

PRODUÇÃO DE METANOL A PARTIR DA GLICERINA: INFLUÊNCIA DOS PARÂMETROS DE INTERAÇÃO BINÁRIA DO MODELO TERMODINÂMICO NA SEPARAÇÃO

Isabelle Cândido de Freitas Renata de Sousa Candido

Projeto de Final de Curso

Orientadores

Prof. Fernando Luiz Pellegrini Pessoa, D. Sc. Pedro Wagner de Carvalho Falcão, D. Sc.

Maio de 2011

Produção de metanol a partir da glicerina: influência dos parâmetros de interação binária do modelo termodinâmico na separação

Isabelle Cândido de Freitas Renata de Sousa Candido

Projeto de Final de Curso submetido ao Corpo Docente da Escola de Química, como parte dos requisitos necessários à obtenção do grau de Engenharia Química.

Aprovado por:

Carlos Augusto G. Perlingeiro, D. Sc.

Reinaldo Coelho Mirre, D. Sc.

Rodrigo Bernardo Medeiros, Eng. Químico

Orientado por:

Fernando Luiz Pellegrini Pessoa, D. Sc.

Pedro Wagner de Carvalho Falcão, D.Sc.

Rio de Janeiro, RJ- Brasil Maio de 2011

Freitas, Isabelle Cândido de; Candido, Renata de Sousa.

Produção de metanol a partir da glicerina: influência dos parâmetros de interação binária do modelo termodinâmico na separação/ Isabelle Cândido de Freitas e Renata de Sousa Candido Rio de Janeiro: UFRJ/EQ, 2011. xi, 74 p.; il.

(Projeto final) – Universidade Federal do Rio de Janeiro, Escola de Química, 2011. Orientador(es): Fernando Luiz Pellegrini Pessoa e Pedro Wagner de Carvalho Falcão.

 Parâmetros binários. 2. Separação. 3. Metanol. 4. Projeto final de curso (Graduação – UFRJ/EQ). 5. Fernando Luiz Pellegrini Pessoa e Pedro Wagner de Carvalho Falcão. I. Produção de metanol a partir da glicerina: influência dos parâmetros de interação binária do modelo termodinâmico na separação.

"Determinação coragem e autoconfiança são fatores decisivos para o sucesso. Se estamos possuídos por uma inabalável determinação conseguiremos superá-los. Independentemente das circunstâncias, devemos ser sempre humildes, recatados e despidos de orgulho"

Dalai Lama

Agradecimentos

Gostaríamos de agradecer primeiramente a Deus que nos permitiu chegar até esta etapa de nossas vidas.

Aos nossos pais, João e Graça e Ruy e Fátima, por todo o amor, carinho e dedicação na nossa vida e educação para que hoje pudéssemos estar aqui, por todos os conselhos, palavras de incentivo e motivação para que seguíssemos sempre em frente sem fraquejar.

Aos nossos irmãos, Igor e Carol, por sempre estarem ao nosso lado, nos motivando e por agüentarem os dias de mau humor.

Aos nossos orientadores, Fernando e Pedro, por todos os ensinamentos, paciência e palavras de incentivo por todo esse tempo.

A todos os nossos amigos, tão queridos, que conhecemos ao longo de todos esses anos, queremos agradecer infinitamente, pois estiveram conosco em todos os momentos alegres e difíceis proporcionados por essa longa jornada de graduação.

Isabelle e Renata

Resumo do projeto de final de curso apresentado à escola de química como parte dos requisitos necessários para obtenção do grau de engenheiro químico

PRODUÇÃO DE METANOL A PARTIR DA GLICERINA: INFLUÊNCIA DOS PARÂMETROS DE INTERAÇÃO BINÁRIA DO MODELO TERMODINÂMICO NA SEPARAÇÃO

Isabelle Cândido de Freitas

Renata de Sousa Candido

Maio, 2011

Orientadores: Prof. Fernando Luiz Pellegrini Pessoa, D. Sc.

Pedro Wagner de Carvalho Falcão, D. Sc.

No processo de obtenção de biodiesel há uma grande geração de glicerina, acarretando um grande excedente desse material. Com isso o mercado não consegue absorver esse excedente, gerando um baixo preço desse subproduto da produção de biodiesel. Para minimizar esse problema, vem-se utilizando novas rotas de consumo da glicerina para a obtenção de novos produtos, como por exemplo, a produção de metanol. Para a produção de metanol através da glicerina existem duas vias reacionais: via síntese direta da glicerina e via gás de síntese com catalisador Cu-Zn/Al₂O₃. Após a obtenção do produto, a mistura final possui os seguintes componentes: CO₂, CO, CH₄, metanol, H₂ e H₂O. O presente trabalho tem como objetivo separar o metanol dos demais componentes, comparando uma simulação utilizando os parâmetros de interação binária do programa Hysys® e os parâmetros ajustados com base em dados encontrados na literatura aberta.

Para a obtenção dos parâmetros de interação binária foram coletados conjuntos de dados de equilíbrio líquido-vapor, relacionados a temperatura e pressão, entre os pares da mistura e estimando-se através do programa *Phase Equilibria* (PE 2000), os valores de k_{ij} , $l_{ij} e \lambda_{ij}$, utilizando a equação de estado cúbica de Peng-Robinson Stryjek-Vera (PRSV). Estimados esses valores, observou-se o comportamento desses parâmetros com a temperatura. Porém, o programa Hysys® não possui os parâmetros de interação binária $l_{ij} e \lambda_{ij}$, assim, foi realizada uma nova estimativa para se encontrar novos valores de k_{ij} considerando $l_{ij} e \lambda_{ij}$ iguais a zero. Depois de encontrados valores de k_{ij} para cada temperatura, calculou-se a média desses valores para a faixa de temperatura em que o processo de separação é realizado.

Realizou-se uma comparação entre duas simulações do processo de separação, uma utilizando os parâmetros de interação binária do banco de dados do programa e a outra com os parâmetros ajustados pelos dados coletados na literatura aberta encontrando sensíveis diferenças entre os dois casos, como na carga térmica do processo e nos perfis de temperatura e composição, demonstrando a influência da temperatura sobre os parâmetros de interação binária na separação.

ÍNDICE

RESUMOv
Capítulo 1 – Introdução 1
Capítulo 2 – Objetivos
Capítulo 3 – Metodologia
3.1-Modelagem Termodinâmica7
Capítulo 4 – Resultados 10
4.1-Obtenção dos parâmetros de interação binária10
4.2-Separação
4.2.1-Separação utilizando parâmetros de interação binária do programa Hysys®18
4.2.2-Separação utilizando parâmetros de interação binária da literatura
4.2.3- Comparação entre as simulações utilizando os parâmetros de interação
binária do banco de dados do Hysys® e da literatura aberta
Capítulo 5 – Conclusão e sugestões
Referências bibliográficas
APÊNDICE 1: Tabelas dos valores obtidos de k_{ij} , $l_{ij} e \lambda_{ij}$
APÊNDICE 2: Tabelas dos valores das composições molares calculadas e
experimentais das fases líquida e vapor 49
APÊNDICE 3: Gráficos das médias dos erros absolutos para as composições das fases
líquida (x _i) e vapor (y _i)67
APÊNDICE 4: Correlações entre os valores de k_{ij} com as temperaturas

ÍNDICE DE FIGURAS

Figura 01: Reação de Transesterificação	1
Figura 02: Reações de Hidrólise e de Esterificação	2
Figura 03: Aplicação do glicerol na indústria em 2009	3
Figura 04: Produção de metanol entre os anos de 2000 e 2009 ^[24]	4
Figura 05: Esquema ilustrativo das etapas do projeto	5
Figura 06: Esquema ilustrativo de obtenção dos parâmetros de interação binária	8
Figura 07: Correlação de k_{ij} , $l_{ij} \in \lambda_{ij}$ com a temperatura para o par CO ₂ -H ₂ O	. 11
Figura 08: Correlação de k_{ij} , $l_{ij} \in \lambda_{ij}$ com a temperatura para o par CO ₂ -CH ₃ OH	. 11
Figura 09: Correlação de k_{ij} , $l_{ij} \in \lambda_{ij}$ com a temperatura para o par CO ₂ -H ₂	. 12
Figura 10: Correlação de k_{ij} , $l_{ij} \in \lambda_{ij}$ com a temperatura para o par CH ₃ OH-H ₂ O	. 12
Figura 11: Correlação de k_{ij} , $l_{ij} \in \lambda_{ij}$ com a temperatura para o par CO-H ₂	.13
Figura 12: Fluxograma da separação da corrente de produtos da produção de metanol	17
Figura 13: Temperatura em cada estágio na coluna T-100 para os dados retirados da	
literatura e os do Hysys®	. 38
Figura 14: Fração molar do metanol na fase líquida em cada estágio na coluna T-100	
para os dados retirados da literatura e os do Hysys®	. 39
Figura 15: Fração molar da água na fase líquida em cada estágio na coluna T-100 para	a
os dados retirados da literatura e os do Hysys®	39
Figura 16: Temperatura em cada estágio na coluna T-101 para os dados retirados da	
literatura e os do Hysys®	40
Figura 17: Fração molar do metanol na fase líquida em cada estágio na coluna T-101	
para os dados retirados da literatura e os do Hysys®	41
Figura 18: Fração molar da água na fase líquida em cada estágio na coluna T-101 para	a
os dados retirados da literatura e os do Hysys®	41
Figura A3-1: Média dos erros absolutos para CH ₃ OH-H ₂ O	68
Figura A3-2: Média dos erros absolutos para CO-H ₂	68
Figura A3-3: Média dos erros absolutos para CO ₂ -CH ₃ OH	69
Figura A3-4: Média dos erros absolutos para CO ₂ -H ₂	69
Figura A3-5: Média dos erros absolutos para CO ₂ -H ₂ O	70
Figura A4-1: Correlação de k_{ij} com as temperaturas para o par CO ₂ -H ₂ O	72
Figura A4-2: Correlação de k_{ij} com as temperaturas para o par CO ₂ -CH ₃ OH	72
Figura A4-3: Correlação de k_{ij} com as temperaturas para o par CO ₂ -H ₂	. 73

Figura A4-4: Correlação de kij com as temperaturas para o par CH ₃ OH-H ₂ O	. 73
Figura A4-5: Correlação de k_{ij} com as temperaturas para o par CO-H ₂	. 74

ÍNDICE DE TABELAS

Tabela 01 - Propriedades físico-químicas do glicerol ^[5]	2
Tabela 02: Valores de k_{ij} para o par CO ₂ -H ₂ O	13
Tabela 03: Valores de k_{ij} para o par CO ₂ -CH ₃ OH	14
Tabela 04: Valores de k_{ij} para o par CO ₂ -H ₂	15
Tabela 05: Valores de k_{ij} para o par CO ₂ -CH ₃ OH	16
Tabela 06: Valores de <i>k</i> _{ij} para o par CO-H ₂	16
Tabela 07: Parâmetros dos componentes puros da equação de estado PRSV do	
simulador	18
Tabela 08: Parâmetros de interação binária k_{ij} do Hysys [®]	18
Tabela 09: Condições da corrente de entrada 1	19
Tabela 10: Fração molar da corrente de entrada 1	19
Tabela 11: Condições do resfriador	20
Tabela 12: Condições da corrente de saída do resfriador	20
Tabela 13: Condições da corrente de saída 3 da válvula (VLV-100)	20
Tabela 14: Condições da corrente vaporizada 4 na saída do flash (V-100)	20
Tabela 15: Condições da corrente líquida 5 na saída do flash (V-100)	21
Tabela 16: Fração molar da corrente vaporizada 4 na saída do flash (V-100)	21
Tabela 17: Fração molar da corrente líquida 5 na saída do flash (V-100)	21
Tabela 18: Condição do condensador parcial da coluna T-100	22
Tabela 19: Condição do refervedor da coluna T-100	22
Tabela 20: Condições da coluna de destilação T-100	22
Tabela 21: Condições da corrente vaporizada de saída 6 no condensador parcial da	a
coluna T-100	23
Tabela 22: Condições da corrente líquida de saída 7 no condensador parcial da co	luna
T-100	23
Tabela 23: Condições da corrente líquida de saída 8 no refervedor da coluna T-10	0 23
Tabela 24: Fração molar da corrente vaporizada de saída 6 no condensador parcia	l da
coluna T-100	23
Tabela 25: Fração molar da corrente líquida de saída 7 no condensador parcial da	coluna
T-100	24
Tabela 26: Fração molar da corrente líquida de saída 8 no refervedor da coluna T-	10024
Tabela 27: Condição do condensador total da coluna T-101	25

Tabela 28: Condição do refervedor total da coluna T-101	. 25
Tabela 29: Condições da coluna de destilação T-101	. 25
Tabela 30: Condições da corrente líquida de saída 9 no condensador total da coluna 7	Г-
101	. 27
Tabela 31: Condições da corrente líquida de saída 10 no refervedor da coluna T-101	. 27
Tabela 32: Fração molar da corrente líquida de saída 9 no condensador parcial da col	una
T-101	. 27
Tabela 33: Fração molar da corrente líquida de saída 10 no refervedor da coluna T-10)1
	. 28
Tabela 34: Parâmetros de interação binária k_{ij} gerados da literatura aberta	. 29
Tabela 35: Condições do resfriador	. 29
Tabela 36: Condições da corrente de saída 2 do resfriador	. 29
Tabela 37: Condições da corrente de saída 3 da válvula	. 30
Tabela 38: Condições da corrente vaporizada 4 na saída do flash	. 30
Tabela 39: Condições da corrente líquida 5 na saída do separador	. 30
Tabela 40: Fração molar da corrente vaporizada 4 na saída do flash	. 30
Tabela 41: Fração molar da corrente líquida 5 na saída do separador	. 30
Tabela 42: Condição do condensador parcial da coluna T-100	. 31
Tabela 43: Condição do refervedor da coluna T-100	. 31
Tabela 44: Condições da coluna de destilação T-100	. 31
Tabela 45: Condições da corrente vaporizada 6 de saída no condensador parcial da	
coluna T-100	. 32
Tabela 46: Condições da corrente líquida 7 de saída no condensador parcial da colum	a
T-100	. 32
Tabela 47: Condições da corrente líquida 8 de saída no refervedor da coluna T-100	. 32
Tabela 48: Fração molar da corrente vaporizada 6 de saída no condensador parcial da	ı
coluna T-100	. 32
Tabela 49: Fração molar da corrente líquida 7 de saída no condensador parcial	. 33
Tabela 50: Fração molar da corrente líquida 8 de saída no refervedor da coluna T-100)33
Tabela 51: Condição do condensador total da coluna T-101	. 34
Tabela 52: Condição do refervedor da coluna T-101	. 34
Tabela 53: Condições da coluna de destilação T-101	. 34
Tabela 54: Condições da corrente líquida 9 de saída no condensador total da coluna 7	Г-
101	. 36

Tabela 55: Condições da corrente líquida 10 de saída no refervedor da coluna T-101 . 36
Tabela 56: Fração molar da corrente líquida 9 de saída no condensador parcial da coluna
T-101
Tabela 57: Fração molar da corrente líquida 10 de saída no refervedor da coluna T-101
Tabela 58: Vazões mássicas de água utilizadas nos equipamentos da simulação 42
Tabela 59: Variação percentual da vazão mássica entre as simulações
Tabela A1-1: Valores de k_{ij} , $l_{ij} e \lambda_{ij}$ para o par CO ₂ -H ₂ O
Tabela A1-2: Valores de k_{ij} , $l_{ij} e \lambda_{ij}$ para o par CO ₂ -CH ₃ OH
Tabela A1-3: Valores de k_{ij} , $l_{ij} e \lambda_{ij}$ para o par CO ₂ -H ₂
Tabela A1-4: Valores de k_{ij} , $l_{ij} e \lambda_{ij}$ para o par CH ₃ OH-H ₂ O
Tabela A1-5: Valores de k_{ij} , $l_{ij} e \lambda_{ij}$ para o par CO-H ₂ O
Tabela A2-1: Valores das composições molares calculadas e experimentais das fases
líquida e vapor para o par CO ₂ -H ₂ O 50
Tabela A2-2: Valores das composições molares calculadas e experimentais das fases
líquida e vapor para o par CO ₂ -CH ₃ OH
Tabela A2-3: Valores das composições molares calculadas e experimentais das fases
líquida e vapor para o par CO ₂ -H ₂ 59
Tabela A2-4: Valores das composições molares calculadas e experimentais das fases
líquida e vapor para o par H ₂ O-CH ₃ OH63
Tabela A2-5: Valores das composições molares calculadas e experimentais das fases
líquida e vapor para o par CO-H ₂

Capítulo 1 – Introdução

A partir de 1939^[1], quando houve a descoberta da primeira fonte de petróleo no país, na cidade de Lobato, Bahia, se iniciou uma ampla discussão sobre como deveria ser sua exploração, se somente pela União ou também por empresas privadas, pois o Brasil ainda dependia destas para as etapas seguintes do processo.

Os anos se passaram, outros fatos como a criação da Petrobras, a crise do petróleo, as descobertas de outras fontes no país e a descoberta do pré-sal, fizeram do século XX o século do petróleo.

Hoje, no século XXI, novas fontes de geração de energia provindas de recursos renováveis vêm ganhando destaque pelo aproveitamento de recursos naturais, o fato de estes não serem esgotáveis e de não poluírem abundantemente.

Dentre as variadas fontes discutidas atualmente, encontra-se a produzida a partir da biomassa, os biocombustíveis, em especial o biodiesel.

Biodiesel é um combustível substituto para o óleo diesel de petróleo por apresentar propriedades físico-químicas semelhantes, e compõe, junto com o etanol, importante oferta para o segmento de combustíveis. É produzido a partir de óleos vegetais, gorduras animais e óleos residuais de fritura, e há estudos para descoberta de novas matérias-primas viáveis para sua produção. Quimicamente, o biodiesel é definido como ésteres monoalquílicos de ácidos carboxílicos de cadeia longa derivados de fontes lipídicas renováveis^[23].

É produzido por transesterificação (esquema da Figura 1) ou esterificação (esquema da Figura 2), ou ainda hidroesterificação, sendo a primeira e a última geradoras de glicerina, produto de interesse do presente trabalho, como subproduto da própria transesterificação e como subproduto da reação de hidrólise da matéria-prima, no caso gorduras, antecessora à reação de esterificação.

Figura 01: Reação de Transesterificação

Figura 02: Reações de Hidrólise e de Esterificação

Para cada 90 m³ de biodiesel produzidos por transesterificação são gerados, aproximadamente, 10 m³ de glicerina. Estima-se que a partir de 2010, já com a aplicação do B5 (onde se utiliza 5% de biodiesel na composição do diesel), serão produzidas 250 mil toneladas de glicerina por ano^[14].

O glicerol é um álcool que se apresenta como um líquido viscoso, inodoro, incolor e com sabor doce^[5]. O nome glicerol é somente aplicado ao composto químico puro 1,2,3-propanotriol, enquanto que os produtos comerciais que contém glicerol com diferentes graus de pureza são denominados glicerina^[14]. Algumas de suas características físico-químicas são apresentadas na Tabela 01.

	-
Propriedade	Valor
Massa Molar	92,09 g/mol
Densidade (20°C)	1,26 kg/m ³
Viscosidade (20°C)	1410 mPa
Ponto de fusão	18°C
Ponto de ebulição (1013 hPa)	290°C
Calor específico (25 °C)	2,435 J/g

Tabela 01 - Propriedades físico-químicas do glicerol^[5]

Calor de evaporação (55°C)	88,12 J/mol
Condutividade Térmica	0,28 W/(m.K)
Calor de formação	667,8 kJ/mol
Tensão superficial (20°C)	63,4 mN/m
pH (solução)	7,0

A glicerina purificada tem grande aplicação nos setores de cosméticos, higiene pessoal, alimentos, medicamentos e fumo. Em termos de transformação química ela ainda apresenta aplicações limitadas, sendo as principais na produção de explosivos, como a nitroglicerina, e na formação de resinas alquídicas^[14].

Figura 03: Aplicação do glicerol na indústria em 2009.

Estudos estão sendo feitos com o objetivo de abrir mais frentes para o consumo da glicerina, e um deles é na produção de metanol, segundo os anuários da Abiquim^[24], na produção de metacrilato de metila, de éter metil-ter-butílico, de metilaminas, como intermediário químico de muitas reações, podendo citar até mesmo a produção de biodiesel, entre outras aplicações.

Sua capacidade instalada cresceu nos últimos 10 anos, mas ao mesmo tempo sua produção vem diminuindo, com grande destaque para os últimos três anos, conforme é mostrado na Figura 04.

Figura 04: Produção de metanol entre os anos de 2000 e 2009^[24].

Uma das formas de obtenção de metanol, investigada por Sinadinović–Fišer et al. ^[25], é através de gás de síntese proveniente da reforma do gás natural, e também através da glicerina de acordo com Goetsch et al. ^[26]

O trabalho de projeto final de Alves^[3] estudou a obtenção do metanol através do gás de síntese produzido na reforma do gás natural usando um catalisador de Cu/ZnO/Al₂O₅, em temperaturas e pressões inferiores àquelas observadas no clássico processo a alta pressão. A outra forma de obtenção de metanol avaliada no referido trabalho foi a decomposição, segundo o método da minimização de energia livre de Gibbs, da glicerina bruta proveniente do biodiesel, produzindo gás de síntese e posteriormente em metanol^[3].

Capítulo 2 – Objetivos

A etapa de separação do processo de produção de metanol a partir da glicerina estudado por Alves^[3] não foi avaliado. Este trabalho tem como objetivos:

- Investigar a influência da temperatura nos parâmetros de interação binária dos produtos envolvidos na no processo;
- Comparar os parâmetros ajustados a dados experimentais existentes na literatura aberta com aqueles disponíveis no banco de dados do software na separação dos produtos da produção de metanol.

Capítulo 3 – Metodologia

Este projeto foi desenvolvido utilizando apenas ferramentas computacionais, como os *software Phase Equibria* (PE 2000)^[15] e Hysys®. A partir de conjuntos de dados de equilíbrio inseridos no PE 2000 foram ajustados os parâmetros de interação binária e no Hysys® realizou-se a simulação do processo, como ilustra a Figura 05 abaixo:

Figura 05: Esquema ilustrativo das etapas do projeto.

O conhecimento das propriedades termodinâmicas das substâncias puras e misturas é essencial para o projeto de equipamentos. A escolha do modelo para predizer as propriedades das misturas na simulação de processos químicos é uma das etapas mais importantes do projeto ou avaliação dos sistemas. Para processos operados em pressões moderadas e elevadas usa-se geralmente a abordagem Φ - Φ através da isofugacidade relacionada à equação de estado escolhida; para este trabalho a equação utilizada foi a PRSV. A equação da isofugacidade está descrita abaixo:

$$\ln\left(\frac{f}{P}\right) = \sqrt{2}a_c a(T)\ln\left[\frac{Z+B(1-\sqrt{2})}{Z+B(1+\sqrt{2})}\right] - \ln[Z-b] + Z - 1$$
 Eq. (1)

$$B = \frac{bP}{RT}$$
 Eq. (2)

$$Z = \frac{PV}{RT}$$
 Eq. (3)

Onde

$$\ln\left(\frac{f_i}{P}\right) = \ln(\Phi_i)$$
 Eq. (4)

O cálculo das propriedades no equilíbrio líquido-vapor de um sistema multicomponentes relaciona-se com os cálculos utilizados nos sistemas binários através das regras de mistura utilizadas, as quais contemplam contribuições de componentes dois a dois.

Para o presente trabalho foram determinados os parâmetros de interação binária estimados a partir de dados experimentais obtidos da literatura aberta. O *software* PE2000 apresenta várias equações de estado que podem ser utilizadas para a determinação dos parâmetros de interação binária (k_{ij} , $l_{ij} e \lambda_{ij}$). No presente caso, foi escolhida a equação de Peng-Robinson Stryjek-Vera (PRSV) seguindo as recomendações de Eric Carlson, tendo em vista que a reação é conduzida em alta pressão e a alimentação contém uma mistura de componentes supercríticos inorgânicos apolares e polares associativas.

O objetivo de se obter os parâmetros de interação binária (k_{ij} , l_{ij} e λ_{ij}) através da simulação no PE 2000 foi comparar os resultados com aqueles obtidos com os parâmetros do banco de dados do Hysys® os quais são considerados independentes da temperatura. Os dados de equilíbrio líquido-vapor em diversas temperaturas e pressões coletados foram obtidos através de artigos e da enciclopédia DECHEMA para os seguintes pares: CO₂-Metanol, CO₂-H₂O, CO₂-H₂, H₂O-Metanol e CO-H₂, totalizando 657 dados de equilíbrio. Para os pares H₂-Metanol, CO-H₂O, CO-CO₂ e H₂-H₂O não foram encontrados dados na literatura aberta. A indisponibilidade desses pares na literatura aberta pode acarretar em uma diferença nos resultados finais encontrados para o processo de separação quando comparados aos obtidos pelos parâmetros de interação binária gerados, por ter que usar os disponíveis no banco de dados do Hysys®.

3.1-Modelagem Termodinâmica

Os conjuntos de dados de equilíbrio líquido-vapor coletados na literatura aberta foram inseridos no programa PE 2000 que requer como dados de entrada para os parâmetros k_{ij} , $l_{ij} e \lambda_{ij}$: a pressão, a temperatura e as composições das fases líquida (x_i) e vapor (y_i). Para o cálculo foi utilizada a função objetivo (desvio relativo quadrático) escrita em função da composição da fase líquida. O método numérico utilizado foi o Simplex Nelder-Melder^[16]. Após executar o programa para cada temperatura, é gerado um diagrama de fases relativo a pressão e um arquivo de saída na extensão .*txt* que contém os parâmetros de interação binária, as composições experimentais inseridas no programa e as calculadas nos ajustes e os seus respectivos desvios quadráticos relativos percentuais para cada temperatura estudada. A Figura 06 a seguir, apresenta um esquema ilustrativo do processo de obtenção dos parâmetros de interação binária.

Figura 06: Esquema ilustrativo de obtenção dos parâmetros de interação binária.

A equação de PRSV é apresentada na equação 6:

$$P = \frac{RT}{(V-b)} - \frac{a}{(V^2 + 2bV - b^2)}$$
 Eq.(6)

As constantes a e b são calculadas de acordo com as equações 7 e 8:

$$a = \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} x_{j} a_{ij}$$
 Eq.(7)

$$b = \sum_{i=1}^{n} x_i b_i$$
 Eq.(8)

Onde:

$$a_{ij} = \sqrt{a_i a_j} \left(1 - \frac{k_{ij} k_{ji}}{x_i k_{ij} + x_j k_{ji}} \right)$$
 Eq.(9)

com:

$$a_i = \left(0,457235 \frac{R^2 \cdot T_{ci}^2}{P_{ci}}\right) \alpha_i \qquad \text{Eq.(11)}$$

$$a_{j} = \left(0,457235 \frac{R^{2} \cdot T_{cj}^{2}}{P_{cj}}\right) \alpha_{j} \qquad \text{Eq.(12)}$$

$$b_{ij} = \frac{b_i + b_j}{2} \left(1 - \ell_{ij} \right)$$
 Eq.(13)

Sendo:

$$b_i = 0,0778 \frac{R \cdot T_{ci}}{P_{ci}}$$
 Eq.(15)

Onde:

 $x_i =$ fração molar do componente i

 $x_j =$ fração molar do componente j

 k_{ij} = parâmetro de interação binária para os componentes i e j

$$\alpha_i(T_r) = \left[1 + \left(\kappa + \kappa_1 \left(1 + \sqrt{T_r}\right) \cdot \left(0, 7 - T_r\right)\right) \cdot \left(1 - \sqrt{T_r}\right)\right]^2 \qquad \text{Eq.(17)}$$

$$\kappa = 0,378893 + 1,4897153\omega - 0,17131848\omega^2 + 0,0196554\omega^3$$
 Eq.(18)

$$T_{ri} = \frac{T_i}{T_{ci}}$$
 Eq.(19)

 ω = fator acêntrico para as espécies

 T_{ci} = Temperatura crítica para o componente i

 κ = Parâmetros dos componentes puros da equação de estado (*kappa*)

Os parâmetros k_{ij} , $l_{ij} e \lambda_{ij}$ são utilizados para corrigir a não idealidade dos compostos em relação à força de interação entre as moléculas (parâmetro *a*) e o tamanho e forma das moléculas (parâmetro *b*).

A partir dos parâmetros de interação binária foram calculadas as composições das fases líquida e vapor, posteriormente comparadas com as experimentais. Os parâmetros foram calculados para várias temperaturas de modo a avaliar sua influência. Os resultados dos erros absolutos e dos valores das composições calculadas e experimentais das fases líquida e vapor estão nos Anexos 2 e 3.

Capítulo 4 – Resultados

4.1-Obtenção dos parâmetros de interação binária

Os resultados obtidos das estimativas dos valores dos parâmetros k_{ij} , $l_{ij} e \lambda_{ij}$, para cada temperatura e os erros absolutos entre os valores experimentais e calculados para as composições das fases líquida (x_i) e vapor (y_i) são mostrados nos Anexos 1 e 2.

Como um dos objetivos deste trabalho é determinar a influência dos parâmetros de interação binária no processo de separação da corrente de produtos da produção de metanol plotados gráficos de cada parâmetro versus a temperatura, de modo a observar as possíveis tendências, conforme as Figuras 07 a 11.

Figura 07: Correlação de k_{ij} , l_{ij} e λ_{ij} com a temperatura para o par CO₂-H₂O

Figura 08: Correlação de k_{ij} , $l_{ij} \in \lambda_{ij}$ com a temperatura para o par CO₂-CH₃OH

Figura 09: Correlação de k_{ij} , $l_{ij} \in \lambda_{ij}$ com a temperatura para o par CO₂-H₂

Figura 10: Correlação de k_{ij} , l_{ij} e λ_{ij} com a temperatura para o par CH₃OH-H₂O

Figura 11: Correlação de k_{ij} , l_{ij} e λ_{ij} com a temperatura para o par CO-H₂

Para a realização da simulação, notou-se que o simulador Hysys® admitia somente um parâmetro de interação binária, o k_{ij} . Assim, foi necessária um novo ajuste do parâmetro k_{ij} , para as diferentes temperaturas, no PE 2000 utilizando a mesma regra de mistura (PRSV), para cada par de componentes considerando os parâmetros $l_{ij} e \lambda_{ij}$ iguais a zero. Os resultados obtidos estão nas Tabelas 02 a 06.

	91 I
CO ₂ -]	H ₂ O
Temperatura (K)	k_{ij}
298,15 ^[15]	0,1772
304,19 ^[15]	0,1780
323,15 ^[15]	0,1602
323,20 ^[4]	0,0050
333,20 ^[4]	-0,.0060
353,10 ^[4]	-0,0490

Tabela 02: Valores de k_{ij} para o par CO₂-H₂O

373,15 ^[16]	0,0623
383,15 ^[11]	-0,0339
423,15 ^[11]	0,0009
473,15 ^[11]	0,0378
523,15 ^{[11]*}	0,0801
523,15 ^{[11]*}	0,0621
533,15 ^{[11]*}	0,0702
533,15 ^{[11]*}	0,0651
538,15 ^[11]	0,0628
540,15 ^[11]	0,0619
541,15 ^[11]	0,0671
543,15 ^{[11]*}	0,0670
543,15 ^{[11]*}	0,0524
548,15 ^{[11]*}	0,0670
548,15 ^{[11]*}	0,0599
573,15 ^{[11]*}	0,0601
573,15 ^{[11]*}	0,0790
598,15 ^[11]	0,0697
623,15 ^{[11]*}	0,2688
623,15 ^{[11]*}	0,2590

*Para essas temperaturas haviam duas fontes distintas que apresentavam diferentes faixas de pressão nos pares de equilíbrio líquido-vapor.

Tuben ver vinores de ky para o par e o 2 e 113011	
CO ₂ -CH ₃ OH	
Temperatura (K)	k_{ij}
291,15 ^[10]	0,0192
298,16 ^[10]	0,0585

Tabela 03: Valores de k_{ij} para o par CO₂-CH₃OH

303,18 ^[10]	-0,0193
308,15 ^[10]	0,0593
313,14 ^[10]	0,1613
313,15 ^[10]	0,0867
313,20 ^[10]	0,0921
313,40 ^[10]	0,0663
320,15 ^[10]	0,1310
330,00 ^[10]	0,1475
335,65 ^[10]	0,1288
342,80 ^[10]	0,1356

Tabela 04: Valores de k_{ij} para o par CO₂-H₂

CO ₂ -H ₂					
Temperatura (K)	k _{ij}				
219,90 ^[11]	0,1714				
220,00 ^[18]	0,0990				
225,00 ^[18]	0,1002				
229,90 ^[11]	0,1744				
230,00 ^[18]	-0,0007				
237,00 ^[18]	0,0105				
244,90 ^[11]	0,2013				
245,00 ^[18]	0,0284				
250,00 ^[18]	0,0721				
259,90 ^[11]	0,2364				
260,00 ^[18]	0,0849				
270,00 ^[18]	0,0844				
274,90 ^[11]	0,3034				

280,00 ^[18]	0,0958
289,90 ^[11]	0,3290
290,00 ^[18]	0,1290

Tabela 05: Valores de k_{ij} para o par CO₂-CH₃OH

CO ₂ -CH ₃ OH					
Temperatura (K)	k _{ij}				
312,91 ^[6]	-0,0893				
323,15 ^[13]	-0,0812				
423,15 ^[13]	-0,0983				
523,15 ^[13]	-0,0784				

Na tabela 06, para a temperatura de 122,20 K, não foi possível convergir um valor de k_{ij} , pelo fato do par CO-H₂ nesta temperatura apresentar poucos dados de equilíbrio LV.

CO-H ₂				
Temperatura (K)	k_{ij}			
68,20 ^[11]	0,2058			
73,20 ^[11]	0,1738			
83,20 ^[11]	0,3469			
88,20 ^[11]	0,0269			
83,30 ^[11]	0,0848			
100,00 ^[11]	0,0559			
$122,20^{[11]}$	não convergiu			

Tabela 06: Valores de k_{ij} para o par CO-H₂

Depois de encontrados os valores de k_{ij} para cada par de componentes, novas correlações entre esses valores de interação com as temperaturas foram avaliadas. Para identificar qual seria a melhor correlação, foi escolhida a curva que melhor se ajustava aos pontos, isto é, a que possuía o maior valor de R². Este procedimento foi realizado para todas as correlações de todos os parâmetros de interação binária versus a temperatura. Os resultados são encontrados no Anexo 3.

4.2-Separação

Além da obtenção dos parâmetros de interação binária foi realizada também a simulação do processo de separação do metanol, utilizando tanto os parâmetros de interação binária obtidos através da literatura aberta como os valores que o simulador possui em seu banco de dados. A corrente de entrada utilizada para simulação, citada a seguir como corrente 1, foi obtida no trabalho de Alves^[3]. O processo de separação contempla um trocador de calor (resfriador), uma válvula, um separador (flash) e duas colunas de destilação, como mostra a Figura 12.

Deve-se ressaltar que foi estabelecida uma queda de pressão ao longo do processo para possibilitar o escoamento.

Figura 12: Fluxograma da separação da corrente de produtos da produção de metanol

4.2.1-Separação utilizando parâmetros de interação binária do programa Hysys®

Inicialmente foi avaliada a separação do metanol utilizando o parâmetro de interação binária, k_{ij} , no banco de dados do simulador Hysys®. As Tabelas 07 e 08 mostram os valores dos parâmetros para os componentes puros da equação de estado PRSV (*Kappa*) e os valores de k_{ij} do simulador.

Sinulator					
Componente	Карра				
CO_2	0,1430				
СО	-0,2150				
H_2O	-0,0767				
H_2	-0,5018				
CH_4	-0,0193				
CH ₃ OH	0,3938				

Tabela 07: Parâmetros dos componentes puros da equação de estado PRSV do simulador

Tabela 08: Parâmetros de interação binária k_{ij} do Hysys®

Componente	CO ₂	CO	H ₂ O	H_2	CH ₄	СН ₃ ОН
CO ₂	-	-0,0314	0,0445	0,1202	0,1000	0,0400
CO	-0,0314	-	-0,3896	0,0253	0,0210	0,0000
H ₂ O	0,0445	-0,3896	-	-0,2998	0,4800	-0,1800
\mathbf{H}_{2}	0,1202	0,0253	-0,2998	-	0,2023	0,0000
CH ₄	0,1000	0,0210	0,4800	0,2023	-	-0,0350
CH ₃ OH	0,0400	0,0000	-0,1800	0,0000	-0,0350	-

As condições e a composição da corrente de entrada 1 foram definidas de acordo com os dados coletados da corrente de saída do processo de produção de metanol através da glicerina estudado no projeto de final de curso de Alves^[3], conforme mostram as Tabelas 09 e 10.

Corrente	Fração vaporizada	Temperatura (°C)	Pressão (kPa)	Vazão molar (kgmol/h)	Vazão mássica (kg/h)	Vazão volumétrica (m ³ /h)
1	1	206,90	5000	9,33	174,50	0,3405

Tabela 09: Condições da corrente de entrada 1.

Tabela 10: Fração molar da corrente de entrada 1.

Corrente 1				
Componente	Fração molar			
CO_2	0,1417			
СО	0,0565			
H ₂ O	0,0067			
H_2	0,4793			
CH_4	0,0204			
CH ₃ OH	0,2954			

A corrente de entrada 1 apresenta uma quantidade significativa de CO_2 , CO, H_2 e CH_4 , componentes incondensáveis na temperatura de operação do processo, principalmente o CO_2 . Para a retirada destes componentes incondensáveis, utilizou-se um resfriador para diminuir a temperatura da corrente e condensar uma parte do metanol presente.

Como a água para resfriar a corrente 1 está na condição ambiente, temperatura igual a 30°C e pressão de 1 bar, então a temperatura de saída do fluido que se quer resfriar será igual a 40°C, de acordo com a regra heurística de integração energética para um trocador em contra-corrente, que diz que a temperatura de saída do fluido que se quer resfriar tem que estar a uma diferença de 10°C da temperatura inicial do fluido frio.

As Tabelas 11 e 12 mostram as condições do resfriador e da corrente de saída 2, respectivamente.

Tabela 11:	Condições	do resfriador
------------	-----------	---------------

Resfriador	Delta P (kPa)	Carga térmica (kJ/h)
E-100	0	1,79E+05

Tabela 12: Condições da corrente de saída do resfriador

Corrente	Fração vaporizada	Temperatura (°C)	Pressão (kPa)	Vazão molar (kgmol/h)	Vazão mássica (kg/h)	Vazão volumétrica (m ³ /h)
2	0,6839	40,00	5000	9,33	174,50	0,3405

Como corrente 2 apresenta uma pressão elevada, 50bar, foi utilizada uma válvula (VLV-100) para reduzi-la para 2 bar, visando retirar facilmente os componentes incondensáveis via flash. A Tabela 13 mostra as condições da corrente de saída desta válvula utilizada.

Tabela 13: Condições da corrente de saída 3 da válvula (VLV-100)

Corrente	Fração vaporizada	Temperatura (°C)	Pressão (kPa)	Vazão molar (kgmol/h)	Vazão mássica (kg/h)	Vazão volumétrica (m ³ /h)
3	0,7262	21,55	200	9,33	174,50	0,3405

Depois reduzir a pressão e temperatura da corrente de entrada 1, resultando na corrente 3, parcialmente vaporizada, utilizou-se um flash (V-100), isotérmico, com a intenção de separar as duas fases e também de separar ao máximo os componentes incondensáveis do metanol. As características das duas correntes de saída do separador (4 e 5) estão demonstradas nas Tabelas 14 e 15 e suas frações molares nas Tabelas 16 e 17.

Tabela 14: Condições da corrente vaporizada 4 na saída do flash (V-100)

Corrente	Fração vaporizada	Temperatura (°C)	Pressão (kPa)	Vazão molar (kgmol/h)	Vazão mássica (kg/h)	Vazão volumétrica (m ³ /h)
4	1	21,55	200	6,78	93,43	0,2388

Corrente	Fração vaporizada	Temperatura (°C)	Pressão (kPa)	Vazão molar (kgmol/h)	Vazão mássica (kg/h)	Vazão volumétrica (m ³ /h)
5	0	21,55	200	2,56	81,09	0,1016

Tabela 15: Condições da corrente líquida 5 na saída do flash (V-100)

Tabela 16: Fração molar da corrente vaporizada 4 na saída do flash (V-100)

Corrente 4					
Componente	Fração molar				
CO_2	0,1939				
CO	0,0777				
H_2O	0,0001				
H_2	0,6599				
CH_4	0,0281				
CH ₃ OH	0,0402				

Tabela 17: Fração molar da corrente líquida 5 na saída do flash (V-100)

Corrente 5				
Componente	Fração molar			
CO_2	0,0030			
СО	0,0000			
H ₂ O	0,0241			
H_2	0,0000			
CH_4	0,0001			
CH ₃ OH	0,9727			

Como a corrente 5, que é líquida, apresenta uma maior quantidade de metanol e ainda possui componentes incondensáveis que se dissolvem no metanol e na água, utilizou-se uma coluna de destilação que opera com um condensador parcial e um refervedor total com os seguintes parâmetros: razão de refluxo igual a 4,0, 10 pratos teóricos e a corrente de alimentação entrando no primeiro prato.

As condições do condensador parcial e do refervedor total estão nas Tabelas 18 e 19, respectivamente, e as condições nas quais a coluna de destilação T-100 operou estão descritas na Tabela 20.

Tabela 18: Condição do condensador parcial da coluna T-100

Condensador parcial	Energia (kJ/h)
Q-101	2,22E+05

Tabela 19: Condição do refervedor da coluna T-100

Refervedor	Energia (kJ/h)
Q-102	2,90E+05

Estágio	Pressão (kPa)	Temperatura (°C)	Vazão de líquido (kmole/h)	Vazão de vapor (kmole/h)
Condensador	150	77,59	5,3692	1,1000
1	150	78,18	8,5276	6,7115
2	150	78,21	8,5287	7,3149
3	150	78,21	8,5288	7,3160
4	150	78,21	8,5288	7,3160
5	150	78,21	8,5289	7,3161
6	150	78,21	8,5290	7,3161
7	150	78,21	8,5290	7,3162
8	150	78,23	8,5285	7,3162
9	150	78,31	8,5255	7,3157
10	150	78,73	8,5102	7,3127
Refervedor	150	80,90	1,2128	7,2974

Tabela 20: Condições da coluna de destilação T-100

Assim, separou-se o metanol e a água dos componentes incondensáveis com uma fração molar igual a 0,95 no fundo. As características das correntes de saída são apresentadas nas Tabelas 21, 22 e 23, e suas respectivas frações molares nas Tabelas 24, 25 e 26.

Tabela 21: Condições da corrente vaporizada de saída 6 no condensador parcial da coluna T-100

Corrente	Fração vaporizada	Temperatura (°C)	Pressão (kPa)	Vazão molar (kgmol/h)	Vazão mássica (kg/h)	Vazão volumétrica (m ³ /h)
6	1,0000	77,59	150	1,1000	35,3272	0,0444

Tabela 22: Condições da corrente líquida de saída 7 no condensador parcial da

coluna	T-100
--------	--------------

Corrente	Fração vaporizada	Temperatura (°C)	Pressão (kPa)	Vazão molar (kgmol/h)	Vazão mássica (kg/h)	Vazão volumétrica (m ³ /h)
7	0,0000	77,59	150	0,2423	7,7570	0,0097

Tabela 23: Condições da corrente líquida de saída 8 no refervedor da coluna T-100

Corrente	Fração vaporizada	Temperatura (°C)	Pressão (kPa)	Vazão molar (kgmol/h)	Vazão mássica (kg/h)	Vazão volumétrica (m ³ /h)
8	0,0000	80,90	150	1,21	38,00	0,0475

Tabela 24: Fração molar da corrente vaporizada de saída 6 no condensador parcial

da coluna T-100

Corrente 6				
Componente	Fração molar			
CO_2	0,0071			
СО	0,0000			
H ₂ O	0,0004			
H_2	0,0001			

CH_4	0,0001
CH ₃ OH	0,9923

Tabela 25: Fração molar da corrente líquida de saída 7 no condensador parcial da

Corrente 7		
Componente	Fração molar	
CO_2	0,0001	
СО	0,0000	
H ₂ O	0,0021	
H_2	0,0000	
CH_4	0,0000	
CH ₃ OH	0,9979	

Tabela 26: Fração molar da corrente líquida de saída 8 no refervedor da coluna T-

100

Corrente 8		
Componente	Fração molar	
CO_2	0,0000	
СО	0,0000	
H ₂ O	0,0500	
H_2	0,0000	
CH_4	0,0000	
CH ₃ OH	0,9500	

Como a quantidade de compostos incondensáveis foi praticamente nula na corrente 8, no fundo da coluna T-100, mas apresentava uma quantidade significativa de metanol, utilizou-se uma outra coluna de destilação, a T-101, para a purificação do mesmo, separando-o da água existente no sistema.
Baseando-se no trabalho de LUYBEN^[12] que mostrou que para a separação do metanol da água foi necessária uma coluna com condensador e refervedor totais, operando com 42 pratos teóricos, sendo o 27°, o prato de alimentação, e uma razão de refluxo igual a 0,4, que também foi a condição operacional na qual a coluna de destilação proposta para essa etapa convergiu, obteve-se uma fração molar do metanol no topo igual 0,99, que é a fração do metanol comercial e no fundo dessa coluna de destilação obteve-se metanol, mas em uma quantidade muito pequena em comparação com a água.

As condições do condensador e refervedor totais estão nas Tabelas 27 e 28, e a condição da coluna de destilação T-101 estão na Tabela 29.

Tabela 27: Condição do condensador total da coluna T-101

Condensador Total	Energia (kJ/h)
Q-103	6,67E+04

Tabela 28: Condição do refervedor total da coluna T-101

Refervedor	Energia (kJ/h)
Q-104	6,46E+04

Fabela 29: Condiç	ões da coluna	de destilaç	ão T-101
-------------------	---------------	-------------	----------

Estágio	Pressão (kPa)	Temperatura (°C)	Vazão de líquido (kmole/h)	Vazão de vapor (kmole/h)
Condensador	100	68,50	0,4655	0,0000
1	100	70,91	0,4616	1,6293
2	100	73,73	0,4578	1,6253
3	100	76,57	0,4547	1,6216
4	100	79,05	0,4524	1,6185
5	100	80,96	0,4508	1,6161
6	100	82,33	0,4497	1,6145
7	100	83,24	0,4490	1,6134
8	100	83,84	0,4486	1,6128

 9	100	84,21	0,4483	1,6123
10	100	84,44	0,4481	1,6121
11	100	84,59	0,4480	1,6119
12	100	84,67	0,4480	1,6118
13	100	84,73	0,4479	1,6117
14	100	84,76	0,4479	1,6117
15	100	84,78	0,4479	1,6116
16	100	84,79	0,4479	1,6116
17	100	84,80	0,4479	1,6116
18	100	84,80	0,4479	1,6116
19	100	84,81	0,4478	1,6116
20	100	84,81	0,4479	1,6116
21	100	84,81	0,4479	1,6116
22	100	84,81	0,4479	1,6116
23	100	84,81	0,4479	1,6116
24	100	84,81	0,4479	1,6116
25	100	84,81	0,4479	1,6116
26	100	84,81	0,4479	1,6116
27	100	84,81	1,6093	1,6117
28	100	98,17	1,6181	1,5603
29	100	105,11	1,6246	1,5691
30	100	105,40	1,6273	1,5756
31	100	103,67	1,6293	1,5783
32	100	102,07	1,6309	1,5803
33	100	101,00	1,6319	1,5819
34	100	100,34	1,6326	1,5829
35	100	99,95	1,6330	1,5836

36	100	99,72	1,6332	1,5840
37	100	99,59	1,6334	1,5842
38	100	99,52	1,6335	1,5844
39	100	99,47	1,6335	1,5845
40	100	99,45	1,6335	1,5845
41	100	99,43	1,6336	1,5845
42	100	99,43	1,6336	1,5846
Refervedor	100	99,42	0,0490	1,5846

E as características das correntes de saída da coluna, 9 e 10, são demonstradas Tabelas 30 e 31 e suas respectivas frações molares nas Tabelas 32 e 33.

Tabela 30: Condições da corrente líquida de saída 9 no condensador total da coluna T-101

Corrente	Fração vaporizada	Temperatura (°C)	Pressão (kPa)	Vazão molar (kgmol/h)	Vazão mássica (kg/h)	Vazão volumétrica (m ³ /h)
9	0	68,50	100	1,16	37,12	0,0466

Tabela 31: Condições da corrente líquida de saída 10 no refervedor da coluna T-

101						
Corrente	Fração vaporizada	Temperatura (°C)	Pressão (kPa)	Vazão molar (kgmol/h)	Vazão mássica (kg/h)	Vazão volumétrica (m ³ /h)
10	0	99,42	100	0,05	0,88	0,0009

Tabela 3	2: Fração	molar da c	orrente líquio	la de saída	9 no cond	ensador j	parcial da

coluna	T-101
--------	--------------

Corrente 9				
Componente	Fração molar			
CO_2	0,0000			
CO	0,0000			

H_2O	0,0100
H_2	0,0000
CH_4	0,0000
CH ₃ OH	0,9900

Tabela 33: Fração molar da corrente líquida de saída 1	0 no refervedor da coluna T-
101	

	-				
Corrente 10					
Componente	Fração molar				
CO_2	0,0000				
СО	0,0000				
H_2O	0,9999				
H_2	0,0000				
CH_4	0,0000				
CH ₃ OH	0,0001				

4.2.2-Separação utilizando parâmetros de interação binária da literatura

Depois de avaliada a separação utilizando os parâmetros de interação binária do Hysys®, foi simulada a mesma separação com os mesmos equipamentos e o mesmo modelo termodinâmico (PRSV) da apresentada anteriormente, mas com os parâmetros de interação binária (k_{ii}) coletados na literatura aberta.

Para determinar os parâmetros que seriam utilizados, correlacionou-se os seus valores com as temperaturas do equilíbrio líquido-vapor, ajustando a curva pelo melhor valor de \mathbb{R}^2 , como apresentado no Anexo 3, mas observou-se que mesmo ajustando pela melhor correlação, esta apresentava um erro elevado, pois quando se utilizava os parâmetros k_{ij} gerados dessas equações se obtinham valores para as temperaturas ao longo das colunas de destilação irreais como por exemplo, temperatura no condensador da coluna T-100 aproximadamente -80°C.Isso aconteceu porque a faixa de temperatura do processo de separação se encontrava-se entre 40 e 100°C e a faixa das curvas de

correlação era bem maior que esta. Então, calculou-se uma média dos valores de k_{ij} para essa faixa de temperatura, e para os pares que não foram encontrados na literatura utilizaram-se os valores de k_{ij} que o programa possuía no seu banco de dados, como mostrado na Tabela 34.

Componente	CO ₂	CO	H ₂ O	\mathbf{H}_2	CH ₄	CH ₃ OH
CO ₂	-	-0,0314	0,0345	3,5482	0,1000	0,1187
CO	-0,0314	-	-0,3896	0,0559	0,0210	0,0000
H ₂ O	0,0345	-0,3896	-	-0,2998	0,4800	-0,0852
H_2	3,5482	0,0559	-0,2998	-	0,2023	0,0000
CH ₄	0,1000	0,0210	0,4800	0,2023	-	-0,0350
CH ₃ OH	0,1187	0,0000	-0,0852	0,0000	-0,0350	-

Tabela 34: Parâmetros de interação binária k_{ij} gerados da literatura aberta

O fluxograma de operação é o mesmo apresentado na Figura 05 e as colunas utilizadas apresentam a mesma razão de refluxo e o mesmo número de estágios teóricos. As condições e as frações molares de cada componente da corrente 1 também são os mesmos utilizados anteriormente, como mostram as Tabelas 09 e 10, respectivamente. As diferenças entre as duas simulações começaram a partir do resfriador como apresentadas nas Tabelas 35 a 42, as quais mostram as condições das correntes de saída e suas respectivas frações molares.

Tabela 35: Condições do resfriador

Resfriador	Delta P (kPa)	Carga térmica (kJ/h)
E-100	0	1,76E+05

Tabela 36: C	Condições da	corrente de s	aída 2 do	resfriador
--------------	--------------	---------------	-----------	------------

Corrente	Fração vaporizada	Temperatura (°C)	Pressão (kPa)	Vazão molar (kgmol/h)	Vazão mássica (kg/h)	Vazão volumétrica (m ³ /h)
2	0,6914	40	5000	9,33	174,50	0,3405

Corrente	Fração vaporizada	Temperatura (°C)	Pressão (kPa)	Vazão molar (kgmol/h)	Vazão mássica (kg/h)	Vazão volumétrica (m ³ /h)
3	0,7298	22,39	200	9,33	174,50	0,3405

Tabela 37: Condições da corrente de saída 3 da válvula

Tabela 38: Condições da corrente vaporizada 4 na saída do flash

Corrente	Fração vaporizada	Temperatura (°C)	Pressão (kPa)	Vazão molar (kgmol/h)	Vazão mássica (kg/h)	Vazão volumétrica (m ³ /h)
4	1	22,39	200	6,81	93,51	0,2402

Tabela 39: Condições da corrente líquida 5 na saída do separador

Corrente	Fração vaporizada	Temperatura (°C)	Pressão (kPa)	Vazão molar (kgmol/h)	Vazão mássica (kg/h)	Vazão volumétrica (m ³ /h)
5	0	22,39	200	2,52	80,01	0,1003

Tabela 40: Fração molar da corrente vaporizada 4 na saída do flash

Corrente 4				
Componente	Fração molar			
CO_2	0,1935			
СО	0,0774			
H_2O	0,0005			
H_2	0,6567			
CH_4	0,0280			
CH ₃ OH	0,0439			

Tabela 41: Fração molar da corrente líquida 5 na saída do separador

Corrente 5				
Componente	Fração molar			
CO_2	0,0016			

СО	0,0000
H ₂ O	0,0234
H_2	0,0000
CH_4	0,0001
CH ₃ OH	0,9750

A seguir, nas Tabelas 42 a 44 são mostradas as condições do condensador parcial e do refervedor utilizados na coluna T-100, assim como o seu perfil de operação.

Tabela 42: Condição do condensador parcial da coluna T-100

Condensador parcial	Energia (kJ/h)
Q-101	1,85E+05

Tabela 43: Condição do refervedor da coluna T-100

Refervedor	Energia (kJ/h)
Q-102	2,52E+05

Tabela 44: Condições da coluna de destilação T-100

Estágio	Pressão (kPa)	Temperatura (°C)	Vazão de líquido (kmole/h)	Vazão de vapor (kmole/h)
Condensador	150	77,78	4,6167	1,0999
1	150	78,04	7,7186	5,7708
2	150	78,06	7,7193	6,3513
3	150	78,06	7,7192	6,3519
4	150	78,06	7,7192	6,3518
5	150	78,06	7,7193	6,3518
6	150	78,07	7,7194	6.3519
7	150	78,09	7,7195	6,3520

8	150	78,13	7,7197	6,3521
9	150	78,23	7,7201	6,3523
10	150	78,46	7,7209	6,3527
Refervedor	150	79	1,3674	6,3536

As condições das correntes de saída da coluna T-100 são apresentadas nas tabelas 45 a 47 e suas respectivas vazões molares são apresentadas nas tabelas 48 a 50.

Tabela 45: Condições da corrente vaporizada 6 de saída no condensador parcial da coluna T-100

Corrente	Fração vaporizada	Temperatura (°C)	Pressão (kPa)	Vazão molar (kgmol/h)	Vazão mássica (kg/h)	Vazão volumétrica (m ³ /h)
6	1	77,78	150	1,10	35,23	0,0443

Tabela 46: Condições da corrente líquida 7 de saída no condensador parcial da

coluna T-100

Corrente	Fração vaporizada	Temperatura (°C)	Pressão (kPa)	Vazão molar (kgmol/h)	Vazão mássica (kg/h)	Vazão volumétrica (m ³ /h)
7	0	77,78	150	0,05	1,73	0,0022

Corrente	Fração vaporizada	Temperatura (°C)	Pressão (kPa)	Vazão molar (kgmol/h)	Vazão mássica (kg/h)	Vazão volumétrica (m ³ /h)
8	0	78,99	150	1,37	43,05	0,0538

Tabela 48: Fração molar da corrente vaporizada 6 de saída no condensador parcial

da	coluna	T-100
ua	coruna	1-100

Corrente 6			
Componente	Fração molar		
CO_2	0,0036		

СО	0,0000
H ₂ O	0,0035
H_2	0,0001
CH_4	0,0001
CH ₃ OH	0,9927

_

_

Tabela 49:	: Fracão mola	r da corrente	e líquida 7 de	e saída no co	ndensador	parcial

Corrente 7				
Componente	Fração molar			
CO_2	0,0000			
СО	0,0000			
H ₂ O	0,0069			
H_2	0,0000			
CH_4	0,0000			
CH ₃ OH	0,9931			

Tabela 50: Fração molar da corrente líquida 8 de saída no refervedor da coluna T-

100

Corrente 8				
Componente	Fração molar			
CO_2	0,0000			
СО	0,0000			
H ₂ O	0,0400			
H_2	0,0000			
CH_4	0,0000			
CH ₃ OH	0,9600			

Na coluna T-100 foi possível separar o metanol no fundo da coluna de destilação com fração molar igual a 0,96, utilizando as mesmas condições da simulação anterior, ou seja, razão de refluxo igual a 4,0, 10 pratos e alimentação no prato 1.

Assim, a corrente 8 será a entrada da próxima coluna de destilação T-101, e as condições de operação desta coluna, incluindo o condensador e refervedor totais utilizados, são mostradas nas Tabelas 51 a.

Tabela 51: Condição do condensador total da coluna T-101

Condensador Total	Energia (kJ/h)
Q-103	7,65E+04

Tabela 52: Condição do refervedor da coluna T-101

Refervedor	Energia (kJ/h)
Q-104	7,42E+04

Estágio	Pressão (kPa)	Temperatura (°C)	Vazão de líquido (kmole/h)	Vazão de vapor (kmole/h)
Condensador	100	68,52	0,5358	0,0000
1	100	69,15	0,5361	1,8752
2	100	69,50	0,5362	1,8755
3	100	69,69	0,5363	1,8757
4	100	69,80	0,5363	1,8757
5	100	69,86	0,5364	1,8758
6	100	69,89	0,5364	1,8758
7	100	69,91	0,5364	1,8758
8	100	69,92	0,5364	1,8758
9	100	69,93	0,5364	1,8758
10	100	69,93	0,5364	1,8758
11	100	69,93	0,5364	1,8758

Tabela 53: Condições da coluna de destilação T-101

. <u> </u>	12	100	69,94	0,5364	1,8758
	13	100	69,94	0,5364	1,8758
	14	100	69,94	0,5364	1,8758
	15	100	69,94	0,5364	1,8758
	16	100	69,94	0,5364	1,8758
	17	100	69,94	0,5364	1,8758
	18	100	69,94	0,5364	1,8758
	19	100	69,94	0,5364	1,8758
	20	100	69,94	0,5364	1,8758
	21	100	69,94	0,5364	1,8758
	22	100	69,94	0,5364	1,8758
	23	100	69,94	0,5364	1,8758
	24	100	69,94	0,5364	1,8758
	25	100	69,94	0,5364	1,8758
	26	100	69,94	0,5364	1,8758
	27	100	69,94	1,8503	1,8758
	28	100	70,99	1,8518	1,8224
	29	100	73,00	1,8546	1,8239
	30	100	76,66	1,8589	1,8267
	31	100	82,62	1,8649	1,8310
	32	100	88,27	1,8330	1,8370
	33	100	96,69	1,8412	1,8051
	34	100	99,18	1,8472	1,8133
	35	100	99,40	1,8477	1,8193
	36	100	99,41	1,8478	1,8198
	37	100	99,41	1,8478	1,8199
	38	100	99,41	1,8478	1,8199

39	100	99,41	1,8478	1,8199
40	100	99,41	1,8478	1,8199
41	100	99,41	1,8478	1,8199
42	100	99,41	1,8478	1,8199
Refervedor	100	99,41	0,0279	1,8199

As condições das correntes de saída 9 e 10 da coluna T-101 e suas respectivas frações molares estão descritas nas Tabelas 54 a 57.

Tabela 54: Condições da corrente líquida 9 de saída no condensador total da coluna

			T-101			
Corrente	Fração vaporizada	Temperatura (°C)	Pressão (kPa)	Vazão molar (kgmol/h)	Vazão mássica (kg/h)	Vazão volumétrica (m ³ /h)
9	0	68,52	100	1,34	42,54	0,0533

Tabela 55: Condições da corrente líquida 10 de saída no refervedor da coluna T-

			101			
Corrente	Fração vaporizada	Temperatura (°C)	Pressão (kPa)	Vazão molar (kgmol/h)	Vazão mássica (kg/h)	Vazão volumétrica (m ³ /h)
10	0	99,41	100	0,03	0,50	0,0005

Tabela 56: Fração molar da corrente líquida 9 de saída no condensador parcial da

coluna T-101

Corrente 9			
Componente	Fração molar		
CO_2	0,0000		
СО	0,0000		
H ₂ O	0,0200		
H_2	0,0000		
CH_4	0,0000		

CH ₃ OH	0,9800
--------------------	--------

101			
Corrente 10			
Componente	Fração molar		
CO_2	0,0000		
СО	0,0000		
H ₂ O	1,0000		
H_2	0,0000		
CH ₄	0,0000		
CH ₃ OH	0,0000		

Tabela 57: Fração molar da corrente líquida 10 de saída no refervedor da coluna T-101

Por fim, a recuperação do metanol nessa última coluna no topo teve uma fração molar máxima igual a 0,98, diferente do que ocorreu na seção anterior.

4.2.3- Comparação entre as simulações utilizando os parâmetros de interação binária do banco de dados do Hysys® e da literatura aberta.

Depois de realizados os dois processos separação, uma utilizando os parâmetros de interação binária do banco de dados do Hysys®, e a outra utilizando os gerados da literatura aberta pode-se observar uma diferença entre eles nas Figuras 13 a 18.

Figura 13: Temperatura em cada estágio na coluna T-100 para os dados retirados da literatura e os do Hysys®

Como se observa na Figura 13, não há uma grande variação de temperatura entre os dois casos estudados. O mesmo ocorre para as frações molares na fase líquida do metanol e da água para a coluna T-100, como apresentadas nas Figuras 14 e 15, onde não se observou significativas diferenças. Isso acontece pelo fato de que na primeira coluna de destilação haviam quatro componentes a serem separados, CO₂, CH₄, Metanol e H₂O, podendo ocorrer da interação binária entre os componentes de um par compensar a interação dos outros pares restantes, mostrando as duas simulações comportamentos parecidos.

Figura 14: Fração molar do metanol na fase líquida em cada estágio na coluna T-100 para os dados retirados da literatura e os do Hysys®

Figura 15: Fração molar da água na fase líquida em cada estágio na coluna T-100 para os dados retirados da literatura e os do Hysys®.

Já para a coluna T-101 ocorre uma maior diferença entre as temperaturas e as frações molares de metanol e água para ambos os casos estudados. Essa variação mais

acentuada ocorre pelo fato da segunda coluna conter apenas dois componentes, H_2O e metanol, e com isso a interação binária entre eles acaba sendo mais evidente do que na primeira coluna como pode ser observado nas Figuras 16 a 18.

Figura 16: Temperatura em cada estágio na coluna T-101 para os dados retirados

da literatura e os do Hysys®

Figura 17: Fração molar do metanol na fase líquida em cada estágio na coluna T-101 para os dados retirados da literatura e os do Hysys®

Figura 18: Fração molar da água na fase líquida em cada estágio na coluna T-101 para os dados retirados da literatura e os do Hysys®

Na Tabela 58 é apresentada a comparação na análise das cargas térmicas entre as duas simulações para os resfriadores, condensadores e refervedores, onde calculou-se a vazão de água utilizada e a vazão de vapor saturado para cada um desses equipamentos. Para os resfriadores e condensadores foi utilizada a Eq.(20), e, para os refervedores a Eq.(21).

$$\dot{Q} = \dot{m} \times C_p \times \Delta T$$
 Eq.(20)

$$\dot{Q} = \dot{m} \times \Delta H_{vap}$$
 Eq.(21)

Onde:

 \dot{Q} = carga térmica;

 \dot{m} = vazão mássica de água;

- C_p = calor específico da água a 25°C (C_p = 4,18 kJ/kg°C);
- ΔT = variação de temperatura da corrente de água;

 ΔH_{vap} = entalpia de vaporização da água.

A variação de temperatura utilizada para cálculo da vazão mássica de água para os resfriadores foi de 10°C, por se considerar a regra heurística comentada anteriormente, já para os condensadores, considerando a corrente de entrada de 25°C, foi utilizada uma variação de 6°C, porque a água é clarificada, contendo aditivos que só permitem uma temperatura máxima de 31°C.

Simulação com parâmetros	Ż	C_p	ΔH_{vap}	ΔΤ	in (lea/h)
do Hysys®	(kJ/h)	(kJ/Kg°C)	(kJ/kg)	(°C)	<i>m</i> (kg/n)
Resfriador	1,79E+05	4,18	-	10	4282,30
Condensador (T-100)	2,22E+05	4,18	-	6	8851,67
Refervedor (T-100)	2,90E+05	4,18	2280,2	-	127,18
Condensador (T-101)	6,67E+04	4,18	-	6	2659,49
Refervedor (T-101)	6,46E+04	4,18	2257,9	-	28,61
Simulação com parâmetros	Ż	C_p	ΔH_{vap}	ΔΤ	in (leg/h)
Simulação com parâmetros gerados da literatura	<u></u> (kJ/h)	C _p (kJ/kg°C)	ΔH _{vap} (kJ/kg)	ΔT (°C)	<i>m</i> (kg/h)
Simulação com parâmetros gerados da literatura Resfriador	<u></u> (kJ/h) 1,76E+05	<i>C_p</i> (kJ/kg°C) 4,18	ΔH _{vap} (kJ/kg)	ΔT (°C) 10	<i>ṁ</i> (kg/h) 4210,53
Simulação com parâmetros gerados da literatura Resfriador Condensador (T-100)	<i>Q</i> (kJ/h) 1,76E+05 1,85E+05	<i>C_p</i> (kJ/kg°C) 4,18 4,18	ΔH _{vap} (kJ/kg) -	ΔT (°C) 10 6	<i>ṁ</i> (kg/h) 4210,53 7376,40
Simulação com parâmetros gerados da literatura Resfriador Condensador (T-100) Refervedor (T-100)	<i>Q</i> (kJ/h) 1,76E+05 1,85E+05 2,52E+05	<i>C_p</i> (kJ/kg°C) 4,18 4,18 4,18	ΔH _{vap} (kJ/kg) - 2285,1	ΔT (°C) 10 6 -	 <i>m</i> (kg/h) 4210,53 7376,40 110,28
Simulação com parâmetros gerados da literatura Resfriador Condensador (T-100) Refervedor (T-100) Condensador (T-101)	<i>Q</i> (kJ/h) 1,76E+05 1,85E+05 2,52E+05 7,65E+04	C _p (kJ/kg°C) 4,18 4,18 4,18 4,18 4,18	ΔH _{vap} (kJ/kg) - 2285,1	ΔT (°C) 10 6 - 6	 <i>m</i> (kg/h) 4210,53 7376,40 110,28 3050,24

Tabela 58: Vazões mássicas de água utilizadas nos equipamentos da simulação.

A variação percentual de vazão mássica de água entre a simulação utilizando os parâmetros de interação binária gerados e a simulação com os parâmetros do Hysys® foi calculada para os equipamentos utilizados, como mostra a Tabela 59. Observou-se que houve uma redução na quantidade de água para o resfriador, o condensador e o referverdor da coluna T-100, e um aumento para o condensador e o refervedor da coluna T-101 quando utilizados os parâmetros de interação binária com base na literatura aberta.

	Variação %
Resfriador	1,68
Condensador (T-100)	16,67
Refervedor (T-100)	13,29
Condensador (T-101)	-14,69
Refervedor (T-101)	-14,87

Tabela 59: Variação percentual da vazão mássica entre as simulações.

Capítulo 5 – Conclusão e sugestões

Os resultados obtidos revelam uma forte influência da temperatura sobre determinação dos parâmetros de interação binária. Assim, observou-se que há diferença nos resultados para a simulação utilizando os parâmetros de interação binária coletados da literatura aberta e os parâmetros do banco de dados do programa.

No que diz respeito à simulação do processo de separação do metanol observouse diferenças sensíveis nas cargas térmicas dos condensadores e refervedores, perfis de temperatura e composição ao longo dos estágios. Essa diferença pode ser observada mais nitidamente na segunda coluna de destilação onde as interações binárias são mais evidentes, porque nela há a separação de apenas dois componentes.

Assim, sugere-se que essa busca dos parâmetros de interação binária deve ser feita para qualquer processo calculado por simuladores e cada equipamento tendo os seus próprios parâmetros de acordo com a faixa de temperatura na qual esse trabalha. Pois os dados contidos nos simuladores apresentam fundamentação desconhecida, como no caso do k_{ij} , onde se sempre utiliza os mesmos valores para qualquer temperatura e o fato de não ter os outros parâmetros de interação binária ($l_{ij} e \lambda_{ij}$) no banco de dados do programa aumenta o erro nos resultados.

O uso de outras equações de estado, como a PR-MKP seria necessário pois, poderia observar se as diferenças entre as duas simulações ficam mais evidentes.

Referências bibliográficas

[1] http://pt.wikipedia.org/wiki/Petróleo – Acessado em 06/05/2011

[2] http://conceitodealimentos.wordpress.com/2010/09/30/lipidios/ - Acessado em 06/05/2011

[3] ALVES, C. de M. *Produção de metanol a partir da glicerina: síntese do sistema reacional*, 2009, Projeto de Final de Curso.

[4] BAMBERGER, A., 2000; SIEDER, G., 2000; MAUER, G., 2000. Disponível no banco de dados do *Phase Equilibria*.

[5] BARBOSA. R. C. Avaliação do glicerol proveniente da fabricação do biodiesel como substrato para produção de ndotoxinas por Bacillus thuringiensis var. israelensis.
2009. 135f. Tese (Mestrado em Biotecnologia Industrial) - Escola de Engenharia de Lorena, Universidade de São Paulo, São Paulo. 2009.

[6] BENNET G.W., J.CHEM.EDUC.6 – Banco de dados do Phase Equibria.

[7] CHIEHMING C. J.; DAY C.; KO C.; CHIU K. Densities and P-x-y diagrams for carbon dioxide dissolution in methanol, ethanol, and acetone mixtures. Fluid Phase Equilibria, 131 (1997), 243-258.

[8] DALMOLIN I.; SKOVROINSKI E.; BIASI A.; CORAZZA M. L.; DARIVA C.; OLIVEIRA V. J. Solubility of carbon dioxide in binary and mixtures with ethanol and water. Fluid Phase Equilibria, 245 (2006), 193–200.

[9] JOUNG S. N.; YOO C. W.; SHIN H. Y.; KIMA S. Y.; YOO K;, Lee C. S.; HUH S.
W. Measurements and correlation of high-pressure VLE of binaryCO2–alcohol systems (methanol, ethanol, 2-methoxyethanoland2-ethoxyethanol). Fluid Phase Equilibria, 185 (2001), 219–230.

[10] JOUNGA, S. N., 2001; CHANG, C. J. 1997; YOON, J., 2003; SUZUKI, K., 1990 –
 Banco de Dados do *Phase Equibria*.

[11] KNAPP H.; DÖRING R.; OELLRICH L.; PLÖCKER U., PRAUSNITZ M. J.; LANGHORST R.; ZECK S. DECHEMA Chemistry Data Series, Volume VI: Vapor-Liquid Equilibria for Mixtures of Low Boiling Substances, Páginas: 167-168; 215-218; 242-243; 621-624; 633-635.

[12] LUYBEN, L. W. *Design and control of a Methanol Reactor/Column Process*. Industrial Engineering Chemistry Research, 2010, 49 (13), pp 6150–6163.

[13] MCGLASHAN & WILLIAMSON, 1976; GRISWOLD & WONG, 1952 – Banco de dados do *Phase Equilibria*.

44

[14] MOTA, C. J. A.; SILVA, C. X. A.; GONÇALVES, V. L. C. Gliceroquímica: novos produtos e processos a partir da glicerina de produção de biodiesel. Quim. Nova, Vol. 32, No. 3, 639-648, 2009.

[15] PETKOV, S., PFOHL, O. e BRUNNER, G., PE 2000 – A Powerful Tool to Correlate Phase Equilibria, Fev. 2000, Referência bibliográfica de documento eletrônico. Disponível na Internet: http://www.tuharburg.de/vt2/PE2000. Acessado em setembro de 2010.

[16] PFOHL, 1998 – Banco de dados do Phase Equilibria.

[17]SUZUK K.; SUE H.; ITOU M.; SMITH R. L.;INOMATA H.; ARAI, K.; SAITO S., Isothermal Vapor-Liquid Equilibrium Data for Binary Systems at High Pressures: Carbon Dioxide-Methanol, Carbon Dioxide-Ethanol, Carbon Dioxide-I-Propanol, Methane-Ethanol, Methane-I-Propanol, Ethane-Ethanol, and Ethane-I-Propanol Systems. Journal of Chemical & Engineering Data 1990, 35, 63-66.

[18] TSANG, C. Y.; STREETT, W. B.; 1980, S. 993 – 1000 – Disponível em: http://www.tu-harburg.de/v8/gruppe-prof-smirnova/veroeffentlichungen/pe-

2000/download.html - Acessado em 20 de novembro de 2010

[19] VAN NESS, H. C.; Smith, J. M.; Abbott, M. M.; *Introdução à Termodinâmica da Engenharia Química*; Editora LTC, 7^a edição.

[20] YOON J.; LEE H.; LEE H. *High-pressure Vapor-Liquid Equilibria for Carbon Dioxide* + *Methanol, Carbon Dioxide* + *Ethanol, and Carbon Dioxide* + *Methanol* + *Ethanol.* Journal of Chemical & Engineering Data 1993.38, 53-55.

[21] WIEBBE; GADDY. Banco de dados do Phase Equilibria.

[22] http://www.steamtablesonline.com/steam97web.aspx - Acessado em 18 de maio de 2011.

[23] http://www.bioexx.com.br/cases/biodiesel1.html - Biodiesel: A Tecnologia do Século XXI – Acessado em 03 de maio de 2011.

[24] Anuários da Indústria Química Brasileira, ABIQUIM, 2001-2009

[25] K. M. Vanden Bussche, G. F. Froment, A steady- state kinetic model for methanol synthesis and the water gas shift reaction on a commercial Cu/ZnO/Al₂O₃ catalyst, Journal of Catalysis, 161, 1-10 (1996).

[26] Goetsch, et al., United States Patent (7388034), *Production of methanol from the crude glycerol by-product of producing biodiesel*, 17 de junho de 2008

APÊNDICE 1: Tabelas dos valores obtidos de k_{ij} , $l_{ij} e \lambda_{ij}$

CO ₂ -H ₂ O				
Temperatura (K)	k _{ij}	ℓ ij	λ_{ij}	
298,15 ^[21]	0,0393	0,0946	-0,1908	
304,19 ^[21]	0,0485	0,0964	-0,1816	
323,15 ^[21]	0,0518	0,0847	-0,1829	
373,15 ^[16]	0,0267	0,0303	-0,2393	
523,15 ^[11]	0,0982	0,0170	-0,1763	
533,15 ^[11]	0,1057	0,0115	-0,5644	
538,15 ^[11]	0,1037	0,0124	-0,5330	
540,15 ^[11]	0,1000	0,0266	-0,0244	
541,15 ^[11]	0,2769	0,1404	0,0976	
543,15 ^[11]	0,3983	0,2028	0,1947	
548,15 ^[11]	0,4932	0,2496	0,2812	
573,15 ^[11]	0,5006	0,2169	0,3549	
383,15 ^[11]	0,1282	0,0724	0,1066	
423,15 ^[11]	0,1080	0,0410	0,0904	
473,15 ^[11]	0,0288	-0,0990	0,0177	
523,15 ^[11]	0,1317	0,0300	0,0765	
533,15 ^[11]	0,1503	0,0402	0,0820	
543,15 ^[11]	0,1687	0,0457	0,1100	
548,15 ^[11]	0,1491	0,0299	0,1102	
573,15 ^[11]	0,1672	0,0276	0,1275	
598,15 ^[11]	0,2252	0,0597	0,1694	
623,15 ^[11]	0,2850	0,0894	0,1996	

Tabela A1-1: Valores de k_{ij} , $l_{ij} e \lambda_{ij}$ para o par CO₂-H₂O

Tabela A1-2: Valores de k_{ij} , l_{ij} e λ_{ij} para o par CO₂-CH₃OH

CO ₂ -CH ₃ OH					
Temperatura (K)	k _{ij}	ℓ _{ij}	λ_{ij}		
$291,15^{[10]}$	0,0049	-0,0157	-0,0046		
298,16 ^[10]	0,0237	-0,0151	-0,0507		
303,18 ^[10]		não convergiu			
308,15 ^[10]	0,0239	-0,0182	-0,0518		
313,14 ^[10]	0,0168	-0,0376	-0,1117		
313,15 ^[10]	0,0110	0,0229	-0,0813		
313,20 ^[10]	0,0167	0,0037	-0,0894		
313,40 ^[10]	0,0258	-0,0288	-0,0706		
320,15 ^[10]	0,0149	0,0531	-0,0924		
330,00 ^[10]	0,0172	-0,0409	-0,0978		
335,65 ^[10]	0,1225	0,0211	-0,0171		
342,80 ^[10]	0,0946	-0,0286	-0,0415		

CO ₂ -H ₂				
Temperatura (K)	k_{ij}	ℓ ij	λ_{ij}	
219,90 ^[11]	0,0931	-0,0251	-0,2907	
220,00 ^[18]	0,1397	0,0193	-0,0318	
225,00 ^[18]	0,2234	0,0512	0,0486	
229,90 ^[11]	0,1597	-0,0010	-0,1646	
230,00 ^[18]	0,2178	0,0451	0,1526	
237,00 ^[18]	1,7289	0,0835	1,5131	
244,90 ^[11]	0,1886	-0,0018	-0,1285	
245,00 ^[18]	2,2209	0,1226	1,9385	
250,00 ^[18]	0,2619	0,0439	0,1575	
259,90 ^[11]	0,3254	0,0210	-9,1048	
260,00 ^[18]	0,3224	0,0449	0,2159	
270,00 ^[18]	0,1688	0,0184	0,0895	
274,90 ^[11]	-0,4540	-0,3030	-4,1275	
280,00 ^[18]	0,1291	0,0164	0,0357	
289,90 ^[11]	-0,0507	-0,1822	-0,1326	
290,00 ^[18]	0,0827	-0,0431	0,0130	

Tabela A1-3: Valores de k_{ij} , $l_{ij} e \lambda_{ij}$ para o par CO₂-H₂

Tabela A1-4: Valores de k_{ij} , l_{ij} e λ_{ij} para o par CH₃OH-H₂O

CH ₃ OH-H ₂ O					
Temperatura (K)	k _{ij}	ℓ ij	λ_{ij}		
312,91 ^[6]	-0,0038	0,0849	0,0228		
323,15 ^[13]	-0,0065	0,0736	0,0130		
423,15 ^[13]	-0,0049	0,0636	4,5922		
523,15 ^[13]	-0,0057	0.0745	4,6028		

Tabela A1-5: Valores de k_{ij} , $l_{ij} e \lambda_{ij}$ para o par CO-H₂O

	CO-I	H ₂ O	
Temperatura (K)	k_{ij}	ℓ $_{ij}$	λ_{ij}
68,2 ^[11]	-0,4183	-0,1365	-0,3309
73,2 ^[11]	-0,3835	-0,1336	-0,2958
83,2 ^[11]	1,0255	0,9739	-1,2762
83,3 ^[11]	0,0385	-0,0639	0,0394
$88,2^{[11]}$	1,0455	1,0853	-1,2741
100 ^[11]	5,7115	1,9928	-6,8913
122,20 ^[11]		não convergiu	

APÊNDICE 2: Tabelas dos valores das composições molares calculadas e experimentais das fases líquida e vapor

		-	
	CO ₂ -	H ₂ O	
	T = 298	,15K ^[21]	
x _i experimental	y _i experimental	x _i calculado	y _i calculado
0,9960	0,0310	0,9956	0,0331
0,0214	0,9987	0,0201	0,9991
0,9967	0,0249	0,9972	0,0242
	T = 304	,15K ^[21]	
xi experimental	yi experimental	xi calculado	yi calculado
0,0113	0,9977	0,0104	0,9981
0,0190	0,9984	0,0179	0,9987
0,9964	0,0237	0,9969	0,0231
0,9958	0,0257	0,9959	0,0259
0,9953	0,0287	0,9951	0,0302
0,9952	0,0301	0,9948	0,0322
	T = 323	,15K ^[21]	
x _i experimental	y _i experimental	x _i calculado	y _i calculado
0,9933	0,0229	0,9938	0,0228
0,0077	0,9938	0,0072	0,9947
0,0137	0,9962	0,0128	0,9966
0,0178	0,9965	0,0168	0,9970
0,2020	0,9955	0,0192	0,9964
0,0217	0,9939	0,0213	0,9946
0,0261	0,9925	0,0272	0,9923
0,0287	0,9921	0,0309	0,9915
0,0299	0,9920	0,0326	0,9912
	T = 373	,15K ^[16]	
x _i experimental	y _i experimental	x _i calculado	y _i calculado
0,0110	0,9799	0,0115	0,9817
0,0179	0,9810	0,0171	0,9804
0,0204	0,9767	0,0203	0,9767
	T = 383,	15 K ^[11]	
x _i experimental	y _i experimental	x _i calculado	y _i calculado
0,0120	0,4100	0,0106	0,5004
0,0270	0,6360	0,0271	0,6459
0,0420	0,6800	0,0420	0,6695
0,0550	0,6760	0,0553	0,6636
0,0640	0,6600	0,0671	0,6488
0,0740	0,6360	0,0779	0,6320
0,0840	0,6130	0,0877	0,6158
0,0940	0,5930	0,0967	0,6008
0,1040	0,5800	0,1051	0,5871
0,1150	0,5670	0,1130	0,5748
0,1250	0,5550	0,1203	0,5636
0,1320	0,5480	0,1272	0,5535
0,1360	0,5420	0,1337	0,5442

Tabela A2-1: Valores das composições molares calculadas e experimentais das fases líquida e vapor para o par CO₂-H₂O

0,1400	0,5400	0,1398	0,5357			
0,1440	0,5400	0,1456	0,5279			
$T = 423,15K^{[11]}$						
x _i experimental	y _i experimental	x _i calculado	y _i calculado			
0,0135	0,8800	0,0098	0,9158			
0,0215	0,9100	0,0175	0,9180			
0,0260	0,9000	0,0230	0,9007			
0,0290	0,8820	0,0272	0,8825			
0.0320	0.8620	0.0308	0.8669			
0.0345	0.8400	0.0339	0.8537			
0.0370	0.8240	0.0382	0.8424			
0.0390	0.8080	0.0394	0.8326			
0.0405	0.7940	0.0419	0.8240			
0.0420	0,7800	0.0442	0.8163			
0.0440	0,7700	0.0465	0,8093			
0,0450	0,77640	0,0405	0,8029			
0,0450	0,7640	0,0400	0,302)			
0,0400	0,7540	0,0507	0,7970			
0,0470	0,7540	0,0527	0,7913			
0,0480	0,7320	0,0340	0,7804			
• • •	1 = 47;	3,15K ⁻¹	1 1 1			
x _i experimental	y _i experimental	x _i calculado	y _i calculado			
0,0130	0,7150	0,1220	0,7700			
0,0260	0,8200	0,0240	0,8170			
0,0340	0,8250	0,0332	0,8113			
0,0410	0,8160	0,0403	0,7952			
0,0470	0,8000	0,0462	0,7790			
0,0520	0,7800	0,0510	0,7649			
0,0560	0,7600	0,0552	0,7532			
0,0580	0,7450	0,0587	0,7436			
0,0610	0,7320	0,0618	0,7357			
0,0630	0,7200	0,0646	0,7292			
0,0650	0,7160	0,0670	0,7238			
0,0670	0,7060	0,0691	0,7194			
0,0690	0,7000	0,0710	0,7158			
0,0700	0,6940	0,0726	0,7129			
0,0720	0,6900	0,0741	0,7105			
- -	T = 523	.15K ^[11] *				
x _i experimental	v _i experimental	x _i calculado	v _i calculado			
0.0280	0.6650	0.0287	0.6563			
0.0700	0.7200	0.0702	0.7023			
0 1200	0,6950	0 1158	0,6842			
0 1490	0,6850	0 1440	0.6778			
0 1660	0.6750	0 1614	0 6805			
0,1700	0,6750	0 1721	0,6874			
0,1700	0,0730	0,1721	0,0074			
0,1750	0,0330	0,1700	0,0000			
0,1770	0,7030 T - 500	U, 1020	0,7042			
	1 = 523		111			
x _i experimental	y _i experimental	x _i calculado	y _i calculado			

0,0120	0,4100	0,0106	0,5004
0,0270	0,6360	0,0271	0,6459
0.0420	0.6800	0.0420	0.6695
0,0550	0,6760	0,0553	0,6636
0.0640	0.6600	0.0671	0.6488
0.0740	0.6360	0.0779	0.6320
0.0840	0.6130	0.0877	0.6158
0.0940	0.5930	0.0933	0.3992
0 1040	0,5800	0 1051	0.5871
0 1150	0,5670	0 1130	0.5748
0 1250	0,5550	0 1203	0,5636
0 1320	0,5480	0 1272	0,5535
0,1360	0,5420	0,1237	0 5442
0 1400	0,5400	0 1398	0,5357
0,1400	0,5400	0,1056	0,5279
0,140	0,0400 T – 533	15K ^[11] *	0,0210
x. experimental	v experimental	x. calculado	v. calculado
0.0270		0.0284	0 6056
0,0270	0,0010	0,0204	0,0000
0,0750	0,0020	0,0750	0,6204
0,1360	0,0320	0,1336	0,0294
0,1050	0,5850	0,1705	0,0040
0,2150	0,5750	0,2076	0,5950
0,2350	0,5950	0,2261	0,5961
0,2350	0,6150	0,2369	0,6044
0,2350	0,6300	0,2424	0,6170
· · · · · · · · · · · · · · · · · · ·	I = 533,	15K ¹ ²⁷	
x _i experimental	y _i experimental	x _i calculado	y _i calculado
0,0270	0,5720	0,0281	0,6024
0,0350	0,6200	0,0366	0,6258
0,0440	0,6400	0,9552	0,6349
0,0590	0,6420	0,0600	0,6327
0,0730	0,6240	0,0739	0,6193
0,0870	0,6040	0,0868	0,6026
0,1000	0,5800	0,0988	0,5856
0,1130	0,5600	0,1101	0,5694
0,1250	0,5480	0,1208	0,5541
0,1350	0,5360	0,1310	0,5399
0,1450	0,5240	0,1808	0,5267
0,1550	0,5100	0,1502	0,5142
0,1600	0,5040	0,1594	0,5025
0,1650	0,5020	0,1683	0,4913
0,1750	0,5000	0,1770	0,4806
	T = 538,	15K ^[11]	
x _i experimental	y _i experimental	x _i calculado	y _i calculado
0,0260	0,5770	0,0295	0,5794
0,0800	0,6570	0,0817	0,6379
0,1550	0,6000	0,1515	0,5935
0,2150	0,5460	0,2052	0,5562

0,27	20	0,5080	0,2449	0,5340
0,29	80	0,4930	0,2721	0,5248
0,29	20	0,5500	0,2884	0,5258
0,28	00	0,5700	0,2967	0,5339
		T = 540,15K ^[11]]	
x _i experi	mental y _i	experimental >	x _i calculado y	v _i calculado
0,26	00	0,5670	0,0327	0,5703
0,08	20	0,6500	0,0893	0,6137
0,17	00	0,5750	0,1600	0,5585
0,24	00	0,5260	0,2113	0,5196
0,35	50	0,5100	0,3168	0,4556
		T = 541,15K ^[11]]	
x _i experi	mental y _i	experimental >	x _i calculado y	v _i calculado
0,02	60	0,5590	0,0325	0,5829
0,04	80	0,6200	0,0527	0,6339
0,06	40	0,6440	0,0715	0,6457
0,08	30	0,6420	0,0891	0,6433
0,09	50	0,6380	0,1059	0,6350
0,11	80	0,6220	0,1222	0,6241
0,13	80	0,6030	0,1381	0,6119
0,16	00	0,5860	0,1539	0,5988
0,17	90	0,5690	0,1698	0,5851
0,19	70	0,5560	0,1859	0,5707
0,21	10	0,5470	0,2027	0,5555
0,22	80	0,5300	0,2203	0,5392
0,24	80	0,5180	0,2392	0,5213
0,27	80	0,4970	0,2603	0,5012
0,38	50	0,3850	0,4718	0,2907
		T = 543,15K ^{[11],}	k	
x _i experi	mental y _i	experimental 3	x _i calculado y	v _i calculado
0,02	60	0,5470	0,0299	0,5795
0,04	90	0,6140	0,0493	0,6331
0,06	60	0,6350	0,0678	0,6455
0,06	60	0,6350	0,0679	0,6455
0,08	70	0,6310	0,0858	0,6424
0,10	20	0,6280	0,1037	0,6324
0,12	40	0,6070	0,1218	0,6186
0,14	80	0,5850	0,1404	0,6024
0,17	00	0,5650	0,1600	0,5842
0,19	00	0,5450	0,1809	0,5640
0,20	70	0,5250	0,2040	0,5413
0.22	60	0.5030	0.2305	0.5150
0.25	00	0.4660	0.2628	0.4826
0.36	70	0.3670	0.4525	0.2929
		T =543,15K ^[11] *		, -
x _i experi	mental V _i	experimental x	k _i calculado	i calculado
0.02	70	0,5300	0,0286	0,5506
0,03	60	0,5700	0,0384	0,5778

0,0460	0,5900	0,0480	0,5882
0,0670	0,5900	0,0667	0,5843
0,0870	0,5700	0,0850	0,5654
0,1060	0,5460	0,1031	0,5411
0,1250	0,5200	0,1214	0,5148
0,1450	0,4960	0,1400	0,4879
0,1660	0,4620	0,1597	0,4604
0,1900	0,4240	0,1812	0,4318
0,2150	0.3820	0,2000	0,4003
0,2500	0.3400	0,2391	0,3613
,	T =548	,15K ^[11] *	
x _i experimental	y _i experimental	x _i calculado	y _i calculado
0,0250	0,5190	0,0283	0,5561
0,0490	0,5910	0,0483	0,6131
0,0700	0,6120	0,0686	0,6249
0,0920	0,6110	0,0897	0,6188
0,1140	0,5950	0,1121	0,6036
0,1370	0,5720	0,1366	0,5826
0,1630	0.5410	0,1643	0,5566
0.1950	0.5070	0.1971	0.5247
0.2410	0.4550	0.2390	0.4834
0.3470	0.3470	0.4337	0.2891
	T =548	.15K ^[11] *	0,2001
x; experimental	v; experimental	x; calculado	v; calculado
0.0100	0.2560	0.0082	0.3089
0.0190	0.4260	0.0186	0.4567
0.0280	0.5000	0.0292	0.5198
0.0380	0.5400	0.0400	0.5478
0.0490	0.5580	0.0508	0.5576
0.0420	0,5580	0.0730	0,5495
0,0960	0,5300	0.0961	0.5237
0,1200	0,4960	0 1205	0.4902
0,1200	0,4600	0,1200	0,4522
0,1750	0,4200	0,1703	0,4022
0,1750	0, 4 200 T – 573	15K ^[11] *]	0,4034
x experimental	v experimental	x calculado	v calculado
0.0230	0 3520	0.0245	0.4026
0,0200	0,4540	0,0240	0,4733
0,0790	0,4800	0,0000	0,4767
0,0750	0,4600	0,0023	0,4707
0,1250	0,4000	0,1279	0,4440
0,2230	0,3330	0,2125	0,3040
0,2070	0,2070 T = 572	0,3317 15K ^[11] *	0,2201
y opportmontal	r = 070	y colculado	y calculado
0,0040	0,0000	0.0031	0,0001
	0,2300	0,0104	0,2300
0,0290	0,3900	0,2030	0,3191
0,0410	0,4340	0,0421	0,4210

 0,0540	0,4540	0,0569	0,4386
0,0680	0,4560	0,0728	0,4405
0,0840	0,4480	0,0902	0,4320
0,1040	0,4220	0,1097	0,4158
0,1270	0,3800	0,1321	0,3928
0,1700	0,3200	0,1598	0,3622
	T = 598,	15K ^[11]	
x _i experimental	y _i experimental	x _i calculado	y _i calculado
0,0100	0,1060	0,0086	0,1128
0,0260	0,2460	0,0251	0,2306
0,0430	0,3210	0,0436	0,2883
0,0610	0,3420	0,0649	0,3130
0,0820	0,3340	0,0906	0,3155
0,1120	0,2860	0,1243	0,2987
0,1800	0,1800	0,2703	0,1599
	T = 623,	15K ^[11] *	
x _i experimental	y _i experimental	x _i calculado	y _i calculado
0,0080	0,0550	0,0080	0,0582
0,0260	0,1200	0,0287	0,1190
0,0510	0,1620	0,0520	0,1449
0,0770	0,1600	0,0658	0,1483
x _i experimental	y _i experimental	x _i calculado	y _i calculado
0,0150	0,0900	0,0143	0,0785
0,0400	0,1620	0,0386	0,1507
0,0640	0,1660	0,0686	0,1824

*Para essas temperaturas haviam duas fontes distintas que apresentavam diferentes faixas de pressão nos pares de equilíbrio líquido-vapor.

Tabela A2-2:	Valores das	composições	molares	calculadas	e experimentais	das f	ases

líquida e vapor para o par CO2-CH3OH

$CO_2 - CH_3OH$						
$T = 291,15K^{[10]}$ x _i experimental y _i experimental x _i calculado y _i calculado						
0,0713	0,9806	0,0625	0,9824			
0,0950	0,9832	0,0849	0,9864			
0,1268	0,9861	0,1159	0,9893			
0,2000	0,9898	0,1838	0,9923			
0,2909	0,9913	0,2650	0,9937			
0,3579	0,9920	0,3366	0,9944			
0,4025	0,9924	0,3898	0,9947			
0,4504	0,9921	0,4667	0,9951			
0,5807	0,9915	0,5678	0,9954			
0,7575	0,9886	0,7406	0,9958			

0.8835	0.9853	0.9259	0.9970	
$T = 298.16 K^{[10]}$				
x _i experimental	y _i experimental	x _i calculado	y _i calculado	
0,0706	0,9780	0,0652	0,9804	
0,0995	0,9832	0,0920	0,9852	
0,1295	0,9875	0,1197	0,9879	
0,1596	0,9906	0,1477	0,9895	
0,1885	0,9922	0,1752	0,9906	
0,2178	0,9920	0,2038	0,9914	
0,2503	0,9919	0,2377	0,9920	
0,2836	0,9920	0,2748	0,9925	
0,3132	0,9927	0,3092	0,9928	
0,3491	0,9930	0,3500	0,9930	
0,3915	0,9923	0,3941	0,9932	
0,4435	0,9913	0,4462	0,9932	
0,5091	0,9884	0,5086	0,9932	
0,5905	0,9851	0,6035	0,9932	
0,6979	0,9823	0,6613	0,9931	
0,7800	0,9805	0,7858	0,9931	
0,8840	0,9786	0,8902	0,9934	
	T = 308	,15K ^[10]	- ,	
x _i experimental	y _i experimental	x _i calculado	y _i calculado	
0,0869	0,9752	0,0802	0,9760	
0,1102	0,9792	0,1060	0,9805	
0,1430	0,9818	0,1333	0,9834	
0,1757	0,9838	0,1667	0,9856	
0,2099	0,9857	0,2080	0,9872	
0,2430	0,9868	0,2494	0,9882	
0,2668	0,9887	0,2789	0,9886	
0,2971	0,9898	0,3136	0,9889	
0,3391	0,9907	0,3599	0,9892	
0,3668	0,9917	0,3902	0,9892	
0,4337	0,9903	0,4513	0,9891	
0,5025	0,9891	0,4970	0,9889	
0,5819	0,9875	0,5471	0,9886	
0,6474	0,9847	0,6311	0,9880	
0,8080	0,9805	0,8053	0,9875	
0,8837	0,9748	0,8952	0,9875	
	T = 308	,14K ^[10]		
x _i experimental	y _i experimental	x _i calculado	y _i calculado	
0,0869	0,9752	0,0802	0,9760	
0,1102	0,9792	0,1059	0,9805	
0,1430	0,9818	0,1333	0,9834	
0,1757	0,9838	0,1667	0,9856	
0,2099	0,9857	0,2079	0,9872	
0,2430	0,9868	0,2494	0,9882	
0,2668	0,9887	0,2789	0,9886	
0,2971	0,9898	0,3136	0,9889	

	0,3391	0,9907	0,3598	0,9892
	0,3668	0,9917	0,3902	0,9892
	0,4337	0,9903	0,4513	0,9891
	0,5025	0,9891	0,4970	0,9889
	0,5819	0,9875	0,5471	0,9886
	0,6474	0,9847	0,6311	0,9880
	0,8080	0,9805	0,8053	0,9875
	0,8837	0,9748	0,8952	0,9875
	,	, T = 313,	12K ^[10]	,
	x _i experimental	y _i experimental	x _i calculado	y _i calculado
	0,0380	0,9450	0,0512	0,9468
	0,0640	0,9640	0,0820	0,9649
	0,1230	0,9790	0,1592	0,9799
	0.1860	0.9830	0.2452	0.9852
	0.2680	0.9840	0.3465	0.9877
	0.3700	0.9860	0.4557	0.9885
	0.4800	0,9860	0,5680	0,9880
	0,4000	0,9850	0,6548	0,9866
	0,6980	0,9820	0,0040	0,9852
	0,0900	0,9020	0,7103	0,9052
	0,7520	0,9800	0,7337	0,9044
	0,0100	0,9790	0,7071	0,9034
	0,8670	0,9760	0,9427	0,9823
÷	0,9680	0,9680	0,9794	0,9710
	v. avnanimantal	I = 313,	40N v coloulado	y aslaulada
				y _i calculado
	0,0310	0,9440	0,0322	0,9441
	0,0550	0,9650	0,0552	0,9643
	0,1110	0,9800	0,1113	0,9788
	0,1630	0,9830	0,1617	0,9830
	0,2830	0,9860	0,2957	0,9863
	0,4820	0,9840	0,3854	0,9862
	0,5520	0,9830	0,5609	0,9835
	0,6160	0,9810	0,6286	0,9817
		T = 313,	14K ^[10]	
	x _i experimental	y _i experimental	x _i calculado	y _i calculado
	0,0682	0,9646	0,0647	0,9693
	0,0911	0,9727	0,0838	0,9747
	0,1159	0,9815	0,1044	0,9783
	0,1372	0,9843	0,1308	0,9812
	0,1773	0,9849	0,1732	0,9839
	0,2006	0,9857	0,2066	0,9851
	0,2318	0,9867	0,2324	0,9858
	0 2733	0.9876	0,2802	0,9866
	0,2100	,		
	0,3464	0,9881	0,3662	0,9871
	0,3464 0,3838	0,9881 0,9879	0,3662 0,4091	0,9871 0,9870
	0,3464 0,3838 0,4128	0,9881 0,9879 0,9882	0,3662 0,4091 0,4420	0,9871 0,9870 0,9869
	0,3464 0,3838 0,4128 0,4658	0,9881 0,9879 0,9882 0,9871	0,3662 0,4091 0,4420 0,4918	0,9871 0,9870 0,9869 0,9866
	0,3464 0,3838 0,4128 0,4658 0.5138	0,9881 0,9879 0,9882 0,9871 0,9865	0,3662 0,4091 0,4420 0,4918 0,5334	0,9871 0,9870 0,9869 0,9866 0,9862

0,5467	0,9867	0,5576	0,9860
0,5907	0,9864	0,6134	0,9851
0,6816	0,9842	0,6765	0,9839
0.8783	0.9677	0.9089	0.9805
-,	T = 313	15K ^[10]	- ,
x: experimental	v: experimental	x: calculado	v: calculado
0.3375	0.9875	0 2477	0.9843
0,2100	0,0832	0,2477	0,9875
0,2199	0,9052	0,3373	0,9075
0,3540	0,9037	0,4901	0,9094
0,4555	0,9846	0,5955	0,9893
0,7651	0,9757	0,7941	0,9866
0,8218	0,9743	0,8301	0,9860
0,8968	0,9745	0,8738	0,9855
0,9147	0,9688	0,9299	0,9848
0,9298	0,9635	0,9446	0,9844
0,9350	0,9452	0,9500	0,9842
	T = 320	,15K ^[10]	
x _i experimental	y _i experimental	x _i calculado	y _i calculado
0,0326	0,9150	0,0214	0,9130
0,1371	0,9717	0,1155	0,9750
0,1913	0,9778	0,1711	0,9792
0,3166	0,9815	0,3161	0,9817
0.3750	0.9804	0.3914	0.9814
0.5505	0.9738	0.6201	0.9774
0.6757	0.9662	0 7288	0.9733
0.8053	0.9484	0.8142	0,9685
0,8287	0,0404	0,8321	0,9674
0,0207	0,9441	0,0021	0,9074
0,0791	0,9010 T - 220	0,0729	0,9040
v. ovnorimontol		y,our	y coloulado
0,0346	0,8857	0,0285	0,8954
0,0960	0,9537	0,0925	0,9574
0,1342	0,9610	0,1350	0,9663
0,2365	0,9717	0,2483	0,9738
0,2845	0,9725	0,3058	0,9746
0,4836	0,9647	0,5331	0,9698
0,5382	0,9584	0,5860	0,9664
0,6779	0,9438	0,6799	0,9540
0,7401	0,8777	0,7154	0,9444
0,7694	0,8619	0,7256	0,9407
0,8215	0,8572	0,7285	0,9396
	T = 335	,65 K ^[10]	, ,
x _i experimental	y _i experimental	x _i calculado	y _i calculado
0,0336	0,8592	0,0251	0,8776
0,1208	0,9502	0,0995	0,9581
0,1768	0,9620	0,1430	0,9659
0,2760	0,9671	0,2114	0,9693
0,3247	0,9664	0,2408	0,9689

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
0,5330 $0,9466$ $0,3258$ $0,9569$ $0,6651$ $0,8948$ $0,3466$ $0,9453$ $0,6762$ $0,8901$ $0,3487$ $0,9435$ $0,7759$ $0,8250$ $0,3525$ $0,9400$ $0,7925$ $0,8059$ $0,3527$ $0,9398$ T = $342,80K$ ^[10] x, experimentaly, experimentalx, calculado $0,0247$ $0,7999$ $0,0132$ $0,7990$ $0,1145$ $0,9403$ $0,0747$ $0,9446$ $0,1553$ $0,9510$ $0,1022$ $0,9534$ $0,1961$ $0,9559$ $0,1291$ $0,9577$ $0,2909$ $0,9586$ $0,1861$ $0,9598$ $0,3427$ $0,9574$ $0,2136$ $0,9584$ $0,4664$ $0,9432$ $0,2653$ $0,9499$ $0,5234$ $0,9312$ $0,2814$ $0,9441$ $0,5806$ $0,9108$ $0,2931$ $0,9381$ $0,6792$ $0,8498$ $0,3047$ $0,9299$ $0,6719$ $0,8526$ $0,3043$ $0,9302$ $0,7311$ $0,8026$ $0,3076$ $0,9275$	 0,4471	0,9583	0,2989	0,9637
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,5330	0,9466	0,3258	0,9569
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,6651	0,8948	0,3466	0,9453
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,6762	0,8901	0,3487	0,9435
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0,7759	0,8250	0,3525	0,9400
T = $342,80K$ [10]x _i experimentaly _i experimentalx _i calculadoy _i calculado0,02470,79990,01320,79900,11450,94030,07470,94460,15530,95100,10220,95340,19610,95590,12910,95770,29090,95860,18610,95980,34270,95740,21360,95840,46640,94320,26530,94990,52340,93120,28140,94410,58060,91080,29310,93810,67920,84980,30470,92990,67190,85260,30430,93020,73110,80260,30720,9275	0,7925	0,8059	0,3527	0,9398
x_i experimental y_i experimental x_i calculado y_i calculado0,02470,79990,01320,79900,11450,94030,07470,94460,15530,95100,10220,95340,19610,95590,12910,95770,29090,95860,18610,95980,34270,95740,21360,95840,46640,94320,26530,94990,52340,93120,28140,94410,58060,91080,29310,93810,67920,84980,30470,92990,67190,85260,30430,93020,73110,80260,30720,9275		T = 342,	80K ^[10]	
0,02470,79990,01320,79900,11450,94030,07470,94460,15530,95100,10220,95340,19610,95590,12910,95770,29090,95860,18610,95980,34270,95740,21360,95840,46640,94320,26530,94990,52340,93120,28140,94410,58060,91080,29310,93810,67920,84980,30470,92990,67190,85260,30430,93020,73110,80260,30720,9275	x _i experimental	y _i experimental	x _i calculado	y _i calculado
0,11450,94030,07470,94460,15530,95100,10220,95340,19610,95590,12910,95770,29090,95860,18610,95980,34270,95740,21360,95840,46640,94320,26530,94990,52340,93120,28140,94410,58060,91080,29310,93810,67920,84980,30470,92990,67190,85260,30430,93020,73110,80260,30720,92780,76030,77200,30760,9275	0,0247	0,7999	0,0132	0,7990
0,15530,95100,10220,95340,19610,95590,12910,95770,29090,95860,18610,95980,34270,95740,21360,95840,46640,94320,26530,94990,52340,93120,28140,94410,58060,91080,29310,93810,67920,84980,30470,92990,67190,85260,30430,93020,73110,80260,30720,92780,76030,77200,30760,9275	0,1145	0,9403	0,0747	0,9446
0,19610,95590,12910,95770,29090,95860,18610,95980,34270,95740,21360,95840,46640,94320,26530,94990,52340,93120,28140,94410,58060,91080,29310,93810,67920,84980,30470,92990,67190,85260,30430,93020,73110,80260,30720,92780,76030,77200,30760,9275	0,1553	0,9510	0,1022	0,9534
0,29090,95860,18610,95980,34270,95740,21360,95840,46640,94320,26530,94990,52340,93120,28140,94410,58060,91080,29310,93810,67920,84980,30470,92990,67190,85260,30430,93020,73110,80260,30720,92780,76030,77200,30760,9275	0,1961	0,9559	0,1291	0,9577
0,34270,95740,21360,95840,46640,94320,26530,94990,52340,93120,28140,94410,58060,91080,29310,93810,67920,84980,30470,92990,67190,85260,30430,93020,73110,80260,30720,92780,76030,77200,30760,9275	0,2909	0,9586	0,1861	0,9598
0,46640,94320,26530,94990,52340,93120,28140,94410,58060,91080,29310,93810,67920,84980,30470,92990,67190,85260,30430,93020,73110,80260,30720,92780,76030,77200,30760,9275	0,3427	0,9574	0,2136	0,9584
0,52340,93120,28140,94410,58060,91080,29310,93810,67920,84980,30470,92990,67190,85260,30430,93020,73110,80260,30720,92780,76030,77200,30760,9275	0,4664	0,9432	0,2653	0,9499
0,58060,91080,29310,93810,67920,84980,30470,92990,67190,85260,30430,93020,73110,80260,30720,92780,76030,77200,30760,9275	0,5234	0,9312	0,2814	0,9441
0,67920,84980,30470,92990,67190,85260,30430,93020,73110,80260,30720,92780,76030,77200,30760.9275	0,5806	0,9108	0,2931	0,9381
0,67190,85260,30430,93020,73110,80260,30720,92780,76030,77200,30760.9275	0,6792	0,8498	0,3047	0,9299
0,73110,80260,30720,92780,76030.77200.30760.9275	0,6719	0,8526	0,3043	0,9302
0.7603 0.7720 0.3076 0.9275	0,7311	0,8026	0,3072	0,9278
	 0,7603	0,7720	0,3076	0,9275

Tabela A2-3: Valores das composições molares calculadas e experimentais das fases

liquida	e	vapor	para o	par	CO_2-H_2

$CO_2 - H_2$						
$T = 219,90 K^{[11]}$						
x _i experimental	y _i experimental	x _i calculado	y _i calculado			
0,0013	0,4280	0,0014	0,4218			
0,0044	0,6920	0,0044	0,6876			
0,0081	0,8000	0,0083	0,7958			
0,0128	0,8520	0,0128	0,8498			
0,0258	0,9090	0,0253	0,9062			
0,0385	0,9267	0,0371	0,9262			
0,0487	0,9335	0,0463	0,9350			
	T = 220,00K ^[18]					
x _i experimental	y _i experimental	x _i calculado	y _i calculado			
0,0015	0,2898	0,0011	0,3336			
0,0028	0,3871	0,0016	0,4133			
0,0032	0,4642	0,0022	0,4975			
0,0035	0,5025	0,0025	0,5244			
0,0067	0,6755	0,0054	0,6949			
0,0112	0,7810	0,0095	0,7916			
0,0159	0,8369	0,0146	0,8448			
0,0218	0,8737	0,0206	0,8768			
0,0297	0,9055	0,0318	0,9049			

	0,0361	0,9162	0,0399	0,9153	
	0,0394	0,9189	0,0437	0,9187	
	0,0427	0,0921	0,0475	0,9215	
	0,0463	0,9206	0,0521	0,9242	
	0,0514	0,9260	0,0574	0,9267	
	0,0593	0,9299	0,0652	0,9294	
	0,0647	0,9307	0,0699	0,9306	
	0,0663	0,9303	0,0723	0,9311	
	0,0721	0,9307	0,0805	0,9325	
	0,0838	0,9315	0,0882	0,9334	
I		T = 225	5,00K ^[18]		
I	x _i experimental	y _i experimental	x _i calculado	y _i calculado	
	0,0023	0,3102	0,0017	0,3504	
	0,0039	0,4372	0,0027	0,4662	
	0,0068	0,5997	0,0053	0,6196	
	0,0089	0,6757	0,0075	0,6935	
	0,0117	0,7409	0,0103	0,7502	
	0,0159	0,7965	0,0148	0,8040	
	0,0218	0,8507	0,0222	0,8493	
	0,0312	0,8890	0,0341	0,8833	
	0,0393	0,9036	0,0452	0,8987	
	0,0567	0,9178	0,6510	0,9121	
	0,0740	0,9225	0,0828	0,9173	
	0,0914	0,9232	0,0992	0,9195	
	0,1073	0,9240	0,1142	0,9203	
	0,1235	0,9228	0,1285	0,9203	
	0,1390	0,9209	0,1419	0,9199	
	0,1690	0,9131	0,1674	0,9183	
	0,1877	0,9070	0,1822	0,9170	
	0,2112	0,9036	0,1992	0,9153	
I		T = 229	9,90K ^[11]		
I	x _i experimental	y _i experimental	x _i calculado	y _i calculado	
	0,0056	0,6130	0,0059	0,6079	
	0,0216	0,8320	0,0214	0,8285	
	0,0365	0,8784	0,0359	0,8771	
	0,0477	0,8961	0,0471	0,8952	
	0,0586	0,9046	0,0577	0,9062	
I		T = 230),00K ^[18]		
1	0,0039	0,2127	0,0029	0,3658	
	0,0069	0,4228	0,0059	0,5350	
	0,0121	0,6088	0,0117	0,6800	
	0,0185	0,7286	0,0201	0,7685	
	0,0243	0,7806	0,0283	0,8101	
	0,0342	0,8322	0,0431	0,8467	
	0,0450	0,8562	0,0581	0,8639	
	0,0659	0,8755	0,0848	0,8763	
	0,0881	0,8828	0,1108	0,8788	
	0,1123	0,8868	0,1370	0,8770	
0,1307	0,8864	0,1571	0,8739		
---------------------------------------	-----------------------------	--------------------------	--------------------------	--	--
0,1707	0,8813	0,1985	0,8647		
0,2184	0,8704	0,2456	0,8511		
0,2728	0,8562	0,2910	0,8360		
0,3371	0,8343	0,3390	0,8180		
0,3928	0,8102	0,3726	0,8042		
0,4365	0.7877	0,3952	0,7943		
0.4884	0.7556	0.4148	0.7854		
0.5062	0.7455	0.4195	0.7832		
0.5264	0 7328	0 4233	0 7813		
0,0201	T = 237	00K ^[18]	0,1010		
x _i experimental	v _i experimental	x _i calculado	y; calculado		
0.4067	0.7949	0.4250	0.7771		
0.4281	0.7837	0.4468	0.7687		
0.4530	0 7698	0 4725	0,7578		
0 4731	0 7524	0.4855	0,7518		
0.4789	0 7486	0,4930	0 7482		
0,4703	0,7400	0,4000	0,7402		
0,4500	0,7300	0,5000	0,7380		
0,5049	0,7300	0,5100	0,7303		
0,5236	0,7190	0,5199	0,7343		
0,5401	0,7040	0,5279	0,7299		
0,5566	0,6921 T 044	0,5348	0,7258		
· · · · · · · · · · · · · · · · · · ·	1 = 244	,90K * 2			
x _i experimental	y _i experimental	x _i calculado	y _i calculado		
0,0100	0,0522	0,0101	0,5288		
0,0159	0,6140	0,0163	0,6336		
0,0276	0,7330	0,0278	0,7307		
0,0407	0,7890	0,0406	0,7842		
0,0589	0,8260	0,0583	0,8237		
0,0605	0,8280	0,0597	0,8259		
0,0727	0,8390	0,0720	0,8419		
0,0732	0,8410	0,0726	0,8426		
	T = 245	5,00K ^[18]			
x _i experimental	y _i experimental	x _i calculado	y _i calculado		
0,3251	0,7918	0,3191	0,7715		
0,3521	0,7776	0,3590	0,7613		
0,3882	0,7600	0,4027	0,7477		
0,4155	0,7441	0,4319	0,7370		
0,4379	0,7303	0,4530	0,7283		
0,4657	0,7094	0,4742	0,7187		
0,5010	0,6789	0,4955	0,7080		
0,5262	0,6603	0,5049	0,7030		
$T = 250.00 K^{[18]}$					
x _i experimental	y _i experimental	x _i calculado	y _i calculado		
0,0044	0,1589	0,0028	0,1906		
0.0086	0.3196	0.0066	0.3489		
0.0124	0.4090	0.0097	0.4328		
0.0186	0.5501	0.0177	0.5661		
2,0.00	3,000.	5,5	5,000.		

0,0396 0,7179 0,0436 0,7189 0,0545 0,7585 0,0615 0,7663 0,0685 0,7822 0,0785 0,7757 0,1059 0,8044 0,1182 0,7948 0,1332 0,8105 0,1471 0,7982 0,1488 0,8116 0,1647 0,7979 0,2121 0,8060 0,2294 0,7885 0,2724 0,7834 0,2866 0,7733 0,3641 0,7541 0,3424 0,7540 0,887 0,7300 0,3739 0,7411 0,4147 0,7126 0,3884 0,7347 0,4317 0,7030 0,3995 0,7310 0,4317 0,7030 0,3985 0,7310 0,0446 0,4200 0,0143 0,4179 0,0258 0,6550 0,0268 0,5494 0,0363 0,6180 0,0367 0,6100 0,0588 0,6950 0,6879 0,6482 0,0584 0,6787 0,6048	0,0262	0,6371	0,0268	0,6455			
0,0545 0,7585 0,0615 0,7563 0,0685 0,77822 0,0785 0,7757 0,1058 0,8044 0,1182 0,7948 0,1332 0,8105 0,1471 0,7882 0,1488 0,8116 0,1647 0,7979 0,2121 0,8060 0,2294 0,7885 0,2724 0,7834 0,2866 0,7733 0,3841 0,7541 0,3424 0,7540 0,3887 0,7300 0,3965 0,7310 0,4147 0,7126 0,3844 0,7347 0,4317 0,7030 0,3965 0,7310 T=259,90K ^{[151} x, experimental x, calculado 9, calculado 0,0047 0,2036 0,6479 0,2036 0,0146 0,4200 0,0143 0,4179 0,0269 0,5500 0,0268 0,5494 0,0363 0,6100 0,0588 0,6879 0,0688 0,7110 0,6687 0,7793 0,07	0,0396	0,7179	0,0436	0,7189			
0.0685 0.7822 0.0785 0.7757 0.1058 0.8044 0.1182 0.7948 0.1332 0.8105 0.1471 0.7982 0.1488 0.8116 0.1647 0.7979 0.2121 0.8060 0.2294 0.7885 0.2724 0.7834 0.2866 0.7733 0.3641 0.7411 0.442 0.7411 0.4147 0.7126 0.3884 0.7347 0.4317 0.7030 0.3965 0.7310 T = 259,90K ^[11] x, experimental x, calculado y, calculado 0.0047 0.2060 0.0047 0.2036 0.0146 0.4200 0.0143 0.4179 0.0269 0.5500 0.0268 0.5494 0.0363 0.6180 0.0367 0.6100 0.0598 0.6950 0.0590 0.6879 0.0598 0.6950 0.0590 0.6879 0.0688 0.7110 0.06487 0.7093	0.0545	0.7585	0.0615	0.7563			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.0685	0.7822	0.0785	0.7757			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0 1058	0.8044	0 1182	0 7948			
0,1032 0,0105 0,1111 0,1032 0,1488 0,8116 0,1647 0,7979 0,2121 0,8060 0,2294 0,7885 0,2724 0,7834 0,2866 0,7733 0,3641 0,7541 0,3242 0,7540 0,387 0,7300 0,3739 0,7411 0,417 0,7030 0,3965 0,7310 T = 259,90K ^[14] x, experimental x, calculado y, calculado 0,0047 0,2060 0,0047 0,2036 0,0146 0,4200 0,0143 0,4179 0,0269 0,5500 0,0268 0,5494 0,0363 0,6180 0,0367 0,6100 0,0598 0,6950 0,6879 0,7993 0,0700 0,7120 0,0704 0,7126 0,0927 0,7450 0,0942 0,7496 T = 260,00K ^[18] x, experimental x, calculado 0,0056 0,2214 0,0028 0,4511 0,0183 0,4578 0,0284 0,5382 <	0,1332	0.8105	0 1471	0 7982			
0,7105 0,710 0,713 0,7212 1 0,8060 0,2294 0,7885 0,2724 0,7834 0,2866 0,7733 0,3641 0,7541 0,3424 0,7540 0,3887 0,7300 0,3739 0,7411 0,4147 0,7126 0,3884 0,7347 0,4317 0,7030 0,3965 0,7310 T = 259,90K ^[11] x, experimental x, calculado y, calculado 0,0047 0,2060 0,0047 0,2036 0,0146 0,4200 0,0143 0,4179 0,0269 0,5500 0,0268 0,5494 0,0363 0,6180 0,0367 0,6100 0,0598 0,6950 0,0590 0,6879 0,0688 0,7110 0,0687 0,7093 0,0700 0,7120 0,0704 0,7126 0,0927 0,7450 0,0942 0,7496 T = 260,00K ^[18] x, experimental y, experimental x, calculado y, calculado 0,0081 0,2083 0,0056 0,2214 0,0280 0,4511 0,0183 0,4578 0,0284 0,5382 0,0279 0,5428 0,0450 0,6348 0,0473 0,6319 0,0596 0,6787 0,0648 0,6725 0,1044 0,7342 0,1139 0,7175 0,1414 0,7483 0,11541 0,7262 0,1777 0,7483 0,1950 0,7247 0,2197 0,7370 0,2397 0,7163 0,2264 0,5382 0,0279 0,5428 0,0450 0,6348 0,0473 0,6319 0,0596 0,6787 0,0648 0,6725 0,1044 0,7342 0,1139 0,7175 0,1414 0,7483 0,1950 0,7247 0,2197 0,7370 0,2397 0,7163 0,2640 0,7217 0,2388 0,7034 0,3199 0,6965 0,3329 0,6846 0,3908 0,6471 0,3810 0,6618 0,4768 0,5773 0,2397 0,7163 0,2640 0,7217 0,2838 0,7034 0,3199 0,6965 0,3329 0,6846 0,3908 0,6471 0,3810 0,6618 0,4768 0,5773 0,02397 0,7163 0,2640 0,7217 0,2838 0,7034 0,3199 0,6965 0,3329 0,6846 0,3908 0,6471 0,3810 0,6618 0,4768 0,5773 0,02397 0,7163 0,2640 0,7217 0,2838 0,7034 0,3199 0,6965 0,3329 0,6846 0,3908 0,6471 0,3810 0,6618 0,4768 0,5773 0,02397 0,7163 0,2640 0,7217 0,2838 0,7034 0,3199 0,6965 0,3329 0,6846 0,3908 0,6471 0,3810 0,6618 0,4768 0,5773 0,0450 0,6542 0,0564 0,5282 0,0590 0,5242 0,0617 0,5852 0,0648 0,5770 0,0195 0,6201 0,1134 0,6083 0,1388 0,6440 0,1497 0,6270	0,1488	0,8116	0 1647	0,7979			
0.2121 0,000 0,2254 0,733 0.3641 0,7541 0,3424 0,7540 0.3887 0,7300 0,3739 0,7411 0,4147 0,7126 0,3884 0,7347 0,4317 0,7030 0,3965 0,7347 0,4317 0,7030 0,3965 0,7310 T = 259,90K ¹¹³ x, experimental y, experimental x, calculado y, calculado 0,0047 0,2060 0,0047 0,2036 0,0146 0,4200 0,0143 0,4179 0,0269 0,5500 0,0268 0,5494 0,0363 0,6180 0,0367 0,6100 0,0598 0,6950 0,0590 0,6879 0,0668 0,7110 0,0687 0,7093 0,0700 0,7120 0,0704 0,7126 0,0927 0,7450 0,0942 0,7496 T = 260,00K ¹¹⁹ x, experimental y, experimental x, calculado y, calculado 0,0081 0,2083 0,0056 0,2214 0,0081 0,2083 0,0056 0,2214 0,0284 0,5382 0,0279 0,5428 0,0450 0,6348 0,0473 0,6319 0,0596 0,6787 0,0648 0,6725 0,1044 0,7342 0,1139 0,7175 0,1414 0,7483 0,1541 0,7262 0,1414 0,7342 0,1139 0,7163 0,2297 0,7453 0,1541 0,7262 0,1444 0,7342 0,1139 0,7175 0,1414 0,7483 0,1541 0,7262 0,1044 0,7342 0,1139 0,7262 0,1044 0,7247 0,2337 0,7163 0,2640 0,7217 0,2838 0,7034 0,3199 0,6965 0,3329 0,6846 0,3308 0,6471 0,3310 0,6618 0,4768 0,5773 0,4109 0,6452 T = 270,00K ¹¹⁸ x, experimental x, calculado y, calculado 0,0118 0,1768 0,0095 0,1907 0,0191 0,2749 0,0168 0,2871 0,0301 0,3971 0,0309 0,4050 0,0564 0,5282 0,0590 0,5242 0,0617 0,5852 0,0648 0,5770 0,1905 0,6201 0,1134 0,6083 0,1308 0,6440 0,1497 0,6270 0,1905 0,6201 0,1134 0,6083 0,1308 0,6440 0,1497 0,6270	0,1400	0,8060	0,7047	0,7885			
0.1214 0.7541 0.7242 0.7540 0.3887 0.7300 0.3739 0.7411 0.4147 0.7126 0.3884 0.7347 0.4317 0.7030 0.3965 0.7310 T = 259,90K ^[17] x, experimental y, experimental x, calculado y, calculado 0.0047 0.2060 0.0047 0.2036 0.0146 0.4200 0.0143 0.4179 0.0269 0.5500 0.0268 0.5494 0.0363 0.6180 0.0367 0.6100 0.0598 0.6950 0.0590 0.6879 0.0688 0.7110 0.0687 0.7093 0.0700 0.7120 0.0704 0.7126 0.0927 0.7450 0.0942 0.7496 T = 260,00K ^[18] x, experimental y, experimental x, calculado y, calculado 0.0081 0.2083 0.0056 0.2214 0.0284 0.5382 0.0279 0.5428 0.0450 0.6348 0.0473 0.6319 0.0596 0.6787 0.0648 0.6725 0.1044 0.7342 0.1139 0.7175 0.1414 0.7483 0.1541 0.7262 0.1044 0.7342 0.1139 0.7175 0.1414 0.7483 0.1541 0.7262 0.1777 0.7483 0.1541 0.7262 0.1777 0.7483 0.1541 0.7262 0.1777 0.7483 0.1541 0.7262 0.1777 0.7483 0.1950 0.7247 0.2197 0.7370 0.2397 0.7183 0.2640 0.7217 0.2838 0.7034 0.2399 0.6965 0.3329 0.6846 0.3908 0.6471 0.3810 0.6618 0.4768 0.5773 0.4109 0.6452 T = 270,00K ^[18] x, experimental x, calculado y, calculado 0.0118 0.1768 0.03297 0.7163 0.2640 0.7217 0.2838 0.7034 0.3199 0.6965 0.3329 0.6846 0.3908 0.6471 0.3810 0.6618 0.4768 0.5773 0.0297 0.7247 0.2197 0.7370 0.2397 0.7163 0.2640 0.7217 0.2838 0.7034 0.3199 0.6965 0.3329 0.6846 0.3908 0.6471 0.3810 0.6618 0.4768 0.5773 0.0419 0.6452 T = 270,00K ¹³⁴ X, experimental x, calculado y, calculado 0.0118 0.1768 0.0095 0.1907 0.0191 0.2749 0.0168 0.2871 0.0301 0.3971 0.0309 0.4050 0.0564 0.5282 0.0590 0.5242 0.0817 0.5852 0.0848 0.5770 0.1905 0.6201 0.1134 0.6083 0.1388 0.6440 0.1497 0.6270	0,2724	0,7834	0,2254	0,7003			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0,2724	0,7541	0,2000	0,7735			
0,300 0,712 0,7126 0,313 0,711 0,4317 0,703 0,3965 0,7310 T = 259,90K ^[11] x _i experimental y _i experimental x, calculado y _i calculado 0,0047 0,2060 0,0047 0,2036 0,0146 0,4200 0,0143 0,4179 0,0269 0,5500 0,0268 0,5494 0,0363 0,6180 0,0367 0,6100 0,0598 0,6950 0,0590 0,6879 0,0688 0,7110 0,0687 0,7093 0,0700 0,7120 0,0704 0,7126 0,0927 0,7450 0,0942 0,7496 T = 260,00K ^[18] x _i experimental y _i experimental x, calculado y _i calculado 0,0081 0,2083 0,0056 0,2214 0,028 0,4511 0,0183 0,4578 0,0284 0,5382 0,0279 0,5428 0,0450 0,6348 0,0473 0,6319 0,0596 0,6787 0,0648 0,6725 0,1044 0,7342 0,1139 0,7175 0,1414 0,7483 0,1541 0,7262 0,1044 0,7342 0,1139 0,7175 0,1414 0,7483 0,1541 0,7262 0,1777 0,7483 0,1950 0,7247 0,2197 0,7370 0,2397 0,7163 0,2640 0,7217 0,2838 0,7034 0,3199 0,6965 0,3329 0,6846 0,3908 0,6471 0,3810 0,6618 0,4768 0,5773 0,4109 0,6452 T = 270,00K ^[18] x _i experimental y _i experimental x, calculado y _i calculado 0,0118 0,1768 0,0095 0,1907 0,0191 0,2749 0,4109 0,6452 0,1014 0,7217 0,2838 0,7034 0,3199 0,6965 0,3329 0,6846 0,3908 0,6471 0,3810 0,6618 0,4768 0,5773 0,4109 0,6452 0,1907 0,0191 0,2749 0,0168 0,2871 0,0301 0,3971 0,0309 0,4050 0,0564 0,5282 0,0590 0,5242 0,0817 0,5852 0,0848 0,5770 0,1095 0,6201 0,1134 0,6083 0,1388 0,6440 0,1497 0,6270	0,3041	0,7341	0,3424	0,7340			
$\begin{array}{c cccccc} 0,747 & 0,7030 & 0,3965 & 0,7310 \\ \hline T = 259,90K^{(11)} \\ \hline x_i experimental & y_i experimental & x_i calculado & y_i calculado \\ 0,0047 & 0,2060 & 0,0047 & 0,2036 \\ 0,0146 & 0,4200 & 0,0143 & 0,4179 \\ 0,0269 & 0,5500 & 0,0268 & 0,5494 \\ 0,0363 & 0,6180 & 0,0367 & 0,6100 \\ 0,0598 & 0,6950 & 0,0590 & 0,6879 \\ 0,0688 & 0,7110 & 0,0687 & 0,7093 \\ 0,0700 & 0,7120 & 0,0704 & 0,7126 \\ 0,0927 & 0,7450 & 0,0942 & 0,7496 \\ \hline T = 260,00K^{(18)} \\ \hline x_i experimental & y_i experimental & x_i calculado & y_i calculado \\ 0,0081 & 0,2083 & 0,0056 & 0,2214 \\ 0,0208 & 0,4511 & 0,0183 & 0,4578 \\ 0,0284 & 0,5382 & 0,0279 & 0,5428 \\ 0,0450 & 0,6348 & 0,0473 & 0,6319 \\ 0,0596 & 0,6787 & 0,0648 & 0,6725 \\ 0,1044 & 0,7342 & 0,1139 & 0,7175 \\ 0,1414 & 0,7483 & 0,1541 & 0,7262 \\ 0,1777 & 0,7483 & 0,1950 & 0,7247 \\ 0,2197 & 0,7370 & 0,2397 & 0,7163 \\ 0,2640 & 0,7217 & 0,2838 & 0,7034 \\ 0,3199 & 0,6965 & 0,3329 & 0,6846 \\ 0,3908 & 0,6471 & 0,3810 & 0,6618 \\ 0,4768 & 0,5773 & 0,4109 & 0,6452 \\ \hline T = 270,00K^{(18)} \\ \hline x_i experimental & y_i experimental & x_i calculado & y_i calculado \\ 0,0011 & 0,2747 & 0,2838 & 0,7034 \\ 0,3199 & 0,6965 & 0,3329 & 0,6846 \\ 0,3908 & 0,6471 & 0,3810 & 0,6618 \\ 0,4768 & 0,5773 & 0,4109 & 0,6452 \\ \hline T = 270,00K^{(18)} \\ \hline x_i experimental & y_i experimental & x_i calculado & y_i calculado \\ 0,0118 & 0,1768 & 0,0095 & 0,1907 \\ 0,0191 & 0,2749 & 0,0168 & 0,2871 \\ 0,0301 & 0,3971 & 0,0309 & 0,4050 \\ 0,0564 & 0,5282 & 0,0590 & 0,5242 \\ 0,0817 & 0,5852 & 0,0848 & 0,5770 \\ 0,1095 & 0,6201 & 0,1134 & 0,6083 \\ 0,1388 & 0,6440 & 0,1497 & 0,6270 \\ 0,1170 & 0,6496 & 0,1771 & 0,6372 \\ 0,1388 & 0,6440 & 0,1497 & 0,6270 \\ 0,1170 & 0,6496 & 0,1771 & 0,6372 \\ 0,1388 & 0,6440 & 0,1497 & 0,6270 \\ 0,1170 & 0,6496 & 0,1771 & 0,6372 \\ 0,1388 & 0,6440 & 0,1497 & 0,6270 \\ 0,1388 & 0,6440 & 0,1497 & 0,6270 \\ 0,1386 & 0,6496 & 0,1771 & 0,6372 \\ \hline 0,0180 & 0,1497 & 0,6270 \\ 0,0180 & 0,1497 & 0,6270 \\ 0,0180 & 0,1497 & 0,6270 \\ 0,0180 & 0,1497 & 0,6270 \\ 0,0180 & 0,1497 & 0,6270 \\ 0,0180 & 0,1497 & 0,6270 \\ 0,0180 & 0,01$	0,3007	0,7300	0,3739	0,7411			
U,4317 U,730 U,730 U,7310 T = 259,90K ^[11] T T 259,90K ^[11] x, experimental y, experimental x, calculado y, calculado 0,0047 0,2060 0,0047 0,2036 0,0146 0,4200 0,0143 0,4179 0,0269 0,5500 0,0268 0,5494 0,0363 0,6180 0,0367 0,6100 0,0598 0,6950 0,0590 0,6879 0,0688 0,7110 0,0687 0,7093 0,0700 0,7120 0,0704 0,7126 0,0927 0,7450 0,0942 0,7496 T = 260,00K ^[18] x, experimental y, experimental x, calculado y, calculado 0,0081 0,2083 0,0056 0,2214 0,2028 0,0450 0,6348 0,0473 0,6319 0,0596 0,6787 0,0648 0,6725 0,1044 0,7342 0,1139 0,7175 0,1414 <td< td=""><td>0,4147</td><td>0,7120</td><td>0,3004</td><td>0,7347</td></td<>	0,4147	0,7120	0,3004	0,7347			
x _i experimental y _i experimental x _i calculado y _i calculado 0,0047 0,2060 0,0047 0,2036 0,0146 0,4200 0,0143 0,4179 0,0269 0,5500 0,0268 0,5494 0,0363 0,6180 0,0367 0,6100 0,0598 0,6950 0,0590 0,6879 0,0688 0,7110 0,0687 0,7093 0,0700 0,7120 0,0704 0,7126 0,0927 0,7450 0,0942 0,7496 T = 260,00K ^[18] x _i experimental y _i ealculado y _i calculado 0,0081 0,2083 0,0056 0,2214 0,0208 0,4511 0,0183 0,4578 0,0284 0,5382 0,0279 0,5428 0,0450 0,6348 0,0473 0,6319 0,0596 0,6787 0,0648 0,6725 0,1044 0,7342 0,1139 0,7175 0,1414 0,7833 0,1541 0,	0,4317	0,7030 T - 250	0,3903	0,7310			
x, experimental y, experimental x, etaleutado y, calculado 0,0047 0,2060 0,0047 0,2036 0,0146 0,4200 0,0143 0,4179 0,0269 0,5500 0,0268 0,5494 0,0363 0,6180 0,0367 0,6100 0,0598 0,6950 0,0590 0,6879 0,0688 0,7110 0,0687 0,7093 0,0700 0,7120 0,0704 0,7126 0,0927 0,7450 0,0942 0,7496 T = 260,00K ^[18] x, experimental y, experimental x, calculado y, calculado 0,0081 0,2083 0,0056 0,2214 0,0228 0,4511 0,0183 0,4578 0,0284 0,5382 0,0279 0,5428 0,0450 0,6348 0,0473 0,6319 0,0596 0,6787 0,0648 0,6725 0,1044 0,7342 0,1139 0,7175 0,1414 0,7483 0,1950		1 = 209,	90K · ·				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{ccccccc} 0,0146 & 0,4200 & 0,0143 & 0,4179 \\ 0,0269 & 0,5500 & 0,0268 & 0,5494 \\ 0,0363 & 0,6180 & 0,0367 & 0,6100 \\ 0,0598 & 0,6950 & 0,0590 & 0,6879 \\ 0,0688 & 0,7110 & 0,0687 & 0,7093 \\ 0,0700 & 0,7120 & 0,0704 & 0,7126 \\ 0,0927 & 0,7450 & 0,0942 & 0,7496 \\ \hline T = 260,00K^{[16]} \\ \hline X_i experimental & y_i experimental & x_i calculado & y_i calculado \\ 0,0081 & 0,2083 & 0,0056 & 0,2214 \\ 0,0208 & 0,4511 & 0,0183 & 0,4578 \\ 0,0284 & 0,5382 & 0,0279 & 0,5428 \\ 0,0450 & 0,6348 & 0,0473 & 0,6319 \\ 0,0596 & 0,6787 & 0,0648 & 0,6725 \\ 0,1044 & 0,7342 & 0,1139 & 0,7175 \\ 0,1414 & 0,7483 & 0,1541 & 0,7262 \\ 0,1777 & 0,7483 & 0,1950 & 0,7247 \\ 0,2197 & 0,7370 & 0,2397 & 0,7163 \\ 0,2640 & 0,7217 & 0,2838 & 0,7034 \\ 0,3199 & 0,6965 & 0,3329 & 0,6846 \\ 0,3908 & 0,6471 & 0,3810 & 0,6618 \\ 0,4768 & 0,5773 & 0,4109 & 0,6452 \\ \hline T = 270,00K^{[16]} \\ \hline X_i experimental & y_i experimental & x_i calculado & y_i calculado \\ 0,0118 & 0,1768 & 0,0095 & 0,1907 \\ 0,0191 & 0,2749 & 0,0168 & 0,2871 \\ 0,0301 & 0,3971 & 0,0309 & 0,4050 \\ 0,0564 & 0,5282 & 0,0590 & 0,5242 \\ 0,0817 & 0,5852 & 0,0848 & 0,5770 \\ 0,1095 & 0,6201 & 0,1134 & 0,6083 \\ 0,1388 & 0,6440 & 0,1497 & 0,6270 \\ 0,1706 & 0,6496 & 0,1771 & 0,6322 \\ 0,1706 & 0,6496 & 0,1771 & 0,6322 \\ 0,1706 & 0,6496 & 0,1771 & 0,6322 \\ 0,1706 & 0,6496 & 0,1771 & 0,6322 \\ 0,1706 & 0,6496 & 0,1771 & 0,6322 \\ 0,1706 & 0,6496 & 0,1771 & 0,6322 \\ 0,1706 & 0,6496 & 0,1771 & 0,6322 \\ 0,1706 & 0,6496 & 0,1771 & 0,6322 \\ 0,1706 & 0,6496 & 0,1771 & 0,6322 \\ 0,1706 & 0,6496 & 0,1771 & 0,6322 \\ 0,1706 & 0,6496 & 0,1771 & 0,6322 \\ 0,1706 & 0,6496 & 0,1771 & 0,6322 \\ 0,1706 & 0,6496 & 0,1771 & 0,6322 \\ 0,1706 & 0,6496 & 0,1771 & 0,6322 \\ 0,1706 & 0,6496 & 0,1771 & 0,6322 \\ 0,1706 & 0,6496 & 0,1771 & 0,6322 \\ 0,1706 & 0,0496 & 0,1771 & 0,6322 \\ 0,1706 & 0,0496 & 0,1771 & 0,6322 \\ 0,1706 & 0,0496 & 0,1771 & 0,6322 \\ 0,1706 & 0,0496 & 0,1771 & 0,070 \\ 0,1706 & 0,0496 & 0,1771 & 0,070 \\ 0,1706 & 0,0496 & 0,1771 & 0,070 \\ 0,1706 & 0,0406 & 0,1771 & 0,070 \\ 0,1706 & 0,0406 & 0,1771 & 0,070 \\ 0,1706 & 0,0$	0,0047	0,2060	0,0047	0,2036			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,0146	0,4200	0,0143	0,4179			
0.0363 0.6180 0.0367 0.6100 0.0598 0.6950 0.0590 0.6879 0.0688 0.7110 0.0687 0.7093 0.0700 0.7120 0.0704 0.7126 0.9927 0.7450 0.0942 0.7496 T = 260,00K ^[18] x, experimental x, calculado y, calculado 0.0081 0.2083 0.0056 0.2214 0.0208 0.4511 0.0183 0.4578 0.0284 0.5382 0.0279 0.5428 0.0450 0.6348 0.0473 0.6319 0.0596 0.6787 0.0648 0.6725 0.1044 0.7342 0.1139 0.7175 0.1414 0.7483 0.1541 0.7262 0.1777 0.7483 0.1950 0.7247 0.2640 0.7217 0.2838 0.7034 0.3908 0.6471 0.3810 0.6618 0.4768 0.5773 0.4109 0.6452 T = 270.00K ^[18] x, experimental <th <="" colspan="3" td=""><td>0,0269</td><td>0,5500</td><td>0,0268</td><td>0,5494</td></th>	<td>0,0269</td> <td>0,5500</td> <td>0,0268</td> <td>0,5494</td>			0,0269	0,5500	0,0268	0,5494
0,0598 $0,0590$ $0,0687$ $0,7093$ $0,0700$ $0,7120$ $0,0704$ $0,7126$ $0,0927$ $0,7450$ $0,0942$ $0,7496$ T = 260,00K [18]x _i experimentaly _i experimentalx _i calculadoy _i calculado $0,0081$ $0,2083$ $0,0056$ $0,2214$ $0,0208$ $0,4511$ $0,0183$ $0,4578$ $0,0284$ $0,5382$ $0,0279$ $0,5428$ $0,0450$ $0,6348$ $0,0473$ $0,6319$ $0,0596$ $0,6787$ $0,0648$ $0,6725$ $0,1044$ $0,7342$ $0,1139$ $0,7175$ $0,1414$ $0,7483$ $0,1541$ $0,7262$ $0,1777$ $0,7483$ $0,1950$ $0,7247$ $0,2197$ $0,7370$ $0,2397$ $0,7163$ $0,2640$ $0,7217$ $0,2838$ $0,7034$ $0,3199$ $0,6965$ $0,3329$ $0,6846$ $0,3908$ $0,6471$ $0,3810$ $0,6618$ $0,4768$ $0,5773$ $0,4109$ $0,6452$ T = 270,00K [18]x _i experimentaly _i experimentalx _i calculadoy _i calculado $0,0118$ $0,1768$ $0,0095$ $0,1907$ $0,0118$ $0,1768$ $0,0095$ $0,1907$ $0,0095$ $0,6844$ $0,5282$ $0,0690$ $0,0564$ $0,5282$ $0,0590$ $0,5242$ $0,0817$ $0,5852$ $0,0848$ $0,5770$ $0,1095$ $0,6201$ $0,1134$ $0,6083$ $0,1388$ $0,6440$ <td>0,0363</td> <td>0,6180</td> <td>0,0367</td> <td>0,6100</td>	0,0363	0,6180	0,0367	0,6100			
$0,0688$ $0,7110$ $0,0687$ $0,7093$ $0,0700$ $0,7120$ $0,0704$ $0,7126$ $0,0927$ $0,7450$ $0,0942$ $0,7496$ T = 260,00K ^[18] x _i experimentaly _i experimentalx _i calculado $0,0081$ $0,2083$ $0,00566$ $0,2214$ $0,0208$ $0,4511$ $0,0183$ $0,4578$ $0,0284$ $0,5382$ $0,0279$ $0,5428$ $0,0450$ $0,6348$ $0,0473$ $0,6319$ $0,0596$ $0,6787$ $0,0648$ $0,6725$ $0,1044$ $0,7342$ $0,1139$ $0,7175$ $0,1414$ $0,7483$ $0,1541$ $0,7262$ $0,1777$ $0,7483$ $0,1950$ $0,7247$ $0,2197$ $0,7370$ $0,2397$ $0,7163$ $0,2640$ $0,7217$ $0,2838$ $0,7034$ $0,3199$ $0,6965$ $0,3329$ $0,6846$ $0,3908$ $0,6471$ $0,3810$ $0,6618$ $0,4768$ $0,5773$ $0,4109$ $0,6452$ T $= 270,00K^{[18]}$ Tx _i experimentaly _i experimentalx _i calculado $0,0118$ $0,1768$ $0,0095$ $0,1907$ $0,0191$ $0,2749$ $0,0168$ $0,2871$ $0,0301$ $0,3971$ $0,0309$ $0,4050$ $0,0564$ $0,5282$ $0,0580$ $0,5242$ $0,0817$ $0,52852$ $0,0848$ $0,5770$ $0,1095$ $0,6201$ $0,1134$ $0,6270$ $0,1388$ $0,6440$ $0,1497$ $0,6270$ </td <td>0,0598</td> <td>0,6950</td> <td>0,0590</td> <td>0,6879</td>	0,0598	0,6950	0,0590	0,6879			
$\begin{array}{c cccccc} 0,0700 & 0,7120 & 0,0704 & 0,7126 \\ 0,0927 & 0,7450 & 0,0942 & 0,7496 \\ \hline T = 260,00K^{[18]} \\ \hline x_i experimental & y_i experimental & x_i calculado & y_i calculado \\ 0,0081 & 0,2083 & 0,0056 & 0,2214 \\ 0,0208 & 0,4511 & 0,0183 & 0,4578 \\ 0,0284 & 0,5382 & 0,0279 & 0,5428 \\ 0,0450 & 0,6348 & 0,0473 & 0,6319 \\ 0,0596 & 0,6787 & 0,0648 & 0,6725 \\ 0,1044 & 0,7342 & 0,1139 & 0,7175 \\ 0,1414 & 0,7483 & 0,1541 & 0,7262 \\ 0,1777 & 0,7483 & 0,1950 & 0,7247 \\ 0,2197 & 0,7370 & 0,2397 & 0,7163 \\ 0,2640 & 0,7217 & 0,2838 & 0,7034 \\ 0,3199 & 0,6965 & 0,3329 & 0,6846 \\ 0,3908 & 0,6471 & 0,3810 & 0,6618 \\ 0,4768 & 0,5773 & 0,4109 & 0,6452 \\ \hline T = 270,00K^{[18]} \\ \hline x_i experimental & y_i experimental & x_i calculado & y_i calculado \\ 0,0118 & 0,1768 & 0,0095 & 0,1907 \\ 0,0191 & 0,2749 & 0,0168 & 0,2871 \\ 0,0301 & 0,3971 & 0,0309 & 0,4050 \\ 0,0564 & 0,5282 & 0,0590 & 0,5242 \\ 0,0817 & 0,5852 & 0,0848 & 0,5770 \\ 0,1095 & 0,6201 & 0,1134 & 0,6083 \\ 0,1388 & 0,6440 & 0,1497 & 0,6270 \\ 0,1706 & 0,6496 & 0,1771 & 0,6332 \\ \end{array}$	0,0688	0,7110	0,0687	0,7093			
$0,0927$ $0,7450$ $0,0942$ $0,7496$ T = 260,00K ^[18] $x_i experimental$ $y_i experimental$ $x_i calculado$ $y_i calculado$ $0,0081$ $0,2083$ $0,0056$ $0,2214$ $0,0208$ $0,4511$ $0,0183$ $0,4578$ $0,0284$ $0,5382$ $0,0279$ $0,5428$ $0,0450$ $0,6348$ $0,0473$ $0,6319$ $0,0596$ $0,6787$ $0,0648$ $0,6725$ $0,1044$ $0,7342$ $0,1139$ $0,7175$ $0,1044$ $0,7342$ $0,1139$ $0,7247$ $0,2197$ $0,7370$ $0,2397$ $0,7163$ $0,2640$ $0,7217$ $0,2838$ $0,7034$ $0,3199$ $0,6965$ $0,3329$ $0,6846$ $0,3908$ $0,6471$ $0,3810$ $0,6618$ $0,4768$ $0,5773$ $0,4109$ $0,6452$ T = 270,00K ^[18] $x_i experimental$ y_i experimental x_i calculado y_i calculado $0,0118$ $0,1768$ $0,0095$ $0,1907$ $0,0301$ $0,3971$ $0,0309$ $0,4050$ $0,0564$ $0,5282$ $0,0590$ $0,5242$ $0,0817$ $0,5852$ $0,0848$ $0,5770$ $0,1095$ $0,6201$ $0,1134$ $0,6083$ $0,1388$ $0,6440$ $0,1497$ $0,6270$ $0,1706$ $0,6496$ $0,1771$ $0,6232$	0,0700	0,7120	0,0704	0,7126			
T = 260,00K [^{118]} x _i experimentaly _i experimentalx _i calculado0,00810,20830,00560,22140,02080,45110,01830,45780,02840,53820,02790,54280,04500,63480,04730,63190,05960,67870,06480,67250,10440,73420,11390,71750,14140,74830,15410,72620,17770,74830,19500,72470,21970,73700,23970,71630,26400,72170,28380,70340,31990,69650,33290,68460,39080,64710,38100,66180,47680,57730,41090,6452T = 270,00K ^[18] x _i experimentalx _i calculadoy _i calculado0,01180,17680,00950,19070,03010,39710,03090,40500,05640,52820,05900,52420,08170,58520,08480,57700,10950,62010,11340,60830,13880,64400,14970,62700,17060,64960,17710,6270	0,0927	0,7450	0,0942	0,7496			
x_i experimental y_i experimental x_i calculado y_i calculado0,00810,20830,00560,22140,02080,45110,01830,45780,02840,53820,02790,54280,04500,63480,04730,63190,05960,67870,06480,67250,10440,73420,11390,71750,14140,74830,15410,72620,17770,74830,19500,72470,21970,73700,23970,71630,26400,72170,28380,70340,31990,69650,33290,68460,39080,64710,38100,66180,47680,57730,41090,6452T = 270,00K ^[18] x_i experimental y_i experimental x_i calculado y_i calculado0,01180,17680,00950,19070,03010,39710,03090,40500,05640,52820,05900,52420,08170,58520,08480,57700,10950,62010,11340,60830,13880,64400,14970,62700,17060,64960,17710,6270		T = 260,	.00K ^[18]				
0,0081 $0,2083$ $0,0056$ $0,2214$ $0,0208$ $0,4511$ $0,0183$ $0,4578$ $0,0284$ $0,5382$ $0,0279$ $0,5428$ $0,0450$ $0,6348$ $0,0473$ $0,6319$ $0,0596$ $0,6787$ $0,0648$ $0,6725$ $0,1044$ $0,7342$ $0,1139$ $0,7175$ $0,1414$ $0,7483$ $0,1541$ $0,7262$ $0,1777$ $0,7483$ $0,1950$ $0,7247$ $0,2197$ $0,7370$ $0,2397$ $0,7163$ $0,2640$ $0,7217$ $0,2838$ $0,7034$ $0,3199$ $0,6965$ $0,3329$ $0,6846$ $0,3908$ $0,6471$ $0,3810$ $0,6618$ $0,4768$ $0,5773$ $0,4109$ $0,6452$ T = 270,00K ^[18] x, experimentaly, experimentalx, calculadoy, agy 1 $0,0118$ $0,1768$ $0,0095$ $0,0118$ $0,2749$ $0,0168$ $0,2871$ $0,0301$ $0,3971$ $0,0309$ $0,4050$ $0,0564$ $0,5282$ $0,0590$ $0,5242$ $0,0817$ $0,5852$ $0,0848$ $0,5770$ $0,1095$ $0,6201$ $0,1134$ $0,6083$ $0,1388$ $0,6440$ $0,1497$ $0,6270$ $0,1706$ $0,6496$ $0,1771$ $0,6270$	x _i experimental	y _i experimental	x _i calculado	y _i calculado			
0,0208 $0,4511$ $0,0183$ $0,4578$ $0,0284$ $0,5382$ $0,0279$ $0,5428$ $0,0450$ $0,6348$ $0,0473$ $0,6319$ $0,0596$ $0,6787$ $0,0648$ $0,6725$ $0,1044$ $0,7342$ $0,1139$ $0,7175$ $0,1414$ $0,7483$ $0,1541$ $0,7262$ $0,1777$ $0,7483$ $0,1950$ $0,7247$ $0,2197$ $0,7370$ $0,2397$ $0,7163$ $0,2640$ $0,7217$ $0,2838$ $0,7034$ $0,3199$ $0,6965$ $0,3329$ $0,6846$ $0,3908$ $0,6471$ $0,3810$ $0,6618$ $0,4768$ $0,5773$ $0,4109$ $0,6452$ T = 270,00K ^[18] x, experimentaly, experimentalx, calculadoy, 1768 $0,0095$ $0,0118$ $0,1768$ $0,2871$ $0,0301$ $0,3971$ $0,0309$ $0,4050$ $0,0564$ $0,5282$ $0,0590$ $0,5242$ $0,0817$ $0,5852$ $0,0848$ $0,5770$ $0,1095$ $0,6201$ $0,1134$ $0,6083$ $0,1388$ $0,6440$ $0,1497$ $0,6270$ $0,1706$ $0,6496$ $0,1771$ $0,6322$	0,0081	0,2083	0,0056	0,2214			
0,0284 $0,5382$ $0,0279$ $0,5428$ $0,0450$ $0,6348$ $0,0473$ $0,6319$ $0,0596$ $0,6787$ $0,0648$ $0,6725$ $0,1044$ $0,7342$ $0,1139$ $0,7175$ $0,1414$ $0,7483$ $0,1541$ $0,7262$ $0,1777$ $0,7483$ $0,1950$ $0,7247$ $0,2197$ $0,7370$ $0,2397$ $0,7163$ $0,2640$ $0,7217$ $0,2838$ $0,7034$ $0,3199$ $0,6965$ $0,3329$ $0,6846$ $0,3908$ $0,6471$ $0,3810$ $0,6618$ $0,4768$ $0,5773$ $0,4109$ $0,6452$ T = 270,00K ^[18] x, experimentaly, experimentalx, calculadoy, 0,0168 $0,0301$ $0,3971$ $0,0301$ $0,5782$ $0,0590$ $0,5282$ $0,0817$ $0,5852$ $0,0817$ $0,5852$ $0,0848$ $0,1388$ $0,6440$ $0,1497$ $0,6270$ $0,6270$ $0,1706$ $0,6496$ $0,1771$ $0,6322$	0,0208	0,4511	0,0183	0,4578			
0,0450 $0,6348$ $0,0473$ $0,6319$ $0,0596$ $0,6787$ $0,0648$ $0,6725$ $0,1044$ $0,7342$ $0,1139$ $0,7175$ $0,1414$ $0,7483$ $0,1541$ $0,7262$ $0,1777$ $0,7483$ $0,1950$ $0,7247$ $0,2197$ $0,7370$ $0,2397$ $0,7163$ $0,2640$ $0,7217$ $0,2838$ $0,7034$ $0,3199$ $0,6965$ $0,3329$ $0,6846$ $0,3908$ $0,6471$ $0,3810$ $0,6618$ $0,4768$ $0,5773$ $0,4109$ $0,6452$ T = 270,00K ^[18] x _i experimentaly _i experimentalx _i calculadoy _i calculado0,01680,28710,03010,57720,01680,28710,03010,5852 $0,0817$ $0,5852$ $0,0817$ $0,5852$ $0,0848$ $0,1388$ $0,6440$ $0,1497$ $0,1206$ $0,6496$ $0,1771$ $0,6270$ $0,1771$ $0,6270$	0,0284	0,5382	0,0279	0,5428			
$\begin{array}{c ccccc} 0,0596 & 0,6787 & 0,0648 & 0,6725 \\ 0,1044 & 0,7342 & 0,1139 & 0,7175 \\ 0,1414 & 0,7483 & 0,1541 & 0,7262 \\ 0,1777 & 0,7483 & 0,1950 & 0,7247 \\ 0,2197 & 0,7370 & 0,2397 & 0,7163 \\ 0,2640 & 0,7217 & 0,2838 & 0,7034 \\ 0,3199 & 0,6965 & 0,3329 & 0,6846 \\ 0,3908 & 0,6471 & 0,3810 & 0,6618 \\ 0,4768 & 0,5773 & 0,4109 & 0,6452 \\ \hline & T = 270,00K ^{[18]} \\ \hline & x_i experimental & y_i experimental & x_i calculado & y_i calculado \\ 0,0118 & 0,1768 & 0,0095 & 0,1907 \\ 0,0191 & 0,2749 & 0,0168 & 0,2871 \\ 0,0301 & 0,3971 & 0,0309 & 0,4050 \\ 0,0564 & 0,5282 & 0,0590 & 0,5242 \\ 0,0817 & 0,5852 & 0,0848 & 0,5770 \\ 0,1095 & 0,6201 & 0,1134 & 0,6083 \\ 0,1388 & 0,6440 & 0,1497 & 0,6270 \\ 0,1706 & 0,6496 & 0,1771 & 0,6322 \\ \end{array}$	0,0450	0,6348	0,0473	0,6319			
$\begin{array}{c cccccc} 0,1044 & 0,7342 & 0,1139 & 0,7175 \\ 0,1414 & 0,7483 & 0,1541 & 0,7262 \\ 0,1777 & 0,7483 & 0,1950 & 0,7247 \\ 0,2197 & 0,7370 & 0,2397 & 0,7163 \\ 0,2640 & 0,7217 & 0,2838 & 0,7034 \\ 0,3199 & 0,6965 & 0,3329 & 0,6846 \\ 0,3908 & 0,6471 & 0,3810 & 0,6618 \\ 0,4768 & 0,5773 & 0,4109 & 0,6452 \\ \hline & T = 270,00K ^{[18]} \\ \hline x_i experimental & y_i experimental & x_i calculado & y_i calculado \\ 0,0118 & 0,1768 & 0,0095 & 0,1907 \\ 0,0191 & 0,2749 & 0,0168 & 0,2871 \\ 0,0301 & 0,3971 & 0,0309 & 0,4050 \\ 0,0564 & 0,5282 & 0,0590 & 0,5242 \\ 0,0817 & 0,5852 & 0,0848 & 0,5770 \\ 0,1095 & 0,6201 & 0,1134 & 0,6083 \\ 0,1388 & 0,6440 & 0,1497 & 0,6270 \\ 0,1706 & 0,6496 & 0,1771 & 0,6322 \\ \end{array}$	0,0596	0,6787	0,0648	0,6725			
$\begin{array}{c cccccc} 0,1414 & 0,7483 & 0,1541 & 0,7262 \\ 0,1777 & 0,7483 & 0,1950 & 0,7247 \\ 0,2197 & 0,7370 & 0,2397 & 0,7163 \\ 0,2640 & 0,7217 & 0,2838 & 0,7034 \\ 0,3199 & 0,6965 & 0,3329 & 0,6846 \\ 0,3908 & 0,6471 & 0,3810 & 0,6618 \\ 0,4768 & 0,5773 & 0,4109 & 0,6452 \\ \hline T = 270,00K ^{[18]} \\ \hline x_i \mbox{ experimental } y_i \mbox{ experimental } x_i \mbox{ calculado } y_i \mbox{ calculado } \\ 0,0118 & 0,1768 & 0,0095 & 0,1907 \\ 0,0191 & 0,2749 & 0,0168 & 0,2871 \\ 0,0301 & 0,3971 & 0,0309 & 0,4050 \\ 0,0564 & 0,5282 & 0,0590 & 0,5242 \\ 0,0817 & 0,5852 & 0,0848 & 0,5770 \\ 0,1095 & 0,6201 & 0,1134 & 0,6083 \\ 0,1388 & 0,6440 & 0,1497 & 0,6270 \\ 0,1706 & 0,6496 & 0,1771 & 0,6322 \\ \end{array}$	0,1044	0,7342	0,1139	0,7175			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,1414	0,7483	0,1541	0,7262			
$\begin{array}{c cccccc} 0,2197 & 0,7370 & 0,2397 & 0,7163 \\ 0,2640 & 0,7217 & 0,2838 & 0,7034 \\ 0,3199 & 0,6965 & 0,3329 & 0,6846 \\ 0,3908 & 0,6471 & 0,3810 & 0,6618 \\ 0,4768 & 0,5773 & 0,4109 & 0,6452 \\ \hline T = 270,00K ^{[18]} \\ \hline x_i experimental & y_i experimental & x_i calculado & y_i calculado \\ 0,0118 & 0,1768 & 0,0095 & 0,1907 \\ 0,0191 & 0,2749 & 0,0168 & 0,2871 \\ 0,0301 & 0,3971 & 0,0309 & 0,4050 \\ 0,0564 & 0,5282 & 0,0590 & 0,5242 \\ 0,0817 & 0,5852 & 0,0848 & 0,5770 \\ 0,1095 & 0,6201 & 0,1134 & 0,6083 \\ 0,1388 & 0,6440 & 0,1497 & 0,6270 \\ 0,1706 & 0,6496 & 0,1771 & 0,6322 \\ \end{array}$	0,1777	0,7483	0,1950	0,7247			
$\begin{array}{cccccccc} 0,2640 & 0,7217 & 0,2838 & 0,7034 \\ 0,3199 & 0,6965 & 0,3329 & 0,6846 \\ 0,3908 & 0,6471 & 0,3810 & 0,6618 \\ 0,4768 & 0,5773 & 0,4109 & 0,6452 \\ \hline T = 270,00K ^{[18]} \\ \hline x_i experimental & y_i experimental & x_i calculado & y_i calculado \\ 0,0118 & 0,1768 & 0,0095 & 0,1907 \\ 0,0191 & 0,2749 & 0,0168 & 0,2871 \\ 0,0301 & 0,3971 & 0,0309 & 0,4050 \\ 0,0564 & 0,5282 & 0,0590 & 0,5242 \\ 0,0817 & 0,5852 & 0,0848 & 0,5770 \\ 0,1095 & 0,6201 & 0,1134 & 0,6083 \\ 0,1388 & 0,6440 & 0,1497 & 0,6270 \\ 0,1706 & 0,6496 & 0,1771 & 0,6322 \\ \end{array}$	0,2197	0,7370	0,2397	0,7163			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,2640	0,7217	0,2838	0,7034			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,3199	0,6965	0,3329	0,6846			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0,3908	0,6471	0,3810	0,6618			
T = 270,00K [18] x_i experimental y_i experimental x_i calculado y_i calculado0,01180,17680,00950,19070,01910,27490,01680,28710,03010,39710,03090,40500,05640,52820,05900,52420,08170,58520,08480,57700,10950,62010,11340,60830,13880,64400,14970,62700,17060,64960,17710,6322	0,4768	0,5773	0,4109	0,6452			
x_i experimental y_i experimental x_i calculado y_i calculado0,01180,17680,00950,19070,01910,27490,01680,28710,03010,39710,03090,40500,05640,52820,05900,52420,08170,58520,08480,57700,10950,62010,11340,60830,13880,64400,14970,62700,17060,64960,17710,6322	$T = 270.00 K^{[18]}$						
0,0118 0,1768 0,0095 0,1907 0,0191 0,2749 0,0168 0,2871 0,0301 0,3971 0,0309 0,4050 0,0564 0,5282 0,0590 0,5242 0,0817 0,5852 0,0848 0,5770 0,1095 0,6201 0,1134 0,6083 0,1388 0,6440 0,1497 0,6270 0,1706 0,6496 0,1771 0,6322	x _i experimental	y _i experimental	x _i calculado	y _i calculado			
0,01910,27490,01680,28710,03010,39710,03090,40500,05640,52820,05900,52420,08170,58520,08480,57700,10950,62010,11340,60830,13880,64400,14970,62700,17060,64960,17710,6322	0,0118	0,1768	0,0095	0,1907			
0,0301 0,3971 0,0309 0,4050 0,0564 0,5282 0,0590 0,5242 0,0817 0,5852 0,0848 0,5770 0,1095 0,6201 0,1134 0,6083 0,1388 0,6440 0,1497 0,6270 0,1706 0,6496 0,1771 0,6322	0,0191	0,2749	0,0168	0,2871			
0,0564 0,5282 0,0590 0,5242 0,0817 0,5852 0,0848 0,5770 0,1095 0,6201 0,1134 0,6083 0,1388 0,6440 0,1497 0,6270 0,1706 0,6496 0,1771 0,6322	0,0301	0,3971	0,0309	0,4050			
0,0817 0,5852 0,0848 0,5770 0,1095 0,6201 0,1134 0,6083 0,1388 0,6440 0,1497 0,6270 0,1706 0,6496 0,1771 0,6322	0.0564	0.5282	0.0590	0.5242			
0,1095 0,6201 0,1134 0,6083 0,1388 0,6440 0,1497 0,6270 0,1706 0,6496 0.1771 0.6322	0.0817	0.5852	0.0848	0.5770			
0,1388 0,6440 0,1497 0,6270 0,1706 0,6496 0.1771 0.6322	0.1095	0.6201	0.1134	0.6083			
0 1706 0 6496 0 1771 0 6322	0 1388	0.6440	0 1497	0.6270			
	0 1706	0.6496	0 1771	0.6322			

	0,1956	0,6475	0,1997	0,6329	
	0,2457	0,6399	0,2588	0,6229	
	0,2950	0,6157	0,3085	0,6050	
	0,3560	0,5751	0,3535	0,5830	
	0,3967	0,5332	0,3728	0,5719	
		T = 274,9	90K ^[11]		
	x _i experimental	y _i experimental	x _i calculado	y _i calculado	
	0,0097	0,1200	0,0099	0,1818	
	0,0213	0,3000	0,0214	0,3065	
	0,0405	0,4420	0,0407	0,4306	
	0,0588	0,5180	0,0562	0,5118	
		T = 280,0	00K ^[18]		
	x _i experimental	y _i experimental	x _i calculado	y _i calculado	
	0,1100	0,4731	0,1007	0,4624	
	0,1580	0,5166	0,1502	0,5038	
	0,1791	0,5255	0,1722	0,5120	
	0,2000	0,5264	0,1993	0,5165	
	0,2358	0,5194	0,2413	0,5142	
	0,2536	0,5133	0,2606	0,5101	
	0,2745	0,5039	0,2866	0,5019	
	0,3043	0,4740	0,3186	0,4879	
	0,3270	0,4472	0,3333	0,4800	
		T = 289,9	90K ^[11]		
	x _i experimental	y _i experimental	x _i calculado	y _i calculado	
	0,0130	0,1020	0,0131	0,0958	
	0,0258	0,1760	0,0269	0,1664	
	0,0490	0,2800	0,0525	0,2517	
	0,1100	0,3910	0,1083	0,3561	
	0,1210	0,4000	0,1170	0,3724	
	0,1390	0,4220	0,1296	0,4231	
T = 290,00K ^[18]					
	x _i experimental	y _i experimental	x _i calculado	y _i calculado	
	0,0405	0,1988	0,0400	0,1974	
	0,0528	0,2342	0,0524	0,2322	
	0,0804	0,2867	0,0765	0,2804	
	0,1226	0,3296	0,1131	0,3226	
	0,1449	0,3460	0,1403	0,3382	
	0,1670	0,3525	0,1675	0,3447	
	0,1920	0,3327	0,1998	0,3431	
	0,2065	0,3241	0,2169	0,3388	

Tabela A2-4: Valores das composições molares calculadas e experimentais das fases

líquida e vapor para o par H2O-CH3OH

$H_2O - CH_3OH$				
$T = 323,15K^{[13]}$				
x _i experimental	y _i experimental	x _i calculado	y _i calculado	
0.0453	0.2661	0.0453	0.3570	

0.0863	0.4057	0.0794	0.4784
0.1387	0.5227	0.1275	0.5779
0.1854	0.5898	0.1717	0.6353
0.3137	0.7087	0.3040	0.7339
0.4177	0.7684	0.4060	0.7819
0.5411	0.8212	0.5367	0.8328
0.6166	0.8520	0.6130	0.8608
0.7598	0.9090	0.7576	0.9133
0.8525	0.9455	0.8502	0.9471
0.9514	0.9817	0.9477	0.9822
	T = 423,	15K ^[13]	
x _i experimental	y _i experimental	x _i calculado	y _i calculado
0.0090	0.0600	0.0111	0.0795
0.0220	0.1350	0.0244	0.1543
0.0440	0.2130	0.0416	0.2303
0.0790	0.2860	0.0659	0.3096
0.1860	0.4590	0.1511	0.4676
0.3740	0.6100	0.3216	0.6112
0.4590	0.6620	0.4046	0.6593
0.5780	0.7310	0.5268	0.7244
0.7480	0.8320	0.7159	0.8264
0.8930	0.9290	0.9037	0.9379
0.9130	0.9430	0.9156	0.9454
0.9360	0.9600	0.9392	0.9606
0.9530	0.9720	0.9533	0.9697
0.9690	0.9820	0.9702	0.9810
	T = 523,7	15 K ^[13]	
x _i experimental	y _i experimental	x _i calculado	y _i calculado
0.0660	0.1630	0.0607	0.1666
0.1320	0.2800	0.1264	0.2814
0.1800	0.3440	0.1779	0.3473
0.2540	0.4230	0.2579	0.4274
0.3310	0.4870	0.3367	0.4920
0.4040	0.5420	0.4020	0.5400
0.4830	0.5960	0.4875	0.5997
0.5530	0.6430	0.5695	0.6559
0.6310	0.6980	0.6717	0.7274
0.7320	0.7560	0.7505	0.7849
0.7720	0.7720	0.7771	0.8050
0.7970	0.7970	0.8039	0.8256

Tabela A2-5: Valores das composições molares calculadas e experimentais das fases

líquida e vapor para o par CO-H₂

CO - H ₂				
T = 68,20 K ^[11]				
x _i experimental	y _i experimental	x _i calculado	y _i calculado	
0.9779	0.0117	0.9855	0.0226	

0.9760	0.0420	0.9826	0.0242
0.9860	0.0490	0.9799	0.0270
0.9850	0.0620	0.9753	0.0348
0.9750	0 1020	0.9753	0.0348
0.9770	0.1380	0.0247	0.9652
0.9650	0.1380	0.9604	0.3002
0.9060	0.1630	0.9590	0.1710
0.9400	0.1000	0.9590	0.1710
0.9390	0.1000	0.9504	0.1009
0.9340	0.2020 T - 72 '	0.9000 n k ^[11]	0.1007
v. experimental	1 = 73,2		v calculado
	0.0330	0.9845	
0.9070	0.0550	0.3043	0.0401
0.9750	0.0560	0.9727	0.0422
0.9670	0.0640	0.9596	0.0606
0.9640	0.1200	0.9463	0.1144
0.9590	0.1270	0.9463	0.1146
0.9480	0.1650	0.9389	0.1732
0.9550	0.1540	0.9389	0.1733
0.9510	0.1660	0.9389	0.1735
0.9300	0.2060	0.9350	0.2079
0.9170	0.2180	0.9339	0.2200
0.9200	0.2300	0.9339	0.2200
0.9140	0.2360	0.9336	0.2237
0.9160	0.2290	0.9336	0.2237
0.9020	0.2570	0.9332	0.2295
0.9120	0.2500	0.9332	0.2295
0.8930	0.2650	0.9332	0.2337
0.8900	0.2750	0.9332	0.2337
	T = 83,2	20 K ^[11]	
x _i experimental	y _i experimental	x _i calculado	y _i calculado
0.8990	0.0270	0.9934	0.0674
0.9310	0.1020	0.9767	0.0247
0.9320	0.1250	0.9767	0.0247
0.9320	0.1700	0.9513	0.0172
0.9180	0.1950	0.9514	0.0172
0.9060	0.2060	0.9348	0.0159
0.9070	0.2100	0.9347	0.0159
0.9040	0.2280	0.9347	0.0159
0.8880	0 2540	0.9181	0.0154
0.8890	0.2490	0.9181	0.0154
0.8430	0.2400	0.8816	0.0154
0.0400	0.3440	0.8728	0.0155
0.0010	0.3680	0.8642	0.0157
0.0000	0.0000	0.0042	0.0150
0.9070	0.2100	0.8041	0.0159
0.0000	0.3010	0.0000	0.0150
0.7950	0.4010	0.0507	0.0109
0.7770	0.4150	0.8517	0.0161
0.7670	0.4110	0.8517	0.0161

0.7660	0.4350	0.8477	0.0162
0.7590	0.4480	0.8436	0.0163
0.7370	0.4700	0.8398	0.0165
0.6940	0.4860	0.8352	0.0167
0.6630	0.5410	0.8322	0.0168
	T = 88,2	20 K ^[11]	
x _i experimental	y _i experimental	x _i calculado	y _i calculado
0.8400	0.0360	0.9859	0.1131
0.8660	0.0520	0.9807	0.0886
0.8880	0.0710	0.9701	0.0634
0.8930	0.1290	0.9368	0.0383
0.9020	0.1340	0.9367	0.0383
0.8880	0.2030	0.8865	0.0278
0.8870	0.2170	0.8861	0.0278
0.8480	0.3030	0.8369	0.0241
0.7720	0.4100	0.7991	0.0234
0.7040	0.4540	0.7870	0.0235
	T = 100,	00 K ^[11]	
x _i experimental	y _i experimental	x _i calculado	yi calculado
0.6740	0.0350	1.0000	0.0414
0.7650	0.0650	1.0000	0.0087
0.7780	0.1140	1.0000	0.0012
0.7820	0.1650	1.0000	0.0002
0.7750	0.2410	1.0000	0.0001
0.7350	0.3220	1.0000	0.0000
0.6110	0.4120	1.0000	0.0000

APÊNDICE 3: Gráficos das médias dos erros absolutos para as composições das fases líquida (x_i) e vapor (y_i)

Figura A3-1: Média dos erros absolutos para CH₃OH-H₂O

Figura A3-2: Média dos erros absolutos para CO-H₂

Figura A3-3: Média dos erros absolutos para CO₂-CH₃OH

Figura A3-4: Média dos erros absolutos para CO₂-H₂

Figura A3-5: Média dos erros absolutos para CO₂-H₂O

* Para essas temperaturas haviam duas fontes distintas que apresentavam diferentes faixas de pressão nos pares de equilíbrio líquido-vapor.

APÊNDICE 4: Correlações entre os valores de k_{ij} com as temperaturas

Figura A4-1: Correlação de k_{ij} com as temperaturas para o par CO₂-H₂O

Figura A4-2: Correlação de k_{ij} com as temperaturas para o par CO₂-CH₃OH

Figura A4-3: Correlação de k_{ij} com as temperaturas para o par CO₂-H₂

Figura A4-4: Correlação de kij com as temperaturas para o par CH₃OH-H₂O

Figura A4-5: Correlação de k_{ij} com as temperaturas para o par CO-H₂