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In this work, we address the problem of kinematic modeling and control design

of a multifingered robot hand. Each robot finger is modeled as a parallel manipula-

tor and its kinematic constraints are computed from empirical analysis due to the

inherent mechanical complexity of the mechanism. The motion control problem for

a grasped object is solved by using the kinematic control approach, which is able to

ensure the asymptotic stability of the output tracking error and appropriate prehen-

sion of the object. The kinematics-based control scheme is designed to include the

contact model in the hand Jacobian matrix, allowing for the simultaneous control of

the object position as well as the relative position between the fingers. Additionally,

we also deal with the problem of controlling the 3D Cartesian position of an object

of known geometry grasped by the robot hand using the visual servoing approach. A

video camera and a depth sensor are simultaneously used to provide visual position-

ing and depth information of the grasped object. The design of the visual servoing

controller is also based on the kinematic control approach, and two visual servo

controllers are developed in the image space, ensuring the zero-convergence of the

output tracking errors and high disturbance-rejection capability. Simulations and

experiments are carried out with a three-fingered robot hand and a Microsoft Kinect

sensor, illustrating the performance and effectiveness of the proposed methodology.
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Chapter 1

Introduction

1.1 Robot Hands - Introduction

Most of robot manipulators used for industrial applications are, in general, com-

posed of a large arm equipped with a single gripper or tool for interacting with the

environment. These end effectors are custom designed for specific tasks and are

able to grasp only a particular class of objects and workpieces. Thus, workpieces

with non-parallel faces, spherical objects and fragile plastic parts can be difficult for

holding and handling. This drawback can be overcome simply by coupling a tool

changer (Fig. 1.1) into the robot arm, allowing for the automatic tool exchanges

according to the shape/dimension of the object and, consequently, increasing the

robot versatility (PRATTICHIZZO e TRINKLE, 2008). Another major drawback

Figure 1.1: Industrial tool changers.

usually found in industrial robots is the lack of dexterity of their large-scale ma-
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nipulators. This behavior is more evident when the robot arm has to accurately

perform precise movements of the payload in assembly tasks. Indeed, fine motions

of a grasped object require accurate motions of the robot joints that are difficult to

achieve due to the size of the links. On the contrary, a robot hand is able to recon-

figure itself for grasping a sort of objects and for achieving a dexterous manipulation

in several tasks (BICCHI, 2000). Other capabilities added to robotic systems en-

dowed with robot hands are perception of physical properties and active exploration

of the environment, which are usually unfeasible with simple grippers (ALEOTTI

et al., 2014).

The modeling and the design of robot hands is a research topic which has

been studied since the seventies, when Okada developed a three-fingered model

commanded by a tendon driving system and able to perform nut-opening tasks

(OKADA, 1979). In the 80’s, two multifingered models were developed by the Jet

Propulsion Laboratory (JPL) and the Massachusetts Institute of Technology (MIT)

representing a breakthrough in terms of innovation and technology (MELCHIORRI

e KANEKO, 2008). Following this trend, a number of robot hands have been de-

veloped by universities and research centers around the world for industrial, re-

search and prosthetic applications, such as, the DLR Multisensory Articulated Hand

(Fig. 1.2a), the NASA Robonaut Hand (Fig. 1.2b), the Barrett Hand (Fig. 1.2c),

the Gifu Hand (Fig. 1.2d) , the Shadow Dexterous Hand (Fig. 1.2e), the Schunk

Anthropomorphic Hand (Fig. 1.2f), the i-Limb Ultra Prosthetic Hand (Fig. 1.3a),

and the BeBionic Prosthetic Hand (Fig. 1.3b). The main differences among these

devices are related to key issues of design, such as number of fingers, kinematic con-

figuration of the fingers around the palm, anthropomorphism and dexterity levels,

applicability, type and placement of the actuators and arrangement of the sensors,

among others (MELCHIORRI e KANEKO, 2008).

For instance, the Barrett Hand (TOWNSEND, 2000) is composed of a fixed finger

and two mobile fingers around the base of the palm, supporting a large variety of

grasp configurations. All joints have high-precision position encoders and each finger

has torque and tactile sensing.

The Shadow Dexterous Hand (SHADOW ROBOT COMPANY, 2003) is consid-

ered one of the most complex anthropomorphic hands ever built. Being equipped

2



(a) The DLR Multisensory Articulated Hand. (b) The NASA Robonaut Hand.

(c) The Barrett Hand. (d) The Gifu Hand III.

(e) The Shadow Dexterous Hand. (f) The Schunk Anthropomorphic Hand.

Figure 1.2: Five-fingered robot hands.
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(a) The i-Limb Ultra Prosthetic Hand. (b) The BeBionic Prosthetic Hand.

Figure 1.3: Prosthetic robot hands.

with five fingers, the configuration, shape and dimensions of each finger is close to

those of the human hand (with 24 DoF, degrees of freedom) and artificial muscles

are used for the actuation of the fingers.

The Schunk Anthropomorphic Hand (LIU et al., 2007) consists of three inde-

pendent aligned fingers and an opposing finger which is analogous to the human

thumb, offering good characteristics of dexterity. The finger joints are equipped

with magnetic angular sensors and torque sensors.

The i-Limb Hand is considered one of the most capable prosthesis for the hand

or upper limb, having five fingers, each with two phalanxes (with 11 DoF). Working

as prosthetic device, it is equipped with two electrodes bonded to the patient skin,

which collect the myoelectric signals from the muscles and transmit these signals,

together with the information from other sensors, to a microprocessor.

Another example of prosthetic hand is the BeBionic Hand, which is similar to

the i-Limb Hand in many aspects, such as number of DoF and myoelectric sensors.

The main differences are related to the number and types of grasping patterns and

cost.

1.2 Modeling and Design of Robot Hands

One of the main aspects related to the complexity and cost of a robot hand is the

design of the actuation and transmission system. In terms of the actuator placement,

4
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there are two options: (i) on-site, where the motors are placed directly inside the

joint or hosted inside one of the two links connected by the actuated joint; (ii)

remote, where the motors are placed outside the links connected by the joint itself

(for instance, into the palm or in the forearm). This type of actuation requires a

motion transmission system, which could be flexible (e.g., tendons) or rigid (e.g.,

gear trains) according to the transmission element to be adopted.

An appropriated sensory system is also a key part of the project of a robot hand.

It provides all necessary information for the operations to be correctly performed.

From a computational point of view, sensors are the primary channels of data needed

by the robot operational system to generate a description of the environment around

and of the robot itself. This is essential when we want the robot to operate in

non-structured environments such as our everyday world, rather than operating in

a controlled environment such as in manufacturing applications (HUTCHINSON

et al., 1996).

Sensors can be classified in two different types in robotics literature: propriocep-

tive and exteroceptive sensors (SICILIANO et al., 2009). The first type is responsible

for measuring the internal state of the robot manipulator. As an example of propri-

oceptive sensor, encoders are utilized to recover angular position data of each me-

chanical joint. This information can be utilized together with a kinematic/dynamic

model of the manipulator in operational space control schemes. Exteroceptive sen-

sors are capable of providing information about the surrounding environment. As

examples, we can cite force and torque sensors, necessary for force control strate-

gies that account for the interaction between the end-effector and the task surface

(LUIGI VILLANI, 2008).

A multifingered robot hand can be modeled as a set of small robots fixed on

a common base or palm. Indeed, the kinematic and dynamic models of a robot

hand with on-site actuation are quite similar to those of a typical industrial robot,

which simplifies the modeling problem. On the contrary, remote actuation adds

some challenges to the control design, such as, the compliance of the transmission

system and non-negligible dynamic effects (e.g., friction and backlash). Meanwhile,

most of control strategies developed for coordinated manipulation between robot

manipulators can be immediately extended and applied to a multifingered robot

5



hand grasping an object (TINÓS et al., FREITAS et al., 2006, 2011).

However, the design of high-level control schemes for a robot hand must take

into account the interaction between the fingers and the object. This mutual inter-

action depends on several aspects, such as modeling of contact points (e.g., com-

pliance, friction), force/torque control at the contact points, the mobility of the

fingers and the contacts (e.g., fixed, rolling), as well as planning algorithms for

grasping/manipulating of objects (KAO et al., YOSHIKAWA, 2008, 2010). In this

context, several control strategies for robot hands operating under a wide range of

uncertainties have been developed using adaptive, robust, hybrid and artificial in-

telligence techniques (TAKAHASHI et al., ENGEBERG e MEEK, YIN et al., ARI-

MOTO, ZHAO e CHEAH, 2008, 2013, 2003, 2004, 2009).

1.3 Visual Servoing for Control of Robot Hands

Since the early 70’s cameras have been used to obtain geometrical information on

the surrounding environment without physical interaction, likewise the human sense

of vision. Typical applications include surveillance, monitoring and inspection. The

Figure 1.4: Typical visual servoing scheme.

concept of using feedback information extracted from a visual sensor to control the

motion of a robotic system with respect to the pose of a target object is referred to

as visual servoing or vision-based robot control. In this context, the visual system

can be integrated by a single or multiple cameras, mounted in fixed (eye-to-hand) or

6



moving (eye-in-hand) configurations. The visual servoing techniques can be widely

classified into the following categories: position-based, image-based or hybrid, which

combines the common characteristics of the first two. The main differences between

the position-based visual servoing (PBVS) and image-based visual servoing (IBVS)

are related to the coordinates space where the output error is computed (e.g., Carte-

sian or image), and how the current pose of the target object is obtained (e.g., pose

estimate or feature measurements). The main benefits of using the visual infor-

mation directly into a feedback control loop are twofold: lower sensitive to camera

calibration errors and there is no need to estimate the object pose with respect

to the camera frame in real-time (CHAUMETTE e HUTCHINSON, 2008). Vision

also offers an interesting solution as a non-contact robot sensor, since it provides a

great amount of information about the surrounding world in a way similar to the

human vision (HUTCHINSON et al., 1996). The disadvantage of using vision to

extract useful information from the surrounding environment is the need for image

processing techniques, which are usually computationally demanding and not easy

to implement. Despite of this drawback, integrating cameras into a robotic system

can not only radically increase the number of feasible tasks but can also increase

the task accuracy, if a visual feedback loop is used for correcting the position of the

robot manipulator (SHIRAI e INOUE, 1973).

Inspired by the natural way in which humans pick up different objects and ma-

nipulate them using integrated vision and touch sensing to control the grasping

motion, a number of vision-based object manipulation tasks using robot hands have

been proposed (SEITZ, 1999). The idea is to employ the visual servoing framework

to control the position of an unknown object grasped by a multifingered robot hand

(LIPPIELLO et al., 2013). The vision system could also be used to overcome the

lack of knowledge about the shape or geometry of the object. From the combination

of vision and force data at control level, integrated manipulation frameworks have

been developed to carry out common daily tasks such as opening doors, pushing

buttons or turning knobs (PRATS et al., 2008). Tactile sensing have been com-

bined to 3D stereo vision or high-speed vision systems to improve the performance

of the object manipulation tasks under dynamic changes in the working environ-

ment (HONDA et al., NAMIKI et al., 1998, 1999). Robust visual servoing methods

7



Figure 1.5: Eye-in-hand visual servoing scheme with a Kawasaki robot manipulator.

From ViGIR Lab, University of Missouri.

for object manipulation have also been proposed to compensate for the effects of

frictional forces at the fingertips or to deal with the temporary loss of informa-

tion due to occlusion or object disappearance (YOKOKOHJI et al., KAWAMURA

et al., 1999, 2013). Some works have considered the dynamic model of the robot

hand and the grasping force of the fingertips to implement control schemes based

on neural networks approach and optimal control theory (ZHAO e CHEAH, JARA

et al., 2009, 2014).

8

http://vigir.missouri.edu/images/VS.htm1.jpg


1.4 Overview of this work

In this work, we present a kinematic framework for modeling and control design of a

three-fingered robot hand. We consider two different types of actuation, both usually

found in many types of robot hand designs: (i) on-site actuation and (ii) remote

actuation. In many cases of remote actuation, each robot finger can be considered

as a parallel manipulator subjected to kinematic constraints. A simplified approach

is proposed where these constraints can be computed from an empirical model for

the movement of the fingers. This approach is motivated by the inherent mechanical

complexity of many transmission mechanisms usually found in robot hands.

The kinematic control approach is used to tackle the position control problem

for the fingers in both cases, ensuring the asymptotic stability of the output tracking

error. The problem of controlling the grasping motions for a robot hand during the

manipulation task of an object is conceptually analogous to the control problem of

multiple manipulators cooperating to perform some coordinated task, for example,

lifting a box. Thus, well-known modeling and control strategies usually applied

to cooperative robot manipulators can also be naturally extended to multifingered

robot hands (WEN e WILFINGER, FREITAS et al., 1999, 2011). To solve the

problem of grasping and manipulating an object, contact and relative position mod-

els for the fingers are developed, and a kinematics-based control scheme is designed

to allow for a successful motion control and prehension of the grasped object. The

key idea behind this solution is based on the previous work on modeling and con-

trol design for general robotic systems subject to kinematic constraints (WEN e

WILFINGER, 1999).

We also address the problem of controlling the 3D Cartesian position of a mul-

tifingered robot hand for object grasping tasks using a visual feedback loop. The

solution presented in this work covers a vision system composed of calibrated video

cameras and depth sensors. The control design is also based on the kinematic con-

trol approach and two visual servoing schemes are derived to ensure the asymptotic

stability and the zero-convergence of the output tracking errors: an image-based

visual servoing method (IBVS) and a hybrid visual servoing method (HVS), which

combines image and Cartesian coordinates for control.

Experimental tests, performed with the 3-Finger Adaptive Robot Gripper from

9



Robotiq (Fig. 2.4a), illustrate the applicability of the proposed methodology for ob-

ject grasping and manipulation tasks by general multifingered robot hands. The

Figure 1.6: Multifingered robot hand: (a) 3-Finger Adaptive Robot Gripper; (b)

Articulated finger with elastic tendons. Courtesy from Robotiq.

video camera is also used to validate the empirical model previously developed for

the movement of the fingers of the 3-Finger Adaptive Robot Gripper. This is done

by observing how the finger phalanges move when the robot hand actuators are

controlled, and then constructing functions that model these relationships. Com-

puter simulations illustrate more general applications of the presented theoretical

framework, for example in the case of on-site actuation, where generally the robot

hand has more DoF than in the case of remote actuation.
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Chapter 2

Kinematic Modeling of a Robot

Hand

In this chapter, we develop the kinematic models used in this work. In particular,

we develop kinematic models for: a general three-fingered robot hand, the finger

kinematic constraints introduced by the presence of remote actuation (when the joint

is driven by actuators placed outside the links connected by the joint [5]) and the

grasp constraints induced by the contact between finger and object. The first section

introduces the terminology and notation used in the work. In the next sections, two

different approaches are considered: in section 2.2, we develop a kinematic model

for a three-fingered robot hand with on-site actuation.

In section 2.3, an introduction to the theory of parallel mechanisms is developed.

Motivated by models of grippers commonly found in industry, two different modeling

approaches are proposed for the case where the fingers are closed-chain, under-

actuated mechanisms driven by remote actuation. In the first case, the kinematic

constraints on the joint velocities are derived analytically. This approach is specially

suitable for robot hands with simple mechanical structures / transmission systems.

In the second case, the kinematic constraints are derived by using some technique

for extracting information about the relations between the finger joints. Calibrated

video cameras could be used with colored targets placed in specific points in the

structure of the fingers, so that the movement relations could be empirically derived.

Section 2.4 provides a brief introduction to grasping kinematics, and a general

model for the kinematic constraints that characterize the grasping of an object is

11



derived.

Section 2.5 provides an introduction to the relative kinematics of the robot hand,

important for the future development of a suitable prehension scheme for the grasped

object. This scheme ensures the validity of the methods developed in the previous

section.

Finally, in section 2.6, we employ the methodology developed in the previous

sections to find a proper model for the 3-Finger Adaptive Robot Hand, from Robotiq.

2.1 Terminology and Notation

In this first section, we introduce the terminology and notation used in this work.

Fig 2.1 illustrates the adopted conventions for the finger angles, link lengths and

coordinate frames used in Chapter 2.

Figure 2.1: Convention for the links and joints motions of the robot hand.

θkj : angle of the j-th joint for the k-th finger;

θka : angle of the k-th finger driver motor;

θ4a : angle of the motor that drives the scissor motion;
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Fp : palm coordinate system defined by the unit vectors of the frames axes ~xp,

~yp and ~zp. This is the reference frame in which all vectors will be referred to,

unless otherwise stated;

Fbk : coordinate system defined in the base of k-th finger;

Fk : fingertip coordinate system defined by the unit vectors of the frames axes

~xk, ~yk and ~zk;

Fo : object coordinate system defined by the unit vectors of the frames axes ~xo,

~yo and ~zo;

li : length of the i-th phalange where i= 1, 2, 3 represent the proximal, medial

and distal phalanges respectively;

l0 : distance between the pitch axis and the axis of the first joint, for fingers 2

and 3;

Ra : rotation matrix of an arbitrary frame Ēa with respect to the palm frame Ēp;

pi : position vector of the i-th fingertip frame with respect to the palm frame

defined in terms of its x, y, z coordinates as pi=(pix, piy, piz).

2.2 Forward and Differential Kinematics of a

Multi-fingered Robot Hand

In this section, we develop the kinematic modeling for a three-fingered robot hand.

We follow an intuitive and simplified approach, where the robot can be considered

as a multi-robot system composed of a set of robot fingers fixed on a common base

or palm. Since each finger can be modeled as a single and independent mechanism,

it can be controlled separately. The palm coordinate system denoted by Fp is the

inertial frame in which all vectors and matrices will be referred to hereafter. Consider

that the robot hand is composed of n articulated fingers coupled to the palm, each

one with nk revolute joints (k = 1, 2, ..., n). Let the pair {pk , Rk} be the position

vector and the rotation matrix, which represent respectively the location and the
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orientation of the k-th fingertip frame Fk with respect to the palm frame Fp. The

pose of the k-th finger can be obtained from the forward kinematics map as:

pk = pk(θk) , Rk = Rk(θk) , (2.1)

where θk∈Rnk is the joint position vector for the k-th finger. The forward kinematics

map can also be expressed in terms of the vector

xk =

 pk

φk

 = hk(θk) , (2.2)

where φk denotes a particular choice of variables for the representation of the finger

orientation, such as a particular convention of Euler angles.

The coordinate transformation between the frames Fk and Fp for the k-th finger

can be written in terms of the homogeneous transformation matrix as (SICILIANO

et al., 2009):

Tk(θk) =

 Rk(θk) pk(θk)

0T 1

 . (2.3)

Let vk ∈ R6 be the velocity vector of the k-th fingertip frame Fk with respect to

the palm frame Fp. It can be related to the joint velocity vector θ̇k ∈ Rnk by the

differential kinematics equation as:

vk=

 ṗk

ωk

=

 JkfP

JkfO


︸ ︷︷ ︸

Jk
f

θ̇k . (2.4)

where the pair {ṗk , ωk} denotes the linear and angular velocity components of vk

and Jkf ∈R6×nk is the geometric Jacobian of the k-th finger, composed of linear and

angular parts (JkfP ∈R
3×nk and JkfO ∈R

3×nk , respectively).

The angular velocity vector ωk can be related to the derivative of the Euler angles

φ̇k, by means of

φ̇k = Te(φk)ωk , (2.5)

where Te is a transformation matrix, whose expression is dependent on the particular

choice of representation for finger orientation (SICILIANO et al., 2009).

Analogously to (2.4), we can write the differential kinematics equation for each

finger is terms of the direct derivative of the forward kinematics map (2.2). Using
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(2.5), the relation between ḣk and vk is given by:

ḣk = TA(φk) vk , TA(φk) =

 I3 0

0 Te(φk)

 . (2.6)

By direct differentiation of the forward kinematic map (2.2), we get:

ẋk =
∂hk(θk)

∂θk
θ̇k = JkA(θk) θ̇k , (2.7)

where JkA∈R6×nk is the so-called analytical Jacobian matrix of the k-th finger.

Combining (2.6) with (2.4) and comparing with (2.7), it is easy to see that the

relation between the analytical and the geometric finger Jacobian matrices is given

by:

JkA = TA(φk) J
k
f . (2.8)

2.3 Finger Kinematic Constraints

In this section, we consider the common case where the motions of the robot fingers

are subject to kinematic constraints on velocity. As mentioned earlier, many robot

hands are remote actuated, meaning that the fingers are indirectly driven by motors

by means of a transmission system. The transmission system can be composed of

springs, gears, complex parallel mechanisms, or even combinations of these. In some

robot hands, the fingers can be considered as closed-chain mechanisms composed of

active and passive joints. Indeed, passive joints are indirectly controlled by the

motion of actuated (or active) joints. In general, if θk ∈Rnk is the vector of the nk

joint angles of the k-th finger and there are mk constraint kinematic equations (in

the k-th finger) relating these angles, we can express these constraints as:

gkj(θk) = 0 , j = 1, 2, ...,mk . (2.9)

Suppose that θk can be partitioned into: θk =
[
θTka θTkp

]T
. where θka and θkp are

vectors containing the angles of the active and the passive joints of the k-finger,

respectively. In general, the number of passive joints is the same as the number of

constraint equations, such that θkp∈Rmk and θka∈Rnk−mk .

Consider that it is possible to obtain an analytical expression for the passive

joints θkp:

θkp = ck(θka) , (2.10)
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where ck(.) is a map of the active joint angles of the k-th finger to its passive joint

angles. The relation ck(.) can be found either analytically or empirically, if it is

possible to observe how the passive joints move with respect the motion of the

active joints in finger k. For example, if all the joints (including the passive ones)

are equipped with encoders, than the problem of finding ck(.) is trivial, since one

can easily infer the relations by observing the encoder data. Another possibility is

to use the encoder data and curve fitting algorithms with a calibrated video camera

and image processing techniques to find out the mentioned relations.

In the assumption of known and differentiable ck(.) functions, if we differentiate

2.10 directly, we obtain:

θ̇kp =
∂ck(θka)

∂θka
θ̇ka = Jkc (θka) θ̇ka . (2.11)

Now, suppose that the fingertip velocities vk in 2.4 are dependent on both the ac-

tive and the passive joint velocities of the mechanism. Thus, we split the differential

kinematics equation in terms of the active and passive joints:

vk =
[
Jkfa Jkfp

]  θ̇ka

θ̇kp

 = Jkfa θ̇ka + Jkfp θ̇kp (2.12)

Now, we can use 2.11 to derive the differential kinematics equation relating the

fingertips velocity to the active joints velocity:

vk = (Jkfa + Jkfp J
k
c ) θ̇ka . (2.13)

We can also write 2.13 in the following way, which will be helpful in the next sections:

vk =
[
Jkfa Jkfp

]
︸ ︷︷ ︸

Jk
f

 I

Jkc


︸ ︷︷ ︸

J̃k
c

θ̇ka (2.14)

Thus, one can always express the Jacobian matrix in the differential kinematics

equation of a constrained mechanism as a product of two matrices:

vk = Jkf J̃
k
c θ̇ka (2.15)

where Jkf is the well-known geometric Jacobian of the k-finger and J̃kc is an aug-

mented constraint Jacobian of the mechanism.
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Proposition 1 In the particular case where the fingertips pose does not depend

directly on the active joints angles θka, but only on the passive joints angles θkp

(θk = θkp):

(i) Jkf = Jkfp ,

(ii) J̃kc = Jkc

and thus the differential kinematics equation 2.15 reduces to

vk = Jkf J
k
c θ̇ka . (2.16)

Proof 1 See Appendix A - A.1.

Back to equation (2.11), we can also express the constraint Jacobian matri-

ces in another way. First, defining the vector of active joints of the hand as

θa = [ θ1a θ2a . . . θna ]T, we can combine the constraint Jacobian matrices with

appropriate null matrices to express the active to passive joint velocity transforma-

tion for the k-th finger with respect to θa:

θ̇kp =
[

0 . . . Jkc . . . 0
]

︸ ︷︷ ︸
Jk
C


θ̇1a

θ̇2a
...

θ̇na


︸ ︷︷ ︸

θ̇a

= JkC θ̇a , (2.17)

where JkC∈Rnk×nm are the augmented constraint Jacobian matrices.

If Proposition 1 is the case, then we can rewrite equation 2.15 as:

vk = Jkf J
k
C︸ ︷︷ ︸

Jk
F

θ̇a , (2.18)

which will be useful in the beginning of next section. The matrix JkF ∈R6×nm will

be referred as the augmented finger Jacobian.

In Appendix B, we cover the case of non-integrable constraint kinematic equa-

tions 2.9.
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2.4 Multifinger Grasp Kinematics

In this section, we present the kinematic modeling for a multi-fingered robot hand

grasping and/or manipulating a given object. Our goal is to find the differential

kinematics equation relating the velocity of a reference frame fixed in the manip-

ulated object and the velocities of the active joints of the mechanism. Here, we

suppose that the object is held firmly between the palm and the fingertips, while it

follows a desired reference trajectory. According to (2.15), we can stack the linear

and angular velocity vectors vk for all n fingers:
v1

v2
...

vn


︸ ︷︷ ︸

vh

=


J1
f 0 . . . 0

0 J2
f . . . 0

...
...

. . .
...

0 0 . . . Jnf


︸ ︷︷ ︸

Jf


J1
C

J2
C

...

JnC


︸ ︷︷ ︸

Jc

θ̇a . (2.19)

In shorthand notation:

vh = Jf Jc︸︷︷︸
Jh

θ̇a = Jh θ̇a . (2.20)

where vh∈R6n is the velocity vector of the robot hand and Jh∈R6n×nm is the well-

known hand Jacobian matrix, written in terms of the product of matrices Jf ∈R6n×N

and Jc∈RN×nm , where N =
n∑
k=1

nk and nm is the total number of active joints of the

hand. The hand Jacobian matrix Jh can also be written in terms of the augmented

finger Jacobian matrices JkF , introduced in the end of last section:

Jh =
[
J1
F
T

J2
F
T

. . . JnF
T
]T

. (2.21)

Now, let rko be the position vector of the k-th contact point with respect to the

object frame Fo, where it is constant regardless of the object’s motion. Let also

Rpo be the rotation matrix of the object frame with respect to the palm frame Fp.

According to (WEN e WILFINGER, CACCAVALE e UCHIYAMA, 1999, 2008),

the object velocity vector vo can be related to the object velocity vector at the k-th

contact point vck by:

vck = Ak(rko) vo , Ak(rko)=

I3 −S(Rpo rko)

0 I3

 , (2.22)
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where S(.) ∈ R3×3 is the skew-symmetric matrix operator. The matrix Ak∈R6×6 is

the Adjoint matrix related to the k-th contact point. Now, under the assumption

of firm contact (the k-th finger never loses contact with the object, for all k =

1, 2, . . . , n), the velocity vector vck can be parameterized in terms of a generic velocity

vector wk using:

vk +Hk wk = vck , (2.23)

where the columns of the constraint matrix Hk ∈ R6×nr represents the nr degrees of

freedom for the k-th fingertip at the contact point.

There are some interpretations for the velocity vector wk. Under the assumption

of a firm contact, the whole system composed of fingers and object can be thought

of a parallel mechanism, where the vector wk represents the angular velocity of the

virtual joint formed between the k-th finger and the grasped object.

Thus, the constraint matrix Hk accept or reject velocity components of wk at

the contact point, transmitting only the desired components of the motion. Some

examples of types of contacts and corresponding values of the constraint matrix Hk

can be found in (WEN e WILFINGER, 1999).

Now, we can stack (2.22) and (2.23) for all fingers to obtain:
v1

v2
...

vn


︸ ︷︷ ︸

vh

+


H1 0 . . . 0
... H2 . . . 0
...

...
. . . 0

0 0 . . . Hn


︸ ︷︷ ︸

H


w1

w2

...

wn


︸ ︷︷ ︸

w

=


vc1

vc2
...

vcn


︸ ︷︷ ︸

vc

,

and 
vc1

vc2
...

vcn


︸ ︷︷ ︸

vc

=


A1

A2

...

An


︸ ︷︷ ︸

A

vo .

Writing the same equations in a shorthand notation, according to the definitions

above:

vh +H w = vc (2.24)

vc = Avo , (2.25)
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where:

w=[wT
1 wT

2 . . . wT
n ]T , H=diag(H1 , . . . , Hn) ,

A=[AT
1 AT

2 . . . AT
n ]T , vc=[ vTc1 vTc2 . . . vTcn ]T .

Then, combining (2.20) with (2.24) and (2.25), we obtain the following differen-

tial kinematics equation:

Jh θ̇a +H w = Avo . (2.26)

Pre-multiplying both sides of (2.26) by the Moore-Penrose left pseudo-inverse matrix

A+ and the annihilating matrix Ã, such that A+A = I and Ã A = 0, we obtain the

multifinger kinematic model as:

vo = (A+Jh) θ̇a + (A+H)w , (2.27)

0 = (Ã Jh) θ̇a + (ÃH)w , (2.28)

where A is of full column rank. Notice that, from (2.27) and (2.28), the variable

w can be interpreted as the velocity vector of the contact point. Indeed, during

the grasping situations, the contact point between the fingertip and the object can

be modeled as a virtual rotational/prismatic joint performing rolling/sliding motion

(WEN e WILFINGER, 1999). If we specify θ̇m, it is possible to solve (2.28) for w,

provided that the matrix (ÃHT) is non-singular. Thus, we can rewrite (2.27) as:

vo = (Go Jh)︸ ︷︷ ︸
Jo

θ̇a , Go = A+[ I −H (ÃH)+Ã ] , (2.29)

where Jo ∈ R6×nm is the object Jacobian matrix, written as the product of a grasp

matrix Go and the hand Jacobian matrix Jh.

Equation (2.29) can also be written in terms of the position and orientation parts

of the object Jacobian matrix, JPo ∈ R3×nm and JOo ∈ R3×nm , respectively:

vo =

 ṗo

ωo

 =

 JPo

JOo

 θ̇a = Jo θ̇a , (2.30)

It is important to emphasize that the presented methodology for finding the

differential kinematic equations of the object is valid under the assumption of firm

contact between every finger and the object. In other words, (2.29) is valid if we can

guarantee that the contact will be held for all fingers. This fact is directly related

to w, the vector of angular velocities of the virtual joints in a contact point. If some
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k-th fingertip is not in contact with the surface of the object, than it is not possible

to parameterize the velocity vector vck according to (2.23). In the next section,

an useful and simple introduction to a method to ensure the validity of (2.29) is

presented.

2.5 Relative Kinematics

The relative kinematics of a robot hand is the mathematical description of the

differences between the positions of two nearby fingers. It is of mainly importance

to develop a mathematical description of such relations, since the prehension of a

grasped object is directly related to the relative positions among the fingers that

are in contact with it. Once again, suppose that the considered robot hand has n

fingers. First, define the vector of relative positions as:

pr :=


p1−p2
p2−p3

...

pn−1−pn

 ∈ R3(n−1) . (2.31)

Also, define the vector of finger positions as:

ph :=
[
pT1 pT2 . . . pTn

]T
∈ R3n (2.32)

The relation between these two vectors is given by:


p1−p2
p2−p3

...

pn−1−pn


︸ ︷︷ ︸

pr

=


I3 −I3 0 . . . 0 0

0 I3 −I3 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . I3 −I3


︸ ︷︷ ︸

Ãp



p1

p2
...

pn−1

pn


︸ ︷︷ ︸

ph

or

pr= Ãp ph (2.33)

where I3 ∈ R3×3 is the identity matrix and Ãp ∈ R3(n−1)×3n. From the direct

kinematics map of the k-th finger, represented by equation (2.1), we can differentiate
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it to obtain the differential kinematics equation in position:

ṗk = JkPf θ̇k , (2.34)

where JkPf ∈R3×nk is the position part of the finger jacobian matrix Jkf , introduced

earlier in equation (2.4).

Now, proceeding with the same methodology used to derive equation (2.18) and

considering the fact that all finger joints of (Fig. 2.1) are passive (θk = θkp), we get:

ṗk = JkPf J
k
C θ̇a , (2.35)

which is the differential kinematic equation for the linear velocity vector of the k-th

finger, dependent only of the corresponding active joint velocities.

Again, similarly to (2.19), we can stack these velocities together:
ṗ1

ṗ2
...

ṗn


︸ ︷︷ ︸

ṗh

=


J1
Pf 0 . . . 0

0 J2
Pf . . . 0

...
...

. . .
...

0 0 . . . JnPf


︸ ︷︷ ︸

JPf


J1
C

J2
C

...

JnC


︸ ︷︷ ︸

Jc

θ̇a .

Note that the left-hand side of this equation is the time derivative of the pre-

viously defined vector ph. The first block-diagonal matrix in the right-hand side is

built in a similar way to Jf , but written in terms of JkPf instead of Jkf . Written in

shorthand notation, the differential kinematics equation above is:

ṗh = JPf Jc︸ ︷︷ ︸
JPh

θ̇a . (2.36)

where JPh∈R3n×nm is the position part of the hand Jacobian matrix Jh, written as

the product of JPf and Jc. This matrix can also be written in terms of JkPF ∈R3×nm ,

the position parts of the complete finger Jacobian matrices JkF :

JPh =
[
J1
PF

T
J2
PF

T
. . . JnPF

T
]T

. (2.37)

Now, we can use the time derivative of relation (2.33) to express the relative

velocities of the fingers in terms of the active joint velocities of the robot hand:

ṗr = Ãp JPh︸ ︷︷ ︸
Jr

θ̇a , (2.38)

which is the relative differential kinematics of the robot hand. The matrix Jr ∈

R3n×nm is known as the relative Jacobian matrix of the robot hand.
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2.6 Modeling of the 3-Finger Adaptive Robot

Hand

In this section, we develop a kinematic model for the 3-Finger Adaptive Robot

Hand, from Robotiq. We cover the kinematic models for the fingers, the kinematic

restrictions on the fingers velocities, details about the grasping kinematics equations

for this particular robot hand and also the relative kinematics equation. These

models are essential for the future development of visual servoing control schemes,

since we need to find the relation between the active joint space and the operational

space of the robot system before actually finding the relation between the operational

space and the image space, which will be the subject of the next chapter.

Figure 2.2: Robotiq gripper.

The Robotiq gripper is a “mechanically intelligent” gripper, capable of adapting

its structure to perform adaptive grasping. Its has four internal motors, three for

opening / closing each finger, and one more to perform an “scissor” movement

between fingers 2 and 3. This extra motor actually couples these two fingers; one

cannot move laterally without moving the other, due to the presence of an internal

gear coupling between them. But they can open / close freely, each one by its own

motor.
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2.6.1 Forward and Differential Kinematics

Figure 2.1 in Section 2.1 illustrates the disposal of the three fingers of the 3-Finger

Adaptive Robot Hand (Fig. 2.2) around the palm, as well as the convention for its

links and joints. The Robotiq hand has three fingers (n = 3), finger 1 with n1 = 3

passive joints and fingers 2 and 3 with n2 = n3 = 4 passive joints. The nm = 4

active joints are located inside the palm, driving the motion of the finger joints of

Fig. 2.1 by means of a transmission mechanism composed of rigid links, springs and

internal gears.

For space saving, the next expressions are according to the following abbrevia-

tions and conventions:

sk1 =sin(θk1) , ck1 =cos(θk1) ,

sk12 =sin(θk1 + θk2) , ck12 =cos(θk1 + θk2) ,

sk123 =sin(θk1 + θk2 + θk3) , ck123 =cos(θk1 + θk2 + θk3) ,

sk4 =sin(θk4) , ck4 =cos(θk4) ,

lks =(l1 s
k
1 + l2 s

k
12 + l3 s

k
123) , lkc =(l1 c

k
1 + l2 c

k
12 + l3 c

k
123)

θk123 =θk1 + θk2 + θk3 , k = 1, 2, 3 .

Note that the k superscript is simply the index of the corresponding finger. The

vectors pkoffset =
[
pkx pky pkz

]
(k = 1, 2, 3) , are position vectors from the origin of

the palm frame Fp to the k-th finger base frame Fbk. The vectors pklink
(k = 1, 2, 3)

are the position vectors from the base of finger k (origin of Fbk) to the fingertip frame

Fk, which are configuration dependent. All finger positions with respect to the palm

frame Fp can be written as pk = pkoffset + pklink
. The rotation matrices Rk ∈ SO(3)

are written in terms of elementary rotation matrices Rx , Ry , Rz. According to the

conventions above and Fig. 2.1, the forward kinematics map for each finger is:

p1link
=
[

0 l1s l1c

]T
, R1 =Rx(−θ1123),

p2link
=
[

(l2c+l0) s
2
4 −l2s (l2c+l0) c

2
4

]T
, R2 =Ry(θ24)Rx(θ

2
123),

p3link
=
[
−(l3c+l0) s

3
4 −l3s −(l3c+l0) c

3
4

]T
, R3 =Ry(−θ34)Rx(θ

3
123) . (2.39)

Next, according to Fig. 2.1, we derive the differential kinematics equations for

each finger (SICILIANO et al., 2009). These equations represent a linear transfor-

mation between the joint velocities and the velocity of the corresponding fingertip
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frame Fk. The matrices of the transformation are called finger Jacobian matrices,

and their components are dependent on the joint angles.

The analysis of the Jacobian matrices is of great importance in robotics, revealing

fundamental aspects about the robot mechanism, such as its manipulability, singular

configurations and the dynamic relation between the joint forces and torques and

the forces applied in the end-effector of the robot.

According to fig. 2.1, the vectors of finger angles θk for k = 1, 2, 3 are:

θ1 =
[
θ11 θ12 θ13

]T
,

θ2 =
[
θ21 θ22 θ23 θ24

]T
,

θ3 =
[
θ31 θ32 θ33 θ34

]T
. (2.40)

Thus, the differential kinematics equations for the three fingers of the Robotiq

gripper are:

v1 = J1
f θ̇1 , v2 = J2

f θ̇2 , v3 = J3
f θ̇3 , (2.41)

where the corresponding finger Jacobian matrices are:

J1
f=



0 0 0

l1c d1c l3 c
1
123

−l1s −d1s −l3 s1123
1 1 1

0 0 0

0 0 0


,

J2
f=



−l2s s24 −d2s s24 −l3 s2123 s24 (l2c + l0) c
2
4

−l2c −d2c −l3 c2123 0

−l2s c24 −d2s c24 −l3 s2123 c24 −(l2c + l0) s
2
4

c24 c24 c24 0

0 0 0 1

−s24 −s24 −s24 0


,
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J3
f=



l3s s
3
4 d3s s

3
4 l3 s

3
123 s

3
4 −(l3c + l0) c

3
4

−l3c −d3c −l3 c3123 0

−l3s c34 −d3s c34 −l3 s3123 c34 −(l3c + l0) s
3
4

c34 c34 c34 0

0 0 0 1

s34 s34 s34 0


, (2.42)

with dkc =(l2 c
k
12 + l3 c

k
123) and dks =(l2 s

k
12 + l3 s

k
123).

2.6.2 Internal Kinematic Constraints

Now, we proceed to derive the expressions for the kinematic constraints of each

finger. Since our main objective is to perform manipulation tasks with the Robotiq

gripper, it is important to identify the types of grasp in which the object is ma-

nipulable. Observing Fig. 2.3, we notice that the object is actually manipulable

by the Robotiq hand only during a fingertip grasp, since it forms a “force closured

grasp”, but not a “force closured” grasp ( to a better understanding about the prin-

ciples behind form closure grasps and force closure grasps, see (PRATTICHIZZO e

TRINKLE, 2008) and (MURRAY et al., 1994) ).

In Fig. 2.4, we can observe the finger structure in more detail. There is a

relatively complex spring mechanism in the back of each finger, which is responsible

for adapting the finger configuration to external forces acting in the phalanges. In

practice, the overall effect is to automatically adapt the structure of the fingers to fit

the shape of a grasped object during encompassing grips. However, since a grasped

object is manipulable only under fingertip grips, it is not needed to find out how the

fingers move when contact forces arise on phalanges other than the fingertip ones.

During any feasible manipulation, the object will be in contact only with three or

two fingertips, and thus, the movement of the fingers can be completely defined

by the forces generated by the motors and the springs in the mechanism. In other

words, during object manipulation, the fingers move in the exact same way than

during free motion.

Because of this fact, we can develop a simple model for the relation between the

motion of the internal motors of the hand (or, its active joints) and the motions of

the finger angles showed in Fig. 2.1 (considered to be passive joints). During the free
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Figure 2.3: Types of grip versus operation modes of the Robotiq gripper.

Figure 2.4: Robotiq finger, with the back-spring mechanism in detail.
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motion, the motor torque tend to transfer angular momentum to the first phalange

only, before it reaches a mechanical limit. Then, the movement of the first phalange

stops and the back-spring mechanism forces the motor shaft to transfer momentum

to the second phalange. This behavior strongly suggests that discontinuous functions

can be used to model such relations.

After some observational work, we propose the following empirical relations be-

tween the finger angles θkj and the three uncoupled motor angles θka, k = 1, 2, 3:

θk1 =

 α1 θka + β1 , θka ≤ γ1 ,

η1 , θka > γ1 ,

θk2 =

 η2 , θka ≤ γ2 ,

α2 θka + β2 , θka > γ2 ,

θk3 =

 α3 θk1 + β3 , θka ≤ γ3 ,

η3 , θka > γ3 ,
(2.43)

where αk, βk, ηk, γk, k = 1, 2, 3 are twelve constants to be determined. In addition,

because of the inherent coupling between the fingers 2 and 3 in the scissor mode,

we have:

θ24 =θ4a , θ34 =−θ4a . (2.44)

where the θ4a is the angle of the scissor motor. Equations (2.43) and (2.44) represent

the ck(.) functions introduced in section 2.3, according to the notation for the passive

joints of each finger, introduced in (2.40).

The motivation for this particular form for the empirical equations is based on

extensive observation of the finger motion. For now, we are going to assume that

this model is valid for some particular set of constants αk, βk, ηk, γk, k = 1, 2, 3.

Now, we can take the time-derivative of equations (2.43), obtaining the kinematic

relationship in terms of the angular velocities:

θ̇k1 =

 α1 θ̇ka , θka ≤ γ1 ,

0 , θka > γ1 ,

θ̇k2 =

 0 , θka ≤ γ2 ,

α2 θ̇ka , θka > γ2 ,

θ̇k3 =

 α3 θ̇k1 , θka ≤ γ3 ,

0 , θka > γ3 .
(2.45)
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Similarly, taking the time-derivative of (2.44):

θ̇24 = θ̇4a , θ̇34 = −θ̇4a , (2.46)

Then, defining a modified Kronecker delta operator

δkj :=

 1 , θka ≤ θ∗j ,

0 , θka > θ∗j ,
(2.47)

it is possible to rewrite equations (2.45) as:

θ̇k1 = δk1 α1 θ̇ka ,

θ̇k2 = (1−δk2)α2 θ̇ka ,

θ̇k3 = δk1 δk3 α1 α3 θ̇ka , (2.48)

where θ∗j for j= 1, 2, 3 is a bound for the angular position of the j-th joint for the

k-th finger, such that, θ∗j =γj.

Now, consider the particular case of the Robotiq gripper, where the same actu-

ator is shared by more than one finger. 1 The vector of active joints of the robot

hand is θa = [ θ1a θ2a θ3a θ4a ]T, where θka (k = 1, 2, 3) represents the motor shaft

angle for closing / opening the k-th robot finger and θ4a is the angle of the scissor

motor. We can split θa into its unshared and shared terms, as θa := [ θTu θTs ]T, where

θu = [ θ1a θ2a θ3a ]T and θs = [ θ4a ], allowing us to rewrite the velocity constraint

(2.11), according to:

θ̇k =
[
Jku(θa) Jks (θa)

]
︸ ︷︷ ︸

Jk
C

 θ̇u

θ̇s


︸ ︷︷ ︸

θ̇a

, (2.49)

where Jku and Jks are the unshared and shared parts of the complete constraint

Jacobian matrix JkC , and θ̇u, θ̇s are the unshared and shared active joint velocities

of the hand.

Therefore, using (2.48) and (2.46), the constraint equations for the fingers of the

Robotiq gripper can be found to be:

θ̇1 = [ J1
u J1

s ]︸ ︷︷ ︸
J1
C

θ̇a , θ̇2 = [ J2
u J2

s ]︸ ︷︷ ︸
J2
C

θ̇a , θ̇3 = [ J3
u J3

s ]︸ ︷︷ ︸
J3
C

θ̇a , (2.50)

1This is actually not a restricted case. Other robot grippers, such as the Schunk 3-Finger Robot

Hand, also have shared Dofs between two or more fingers.
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and the constraint Jacobian matrices in (2.49) take the form

J1
u =


δ11 α1 0 0

(1− δ12)α2 0 0

δ11δ13α1α3 0 0

 , J1
s =


0

0

0

 ,

J2
u =


0 δ21 α1 0

0 (1− δ22)α2 0

0 δ21δ23α1α3 0

0 0 0

 , J2
s =


0

0

0

1

 ,

J3
u =


0 0 δ31 α1

0 0 (1− δ32)α2

0 0 δ31δ33α1α3

0 0 0

 , J3
s =


0

0

0

−1

 . (2.51)

Thus, the complete constraint Jacobian matrices for the Robotiq hand are ob-

tained by simply combining the equations above.

2.6.3 Grasping Kinematics

Finally, since Proposition 1 is true in the case of the Robotiq gripper, equations

(2.18), k = 1, 2, 3 are:

v1 = J1
f J

1
C︸ ︷︷ ︸

J1
F

θ̇a , v2 = J2
f J

2
C︸ ︷︷ ︸

J2
F

θ̇a , v3 = J3
f J

3
C︸ ︷︷ ︸

J3
F

θ̇a , (2.52)

where the augmented finger Jacobian matrices are:

J1
F =



0 0 0 0

δ11 α1 l
1
c + (1− δ12)α2 d

1
c + δ11 δ13 α1 α3 l3 c

1
123 0 0 0

−δ11 α1 l
1
c − (1− δ12)α2 d

1
s − δ11 δ13 α1 α3 l3 s

1
123 0 0 0

δ11 α1 + (1− δ12)α2 + δ11 δ13 α1 α3 0 0 0

0 0 0 0

0 0 0 0


,
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J2
F =



0 −δ21 α1 l
2
s s

2
4 − (1− δ22)α2 d

2
s s

2
4 − δ21 δ23 α1 α3 l3 s

2
123 s

2
4 0 (l2c + l0) c

2
4

0 −δ21 α1 l
2
c − (1− δ22)α2 d

2
c − δ21 δ23 α1 α3 l3 c

2
123 0 0

0 −δ21 α1 l
2
s c

2
4 − (1− δ22)α2 d

2
s c

2
4 − δ21 δ23 α1 α3 l3 s

2
123 c

2
4 0 −(l2c + l0) s

2
4

0 δ21 α1 c
2
4 + (1− δ22)α2 c

2
4 + δ21 δ23 α1 α3 c

2
4 0 0

0 0 0 1

0 −δ21 α1 s
2
4 − (1− δ22)α2 s

2
4 − δ21 δ23 α1 α3 s

2
4 0 0


,

J3
F =



0 0 δ31 α1 l
3
s s

3
4 + (1− δ32)α2 d

3
s s

3
4 + δ31 δ33 α1 α3 l3 s

3
123 s

3
4 −(l3c + l0) c

3
4

0 0 −δ31 α1 l
3
c − (1− δ32)α2 d

3
c − δ31 δ33 α1 α3 l3 c

3
123 0

0 0 −δ31 α1 l
3
s c

3
4 − (1− δ32)α2 d

3
s c

3
4 − δ31 δ33 α1 α3 l3 s

3
123 c

3
4 (l3c + l0) s

3
4

0 0 δ31 α1 c
3
4 + (1− δ32)α2 c

3
4 + δ31 δ33 α1 α3 c

3
4 0

0 0 0 −1

0 0 δ31 α1 s
3
4 + (1− δ32)α2 s

3
4 + δ31 δ33 α1 α3 s

3
4 0


.

From this point, we can use expression (2.21) to calculate the hand Jacobian

matrix Jh by simply stacking the matrices above:

Jh =


J1
F

J2
F

J3
F

 . (2.53)

In order to complete the description of the grasping kinematics for the Robotiq

hand, we need a model for the manipulated object, expressed by the the Adjoint

matrices A1, A2, A3. These matrices are dependent on the geometry of the object,

and therefore, they are going to be discussed in chapter 4, together with details

about the contact matrices Hk.

2.6.4 Relative Kinematics

Because the Robotiq Gripper has three fingers, the relative position vector is:

pr =

 p1−p2
p2−p3

 ,

and the vector of finger positions is ph = [ pT1 pT2 pT3 ]T. The relation between them

is given by (2.33):

pr= Ãp ph , Ãp=

I3 −I3 0

0 I3 −I3

 ,
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To find the expression for JPh, we use equation (2.37) and the position part of

the augmented finger Jacobian matrices, JkFP
(k = 1, 2, 3), obtaining:

JPh =


J1
PF

J2
PF

J3
PF

 , (2.54)

with

J1
PF =


0 0 0 0

δ11 α1 l
1
c + (1− δ12)α2 d

1
c + δ11 δ13 α1 α3 l3 c

1
123 0 0 0

−δ11 α1 l
1
c − (1− δ12)α2 d

1
s − δ11 δ13 α1 α3 l3 s

1
123 0 0 0

 ,

J2
PF =


0 −δ21 α1 l

2
s s

2
4 − (1− δ22)α2 d

2
s s

2
4 − δ21 δ23 α1 α3 l3 s

2
123 s

2
4 0 (l2c + l0) c

2
4

0 −δ21 α1 l
2
c − (1− δ22)α2 d

2
c − δ21 δ23 α1 α3 l3 c

2
123 0 0

0 −δ21 α1 l
2
s c

2
4 − (1− δ22)α2 d

2
s c

2
4 − δ21 δ23 α1 α3 l3 s

2
123 c

2
4 0 −(l2c + l0) s

2
4

 ,

J3
PF =


0 0 δ31 α1 l

3
s s

3
4 + (1− δ32)α2 d

3
s s

3
4 + δ31 δ33 α1 α3 l3 s

3
123 s

3
4 −(l3c + l0) c

3
4

0 0 −δ31 α1 l
3
c − (1− δ32)α2 d

3
c − δ31 δ33 α1 α3 l3 c

3
123 0

0 0 −δ31 α1 l
3
s c

3
4 − (1− δ32)α2 d

3
s c

3
4 − δ31 δ33 α1 α3 l3 s

3
123 c

3
4 (l3c + l0) s

3
4

 .
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Chapter 3

Visual Servoing and Control

Design

In this chapter, we cover: the derivation of a simple camera model, widely used

in visual servoing schemes; the Cartesian-to-image coordinate transformations, nec-

essary for control in the image space; two different approaches to visual servoing

control, known as image-based visual servoing or IBVS, and hybrid visual servoing

or HVS and five control algorithms for the robot hand, combining the methodolo-

gies discussed previously: (i) independent finger control, (ii) prehension control, (iii)

object control, (iv) IBVS control and (v) HVS control.

3.1 Camera Models and Depth Recovery

In this section, a simple, but suitable camera model is described. A pinhole camera

model simply represents a relation between the 3D coordinates of a generic point

on the Cartesian space and its projection onto the image plane.

Figure (3.1) shows the schematic of the visual servoing system. Let pc =

[ xc yc zc ]T be the position vector of the object frame Fo with respect to the

camera frame Fc, and let pv=[ xv yv ]T be the position vector of the object frame

Fo with respect to the image frame Fv. From the frontal perspective projection

model of a pinhole camera (CHAUMETTE e HUTCHINSON, 2008), the Cartesian
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Figure 3.1: Perspective transformation.

space can be related to the image space as: xv

yv

 =
f

zc

 αx 0

0 αy

  xc

yc

+

 xv0

yv0

 , (3.1)

where f is the focal length of camera lens, αx, αy are the camera scaling factors

due to the finite dimensions of the image sensor and xv0 , yv0 are offsets values that

adjust the position of the origin of the pixel coordinate system with respect to the

optical axis.

Defining the augmented vector p̃v=[xv yv 1 ]T, the nonlinear Cartesian-to-image

coordinate transformation (3.1) can be written in a linear matrix form:

zc p̃v = Ω pc , Ω=


f αx 0 xv0

0 f αy yv0

0 0 1

 , (3.2)

where zc ∈ R is the depth coordinate expressed in the camera frame Fc and Ω ∈

R3×3 is the so-called matrix of intrinsic parameters of the camera. A number of

calibration techniques for off-line estimation of these parameters can be found in

(CHAUMETTE e HUTCHINSON, 2008).

Analyzing the Cartesian-to-image coordinate transformation (3.2), we can ob-

serve that it is not possible to obtain any explicit information about the depth

coordinate using only the object centroid coordinates xv and yv. In general, this is

true for bi-dimensional images, because the depth information is lost after the the

perspective transformation. In other words, we can not explicitly calculate the depth
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between the object and camera frames using only a single camera. However, there

are some methods for recovering this information. (i) directly, using a stereo vision

system or a depth sensor; (ii) indirectly, from the geometric model of the object or

using the image projected area of the object.

In the next two subsections, we consider the depth recovery problem for a target

object that moves freely in the Cartesian space while being monitored by a single

camera. Two depth reconstruction methods, based on planar homography and image

projected area are presented to recover the depth information from 2D images. Each

one inspires two different visual servoing methodologies, as will be clear in the next

sections.

3.1.1 Planar homography for depth recovery

Let F1 and F2 be the frames attached to the object in two different time instants t1

and t2. The position vectors of the corresponding frames, denoted by po,1 and po,2,

are related as:

po,1 = R12 po,2 + r12 , (3.3)

where r12 and R12 are respectively the translational vector and the rotation matrix

of frame F2 with respect to frame F1.

The planar homography matrix H can be used to evaluate the position displace-

ment of the origins of the frames F1 and F2 as:

H = R12 +
1

d2
r12 n

T
2 , po,1 = H po,2 , (3.4)

where n2 is the unit normal vector of the plane which contains the object expressed

in the frame F2, and d2 is the distance of the plane from the origin of frame F2.

Notice that, the information obtained from the homography matrix H can be used

to define the ratio ρz :=z1/z2 in terms of measurable quantities of the image centroid

coordinates xv, yv for each time instant.

Inspired by these ideas, we can define the augmented vector of the image centroid

coordinates as (CHAUMETTE e HUTCHINSON, 2008):

p̃vH = [xvH yvH zvH ]T = [xv yv ln(zc) ]T , (3.5)

where ln(·) is the natural logarithm function and ln(zc) is a supplementary normal-

ized depth coordinate. Note that this definition is valid in the case of depth recovery
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by planar homography and also in the case of direct depth measurement by distance

sensors, such as the Microsoft Kinect.

3.1.2 Image projected area for depth recovery

Figure 3.2: Image projected area.

Here, we consider that the depth measurement can be indirectly estimated using

the image projected area of the object. The key idea is to use a target with spherical

geometry so that the projected area in the image space becomes invariant with

respect to the object rotations. Let av ∈ R+ be the projected area of the target

object expressed in the image frame Fv, as we can see in Fig.3.2. The dynamics of

the depth-to-area transformation is given by (ZACHI et al., 2004):

ȧv = −
(

2av
zc

)
żc . (3.6)

Here, the following assumptions will be considered:

(A1) The image projected area av is bounded and satisfies the inequality:

0<amin<av(t)<amax ;

(A2) The sign of zc is assumed to be constant and known.

Under these assumptions, we can solve the separable differential equation (3.6),

obtaining:

zc (av)
1
2 = β , (3.7)

and we can determine the constant β by measuring the image projected area of the

object at a known distance from the camera. This expression is used for mapping
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the image projected area of a known object into its distance zc from the camera

frame.

Note that expression (3.7) is valid not only for spherical objects, but also for

objects of fixed orientation with respect to the camera frame. Changes in the object

orientation can cause changes in the projected area at fixed distances, leading to

inaccurate results in case of use of (3.7).

3.2 Visual-based Modeling for a Robot Hand

In this section, we present the visual-based modeling for a robot hand performing

manipulation tasks with a grasped object. We limit our discussion to cover only the

modeling aspects that will be useful in the control design, postponing the explicit

details about the control algorithms to the next section. We assume that the depth

coordinate with respect to the camera frame is measurable, directly or indirectly,

according to the methodologies studied in sections 3.1.1 and 3.1.2, and also that the

image centroid coordinates are computed from an image processing algorithm.

In section 3.3, we derive two different vision-based modeling schemes: (i) Hybrid

or 2-1/2-D visual servoing, with direct depth measurement using a depth sensor,

detailed at section 3.3.4; (ii) 3D visual servoing with indirect depth measurement

using the image projected area of the object, detailed at section 3.3.5. Both schemes

rely on a frame-to-frame transformation, mapping positions and velocities of the

object in the palm frame to the camera frame.

Analogously to (2.4), the differential kinematics equation (2.29) can be written

as:

vo=

 ṗo

ωo

 =

 JPo

JOo


︸ ︷︷ ︸

Jo

θ̇a = Jo(θa) θ̇a . (3.8)

where vo is the velocity of the object with respect to the palm frame Fp, JPo and

JOo are the position and orientation parts of the object Jacobian matrix Jo and θ̇a

is the velocity of the active joints, or motor shafts of the hand.

The position vector of the object frame Fo can be related to the palm and camera

frames, Fp and Fc, using the following coordinate transformation:

pc = Rcp po + rcp , (3.9)
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where Rcp ∈ SO3 is the rotation matrix and rcp ∈ R3 is the translational vector

corresponding to the coordinate transformation of the palm frame Fp with respect

to the camera frame Fc. It is worth mentioning that the pair (Rcp, rcp) denotes

the extrinsic parameters of the camera (CHAUMETTE e HUTCHINSON, 2008).

Differentiating (3.9) with respect to time, we obtain:

ṗc = Rcp ṗo + Ṙcp po + ṙcp . (3.10)

Also, we can write ωc ∈ R3, the angular velocity of the object with respect to the

camera, by means of:

ωc = Rcp ωo + ωcp , (3.11)

where ωo ∈ R3 and ωcp ∈ R3 are the angular velocity of the object with respect to

palm frame Fp and the angular velocity of the hand with respect to camera frame

Fc, respectively.

The time-derivative of the rotation matrix Rcp can be related to ωcp by means

of the skew-symmetric matrix Q(.) (MURRAY et al., 1994):

Ṙcp=Q(ωcp)Rcp . (3.12)

Combining (3.10) and (3.11) with the position and orientation parts of the object

Jacobian matrix from (3.8) and with (3.12), we obtain:

ṗc = Rcp JPo θ̇a +Q(ωcp)Rcp po + ṙcp , (3.13)

ωc = Rcp JOo θ̇a + ωcp , (3.14)

It is worth mentioning that (3.13) and (3.14) are quite general, since they consider

the existence of translation and rotation motions between the camera and the palm

frames. This assumption is valid, for example, when the camera is fixed on a tripod

and the robot hand is coupled to the arm tip of a large-scale manipulator performing

object manipulation tasks.

From this point forward, we must find the relation between the positions and

velocities of the object in the camera frame with related quantities in the image

space. Since this relation is directly related to the control problem of defining a

state space, it is going to be discussed in sections 3.3.4 and 3.3.5, where we define

our state space in terms of quantities in the image space.
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3.3 Control Design

In this section, we discuss five different approaches for controlling the Robotiq hand,

from the simplest approach of controlling each robot finger independently until the

visual servoing control methodologies, motivated in the previous sections.

All five control design methodologies are based on the kinematic control ap-

proach at the velocity level due to its simplicity of implementation and satisfactory

performance when:

H1 The task does not require too fast motions or rapid accelerations.

H2 The mechanism has high gear reduction ratios.

Despite the robot hand is an electromechanical system actuated by motor

torques, the kinematic control approach considers a velocity command as the sys-

tem input. This assumption is valid due to the presence of a low-level control loop

with high performance, which imposes any specified reference velocity to the finger

joints. In this case, under assumptions (H1) - (H2), the unconsidered dynamics of

the system appear on its equations as a small perturbation, which can therefore be

neglected if the the decentralized control control gains are high enough (SICILIANO

et al., 2009). In this context, the movements of the fingers can be defined simply by

θ̇a ≈ u , (3.15)

where u ∈ Rnm is the velocity control signal applied to the motor drivers of the

corresponding active joints of the hand.

3.3.1 Finger control

Here, the control goal is to make all fingers track a desired reference trajectory

specified in the palm frame. From (2.2), defining the state vector

ξ :=


S1 h1

S2 h2

S3 h3

 =


S1 0 0

0 S2 0

0 0 S3


︸ ︷︷ ︸

S


h1

h2

h3

 , (3.16)
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where Sk ∈ Rmk×6, mk ≤ 6, k = 1, 2, 3, are selection matrices, used to choose mk

finger pose coordinates for control. This is necessary because the Robotiq hand

has only four Dofs and many kinematic constraints, limiting the range of directly

controllable directions for the fingers. Each line of the selection matrices is a 6-th

dimensional standard basis vector ei = [ 0 . . . 0 1 0 . . . 0 ], selecting a particular

direction / angle of the finger pose.

Differentiating the state vector ξ with respect to time and using (2.6):

ξ̇ = S


TA1 0 0

0 TA2 0

0 0 TA3


︸ ︷︷ ︸

TA


v1

v2

v3


︸ ︷︷ ︸

vh

, (3.17)

where TA is a block diagonal matrix of the transformation matrices introduced in

section 2.2. Note that the last term in the right-hand side of (3.17) is the velocity

vector of the robot hand, introduced in section 2.4. Combining (3.17) with (2.19)

and considering the kinematic control approach (3.15), we obtain:

ξ̇ = Js u , Js = S TA Jh . (3.18)

where Js is the system Jacobian matrix. Let ξ̃ := ξd(t)− ξ be the error state vector,

expressed in terms of the generalized coordinates as follows:

ξ̃ = S



h1d

h2d

h3d

−

h1

h2

h3


 , (3.19)

where ξd is the desired value for the state vector, expressed in terms of the desired

pose coordinates for each finger in the palm frame. From (3.18) and (3.19), the

dynamics of the error state vector is given by:

˙̃ξ = ξ̇d − Js u . (3.20)

Now, we proceed to the derivation of a suitable control law in the joint space.

Theorem 3.3.1 Consider the control system given by (3.18), with an full-rank sys-

tem Jacobian matrix 3.18. Under the assumption of kinematic control 3.15, the joint
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control signal that ensures the asymptotic convergence of the error state vector ξ̃ to

zero is:

u = J†s ( ξ̇d + Λ ξ̃ ) , (3.21)

where Λ = ΛT is a positive-definite gain matrix and J†s is the Moore-Penrose pseudo-

inverse of the system Jacobian matrix.

Proof 2 See Appendix A - A.2.

Now we analyze the particular case where the selection matrices are:

S1 = S2 = S3 = [Sp 0 ] ,

where 0 ∈ Rm×3 is a three-column null matrix and Sp ∈ Rm×3 is another selection

matrix, with m <= 3. Choosing selection matrices of this type is the equivalent of

composing the state vector with only the finger positions, ignoring the orientation

angles. In this case, the state vector reduces to:

ξ =


p1

p2

p3

 . (3.22)

Thus, using (2.37), the dynamics of the error state vector is simply

˙̃ξ = ξ̇d − JPh u , (3.23)

where JPh is the position part of the hand Jacobian matrix, introduced in section

2.5.

3.3.2 Prehension control

In this section, we present the prehension control for the Robotiq gripper. The

prehension control is a method for controlling the relative positions of the fingers.

This is important because, during finger coordinate motions, we want to ensure that

at least some coordinates of the relative positions of the fingers remain constant. The

active control of the relative positions can ensure that, for example, a manipulated

object can be properly grasped during any motion, without being compressed by the

fingers or falling over. If well designed, the prehension control scheme can ensure a
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force-closure grasp in some classes of objects, without needing any auxiliary force

control scheme.

From (2.31), define the relative state vector ξr = Sr pr (for n = 3 fingers):

ξr := Sr pr = Sr

 p1 − p2
p2 − p3

 = Sr

 ∆p12

∆p23

 , Sr =

 S12 0

0 S23

 , (3.24)

where S12 ∈ Rm1×3 and S23 ∈ Rm2×3, m1,m2 ≤ 3 are selection matrices for each

pair of finger positions. The number of lines m1,m2 represents how many directions

of each pair is selected for control.

This way, considering the kinematic control approach (3.15) with equation (2.38),

we can write the dynamics of the relative state vector:

ξ̇r = Sr Jr u , Jr = Ãp JPh , (3.25)

Let ξ̃r := ξrd(t)− ξr be the error state vector:

ξ̃r = Sr

 ∆p12d

∆p23d

−
 ∆p12

∆p23

 , (3.26)

Using (3.25) and (3.26), the dynamics of the error state vector is given by:

ξ̇r = ξ̇rd − Sr Jr u . (3.27)

Before proceeding to the derivation of a suitable control law for the object pre-

hension, we should make a remark about how to control the relative positions of the

fingers to achieve the objective of ensuring an appropriate grasp.

Suppose that, before the execution of any manipulation task, the object is firmly

grasped by the robot hand by means of some ad-hoc grasping algorithm. Then, using

the forward kinematics map of the fingers, we can calculate the relative position state

ξr(t) at time t = 0: ξr(0) = ξr0, and set this initial state as a constant reference for

the relative positions ξrd = ξr0. The desired relative velocities ξ̇rd must be set to

zero.

This methodology can ensure that the fingers configuration around the object

remain unchanged during manipulation tasks, and therefore preventing the object

to fall or to be compressed due to excessive forces, without requiring a force control

algorithm. These results are summarized in the following theorem.
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Theorem 3.3.2 Consider the control system given by (3.25), with an invertible

relative Jacobian matrix 2.38 and initial finger relative state 3.24 given by ξr(0).

Also, consider that:

� the object is firmly grasped by the robot hand at time t = 0;

� kinematic control assumption 3.15 is valid;

� constant relative state reference (ξ̇rd = 0);

The joint control signal that ensures the asymptotic convergence of the relative error

3.26 to zero, and thus a constant relative position 2.31 for the fingers is then:

u = (Sr Jr)
† ( Λr ξ̃r ) , (3.28)

where Λ = ΛT is a positive-definite gain matrix and (Sr Jr)
† is the Moore-Penrose

pseudo-inverse of the system relative Jacobian matrix 3.25.

Proof 3 See Appendix A - A.3.

In the next sections, we are going to design control schemes for object manipu-

lation tasks. The relative state vector introduced in this section is going to compose

the next state vectors that are going to be defined, in order to ensure the object

prehension as a secondary control objective.

3.3.3 Object manipulation control

In this section, we consider the problem of controlling the object position with

respect to the palm frame Fp, as well as the relative position of the fingers, to

ensure a firm grasp during the task. We are not going to consider the problem of

controlling the object orientation, because of geometrical aspects of the fingertip

grip and the kinematic constraints of the Robotiq hand.

Define the state vector

ξ :=

 ξo

ξr

 , (3.29)

where ξo = So po and ξr = Sr pr, combining the object absolute position and finger

relative positions into the same state, whose controlled directions are limited by the

selection matrices So ∈ Rmo×3 and Sr ∈ Rmr×3, mo,mr ≤ 3.
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From equation (2.30), (3.27) and considering the kinematic control approach

(3.15), the dynamics of the object state error during manipulation tasks is given by:

ξ̇ =

 ξ̇o

ξ̇r

 = Js u , Js =

 So JPo

Sr Jr

 u , (3.30)

where Js ∈ R(mo+mr)×nm is the system Jacobian matrix. Here, we consider that the

control goal for the robot hand is to follow a time-varying reference trajectory ξod(t)

for the object position state, while keeping a constant relative position state ξrd.

Let ξ̃ := ξd − ξ be the error state vector:

ξ̃ :=

 ξ̃o

ξ̃r

 =

 ξod

ξrd

−
 ξo

ξr

 . (3.31)

From (3.31) and (3.30), the dynamics of the state error takes the form:

˙̃ξ =

 ˙̃ξo
˙̃ξr

 =

 ξ̇od

ξ̇rd

− Js u . (3.32)

Under these assumptions, we proceed to the derivation of a control law in the

joint space.

Theorem 3.3.3 Consider the control system (3.30), with initial relative finger state

3.24 ξr(0) and full-rank system Jacobian 3.30. Also, consider that:

� the object is firmly grasped by the robot hand at time t = 0;

� kinematic control assumption 3.15 is valid;

� constant relative state reference (ξ̇rd = 0);

The joint velocity control signal that ensures the asymptotic convergence of the

error state vector 3.31 to zero and therefore maintaining the relative position state

constant at ξr(0) during the whole manipulation task is:

u = J†s

 ξ̇od + Λo ξo

Λr ξr

 , (3.33)

where Λo = ΛT
o and Λr = ΛT

r are positive definite gain matrices, and J†s is the

Moore-Penrose pseudo-inverse of the system Jacobian.

Proof 4 See Appendix A - A.4.
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3.3.4 Hybrid visual servoing control

In the next two subsections, we are going to discuss the position control of the

grasped object in the image space, as well as the finger relative position control as

secondary objective. The problem of object orientation control in the image space

is not going to be discussed, since we are going to focus mostly in spherical objects,

whose orientation is hard to recover by image processing algorithms.

Here, we present the control design for the hybrid visual servoing control scheme,

or HVS, which combines the benefits of position-based and image-based approaches.

The control error is defined in terms of both operational space and image space

variables, and also the fingers relative positions.

From section 3.1.1 and 3.3.2, define the system state vector as

ξ :=

 ξz

ξr

 =

 Sz p̃vH

Sr pr

 , (3.34)

where Sz ∈ Rmz×3 and Sr ∈ Rmr×6, mz,mr ≤ 3 are appropriate selection matrices.

Taking the time-derivative of ξz and using (3.1), (3.5), and (3.13), we obtain:

ξ̇z = Sz Ωz

[
Rcp JPo θ̇a +Q(ωcp)Rcp po + ṙcp

]
, (3.35)

with

Ωz(pv, zc)=
1

zc


f αx 0 −xv + xv0

0 f αy −yv + yv0

0 0 1

 , (3.36)

where Ωv ∈ R3×3 is the well-known interaction matrix.

Note that the subsystem described by the (3.35) is very general, accounting for

the relative motions of the camera frame Fc with respect to the palm frame Fp.

Next, considering the kinematic control approach (3.15), upposing that there is no

relative motion between the camera and the robot hand, and thus ṙcp = 0 and

ωcp = 0, yields:

ξ̇z = Sz Jz u , Jz(pv, zc, θa) = Ωz Rcp JPo , (3.37)

where Jz ∈ R(mz+mr)×nm is the so-called HVS image Jacobian.
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Combining (3.37) with the dynamics of the relative position subsystem (3.25),

we get the dynamics of the complete visual system:

ξ̇ = Js u , Js =

 Sz Jz

Sr Jr

 , (3.38)

where Js ∈ R3×nm is the system Jacobian, in this case.

Let ξ̃ := ξd(t)− ξ be the error state vector, expressed in terms of the generalized

coordinates p̃vH and the relative position errors as follows:

ξ̃ =

 ξzd

ξrd

−
 ξz

ξr

 , (3.39)

From (3.34), (3.37) and (3.39), the dynamics of the error state vector is governed

by:

˙̃ξ =

 ξ̇zd

ξ̇rd

− Js u . (3.40)

Now, we proceed to the derivation of a suitable control law in the joint space.

Theorem 3.3.4 Consider the visual servoing system (3.38) with initial relative fin-

ger state 3.24 ξr(0) and full-rank system Jacobian 3.38. Also, consider that:

� the object is firmly grasped by the robot hand at time t = 0;

� kinematic control assumption 3.15 is valid;

� relative state reference is constant (ξ̇rd = 0);

� the camera calibration parameters are fully known.

The joint control signal that ensures the asymptotic convergence of the error state

vector 3.39 to zero is:

u = J†s

 ξ̇zd + Λz ξ̃z

Λr ξ̃r

 , (3.41)

where Λz = ΛT
z and Λr = ΛT

r are positive-definite gain matrices and J†s is the Moore-

Penrose pseudo-inverse of the system Jacobian.

Proof 5 See Appendix A - A.5.
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3.3.5 Image-based visual servoing control

Here, we present the control design for the image-based visual servoing control

scheme, or IBVS, as well as for the finger relative position control scheme, as sec-

ondary objective.

The control error is defined only in terms of image space variables, and also in

terms of the fingers relative positions.

Let av0 be the image projected area of the target object at time t0 < t, such

that av0 = av(t0), which corresponds to the uncertain depth zc0 = zc(t0). Back to

section 3.1.2, we can solve (3.7) for the estimated object depth zc as a function of

the projected area at any time t > 0:

zc(av) = zc0

(
av0
av

) 1
2

.

From section 3.1.2 and 3.3.2, define the system state vector as

ξ :=

 ξv

ξr

 , (3.42)

where ξv = Sv [xv yv av ]T is the image-based state vector, ξr = Sr pr is the relative

position state vector, as usual, and Sz ∈ Rmv×3, Sr ∈ Rmr×6, mv,mr ≤ 3 are

appropriate selection matrices.

Taking the time-derivative of ξv and using (3.1), (3.6), and (3.13), we obtain:

ξ̇v = Sv Ωv

[
Rcp JPo θ̇a +Q(ωcp)Rcp po + ṙcp

]
, (3.43)

with

Ωv(pv, av) =
1

zc(av)


f αx 0 −xv + xv0

0 f αy −yv + yv0

0 0 −2 av

 , (3.44)

where zc(av) is evaluated by means (3.42). The matrix Ωv ∈ R3×3 is the well-known

IBVS interaction matrix.

Once again, the subsystem described by the (3.43) is quite general, accounting

for the relative motions of the camera frame Fc with respect to the palm frame Fp.

Next, considering the kinematic control approach (3.15), and once again supposing

that there is no relative motion between the camera and the robot hand, and thus
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ṙcp = 0 and ωcp = 0, yields:

ξ̇v = Sv Jv u , Jv(pv, av, θa) = Ωv Rcp JPo . (3.45)

where Jv ∈ R3×nm is the so-called IBVS image Jacobian.

Combining (3.45) with the dynamics of the relative position subsystem (3.25),

we get the dynamics of the complete visual system:

ξ̇ = Js u , Js =

 Sv Jv

Sr Jr

 . (3.46)

where Js ∈ R(mv+mr)×nm is the system Jacobian, in this case.

Let ξ̃ := ξd(t)−ξ be the error state vector, expressed in terms of the image space

errors ξ̃v and the relative position errors as follows:

ξ̃ =

 ξvd

ξrd

−
 ξv

ξr

 . (3.47)

From (3.42), (3.45) and (3.47), the dynamics of the error state vector is governed

by:

˙̃ξ =

 ξ̇vd

ξ̇rd

− Js u . (3.48)

Now, we proceed to the derivation of a suitable control law in the joint space.

Theorem 3.3.5 Consider the visual servoing system given by (3.46) with relative

finger state 3.24 ξr(0), and full-rank system Jacobian (3.46). Also, consider that:

� the object is firmly grasped by the robot hand at time t = 0;

� kinematic control assumption 3.15 is valid;

� relative state reference is constant (ξ̇rd = 0);

� the camera calibration parameters are fully known.

The joint control signal that ensures the asymptotic convergence of the error state

vector 3.47 to zero is:

u = J†s

 ξ̇vd + Λv ξ̃v

Λr ξ̃r

 , (3.49)

where Λv = ΛT
v and Λr = ΛT

r are positive-definite gain matrices and J†s is the Moore-

Penrose pseudo-inverse of the system Jacobian.

Proof 6 See Appendix A - A.6.
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3.4 Singularity Analysis

In this section, we study the rank of the Jacobian matrices that appear in the

systems dynamics presented in the previous sections. This study is going to be of

particular importance for the performance of the control algorithms, since all of

them are based on the kinematic control approach and the linearization of the error

dynamics through multiplication by the Moore-Penrose right pseudo-inverse of the

corresponding system Jacobian.

We must be sure that all Jacobian matrices are well conditioned, avoiding the

occurrences of matrix singularities that can create computational problems during

the inversion of these matrices.

3.4.1 Hand Jacobian singularities

From the expression of the hand Jacobian for the Robotiq hand in (2.53), we can

deduce some important situations where its rank is reduced.

First, note that it is naturally rank deficient, since all elements in the first line

are null. This fact is due to the structure of the first finger, which cannot perform

movements in the x-direction of the palm frame Fp. This fact is important, because

it limits the number of possible choices for the selection matrices used to restrict

the directions for control. We should choose only valid directions when applying the

control algorithms, otherwise the system Jacobian matrix will be rank deficient and

therefore, the stability of the closed-loop system is going to be compromised.

Then, note that when δk1 = 0 and δk2 = 1 for k = 1, 2, 3, all elements in several

lines of Jh become null, meaning that the instantaneous change in position or orien-

tation on the corresponding direction is stationary in that particular configuration.

In other words, the fingers lose manipulability in this configuration.

Another issue is about the configuration of the finger angles θk, k = 1, 2, 3 as

defined in (2.40). If θkj, k = j = 1, 2, 3 are all zero, all sines in the third line

of the complete finger Jacobian matrices JkF are null. This line is related to the z-

component of the fingers velocities, and this is a singular configuration because when

the fingers are all stretched (corresponding to null θkj), they cannot instantaneously

move in the z-direction. By observing the types of grasping in Fig. 2.3, we note that
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the fingers must be at least slightly stretched to perform a manipulable grasp, even for

small objects. Because of this fact, we can expect to reach singular configurations of

the kind described above if we select the z-direction for control for any manipulation

task. In fact, even for independent control of the fingers, selecting the z-direction

for control means that there will be singular configurations in the operational space.

To overcome these issues, we can select the y-direction, for both fingers and

object position control. In fact, if θkamin
≥ θka ≤ γ2 for k = 1, 2, 3 during any task,

the second line elements of the JkF are always non-null (θkamin
is the minimum value

for θka).

Under these limitations for θka, we could also select the fourth line of JkF for

control, which is the equivalent of controlling the roll angle of the k-th fingertip

frame Ff .

With respect to fingers 2 and 3, we can select the pitch angle for shared con-

trol, corresponding on the fifth line of J2
F and J3

F , which are non-null for all finger

configuration.

3.4.2 Grasp matrix singularities

In this section, we study the rank of the grasp matrix Go, defined in (2.29). The

grasp matrix is defined as:

Go = A+(I −HT (ÃHT)+ Ã) .

To guarantee that Go is full rank, it is enough to guarantee that HT, A and Ã

are full rank. For the Robotiq gripper, the Adjoint matrix A is constructed from

the stacking of the three Adjoint matrices A1, A2 and A3, which are supposed to be

full rank:

A =


A1

A2

A3

 ,

These matrices transforms vectors written in the contact frame Fck to the corre-

sponding vectors in the object frame Fo. Let Ã be the annihilator matrix of A.

Defining

Ã =
[
αA−11 β A−12 γ A−13

]
, (3.50)
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we can left multiply it by A, yielding:

Ã A = (α + β + γ) I .

Since, by definition, Ã A = 0, an annihilator matrix defined by (3.50) is non-singular

for any combination of α, β, γ in which α+β+γ = 0. In this work, we have chosen

α = 1, β = 0.5 and γ = −0.5.

The expressions for the contact matrices Hk ∈ R6×nr , nr < 6 are obtained by the

vertical stacking of R6−nr×nr zero matrices and identity matrices of order nr. Thus,

all Hk are always of full column rank.

3.4.3 Stacked Jacobian singularities

Most of the control designs developed in the previous chapter make use of a strategy

consisting in building a combined state vector from two unrelated systems, such

as vision and prehension. Here, we cover an important result regarding the rank

analysis of the stacked matrices that appear in the dynamics of such combined

systems.

Proposition 2 A matrix J , constructed from the vertical stacking of J1 and J2, as:

J =

 J1

J2


is full rank if and only if the matrices J1, J2, J1 P

⊥
J2
JT
1 and J2 P

⊥
J1
JT
2 are all full

rank, where P⊥J1 and P⊥J2 are the projection matrices of J1 and J2, defined by:

P⊥J1 = I − J†1 J1 ,

P⊥J2 = I − J†2 J2 .

The † operator denotes the right pseudo-inverse matrix operator.

Proof 7 See Appendix A - A.7.
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Chapter 4

Experimental and Simulation

Results

In this chapter, we present experimental and simulation results in order to illustrate

the performance and effectiveness of the proposed methodology in terms of the mod-

eling and control design. We also present some experimental data for the validation

of the proposed empirical model for the fingers kinematic restrictions. First, we

present the experimental setup, as long as the algorithms and programming envi-

ronment utilized for the experiments and for the simulations. In the next sections,

the results of five different experiments performed with the Robotiq hand are illus-

trated and discussed. The results of a simulation experiment are also shown. The

first experiment consists in the validation of the empirical relations (2.43), (2.43),

(2.43) and (2.44), proposed in section 2.6.2. The next five experiments are based

on the control approaches for a robot hand developed in section 3.3.1, applied to

the Robotiq hand. The last experiment consists in a control simulation of a 12 Dof

robot hand with similar structure than the Robotiq hand. Finally, we present some

interpretations about the obtained results, discussions about the feasibility of the

presented theoretical framework and also about the performance of the developed

control schemes.
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4.1 Experimental Setup

The 3-Finger Adaptive Robot Gripper is a programmable and mechanically intelli-

gent robot hand, which is able to manipulate a wide variety of objects. The Robotiq

hand has easy integration, being compatible with all major industrial robot man-

ufacturers, such as ABB and Yaskawa. Mechanical and software components are

provided to make the installation and use of the device easier. In addition, a number

of ROS packages are also available for download. The 3-finger model is rugged and

agile, designed to operate in unstructured environments. By means of the Robotiq

Graphical User Interface it is possible to control force, speed and position param-

eters for each finger, thanks to many options of communication protocols. Among

several applications, the Robotiq hand can be used for advanced manufacturing and

research as well as machine tending. The main mechanical and electrical specifica-

tions are available in Tab. 4.1. A complete documentation covering all specifications

of the gripper can be found in (ROBOTIQ, 2013).

Gripper opening, mm 0 to 155

Maximum recommended payload, kg 2.5

Grip force, N 15 to 60

Closing speed, mm/s 22 to 110

Finger position repeatability, mm 0.05

Nominal supply voltage, V 24

Maximum total current, A 1.5

Table 4.1: Specifications of the 3-Finger Adaptive Gripper.

All experiments were performed on a desktop PC with Intel Core i5 Proces-

sor (8M Cache, 2.8 GHz) 4GB RAM, running Windows OS. The control algo-

rithms were implemented in Matlab (The MathWorks Inc.) Release 2013a and

a proper class was developed, implementing a set of methods designed to exe-

cute the control loop, send/receive data to/from the Robotiq gripper and per-

form all necessary calculations. An USB connection was created using the Mat-
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lab Serial Port class, and the communication link with the Robotiq gripper was

established by the Modbus RTU communication protocol. These codes are open

source and can be found in https://github.com/teteuZ/GripperKinematicControl

and https://github.com/teteuZ/ServoPrehensionControl.

The transferred/received data include bytes representing angular position, an-

gular velocity and current in the motors, as long as fault bit flags for each finger.

The data conversion between the angular position and velocity of the motor shafts,

θa (in radians) and θ̇a (in radians per second), and the corresponding sent/received

one-byte values aj, bj ∈ [0, 255] are given empirically by (k = j = 1, 2, 3):

θka =

 0.0071 ak − 0.0419 , k=1, 2, 3 ,

−0.0023 ak − 0.3112 , k=4 ,

|θ̇ka| =

 0.0290 bk + 0.1884 , k=1, 2, 3 ,

0.0100 bk + 0.0650 , k=4 .

The object manipulation task was performed using plastic balls with a radius

varying from r = 30 mm to r = 36 mm. In each experiment, the Robotiq gripper

was set up in the “pinch” mode (Fig. 2.3) and an ad-hoc Matlab routine closes the

fingers around the object until it is firmly grasped.

With respect to the prehension control, from the forward kinematics map, a

routine calculates the initial relative position between fingers 1 and 2 and between

fingers 2 and 3. Because of the limited number of DoFs in the Robotiq hand, the

relative positions p12 and p23 are only controlled in the y-axis and x,y-axis of the

palm frame, respectively. This way, the corresponding selection matrices for the

relative states are:

S12 =
[

0 1 0
]
, S23 =

 1 0 0

0 1 0

 . (4.1)

Before being tested on the real robotic system, the performance of the control al-

gorithms was verified in a 3D graphic animation, also developed in Matlab. In the

experiments, a sampling time of approximately h = 0.1 s ensures a satisfactory

communication between the software and the gripper. However, this communica-

tion rate can affect the stability of the algorithms under high eigenvalues of the gain

matrices. Fig. 4.1a illustrates the experimental setup (on top) and the simulation
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environment (on bottom) used to carry out the independent motion task. Fig. 4.1b

shows the initial configuration of the robot hand and the ball used to perform the

manipulation task.

(a) Exp. setup for independent finger control. (b) Exp. setup for object manipulation tasks.

Figure 4.1: Experimental setup for kinematic experiments.

The experimental setup arranged for the visual servoing experiments is shown

in Fig. 4.2. Here, we use a set strongly colored balls, because the computer vision

algorithm used to identify the ball in the scene is based in color extraction.

Some of the main Microsoft Kinect hardware specifications can be found in Tab.

4.2, and a complete documentation covering all specifications of the Kinect sensor

can be found in (M.R.ANDERSEN et al., 2012).

In Fig. 4.3, we can observe the graphical interface used for the simulation of a

12 Dof robot hand, whose structure is similar to the Robotiq hand, if every joint

angle could be directly controlled by a proper motor (no kinematic constraints in

the fingers).

55



Figure 4.2: Experimental setup for visual servoing experiments.

Property Value

Angular Field-of-View 57◦ horz., 43◦ vert.

Vertical tilt range ±27◦

Framerate approx. 30Hz

Nominal spatial range 640× 480 (VGA)

Nominal spatial resolution (at 2m distance) 3mm

Nominal depth range 0.8− 3.5m

Nominal depth resolution (at 2m distance) 1cm

Device communication type UBS (+ external power)

Table 4.2: Microsoft Kinect hardware specifications.
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Figure 4.3: Simulation of a 12 Dof Robot Hand.

4.2 Experimental Results

In this section, we present all the experimental results obtained with the 3-Finger

Adaptive Robotiq Gripper. First, we present experimental data for validation of the

finger kinematic constraints introduced in section 2.6.2. Then, we proceed with four

control experiments: independent finger control, object position control and visual

servoing control experiments, divided into hybrid visual servoing (HVS) and image-

based visual servoing (IBVS) methodologies. The last section presents the simulation

results for a 12 Dof robot hand, a simulated version of the Robotiq gripper with no

finger kinematic constraints and an extra joint.

Table 4.3 summarizes all results of experiments and simulations presented in this

chapter.
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Experiment/Simulation Section Results

Validation of the Empirical Model Sec. 4.2.1 Fig. 4.5

Finger Control Experiments Sec. 4.2.2 Fig. 4.6

Object Control Experiments Sec. 4.2.3 Fig. 4.7

HVS Control Experiments Sec. 4.2.4 Figs. 4.10, 4.11

IBVS Control Experiments Sec. 4.2.5 Figs. 4.12, 4.13

Simulation of a 12 Dof Robot Hand Sec. 4.2.6 Figs. 4.14, 4.15

Table 4.3: Control experiments.

4.2.1 Validation of the Empirical Model for the Finger

Joints

In this section, we propose a validation experiment, where we want to determine the

set of model parameters αk, βk, γk, k = 1, 2, 3 proposed in section 2.6.2 by means

of a visual experiment and compare it with the results obtained empirically.

The experiment consists in tracking four pairs of colored targets attached to the

robot hand with a video camera: one pair is attached in one side of the palm and

the other three are attached in each phalanx of a chosen finger.

This setup can be visualized in Fig. 4.4. We can see that the pairs of targets are

aligned with the corresponding phalanx link, and the pair on the palm is positioned

horizontally. The robot hand is set in the “Basic mode”, and the video camera is

positioned in way that the image plane is parallel to the y-z plane of the palm frame.

A color based algorithm continuously extracts the red components of the camera

stream, finding the targets in the image. The algorithm calculates the angles between

the lines formed the pairs of points (xvi, yvi) in each phalanx and the line formed

by the pair on the palm. By slowly opening and closing the chosen finger, we can

obtain a series of angle measurements. This way, we the can visually determine

the validity of the proposed empirical model and its parameters, by comparing the

functions of the empirical model with the measured behavior of how the angles of
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(a) Pairs of tags in the fingers / palm. (b) Finger tags in detail.

Figure 4.4: Colored tags.

the phalanges change when the corresponding motor angle changes.

The empirical relations presented in section 2.6.2 are repeated here for conve-

nience:

θk1 =

 α1 θka + β1 , θka ≤ γ1 ,

η1 , θka > γ1 ,

θk2 =

 η2 , θka ≤ γ2 ,

α2 θka + β2 , θka > γ2 ,

θk3 =

 α3 θk1 + β3 , θka ≤ γ3 ,

η3 , θka > γ3 ,

A reasonable condition that these functions must met to represent the behavior

of a real mechanical system is to be at least of class C0 (continuous). This restriction

allows us to calculate the ηk parameters, imposing the continuity condition to θkj,
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j = 1, 2, 3, yielding:

η1 = α1 γ1 + β1 ,

η2 = α2 γ2 + β2 ,

η3 = α3 (α1 γ3 + β1) + β3 , (4.2)

where η3 has this form because it is known from observation that γ3 < γ1. In

particular, it is also known that η2 ≈ 0, α3 ≈ 1, and β3 ≈ 0. Since the γk represents

the angular limits of θka in which each phalanx angle suddenly changes its behavior,

we expect to observe these discontinuity points in the angular data.

A least squares algorithm is utilized to estimate αk and βk from the data points,

and equation (4.2) is used to calculate the ηk constants, provided that the disconti-

nuity points ηk are known. Fig. 4.5 shows the results of the experiments. The red

lines are the predicted empirical functions and the blue dots represent the measured

data. The results are plotted in degrees, for simplicity.
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Figure 4.5: Results of the validation experiments.
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First, only the measured pairs of angles were plot, allowing us to determine the

set of discontinuity points γk (in radians):

γ1 = 0.935 , γ2 = 0.959 , γ3 = 0.776 . (4.3)

Then, the least squares algorithm was used to determine the following set of

parameters, used to plot the functions in red in Fig. 4.5 (βk and ηk are in radians):

α1 = 1.1149 , β1 = −0.4187 , η1 = 0.6243 ,

α2 = 2.1417 , β2 = −2.0082 , η2 = 0.0477 ,

α3 = −1.1454 , β3 = 0 , η3 = −0.5162 .

Although the results were very close to our expectations, there are several sources

of errors that could lead to inaccurate results in this experiment; the camera align-

ment could be imperfect, non-modeled distortion effects caused by the lens curvature

could change the real angles in the image, luminosity level changes could alter the

color perception, leading to inaccurate tag center detection, among others.

4.2.2 Finger Control Experiments

In this section, we present the results for finger control experiments. Tracking

experiments were performed, where we have selected the y-direction of fingers 1, 2

and 3 and the x-direction of finger 2 for control. Thus, the selection matrices defined

in section 3.3.1 are:

S1 =
[

0 1 0
]
, S2 =

 1 0 0

0 1 0

 , S3 =
[

0 1 0
]
.

and thus, the state vector is ξ = [ p1,y p2,x p2,y p3,y ]T.

The gain matrix can be written as Λ = λ I4, where I4∈R4×4 is the 4× 4 identity

matrix, and λ = 80 is a scalar gain. Our objective is to track a bounded, time-

varying reference function. We have used the following sinusoidal reference signals:

ξkd = ak sin(ω t) + bk , k = 1, 2, 3, 4 .

where b1 = −30 , b2 = 35 , b3 = 30 , b4 = 30mm, ω = 0.4π rad s−1 and ak = 20mm

for k = 1, 2, 3, 4, and t ∈ [ 0, Tmax ] where Tmax = 30 s is the total runtime of the

experiment.
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Sinusoidal functions provide a smooth, well-conditioned signal for testing control

algorithms: being a time-variable, differentiable signal, their derivatives can be ap-

plied analytically on the velocity feed-forward term ξ̇d in the control equation (3.21),

avoiding computational problems with symbolic derivatives. Furthermore, they can

also be used for testing the control systems bandwidth; by carefully adjusting the

angular frequency of the reference sinusoid, we can determine the control system

performance when subjected to fast input variations. The reference and position

signals, error signals, position control signals and joint control signals are showed in

Fig. 4.6.

Note that the value chosen for the scalar gain λ provides a fast dynamic response

to the system, ensuring the zero-convergence of the tracking error in less than 1 s,

without affecting the convergence of the algorithm. The magnitude of the error

signal is bounded to a small region of 3mm, due to the response delay of the system,

and except for the initial instant, the magnitude of the joint control signals also

remains bounded in less than 3 rad s−1, which is an acceptable value for the velocity

of the motors, considering the angular frequency of the reference sinusoid.
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Figure 4.6: Results for the tracking experiment.

4.2.3 Object Manipulation Experiments

The object grasping and manipulation task was performed using a plastic ball with

a radius of r= 36.2 mm. In this case, the Robotiq gripper is set up in the “pinch”

mode and an ad-hoc Matlab routine closes the fingers around the object. Here, the

grasping routine must successfully guarantee the initial object prehension. From

the forward kinematics map, another routine calculates the initial relative position

between the fingers 1 and 2, as well as between the fingers 2 and 3. Finally, another

routine releases the object by opening the fingers, before the experiment is initiated.

The object is held fixed on its initial position, so that the grasping parameters

(i.e., the initial relative positions) do not change when the control algorithm starts

running.

Since the plastic ball is a spherically symmetric object, and since orientation con-

trol is not the objective of this work, we made the following simplifying assumption
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about the rotation matrix Rpo:

Rpo ≈ I3 .

This assumption is valid in this particular manipulation task because, from Fig.

4.1b, for a small task space width, the ball’s orientation remains approximately

fixed.

The experiment consists in the tracking a sinusoidal trajectory in the y-axis

direction of the Cartesian space. Thus the object selection matrix So is:

So =
[

0 1 0
]
.

The selection matrices for the relative states are defined in (4.1), and the references

for the relative states are constant values defined by the initial relative positions,

obtained when the object was grasped. The object reference is defined by the

analytical expression:

ξ1 = So pod(t) = a sin(ω t) + b ,

where a, ω and b are the amplitude, angular frequency and mean value of the

sinusoidal signal, and t ∈ [ 0, Tmax ] where Tmax = 60 s is the total runtime of the

experiment. The gain matrices are defined as Λo = λo and Λr = λr I3, and the

desired relative position is given by:

ξrd = Sr prd ≈ [−75.1 31.0 − 1.9 ]T mm.

Initially, the fingers are set to full opening, and the object is held fixed on the

same position until the experiment starts. This way, the Robotiq hand can regrasp

the plastic ball on the beginning of the experiment, and the convergence of the

relative state vector to its desired values can be observed.

The scalar gains and the parameters of the sinusoid are set up to λo = 20 s−1,

λr = 10 s−1, a = 25mm, ω = π
5
rad s−1 and b = 0. The results are shown in Fig.

4.7, where it is possible to observe the time history of the trajectory tracking, the

relative position regulation, the position errors, and the control signals, respectively.
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4. Joint control signals for the object tracking experiment.

Figure 4.7: Results for the object tracking experiment.

From the analysis of the results, we conclude that the proposed control scheme

was able to ensure the asymptotic convergence of the object position error and of

the relative position error to zero in approximately 3.2 s. From 4.7, we notice that

the object tracking error converges to a small residual of less than 3mm in absolute

value, due to the system delay, and the relative position converges to the desired

values, ensuring the satisfactory prehension of the object during the whole interval

of the experiment. The joint control signals remain bounded to less than 1 rad s−1 of

magnitude. These results demonstrate the non-occurrence of singular configurations

in the task space of the mechanism, as expected from the analysis of the analytical

expression of the system Jacobian.
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4.2.4 HVS Control Experiments

In this section, we present two tracking experiments using the HVS approach. The

first consists in controlling the centroid of the object’s projected image in the x-axis

of the camera. The second experiment consists in controlling the depth of the object

by directly measuring it using the Kinect’s depth sensor.

In these experiments, we have used a plastic red ball as the manipulated object.

As before, an ad-hoc Matlab routine closes the fingers around the ball before running

the vision-based control loop. The relative positions of the fingers are obtained by

the forward kinematics map, and thus, the desired relative positions are set. For

the the experiments of this section:

ξrd = Sr prd ≈ [−75.1 30.4 − 1.9 ]T mm.

For the sake of proof-of-concept and simplicity, we consider that there is no

relative motion between the palm and camera frames, so that the control design

developed in section 3.3.4 is valid.
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Figure 4.8: Setup for planar HVS experiment.

71



100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

Figure 4.9: Setup for depth HVS experiment.

The rotation matrix Rcp between the camera and the palm frames is fixed:

R(planar)
cp =


0 1 0

0 0 −1

−1 0 0

 R
(depth)
cp =


1 0 0

0 0 −1

0 1 0

 ,

according to Figs. 4.8 - 4.9. The Microsoft Kinect is mounted on a tripod suitably

positioned in front of the Robotiq gripper, so that:

1. For the centroid experiment, the image plane of the RGB camera is parallel to

the motion plane of the grasped object (i.e, the object performs only planar

motions on the image space ) - Fig. 4.8; ;

2. For the depth experiment, the image plane of the RGB camera is perpendicular

to the motion plane of the grasped object, and both planes are perpendicular

to the ground plane - Fig. 4.9 .

The scalar gains are set up to λz = 10 s−1 and λr = 1 s−1, where the gain matrices

are defined as in the previous section, with λz = λo, Λz = Λo.
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The results for the planar experiments are shown in Fig. 4.10. The measured

depth remains constant during the hole interval of the experiment, since the motion

plane is parallel to the camera frame. The parameters for the reference sinusoid are

set up to a = 20 pixel, ω = 0.1 rad s−1 and b = 325 pixel.
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4. Joint control signals for planar HVS experiment.

Figure 4.10: Results for the planar HVS experiment.

From these results, we conclude that, besides the relatively high signal-to-noise

ratio of the Kinect’s depth measurements, convergence of the object’s image centroid

is obtained, even in the presence of initial disturbances due to the slow convergence

of the relative position. Of course, the object is not regrasped until the relative

position error is small enough, but remains fixed on the previous grasp position.

This is the reason why the convergence of the object image centroid is not fully

achieved until the object is finally regrasped; because the image system is an open-

control loop until it happens. Although the object prehension was maintained during

the whole experiment, we note that there is a small offset error in the x coordinate

between fingers 2 and 3 (Fig. 4.10.2-c). This offset error occurs due to a mechanical

limit existing in the scissor motion of the Robotiq hand.

In the depth tracking experiment, the depth is continuously measured by the

Kinect’s depth sensor. A routine selects a small rectangle of the point cloud and
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estimates the depth of the ball by applying the mean to all depth points inside the

rectangle. The results are shown in Fig. 4.11. The parameters for the reference

sinusoid are set up to a = 30mm, ω = 0.1 rad s−1 and b = 1000mm.
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Figure 4.11: Results for the depth HVS experiment.

From the analysis of the results, we conclude that the HVS control scheme was

able to ensure the asymptotic convergence of the logarithmic depth error to zero,

as long as of the relative position error, even with a higher signal-to-noise ratio for

the depth measurements. The logarithmic function has the interesting property of

shrinking the measured depth signal, which potentially reduces the measurement

noise. From Figs. 4.11.1-b, 4.11.1-c and 4.11.1-d, we can notice small peaks of

approximately 3mm of magnitude in the relative position errors precisely in the

time instants were the reference reaches its minimum value. This could be due to a

large amplitude for the depth sinusoid; the minimum values of the depth reference

could be leading some fingers to the limits of their task spaces. Besides, the depth

error and the joint control signals remain bounded in the intervals [−5, 5]mm and

[−0.5, 0.5] rad s−1, respectively, and the object prehension was maintained during

the whole during of the experiment. The approximate system delay is about 0.05 s,

for both experiments. These experimental results demonstrate the non-occurrences
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of singular configurations on the HVS image Jacobian and in the system Jacobian

as a whole, considering the operation restricted to the image task space.

4.2.5 IBVS Control Experiments

In this section, we present two tracking experiments using the IBVS approach. The

first experiment is equivalent to the HVS planar experiment presented in the last

section. Once again, the objective is to control the centroid of the object’s projected

image in the x-axis of the camera, but this time using the IBVS approach. The

second experiment consists in controlling the image projected area of the object.

The image projected area is obtained by counting the colored pixels corresponding

to the object image on the RGB camera of the Kinect sensor, and can be used as

an estimate of the object depth by means of (3.42) from section 3.3.5.

The same assumptions and observations made in the previous section about the

control system are valid in this section, and the two experiments are performed in a

similar way. A notable difference is that, in the IBVS depth experiment, the relative

distance between the camera and the palm frame can be much smaller than in the

HVS depth experiment, since we are not restricted to the minimum distance of 800

mm needed to obtain depth measurements with the Kinect’s depth sensor. This

increases the accuracy of this method, since the depth estimation by pixel count is

more accurate when more pixels are available for counting, i.e, when the object is

relatively close to the camera.

The scalar gains are set up to λv = 5 s−1 and λr = 1 s−1, where the gain matrices

are defined as in the previous section, with λv = λz, Λv = Λz. The results are

shown in Fig. 4.12. The measured area remains approximately constant during the

hole interval of the experiment, since the motion plane is parallel to the camera

frame. The parameters for the reference sinusoid are set up to a = 30 pixel, ω =

0.1π rad s−1 and b = 325 pixel.
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Figure 4.12: Results for the planar IBVS experiment.

In the area tracking experiment, the projected area is continuously measured

by a proper color extraction routine. The reference is directly given in pixel2, but

equation (3.42) could be used to convert the desired depth in the corresponding

projected area. The results are shown in Fig. 4.13. The parameters for the reference

sinusoid are set up to a = 800 pixel2, ω = π
10
rad s−1 and b = 6500 pixel2.
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Figure 4.13: Results for the depth IBVS experiment.

From the analysis of the results, we conclude that the IBVS control scheme is also

able to ensure the asymptotic convergence of the image error, for both experiments.

The small peaks in the relative position errors observed in the HVS depth experiment

are also observed here, and the reason is probably the same. It is important to

notice that the IBVS method is apparently less sensitive to measurement noise

than the HVS method. The joint control signals remain bounded in the interval

[−0.25, 0.25] rad/s, The planar error signal is less than 3 pixel in magnitude, and

the area error is bounded to [−100, 100] pixel2. The approximate system delay is

the same as before, about 0.05 s. These experimental results demonstrate the non-

occurrences of singular configurations on the IBVS image Jacobian and in the system

Jacobian as a whole, considering the operation restricted to the image task space.
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4.2.6 Simulation of a 12 Dof Robot Hand

In this section, we present the results of the kinematic control of a simulated three-

fingered robot hand with 12 degrees-of-freedom, 4 per finger. Its structure is similar

to the Robotiq gripper without the finger constraints and with an extra joint in the

first finger. We suppose that each finger angle velocity can be directly controlled by

means of an internal velocity control loop, so that the kinematic control approach

can be applied to the problem. The extra joint, θ14 can be thought of a generalization

of the “scissor” joints of fingers 2 and 3, as seen in Fig. 2.1 in Chapter 2. This joint

allows finger 1 to perform motion in the x-axis of the palm frame.

The forward kinematics map for the first finger is modified:

p1 =p1offset +


(l1c + l0) s

1
4

l1s

(l1c + l0) c
1
4


︸ ︷︷ ︸

p1link

, R1 =


c14 −s1123 s14 c1123 s

1
4

0 c1123 s1123

−s14 −s1123 c14 c1123 c
1
4

 .

Note that if θ14 = 0, it reduces to the forward kinematics of the Robotiq gripper

in (2.39). The vector of finger angles θ1 is modified as:

θ1 =
[
θ11 θ12 θ13 θ14

]T
,

and also the first finger Jacobian matrix J1
f :

J1
f=



−l1s s14 −d1s s14 −l3 s1123 s14 (l1c + l0) c14

l1c d1c l3 c123 0

−l1s c14 −d1s c14 −l3 s1123 c14 −(l1c + l0) s14

−c14 −c14 −c14 0

0 0 0 1

s14 s14 s14 0


.

Again, it reduces to the Jacobian matrix of finger 1 of the Robotiq hand when

θ1s = 0.

Finally, since there are no finger kinematic relations between the joint angles and

no shared angles, the expression for the hand Jacobian matrices simplifies to:

Jh =


J1
f 0 0

0 J2
f 0

0 0 J3
f

 , JPh =


J1
Pf 0 0

0 J2
Pf 0

0 0 J3
Pf

 ,
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where JkPf , k = 1, 2, 3 are the position parts of the finger Jacobian matrices Jkf . With

these expressions at hand, it is possible to develop kinematic control algorithms for

object manipulation tasks.

From section 3.3.3, the state vector is defined as:

ξ =

 po

pr


with the vector of relative positions pr defined the same way as before. It means

that all selection matrices are identities, and thus, all coordinates are controlled in

this case ( the state vector is complete ).

A Matlab routine first uses a kinematic control algorithm to lead the fingers to

fixed contact points in the simulated object, in the case, a ball of radius r = 30mm.

Then, it applies the kinematic control algorithm detailed at section 3.3.3 to perform

a position tracking experiment with the grasped object.

Here, the rotation matrix Rpo is calculated at each interaction, using JOo ( the

orientation part of the object Jacobian matrix ) to estimate the angular velocity of

the object. Then, applying Quaternion transformations, it is possible to integrate

Ṙpo, obtaining a new rotation matrix for the next iteration. Although the object

orientation problem is not covered by this work, this approach works relatively well

for online estimation of Rpo.

Fig. 4.3 shows the simulation environment, the grasped object and the robot

hand. The reference for the object position is given by:

pod =
[
ax sin(w t) + bx ay sin(w t) + by az sin(w t) + bz

]T
where ax = ay = az = 20mm, bx = by = 0, bz = 50 and w = 2π

5
(the parametric

expression of an ellipse in the task space). The initial conditions for the simulation

are Rpo = I3 and po = [ 0 0 50 ]T.

Fig. 4.14 illustrates the task space trajectory of the object center and Fig. 4.15

illustrates the object position, errors and joint control signals. The relative positions

and the position control signals are ommited for the sake of simplicity.
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Figure 4.14: Reference and object trajectory for the tracking experiment.

These results demonstrate the asymptotic convergence of the object tracking

and relative position errors to zero by the kinematic control approach for object

manipulation developed in section 3.3.3. The magnitude of the tracking error is

bounded to a small residual of 1mm, after the convergence of the relative position

states. This is due to the small simulation sample time of 0.067 s, much smaller than

the sample time of the experiments with the Robotiq hand, because of limitations

in comunication speed imposed by the USB connection. The magnitude of the

joint control signals also remains bounded to less than 1 rad s−1, an acceptable joint

velocity range for a real 12 Dof robot hand.
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Figure 4.15: Results for tracking experiment with a 12 Dof robot hand.

90



4.3 Analysis of Results

Since friction effects were not taken into account in the proposed methodology, the

kinematic control approach without explicit closure of a force feedback loop is not

able to guarantee the satisfactory prehension of the object during the manipulation

task. To overcome this drawback, we have combined the object position control

with the relative position control for the fingers, ensuring a firm grasp of the ob-

ject. Although, this scheme for object prehension works better if the object or the

fingertips are made of soft materials. For example, in sections 4.2.3, 4.2.4, 4.2.5, we

have discussed the presence of small errors in the relative positions that could have

lead to grasping fail, if the grasped object was completely rigid. The nature of the

contact surface is also very important: since no force-control loop is applied, the

performance of the fingertip grasp relies on the friction coefficient of the fingertip

contact, which depends on the material of the object.

With respect to the visual servoing schemes, besides their great advantages

pointed in Chapter 1, some limitations may arise, since these approaches require:

� (i) CPUs with higher clock speed to perform the necessary calculations and

execute image processing algorithms, mainly when the motions of the target

object are very fast;

� (ii) high resolution cameras to provide more accurate pixel counting for the im-

age projected area and allow the execution of visual servoing tasks for greater

distances.

An important remark to be done is about the main differences between the two

approaches for visual servoing noticed by the observation of the experiments. The

first of them is the signal-to-noise ratio. Even by attenuating the measured depth

signal by applying the natural logarithm, in general, the results of the HVS method

are more noisy than the IBVS. Of course, it is clear that the IBVS performance for

depth control will decay if the Robotiq hand is positioned too far from the camera,

while the performance with the HVS method will remain unaltered. This is due to

the nature of the method used for depth estimation for each scheme. In the HVS

method, the depth is directly measured by the Kinect’s depth sensor, being affected

by the point cloud noise and by the range of measurement only. In the IBVS method,
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the depth is estimated by pixel counting, a method that is more accurate if there

are a great number of pixels in the projected image of the object, i.e, if the object

is relatively close to the Kinect. If this is not the case, the resolution limitation of

the RGB camera starts to affect the performance, as pointed out in (ii).

With respect to the eigenvalues of the gain matrices, they have been carefully

limited for the sake of stability and convergence of the control algorithms. Although

high values of control gains increase the dynamic response of the closed-loop system,

and thus, the overall performance, they can also lead the system to instability,

because of communication limitations that impose finite inferior limits to the sample

time of the algorithm.

The simulation results of a 12 Dof robot hand performing an object manipu-

lation task helped to visualize the applicability and effectiveness of the framework

of cooperative robotics applied to more complicate problems, such as the control

of complex robot hands with many degrees-of-freedom. This is not the case of the

Robotiq hand, because of its mechanical limitations and few degrees of freedom.

However, it demonstrates that the methodology can be applyed in many advanced

prototypes of multifingered robot hands with rigid fingers, such as Schunk (LIU

et al., 2007), Barret (TOWNSEND, 2000) and even the Shadow hand (SHADOW

ROBOT COMPANY, 2003).

Finally, the theoretical results of this work hold in the practical experiments

under the assumptions of full knowledge of the model and camera parameters, and

no occurrences of singular configurations. The kinematic control approach turned

out to be very applicable to control the Robotiq hand, because of its high gear ratios

and slow finger motions. A force control scheme was not utilized because of the lack

of a precise force measuring device in the Robotiq hand, such as a tactile sensors in

the fingertips or precise current sensors in the driver motors, a difficulty that has

been overcome by controlling the relative finger position.
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Chapter 5

Conclusions and Future Works

In this chapter, we present the conclusions about this work and discuss some per-

spectives for future works in the area.

5.1 Conclusion

In this work, we have presented a kinematic framework for modeling and control

design of a multifingered robot hand, which is based on an empirical model and a

control formalism developed for general robotic systems subject to kinematic con-

straint conditions (WEN e WILFINGER, 1999).

The position control problems for the fingers and the manipulated object were

tackled by using the kinematic control approach, which ensures the asymptotic sta-

bility of the output tracking errors. Besides, we also have presented two visual

servoing schemes to solve the problem of controlling the grasped object in the image

space. Experimental results, obtained with the 3-Finger Adaptive Robot Gripper

from Robotiq, were shown and discussed to illustrate the performance and effective-

ness of the methodology.

We conclude by pointing out that, besides the general framework of cooperative

robots and the kinematic control approach were effective for controlling the Robotiq

hand and are applicable to a wide class of robot hands, they also have limitations.

For example, consider the problem of non-prehensile grasping tasks. Although many

advanced prototypes of robot hands have the required speed and manipulability

to perform such complex tasks, the control schemes require the knowledge of the
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dynamic models of these devices, which are considerably more complex than the

kinematic models considered in this work.

Finally, we point out that this work have originated three scientific papers, pub-

lished at:

� ISIE 2015 (International Symposium in Industrial Electronics 2015)

“Visual Servoing for Object Manipulation with a Multifingered Robot Hand”

(REIS et al., 2015);

� Syroco 2015 (11th IFAC Symposium on Robot Control)

“Kinematic modeling and control design of a multifingered robot hand” (REIS

et al., 2015);

� CDC 2015 (IEEE 54th Annual Conference on Decision and Control)

“Modeling and control of a multifingered robot hand for object grasping and

manipulation tasks” (REIS et al., 2015);

The work has also been awarded in the annual event named JIC (Giulio Massarani

Scientific Initiation Journey) at Federal University of Rio de Janeiro in the year of

2014, as one of the ten works selected to receive an honorable mention award.

5.2 Future Works

Motivated by the questions discussed above, some topics for future developments

are:

� (i) to implement hybrid position/force control strategies for object grasping

and manipulation tasks for general objects, with different shapes and sizes;

� (ii) to develop intelligent grasping algorithms to select the best grasping for

an object in terms of object manipulability and grasp stability;

� (iii) to perform path planning and object manipulation tasks with the Robotiq

hand attached to a large-scale robot manipulator;

� (iv) to implement visual pose estimation methods for estimating the extrinsic

parameters of the camera, allowing the visual servoing methods to be applied

in the general case of relative motion between the palm and camera frames.
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1016/j.ifacol.2015.12.001. Dispońıvel em: <http://www.sciencedirect.com/

science/article/pii/S2405896315026257>. 11th {IFAC} Symposium on

Robot Control {SYROCO}, Salvador, Brazil, 26-28 August 2015.

[39] REIS, M. F., LEITE, A. C., LIZARRALDE, F. “Modeling and control of

a multifingered robot hand for object grasping and manipulation tasks”. In:

Decision and Control (CDC), 2015 IEEE 54th Annual Conference on, pp. 159–

164, Dec 2015. doi: 10.1109/CDC.2015.7402102.

[40] COTTLE, R. W. “Manifestations of the Schur complement”, Linear Algebra

and its Applications, v. 8, n. 3, pp. 189 – 211, 1974. ISSN: 0024-3795. doi:

http://dx.doi.org/10.1016/0024-3795(74)90066-4. Dispońıvel em: <http://
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Appendix A

Proofs of Theorems

Here we present the proofs of the theorems presented in chapters 2 and 3.

A.1 Finger kinematic constraints

If the fingertips pose does not depend directly on θka, then Jkfa is null. Thus, equation

2.13 reduces to

vk = Jkfp J
k
c θ̇ka ,

which is just equation 2.15 with Jkf = Jkfp and J̃kc = Jkc .

A.2 Finger control

Substituting the control law u into the error state dynamics (3.32), we obtain the

following linear error equation:

˙̃ξ + Λ ξ̃ = 0 ,

Choosing Λ as a positive-definite matrix, the error system is asymptotically stable

and error state vector ξ̃ tends asymptotically to zero. The convergence to zero of the

error state vector ξ̃ ensures the asymptotic convergence of the selected directions of

h1, h2, h3 to its desired values h1d, h2d, h3d.
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A.3 Prehension control

Substituting the control law u into the error state dynamics (3.27) and applying the

conditions of the theorem, we obtain the linear error equation:

˙̃ξr + Λr ξ̃r = 0 ,

Choosing Λr as a positive-definite matrix, the error system is asymptotically stable

and the error state vector ξ̃r tends asymptotically to zero, ensuring the asymptotic

convergence of the selected directions of the relative positions pr.

A.4 Object manipulation control

Substituting the control law u into the error state dynamics (3.32) and applying the

conditions of the theorem, we obtain the following linear error equation: ˙̃ξo
˙̃ξr

+

 Λo 0

0 Λr

  ξ̃o

ξ̃r

 = 0 .

Choosing Λo ∈ Rmo×mo and Λr ∈ Rmr×mr as positive-definite matrices, the error

system is asymptotically stable, and the error state vectors ξ̃o and ξ̃r tend asymp-

totically to zero, ensuring both the convergence of the state position of the object

to its desired values and the convergence of the selected directions of the relative

positions pr to the initial relative state ξr0.

A.5 HVS control

Substituting the control law 3.41 into the error state dynamics (3.40), we obtain the

following linear error equation: ˙̃ξz
˙̃ξr

+

 Λz 0

0 Λr

  ξ̃z

ξ̃r

 = 0 .

which is asymptotically stable under the conditions of the theorem and thus, the

error state vector ξ̃z tends asymptotically to zero. This ensures the asymptotic con-

vergence of the controlled generalized coordinates of p̃vH and the controlled relative

coordinates of ξr to its desired values.
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A.6 IBVS control

Substituting the control law 3.49 into the error state dynamics (3.48), we obtain the

following linear error equation: ˙̃ξv
˙̃ξr

+

 Λv 0

0 Λr

  ξ̃v

ξ̃r

 = 0 .

which is asymptotically stable under the conditions of the theorem and thus, the

error state vector ξ̃v tends asymptotically to zero. This ensures the asymptotic con-

vergence of the controlled image-space coordinates of ξv and the controlled relative

coordinates of ξr to its desired values.

A.7 Stacked Jacobian singularities

The Moore-Penrose pseudo-inverse matrix of J in terms of J1 and J2 is

J† =

 J1

J2

† =
[
JT
1 JT

2

]  J1

J2

 [ JT
1 JT

2

]−1

=
[
JT
1 JT

2

]  J1 J
T
1 J1 J

T
2

J2 J
T
1 J2 J

T
2

−1 (A.1)

If the last matrix in the right hand side of (A.1) is full rank, than its inverse

exists and J† is uniquely defined. To check out the rank of this matrix, we make

use of an important result from the theory of block matrices.

If M is a square block matrix defined in terms of sub-matrices A, B, C and D

as:

M =

 A B

C D

 ,

where the dimensions of these sub-matrices are consistent, than the inverse of M is

given by:

M−1 =

 A B

C D

−1 =

 (A−BD−1C)−1 −A−1B (D − C A−1B)−1

−C−1C (A−BD−1C)−1 (D − C A−1B)−1


where the matrix expressions (A− BD−1C) and (D − C A−1B) are known as the

Schur complements of M (COTTLE, 1974).
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Back to (A.1), if A = J1 J
T
1 , B = J1 J

T
2 , C = J2 J

T
1 and D = J2 J

T
2 , after some

algebra, we get: J1 J
T
1 J1 J

T
2

J2 J
T
1 J2 J

T
2

−1 =

 (J1 P
⊥
J2
JT
1 )−1 −(JT

1 )+ JT
2 (J2 P

⊥
J1
JT
2 )−1

−(JT
2 )+ JT

1 (J1 P
⊥
J2
JT
1 )−1 (J2 P

⊥
J1
JT
2 )−1


(A.2)

where P⊥J1 = (I − J†1 J1) and P⊥J2 = (I − J†2 J2) are the projection matrices defined

previously and

(JT
1 )+ = (J1 J

T
1 )−1 J1 , J+

1 J1 = I

(JT
2 )+ = (J2 J

T
2 )−1 J2 , J+

2 J2 = I

are known as the Moore-Penrose left pseudo-inverse matrix of JT
1 and JT

2 , in contrast

with the right Moore-Penrose pseudo-inverses

J†1 = JT
1 (J1 J

T
1 )−1 , J1 J

†
1 = I

J†2 = JT
2 (J2 J

T
2 )−1 , J2 J

†
2 = I .

Note that, from (A.2), the inverse of J JT is only defined if J1, J2, P
⊥
J1

and P⊥J2

are all full rank, and thus, the right pseudo-inverse of J is defined by (A.1). This

fact means that J must be full rank as well, what concludes the proof.
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Appendix B

Derivation of the active-to-passive

joint map in the case of

non-integrable kinematic

constraints

If it is not possible to obtain 2.10 from 2.9 or if ck(.) is difficult to obtain by empirical

means, equation 2.9 can be differentiated with respect to time, yielding:

Jkg (θk) θ̇k = 0 , Jkg =
∂gk(θk)

∂θk
, (B.1)

where Jkg is the general constraint Jacobian matrix of each finger. Now, if we use

the definition of the vector of joint variables θk in terms of the active and passive

joints, we can also rewrite B.1 partitioning the general constraint Jacobian matrix

Jkg into its active and passive parts:

[
Jkga Jkgp

]  θ̇ka

θ̇kp

 = Jkga θ̇ka + Jkgp θ̇kp = 0 (B.2)

Then, solving for ρ̇k, we obtain:

θ̇kp = −Jkgp
−1
Jkga θ̇ka . (B.3)

Now, we focus on the consequences of the following hypothesis about the differ-

ential kinematics equations of a general robot finger:
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H3 Both Jkga and Jkgp matrices are functions of θka (the active joints) only.

Under assumption (H3), we can integrate B.3 directly, obtaining:

θkp = θkp0 +

∫ θka

θka0

−Jkgp
−1
Jkga dθka (B.4)

Note that, if the integral in B.4 can be solved analytically and the initial passive

joint angles ρk0 are known, these equations are exactly the constraint equations in

2.10.

Comparing 2.11 and B.3, we note that, in the case of assumption (H3):

Jkc (αk) = −Jkgp
−1
Jkga . (B.5)

This methodology shows that there are two different ways of calculating the dif-

ferential constraints for the fingers. The first way is to have the set of mk general

constraint equations in 2.9, and then differentiate then with respect to time, obtain-

ing B.2. The other way is to obtain the constraint equations empirically, directly in

the form of 2.10 and then perform the time differentiation, directly obtaining 2.11.

In particular, if assumption (H3) is satisfied and if the matrix −Jkgp
−1
Jkga is

integrable, the equivalence between the two methods is easily seen, because one can

obtain the constraint relation between the passive and the active joints by direct

integration, in B.4. The closed-form solution for the integral will be the desired ck(.)

functions, which must be equivalent to the empirical relations found.
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