular o dano causado por nêutrons nas peças de metal, bastando apenas que se fizessem as adaptações necessárias.

3 TEORIA

3.1 Interação da radiação com a matéria

3.1.1 Interação do nêutron com a matéria

Um dos princípios usados neste projeto é que o vaso de pressão estará sempre sendo irradiado durante sua vida útil, que no caso do reator nuclear se dá em sua maioria por nêutrons.

Devido à sua neutralidade eletrônica, os nêutrons passam pelas nuvens de elétrons e interagem com o núcleo elasticamente (Was, 2007). Baseado no modelo de colisão elástica, a energia de recuo T causada por um nêutron incidente pode ser obtida como uma função da energia incidente e do ângulo incidente (Was, 2007).

$$T = 2(1+A)^2 * E_i * (1 - \cos[\varphi])$$
(1)

Onde Ei é a energia incidente, ϕ o ângulo incidente e A o número atômico do átomo alvo.

A energia média de recuo pode ser expressa como:

$$T = 2(1+A)^2 * E_i$$
 (2)

3.1.2 Interação do próton com a matéria

O próton tem carga positiva e, portanto, interage com a nuvem eletrônica, além do próprio núcleo. Quando estamos considerando interações entre dois nucléons, o potencial interatômico mostrando na figura 2 deve ser utilizado (Lesar, 2013):

Figura 2

Distribuição do potencial interatômico pela distância(<u>http://users-</u> phys.au.dk/philip/pictures/physicsfigures/physicsfigures.html - acessado em <u>04/05/2014</u>)

Legenda: *repulsive part* – parte repulsiva , *resulting potential* – potencial resultante, *attractive part* – parte atrativa , *interatomic distance* – distância interatômica , *interatomic potential* – potencial interatômico.

O espectro de energia usado neste projeto é de 1 a 30 MeV. Os modelos de interação podem sem expressos com o modelo de Coulomb, sem que alterações sejam necessárias. A energia média de recuo neste caso é descrita na equação (3) (Was, 2007).

$$\overline{T} = Ed\ln\left(\gamma EiEd\right) \tag{3}$$

Onde Ed é a energia de separação causada pela blindagem eletrônica e

$$\gamma = 4A(1+A)^2,\tag{4}$$

Comparando as fórmulas (1) e (3), é fácil perceber que para um mesmo valor de Ei, o nêutron produz uma energia de recuo muito maior que o próton. Portanto, para causar o mesmo dano ao material, a energia do próton tem que ser muito superior à do nêutron.

3.1.3 Interação do fóton com a matéria

Os três principais processos de interação de um fóton com a matéria são: absorção fotoelétrica; efeito Compton e produção de pares. Qual processo predominará vai

depender do número de atômico do alvo e da energia do fóton incidente. A figura (3) mostra a relação entre esses dois fatores e o processo que ocorrerá.

Figura 3 – As três principais interações entre fótons e a material (<u>http://rle.dainf.ct.utfpr.edu.br/hipermidia/images/radiotera/fig4.png</u> – acessado em04/05/2014)

3.1.3.1 Absorção fotoelétrica

Quando um átomo absorve um fóton de baixa energia, como resultado ele pode emitir um elétron de uma de suas camadas. A energia desse elétron é dada pela equação 5.

$$Ee = hv - B.E , (5)$$

onde hv é a energia do fóton incidente, BE é a energia de ligação da camada onde o elétron ejetado estava.

Se o elétron emitido é de uma das camadas internas, os elétrons remanescentes serão re-arranjados, indo das camadas mais externas para as mais internas, e nesse processo emitirão raios X. Esses raios X também podem ser vistos no espectro como ruídos.

3.1.3.2 Espalhamento Compton

O espalhamento Compton diz respeito ao espalhamento inelástico entre o fóton e a partícula (geralmente elétron). Quando o fóton incidente de alta energia interage com o

átomo, a ligação entre o elétron e o núcleo é enfraquecida a ponto de podermos considerá-lo livre, e usarmos o modelo de espalhamento de Compton. A figura (4) ilustra este tipo de interação.

Figura 4 – Espalhamento Compton entre um fóton e um elétron (<u>http://theory.uwinnipeg.ca/physics/quant/node4.html</u>, Figure 27.5 – acessado em 04/05/2014)

A energia do fóton espalhado é dada pela equação (6)

$$E\gamma' = E\gamma + h(1 - \cos\theta)/m_e c, \tag{6}$$

onde $E\gamma'$ é a energia final, $E\gamma$ é a energia inicial, h é a constante de Planck, θ é o ângulo que ele foi desviado da rota original, m_e é massa do elétron e c é a velocidade da luz.

A equação (6) mostra dependência entre a energia perdida pelo fóton e o ângulo do espalhamento. Quanto maior o ângulo de espalhamento, maior a perda de energia.

3.1.3.3 Produção de pares

A produção de um par elétron-pósitron se dá após raios gama de alta energia interagirem com a matéria. Enquanto o elétron sai do núcleo, o pósitron interagirá com outros elétrons e será aniquilado. Neste processo, dois fótons com energia de 511 KeV são criados. Como esses fótons saem em direções opostas, apenas um deles chega a ser detectado. Esta reação só ocorre se a energia do gama for maior que 2x511 MeV.

3.2 Análise de um espectro

Figura 5 – Foto da tela do programa Maestro, mostrando um espectro da amostra irradiada (Baixo teor de cobre, a 30 MeV)

A maioria dos picos correspondem aos raios gama característicos que são de nosso interesse, apesar de ainda haver alguns que não serão úteis na identificação dos isótopos. Por exemplo, os picos na parte esquerda da figura 5 (com energia por volta de 100 KeV) são devido à atividade do chumbo, que foi usado na blindagem. Além disso, alguns picos com energias parecidas podem ter sido confundidos e apontados em outros picos.

O pico de 511 KeV também precisou de uma investigação mais detalhada antes de ser usado. Uma primeira explicação seria a energia que vem da produção de pares. Porém, como os raios gamas incidentes não são de energia tão altas, é muito pouco provável a ocorrência de produção de pares. Mas como ele é sempre o maior pico em todas as medidas, a melhor explicação para ele é a aniquilação de pósitrons que vêm do decaimento do β +, e um bom exemplo disso é o ⁵⁶Co, que emite partículas β + quando decai para ⁵⁶Fe (Was, 2002).

3.3 Diferenças entre radiação de nêutrons e íons

A tabela 2 resume bem as diferenças entre os diferentes tipos de íons.

Tabela 2 - Comparação entre os diferentes tipos de radiação (Little, 2006)

	Vantagens	Desvantagens		
Elétrons	-Vêm de fontes relativamente	-Energia limitada a 1MeV		
	simples	-Sem cascatas		
	- Altas taxas de dose (irradiação por	-Requer temperaturas maiores		
	menos tempo)	-Não permite muito controle da		
		temperatura da amostra		

		-Formato do feixe sem perfil de		
		intensidade uniforme		
		-Sem transmutação		
Íons	- Altas taxas de dose (irradiação por	-Penetração bastante limitada		
Pesados	menos tempo)	-Perfil de dano com muitos picos		
	-Alta temperatura média	-Requer temperaturas maiores		
	-Produção de cascatas	-Sem transmutação		
		-Possibilidade de mudanças na		
		composição via implantação de		
		íon		
Prótons	-Taxas de doses aceleradas	-Muito pouca ativação do alvo		
	(irradiação por tempo moderado)	-Cascatas menores e bem		
	-ΔT necessário é pequeno	separadas		
	-Penetra bastante	-Sem transmutação		
	-Perfil planar de dano de dezenas de			
	mícrons			

O próximo passo é verificar a equivalência entre os dois tipos de radiação, e isto é feito observando o estado final do material, e não o caminho que a radiação percorreu. Para medir os efeitos da radiação, há diversas técnicas, como a alteração no endurecimento da matriz e segregação dos grãos da fronteira, induzidos pela radiação (Was et at, 2002).

A maior dificuldade no que se refere aos procedimentos experimentais é escolher o volume do material que pode ser testado satisfatoriamente para os dois tipos de radiação. Enquanto nêutrons têm o poder de penetração da ordem de centímetros, prótons de 1MeV só entram por volta de 10µm num metal.

3.4 Considerações experimentais

Apesar de perderem em penetração, os prótons têm algumas vantagens em relação aos nêutrons. Os prótons criam um perfil de deformação plano ao longo de dezenas de mícrons de espessura, o que significa que este vai ser profundo o suficiente para alterar as propriedades do material. A figura 6 mostra a comparação entre prótons de 3.2MeV, nêutrons de 1MeV e íons de níquel de 5MeV. As taxas de dose dos prótons são de 100 a 1000 vezes maiores que as dos nêutrons, o que significa que é necessário um período de tempo menor para causar o mesmo dano. Isso se dá porque, além da das colisões, os prótons interagem eletronicamente e causam ionização do material.

Figura 6 – Perfil de dano para nêutrons de 1MeV, prótons de 3,2 MeV e íons de Ni+2 a 5MeV no aço inoxidável. (Was et al, 2002)

Legenda: depth - profundidade, dpa - deslocamentos por átomo

A figura 7 resume as principais características da irradiação por prótons. Para danos maiores, a taxa de dose na superfície decai porque a seção de choque de espalhamento elástico é pequena e, portanto, o tempo necessário pra se atingir determinado nível de dose aumenta, causando um aumento no tempo de irradiação.

A transferência de energia aumenta linearmente com a energia do feixe, e é necessária a remoção de calor caso a energia do feixe aumente muito.

Figura 7 – Comportamento dos parâmetros do feixe-alvo como função de um feixe de prótons irradiados a 360°C (Was et al, 2002)

Legenda: *dose rate* – taxa de dose, *time to reach 1 dpa* - tempo para atingir 1 dpa , *energy deposited* – energia depositada , *beam current* – corrente do feixe , *energy* - energia

4 APARELHAGEM

4.1 Funcionamento e noções básicas de um cíclotron

Para a geração de prótons, foi usado o cíclotron modelo MC40 do Departamento de Física da Universidade de Birmingham. O aparelho é capaz de acelerar partículas carregadas como prótons, dêuterons, hélio e etc, e a energia à qual ele será acelerado depende da massa da partícula acelerada e das configurações do cíclotron.

O funcionamento de um cíclotron pode ser descrito resumidamente como o movimento de uma partícula carregada num campo magnético perpendicular ao trajeto. Se o campo for uniforme, ele se moverá circularmente, se acelerando a cada volta.

O MC40 consiste de quatro quadrantes com 90 graus em cada cavidade. Duas cavidades diametricalmente opostas (ativas – D1 e D2) são conectadas para alternar a corrente, enquanto as outras duas (inativas) são aterradas. Os íons que passam através do vão entre duas cavidades são acelerados pela diferença de potencial entre elas.

Figura 8 – Desenho feito para explicar a esquemática do cíclotron MC40

Legenda: dees - ativas, dummy dees - inativas

As diferenças de potencial são produzidas pela diferença entre o potencial das cavidades ativas e o potencial nulo dos inativos (que são aterrados). A alternância de frequência aplicada aos ativos está relacionada com a frequência orbital dos íons, e

existem dois modelos para essa frequência. O modo fundamental (N=1) se refere à situação na qual a frequência de alternância se iguala à frequência orbital do íon. No primeiro harmônico (N=2), a frequência de alternância é duas vezes à frequência orbital do íon. A figura 9 ilustra essas duas situações.

Figura 9 – Potenciais do D1 e D2 numa órbita circular (<u>http://www.np.ph.bham.ac.uk/pic/cyclotron</u> - acessado em 04/05/2014)

Como o campo magnético máximo é de por volta de 1,8T, as energias para os diferentes íons são:

- Prótons: 11 38 MeV (N=1) e 3 9 MeV (N=2)
- Dêuterons: 5,5 19 MeV (N=2)
- 3He: 35 53 MeV (N=1) e 9 27 MeV (N=2)
- 4He: 11 37 MeV (N=2)

4.2 Detetor HPGe

Antes do detetor poder ser usado para identificar os isótopos, três fatores tiveram que ser investigados: calibração, resolução e eficiência.

4.2.1 Calibração

Para a calibração, foram usadas as fontes-teste conhecidas de ²⁴¹Am, ¹³⁷Cs e ⁶⁰Co. A calibração é feita ligando os picos às energias das radiações de decaimento dessas amostras. Os quatro picos mais significantes são mostrados na figura 10.

Figura 10 - Gráfico dos resultados obtidos para a calibração

4.2.2 Resolução

Para um determinado pico, a resolução é dada pela equação (7)

$$R = FWHM(E)/Centróide(E),$$
(7)

onde FWHM é a máxima largura à meia altura e o centróide é o centro do pico, para aquela energia.

A figura 11 mostra o gráfico da resolução para diferentes picos de energia.

Figura 11 - Gráfico dos resultados obtidos para a resolução

A relação entre resolução e a energia equivalente pode ser útil quando se deseja verificar como o sistema de detecção funciona, pois há dois tipos principais de erros que podem ocorrer durante o processo: estática e ruído nos sistemas eletrônicos. Esses dois erros se expressam de formas diferentes no gráfico da resolução. Se o erro predominante for o de estática, ele gerará uma potência de -0,5 na fórmula usada para fazer o gráfico, enquanto o outro tipo de erro gera uma potência de -1 (Vuolo, 1996).

Os resultados obtidos mostram uma potência de -0,944, indicando que a fonte predominante de erro foi o ruído.

4.2.3 Eficiência

A eficiência de um detector para uma energia específica é calculado da seguinte forma:

$$\text{Eficiência} = \frac{\frac{N}{t}}{A \frac{\Omega}{4\pi}}$$
(8)

onde N representa o número de contagens daquela energia, t é o tempo que a medição durou, A é a área do gráfico e Ω é o ângulo sólido.

Figura 12 - Gráfico dos resultados obtidos para a eficiência

5 ANÁLISE DE SEGURANÇA

A questão da segurança sempre foi levada em consideração ao longo de todo o projeto, principalmente devido ao fato que houve contato direto com materiais irradiados.

5.1 Limites de dose

O limite de dose para trabalhadores da área nuclear no Reino Unido (local onde o experimento foi realizado) é de 50mSv/ano, ou 2,28µSv/h. Para uma pessoa do público, o limite anual é de 1mSv (ICRP 60).

5.2 Prática experimental

Foram consideradas como fontes de radiação a radiação vinda das amostras e a radiação de fundo.

Antes de serem retiradas da câmara de irradiação, a atividade das amostras foi medida usando um contador Geiger Muller para garantir que estavam dentro dos limites de segurança. Esta parte foi feita pelos professores do departamento Dr. Brian Connolly e Dr. Chris Cooper, pois eles tinham mais experiência neste tipo de procedimento, e os alunos são considerados indivíduos do público.

Após a atividade ter decaído a níveis seguros, elas foram ensacadas individualmente em sacolas plásticas para facilitar o manuseio, e quando não estavam sendo usadas ficavam guardadas num cofre na sala de materiais radioativos. Quando as amostras estavam sendo guardadas ou retiradas, o mínimo de tempo possível era usado, assim como somente uma pessoa entrava na sala. Para manuseio das amostras (para retirar do plástico e colocar no detector), pinças foram usadas. Enquanto as medições eram feitas, havia placas de chumbo servindo como blindagem entre a fonte e a pessoa operando o detector.

5.3 Avaliação da dose

O principal objetivo desse cálculo foi definir os níveis de radiação aos quais seríamos exposto durante o experimento. Três diferentes métodos foram usados: simulação como o código FORTRAN, medidas com o contador Geiger Muller e cálculo da atividade com os dados obtidos.

A simulação foi usada como um guia inicial, para se ter uma idéia da ordem de grandeza dos valores envolvidos. A medição com o contador deu o real valor das taxas de dose, e serviu também como modelo de comparação para os resultados obtidos com a medição do HPGe.

Também foram medidos, da peça irradiada a 9 MeV, valores a 3 distâncias diferentes (colado à fonte, a 10 cm dela e a 1m), ao longo do tempo. Os resultados estão na Figura 13.

Legenda: *dose decay* – decaimento da dose , *distance* – distância , *distance from sample* – distância da amostra , *time* – tempo

5.3.1 Cálculos

Para se chegar aos valores em Sv a partir dos dados que foram obtidos (interações), algumas conversões foram feitas. Primeiramente, foi obtida a dose equivalente usando a seguinte fórmula:

$$HT = \Sigma W \mathbf{t} \cdot D \mathbf{t}, \tag{9}$$

onde Wt é o peso correspondente à radiação (que nosso caso – gama – é 1) e Dt é a dose absorvida.

A dose absorvida foi calculada da seguinte fórmula:

$$\mathbf{D} = d\bar{\varepsilon} dm \tag{10}$$

onde $d\overline{\varepsilon}$ é a energia média contida dentro da massa dm. No experimento, a equação pode er escrita como:

$$D = \Psi \cdot \mu en\rho \tag{11}$$

onde Ψ é o fluxo de energia, e μenp é o coeficiente de atenuação de massa.

Esta equação pode derivada, e chegamos a:

$\Psi = E \cdot A \cdot \Omega 4\pi$

onde E é a energia da radiação, A é a atividade e Ω é o ângulo sólido da fonte para o corpo humano

Finalmente, juntando para todos as energias dos diferentes raios gama, temos

$H = \Sigma E i \cdot A \cdot \Omega 4 \pi \cdot u e n \rho$

Com isso, podemos relacionar os dados do detector e avaliar a taxa de dose recebida.

Por limitação de tempo e de esforço computacional, não foi feito o cálculo para todo o espectro. Alguns picos menores e insignificantes foram deixados de lado, e só os mais relevantes foram levados em consideração. Os resultados, exibidos na figura 14, mostram a atividade somente da fonte, sem o acréscimo da radiação de fundo.

Figura 14 –Decaimento da taxa de dose para amostra de alto teor de cobre, irradiada a 9MeV

Legenda: dose rate - taxa de dose , decay - decaimento , time - tempo

5.3.2 Comparação e conclusão

Comparando os resultados medidos e os calculados, percebemos que a única diferença entre os dois é a radiação de fundo. Além disso, como foi previsto e conferido, as amostras decaem muito rapidamente, fazendo com que durante quase a totalidade do

(13)

experimento, os níveis de radiação ao qual fomos expostos tenha sido basicamente a radiação de fundo, que está muito abaixo dos limites de segurança.

6 ATIVAÇÃO

6.1 Modelagem

6.1.1 Visão geral do processo de modelagem

A simulação foi feita não só para se ter uma idéia dos níveis de radiação envolvidos, mas também para se ter uma idéia de quais isótopos seriam gerados.

Para fazer a simulação, foi usado um código escrito em FORTRAN por Ben Palmer, aluno de pós-graduação da Universidade de Birmingham (Palmer, 2010). O código usa como entrada os dados gerados pelo TRIM para modelar o resultado da irradiação. Os dados obtidos com este código foram comparados com os do HPGe, para que os isótopos criados fossem identificados. Além disso, o código também foi usado para prever o quanto o aumento da energia do próton iria influenciar em sua atividade inicial (assim que o processo de irradiação terminasse).

6.1.2 TRIM

O TRIM é um programa que simula vários aspectos da interação da radiação com um alvo. Ele funciona usando algoritmos estatísticos (como simulação de Monte Carlo) para calcular as interações quantum-mecânicas entre o átomo e o íon, e faz isso diversas vezes para ter uma distribuição estatisticamente relevante dos prováveis resultados.

No caso deste experimento, a composição do material utilizado no estudo (alvo) foi simplificado, pois foi constatado que o código em FORTRAN não se comportava muito bem quando muitos elementos de baixa concentração eram usados. A composição utilizada para simulação foi: 95% Fe, 1,5% Mn e 3,5% Ni. Além disso, como será mostrado mais adiante, esta simplificação não invalidou a simulação.

A figura 15 apresenta a tela do programa TRIM usado para a obtenção do arquivo EXYZ, que mostra a distribuição da energia de uma partícula e sua posição

dentro do alvo. Ele acompanha a partícula até que ela tenha apenas 10eV de energia. Os dados do arquivo EXYZ foram plotados no gráfico representado na figura 16.

SRIM		TRIM S	Setup Window	I		_ 🗆 ×
Read Me Restor	TRIM Demo re Last TRIM Data	Window)	Type Detailed Calculat NO Graphics (Fa nent Number M 1	of TRIM C tion with full Dama astest Calc., or run Mass (amu) Enerr 1.008	alculation ge Cascades ning TRIM in backgr gy (keV) Angle of 9000 ? 0	B vund) v ? Incidence
TAR Tary Ad Layer Name	RGET DAT get Layers Id New Layer Width 1000 mm	A ? Density Compound (g/cm3) Corr Gas ▼ 7.89531 1 7	Add New El Symbol	ut Elem lement to La Name	Componential Auger Componential Atomic Weight Ator (amu) Stoir 26 55.847 95 28 58.69 3.5 25 54.938 1.5	-ayer and Dictionary Damage (eV) ch or % Disp Latt Surf ? 95.00 25 3 4.34 03.50 25 3 4.46 01.50 25 3 2.98
Special Pa Name of Calculation H (10) into Layer 1 ? AutoSave at lo ? Total Number ? Bandom Num	on # 100 of lons 1000	Stopping Power Version SRIM-2008 Plotting Window Depths Min 0 Mex 1000000000	? Output D ? Ion F ? ? Bac ? ? ? A ? A ?	Disk Files Ranges :kscattered lons 	Resume save TRIM calc. oils	d Save Input & Run TRIM Clear All Calculate Quick Range Table

Figura 15 – Tela do TRIM, pronto para a simulação

Uma restrição do TRIM é que a menor energia que se pode colocar para o próton é de 7MeV, pois abaixo disso os prótons não seriam capazes de romper a barreira de Coulomb do núcleo. Portanto só puderam ser simuladas as interações com os prótons de 9, 20 e 30 MeV.

Figura 16 – Evolução da energia do próton conforme ele adentra o alvo

Legenda: *energy drop with penetration distance* – diminuição da energia com a distância de penetração , *ion energy* – energia do íon , *distance through specimin* – distância dentro do espécime

Esta simulação foi repetida 1000 vezes, para cada energia, e então os valores foram colocados no código em FORTRAN.

6.1.2 Código em Fortran

O código foi usado para calcular a atividade dos isótopos produzidos, o espectro gama resultante e a atividade total da amostra. A descrição de como o código funciona mais detalhadamente é descrita em Palmer (2010).

A figura 17 mostra a distribuição atividade x energia do próton x profundidade da penetração. A figura 18 mostra o decaimento da atividade com o tempo, que como se pode facilmente perceber, é bem acelerada.

A figura 19 mostra a comparação entre os dados do FORTRAN e do TRIM.

Figura 17 - Atividade X profundidade após 1 semana da irradiação

Legenda: activity vs energy at depth – atividade X energia contra profundidade,

1 week after radiation – uma semana após a irradiação, activity – atividade, energy –

energia, depth - profundidade

Figura 18 – Atividade simulada ao longo de uma semana usando a atividade à maior profundidade

Legenda: *moddeled* - modelada, *decay across one week* – decaimento ao longo da semana, *activity* – atividade , *energy* – energia , *depth* - profundidade

Figura 19 - Comparação entre o pico de Bragg do FORTRAN e do SRIM

Legenda: *comparasion* – comparação, *energy* – energia, *depth* – profundidade, *beam* - feixe

A relação direta entre aumento de energia e aumento da profundidade era esperada, pois quanto maior a energia colocada no próton, mais vezes ele pode interagir perdendo energia e continuar avançando.

Também foi feito um gráfico do aumento da atividade inicial com o aumento da energia inicial do próton (figura 20).

Figura 20 - Atividade inicial X energia do feixe

Legenda: *activity* – atividade , *energy* – energia , *beam* – feixe , *initial activity with increaseing beam energy* – atividade inicial com o aumento da energia do feixe

A maior importância do código foi gerar uma tabela com a previsão de quais isótopos surgiriam, para que fosse encontrados posteriormente com os dados do HPGe. A tabela 3 mostra os mais ativos, para a energia de 20MeV, ao fim da irradiação.

Elemento	Z	Α	Atividade (Bq)
Со	27	55	0.43E+07
Mn	25	51	0.68E+06
Со	27	56	0.40E+06
Ni	28	57	0.20E+06
Cu	29	61	0.15E+06
Cu	29	60	0.88E+05

Tabela 3 - Atividades dos isótopos (20MeV, imediatamente ao fim da irradiação)

Com essa previsão, as energias dos decaimentos mais frequentes foram pesquisadas e então foram comparadas às energias dos maiores picos detectados com o HPGe. Foram confirmadas a presença dos seguinte isótopos: 55Co, 56Co,51Mn e 57Ni.

Para encontrar os isótopos, o procedimento a seguir foi adotado.

Primeiro, usam-se as contagens de suas energias características de decaimento (por exemplo, no 55Co são 477KeV,931KeV e 1408KeV). Os dados para o 55Co são apresentados no gráfico da figura 21 e expostos na tabela 4, que foram usados para estimar sua meia vida e verificar se ela é compatível com a meia-vida real do elemento.

Figura 21 – Decaimento das energias do 55Co

Legenda: gamma peaks decay – decaimento dos raios gama , gamma intensity – intensidade dos gamas , time after beam exposure – tempo após exposição ao feixe Tabela 4 – Contagens X Tempo decorrido para cada energia

	477KeV	931KeV	1408KeV
21600 s	675	1071	136
60660 s	212	416	43
172800 s	38	46	10
518400 s	13	6	1
1036800 s	16	7	0
1900800 s	16	6	0

Essa estimativa foi feita do modo tradicional, verificando o tempo que se passava até que as contagens se reduzissem pela metade. A meia vida calculada para o 55Co foi de 17,5 horas, e sua meia vida real é de 25 horas. Apesar de os valores serem aparentemente muito diferentes, considerando todas as aproximações envolvidas (como o espaçamento entre as medidas, e as próprias incertezas das medidas, além do fato do 55Co também decair por β +, que não é detectado), eles são compatíveis, pois têm a mesma ordem de grandeza.

O mesmo procedimento foi feito com os outros isótopos encontrados.

Em relação aos isótopos que não foram encontrados, há três principais razões para isto. Primeiramente, é que alguns foram produzidos em quantidades muito pequenas, a ponto de não serem detectados, ou serem confundidos com a radiação de fundo. A segunda é que algumas meias-vidas são tão pequenas (da ordem de segundos, ou até menos), que quando a amostra foi repassada para nós para medida da atividade, elas já teriam decaído até estarem no nível da radiação de fundo. Por último, como muitos isótopos decaem da mesma maneira, muitos emitem radiações gama de energias iguais ou muito próximas, fazendo com que sejam mascarados, uma vez que é impossível diferenciar raios gama de mesma energia para descobrir de onde vieram. Um exemplo disso é o ⁵¹Mn, cujo raio gama mais frequente é o de 511KeV (que também é o mais frequente de outros isótopos), porém, os outros são de frequência muito baixa para detectarmos, e portanto não podemos confirmar a sua presença.

6.2 Resultados e Análise

6.2.1 Procedimentos de Irradiação

As energias usadas para ativar as amostras e as respectivas configurações do cíclotron foram:

9.4MeV

A irradiação foi feita no dia 7 de fevereiro de 2014, começando às 14:20 e terminando às 15:25. Foi aplicada uma corrente de 3μ A para depositar uma carga total de 1,2mC por um colimador de 30x10 mm, e ativar a amostra a 9 MeV.

21MeV

A irradiação foi feita no dia 13 de fevereiro de 2014, começando às 14:45 e terminando às 15:40. Foi aplicada uma corrente de 3μ A para depositar uma carga total de 0,6mC por um colimador de 10x5 mm, e ativar a amostra a 20 MeV.

3.7MeV

A irradiação foi feita no dia 14 de fevereiro de 2014, começando às 15:00 e terminando às 16:20. Foi aplicada uma corrente de $0,5\mu$ A para depositar uma carga total de 0,6mC por um colimador de 10x5 mm, e ativar a amostra a 3 MeV.

2.9MeV (degradadores foram utilizados para ativar a amostra a 1MeV)

A irradiação foi feita no dia 18 de fevereiro de 2014, começando às 13:00 e terminando às 14:00. Foi aplicada uma corrente de 2μ A para depositar uma carga total de 0,6mC por um colimador de 10x5 mm, e ativar a amostra a 1 MeV.

29MeV

A irradiação foi feita no dia 25 de fevereiro de 2014, começando às 15:25 e terminando às 16:30. Foi aplicada uma corrente de 2μ A para depositar uma carga total de 0,6mC por um colimador de 10x5 mm, e ativar a amostra a aproximadamente 28 MeV.

A diferença entre a energia de entrada no cíclotron aquela à qual a amostra fica ativada pode ser explicada pelas perdas que o próton sofre entre o momento que sai do acelerador e chega na amostra. Sabendo disto, o operador estima essa perda e a compensa, aumentando a energia inicial.

No caso da ativação a 1MeV, como 2,9MeV é a menor energia a que o cíclotron consegue acelerar, barreiras (degradantes) foram colocadas no caminho até a amostra, para que se chegasse à energia requerida.

É importante ressaltar que toda a operação do cíclotron foi feita pelos físicos do departamento, e as amostras só foram repassadas para a medição após seu nível de atividade estar abaixo dos limites de segurança. Além disso, as amostras ativadas a 30MeV estiveram durante todo o procedimento de medida com atividades acima dos limites para o público, e por causa disso as medidas foram feitas pelo Dr. Brian Connolly.

6.2.2 Medindo as amostras

Uma vez que o HPGe foi devidamente calibrado e suas características conhecidas, o procedimento pôde começar. Foram feitas várias medidas entre os dias 7 de fevereiro e 5 de março de 2014. As tabelas com todas as medidas feitas estão em anexo.

O tempo que cada medida levou foi alternado entre 300 e 600 segundos, dependendo do quão ativas as amostras estavam. Uma vez que a medida era concluída, os dados eram analisados no Maestro (software usado para leitura dos dados do detector – figura 22), para que as informações de cada pico pudessem ser extraídas. A radiação de fundo foi medida por 1200 segundos, para que ela pudesse ser descontada durante a análise.

Figura 22 - Vista geral do Maestro

6.2.3 Resultados

Como o principal objetivo era identificar as taxas de decaimento das amostras, as contagens de cada pico foram seguidas ao longo do tempo. Para isto, usamos como parâmetro de corte que cada pico tivesse no mínimo 100 contagens e não mais que 10% de erro para essas contagens. Tais parâmetros foram adotados para se ter certeza de que os picos vinham das amostras e não eram provenientes de fundo ou ruído. Além disso, como alguns picos decaíam muito rápido e desapareciam de uma medida para outra, só foram analisados os decaimentos dos picos que duraram até a última medida.

Por ter sido a primeira amostra a ser irradiada e por ter ficado ativa até o último dia de medidas, vamos discutir aqui os resultados da amostra de 20MeV. Os resultados e análise de todas as outras amostras podem ser encontrados em anexo.

6.2.3.1 Conclusões preliminares

Primeiramente, analisando separadamente os dados da radiação de fundo, percebemos que os picos de 74 e 85 KeV pertenciam somente à radiação de fundo. Chegou-se a essa conclusão porque esses picos não decaíam com o tempo, além de não aumentarem suas contagens durante a mediação de nenhuma amostra. Também foi aferido que nenhum dos picos da radiação (tabela 5) de fundo coincidia com os das amostras.

14/mar	13:36:01	1200s live
Energia	Contagens	Contagens/s
74,83	6488	5,406667
85	3953	3,294167
510,44	222	0,185
847,56	5	0,004167
1040,01	9	0,0075
1238,99	21	0,0175
1764,46	18	0,015
2614,36	30	0,025

Tabela 5 – Contagens da radiação de fundo para os picos de interesse.

Ao longo da análise, percebeu-se que ao dobrar o tempo da medida (de 300 para 600 segundos), não se obtinha o dobro de contagens, e algumas medidas adicionais da radiação de fundo foram feitas para confirmar isso. Este fato deu origem a alguns problemas que serão abordados mais à frente.

Agora serão discutidos os resultados das três amostras irradiadas a 20MeV.

6.2.3.2 Alto teor de cobre (RR F15)

Os resultados completos estão em anexo. Os picos que foram acompanhados ao longo do tempo foram os de 511, 846, 1037, 1238, 1771 e 2598 KeV. Seus respectivos decaimentos ao longo do tempo foram representados nas figuras 23 e 24.

Legenda: *counts/s against time for different energies* – contagens por Segundo X tempo para diferentes energias, *counts/s* – contagens/s, *time* - tempo

energias de raio gama para a amostra com alto teor de cobre. Obs: as legendas das faixas de energia foram nomeadas de acordo com as previsões feitas pelo Maestro, e não necessariamente são os isótopos de fato produzidos. As energias correspondentes a cada uma podem ser encontradas em anexo.

Figura 24 - Gráfico mostrando o decaimento do pico de 511 KeV

Legenda: *counts/s against time for the 511 KeV peak* – contagens por Segundo X tempo para a energia de 511 KeV, *counts/s* – contagens/s, *time* - tempo

O pico de 511 KeV foi mostrado num gráfico separado para deixá-los mais claros, pois sua escala é muito maior que a dos outros.

A primeira coisa que pode ser notada é que os gráficos não se assemelham ao de um decaimento exponencial, como são os gráficos de decaimento. O motivo para isso é que o principal elemento produzido (⁵⁶Co), tem meia-vida de 77 dias, e como a atividade foi medida ao longo de 16 dias, ele decaiu muito pouco (nem ¼ de sua meia vida se passou). Isso faz com que a diferença de atividade ao longo do tempo tenha sido pequena.

Além disso, houve uma flutuação nos dados (aparentemente o número de contagens não cai continuamente ao longo do tempo). Isso acontece pela diferença nos tempo de medida, pois como foi apontado anteriormente, o dobro do tempo de medida

não resulta no dobro de contagens, alterando portanto a proporção contagens por segundos, utilizada para fazer os gráficos.

Também tem que se ressaltar que conforme o passar do tempo e a atividade reduzia, o erro intrínseco da medida (da eletrônica e etc) e as diferenças de como os picos eram selecionados no Maestro se tornavam cada vez mais significativas e aumentavam ainda mais os erros associados às contagens, fazendo com que o gráfico não apresentasse uma queda constante. Tais elementos eram ainda mais impactantes quanto mais lento o decaimento.

A última coisa a se ressaltar é que o pico de 1770 KeV aparece contendo 0 contagens, e isso se deu porque ele teve menos de 100 contagens e, portanto, foi descartado.

O único pico que não está relacionado com o decaimento dos isótopos produzidos é o de 511KeV, que vem da desintegração de um pósitron com um elétron, como foi explicado anteriormente.

Para algumas amostras, a estimativa da taxa de decaimento não pôde ser feita, por causa dos problemas citados anteriormente. Em alguns casos, a atividade medida ao final era maior que a inicial.

Como principal objetivo do experimento, o total do equivalente em dose emitida foi calculado. Para se calcular isso, primeiro teve-se que obter a atividade real da amostra (em Bq/s), o que foi feito multiplicando a atividade medida por 1/eficiência. Após isso, este número foi multiplicado pela energia de cada pico para se obter um número em J/s. Então, a atividade foi dividida por 70Kg (o peso médio de um adulto) para se descobrir a dose absorvida, e como o fator de peso do raio gama é 1, o equivalente em dose em Sv/s é o mesmo.

Os resultados são mostrados na tabela 6:

Data	13/fev	17/fev	18/fev	20/fev	25/fev	03/mar	04/mar	05/mar
Dose	0,02819093	0,00672	0,005938	0,00622	0,005657	0,005562	0,005242	0,005542
µSv/h								

6.2.3.3 Baixo teor de cobre (RR D10)

Os resultados em sua totalidade estão em anexo.

Como foi previsto, a diferença na quantidade de cobre não alteraria de forma significativa a ativação da amostra. Portanto, os mesmo picos e suas evoluções no tempo (mostrados nas figuras 25 e 26), curvas de decaimento e os problemas encontrados foram os mesmos.

Figura 25 – Gráfico mostrando as contagens por segundo X tempo das energias que foram acompanhadas, para o aço de menor teor de cobre.

Legenda: *counts/s against time for different energies* – contagens por Segundo X tempo para diferentes energias, *counts/s* – contagens/s, *time* - tempo

Figura 26 - Gráfico mostrando o decaimento do pico de 511 KeV

Legenda: *counts/s against time for the 511 KeV peak* – contagens por Segundo X tempo para a energia de 511 KeV, *counts/s* – contagens/s, *time* - tempo

Usando o mesmo método descrito para a amostra com alto teor de cobre, os resultados para o equivalente em dose estão na tabela 7.

Date	13/fev	17/fev	18/fev	20/fev	25/fev	03/mar	04/mar	05/mar
Dose	0,066610	0,012526	0,011983	0,010717	0,011893	0,010099	0,010181	0,009924
(µSv/h)								

Table 7 - Calculated Doses from Low Copper Sample

6.2.3.4 Folhas de ferro

As amostras de ferro foram cortadas em 20 fatias (exceto nas amostras de 3 e 9 MeV, nas quais foram fatiadas em 10 lâminas apenas), com 50µm cada, e irradiadas juntas para que se pudesse observar a penetração do próton no ferro. Os resultados para as folhas irradiadas a 20MeV estão nas figuras 27,28 e 29, enquanto os resultados completos estão em anexo.

Figura 27 – Atividade X profundidade para as amostras irradiadas a 9 MeV, no dia 13 de fevereiro de 2014

Figura 28 - Atividade X profundidade para as amostras irradiadas a 9 MeV, no dia 17 de fevereiro de 2014

Figura 29 - Atividade X profundidade para as amostras irradiadas a 9 MeV, no dia 20 de fevereiro de 2014

Legenda: *counts/s against time for the 511 KeV peak* – contagens/s X tempo para o pico de 511 KeV, *Counts/s* – contagens/s, *depth* - profundidade

O primeiro ponto a se ressaltar é que o pico de 511 KeV foi o único que apareceu em todas as medidas, e portanto foi o único que foi acompanhado. No primeiro gráfico (figura 27) fica clara a distribuição da atividade ao longo da profundidade. Porém, com o passar do tempo, os gráficos ficaram menos consistentes e, eventualmente, apresentando um comportamento randômico. A razão para isto é que a atividade ficou tão pequena que se confundiu com o ruído e com a radiação de fundo, e parou de ser detectada. Este também é o motivo pelo qual as medições das folhas de ferro pararam no dia 20 de fevereiro, bem antes das outras amostras.

7 CONCLUSÃO

Apesar de não ter sido determinado quantitativamente (devido aos erros já citados), os aços que compõem o VP decaem muito rapidamente, principalmente devido ao efeito fotoelétrico. Isto faz com que eles sejam acessíveis a reparos e manutenções pouco tempo depois do reator ser desligado.

Em relação ao dano que o aço sofre, não foi possível obter resultados, pois as amostras foram contaminadas e o teste de dureza não pôde ser realizado. Outra coisa notada é que a maior parte da interação do próton com estes aços ocorre a uma profundidade de aproximadamente 900µm.

A diferença na atividade entre as duas amostras do aço pode ser explicada não pela diferença na quantidade de cobre, mas pela diferença de geometria de uma peça para a outra. Embora o colimador do cíclotron tenha sido o mesmo para ambas, as amostras eram menores que o colimador e diferentes entre si, fazendo com que cada amostra recebesse diferentes quantidades de radiação.

Um último ponto a ressaltar é que os resultados da segunda amostra de cada aço não foram discutidos pois há uma quantidade menor de dados sobre elas, fazendo com que os erros apontados anteriormente fiquem ainda mais aparentes, e os resultados finais muito erráticos.

Referências

Environmental Health & Safety, http://www.orcbs.msu.edu/radiation/programs_guidelines/radmanual/13rm_radiounits.ht m, acessado em maio de 2014.

ICRP publication 103, Glossary.

Lesar, R. "Introduction to Computational Materials Science". Cambridge University Press, UK 2013.

Little, E.A. "Development of radiation resistant materials for advanced nuclear power plant". Materials Science and Technology, Vol. 22, No 5, 2006.

NationalNuclearDataCenter,http://www.nndc.bnl.gov/nudat2/decaysearchdirect.jsp?nuc=56CO&unc=nds,acessadoem fevereiro de 2014.acessado

National Nuclear Data Center, carta interativa dos nuclídeos, http://www.nndc.bnl.gov/chart/chartNuc.jsp

NRC Regulations, Title 10, Subpart 4.

Nuclear Physics Research Group, http://www.np.ph.bham.ac.uk/pic/cyclotron, acessado em fevereiro de 2014.

Palmer, B. "Emulation of Nêutron Damage on Iron and Stainless Steel Targets with Ion Radiation and Associated Activity After Irradiation Rewrite equations Take counting," Birmingham, UK, 2010.

SRIM, http://www.srim.org/SRIM/SRIMINTRO.htm, acessado em março de 2014.

The Physics Factbook, http://hypertextbook.com/facts/2003/AlexSchlessingerman.shtml, acessado em maio de 2014.

Vuolo, J.H. "Fundamentos da Teoria de Erros". São Paulo, Brasil

Was, G.S.; Busby, J.T.; Allen, T.; Kenik, E.A.; Jensson, A.; Bruemmer, S.M.; Gan, J. "Emulation of nêutron irradiation effects with prótons: validation of principle". Journal of Nuclear Materials 300 (2), pp.198-216, 2002.

Was,G.S.; Hash,M.; Odette, R.G. "Hardening and microstructure evolution in prótonirradiated model and commercial pressure-vessel steels". Philosophical Magazine, 85 pp.703-722, 2005

Was, G.S. "Fundamentals of Radiation Materials Science". London, UK, 2007.

Zhanga,Z.W.; Liua,C.T.; Wangb,L.; Millere,M.K.; Mab,D.; Chenc,G.; Williams,J.R; China,B.A. "Effects of próton irradiation on nanocluster precipitation in ferritic steel containing fcc alloying additions". Acta Materialia, volume 60, pp.3034–3046, 2012.

Apêndice I

Dados da modelagem

Legenda: energy - energia, depth - profundidade

		Energy (MeV)							
		10	13	15	18	20	23	26	29
Depth (mm)	0	0	0	0	0	0	0	0	0
	0.1	1.88E+006	5.76E+007	1.07E+008	9.57E+007	1.02E+008	1.23E+008	1.26E+008	1.17E+008
	0.25	1.64E+006	6.50E+007	1.78E+008	2.61E+008	2.47E+008	2.87E+008	3.14E+008	3.05E+008
	0.5	1.66E+006	6.48E+007	1.82E+008	3.94E+008	5.07E+008	5.27E+008	6.00E+008	6.20E+008
	0.75	1.66E+006	6.48E+007	1.82E+008	3.96E+008	5.47E+008	7.86E+008	8.40E+008	9.16E+008
	1	1.66E+006	6.48E+007	1.82E+008	3.96E+008	5.46E+008	8.13E+008	1.10E+009	1.16E+009
	1.25	1.66E+006	6.48E+007	1.82E+008	3.96E+008	5.46E+008	8.15E+008	1.13E+009	1.43E+009
	1.5	1.66E+006	6.48E+007	1.82E+008	3.96E+008	5.46E+008	8.15E+008	1.13E+009	1.49E+009
	1.75	1.66E+006	6.48E+007	1.82E+008	3.96E+008	5.46E+008	8.15E+008	1.13E+009	1.49E+009
	2	1.66E+006	6.48E+007	1.82E+008	3.96E+008	5.46E+008	8.15E+008	1.13E+009	1.49E+009
	2.25	1.66E+006	6.48E+007	1.82E+008	3.96E+008	5.46E+008	8.15E+008	1.13E+009	1.49E+009
	2.5	1.66E+006	6.48E+007	1.82E+008	3.96E+008	5.46E+008	8.15E+008	1.13E+009	1.49E+009
	2.75	1.66E+006	6.48E+007	1.82E+008	3.96E+008	5.46E+008	8.15E+008	1.13E+009	1.49E+009
	3	1.66E+006	6.48E+007	1.82E+008	3.96E+008	5.46E+008	8.15E+008	1.13E+009	1.49E+009

Dados simulados da atividade inicial

		Energy (MeV)							
		10	13	15	18	20	23	26	29
Depth (mm)	0	0	0	0	0	0	0	0	0
	0.1	1.45E+005	2.30E+005	2.72E+005	1.65E+006	2.59E+006	3.53E+006	3.21E+006	2.16E+006
	0.25	1.96E+005	4.65E+005	6.01E+005	2.12E+006	4.86E+006	7.87E+006	8.60E+006	6.40E+006
	0.5	1.97E+005	5.15E+005	8.15E+005	2.70E+006	5.58E+006	1.26E+007	1.64E+007	1.52E+007
	0.75	1.97E+005	5.15E+005	8.17E+005	2.75E+006	5.91E+006	1.33E+007	2.18E+007	2.35E+007
	1	1.97E+005	5.15E+005	8.17E+005	2.75E+006	6.01E+006	1.37E+007	2.28E+007	2.97E+007
	1.25	1.97E+005	5.15E+005	8.17E+005	2.75E+006	6.01E+006	1.36E+007	2.30E+007	3.10E+007
	1.5	1.97E+005	5.15E+005	8.17E+005	2.75E+006	6.01E+006	1.36E+007	2.31E+007	3.15E+007
	1.75	1.97E+005	5.15E+005	8.17E+005	2.75E+006	6.01E+006	1.36E+007	2.31E+007	3.14E+007
	2	1.97E+005	5.15E+005	8.17E+005	2.75E+006	6.01E+006	1.36E+007	2.31E+007	3.14E+007
	2.25	1.97E+005	5.15E+005	8.17E+005	2.75E+006	6.01E+006	1.36E+007	2.31E+007	3.14E+007
	2.5	1.97E+005	5.15E+005	8.17E+005	2.75E+006	6.01E+006	1.36E+007	2.31E+007	3.14E+007
	2.75	1.97E+005	5.15E+005	8.17E+005	2.75E+006	6.01E+006	1.36E+007	2.31E+007	3.14E+007
	3	1.97E+005	5.15E+005	8.17E+005	2.75E+006	6.01E+006	1.36E+007	2.31E+007	3.14E+007

Dados simulados da atividade 3 horas após a exposição

		Energy (MeV)							
		10	13	15	18	20	23	26	29
Depth (mm)	0	0	0	0	0	0	0	0	0
	0.1	1.39E+005	1.61E+005	1.39E+005	6.88E+005	1.10E+006	1.55E+006	1.44E+006	9.87E+005
	0.25	1.90E+005	3.81E+005	3.80E+005	8.91E+005	2.04E+006	3.42E+006	3.83E+006	2.90E+006
	0.5	1.91E+005	4.31E+005	5.89E+005	1.30E+006	2.40E+006	5.38E+006	7.20E+006	6.81E+006
	0.75	1.91E+005	4.31E+005	5.90E+005	1.39E+006	2.71E+006	5.75E+006	9.46E+006	1.04E+007
	1	1.91E+005	4.31E+005	5.90E+005	1.39E+006	2.75E+006	6.07E+006	9.95E+006	1.31E+007
	1.25	1.91E+005	4.31E+005	5.90E+005	1.39E+006	2.75E+006	6.04E+006	1.02E+007	1.36E+007
	1.5	1.91E+005	4.31E+005	5.90E+005	1.39E+006	2.75E+006	6.04E+006	1.02E+007	1.36E+007
	1.75	1.91E+005	4.31E+005	5.90E+005	1.39E+006	2.75E+006	6.04E+006	1.02E+007	1.36E+007
	2	1.91E+005	4.31E+005	5.90E+005	1.39E+006	2.75E+006	6.04E+006	1.02E+007	1.36E+007
	2.25	1.91E+005	4.31E+005	5.90E+005	1.39E+006	2.75E+006	6.04E+006	1.02E+007	1.36E+007
	2.5	1.91E+005	4.31E+005	5.90E+005	1.39E+006	2.75E+006	6.04E+006	1.02E+007	1.36E+007
	2.75	1.91E+005	4.31E+005	5.90E+005	1.39E+006	2.75E+006	6.04E+006	1.02E+007	1.36E+007
	3	1.91E+005	4.31E+005	5.90E+005	1.39E+006	2.75E+006	6.04E+006	1.02E+007	1.36E+007

Dados simulados da atividade 24 horas após a exposição

		Energy (MeV)							
		10	13	15	18	20	23	26	29
Depth (mm)	0	0	0	0	0	0	0	0	0
	0.1	1.32E+005	1.53E+005	1.29E+005	7.38E+004	6.29E+004	7.41E+004	9.10E+004	9.70E+004
	0.25	1.80E+005	3.60E+005	3.57E+005	2.39E+005	1.76E+005	1.69E+005	2.14E+005	2.37E+005
	0.5	1.81E+005	4.08E+005	5.56E+005	6.12E+005	4.86E+005	3.46E+005	3.77E+005	4.50E+005
	0.75	1.81E+005	4.08E+005	5.57E+005	7.21E+005	8.07E+005	6.54E+005	5.47E+005	6.21E+005
	1	1.81E+005	4.08E+005	5.57E+005	7.21E+005	7.99E+005	9.44E+005	8.42E+005	7.83E+005
	1.25	1.81E+005	4.08E+005	5.57E+005	7.21E+005	7.99E+005	9.52E+005	1.15E+006	1.05E+006
	1.5	1.81E+005	4.08E+005	5.57E+005	7.21E+005	7.99E+005	9.52E+005	1.15E+006	1.40E+006
	1.75	1.81E+005	4.08E+005	5.57E+005	7.21E+005	7.99E+005	9.52E+005	1.15E+006	1.41E+006
	2	1.81E+005	4.08E+005	5.57E+005	7.21E+005	7.99E+005	9.52E+005	1.15E+006	1.41E+006
	2.25	1.81E+005	4.08E+005	5.57E+005	7.21E+005	7.99E+005	9.52E+005	1.15E+006	1.41E+006
	2.5	1.81E+005	4.08E+005	5.57E+005	7.21E+005	7.99E+005	9.52E+005	1.15E+006	1.41E+006
	2.75	1.81E+005	4.08E+005	5.57E+005	7.21E+005	7.99E+005	9.52E+005	1.15E+006	1.41E+006
	3	1.81E+005	4.08E+005	5.57E+005	7.21E+005	7.99E+005	9.52E+005	1.15E+006	1.41E+006

Dados simulados da atividade 1 semana após a exposição

Tabela com o decaimento do 55 Co

T _{1/2} =17.5d	477KeV	931KeV	1408KeV
21600	675	1071	136
60660	212	416	43
172800	38	46	10
518400	13	6	1
103680	16	7	0
190080	16	6	0

Tabela com o decaimento do ⁵⁶Co

T _{1/2} =77.23d	846KeV	1037KeV	1238KeV	1771KeV	2598KeV
21600	287	44	100	13	5
60660	227	34	71	15	7
172800	218	24	78	12	12
518400	236	32	93	19	6
1036800	189	29	78	10	8
1900800	213	14	75	10	6
3542400	184	22	62	11	3

Tabela com o decaimento do ⁵⁷Ni

$T_{1/2} = 35.6h$	1377KeV	1919KeV	127KeV
21600	27	6	258
60660	20	1	109
172800	2	2	9
518400	0	2	9
1036800	2	2	0
1900800	2	2	9

Apêndice II

Resultados da ativação

Cálculo da resolução

Pico	N[umero	Energia(keV)	FWHM (Canal)	FWHM(Energia)	Energia(keV)	Resolução
	do canal					
1	179,57	74,69	3,85	1,594285	74,69	0,0213454
2	204,22	84,89	1,96	0,811636	84,89	0,009561
3	1233,66	510,93	3,3	1,36653	510,93	0,0026746
4	2043,8	846,44	2,85	1,180185	846,44	0,0013943
5	2986,32	1237,01	3,45	1,428645	1237,01	0,0011549

Dados dos isótopos usados na calibração

21/11/2013	Atividade(Bq)	Precisão (%)
60Co	6240+-120	1,9
133Ba	45600+-2190	4,8
137Cs	191000+-7080	3,7
152Eu	83200+-4160	5
241Am	415000+-20700	5

Resultados da eficiência

Fonte	Contagens	t (s)	N/t	А	TB	Ângulo	Energia(keV)	Eficiência
	(N)					sóilido		
133Ba	3863	300	12,87667	44891,52	62,05%	0,0289	356,04	0,015996
133Ba	2794	300	9,313333	44891,52	32,90%	0,0289	81,07	0,02182
133Ba	985	300	3,283333	44891,52	18,34%	0,0289	302,86	0,013799
60Co	1171	900	1,301111	6047,579	99,85%	0,0289	1172,35	0,007456
60Co	1179	900	1,31	6047,579	99,98%	0,0289	1331,61	0,007497
137Cs	16911	300	56,37	189953,8	85,10%	0,0289	661,34	0,012066

Tabela com as datas das medidas

07/fev	D	F	Fe	17/fev	D	F	Fe	25/fev	D	F	01/mar	D	F
	9MeV	9MeV	9MeV		20MeV	- 1 20MeV - 1	20MeV		1MeV	1MeV		30MeV	30MeV
10/fev	D	F	Fe		20MeV	2 20MeV - 2			20MeV - 1	20MeV - 1	03/mar	D	F
	9MeV	9MeV	9MeV		3MeV	3MeV			20MeV - 2	20MeV - 2		1MeV	1MeV
13/fev	D	F	Fe	18/fev	D	F	Fe		3MeV	3MeV		20MeV -	1 20MeV - 1
	20MeV -	120MeV -	1 20MeV		20MeV	- 1 20MeV - 1	20MeV		9MeV	9MeV		20MeV -	2 20MeV - 2
	20MeV -	2 20MeV -	29MeV		20MeV	- 2 20MeV - 2	3MeV	26/fev	D	F		30MeV	30MeV
	9MeV	9MeV			3MeV	3MeV			30MeV	30MeV	04/mar	D	F
14/fev	Fe			19/fev	D	F	Fe	27/fev	D	F		20MeV -	1 20MeV - 1
	20MeV				1MeV	1MeV	20MeV		30MeV	30MeV		20MeV -	2 20MeV - 2
					3MeV	3MeV	3MeV	28/fev	D	F		30MeV	30MeV
16/fev	Fe			20/fev	D	F	Fe		30MeV	30MeV	05/mar	D	F
	3MeV				1MeV	1MeV	20MeV					20MeV -	1 20MeV - 1
					20MeV	- 1 20MeV - 1	3MeV					20MeV -	2 20MeV - 2
					20MeV	2 20MeV - 2						30MeV	30MeV
					3MeV	3MeV							

Todas as medidas das atividades

Legenda: *marker* – marcador, *energy* – energia, *gross area* – área total, *net area* – área líquida, *uncertanty* – incerteza, *library* – biblioteca, *rate* – taxa, *channel* - canal

1MeV						
D	19/02/2014	12:04:44	1646s			
marker	energy(KeV)	gross area	net area	net area uncertainty	Library	rate
179,19	74,53	59518	25016	374	Pb214	15,19806
204,84	85,14	39265	9152	281		5,560146
294,03	122,04	25211	1078	231	Co57	0,654921
1233,43	510,84	893	516	37		0,313487
1472,84	609,97	337	103	30	Ru103	0,062576
2691,53	1114,83	276	196	27	Tb160	0,119077
3523,31	1459,66	353	334	20	K40	0,202916
6307	2615,17	104	104	10		0,063183
D	20/02/2014	14:21:26	600s			
marker	energy(KeV)	gross area	net area	net area uncertainty	Library	rate
179,37	74,61	15225	6394	168	Pb214	10,65667
205,07	85,24	11523	2664	157		4,44
1233,69	510,95	404	204	31		0,34
3524,62	1460,2	135	124	13	K40	0,206667
D	25/02/2014	15.47.24	200-			
U	25/02/2014	15:47:24	3005		1.11	
marker	energy(KeV)	gross area	net area	net area uncertainty	Library	rate
179,09	74,49	8129	3336	142	L Pb214	11,12
204,8	85,12	5048	1232	97	7	4,106667
1235,83	511,83	205	105	26	5	0,35
3523,93	1459,91	58	58		7 K40	0,193333

F	19/02/2014	11:44:06	1103s			
marker	energy(KeV)	gross area	net area	net area u	Library	rate
179,22	74,54	39110	17114	1 288	Pb214	15,51587
204,93	85,18	29146	711	3 256		6,448776
1233,42	510,83	586	30	32		0,271985
2693,84	1115,79	254	10	2 47	Zn65	0,092475
3525,51	1460,57	206	18) 16	K40	0,163191
6302,54	2613,32	82	24	1 25		0,021759
F	20/02/2014	14:10:10	600s			
marker	energy(KeV)	gross area	net area	net area u	Library	rate
180,34	75,01	15830	663	180	Pb214	11,05
204,99	85,21	14305	309	5 205		5,158333
1234,78	511,4	458	16) 37		0,266667
2690,48	1114,39	149	4	L 37	Zn65	0,068333
3525,34	1460,5	142	12	5 14		0,208333
F	25/02/2014	16:01:01	300s			
marker	energy(KeV)	gross area	net area	net area u	Library	rate
179,67	74,73	7204	3123	3 115	Pb214	10,41
204,22	84,89	6447	1442	2 134		4,806667
1234,78	511,4	155	7:	. 17		0,236667
2691,64	1114,87	53	34	11	Zn65	0,113333

3MeV							
D	17/02/2014	15:32:23	699s live				
marker	energy(KeV)	gross area	net area	net area uncertainty	Library		rate
179,46	74,64	12996	2875	121	Pb-214		4,113019
204,58	85,03	10073	1855	119	Bi-207		2,653791
1233,15	510,72	339	116	21	J-133 (iodine)		0,165951
2689,33	1113,92	105	71	16	K-40		0,101574
3517,13	1457,09	126	78	14	Xe-138	K40	0,111588
6298	2611,43	33	28	7			0,040057
D	18/02/2014	15:39:55	600s				
marker	energy(KeV)	gross area	net area	net area uncertainty	Library		rate
178,57	74,27	15397	6659	173	Pb214		11,09833
203,88	84,74	12131	2824	170	Ta182		4,706667
1233,37	510,81	392	248	26	Y88		0,413333
2692,06	1115,05	111	67	20	Tb160		0,111667
2987,6	1237,55	79	54	13	Bi214		0,09
3519,95	1458,26	115	90	14	1133	K40	0,15

45

10 K40

3522,21

1459,2

61

0,15

D	19/02/2014	12:	34:59	735s						
marker	energy(KeV)	gross	area	net are	ea	net area	uncertainty	Library		rate
179,75	74,76		21864	90)42		191	Pb214		12,30204
204,54	85,02		15241	33	344		158	Bi207		4,54966
1232,95	510,64		413	1	91		25	1133		0,259864
2688,11	1113,41		119		57		20	Xe138		0,077551
3524,51	1460,15		150	1	.45		12	K40		0,197279
D	20/02/2014	14:	53:13	600s						
marker	energy(KeV)	gross	area	net are	ea	net area	uncertainty	Library		rate
180,63	75,13		15212	63	880		177	Pb214		10,63333
205,3	85,33		12001	26	571		170	Bi207		4,451667
1233,39	510,82		397	1	.54		31			0,256667
3524,57	1460,18		125		97		12	K40		0,161667
D	25/02/2014	15:	:27:13	300s						
marker	energy(KeV)	gross	area	net are	ea	net area	uncertainty	Library		rate
179,61	74,7		7728	34	132		130	Pb214		11,44
204,71	85,09		5496	12	240		108			4,133333
1232,74	510,55		157		94		15			0,313333
3520,07	1458,31		67		67		8	K40		0,223333
F	17/02/2	2014	15:	33:51	60	0s live				
marker	energy(K	eV)	gros	s area	ne	et area	net area u	incertainty	Library	rate
179,8	35	74,8	1	14041		5731		144	Pb-214	9,551667
204,5	51 8	5,01		9424		1204		116	Bi-207	2,006667
1231	.2 50	9.91		250		20		14	J-133	0.033333
29	4 12	2.03		2940	-	50		23	Co-57	0.083333
269	4 111	, 5,85		39		3		3	Zn-65	0,005
3520,3	9 145	8,44		123		40		15	J-135	0,066667
6306	.3 261	4.88		24		18		6		0.03
		.,			-					0,00
F	18/02/2	2014	15:	20:36	60	0s live				
marker	energy(K	eV)	gros	s area	ne	et area	net area u	incertainty	Library	rate
178,4	7 7	4,23	-	17393		7314		, 198	Pb214	12,19
204,0	8 8	4,83	1	11256		2747		145	Bi207	4,578333
1233,4	3 51	0,84		431		197		36	Y88	0,328333
3522,0	6 145	9,14		138		74		28	1135	0,123333

6301,17

2612,75

36

36

6

0,06

F	19/02/2014	13:40:57	300s			
marker	energy(KeV)	gross area	net area	net area uncertainty	Library	rate
179,2	74,53	8428	3767	117	Pb214	12,55667
204,94	85,18	6962	1634	125	Bi207	5,446667
1233,47	510,86	162	97	17	Y88	0,323333
3525,33	1460,5	57	57	7	K40	0,19
F	20/02/2014	14.41.15	600s			
marker	energy(KeV)	gross area	net area	net area uncertainty	Library	rate
100 10	74.05	15200	C047	104		11 11107
180,19	74,95	15389	6847	184	PD214	11,41167
205,94	85,6	10608	2582	150		4,303333
1234,2	511,16	426	224	32	Y88	0,373333
3526,59	1461,02	105	89	12	K40	0,148333
F	25/02/2014	15:34:48	300s			
marker	energy(KeV)	gross area	net area	net area uncertainty	Library	rate
179,68	74,73	7581	3280	124	Pb214	10,93333
204,55	85,02	5999	1255	124		4,183333
1232,88	510,61	152	76	17		0,253333
3523,4	1459,69	68	56	10	K40	0,186667

9MeV						
F	07/02/2014	300s	15:40:50			
Channel	Energy(keV)	gross area	net area	netr area uncertainty	library	rate
179,72	74,75	12133	5108	165	Pb214	17,02667
204,35	84,94	7295	1322	115		4,406667
1233,62	510,92	24077	23053	173		76,84333
1616,3	669,37	327	147	19	1132	0,49
1993,9	825,77	556	395	30	Co60	1,316667
2043,37	846,26	806	585	36	Mn56	1,95
2102,44	870,73	458	250	32	Nb94	0,833333
2987,9	1237,67	432	312	30	Bi214	1,04
3215,24	1331,92	1300	1204	41	Co60	4,013333
3459,63	1433,25	334	249	24	Cs138	0,83
4321,53	1790,76	467	444	24	1135	1,48
F	07/02/2014	300s	17:22:18			
Channel	Energy(keV)	gross area	net area	netr area uncertainty	library	rate
179,55	74,68	10186	3914	164		13,04667
204,45	84,98	6630	1794	121		5,98
1233,66	510,93	3459	3160	69		10,53333
2043,83	846,45	672	597	29	Mn56	1,99
2503,96	1037,09	122	90	13	Co56	0,3
2986,32	1237,01	329	294	20	Co56	0,98
3213,18	1331,06	82	54	13		0,18
3526,9	1461,15	74	62	11		0,206667
F	10/02/2014	900s	17:26:51			
Channel	Energy(keV)	gross area	net area	netr area uncertainty	library	rate
179,65	74,72	37598	17354	267		19,28222
204,52	85,01	30257	7217	276		8,018889
1233,25	510,76	2378	1784	61		1,982222
2043,07	846,14	1825	1594	47	Mn56	1,771111
2505,27	1037,64	304	194	22	Co56	0,215556
3523,61	1459,78	230	165	23		0,183333
4273,25	1770,73	223	166	23	Co56	0,184444
F	13/02/2014	300s	15:14:17			
Channel	Energy(keV)	gross area	net area	netr area uncertainty	library	rate
179,81	74,79	10595	4297	168	Pb214	14,32333
204,97	85,2	5470	1323	90		4,41
1233,82	511	612	413	32		1,376667
2043,83	846,45	611	571	26	Mn56	1,903333
2505,94	1037,92	108	34	14	Co56	0,113333
2989,77	1238,45	295	276	19	Co56	0,92
3519,83	1458,21	76	49	14	1135	0,163333
4273,42	1770,8	91	71	15	Co56	0,236667

F	25/02/2014	300s	16:09:44			
Channel	Energy(keV)	gross area	net area	netr area uncertainty	library	rate
179,18	74,53	7885	3381	129	Pb214	11,27
204,33	84,93	7109	1580	150		5,266667
1233,21	510,75	604	409	38		1,363333
5042,98	846,1	571	527	26	Mn56	1,756667
2501,31	1036	93	52	13	?	0,173333
2986,95	1237,28	286	260	19	1133	0,866667
3523,63	1459,79	78	63	12	K40	0,21
4274,29	1771,16	65	50	11	Co56	0,166667

D	07/02/2014	300s	15:31:31			
Channel	Energy(keV)	gross area	net area	netr area uncertainty	library	rate
179,86	74,81	10486	2543	158	Pb214	8,476667
204,55	85,02	9137	1596	171		5,32
1233,78	510,98	10350	9668	119		32,22667
1993,51	825,61	711	496	35	Co60	1,653333
2043,79	846,44	800	576	37	Mn56	1,92
2101,74	870,44	420	249	28	Nb94	0,83
2988,28	1237,83	379	281	26	Bi214	0,936667
3214,81	1331,74	1477	1369	43	Co60	4,563333
3460,17	1433,47	423	366	24	Cs138	1,22
4320,63	1790,39	599	539	31	I135	1,796667
D	07/02/2014	300s	17:16:37			
Channel	Energy(keV)	gross area	net area	netr area uncertainty	library	rate
179,61	74,7	9832	4294	147		14,31333
204,32	84,93	6413	1426	114		4,753333
1233,57	510,9	1340	1125	44		3,75
1596,8	661,3	287	168	29	Cs137	0,56
2043,62	846,36	667	580	29	Mn56	1,933333
2504,58	1037,35	206	142	30	Mn56	0,473333
2987,04	1237,31	299	271	20	Bi214	0,903333
3214,68	1331,69	104	86	14	Co60	0,286667
3525,59	1460,6	62	46	10	I135	0,153333
4271,89	1770,17	80	80	8	Co56	0,266667
D	10/02/2014	900s	17:10:25			
Channel	Energy(keV)	gross area	net area	netr area uncertainty	library	rate
179,88	74,82	41470	16675	334		18,52778
204,54	85,02	34295	7325	339		8,138889
1233,43	510,84	1540	1073	52		1,192222
2043,29	846,23	1865	1696	52	Mn56	1,884444
2505,96	1037,92	364	174	52		0,193333
2987,34	1237,44	860	786	52	Bi214	0,873333
3524,27	1460,06	259	230	52	I135	0,255556
4273,68	1770,91	218	218	52	Co56	0,242222
4905,11	2032,96	77	62	52	Co56	0,068889
6267,76	2598,87	151	127	52	Co56	0,141111

D	13/02/2014	300s	15:34:21			
Channel	Energy(keV)	gross area	net area	netr area uncertainty	library	rate
180,58	75,1	8008	3495	115	Pb214	11,65
204,98	85,2	6852	1532	125		5,106667
1234,05	511,1	872	639	40		2,13
2043,62	846,37	643	585	27	Mn56	1,95
2504,59	1037,36	153	119	16	Mn56	0,396667
2987,06	1237,32	325	253	27	Bi214	0,843333
3520,11	1458,33	56	41	10	I135	0,136667
4269,11	1769,01	62	53	11	Co56	0,176667
4908,83	2034,5	31	21	10	Co56	0,07
6266,69	2598,42	47	47	6	Co56	0,156667
D	25/02/2014	300s	16:20:03			
D Channel	25/02/2014 Energy(keV)	300s gross area	16:20:03 net area	netr area uncertainty	library	rate
D Channel 180,09	25/02/2014 Energy(keV) 74,9	300s gross area 7445	16:20:03 net area 3316	netr area uncertainty 122	library Pb214	rate 1105%
D Channel 180,09 204,39	25/02/2014 Energy(keV) 74,9 84,96	300s gross area 7445 5739	16:20:03 net area 3316 1152	netr area uncertainty 122 115	library Pb214	rate 1105% 384%
D Channel 180,09 204,39 1233,91	25/02/2014 Energy(keV) 74,9 84,96 511,04	300s gross area 7445 5739 724	16:20:03 net area 3316 1152 526	netr area uncertainty 122 115 38	library Pb214	rate 1105% 384% 175%
D Channel 180,09 204,39 1233,91 2042,76	25/02/2014 Energy(keV) 74,9 84,96 511,04 846,01	300s gross area 7445 5739 724 648	16:20:03 net area 3316 1152 526 568	netr area uncertainty 122 115 38 31	library Pb214 Mn56	rate 1105% 384% 175% 189%
D Channel 180,09 204,39 1233,91 2042,76 2503,53	25/02/2014 Energy(keV) 74,9 84,96 511,04 846,01 1036,92	300s gross area 7445 5739 724 648 112	16:20:03 net area 3316 1152 526 568 72	netr area uncertainty 122 115 38 31 16	library Pb214 Mn56 Mn56	rate 1105% 384% 175% 189% 24%
D Channel 180,09 204,39 1233,91 2042,76 2503,53 2989,11	25/02/2014 Energy(keV) 74,9 84,96 511,04 846,01 1036,92 1238,17	300s gross area 7445 5739 724 648 112 266	16:20:03 net area 3316 1152 526 568 72 254	netr area uncertainty 122 115 38 31 16 17	library Pb214 Mn56 Mn56 Bi214	rate 1105% 384% 175% 189% 24% 85%
D Channel 180,09 204,39 1233,91 2042,76 2503,53 2989,11 3522	25/02/2014 Energy(keV) 74,9 84,96 511,04 846,01 1036,92 1238,17 1459,11	300s gross area 7445 5739 724 648 112 266 73	16:20:03 net area 3316 1152 526 568 72 254 38	netr area uncertainty 122 115 38 31 16 17 15	library Pb214 Mn56 Mn56 Bi214 I135	rate 1105% 384% 175% 189% 24% 85% 13%
D Channel 180,09 204,39 1233,91 2042,76 2503,53 2989,11 3522 4267	25/02/2014 Energy(keV) 74,9 84,96 511,04 846,01 1036,92 1238,17 1459,11 1768,14	300s gross area 7445 5739 724 648 112 266 73 51	16:20:03 net area 3316 1152 526 568 72 254 38 35	netr area uncertainty 122 115 38 31 16 17 15 12	library Pb214 Mn56 Mn56 Bi214 I135 Xe138	rate 1105% 384% 175% 189% 24% 85% 13% 12%

30MeV					
F	26/02/2014	15:05:53	300s		
marker	energy(KeV)	gross area	net area	net area uncertainty	rate
178,62	74,29	19929	8325	202	27,75
1151,49	476,92	13530	9526	165	31,75333
1232,96	510,64	78329	72719	329	242,3967
1795,42	743,56	3901	2120	89	7,066667
1939,32	803,16	2210	570	99	1,9
2043,01	846,11	4115	2942	101	9,806667
2246,65	930,48	23294	22132	179	73,77333
2986,76	1237,2	1975	1077	86	3,59
3175,05	1315,25	1621	1333	57	4,443333
3322,44	1376,37	2094	1793	60	5,976667
3396,92	1407,24	3294	3162	63	10,54
3458,54	1432,8	1627	1431	49	4,77
6268,21	2599,05	218	148	29	0,493333
F	27/02/2014	11:17:54	300s		
marker	energy(KeV)	gross area	net area	net area uncertainty	rate
1151,44	476,89	8410	4154	200	13,84667
1232,88	510,61	37307	32614	279	108,7133
1795,42	743,56	3913	1757	142	5,856667
2043,07	846,14	3869	2719	111	9,063333
2246,61	930,46	11949	11074	139	36,91333
2986,82	1237,22	1756	1448	60	4,826667
3175,22	1315,33	752	666	34	2,22
3322,71	1376,48	1277	919	66	3,063333
3397,12	1407,33	1581	1428	50	4,76
3548,38	1432,73	1397	1289	44	4,296667
6262,63	2596,74	177	167	15	0,556667
F	28/02/2014	18:45:21	300s		
marker	energy(KeV)	gross area	net area	net area uncertainty	rate
1151,21	476,8	2921	1175	99	3,916667
1232,79	510,57	15555	13697	165	45,65667
1795,14	743,44	2999	1753	118	5,843333
2042,74	846	3492	2628	104	8,76
2246,47	930,4	4955	4430	90	14,76667
2986,77	1237,2	1570	1145	65	3,816667
3174,31	1314,95	331	209	30	0,696667
3322,66	1376,45	833	665	50	2,216667
3397,06	1407,3	507	428	30	1,426667
3458,58	1432,82	1237	1153	45	3,843333
6268,05	2598,99	173	162	16	0,54

F	01/03/2014	13:09:30	300s		
marker	energy(KeV)	gross area	net area	net area uncertainty	rate
1151,17	476,78	2240	623	110	2,076667
1232,67	510,52	9539	7704	159	25,68
1795,28	743,5	2490	1545	102	5,15
2042,57	845,93	3093	2725	73	9,083333
2251,53	932,5	3214	2642	93	8,806667
2986,19	1236,96	1724	1332	80	4,44
3323,29	1376,72	438	363	31	1,21
3397,12	1407,33	261	182	25	0,606667
3458,49	1432,78	1064	1008	36	3,36
6267,68	2598,83	194	180	19	0,6
F	03/03/2014	14:44:10	600s		
marker	energy(KeV)	gross area	net area	net area uncertainty	rate
1151,6	476,96	2533	271	128	0,903333
1232,97	510,65	9793	7180	171	23,93333
1795,37	743,53	3472	2378	101	7,926667
2042,92	846,07	6263	5107	137	17,02333
2256,65	934,62	3524	2600	116	8,666667
2986,27	1236,99	2850	2482	71	8,273333
3321,75	1376,08	514	244	58	0,813333
3459,14	1433,05	1718	1563	51	5,21
6267,77	2598,87	386	258	40	0,86
F	04/03/2014	14:49:21	300s		
marker	energy(KeV)	gross area	net area	net area uncertainty	rate
1233,21	510,75	3915	2391	138	7,97
1795,62	743,64	1517	871	79	2,903333
2043,21	846,19	2586	2292	64	7,64
2257,08	934,8	1282	898	71	2,993333
2986,63	1237,14	1415	1171	66	3,903333
3458,8	1432,9	719	671	34	2,236667
6265,05	2597,74	175	175	13	0,583333

F	05/03/2014	10:56:25	300s		
marker	energy(KeV)	gross area	net area	net area uncertainty	rate
1233,35	510,8	3878	2351	137	7,836667
1795,7	743,67	1497	804	85	2,68
2043,18	846,18	2672	2187	78	7,29
2256,94	934,74	1081	803	52	2,676667
2986,96	1237,28	1277	1040	52	3,466667
3459,23	1433,08	680	638	32	2,126667
6267,61	2598,8	163	155	14	0,516667
F	10/03/2014	13:42:36	600s		
marker	energy(KeV)	gross area	net area	net area uncertainty	rate
1233,37	510,81	5890	3671	158	6,118333
1795,64	743,65	1447	864	60	1,44
2043,14	846,17	5331	4762	97	7,936667
2256,96	934,75	1524	820	86	1,366667
2987,22	1237,39	2705	2365	82	3,941667
3458,99	1432,98	798	567	57	0,945
6264,64	2597,57	356	309	26	0,515

30MeV					
D	26/02/2014	16:53:47	300s		
marker	energy(KeV)	gross area	net area	net area uncertainty	rate
1151,55	476,96	17230	9565	287	31,88333
1233,03	510,67	81022	73118	409	243,7267
1795,54	743,61	4487	2107	116	7,023333
2042,96	846,09	4541	2283	154	7,61
2246,56	930,44	23745	22193	196	73,97667
2504,43	1037,29	1468	161	97	0,536667
2986,54	1237,11	2166	1389	93	4,63
3175,2	1315,32	1651	1455	53	4,85
3322,8	1376,51	2124	1840	67	6,133333
3397,13	1407,33	3201	3103	61	10,34333
3458,39	1432,74	1598	1505	47	5,016667
4270,98	1769,79	483	404	43	1,346667
D	27/02/2014	11:09:46	300s		
marker	energy(KeV)	gross area	net area	net area uncertainty	rate
1151,46	476,9	9689	4777	239	15,92333
1232,89	510,62	40767	36892	255	122,9733
1795,39	743,55	3588	1971	108	6,57
2042,73	846	3462	2644	86	8,813333
2246,53	930,43	13045	11771	172	39,23667
2503,3	1036,82	1527	282	122	0,94
2986,54	1237,11	1835	1278	81	4,26
3175,01	1315,24	916	679	48	2,263333
3322,98	1376,59	1487	1243	64	4,143333
3396,76	1407,18	1633	1509	50	5,03
3458,33	1432,71	1431	1356	44	4,52
4272,52	1770,43	269	227	21	0,756667
D	28/02/2014	18:36:55	300s		
marker	energy(KeV)	gross area	net area	net area uncertainty	rate
1151,32	476,84	3228	1407	120	4,69
1232,78	510,57	16118	13675	193	45,58333
1795,23	743,48	2523	1445	88	4,816667
2042,67	845,97	3278	2511	98	8,37
2246,75	930,52	5125	4406	113	14,68667
2503,23	1036,79	928	392	74	1,306667
2986,43	1237,06	1606	1314	66	4,38
3177,27	1316,17	338	215	33	0,716667
3321,93	1376,15	629	539	34	1,796667
3398,24	1407,79	555	441	37	1,47
3458,15	1432,64	1208	1115	43	3,716667
4271,02	1769,81	326	249	34	0,83

D	01/03/2014	12:59:39	300s		
marker	energy(KeV)	gross area	net area	net area uncertainty	rate
1151,28	476,83	2159	451	113	1,503333
1232,62	510,5	9497	7313	177	24,37667
1795,2	743,47	2493	1365	117	4,55
2043,79	846,02	3553	2545	130	8,483333
2246,89	930,58	2997	2436	84	8,12
2502,41	1036,45	610	223	52	0,743333
2986,55	1237,11	1618	1309	65	4,363333
3322,02	1376,19	482	352	41	1,173333
3396,72	1407,16	279	214	24	0,713333
3458,18	1432,65	988	921	37	3,07
4271,32	1769,93	308	192	39	0,64
D	03/03/2014	14:33:00	600s		
marker	energy(KeV)	gross area	net area	net area uncertainty	rate
1233,48	510,86	8162	6422	122	21,40667
1795,89	743,75	3444	2016	124	6,72
2043,25	846,21	5709	4933	102	16,44333
2257,09	934,8	3263	2376	108	7,92
2503,8	1037,03	1279	598	79	1,993333
2987,21	1237,38	2961	2518	85	8,393333
3322,12	1376,23	437	298	35	0,993333
3458,95	1432,97	1639	1344	69	4,48
4272,98	1770,62	559	445	35	1,483333
D	04/03/2014	14:42:18	300s		
marker	energy(KeV)	gross area	net area	net area uncertainty	rate
1233,71	510,96	3684	2532	116	8,44
1796,26	743,9	1215	739	59	2,463333
2043,36	846,26	2759	2286	82	7,62
2257,7	935,06	1219	846	62	2,82
2504,11	1037,16	492	275	39	0,916667
2987,3	1237,42	1365	1134	57	3,78
3459,09	1433,02	689	605	37	2,016667
4274,14	1771,1	290	136	46	0,453333

D	05/03/2014	11:02:31	300s		
marker	energy(KeV)	gross area	net area	net area uncertainty	rate
1233,04	510,68	3423	2415	99	8,05
1795,5	743,59	1244	901	57	3,003333
2042,72	845,99	2837	2195	98	7,316667
2256,63	934,61	1048	721	58	2,403333
2504,49	1037,31	462	281	33	0,936667
2986,88	1237,25	1267	1095	48	3,65
3458,18	1432,65	633	535	42	1,783333
4272,14	1179,27	273	157	39	0,523333
D	10/03/2014	13:31:02	600s		
marker	energy(KeV)	gross area	net area	net area uncertainty	rate
1233,1	510,7	5530	3813	128	6,355
1795	65	680	1127	66	1,878333
2043,12	846,16	5392	4184	125	6,973333
2257,82	935,11	1553	911	88	1,518333
2503,36	1036,85	1108	499	79	0,831667
2987,1	1237,34	2465	2197	71	3,661667
3458,71	1432,87	818	660	46	1,1
4268,65	1768,83	549	408	45	0,68