

Universidade Federal do Rio de Janeiro Centro de Ciências Matemáticas e da Natureza Observatório do Valongo

Galáxias Compactas Luminosas no Ultravioleta: Estudo sobre suas propriedades e seu ambiente

Autora: Carolyne Santos de Oliveira

Orientadora: Karín Menéndez-Delmestre

Projeto de Conclusão de Curso para a obtenção do título de Astrônoma

Dedicado a minha mãe, Josenilde dos Santos

"The only thing that separates women of color from anyone else is opportunity."

Viola Davis

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Resumo

Galáxias compactas luminosas no Ultravioleta: Estudo sobre suas propriedades e seu ambiente

por Carolyne Santos de Oliveira

O telescópio espacial GALEX descobriu uma população de galáxias luminosas no UV (UVLGs) que foram selecionadas através da sua luminosidade na banda FUV ($L_{FUV} > 2 \times 10^{10} L_{\odot}$). Elas podem ser divididas de acordo com o seu brilho superficial: as UVLGs estendidas ($I_{FUV} < 10^8 L_{\odot} kpc^{-2}$) apresentam alta luminosidade no FUV devido a sua extensão, enquanto as UVLGs compactas (cUVLGs; $I_{FUV} > 10^8 L_{\odot} kpc^{-2}$) se distinguem por ter uma alta taxa de formação estelar em regiões relativamente compactas.

Dentre as cUVLGs existe uma subpopulação que tem sido o foco de atenção por ter muitas propriedades em comum com as Galáxias Lyman-Break (LBGs), que são típicas galáxias formadoras de estrelas no universo distante ($z \sim 2-3$). Por isso elas são conhecidas como Análogas de Lyman-Break ou LBAs. Nosso objetivo é ir além dessa amostra análoga e explorar as propriedades da amostra mais extensa de UVLGs compactas.

Nossa amostra é composta por ~ 1000 UVLGs compactas e cerca de 40 objetos possuem dados no infravermelho próximo com o instrumento FOURSTAR do telescópio Baade no Observatório Las Campanas, Chile. Numa análise da metalicidade desses objetos determinamos que as UVLGs compactas são, para uma massa estelar determinada, menos metálicas que as galáxias normais que estão formando estrelas no universo local. Encontramos que a relação massa-metalicidade das UVLGs compactas se assemelha com a encontrada para as LBGs, sugerindo que elas são muito diferentes das galáxias locais, mas apresentam semelhanças com galáxias típicas no universo distante.

Analisamos as morfologias das UVLGs compactas usando como base as ~ 40 galáxias observadas com FOURSTAR e encontramos que visualmente 67% delas aparentam estar passando por uma fusão. Nesse cenário, a falta de companheiras próximas indica que elas se encontram num estágio já avançado de interação em que não é possível distinguir os núcleos das galáxias em fusão. Porém, uma análise parametrizada da morfologia aponta para perfis de brilho similares aos de galáxias com discos. Isso sugere a possibilidade de que as UVLGs compactas são sistemas com discos, com taxas de formação estelar elevadas devido a atividade de fusões menores que não necessariamente tem um impacto nos perfis de brilho globais. As baixas metalicidades indicam que esses eventos de fusão estariam gerando um dos primeiros eventos de formação estelar nestas galáxias.

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Abstract

Compact Ultraviolet Luminous Galaxies: Analysis of their properties and environment

by Carolyne Santos de Oliveira

The GALEX space telescope uncovered a population of UV luminous galaxies (UVLGs) that were selected according to their FUV luminosity ($L_{FUV} > 2 \times 10^{10} L_{\odot}$). They are divided according their surface brightness. *Extended* UVLGs ($I_{FUV} < 10^8 L_{\odot} kpc^{-2}$) have high FUV luminosity due to their sizes, while *compact* UVLGs (cUVLGs; $I_{FUV} > 10^8 L_{\odot} kpc^{-2}$) have high star-formation activity in relatively compact regions.

Among cUVLGs there is a subpopulation that has been the focus of attention for having many properties in common with Lyman-break Galaxies (LBGs), typical star-forming galaxies at high redshifts ($z \sim 2-3$). For this reason they are know as Lyman-break Analogs (LBAs). Our goal is to go beyond this analog sample and explore the properties of the broader sample of compact UVLGs.

Our sample is composed of ~ 1000 compact UVLGs, of which 40 have near-infrared imaging taken with the FOURSTAR instrument on the Baade telescope at the Las Campanas Observatory, Chile. We find that compact UVLGs are, for a given stellar mass, less metalic than normal star-forming galaxies at low redshift. The mass-metallicity relation for compact UVLGs resembles that of LBGs, suggesting that they are different from galaxies in local universe but similar to typical galaxies at high redshift.

We analyzed morphologies for compact UVLGs in the near-infrared and found that 67% of them appear to be going though a merger. In this scenario, the lack of close massive companions indicates that they are in an advanced stage of interaction where it is not possible to distinguish the two galaxies anymore. However, a parametric analysis of their morphology points to brightness profiles similar to that of disky galaxies. This suggests the possibility that compact UVLGs are disk systems with high star-formation rates due to minor mergers that do not necessarily have an impact on the overall brightness profiles. Their low metallicities indicate that these merger events are generating one of their first star formation events.

Agradecimentos

Agradeço, primeiramente, a minha mãe, Josenilde, por fornecer a mim todas as oportunidades possíveis, por todos os seus sacrifícios e por sempre ficar ao meu lado. Sou grata a você desde as coisas pequenas, como fazer a minha marmita todos os dias, até as coisas grandes como ter trabalhado o dia inteiro só para que eu e meu irmão continuássemos estudando. Obrigada, mãe, você é incrível.

Ao meu namorado, Walter, por sempre me ouvir e me ajudar nessa jornada difícil que é a faculdade. Obrigada por nunca ter me deixado desistir e sempre me apoiar para eu crescer como pesquisadora e como pessoa.

Aos meus irmãos, Jean, Sophia e Benjamin, espero continuar sendo uma boa irmã mais velha para vocês. Às minhas tias, Dore e Lurde, pelas sopas gostosas que fazem pra mim quando eu chego cansada da faculdade. À minha avó Zé que eu sinto muita saudade. À minha avó Ray, que cuida de mim como uma neta de coração. Ao meu pai e a Gracy, pelas mensagens positivas que me mandam mesmo de longe.

À minha orientadora, Karín, que sempre me abriu portas e me ensinou muito nesses 6 anos de pesquisa. Muito obrigada pelos conselhos, broncas e por ser um modelo a se seguir para mim e para todas as alunas do OV.

À Beatriz Ramos, Aldée Charbonnier e Laurie Riguccini que cederam um pouco do seu tempo para me ajudar com esse projeto. À todos os membros do grupo LASEX, que toda semana compartilham comigo algo novo e me ajudam a caminhar no mundo da pesquisa.

À todos os professores com quem eu encontrei durante esses anos. Desde a minha explicadora, Lurde, meu professor de ensino médio, Pierre, até os professores do Valongo. Obrigada por dedicar suas vidas a passar o conhecimento adiante. Em especial, aos professores Alexandre Lyra e João Torres por me colocarem no caminho da astronomia.

Ao meu amigo de infância, Haroldo, por me aturar há tantos anos. Obrigada meus amigos do ON, Hissa, Sandro, Carol, Plicida e Marcão pelos inúmeros momentos divertidos.

Aos meus companheiros de UFRJ, Andressa, Elias, Camila, Ana, Pedro, Geisa, Renato, Rayssa, Natália, Luidhy, Maria e provavelmente eu estou esquecendo gente.

Ao CNPq e a UFRJ pelo apoio financeiro a esse projeto através da minha bolsa de IC e da bolsa auxílio.

Sumário

R	esumo	iv
\mathbf{A}	bstract	v
$\mathbf{A}_{\mathbf{i}}$	gradecimentos	vi
Sι	ımário	vii
Li	sta de figuras	ix
\mathbf{Li}	sta de tabelas	xi
1	Introdução	1
2	Amostra	5
3	Estudo da Metalicidade 3.1 Cálculo da Metalicidade 3.2 UVLGs compactas: baixa metalicidade e diferentes das galáxias locais Morfologia das UVLGs compactas 4.1 Metodologia da análise morfológica 4.1.1 Classificação Visual 4.1.2 Classificação Paramétrica	 10 11 14 18 20 20 21
	4.2 UVLGs compactas - Galáxias em interação	22
5 6	Ambiente das UVLGs compactas 5.1 Análise do Ambiente 5.2 UVLGs compactas - vizinhanças pouco densas? Conclusões e Perspectivas	 25 26 29 31

Α	Amostra estendida	das UVLGs compactas	33
1 1	milliostra ostomataa	aus c i das compactas	

В	Imageamento de UVLGs compactas na banda Ks		61		

Referências Bibliográficas

66

Lista de Figuras

1.1	Espectro solar feito por von Fraunhofer	1
1.2	Representação da expansão do Universo	2
1.3	Densidade da taxa de formação estelar pelo redshift $\ \ldots \ldots \ldots \ldots \ldots$	3
2.1	Definição das UV luminous galaxies	6
2.2	Mapa de velocidades para duas Lyman-break Analogs	8
2.3	Parâmetros morfológicos das Análogas de Lyman-break	9
3.1	Cadeia de reações para a cadeia pp	11
3.2	Comparação de diferentes indicadores de metalicidade	12
3.3	Relação massa-metalicidade local de Tremonti et al. (2004)	14
3.4	Evolução da relação massa-metalicidade com redshift	15
3.5	Relação massa-metalicidade local	16
3.6	Relação massa-metalicidade para $z\sim 2$	17
4.1	Classificação morfológica de Hubble	19
4.2	Classificação morfológica visual das UVLGs compactas	21
4.3	Funcionamento do software SExtractor	22
4.4	Histograma da classificação morfológica paramétrica das UVLGs compactas	23
4.5	Modelo paramétrico ajustado a cUVLG139	24
5.1	Relação ambiente versus tipo morfológico	25
5.2	Imagem da galáxia Arp87	26
5.3	Proximidades da cUVLG003	28
5.4	Simulação de minor merger	30
B.1	UVLGs classificadas como disco	61
B.2	UVLGs classificadas como esferoidais	62
B.3	UVLGs classificadas como mergers (Parte 1)	63
B.4	UVLGs classificadas como mergers (Parte 2)	64
B.5	UVLGs classificadas como mergers (Parte 3)	65

Lista de Tabelas

2.1 Propriedades físicas das galáxias luminousas no ultravioleta $\ldots\ldots\ldots$ 7

Capítulo 1

Introdução

Na Astronomia estudamos os astros através das informações que eles emitem e que chegam até nós através de partículas, ondas eletromagnéticas e ondas gravitacionais. Uma das técnicas para analisar as ondas eletromagnéticas é a espectroscopia, que consiste do espalhamento da luz do objeto celeste por um elemento dispersor, com isso a luz é espalhada em diferentes comprimentos de onda. Joseph von Fraunhofer, em 1814, descobriu linhas escuras no espectro da luz solar. Ele catalogou cerca de 570 linhas com letras do alfabeto (Figura 1.1).

FIGURA 1.1: Espectro solar feito por von Fraunhofer, em 1814, com as linhas escuras classificadas por letras.

Gustav Kirchhoff e Robert Bunsen descobriram que essas linhas escuras são causadas pelos elementos químicos que constituem o Sol. Eles estavam analisando as linhas oriundas da queima de metais, e constataram que as linhas emitidas eram similares com algumas das linhas de Fraunhofer, confirmando que as linhas escuras no espectro de Fraunhofer eram causadas pelos elementos que compõem o Sol.

Em extragaláctica, estudamos como as galáxias evoluem ao longo do tempo e para isso é importante estudá-las em diferentes estágios de evolução. As galáxias no Universo distante são importantes porque contam o inicio da história das galáxias no Universo. As galáxias no Universo distante são ditas galáxias com um alto redshift. Redshift (z) é o esticamento dos comprimentos de onda causados pela expansão do Universo (vide Figura 1.2).

FIGURA 1.2: Representação de como a expansão do espaço distorce o comprimento de onda emitido no Universo distante.

Madau & Dickinson (2014) analisaram a densidade da taxa de formação estelar em diferentes redshifts ou lookback time ¹. Eles encontraram que o Universo formava mais estrelas em $z \sim 2$ e que metade da massa estelar que vemos hoje foi formada antes de $z \sim 1$, quando o Universo tinha metade da sua idade atual (Figura 1.3).

 $^{^1 {\}rm Lookback}$ time é a diferença entre a idade do Universo hoje e a idade que o Universo tinha quando o fóton dessa galáxia foi emitido.

FIGURA 1.3: Densidade da taxa de formação estelar pelo redshift ou lookback time (Madau & Dickinson 2014)

Apesar de já conhecermos muitos aspectos das galáxias em alto redshift, estudos detalhados sobre as propriedades espacialmente resolvidas, como espectros de campo integrado (IFU; sigla em inglês para Integral Field Unit) são muito difíceis, requerendo várias horas por objeto. A literatura resultante de trabalhos com espectrógrafos de campo integral é portanto dominada por trabalhos que focam nas galáxias mais luminosas e apenas uns poucos tem como alvo de estudo galáxias típicas em altos redshifts (e.g., Law et al. 2009). Essa limitação é devida às limitações em sensibilidade de instrumentos atuais e a diminuição no brilho superficial do objeto.

Na tentativa de solucionar esse problema houve a busca por análogas a esses objetos em alto redshift no Universo local. Heckman et al. (2005) utilizou os dados do telescópio espacial Galaxy Evolution Explorer (GALEX; Martin et al. 2005), junto com informações do Sloan Digital Sky Survey (SDSS) Data Release 1 (DR1; Seibert et al. 2005), para definir uma amostra de galáxias que apresentam propriedades semelhantes às condições encontradas em galáxias star-forming ² típicas em alto redshift ($z \sim 2-3$). As galáxias dessa amostra, com redshifts muito mais baixos ($z \sim 0.1-0.3$) são extremamente diferentes as galáxias normais que observamos no universo local e próximo: com altas taxas de formação estelar restritas a regiões compactas, elas apresentam um alto fluxo de emissão no ultravioleta em regiões de apenas alguns segundos de arco. Esse trabalho foca

²Termo usado para se referir a galáxias que ainda estão convertendo o seu gás em estrelas.

no estudo detalhado de uma amostra mais ampla de galáxias compactas luminosas no ultravioleta, com brilho superficial na banda FUV (Ultravioleta distante) ~ 7 vezes maior do que galáxias normais locais (Wyder et al. 2005). Com esse trabalho visamos estudar os seguintes aspectos destes objetos: metalicidade (Capítulo 3), morfologia (Capítulo 4) e ambiente (Capítulo 5).

Capítulo 2

Amostra

O telescópio espacial GALEX (Galaxy Evolution Explorer) foi lançado em Abril de 2003 com o objetivo de estudar o Universo no ultravioleta. Ele realizou um survey all-sky nas bandas do ultravioleta distante (FUV; 1350 - 1780 Å) e ultravioleta próximo (NUV; 1700 - 2730 Å). O ultravioleta foi escolhido pois neste intervalo de comprimento de onda vemos a emissão das estrelas jovens e azuis, e consequentemente, podemos traçar a formação estelar recente nas galáxias. Dentro desta procura por galáxias star-forming no Universo local, foi encontrado a nossa amostra de estudo.

Heckman et al. (2005) definiu uma amostra de galáxias para serem as análogas de típicas galáxias star-forming em $z \sim 2$, as Ultraviolet Luminous Galaxies (UVLGs). Ele utilizou dados no ultravioleta do GALEX e propriedades físicas do Sloan Digital Sky Survey (SDSS) Data Release 1 (DR1; York et al. 2000, The SDSS collaboration et al. 2003), como o r_{50} ¹ que foi usado no cálculo do brilho superficial.

As galáxias chamadas de "luminosas no ultravioleta" (ou UVLGs pela sigla em inglês para UV-luminous galaxies) possuem luminosidades no FUV maior do que $2 \times 10^{10} L_{\odot}$ e são divididas em duas categorias de acordo com seu brilho superficial no FUV: UVLGs estendidas e UVLGs compactas (Figura 2.1). As UVLGs estendidas possuem brilhos superficiais moderados ($I_{FUV} < 10^8 L_{\odot} kpc^{-2}$) e são galáxias espirais normais que devem sua alta luminosidade no FUV ao seu grande tamanho angular.

¹Raio que contém 50% da luz da galáxia na banda r do SDSS.

FIGURA 2.1: Distribuição das UVLGS no plano de brilho superficial na banda FUV pela massa estelar. Os contornos descrevem a distribuição de 18463 galáxias do Data Release 3 do GALEX. Os círculos pretos são as UVLGs. A linha tracejada em log $I_{FUV} = 8$ representa a divisão entre as UVLGs estendidas e as compactas. A região retangular na parte superior do gráfico mostra a região ocupada pelas galáxias Lyman-break em $z \sim 2$. Figura de Hoopes et al. 2007

As UVLGs compactas (cUVLGs), com brilho superficial entre $10^8 < I_{FUV} < 10^9 L_{\odot} kpc^{-2}$, são galáxias com intensa formação estelar restrita a regiões compactas (log $R_{50,u} = 0.0 - 0.7 \, kpc$). Uma subpopulação das cUVLGs, com brilho superficial $I_{FUV} > 10^9 L_{\odot} kpc^{-2}$, são extremamente compactas e por isso chamadas de UVLGs supercompactas. A população foi definida de forma a selecionar uma amostra com propriedades similares as Lyman-break Galaxies ² e por isso são chamadas de Lyman-break Analogs (LBAs). Um resumo das propriedades físicas das diferentes subpopulações das UVLGs pode ser visto na Tabela 2.1.

²As Lyman-break Galaxies recebem esse nome porque foram detectadas através da técnica de Lymanbreak desenvolvida por Steidel et al. (1996). A técnica consiste no imageamento em 3 bandas ópticas, $u, g \in r,$ e constatasse que a galáxia é visível nas bandas $g \in r,$ mas não é visível na banda u. Isso ocorre por causa da quebra no contínuo do espectro do objeto que ocorre em 912Å, causada ela absorção do hidrogênio neutro.

Parâmetros	UVLGs	UVLGs	LBGs
	Estendidas	Compactas	
$\log L_{FUV} (L_{\odot})$	10.3 - 10.5	10.35 - 10.65	10.3 - 11.3
$\log R_{50,u} \ (kpc)$	0.9 - 1.3	0.0 - 0.7	0.0 - 0.5
$\log I_{FUV}(L_{\odot} \ kpc^{-2})$	6.9 - 7.8	8.2 - 9.8	9 - 10
$\log M_* \ (M_\odot)$	10.5 - 11.3	9.5 - 10.7	9.5 - 11
$\log M_{dyn} \ (M_{\odot})$	10.4 - 11.6	10.0 - 10.8	10.0 - 10.5
$\log \mu_*(M_\odot \ kpc^{-2})$	7.9 - 8.7	8.0 - 9.1	8.5 - 9.0
$A_{FUV} \ (mag)$	0.3 - 2.0	0.6 - 2.1	1 - 3
$\log SFR~(M_{\odot}~yr^{-1})$	0.6 - 1.2	0.6 - 1.4	0.5 - 2.5
$\log(SFR/M_*) \ (yr^{-1})$	-10.5 to - 9.5	-9.8 to - 8.6	-9 to - 8
$FUV - r \ (AB \ mag)$	1.8 - 2.9	0.6 - 2.1	0.2 - 2.2
D4000	1.2 - 1.7	1.0 - 1.3	
$12 + \log(O/H)$	8.55 - 8.75	8.2 - 8.7	7.7 - 8.8
$\log\sigma_{gas}~(km~s^{-1})$	1.7 - 2.1	1.8 - 2.2	1.7 - 2.1

TABELA 2.1: Propriedades físicas das UVLGs e das LBGs. Tabela retirada de Heckman et al. 2005. Como podemos ver existem semelhanças entre as UVLGs compactas e as LBGs em diversas propriedades.

As LBAs também apresentam propriedades cinemáticas similares ao que se espera de galáxias em alto redshift. Gonçalves et al. (2010) mostraram que as LBAs possuem alta dispersão de velocidade (~ 70 km/s), sugerindo que elas não são compostas por discos estáveis e sim por um meio interestelar turbulento. Neste artigo eles também simularam como seriam os mapas de velocidade das galáxias se elas estivessem em redshifts altos (neste caso, em $z \sim 2.2$) e mostraram que com a perda de resolução espacial devido ao redshift, elas pareceriam discos (Figura 2.2). Com esse trabalho Gonçalves et al. (2010) enfatizam a dificuldade de tirar conclusões cinemáticas de galáxias em alto redshift.

FIGURA 2.2: Esquerda: Mapa de velocidade para as LBA210358 e LBA 135355. Centro: Mapa de velocidade simulado para $z \sim 2.2$. Direita: Imagens no óptico e no ultravioleta, ambas do telescópio espacial Hubble (HST). Figura retirada de Gonçalves et al. 2010.

Overzier et al. (2009) analisaram os parâmetros morfológicos das LBAs. Eles utilizaram uma técnica similar a de Gonçalves et al. (2010) para simular como seriam as propriedades dos objetos em z = 2 e z = 3 e compararam com outras galáxias nesses redshifts. Através dos parâmetros C (concentração), A (assimetria), G (mede a distribuição do fluxo ao longo da galáxia) e M_{20} (concentração da luz em qualquer parte da galáxia), eles constataram que as LBAs ocupam o mesmo espaço de parâmetros das LBGs. Esse resultado indica que as LBAs, assim como as LBGs, estão majoritariamente passando por um processo de merger (Figura 2.3).

FIGURA 2.3: Parâmetros morfológicos para as LBAs e para os objetos em alto redshift (LBGs e BzKs) no óptico e ultravioleta. Os quadrados azul, verde e vermelho são os objetos BzKs em z = 2, LBGs em z = 3 e LBGs em z = 4, e os círculos azul, verde e vermelho as LBAs simuladas em z = 2, z = 3, z = 4. Figura retirada de Overzier et al. 2009.

Neste trabalho focamos no estudo das UVLGs compactas com o intuito de analisar as propriedades dessa amostra mais geral de UVLGs. Nossa primeira análise foca na metalicidade das UVLGs compactas (Capítulo 3) e foi feito usando uma população mais geral das UVLGs compactas com cerca de 1000 objetos (Overzier, comunicação privada). As outras análises, focadas na morfologia e ambientes das UVLGs compactas foram baseadas numa amostra de ~ 40 objetos observados no infravermelho próximo (Banda Ks, $\lambda_{eff} = 2.132 \ \mu m$) com o instrumento FOURSTAR no Observatório Las Campanas, Chile ³.

 $^{^3\}mathrm{As}$ imagens foram obtidas em 2011 - 2012 como parte do período de teste do instrumento recém colocado no telescópio e foram reduzidas pelo especialista do instrumento (e colaborador da equipe) Andy Monson

Capítulo 3

Estudo da Metalicidade

Após o Big Bang, o Universo expandiu e com isso sua densidade e temperatura diminuíram o suficiente para que quarks se juntassem e formassem os primeiros elementos químicos: hidrogênio e hélio. Esse fenômeno é conhecido como nucleossíntese primordial. Após o surgimento das primeiras estrelas, houve a criação de elementos químicos mais pesados a partir do hidrogênio e hélio.

O brilho das estrelas é consequência da fusão nuclear em suas regiões centrais que através da queima do hidrogênio criam elementos químicos mais pesados como carbono, oxigênio, etc. Em estrelas de baixa massa ($M < 2.3 M_{\odot}$), o hélio é criado por cadeias pp (vide Figura 3.1). O núcleo da estrela aumenta de temperatura devido a queima de hidrogênio e quando chega a $T \sim 10^8 K$, começa a queima de hélio em carbono.

Em estrelas de alta massa $(M > 8M_{\odot})$, quando há carbono o suficiente, outras reações começam a acontecer para criar outros elementos mais pesados (e.g., oxigênio, neônio). Esse processo continua até a criação do Fe^{56} quando a estrela cessa a sua fusão nuclear e não é mais capaz de balancear a força gravitacional da sua própria massa. Isso leva a contração da estrela que ocorre tão rapidamente que as camadas mais externas sofrem um ricocheteamento e são violentamente expulsas criando uma Supernova do tipo II. A explosão de supernova também libera uma grande quantidade de nêutrons, os elementos até então criados irão capturar esses nêutrons e através do processo chamado processo-r irá criar elementos mais pesados que o Fe^{56} . Esses elementos são levados para o meio interestelar tanto pelas supernovas, mas também pelos ventos estelares nas fases pós sequência principal.

FIGURA 3.1: Cadeia de reações da cadeia pp. A cadeia pep é menos provável em relação a cadeia pp pois precisa da colisão entre três partículas. As cadeias ppII e ppIII necessitam que a estrela possua elementos mais pesados na sua composição como Li e Be, por isso são mais raras.

A evolução estelar desta forma leva ao enriquecimento do meio interestelar. O parâmetro metalicidade mede a quantidade de metais, elementos mais pesados que o hélio, presentes nas galáxias. Esse parâmetro traça o histórico de formação estelar das galáxias, onde as galáxias mais velhas possuem mais metais.

3.1 Cálculo da Metalicidade

A metalicidade é a razão entre a quantidade de um metal com o hidrogênio, como por exemplo Fe/H. Considerando que o aumento de um metal está correlacionado com o de outro, podemos medir a abundância de um metal específico e derivar a metalicidade global. O indicador mais usado em estudos de abundância é baseado na abundância de oxigênio, O/H, pois ele é o metal mais comum.

Na literatura existem diferentes métodos para o cálculo da metalicidade. O método é escolhido de acordo com o intervalo de metalicidade da amostra. Diferentes indicadores podem saturar em certos intervalos de metalicidade, como o indicador R_2 (Equação 3.1; Curti et al. 2016) na Figura 3.2 que possui diferentes valores para altas metalicidades $(12 + log(O/H) \sim 8.7)$.

$$R_2 = ([O_{II}]\lambda 3727)/H\beta \tag{3.1}$$

Algumas vezes as linhas de emissão de galáxias em alto redshift não estão disponíveis no instrumento utilizado. Isso ocorre porque as linhas estão *redshifted*, desviadas para altos comprimentos de onda, ficando indisponíveis para a análise, e outro indicador deve ser usado.

FIGURA 3.2: Comparação de diferentes indicadores de metalicidade em relação a abundância de oxigênio. Figura retirada de Curti et al. (2016).

Para este estudo usamos Tremonti et al. (2004) e Pettini & Pagel (2004) com o intuito de comparar as metalicidades de nossa amostra com as de galáxias locais e galáxias em redshifts maiores ($z \sim 1-3$). Tremonti et al. (2004) desenvolveram seu método com uma amostra de 53.400 galáxias star-forming no universo local (0.005 < z < 0.3) oriundas do SDSS Data Release 2 (DR2). Eles usaram o índice chamado R_{23} baseado no fluxo das linhas de emissão [OII], [OIII] e H_{β} (Equação 3.2) - para o cálculo da metalicidade através de um polinômio de grau 3 (Equação 3.3).

$$R_{23} = ([O_{II}]\lambda 3727 + [O_{III}]\lambda \lambda 4959, 5007)/H\beta$$
(3.2)

$$12 + \log(O/H) = 9.185 - 0.313 \times x - 0.264 \times x^2 - 0.321 \times x^3 \text{ onde } x = \log R_{23} \quad (3.3)$$

Para comparar nossa amostra com as LBGs, usamos os dados de Erb et al. (2006) que analisou 87 LBGs com $\langle z \rangle = 2.26 \pm 0.17$. Eles usaram o método de Pettini & Pagel (2004) para o cálculo da metalicidade, porque para esse redshift as linhas de oxigênio caem em janelas da atmosfera aonde não podem ser observadas, impossibilitando o uso do método de Tremonti et al. (2004). O método de Pettini & Pagel (2004) utiliza linhas de [*NII*] λ 6583 e H_{α} de acordo com o polinômio de grau 3 em função de N2 (Equações 3.4 e 3.5)

$$N_2 = \log[N_{II}]\lambda 6583/H\alpha \tag{3.4}$$

$$12 + \log(O/H) = 9.37 + 2.03 \times N2 + 1.26 \times N2^2 + 0.32 \times N2^3$$
(3.5)

Para o cálculo das metalicidades foram utilizados os fluxos das linhas de emissão retiradas do SDSS Data Release 9 (DR9) usando a linguagem de busca, SQL. Os valores calculados estão anexados na tabela do Apêndice A.

3.2 UVLGs compactas: baixa metalicidade e diferentes das galáxias locais

Tremonti et al. (2004) mostrou a existência da relação entre a massa estelar e a metalicidade em galáxias locais ($z \sim 0.1$). Nela vemos que as galáxias com maior massa são mais metálicas que as galáxias com menor massa, como ilustrado na Figura 3.3.

FIGURA 3.3: Relação entre a massa estelar e a abundância de oxigênio para ~ 53400 galáxias star-forming no SDSS. Os losangos pretos representam bins de massa que incluem pelo menos 100 galáxias. As linhas pretas são contornos que contém 68% e 95%, respectivamente. A linha vermelha mostra o melhor ajuste aos dados. Figura de Tremonti et al. (2004).

Essa relação ocorre porque as galáxias mais massivas, que possuem um poço de potencial maior, conseguem reter mais os metais produzidos. Nas galáxias com menor massa, o poço de potencial não é suficiente para manter os metais que são levados pelos ventos estelares e supernovas, diminuindo a metalicidade global da galáxia. Em alto redshift, essa relação também é observada. Na Figura 3.4 vemos que a relação massa-metalicidade ainda está presente em $z \sim 2.2$. Comparando as curvas neste gráfico observamos que as as galáxias mais massivas já eram as mais metálicas em alto redshift, enquanto as menos massivas demoraram mais tempo para aumentar a sua metalicidade. Esse é o efeito conhecido como downsizing, onde os objetos com maior massa evoluem mais rápido.

FIGURA 3.4: Relação massa-metalicidade em diferentes redshifts. Os valores da metalicidade foram calculados usando Kobulnicky & Kewley (2004). Imagem retirada de Zahid et al. (2013).

Nas Figuras 3.5 e 3.6 fazemos uma comparação com a nossa amostra: os pontos correspondem a uma grande amostra de ~ 1000 UVLGs compactas (Overzier, comunicação privada), enquanto os pontos azuis e vermelhos apontam para aqueles objetos que também foram observados com o instrumento FOURSTAR para um estudo mais detalhado (e.g., Capítulos 4 e 5). Na Figura 3.5 a linha tracejada preta representa a relação massa-metalicidade local calculada por Tremonti et al. (2004). Podemos ver que as UVLGs compactas estão abaixo das galáxias star-forming no Universo local, principalmente as UVLGs compactas de menor massa. Entretanto, as UVLGs compactas mais massivas coincidem com a relação local pois elas já adquiriram suas metalicidades

devido ao efeito de downsizing. As massas estelares foram obtidas pelo SDSS Data Release 7 (DR7) seguindo os procedimentos descritos em Kauffmann et al. (2003) e Salim et al. (2007), que estão listadas no Apêndice A.

FIGURA 3.5: Relação massa-metalicidade utilizando o método de Tremonti et al. (2004) para a nossa amostra. Os pontos representam nossa amostra de UVLGs compactas (círculos azuis), de LBAs (círculos vermelhos) e a amostra estendida de 1000 UVLGs compactas (círculos brancos).

Usando o índice N2 (Equação 3.4) comparamos a distribuição da nossa amostra no plano massa-metalicidade com a relação que foi encontrada para as LBGs por Erb et al. (2006). Eles encontraram que as LBGs em $z \sim 2-3$ coincidem no plano de massa-metalicidade com a relação de Tremonti et al. (2004) deslocada para baixo em 0.56 dex para abaixo da relação local. Na Figura 3.5, mostramos nossa amostra e esta relação encontrada para as LBGs em alto redshift. Constatamos que a nossa amostra coincide com a relação massa-metalicidade para as LBGs em $z \sim 2$.

FIGURA 3.6: Relação massa-metalicidade utilizando o método de Pettini & Pagel 2004 para a nossa amostra. Os pontos representam nossa amostra de UVLGs compactas (círculos azuis), de LBAs (círculos vermelhos) e a amostra estendida de 1000 UVLGs compactas (círculos brancos). Linha tracejada preta é a relação massa-metalicidade local deslocada para baixo em 0,56 dex. Os pontos pretos são dados de Erb et al. 2006.

As Figuras 3.5 e 3.6 mostram que para uma dada massa estelar, as UVLGs compactas - assim como as LBAs (da amostra usada em Overzier et al. 2009) - possuem uma metalicidade significativamente menor do que a população local ($z \sim 0.1$). O meio interestelar das UVLGs compactas é consideravelmente menos poluído de metais do que a população típica no Universo local. Isso expande o nosso conhecimento sobre as UVLGs compactas, pois apenas conhecíamos isso para as LBAs. Considerando as taxas de formação estelar ($\langle SFR \rangle \sim 8.3 \ M_{\odot} \ yr^{-1}$), indicadas na tabela do Apêndice A, isso indica que as UVLGs compactas são galáxias mais primitivas, possivelmente passando por um dos primeiros eventos de formação estelar. Estamos presenciando o início das primeiras gerações de estrelas que são responsáveis por começar a poluir o meio interestelar nesses objetos.

Capítulo 4

Morfologia das UVLGs compactas

Os grandes catálogos estelares (e.g., Messier, Messier & Charles 1781; New General Catalog, Dreyer & E. 1888) representaram uma revolução na nossa percepção sobre a diversidade em sistemas tanto galácticos como extragalácticos. Em particular, a grande variedade nos formatos dos sistemas extragalácticos levaram Edwin Hubble a propor um sistema de classificação morfológica (Hubble 1926) popularmente conhecido como o "diagrama de diapasão" (Figura 4.1). Mesmo sendo um sistema de classificação de quase 100 anos e baseado numa amostra de galáxias brilhantes e massivas, o sistema de classificação de Hubble ainda serve hoje de referência chave em qualquer discussão de modelos de formação e evolução de galáxias.

As galáxias podem ser classificadas em duas grandes categorias: (1) galáxias com uma distribuição espacial de estrelas relativamente homogênea e esferoidal, sem plano de rotação preferencial; e (2) galáxias com discos que apresentam rotação. Na classificação de Hubble, as galáxias sem disco correspondem às galáxias elípticas e às galáxias com discos, às lenticulares e às espirais, dependendo da presença de braços espirais (Figura 4.1). No universo local, a maioria das galáxias massivas ($54.2 \pm 2.8\%$, para $M_* = 10^{10.25} M_{\odot}$), que não se encontram em aglomerados, são galáxias espirais (Calvi et al. 2011).

FIGURA 4.1: Classificação morfológica de Hubble. Créditos: NASA & ESA. Imagem retirada da seguinte página: https://www.spacetelescope.org/images/heic9902o/

Uma das principais motivações para estudar a morfologia das galáxias é a sua relação com as propriedades físicas inerentes à galáxia. Há mais de 50 anos, o trabalho clássico de Holmberg (1958) mostrou que as elípticas no Universo local são galáxias vermelhas, apontando a pouca ou nenhuma formação estelar ativa e possuem uma população estelar mais velha, enquanto as espirais são azuis, ativamente formando estrelas.

Muitos trabalhos posteriores, aproveitando os grandes avanços em sensibilidade instrumental em diferentes bandas e o aumento no tamanho das amostras disponíveis, confirmaram a correlação entre morfologia e propriedades físicas das galáxias. Hoje sabemos que galáxias elípticas tipicamente possuem pouco gás (e.g., Mathews & Brighenti 2003) e que são dominadas por populações estelares velhas (e.g., Renzini 2006), indicando que a massa estelar foi formada num único evento no passado distante (e.g., Merlin et al. 2012).

Todavia, as galáxias com disco são tipicamente associadas com sistemas ricos em gás e poeira (e.g., Springob et al. 2005) e com históricos de formação estelar mais complexos que resultam numa mistura de populações estelares jovens e velhas distribuídas em diferentes estruturas estelares, como o bojo, o disco, os braços espirais, etc. (e.g. Roberts & Haynes 1994).

Considerando as correlações locais entre morfologia e as outras propriedades físicas das galáxias, é esperado que ao longo da trajetória evolutiva de uma galáxia a morfologia desta mude. Isso explica porquê em redshifts mais altos a distribuição morfológica das galáxias muda, com uma maior proporção de galáxias com morfologias perturbadas (e.g., Conselice & Arnold 2009, $z \sim 4-6$), além de uma mudança global nas cores apontando a taxas de formação estelar mais elevadas numa proporção maior de galáxias (e.g., Santini et al. 2009, Efeito Butcher-Oemler em galáxias em aglomerados; Butcher & Oemler, A. 1978).

Motivados por um interesse em investigar as propriedades típicas da população de galáxias compactas no UV, abordamos um estudo morfológico sistemático de nossa amostra utilizando várias metodologias: classificação visual e classificação paramétrica. Descrevemos cada uma das abordagens e nossos resultados a seguir.

4.1 Metodologia da análise morfológica

Para o nosso estudo usamos imagens no infravermelho próximo (banda Ks) obtidas com o instrumento FOURSTAR, no telescópio Baade de 6.5 m (Observatório Las Campanas, Chile). A luz na banda Ks é dominada por estrelas de baixa massa que representam o grosso da massa estelar em galáxias (e.g., Rix & Zaritsky 1995). Desta forma a nossa análise morfológica é focada na distribuição de massa estelar e é menos enviesada pela presença de poeira e picos na distribuição de formação estelar.

4.1.1 Classificação Visual

A classificação visual é o método mais antigo na análise morfológica. Hubble e Sandage, entre outros, foram pioneiros nesta abordagem (Hubble 1926, Sandage & Allan 1961). Ainda que atualmente abordagens automatizadas foram desenvolvidas com o intuito de lidar eficientemente com grandes amostras (Seção 4.1.2), a classificação visual continua sendo uma ferramenta muito útil em estudos de galáxias locais (e.g., Buta et al. 2010) e até no universo mais distante (e.g., Sheth et al. 2008).

Como parte de nosso trabalho, avaliamos individualmente a imagem na banda Ks de cada cUVLG e classificamos as galáxias nas seguintes categorias:

- Esferoidais: apresentam uma distribuição de brilho suave, com aparência esférica ou elíptica
- Discos: apresentam estruturas semelhantes a braços espirais
- Fusões (ou "mergers"): apresentam estruturas disformes e/ou peculiares que apontam para um sistema em processo de fusão avançada onde já não é possível distinguir os núcleos individuais das galáxias participantes.

Na Figura 4.2 mostramos exemplos das 3 classes morfológicas adotadas na nossa análise. Os resultados de nossa classificação morfológica, baseada na análise visual, aparecem nas figuras anexadas no Apêndice B para cada galáxia de nossa amostra.

FIGURA 4.2: Classificação morfológica das UVLGs compactas. Esquerda: cUVLG062 classificada como *esferoidal*. Meio: cUVLG139 classificada como *disco*. Direita: cU-VLG145 classificada como *merger*.

4.1.2 Classificação Paramétrica

A classificação paramétrica da morfologia de uma galáxia se dá através do ajuste dos perfis de brilho. Esses perfis são o fluxo integrado em diferentes aberturas ao longo da extensão da galáxia. O perfil de Sérsic (Sérsic 1963) é uma parametrização genérica que popularizou rapidamente por descrever dois casos comuns em galáxias: o perfil exponencial de um disco e o perfil característico das galáxias elípticas (i.e., perfil de de Vaucouleurs; de Vaucouleurs 1948). O perfil de Sérsic é descrito pela equação 4.1.

$$I(R) = I_0 \times \exp\left(-b(n) \times \frac{R}{R_e^{1/n}} - 1\right)$$
(4.1)

onde n é o índice de Sérsic, I_0 é a intensidade central, e b(n) é definido de tal forma que R_e , chamado de raio efetivo, é o raio que contém 50% do brilho da galáxia.

Uma das grandes vantagens da abordagem na caracterização da morfologia em galáxias é que permite a implementação em grandes amostras. Estudos recentes focados numa grande amostra de galáxias no campo COSMOS (e.g., Zurich Estimator of Structural Types; Scarlata et al. 2006) mostram como essa abordagem reproduz bem as classificações visuais de uma grande diversidade de tipos morfológicos. De forma geral, a caracterização paramétrica das morfologias de galáxias aponta para duas grandes categorias: as galáxias com disco, ditas de "tipo tardio" (e.g., espirais ou lenticulares) com índice de Sérsic $n \sim 1$ e as galáxias mais esferoidais, ditas de "tipo anterior" (e.g., elípticas) com $n \sim 4$. Os valores n = 1 e n = 4 correspondem na teoria aos perfis exponenciais e de de Vaucouleurs; na prática, o valor adotado de n para distinguir entre galáxias com disco e sem disco é $n \sim 2.5$ (e.g., Scarlata et al. 2006).

Para ajustar o perfil de Sérsic para a nossa amostra utilizamos os softwares PsFex e SExtractor (Bertin 2011,Bertin & Arnouts 1996). O SExtractor é uma ferramenta muito utilizada para criar de forma automatizada um catálgo com todos os objetos detectados numa imagem fornecida, baseado num conjunto de parâmetros (e.g., DE-TECT_THRESH, DEBLEND_NTHRESH, PHOT_APERTURES, etc). Esse catálogo pode ser trabalhado dentro do SExtractor para derivar fotometria (i.e., magnitudes) dos objetos e para distinguir de forma automática entre estrelas e sistemas estendidos (e.g., galáxias), entre outras funções. A Figura 4.3 mostra uma de nossas imagens onde os objetos foram automáticamente detectados e sinalizados com uma abertura de ~ 2 ". SExtractor calcula os parâmetros morfológicos ajustando perfis de brilho para os objetos, levando em conta a Point Spread Function (PSF) da imagem que foi estimada pelo PSFEx. Trabalhos recentes tem utilizado eficientemente a combinação destas ferramentas para determinar a morfologia detalhada de grandes amostras de galáxias (e.g., Charbonnier et al. 2017).

FIGURA 4.3: Detecção dos objetos na imagem pelo SExtractor. Esquerda: Imagem original do campo. Direita: Os objetos detectados com as suas respectivas aberturas, objetos estendidos possuem aberturas elípticas referente ao parâmetro 'MAG_AUTO' que determina a magnitude com aberturas elípticas.

4.2 UVLGs compactas - Galáxias em interação

As duas metodologias tem as suas vantagens e desvantagens. A classificação visual é muito poderosa, sobre tudo quando ela é baseada na avaliação de vários pesquisadores experientes. Ela permite uma grande variedade de subclassificações, dependendo do escopo do estudo (e.g., presença de subestruturas como barras, anéis). Porém, a classificação paramétrica é mais automatizada e com resultados mais reproduzíveis independentemente dos pesquisadores envolvidos. Implementamos as duas metodologias para todas as galáxias na nossa amostra com o objetivo de tirar proveito das vantagens das duas abordagens. Na classificação visual obtemos a seguinte distribuição:

- 67% mergers
- 27% esferoidais
- 6% discos

Na classificação paramétrica, os resultados apontam para uma maioria com a classificação de discos (Figura 4.4).

FIGURA 4.4: Histograma dos índices de Sérsic para a amostra ~ 40 UVLGs compactas, determinados com o conjunto de ferramentas S Extractor e PSF
ex. A abordagem ajusta o perfil de brilho com apenas uma componente de Sérsic
. A figura mostra que a maioria das galáxias são melhor ajustadas com um índice de Sérsic
 n<2.5- mais características de galáxias com discos.

Atribuímos a diferença entre a classificação visual e a paramétrica a vários fatores. Por um lado, é importante considerar que a classificação paramétrica é restrita ao ajuste de uma única componente de Sérsic ao perfil de brilho global de cada galáxia (Figura 4.5). Ferramentas mais complexas (e.g., GALFIT, Peng et al. 2002; BUDDA, De Souza et al. 2004) resultam numa decomposição mais fiel do perfil de brilho de uma galáxia ao adotar múltiplas componentes; isso permite, por exemplo, decompor uma galáxia de tipo tardio nas componentes de bojo, disco, barra, etc. (e.g. Rix et al. 2004). Ainda que o ajuste do perfil de brilho de galáxias por uma única componente foi demonstrado como adequado para grandes amostras, os resultados podem ser menos confiáveis para amostras menores. No nosso trabalho, uma amostra de ~ 40 objetos é razoável. Porém, um outro fator que deve ser considerado é que a abordagem paramétrica adotada para a nossa análise se limita apenas a classificação de galáxias como "com disco"ou "esferoidal", excluindo a possibilidade de classificar galáxias como "em interação". Atribuímos a discrepância nos resultados das diferentes abordagens ao fato de que na classificação visual concluímos que a maioria de nossa amostra são do tipo "em interação", que é uma classificação inexistente na abordagem paramétrica.

FIGURA 4.5: Processo do modelo paramétrico. Esquerda: Imagem original na banda Ks do objeto cUVLG139. Meio: Perfil de brilho modelado. Neste caso o modelo que melhor ajusta é um perfil de Sérsic com índice n = 9.6, que classificamos sob a categoria de esferoidal. Direita: Resíduo do ajuste, ou seja, imagem original menos o modelo gerado. Neste caso os residuais parecem indicar a presença de braços espirais; na nossa abordagem de ajuste de apenas uma componente, estes não foram considerados no modelo, demostrando as limitações de nossa análise.

As UVLGs compactas aparentam ser em sua maioria mergers, porém elas possuem perfis de brilho parecidas com as de galáxias com disco. Isso pode indicar que as UVLGs compactas são galáxias com disco que tiveram sua taxa de formação estelar aumentada devido a fusão com uma companheira ou satélite rico em gás. Porém, neste caso a fusão não levou a uma distorção em grande escala da galáxia, mantendo a morfologia de disco.
Capítulo 5

Ambiente das UVLGs compactas

O ambiente onde a galáxia se encontra desempenha um papel crucial na sua evolução. Dressler (1980) mostrou que galáxias elípticas, são mais abundantes em ambientes mais densos, como no centro de aglomerados (Figura 5.1). Quando presentes em aglomerados, as galáxias podem sofrer diversos processos (e.g., estrangulamento, pressão de arraste) que podem retirar e/ou aquecer o seu reservatório de gás. Isso pode causar o cessamento da formação estelar na galáxia, levando-a de um tipo morfológico para outro.

FIGURA 5.1: Fração de galáxias elípticas (círculos vazios), lenticulares (círculos preenchidos) e espirais + irregulares (cruz) em relação a densidade do ambiente em que estão inseridas.

A presença de companheiras também gera efeitos na morfologia das galáxias e consequentemente nas suas propriedades físicas. Devido a força de atração, a presença de uma companheira pode criar caudas de maré, que são deformações causadas nas periferias da galáxia (Figura 5.2). Esse tipo de distorção pode ser o resultado de uma simples passagem de uma galáxia na vizinhança de outra; porém, pode também ser o sinal de uma longa interação que subsequentemente pode levar à fusão completa dos dois sistemas. Um evento desse tipo entre galáxias ricas em gás geraria um aumento significativo na atividade de formação estelar; esses eventos são conhecidos como "surtos de formação estelar" ou "starbursts".

As galáxias de nossa amostra representam uma população com altas taxas de formação estelar ($\langle SFR \rangle \sim 8.3 \ M_{\odot} \ yr^{-1}$; vide Tabela 2.1), $\sim 8 - 10$ vezes maior do que o valor para a Via Láctea e galáxias disco similares (e.g., M31, Yin et al. 2009). Para entender a origem destas altas taxas de formação estelar, nós nos propusemos a estudar o ambiente e buscar pela presença de companheiras.

FIGURA 5.2: Imagem da galáxia Arp87 como exemplo da criação de caudas de maré devido a uma companheira. Créditos na imagem.

5.1 Análise do Ambiente

Usamos o banco de dados do SDSS Data Release 12 (DR12; Alam 2015) para identificar galáxias próximas às cUVLGs de nossa amostra. Experimentamos várias abordagens para identificar galáxias na vizinhança, considerando várias escalas físicas correspondendo às diferentes estruturas de grande escala (e.g., grupos, aglomerados). Como uma primeira tentativa simples, usamos a linguagem de busca SQL para identificar galáxias num raio de 15' ao redor de cada cUVLG; no redshift médio de nossa amostra $(z \sim 0.2)$ isso corresponde a um raio de busca de $\sim 3 Mpc$. Considerando que tais objetos seriam apenas "galáxias vizinhas" no plano do céu, é necessário usar a informação de redshift disponível para tais objetos, de forma a determinar se são ou não galáxias próximas fisicamente. Optamos por considerar tanto os redshifts fotométricos como os espectroscópicos de forma a maximizar o número de objetos analisados.

Depois de criar um primeiro catálogo de vizinhos aparentes (i.e., no plano do céu num raio de 15'), fizemos uma análise mais detalhada para selecionar objetos fisicamente próximos às cUVLGs da amostra que considerou tanto a dispersão de velocidade (Δv) quanto a distância projetada (ΔD). Estes parâmetros são definidos de acordo com as equações 5.1, 5.2 e 5.3.

$$\Delta v = c \times |z_{cUVLG} - z_{obj}| \tag{5.1}$$

$$\Delta D = sep_ang(arcmin) \times scale(Mpc/arcmin)$$
(5.2)

$$sep_ang(arcmin) = \arctan \frac{\sqrt{(\cos(\delta_2) \cdot \sin(\Delta \alpha))^2 + (\cos(\delta_1) \cdot \sin(\delta_2) - \sin(\delta_1) \cdot \cos(\delta_2) \cdot \cos(\Delta \alpha))^2}}{\sin(\delta_1) \cdot \sin(\delta_2) + \cos(\delta_1) \cdot \cos(\delta_2) \cdot \cos(\Delta \alpha)}$$
(5.3)

onde: $\alpha_1 \in \delta_1$ são as coordenadas da cUVLG; $\alpha_2 \in \delta_2$ as do objeto vizinho; $\Delta \alpha = |\alpha_1 - \alpha_2|$; c é a velocidade da luz e a escala ("scale" na Equação 5.2 é definida de acordo com as constantes e definições cosmológicas definidas por Planck 2015 (Ade et al. 2015), com $H0 = 67.74 \ km/(Mpc \cdot s) \in \Omega_m = 0.307$.

Para identificar galáxias potencialmente ligadas gravitacionalmente às cUVLGs de nossa amostra (ou contidas nas mesmas estruturas de grande escala), adotamos os seguintes valores limites como parte de nossa análise:

- z fotométrico: $\Delta v < 3000 \ km/s \ e \ \Delta D < 1 \ Mpc$
- z espectroscópico: $\Delta v < 1000 \ km/s$ e $\Delta D < 0.5 \ Mpc$

Esses valores são típicos na seleção de galáxias em ambientes densos (e.g., Amodeo et al. 2017). Notamos que nos casos em que os redshifts disponíveis eram apenas fotométricos, os valores adotados para $\Delta v \in \Delta D$ são maiores devido a que as incertezas associadas são maiores do que no caso de um redshift espectroscópico. A Figura 5.3 mostra o exemplo da galáxia cUVLG003 na nossa amostra. A imagem na banda r e com um tamanho de 1' x 1', proveniente do SDSS, mostra a presença de vários objetos próximos. Porém, num redshift $z \sim 0.26$, as galáxias mais próximas (em $z \sim 0.21$) se encontram a uma velocidade relativa de 17250 km/s, além do esperado para sistemas ligados gravitacionalmente numa mesma estrutura em grande escala. Seguindo essa abordagem não encontramos nenhuma galáxias companheira para as galáxias da nossa amostra.

FIGURA 5.3: Proximidades da UVLG compacta 003. A cUVLG está sinalizada com um círculo vermelho e logo acima encontra-se o seu redshift espectroscópico. Os outros objetos são galáxias detectadas pelo SDSS DR12 e seus respectivos redshifts fotométricos.

Para analisar se as UVLGs compactas se encontram em aglomerados usamos o mesmo modo de busca por dispersão de velocidade e separação projetada descrito anteriormente, nos baseando em catálogos de aglomerados detectados com diferentes métodos:

• Wen et al. (2012): 132684 aglomerados detectados através da técnica friend-offriends com 0.05 < z < 0.8. A identificação do aglomerado é feita se forem detectado mais de 8 galáxias membros com $M_r < -21$ dentro de um raio de 0.5 Mpc e um intervalo de redshift de $z \pm 0.04(1+z)$.

- Takey et al. (2013): 530 aglomerados por detecção em raios-x do telescópio espacial XMM-Newton. A detecção foi feita procurando por sobredensidades de galáxias nas detecções em raios-x
- Rykoff et al. (2014): ~ 25000 aglomerados com 0.08 < z < 0.55 detectados pela identificação de sua sequência vermelha através do algoritmo redMaPPer. A existência da sequência vermelha aponta para populações estelares mais evoluídas, indicando que os aglomerados são relativamente "maduros": comumente a relação morfologia-densidade apresentada por Dressler (1980) já pode ser identificada nestas estruturas.

Seguindo essa abordagem alternativa, nossos resultados também apontam a uma falta de sobredensidade na vizinhança das galáxias de nossa amostra: nenhuma das 40 UVLGs compactas na nossa amostra foi identificada dentro dos aglomerados apresentados nestes catálogos.

5.2 UVLGs compactas - vizinhanças pouco densas?

Com esses resultados mostramos que essas UVLGs compactas nao possuem companheiras massivas na base de dados do SDSS DR12. Entretanto, não podemos afirmar que elas não tenham companheiras menos massivas, dado que o SDSS é sensível até objetos com $M_r = 22.2 mag$.

Existem duas possíveis explicações para o fato que a as UVLGs compactas tenham morfologias peculiares (Capítulo 4) e não possuírem companheiras massivas. A primeira é que elas sejam o resultado de uma fusão avançada, onde as duas galáxias originais já se juntaram em uma e não é mais possível distingui-las entre si. A outra, indica que as cUVLGs estão passando por um minor merger.

Minor merger é uma fusão em que a razão da massa entre as galáxias envolvidas é maior que 1:4. Hernquist & Mihos (1995) mostraram através de simulações que um minor merger com razão de massa de 1:10 pode deformar a galáxia mais massiva (Figura 5.4). Com isso, veríamos a deformação causada na UVLG compacta sem ser possível detectar a companheira menos massiva no SDSS. Como vimos no Capítulo 4 que as UVLGs compactas são majoritariamente mergers, então é possível que as UVLGs compactas estejam passando por um minor merger.

FIGURA 5.4: Simulação de um minor merger, em diferentes estágios, com razão de massa de 1:10 por Hernquist & Mihos (1995).

Capítulo 6

Conclusões e Perspectivas

Esse trabalho foca no estudo de uma população de galáxias recentemente identificadas pelo telescópio espacial GALEX. Luminosas no ultravioleta (e chamadas de UVLGs pela denominação em inglês: UV-luminous galaxies), a compacidade de uma subamostra das UVLGs selecionadas pelo GALEX (com brilho superficial de $I_{FUV} > 10^8 L_{\odot} kpc^{-2}$) aponta para uma alta taxa de formação estelar restrita a regiões pequenas em galáxias ricas em gás.

De particular interesse é uma subamostra das UVLGs compactas, ditas de supercompactas por ter um brilho superficial particularmente elevado $(I_{FUV} > 10^9 L_{\odot} kpc^{-2})$; conhecidas como Lyman-break Analogs (ou LBAs) por possuir várias propriedades em comum com galáxias típicas em redshifts $z \sim 2 - 3$ (Lyman-break Galaxies ou LBGs). Elas são o foco de vários trabalhos recentes que aproveitam a proximidade das LBAs para fazer estudos muito detalhados que apenas são possíveis em amostras próximas que permitem inspecionar as condições características de galáxias em alto redshift.

Esse trabalho foca na população mais ampla das UVLGs compactas. Esse é o primeiro e único trabalho focado no estudo desta população, com o intuito de melhor caracterizar as particularidades de galáxias atípicas no universo local (altas taxas de formação estelar restritas a regiões compactas), mas menos extremas do que as LBAs. Neste trabalho analisamos algumas propriedades físicas e o ambiente das UVLGs compactas. Desenvolvemos várias análises focados na metalicidade, diversidade morfológica e ambiente desta interessante amostra. Nossos resultados principais são os seguintes:

- 1. Para uma massa estelar determinada, as UVLGs compactas são menos metálicas do que as galáxias locais (Capítulo 3)
- 2. As UVLGs compactas estão passando por um processo de fusão (Capítulo 4)

3. Elas não possuem companheiras massivas, e não residem em vizinhanças com alta densidade numérica (Capítulo 5)

Resumindo, as UVLGs compactas são menos metálicas que as galáxias típicas no Universo local, apresentam morfologias peculiares que indicam que estão passando por um processo de merger e não possuem companheiras massivas. Nossos resultados apontam que as UVLGs compactas estão passando por processos extremos e incomuns no Universo local.

Atualmente, estamos estendendo a nossa análise das UVLGs compactas para o ajuste de SEDs (*Spectral Energy Distribution*) baseado em informação fotométrica no UV (GALEX), óptico (SDSS) e infravermelho próximo (FOURSTAR) usando os softwares Lephare (Arnouts et al. 1999,Ilbert et al. 2006) e Cigale (Burgarella et al. 2005). Desta análise visamos obter massas estelares usando a visão chave do infravermelho próximo que é dominado pela emissão de estrelas de baixa massa que representam a grande parte da massa estelar da galáxia. Com isso buscamos explorar as relações entre massa estelar, morfologia, SFR e outras propriedades, com o intuito de melhor entender a população das UVLGs compactas.

Apêndice A

Amostra estendida das UVLGs compactas

Neste apêndice apresentamos a tabela com as metalicidades calculadas seguindo as metodologias descritas no Capítulo 3. Nela está incluído a identificação fornecida pelo SDSS (objID), posição do objeto (RA e DEC), metalicidade com o método de Tremonti et al. (2004) (Z_T04), metalicidade com o método de Pettini & Pagel (2004) (Z_P04), a massa estelar (M_*) fornecida pelo SDSS e a taxa de formação estelar (SFR) baseada na linha de emissão de H_{α} .

objID	RA	DEC	Z_T04	Z_P04	$\left \log M_{*}\right. (M_{\odot})$	$\left SFR\right.\left(H_{\alpha} ight)$
1237648721216929816	148.432910	-0.090180	9.007355	9.134634	9.99512	0.290192
1237651801233883218	149.520050	0.174227	8.862508	8.486250	10.26960	16.076126
1237648722833899707	162.965990	1.052982	9.079705	8.450568	10.81170	0.415838
1237674650998210698	170.401220	0.547061	8.652994	8.365894	9.93924	11.902673
1237648721226563803	170.483870	-0.173721	8.688150	8.903332	10.64660	1.762735
1237671142554927228	175.514230	0.859960	8.755554	9.098086	11.03080	30.567337
1237671763713130521	191.663800	0.725693	8.724848	8.537492	10.13600	11.259151
1237648705661173768	206.976620	0.909900	9.172740	8.807836	11.00950	11.557719
1237674603752390990	211.874730	0.969359	8.828484	8.466050	10.12630	6.151998
1237648704592871475	219.438140	0.078787	8.934847	8.943186	10.69340	7.108103
1237648720174711098	220.522570	-0.880170	8.476821	8.192627	9.23833	12.241941
1237648703520833768	223.331230	-0.628558	8.682856	8.576821	10.38420	6.145754
1237648720715055113	228.335890	-0.431072	8.615738	8.340126	9.38970	13.160698

Tabela A.1:

Continua na próxima página

objID	RA	DEC	Z_T04	Z_P04	$\log M_* (M_{\odot})$	$ SFR(H_{\alpha}) $
1237648704060522858	229.842730	-0.405198	9.181667	8.875547	10.93970	7.650016
1237655693557891176	238.203420	-0.524918	9.157603	8.768204	9.86470	2.774630
1237678617405161828	331.022080	0.988228	8.746905	8.607159	10.85950	40.518264
1237663479259529360	334.960650	0.023679	8.712965	8.457589	9.84285	18.994070
1237660025032278200	340.855370	-0.768988	8.848757	8.485660	10.07020	3.696486
1237656906347511901	342.785590	-0.895434	8.852139	8.586649	10.42410	17.952646
1237656906349215882	346.559120	-1.006806	9.072392	8.935886	11.30680	11.744778
1237663783119093892	349.554170	-0.690598	8.578431	8.345854	9.96677	16.073659
1237663462607552754	351.413450	0.751996	8.472706	8.232225	9.24238	8.010487
1237663783124730007	2.541571	-0.767645	8.709032	8.435148	10.52150	2.430486
1237657192518320259	5.757519	1.184750	8.747010	8.590320	9.93431	1.102297
1237663278466924651	5.254286	0.880023	8.485554	8.260877	9.29262	8.204266
1237663784740061298	13.287731	0.511082	9.043026	8.920819	10.90810	1.584081
1237663783666581565	13.864427	-0.363547	8.557746	8.364817	9.66407	16.384352
1237663784211972261	33.327920	0.082436	9.100752	8.706830	11.29300	1.941775
1237666301091315976	47.749766	0.252567	8.722345	8.405890	9.96662	5.117651
1237663238739984727	52.483318	0.049001	8.557228	8.235746	8.99497	2.596319
1237653652918108333	22.292317	14.992969	8.547442	8.275685	9.21764	9.897576
1237649919510446221	33.452232	12.997660	9.109645	9.237294	10.45410	3.059696
1237649918971084879	27.618315	13.149577	8.707929	8.472268	10.32860	10.710918
1237653651309920413	27.858285	13.419654	8.977357	8.681536	10.36560	7.019965
1237651496295792935	121.513760	47.800380	8.835233	8.595699	10.66130	22.219862
1237651273496199276	123.847530	50.070763	8.968739	8.596495	10.21170	9.994573
1237651191892279460	124.761680	47.773487	8.916499	8.574450	10.65280	7.305682
1237651496297496717	125.007140	50.844223	8.453982	8.192014	9.75258	13.105597
1237653472514408488	35.709964	-7.785965	8.707275	8.440207	10.25470	28.120771
1237653471443091645	41.373142	-8.277180	8.757118	8.440246	10.07140	11.424434
1237649961381724287	50.845275	-7.937580	9.044001	9.086496	10.87020	12.954032
1237652899160260711	52.619625	-7.912360	8.659184	8.325107	9.75504	2.925048
1237652901308203099	53.467963	-6.101528	8.571862	8.287258	9.36401	9.468807
1237649961383493869	54.949156	-7.428130	8.516941	8.263893	9.56243	18.409677
1237652901311283385	60.536947	-5.111692	8.573605	8.313740	9.46510	1.152792
1237649962459791592	60.545433	-5.775112	9.087995	8.529744	10.89580	14.121243
1237648722820792573	133.007620	1.083243	8.461524	8.120012	8.95945	2.546700
1237651753991078060	135.948800	1.668648	8.566814	8.353140	9.70628	10.203136
Cor	ntinua na pró	xima página				

objID	RA	DEC	Z_T04	Z_P04	$\log M_* (M_{\odot})$	$SFR(H_{\alpha})$
1237648721215095004	144.310280	-0.145272	9.014287	8.734133	10.93450	15.703589
1237651753459187740	147.337450	1.717541	8.508632	8.359810	9.82982	19.930964
1237651271359135874	160.320680	64.341048	8.897348	8.616467	10.59620	12.483082
1237651538710692143	175.885530	67.038514	8.609261	8.325803	9.66446	2.155731
1237651537639768208	192.082290	66.361854	8.685272	8.322756	9.85436	11.269813
1237651274052010001	208.482900	66.800153	8.748731	8.394375	9.91455	9.108286
1237651753997238480	150.095610	2.220131	9.070530	8.724990	10.22830	4.410143
1237651755074060462	157.154130	3.111622	8.835792	8.610342	10.24000	19.176602
1237651735222091955	184.510910	1.472013	8.728278	8.498593	9.88430	6.854495
1237651735760404584	187.824210	1.908372	9.193861	8.755589	10.93400	7.531154
1237671765323940008	190.526330	1.260442	8.923008	8.546301	10.37600	16.113893
1237671266571387104	191.097430	2.261253	8.340648	8.151160	9.57012	20.577162
1237651736837095622	194.605880	2.852483	8.585939	8.278853	9.67402	4.344297
1237651754019127473	200.147330	2.452452	8.604518	8.314214	9.78626	25.614332
1237651505953243394	201.727560	1.229677	8.386956	8.116415	9.29633	9.320148
1237651735230480485	203.784600	1.449730	8.855201	8.532817	10.25080	12.230521
1237651754560454806	210.258630	2.878466	8.877775	9.114786	11.69110	23.829839
1237651754027188450	218.571510	2.128492	9.025281	8.746634	10.70930	7.488849
1237653587407405258	120.634770	39.264632	9.003306	8.817218	10.71350	10.336258
1237654389493071964	122.184430	39.814554	9.140600	9.056981	9.77102	2.287104
1237653587947290693	126.021630	44.879460	9.108802	9.053097	10.90800	17.510041
1237654390032171198	126.234190	44.023540	8.932155	8.912851	10.95000	4.062690
1237654383051276524	136.130710	52.243324	8.968412	9.152174	10.89680	8.996215
1237654381441581102	140.141570	52.643722	8.625587	8.339602	9.90243	2.118914
1237654383052980236	140.901920	54.810908	8.774959	8.491575	9.78058	6.558436
1237653612112314399	144.556240	54.473620	8.498675	8.255795	9.37431	8.603426
1237654605852574011	137.086080	3.586939	8.783766	8.436276	10.01730	9.681509
1237654604778635683	136.737920	2.859431	9.080138	9.198144	11.12070	6.271907
1237674459879309534	142.069730	3.096504	8.358090	8.111482	9.10086	9.287464
1237673708260032576	142.370890	2.946965	9.145880	9.077569	10.29970	4.381718
1237654605856768034	146.662280	4.313759	8.838849	8.780802	10.54180	13.721733
1237654600492646586	156.881090	3.709540	8.649352	8.384467	10.16550	14.877528
1237654601565864144	155.674520	4.542244	8.866487	8.577375	10.29790	8.671276
1237654602103914677	158.393160	4.955203	8.680319	8.401413	9.78611	16.374632
1237658297923403840	158.527430	5.518480	8.657562	8.309743	9.80438	7.524654
Cor	itinua na pró	xima página				

objID	RA	DEC	$Z_{-}T04$	Z_P04	$\log M_* (M_{\odot})$	$SFR(H_{\alpha})$
1237655742403772648	214.659280	5.304991	8.618446	8.385389	9.57146	11.375649
1237654879125962975	213.878970	3.488895	8.687490	8.399193	9.67450	6.853439
1237654879662899237	214.051180	3.894886	8.869947	8.607073	10.63070	15.018660
1237651822712717591	223.602540	3.990333	8.439359	8.249454	9.59042	16.154437
1237654875357053000	167.923440	63.487352	8.988739	8.627255	9.88119	3.725249
1237651067351073064	173.265770	65.228153	8.374786	8.117708	9.08440	3.839059
1237654875358757055	176.672240	64.198390	8.801382	8.459384	9.85043	6.923316
1237654400765853789	179.907910	65.760157	9.015606	8.919343	11.33890	1.266555
1237654610142822563	189.740150	65.009313	8.691990	8.648734	10.29210	10.119010
1237654874825228389	194.036900	63.832706	8.941740	8.624407	10.24930	6.312477
1237654344401354933	212.938900	62.653145	8.427299	8.169200	9.15193	8.872229
1237651250430083089	209.318280	62.291408	8.858915	8.607305	10.50560	12.512858
1237651539794133239	227.354460	61.716197	8.954357	8.953826	10.67170	7.061181
1237654948372873409	226.869530	59.986986	8.531200	8.258134	9.43604	9.980809
1237651539259818109	235.209180	57.411642	8.590933	8.352127	9.66408	15.569530
1237655130909311115	241.555640	51.255319	8.472338	8.239724	9.48886	2.183888
1237654949988597910	243.357330	52.569980	8.910413	8.758343	10.83310	10.214514
1237654953740075257	248.688890	46.984236	8.484392	8.183422	9.37381	8.669135
1237655130377158746	250.648000	42.397152	8.497149	8.215292	9.45655	10.191384
1237651715874095320	253.191400	43.321524	8.919446	8.581049	10.22390	5.332865
1237651714800681189	252.761340	42.220652	9.025021	8.872490	10.95660	12.804368
1237652934568444302	313.750080	-6.643126	8.841235	8.553576	10.06350	2.859394
1237652598489153748	315.994770	-7.467356	9.013503	9.125949	10.89090	23.141724
1237652934035374201	322.490930	-8.057540	9.119903	8.902776	10.57900	6.269374
1237652934037471551	327.224920	-8.679710	8.947085	8.931630	10.43860	2.678029
1237652901821415599	359.019500	-8.906504	8.427316	8.113104	9.28051	5.906674
1237652946377637976	358.706360	-10.978445	8.563236	8.269833	9.71036	3.876804
1237652901830197322	19.371232	-8.734369	8.480905	8.224936	9.77302	8.177710
1237652901834850388	29.971120	-8.230274	8.388653	8.128219	9.08561	3.717701
1237652901835243720	30.987138	-8.132911	8.542656	8.240072	9.36830	6.679468
1237656495641788638	339.396090	13.613055	8.430985	8.152316	9.44765	17.877523
1237652942631141530	342.917990	13.453726	8.481599	8.200070	9.14546	3.751878
1237656242778079514	349.109650	15.096330	8.715471	8.463123	9.85088	14.762592
1237656494039826451	359.781290	13.791851	9.096226	9.074756	11.14080	8.121540
1237654653102719060	129.515550	44.983426	8.511533	8.202664	9.54021	3.145219
Cor	ntinua na pró	xima página				

objID	RA	DEC	Z_T04	Z_P04	$\log M_* (M_{\odot})$	$SFR(H_{\alpha})$
1237654653106651224	139.651690	50.950600	8.612830	8.315543	9.79559	4.484294
1237657772318195750	141.937120	50.393294	8.789357	8.494195	10.07210	9.404691
1237651196716056672	149.186890	61.193546	8.699330	8.375690	9.83711	15.688141
1237651065736135107	153.501090	60.730333	9.004417	9.088459	10.79790	1.064181
1237655464841707694	181.409170	62.570423	8.653543	8.393332	9.69654	19.579918
1237655370364092501	196.190120	62.405799	8.581166	8.311129	9.91416	8.193076
1237655348889321565	232.596150	52.746147	8.551209	8.258581	9.31483	4.100490
1237655349964374114	236.951770	51.319488	9.059449	8.679573	10.78930	16.164926
1237657242433486943	140.497480	45.153443	8.999270	8.879380	10.76240	12.596315
1237657242435059804	144.732880	47.207994	8.460047	8.128305	9.12800	2.692988
1237655124466401384	170.789840	4.016133	8.593701	8.317879	9.58100	2.193522
1237651737905922208	183.368560	3.730444	8.598768	8.315035	9.54802	6.249261
1237654879116918958	193.211040	4.082401	8.669930	8.322750	9.48791	6.086918
1237655125550039053	193.446760	5.136842	8.626764	8.359067	9.73630	3.497524
1237655123939819611	194.346340	3.870879	8.632876	8.364043	9.59301	1.634810
1237655124478460072	198.380230	4.208423	8.595030	8.290185	9.57280	2.127098
1237654879119999077	200.307370	3.980386	8.836740	8.591884	10.15330	3.060770
1237657630590107652	141.501700	44.460048	8.394873	8.121552	9.12867	9.424940
1237657630056513670	151.288190	47.873543	8.864219	8.552281	9.90927	7.158846
1237657630602690646	183.903920	53.412382	8.586640	8.287804	9.50301	4.115698
1237657856611713157	186.754850	52.420708	8.879098	8.554642	10.71320	3.003374
1237657858221998162	185.578750	53.682007	8.878648	8.501490	10.24090	3.372875
1237662303502794818	194.881300	53.265002	8.525631	8.237032	9.71035	5.630071
1237661959904231536	198.046740	52.717022	8.847361	8.572711	10.00250	11.042913
1237662301892444296	195.378460	51.926070	8.554788	8.257284	9.46775	3.923366
1237657593539789016	125.405200	37.179645	8.767819	8.457094	10.10010	9.873683
1237657606964052016	131.079470	41.719534	8.523494	8.314381	9.87684	5.415397
1237657770709418022	148.644070	51.585567	8.564120	8.261910	9.69698	3.676785
1237671990269837406	206.500430	-3.408710	8.578991	8.294687	10.03820	12.207727
1237655498670473379	217.507350	-2.288283	9.199851	9.158959	10.41110	9.046441
1237655498671849789	220.630730	-2.164453	8.319436	7.996143	9.11175	14.009368
1237655497600467190	226.031310	-2.804596	8.772325	8.917255	11.47470	42.829233
1237658203422720122	138.788420	38.447149	9.002688	8.595458	9.77144	8.149562
1237658303277564073	154.954930	56.173241	9.028054	8.915595	10.20850	1.202333
1237655109445746819	158.588490	58.114718	8.946503	8.770425	10.63080	10.051369
Con	ntinua na pró	xima página				

objID	RA	DEC	$Z_{-}T04$	Z_P04	$\log M_* (M_{\odot})$	$SFR(H_{\alpha})$
1237658303818170411	169.772300	59.420579	9.050759	8.839232	11.15430	18.097062
1237658303818563621	171.479580	59.555285	8.394056	8.149775	9.78402	2.947542
1237655108374691903	170.252900	59.276035	9.062586	9.122697	10.10090	3.543589
1237655108917461159	197.153250	59.885132	8.486712	8.149392	9.46994	3.423698
1237658205578199203	160.476520	48.122163	8.548872	8.414136	9.79192	18.814732
1237658205046767644	179.127600	50.139484	8.523591	8.263207	9.49329	12.668842
1237655374650736944	254.952790	33.994763	8.953768	8.576953	8.97213	0.659459
1237656567575086155	312.326980	-0.802066	8.744452	8.451272	10.35820	17.023175
1237663543141204696	319.145810	-0.042320	8.714352	8.390073	9.59745	9.618440
1237678617939935591	326.251070	1.199328	8.856173	8.485944	9.93281	9.188058
1237658298458636477	154.762100	5.857049	8.601023	8.323395	9.67087	1.907941
1237658300070625368	157.814900	7.123115	8.752436	8.843659	10.90680	10.384521
1237658801495474207	163.378440	52.631359	8.496622	8.225817	9.44118	16.131679
1237657591929831540	168.183600	55.063082	8.842675	8.726054	10.24110	13.343956
1237659131674099861	223.370750	47.599578	8.629149	8.479525	10.05240	8.586853
1237659131679080542	236.384730	40.967624	8.750651	8.446317	10.08550	5.211380
1237659324946448518	223.493760	52.848778	9.000954	8.727316	11.02630	16.434326
1237659324946645168	224.170800	52.790900	9.117273	9.256469	11.13990	19.473409
1237659150460911737	228.379280	52.246634	8.657830	8.392051	9.78487	6.015381
1237658424076337223	127.075820	4.298214	8.653276	8.383324	9.88547	5.207731
1237658492260843703	137.372130	6.554412	8.614061	8.327788	9.80287	9.387221
1237657628440002648	136.227350	39.643145	8.620050	8.570226	9.56900	0.591349
1237660635444281588	122.517580	26.506633	8.797793	8.485190	10.02910	3.492754
1237658203422523547	138.474730	38.109516	8.990526	8.828899	10.83520	8.317813
1237660342861037708	141.164550	37.374668	8.972729	8.947881	11.08010	16.685445
1237660636526477443	140.360200	38.771974	8.537555	8.256829	9.36774	6.420554
1237660615050395760	176.780800	10.592127	8.827001	8.456091	10.21230	14.371518
1237671129130270801	181.075370	9.249586	8.923043	8.620537	10.31420	10.231881
1237671129130074124	180.772370	8.869789	8.737767	8.426514	9.91440	6.835040
1237658491207221430	183.794990	8.864160	8.863747	8.570786	10.04800	6.297331
1237660584981299222	152.505970	9.231609	8.764924	8.507191	10.27320	14.026294
1237660962934227027	125.979030	28.106042	8.515781	8.315372	8.60802	5.061471
1237660962937045084	132.006900	31.941521	8.708938	8.447999	9.97037	10.010168
1237664869748441182	137.720190	33.502218	9.187573	8.605290	10.58480	5.319093
1237660763766849691	136.940510	32.964507	8.603717	8.279310	9.64722	2.876996
Cor	itinua na pró	xima página				

objID	RA	DEC	Z_T04	Z_P04	$\log M_* (M_{\odot})$	$\left SFR\right.\left(H_{lpha} ight)$
1237658205050830993	193.754880	49.948068	9.051796	8.945883	11.19660	11.719001
1237661150305648735	198.598720	48.544272	8.878923	8.516881	10.38240	13.750709
1237661150842978316	200.212510	48.645289	8.952859	8.680592	10.40040	8.295851
1237661066018291759	129.787900	7.869854	8.643053	8.379904	10.15600	17.115179
1237661064415346722	147.478530	9.542745	8.641132	8.440477	10.20420	3.678671
1237661064953331809	149.979640	10.247267	8.567719	8.274849	9.86276	14.122450
1237661064953790640	151.093190	10.271748	8.770733	8.502456	9.98114	10.942052
1237661388673122337	192.280390	58.458058	8.661644	8.419962	10.13630	19.733843
1237661418749821128	215.256680	54.599988	8.664901	8.436157	9.92115	14.962211
1237661388142018563	214.944160	54.387439	9.370163	8.408971	11.48830	1.880522
1237661417141567519	222.074330	51.005174	8.743454	8.517395	10.09250	12.783932
1237661387609604345	228.891040	48.810425	8.650404	8.416366	10.04310	11.911677
1237661387611177135	233.259300	46.759904	9.066714	8.925242	10.30040	1.918327
1237661387611963622	235.333430	45.605324	8.493233	8.296351	9.26932	12.123049
1237659161200820433	239.935690	40.557001	8.397852	8.133048	9.13880	6.006318
1237659162814972004	248.067780	35.413764	8.694563	8.390672	9.60607	19.695843
1237659324420391168	248.803070	35.738049	8.814310	8.623581	9.85023	13.655498
1237661873488593153	219.545940	40.075882	9.060229	8.919607	11.37270	39.811792
1237661852021424148	229.643050	36.272721	8.917616	8.693246	9.97821	5.669960
1237661851995996169	152.948300	41.165580	8.950413	8.607286	10.58030	22.221754
1237661873470046434	161.953730	43.228197	9.017151	8.674663	10.07960	6.972312
1237661852537651243	167.019380	44.775540	8.850931	8.539246	9.75681	17.060880
1237661852003729464	176.593360	45.470847	8.809286	8.452643	9.77531	1.455636
1237661871867559950	187.641080	44.308657	8.693365	8.438199	9.80097	5.383153
1237661850934247440	190.405210	44.748304	9.141172	8.736471	10.78840	7.306199
1237661850400587858	200.429930	43.405880	8.507995	8.164113	9.83594	10.653201
1237662194534645763	209.331160	39.679259	9.043916	8.913289	11.31120	28.432280
1237662194001248362	218.887020	36.775165	8.533465	8.199883	9.39557	2.563752
1237662306735948037	238.640180	28.686676	8.746805	8.376047	9.62251	6.176449
1237661360765730849	216.023870	42.279534	8.297887	8.141594	9.28424	13.206832
1237661362913148984	216.822040	43.934608	8.767536	8.887390	10.79100	0.792418
1237661360769859734	227.020150	38.161607	8.818164	8.560979	10.02450	9.655141
1237662337871184196	251.466520	24.815956	8.830359	8.620986	10.50730	16.634035
1237662503757021474	239.429260	34.558783	8.503793	8.240202	9.39287	1.824392
1237661139033784538	153.574010	38.782139	8.625677	8.338315	9.72737	14.723675
Cor	tinua na pró	xima página				

objID	RA	DEC	$Z_{-}T04$	Z_P04	$\log M_* (M_{\odot})$	$SFR(H_{\alpha})$
1237661137424023712	156.540480	38.204365	9.146030	9.041257	11.00320	2.548927
1237661139035095163	157.288780	39.740563	8.541809	8.227839	9.55003	3.930690
1237660634388037699	167.146680	45.052714	8.947699	8.793386	10.17870	3.168479
1237662193985388777	171.985220	41.318765	8.627874	8.442277	9.81068	26.674717
1237662193447927955	170.426470	40.572649	8.954523	8.996055	10.87230	4.648049
1237661852541190252	178.489390	46.018666	9.006981	8.981294	11.14620	22.690013
1237662193988927502	182.752530	41.889741	8.584149	8.268822	9.72600	3.064338
1237661435380891789	180.737190	48.200627	8.538665	8.227703	9.39895	9.025033
1237661433771655331	185.610730	47.066746	8.459448	8.267494	9.56810	17.592034
1237661362367889448	189.506090	48.035233	8.805999	8.808426	10.96910	15.576159
1237662193454743780	191.054780	41.456743	8.536852	8.227486	9.46683	5.567172
1237661434848870460	197.352100	47.132391	8.773572	8.454533	9.99224	8.229976
1237661435386200305	198.970900	47.377845	9.023131	8.927532	10.91300	3.851021
1237662193994694749	200.353310	40.891622	8.815245	8.666818	9.66576	17.132069
1237661435924447447	203.466320	47.115784	9.021127	9.043495	10.75870	8.355923
1237662665891184773	250.509850	21.062720	8.633817	8.381910	10.02850	10.452065
1237662665890005145	248.317080	22.796741	8.678085	8.375153	10.45760	45.157888
1237662335183945796	244.504990	27.581763	8.735271	8.627529	9.76680	3.915049
1237662619724415104	239.097130	30.078732	8.725690	8.461086	10.36880	22.509405
1237661124543709436	137.879810	31.457442	8.459536	8.127675	9.09743	7.175258
1237661383843184771	138.111150	32.599809	8.699054	8.484175	9.62706	2.831975
1237661137420025987	145.867270	34.786284	8.721940	8.409596	9.96927	7.229805
1237661383847116816	147.816520	36.675328	8.610340	8.325436	8.92131	5.157595
1237661950780178545	158.705150	11.930646	8.678351	8.450953	10.35980	12.863042
1237661950781227033	161.132360	12.157019	8.631398	8.366893	10.10110	6.479194
1237660670894211198	160.890350	11.905204	8.651981	8.415006	10.03110	11.651949
1237661950782341130	163.633470	12.481090	8.684950	8.468409	8.50412	2.041727
1237661949716398243	181.975370	12.390801	8.642794	8.373023	10.02630	11.430791
1237661813886484597	187.360120	13.339033	9.010096	8.969439	10.94300	8.920566
1237658425172557851	178.632960	8.577085	8.466665	8.244235	-1.00000	5.609110
1237671127519461589	181.899090	8.370976	8.668666	8.531057	-1.00000	3.943391
1237661970111135922	183.484570	6.392653	8.748880	8.474910	-1.00000	15.875899
1237661970649514074	186.957570	6.803832	8.893053	8.611803	-1.00000	2.741556
1237664295836057626	210.900990	37.920301	9.110140	8.882795	10.66520	7.787777
1237662225154834435	223.132320	33.583219	9.011239	8.992604	10.11110	3.608123
Con	tinua na pró	xima página				

objID	RA	DEC	Z_T04	Z_P04	$\log M_* (M_{\odot})$	$\left SFR\right.\left(H_{lpha} ight)$
1237662663753990197	240.537160	26.329324	8.853307	8.934533	10.66450	7.265605
1237662225699045589	240.579810	26.069882	8.703429	8.407084	10.31200	7.813432
1237662225163681931	243.522450	23.889657	8.612138	8.405912	9.82211	16.554938
1237662300824076470	213.568620	47.741567	8.553038	8.268616	9.60588	3.018911
1237662301900964026	223.648240	45.482332	8.530048	8.303736	9.26881	13.043103
1237662498927083665	226.101750	43.551746	9.093769	8.705816	10.44020	9.438380
1237662301368811622	235.205120	39.064112	8.680899	8.440377	10.22480	33.651121
1237662302979162150	235.733010	40.567189	8.784020	8.423234	9.91553	8.522403
1237662500542808117	239.574110	37.857476	8.957579	8.911626	10.76570	16.153378
1237662301907255358	239.147010	37.105523	8.762851	8.430595	9.87721	8.149506
1237661817096962164	192.144310	12.567482	8.319065	8.094603	9.12735	10.846860
1237661949726884129	206.495440	11.479934	8.551504	8.289462	9.89772	9.626051
1237662200424562759	212.865320	12.021407	8.464269	8.186167	9.27046	4.828124
1237662528992378986	214.053640	12.394568	8.821242	8.592254	10.06080	10.703467
1237662635828248703	216.150990	11.887677	8.845369	8.787282	10.61360	25.076068
1237661950269653233	220.173800	10.659891	8.563275	8.278120	9.71772	3.148301
1237661949196959858	222.378510	9.392593	8.861993	8.479272	9.87422	4.600487
1237668348139339917	222.708870	12.843315	8.913862	8.841780	10.58520	14.653596
1237662637442662629	225.208890	11.869635	8.411312	8.131055	9.31854	7.426919
1237662199358160912	229.620030	9.145951	9.021805	8.778366	10.46400	5.962650
1237662534893895705	230.117040	11.166527	8.553107	8.270706	9.64263	12.559024
1237662199895031836	229.663880	9.534891	8.731034	8.440260	10.37560	17.021488
1237662264860737758	231.341210	7.955638	8.759680	8.533152	9.38512	3.410852
1237662264860344485	230.422600	7.989381	8.605686	8.320467	9.54817	3.196719
1237662637450592299	243.189690	8.283616	8.804831	8.687121	10.05710	17.250277
1237668348686434779	245.894910	7.968890	9.060514	8.769585	10.60550	9.251184
1237671260125135132	134.011710	10.223772	9.062228	9.126845	10.85210	13.183304
1237664105241510164	149.503050	11.738118	8.500528	8.309743	9.46246	1.638907
1237664104706801858	154.574910	12.048638	8.718221	8.361195	9.85462	9.179359
1237664133165285446	160.176630	14.780563	8.931884	8.538213	10.40360	17.406427
1237661069791133877	163.840560	14.187278	8.843985	8.497377	9.95193	10.729419
1237661068181635280	166.638250	13.015758	8.565096	8.267629	9.87904	3.733001
1237664291534864452	175.097840	15.469372	9.553512	8.502046	11.34080	0.373279
1237661070336852109	184.766600	15.435700	8.358779	8.111371	9.26560	9.138374
1237661070336852023	184.749220	15.588549	9.215597	8.604880	10.68050	3.238578
Cor	ntinua na pró	xima página				

objID	RA	DEC	$Z_{-}T04$	Z_P04	$\log M_* (M_{\odot})$	$SFR(H_{\alpha})$
1237664289929756750	188.080340	14.467933	8.800408	8.440644	10.09320	12.747358
1237662530060222573	200.298190	14.646620	9.008808	9.002946	10.59170	2.185241
1237664289937096760	205.371670	13.537582	8.628227	8.270418	9.71305	2.272966
1237664292084318332	204.867940	15.278371	8.298871	8.160000	9.29794	12.680617
1237663546907033732	137.588970	61.097267	9.080241	8.759913	10.43690	26.660523
1237662238542856325	191.287720	10.727820	8.418786	8.241431	9.56424	17.955518
1237658491210104849	190.365260	8.872042	9.073857	9.038136	10.76200	7.994125
1237664813374177417	197.949940	8.486821	9.100010	8.936128	10.52660	1.673457
1237671990800810135	201.340240	9.094108	8.810730	8.464653	9.73825	4.924235
1237661972267925544	204.850990	7.657669	8.634226	8.400590	10.05900	15.297684
1237661971731054647	204.887430	7.124883	8.876343	8.523457	10.13160	6.901964
1237662238547902582	202.865810	10.228147	8.531150	8.221370	9.50414	5.759348
1237662262701392130	203.921980	8.822618	9.164199	8.917816	10.97800	4.110019
1237662245520736336	206.539500	6.544816	9.043324	8.778775	10.52960	1.192729
1237662264313708678	207.831790	9.724271	8.903692	8.808624	10.74320	26.649263
1237661972807352342	210.719780	7.671884	8.585078	8.347053	9.49483	20.115548
1237661970122408107	209.339990	5.757875	8.650636	8.329250	9.82108	3.954958
1237662263245996115	221.730530	7.756073	8.447309	8.210830	9.59931	4.963334
1237662263249862681	230.496330	6.680647	9.013456	8.767436	10.32610	15.253343
1237662262718169534	242.277770	4.666967	9.097067	8.802256	10.60990	7.090762
1237661974949593250	214.914490	5.992755	8.796228	8.503071	9.99254	11.920355
1237662268069511204	217.445860	6.726379	8.359921	8.224403	9.44518	19.491055
1237655743483478250	228.341310	5.173286	9.105429	9.146165	11.28050	1.074162
1237662236949741850	231.507760	6.457928	8.830752	8.955816	10.99900	6.272374
1237655743486820505	235.932630	4.520192	8.705553	8.391974	9.90819	18.556673
1237664672720945236	209.330410	34.633543	8.764643	8.482675	10.04830	4.827347
1237664673796522016	214.587020	34.366028	8.808638	8.452818	10.19720	3.051371
1237664853644804129	217.163030	33.395961	8.667478	8.377870	9.88138	5.875077
1237664853645525235	219.127050	32.760905	9.189669	8.586093	10.74540	5.578027
1237662697573646430	237.479080	25.123094	8.796416	8.487453	10.23240	22.664264
1237673809192091898	121.581230	19.824254	8.491117	8.204654	9.26167	5.342331
1237664837535531012	123.536490	21.249804	8.576484	8.307782	9.76685	9.023046
1237664092897083648	125.698600	22.695583	8.339988	8.225525	9.56193	23.380784
1237664834852094289	126.653270	20.626315	9.027285	8.817740	10.79790	15.910415
1237664834854846618	132.487700	23.776632	9.054577	9.011156	11.44880	9.613884
Cor	ntinua na pró	xima página				

objID	RA	DEC	Z_T04	Z_P04	$\log M_* (M_{\odot})$	$\left SFR\right.\left(H_{lpha} ight)$
1237664874583294277	130.789920	24.034690	8.785646	8.379454	10.23610	4.910630
1237664837005344875	138.472460	28.530681	8.779666	8.490710	10.40170	10.512208
1237664092367224927	141.459010	30.416247	8.931695	8.912011	9.66215	5.619400
1237664871362855102	148.238330	32.827897	8.511253	8.259524	9.65978	9.319135
1237664878878851215	148.858400	31.584867	8.649788	8.339718	9.62508	7.984963
1237664879416115330	149.655650	32.453331	8.736109	8.816526	10.71600	2.239139
1237664880491364470	153.262240	34.271005	8.579830	8.342047	9.50347	10.899430
1237665098468425917	154.563210	31.501689	8.545200	8.225835	9.57151	1.564961
1237664668435677291	156.451610	36.382899	8.412747	8.177605	9.17677	6.497633
1237665428092616885	202.132380	28.302500	8.770521	8.469734	10.13880	14.697102
1237665126924943420	162.303950	31.778517	8.734645	8.792464	10.43920	5.144558
1237664337709957136	159.620710	34.434567	8.678229	8.344373	9.73835	6.546288
1237662226208456820	165.523380	39.279906	8.544694	8.193960	9.58509	2.551993
1237665225692872838	179.728340	31.433099	8.572203	8.241913	9.45552	13.644090
1237665127469744233	183.720830	34.305996	8.892529	8.632498	10.36650	9.950087
1237665128010809424	195.265510	34.193459	9.094508	8.972251	10.94120	5.530016
1237665227309383769	195.692910	32.454905	8.783794	8.469634	9.82649	3.395552
1237667259356151932	198.092170	30.063129	8.679622	8.437110	9.79916	8.312733
1237665129613885585	174.342260	35.407415	8.421138	8.213107	9.33143	12.760972
1237664819292274703	196.708780	37.204863	8.825730	8.473784	9.89517	5.065374
1237665024909377681	196.846160	34.359510	9.010052	8.875653	10.96000	9.233496
1237665429167472662	205.284930	28.778420	8.755941	8.565903	10.26620	41.414281
1237664338250104890	168.539850	36.539846	8.569133	8.230824	9.66879	8.273254
1237664854177743035	206.906590	36.178832	8.872187	8.624401	10.12110	9.675630
1237664337180098570	179.185370	36.556480	8.735286	8.395670	9.69137	13.515250
1237662223526068296	171.657360	38.050805	8.359433	8.110529	9.47448	15.445127
1237665367970480195	168.641460	30.883208	8.765886	8.425711	9.94458	7.265787
1237664339320635487	159.389690	35.672832	8.671128	8.397643	9.90009	13.046406
1237664674328608912	201.550490	37.321479	9.052199	8.940045	11.02940	3.334057
1237664337180033111	179.063760	36.578517	9.042496	8.910557	11.16100	12.109261
1237665025977811052	182.174750	35.611581	8.581237	8.298115	9.43679	5.071276
1237665126927564859	169.235690	32.769276	8.685928	8.429329	9.56476	5.445159
1237664819287097458	181.943070	37.682458	8.855918	8.551032	9.67350	5.668624
1237665126939164687	200.850390	32.878818	8.624244	8.610251	10.33260	4.984765
1237665129613492377	173.276360	35.452126	8.748020	8.538121	9.93763	3.788706
Cor	itinua na pró	xima página				

objID	RA	DEC	Z_T04	Z_P04	$\log M_* (M_{\odot})$	$\left SFR\left(H_{\alpha} ight) ight $
1237665329323901094	207.321900	29.767580	8.871479	8.760409	10.70460	11.775744
1237665102208892942	208.890630	32.531419	8.611440	8.303270	9.61256	12.201006
1237665442595078288	209.296170	28.259594	8.882958	8.577453	10.08390	8.745088
1237665129091694595	214.582340	31.900559	8.701704	8.372046	9.86974	5.545483
1237665429171470387	215.279360	26.912292	8.609368	8.316212	9.76061	13.149073
1237665351317913635	218.234930	27.713846	8.930498	8.859435	10.53780	15.157667
1237665440988594304	219.214490	24.750076	8.500342	8.370427	9.71629	14.753632
1237665548892373070	221.307870	22.529452	8.529311	8.252618	9.49926	10.133379
1237665549966377208	222.189600	22.993119	8.960725	8.604537	8.72128	2.087501
1237665549966704896	223.076550	22.846094	9.075091	8.839237	10.60670	4.307176
1237662695957332050	223.540530	29.715313	8.649218	8.295845	9.79423	9.703330
1237665128023130171	227.177570	27.152157	9.354558	8.434107	11.29660	0.431228
1237665532254159185	226.998830	21.461091	8.639749	8.327098	9.57960	1.720678
1237665442070135057	237.615780	19.349660	8.393357	8.258056	9.42198	12.121991
1237665535467258083	238.600540	20.190402	9.241672	8.678105	11.48560	0.252064
1237668706224046555	250.614540	13.995400	9.238735	8.582804	10.59930	2.235409
1237667429567823877	167.057540	25.898880	8.558117	8.260645	9.40753	5.571790
1237667212133728444	168.349520	29.510939	8.670784	8.297327	9.62543	0.673680
1237667444577271891	173.496680	28.146150	9.092613	8.742719	10.60070	6.168556
1237667442967969840	177.059620	27.223877	8.593275	8.317764	9.80945	4.217837
1237667212674072602	177.409490	30.752998	8.505774	8.185935	9.43759	2.996233
1237667322718060642	179.626910	27.123929	8.661447	8.347679	9.72395	3.469839
1237667442969084041	179.886910	27.242746	8.931938	8.982443	10.94830	0.782944
1237667442434506777	185.721520	26.872648	8.769864	8.438024	9.53561	4.831258
1237667444044791940	184.872910	28.262242	8.611136	8.304328	9.73838	4.127587
1237667442974195874	192.986280	27.182686	8.709941	8.442242	9.71805	11.109556
1237667442438373483	195.667180	26.517077	8.894022	8.621290	10.19820	7.530080
1237665532244328639	202.985830	26.733583	8.908084	8.623212	10.00540	5.138914
1237667292647850470	128.705970	15.797726	9.058706	9.007728	10.91050	11.132860
1237667253992554723	127.997350	17.343755	8.649705	8.363852	9.74139	6.411916
1237667107429548310	132.841230	20.600710	9.046166	8.966502	10.16370	2.451083
1237667113867280552	134.656410	23.057431	8.759943	8.529237	9.89828	5.107405
1237667209972482059	135.403450	19.384466	8.623862	8.353912	9.59979	7.908168
1237667429018697946	137.805600	18.518943	8.617560	8.328559	9.33035	15.488182
1237667212661030960	144.432770	24.643493	8.863352	8.741471	10.39190	4.935907
Cor	tinua na pró	xima página				

objID	RA	DEC	$Z_{-}T04$	Z_P04	$\log M_* (M_{\odot})$	$\left SFR\right.\left(H_{lpha} ight)$
1237667255073570983	144.257620	24.443817	8.455303	8.173903	9.49609	3.657734
1237667113871409234	144.213990	26.717690	8.404381	8.181310	9.38527	15.062818
1237667293195075652	152.395210	23.805360	8.700554	8.489070	10.13120	11.639699
1237667254002450519	150.792850	25.505202	8.743520	8.388040	9.81406	13.643342
1237667111189938320	152.042470	26.884217	8.802531	8.548699	10.44910	11.214255
1237667291585839230	155.982250	23.394082	8.890496	8.817542	10.06880	8.204317
1237667254542991466	159.654540	27.931890	9.006097	8.958190	10.67380	8.129197
1237667254006120664	159.779860	27.472518	8.508754	8.227663	8.94329	3.393878
1237667536393142625	141.869490	17.671837	8.301418	8.113590	9.22454	10.419382
1237667537470750850	150.775360	20.798872	8.619223	8.300491	9.61748	3.201547
1237667536933945523	151.002680	20.288686	8.475684	8.285837	9.19706	6.471877
1237667549803118738	152.541270	20.843152	9.016946	8.893150	10.61940	6.853052
1237667551415697456	156.950010	23.087329	8.836631	8.501027	10.01830	4.970076
1237667537473700042	157.846410	22.188879	8.725745	8.434101	9.93615	9.327401
1237667735568253083	150.083830	18.985798	8.759262	8.598732	9.83298	3.844862
1237667734497329239	156.980980	19.491446	8.609569	8.287146	9.23209	0.451845
1237667782273073365	126.409690	11.816013	9.066879	8.987591	10.28640	23.952842
1237667731271712981	130.142110	13.747596	8.390323	8.244620	9.27523	8.933658
1237667783352844487	139.688360	16.778843	8.916567	8.579120	10.50350	6.008489
1237670965922955462	141.262220	15.242242	8.454224	8.221422	9.48278	11.881964
1237668293908627596	166.177220	19.087041	8.755932	8.395802	9.88770	7.946474
1237668496853696676	171.319340	18.049249	8.688993	8.347552	9.51915	8.788485
1237668496856776746	178.631900	18.297690	8.979804	8.614652	10.43260	1.057883
1237668270839300236	236.248620	11.838210	8.722862	8.430339	9.82102	3.274966
1237668349218521146	235.224150	11.061946	8.770218	8.800082	10.74540	14.744547
1237668365849067667	235.458750	14.243783	9.307567	8.667891	11.06390	1.304001
1237668349758931198	243.276320	9.496995	8.534273	8.254790	9.34391	7.871193
1237668310021767710	246.320510	9.198068	8.775515	8.452816	9.92239	16.482696
1237671261730701451	122.410360	8.549285	8.634239	8.282580	9.76777	8.826743
1237670965387395398	144.379340	15.492239	8.597533	8.401577	9.87241	6.202311
1237671124839497734	146.584240	14.446538	8.556882	8.264690	9.68500	7.254188
1237667781209424006	149.502090	17.422317	8.885644	9.026411	10.66880	1.786645
1237671124305117441	152.536340	14.909722	8.909561	8.650753	10.13820	4.226816
1237671262281072899	153.226710	15.671319	8.824079	8.503164	10.14060	7.374987
1237668623012921457	186.096300	16.452793	9.053139	8.964236	10.82220	10.974156
Con	tinua na pró	xima página				

objID	RA	DEC	$Z_{-}T04$	Z_P04	$\log M_* (M_{\odot})$	$SFR(H_{\alpha})$
1237668589730398421	202.470200	16.342063	8.313643	8.104759	9.39843	10.565182
1237667733974679670	191.638000	21.426172	8.873750	8.571828	10.19050	10.396772
1237668270824489205	201.779620	18.348823	8.830447	8.695738	10.69010	9.899075
1237667733971927066	184.884250	21.556943	8.414834	8.199412	9.18468	10.172968
1237667735583719460	187.778790	22.841697	8.681879	8.340547	9.61668	5.820518
1237667736658837731	191.183510	23.460513	8.489321	8.286148	9.14964	4.768299
1237667910061064263	196.736810	23.416150	8.529106	8.282460	9.74218	13.252937
1237667735050846428	197.653080	21.804736	8.567467	8.316010	9.12772	6.286227
1237667783377158160	198.664340	22.523163	8.766181	8.840163	10.40680	5.274367
1237667734515482654	201.265190	21.192722	8.815829	8.822960	10.04150	20.293274
1237667782304989222	202.513260	21.261020	9.128425	9.043993	11.00410	8.325814
1237667448875384946	180.030740	26.087195	8.754942	8.392154	9.77547	7.255027
1237668349744709702	210.685490	15.999065	8.997779	8.916065	11.05070	1.242656
1237662638512537750	216.379480	14.092443	8.738466	8.527776	10.02760	12.180093
1237668350287872034	225.358540	14.076732	8.728582	8.457349	10.26870	11.348416
1237668332567527605	226.487510	13.575321	8.501933	8.256069	9.35426	9.290501
1237668299286642843	206.434210	19.608735	8.597125	8.334950	9.74120	13.446468
1237668273512644783	211.181360	19.216047	8.758171	8.553883	9.57017	3.198919
1237668316459696279	214.956030	16.398344	8.932446	8.601030	10.17240	9.712765
1237668297680683015	217.235090	16.894261	8.618328	8.358156	9.64858	10.721989
1237667733986148413	219.252080	17.941584	8.918917	8.649489	10.64300	33.160614
1237667736128389134	206.934150	21.703319	8.845252	8.522751	9.93596	4.809698
1237667782843957346	207.600850	21.138375	8.657391	8.355452	9.59065	9.685716
1237667912213921828	210.165230	23.479538	8.937074	8.849906	10.47500	23.958960
1237665566074470628	224.699330	19.683175	8.739820	8.824192	10.68590	3.540273
1237674474902650936	175.087630	60.327375	8.422403	8.182082	-1.00000	7.016978
1237655469138575370	234.750490	1.788770	8.852504	8.593891	-1.00000	4.181666
1237665536006029423	242.932570	18.668564	9.095623	9.141456	-1.00000	8.806121
1237665372260532536	241.503070	18.583519	8.592623	8.306244	-1.00000	6.870811
1237665536006488410	243.941760	18.177373	8.982196	8.857735	-1.00000	1.076834
1237648721216929816	148.432910	-0.090180	9.007355	9.134634	9.99512	0.290192
1237651801233883218	149.520050	0.174227	8.862508	8.486250	10.26960	16.076126
1237648722833899707	162.965990	1.052982	9.079705	8.450568	10.81170	0.415838
1237674650998210698	170.401220	0.547061	8.652994	8.365894	9.93924	11.902673
1237648721226563803	170.483870	-0.173721	8.688150	8.903332	10.64660	1.762735
Con	ntinua na pró	xima página				

objID	RA	DEC	Z_T04	Z_P04	$\log M_* (M_{\odot})$	$\left SFR\right.\left(H_{lpha} ight)$
1237671142554927228	175.514230	0.859960	8.755554	9.098086	11.03080	30.567337
1237671763713130521	191.663800	0.725693	8.724848	8.537492	10.13600	11.259151
1237648705661173768	206.976620	0.909900	9.172740	8.807836	11.00950	11.557719
1237674603752390990	211.874730	0.969359	8.828484	8.466050	10.12630	6.151998
1237648704592871475	219.438140	0.078787	8.934847	8.943186	10.69340	7.108103
1237648720174711098	220.522570	-0.880170	8.476821	8.192627	9.23833	12.241941
1237648703520833768	223.331230	-0.628558	8.682856	8.576821	10.38420	6.145754
1237648720715055113	228.335890	-0.431072	8.615738	8.340126	9.38970	13.160698
1237648704060522858	229.842730	-0.405198	9.181667	8.875547	10.93970	7.650016
1237655693557891176	238.203420	-0.524918	9.157603	8.768204	9.86470	2.774630
1237678617405161828	331.022080	0.988228	8.746905	8.607159	10.85950	40.518264
1237663479259529360	334.960650	0.023679	8.712965	8.457589	9.84285	18.994070
1237660025032278200	340.855370	-0.768988	8.848757	8.485660	10.07020	3.696486
1237656906347511901	342.785590	-0.895434	8.852139	8.586649	10.42410	17.952646
1237656906349215882	346.559120	-1.006806	9.072392	8.935886	11.30680	11.744778
1237663783119093892	349.554170	-0.690598	8.578431	8.345854	9.96677	16.073659
1237663462607552754	351.413450	0.751996	8.472706	8.232225	9.24238	8.010487
1237663783124730007	2.541571	-0.767645	8.709032	8.435148	10.52150	2.430486
1237657192518320259	5.757519	1.184750	8.747010	8.590320	9.93431	1.102297
1237663278466924651	5.254286	0.880023	8.485554	8.260877	9.29262	8.204266
1237663784740061298	13.287731	0.511082	9.043026	8.920819	10.90810	1.584081
1237663783666581565	13.864427	-0.363547	8.557746	8.364817	9.66407	16.384352
1237663784211972261	33.327920	0.082436	9.100752	8.706830	11.29300	1.941775
1237666301091315976	47.749766	0.252567	8.722345	8.405890	9.96662	5.117651
1237663238739984727	52.483318	0.049001	8.557228	8.235746	8.99497	2.596319
1237653652918108333	22.292317	14.992969	8.547442	8.275685	9.21764	9.897576
1237649919510446221	33.452232	12.997660	9.109645	9.237294	10.45410	3.059696
1237649918971084879	27.618315	13.149577	8.707929	8.472268	10.32860	10.710918
1237653651309920413	27.858285	13.419654	8.977357	8.681536	10.36560	7.019965
1237651496295792935	121.513760	47.800380	8.835233	8.595699	10.66130	22.219862
1237651273496199276	123.847530	50.070763	8.968739	8.596495	10.21170	9.994573
1237651191892279460	124.761680	47.773487	8.916499	8.574450	10.65280	7.305682
1237651496297496717	125.007140	50.844223	8.453982	8.192014	9.75258	13.105597
1237653472514408488	35.709964	-7.785965	8.707275	8.440207	10.25470	28.120771
1237653471443091645	41.373142	-8.277180	8.757118	8.440246	10.07140	11.424434
Cor	ntinua na pró	xima página				

objID	RA	DEC	$Z_{-}T04$	Z_P04	$\log M_* (M_{\odot})$	$SFR(H_{\alpha})$
1237649961381724287	50.845275	-7.937580	9.044001	9.086496	10.87020	12.954032
1237652899160260711	52.619625	-7.912360	8.659184	8.325107	9.75504	2.925048
1237652901308203099	53.467963	-6.101528	8.571862	8.287258	9.36401	9.468807
1237649961383493869	54.949156	-7.428130	8.516941	8.263893	9.56243	18.409677
1237652901311283385	60.536947	-5.111692	8.573605	8.313740	9.46510	1.152792
1237649962459791592	60.545433	-5.775112	9.087995	8.529744	10.89580	14.121243
1237648722820792573	133.007620	1.083243	8.461524	8.120012	8.95945	2.546700
1237651753991078060	135.948800	1.668648	8.566814	8.353140	9.70628	10.203136
1237648721215095004	144.310280	-0.145272	9.014287	8.734133	10.93450	15.703589
1237651753459187740	147.337450	1.717541	8.508632	8.359810	9.82982	19.930964
1237651271359135874	160.320680	64.341048	8.897348	8.616467	10.59620	12.483082
1237651538710692143	175.885530	67.038514	8.609261	8.325803	9.66446	2.155731
1237651537639768208	192.082290	66.361854	8.685272	8.322756	9.85436	11.269813
1237651274052010001	208.482900	66.800153	8.748731	8.394375	9.91455	9.108286
1237651753997238480	150.095610	2.220131	9.070530	8.724990	10.22830	4.410143
1237651755074060462	157.154130	3.111622	8.835792	8.610342	10.24000	19.176602
1237651735222091955	184.510910	1.472013	8.728278	8.498593	9.88430	6.854495
1237651735760404584	187.824210	1.908372	9.193861	8.755589	10.93400	7.531154
1237671765323940008	190.526330	1.260442	8.923008	8.546301	10.37600	16.113893
1237671266571387104	191.097430	2.261253	8.340648	8.151160	9.57012	20.577162
1237651736837095622	194.605880	2.852483	8.585939	8.278853	9.67402	4.344297
1237651754019127473	200.147330	2.452452	8.604518	8.314214	9.78626	25.614332
1237651505953243394	201.727560	1.229677	8.386956	8.116415	9.29633	9.320148
1237651735230480485	203.784600	1.449730	8.855201	8.532817	10.25080	12.230521
1237651754560454806	210.258630	2.878466	8.877775	9.114786	11.69110	23.829839
1237651754027188450	218.571510	2.128492	9.025281	8.746634	10.70930	7.488849
1237653587407405258	120.634770	39.264632	9.003306	8.817218	10.71350	10.336258
1237654389493071964	122.184430	39.814554	9.140600	9.056981	9.77102	2.287104
1237653587947290693	126.021630	44.879460	9.108802	9.053097	10.90800	17.510041
1237654390032171198	126.234190	44.023540	8.932155	8.912851	10.95000	4.062690
1237654383051276524	136.130710	52.243324	8.968412	9.152174	10.89680	8.996215
1237654381441581102	140.141570	52.643722	8.625587	8.339602	9.90243	2.118914
1237654383052980236	140.901920	54.810908	8.774959	8.491575	9.78058	6.558436
1237653612112314399	144.556240	54.473620	8.498675	8.255795	9.37431	8.603426
1237654605852574011	137.086080	3.586939	8.783766	8.436276	10.01730	9.681509
Cor	ntinua na pró	xima página				

objID	RA	DEC	$Z_{-}T04$	Z_P04	$\log M_* (M_{\odot})$	$\left SFR\right.\left(H_{lpha} ight)$
1237654604778635683	136.737920	2.859431	9.080138	9.198144	11.12070	6.271907
1237674459879309534	142.069730	3.096504	8.358090	8.111482	9.10086	9.287464
1237673708260032576	142.370890	2.946965	9.145880	9.077569	10.29970	4.381718
1237654605856768034	146.662280	4.313759	8.838849	8.780802	10.54180	13.721733
1237654600492646586	156.881090	3.709540	8.649352	8.384467	10.16550	14.877528
1237654601565864144	155.674520	4.542244	8.866487	8.577375	10.29790	8.671276
1237654602103914677	158.393160	4.955203	8.680319	8.401413	9.78611	16.374632
1237658297923403840	158.527430	5.518480	8.657562	8.309743	9.80438	7.524654
1237655742403772648	214.659280	5.304991	8.618446	8.385389	9.57146	11.375649
1237654879125962975	213.878970	3.488895	8.687490	8.399193	9.67450	6.853439
1237654879662899237	214.051180	3.894886	8.869947	8.607073	10.63070	15.018660
1237651822712717591	223.602540	3.990333	8.439359	8.249454	9.59042	16.154437
1237654875357053000	167.923440	63.487352	8.988739	8.627255	9.88119	3.725249
1237651067351073064	173.265770	65.228153	8.374786	8.117708	9.08440	3.839059
1237654875358757055	176.672240	64.198390	8.801382	8.459384	9.85043	6.923316
1237654400765853789	179.907910	65.760157	9.015606	8.919343	11.33890	1.266555
1237654610142822563	189.740150	65.009313	8.691990	8.648734	10.29210	10.119010
1237654874825228389	194.036900	63.832706	8.941740	8.624407	10.24930	6.312477
1237654344401354933	212.938900	62.653145	8.427299	8.169200	9.15193	8.872229
1237651250430083089	209.318280	62.291408	8.858915	8.607305	10.50560	12.512858
1237651539794133239	227.354460	61.716197	8.954357	8.953826	10.67170	7.061181
1237654948372873409	226.869530	59.986986	8.531200	8.258134	9.43604	9.980809
1237651539259818109	235.209180	57.411642	8.590933	8.352127	9.66408	15.569530
1237655130909311115	241.555640	51.255319	8.472338	8.239724	9.48886	2.183888
1237654949988597910	243.357330	52.569980	8.910413	8.758343	10.83310	10.214514
1237654953740075257	248.688890	46.984236	8.484392	8.183422	9.37381	8.669135
1237655130377158746	250.648000	42.397152	8.497149	8.215292	9.45655	10.191384
1237651715874095320	253.191400	43.321524	8.919446	8.581049	10.22390	5.332865
1237651714800681189	252.761340	42.220652	9.025021	8.872490	10.95660	12.804368
1237652934568444302	313.750080	-6.643126	8.841235	8.553576	10.06350	2.859394
1237652598489153748	315.994770	-7.467356	9.013503	9.125949	10.89090	23.141724
1237652934035374201	322.490930	-8.057540	9.119903	8.902776	10.57900	6.269374
1237652934037471551	327.224920	-8.679710	8.947085	8.931630	10.43860	2.678029
1237652901821415599	359.019500	-8.906504	8.427316	8.113104	9.28051	5.906674
1237652946377637976	358.706360	-10.978445	8.563236	8.269833	9.71036	3.876804
Cor	itinua na pró	xima página				

objID	RA	DEC	$Z_{-}T04$	Z_P04	$\log M_* (M_{\odot})$	$SFR(H_{\alpha})$
1237652901830197322	19.371232	-8.734369	8.480905	8.224936	9.77302	8.177710
1237652901834850388	29.971120	-8.230274	8.388653	8.128219	9.08561	3.717701
1237652901835243720	30.987138	-8.132911	8.542656	8.240072	9.36830	6.679468
1237656495641788638	339.396090	13.613055	8.430985	8.152316	9.44765	17.877523
1237652942631141530	342.917990	13.453726	8.481599	8.200070	9.14546	3.751878
1237656242778079514	349.109650	15.096330	8.715471	8.463123	9.85088	14.762592
1237656494039826451	359.781290	13.791851	9.096226	9.074756	11.14080	8.121540
1237654653102719060	129.515550	44.983426	8.511533	8.202664	9.54021	3.145219
1237654653106651224	139.651690	50.950600	8.612830	8.315543	9.79559	4.484294
1237657772318195750	141.937120	50.393294	8.789357	8.494195	10.07210	9.404691
1237651196716056672	149.186890	61.193546	8.699330	8.375690	9.83711	15.688141
1237651065736135107	153.501090	60.730333	9.004417	9.088459	10.79790	1.064181
1237655464841707694	181.409170	62.570423	8.653543	8.393332	9.69654	19.579918
1237655370364092501	196.190120	62.405799	8.581166	8.311129	9.91416	8.193076
1237655348889321565	232.596150	52.746147	8.551209	8.258581	9.31483	4.100490
1237655349964374114	236.951770	51.319488	9.059449	8.679573	10.78930	16.164926
1237657242433486943	140.497480	45.153443	8.999270	8.879380	10.76240	12.596315
1237657242435059804	144.732880	47.207994	8.460047	8.128305	9.12800	2.692988
1237655124466401384	170.789840	4.016133	8.593701	8.317879	9.58100	2.193522
1237651737905922208	183.368560	3.730444	8.598768	8.315035	9.54802	6.249261
1237654879116918958	193.211040	4.082401	8.669930	8.322750	9.48791	6.086918
1237655125550039053	193.446760	5.136842	8.626764	8.359067	9.73630	3.497524
1237655123939819611	194.346340	3.870879	8.632876	8.364043	9.59301	1.634810
1237655124478460072	198.380230	4.208423	8.595030	8.290185	9.57280	2.127098
1237654879119999077	200.307370	3.980386	8.836740	8.591884	10.15330	3.060770
1237657630590107652	141.501700	44.460048	8.394873	8.121552	9.12867	9.424940
1237657630056513670	151.288190	47.873543	8.864219	8.552281	9.90927	7.158846
1237657630602690646	183.903920	53.412382	8.586640	8.287804	9.50301	4.115698
1237657856611713157	186.754850	52.420708	8.879098	8.554642	10.71320	3.003374
1237657858221998162	185.578750	53.682007	8.878648	8.501490	10.24090	3.372875
1237662303502794818	194.881300	53.265002	8.525631	8.237032	9.71035	5.630071
1237661959904231536	198.046740	52.717022	8.847361	8.572711	10.00250	11.042913
1237662301892444296	195.378460	51.926070	8.554788	8.257284	9.46775	3.923366
1237657593539789016	125.405200	37.179645	8.767819	8.457094	10.10010	9.873683
1237657606964052016	131.079470	41.719534	8.523494	8.314381	9.87684	5.415397
Cor	ntinua na pró	xima página				

objID	RA	DEC	Z_T04	Z_P04	$\log M_* (M_{\odot})$	$\left SFR\right.\left(H_{lpha} ight)$
1237657770709418022	148.644070	51.585567	8.564120	8.261910	9.69698	3.676785
1237671990269837406	206.500430	-3.408710	8.578991	8.294687	10.03820	12.207727
1237655498670473379	217.507350	-2.288283	9.199851	9.158959	10.41110	9.046441
1237655498671849789	220.630730	-2.164453	8.319436	7.996143	9.11175	14.009368
1237655497600467190	226.031310	-2.804596	8.772325	8.917255	11.47470	42.829233
1237658203422720122	138.788420	38.447149	9.002688	8.595458	9.77144	8.149562
1237658303277564073	154.954930	56.173241	9.028054	8.915595	10.20850	1.202333
1237655109445746819	158.588490	58.114718	8.946503	8.770425	10.63080	10.051369
1237658303818170411	169.772300	59.420579	9.050759	8.839232	11.15430	18.097062
1237658303818563621	171.479580	59.555285	8.394056	8.149775	9.78402	2.947542
1237655108374691903	170.252900	59.276035	9.062586	9.122697	10.10090	3.543589
1237655108917461159	197.153250	59.885132	8.486712	8.149392	9.46994	3.423698
1237658205578199203	160.476520	48.122163	8.548872	8.414136	9.79192	18.814732
1237658205046767644	179.127600	50.139484	8.523591	8.263207	9.49329	12.668842
1237655374650736944	254.952790	33.994763	8.953768	8.576953	8.97213	0.659459
1237656567575086155	312.326980	-0.802066	8.744452	8.451272	10.35820	17.023175
1237663543141204696	319.145810	-0.042320	8.714352	8.390073	9.59745	9.618440
1237678617939935591	326.251070	1.199328	8.856173	8.485944	9.93281	9.188058
1237658298458636477	154.762100	5.857049	8.601023	8.323395	9.67087	1.907941
1237658300070625368	157.814900	7.123115	8.752436	8.843659	10.90680	10.384521
1237658801495474207	163.378440	52.631359	8.496622	8.225817	9.44118	16.131679
1237657591929831540	168.183600	55.063082	8.842675	8.726054	10.24110	13.343956
1237659131674099861	223.370750	47.599578	8.629149	8.479525	10.05240	8.586853
1237659131679080542	236.384730	40.967624	8.750651	8.446317	10.08550	5.211380
1237659324946448518	223.493760	52.848778	9.000954	8.727316	11.02630	16.434326
1237659324946645168	224.170800	52.790900	9.117273	9.256469	11.13990	19.473409
1237659150460911737	228.379280	52.246634	8.657830	8.392051	9.78487	6.015381
1237658424076337223	127.075820	4.298214	8.653276	8.383324	9.88547	5.207731
1237658492260843703	137.372130	6.554412	8.614061	8.327788	9.80287	9.387221
1237657628440002648	136.227350	39.643145	8.620050	8.570226	9.56900	0.591349
1237660635444281588	122.517580	26.506633	8.797793	8.485190	10.02910	3.492754
1237658203422523547	138.474730	38.109516	8.990526	8.828899	10.83520	8.317813
1237660342861037708	141.164550	37.374668	8.972729	8.947881	11.08010	16.685445
1237660636526477443	140.360200	38.771974	8.537555	8.256829	9.36774	6.420554
1237660615050395760	176.780800	10.592127	8.827001	8.456091	10.21230	14.371518
Cor	ntinua na pró	xima página				

objID	RA	DEC	Z_T04	Z_P04	$\log M_* (M_{\odot})$	$SFR(H_{\alpha})$
1237671129130270801	181.075370	9.249586	8.923043	8.620537	10.31420	10.231881
1237671129130074124	180.772370	8.869789	8.737767	8.426514	9.91440	6.835040
1237658491207221430	183.794990	8.864160	8.863747	8.570786	10.04800	6.297331
1237660584981299222	152.505970	9.231609	8.764924	8.507191	10.27320	14.026294
1237660962934227027	125.979030	28.106042	8.515781	8.315372	8.60802	5.061471
1237660962937045084	132.006900	31.941521	8.708938	8.447999	9.97037	10.010168
1237664869748441182	137.720190	33.502218	9.187573	8.605290	10.58480	5.319093
1237660763766849691	136.940510	32.964507	8.603717	8.279310	9.64722	2.876996
1237658205050830993	193.754880	49.948068	9.051796	8.945883	11.19660	11.719001
1237661150305648735	198.598720	48.544272	8.878923	8.516881	10.38240	13.750709
1237661150842978316	200.212510	48.645289	8.952859	8.680592	10.40040	8.295851
1237661066018291759	129.787900	7.869854	8.643053	8.379904	10.15600	17.115179
1237661064415346722	147.478530	9.542745	8.641132	8.440477	10.20420	3.678671
1237661064953331809	149.979640	10.247267	8.567719	8.274849	9.86276	14.122450
1237661064953790640	151.093190	10.271748	8.770733	8.502456	9.98114	10.942052
1237661388673122337	192.280390	58.458058	8.661644	8.419962	10.13630	19.733843
1237661418749821128	215.256680	54.599988	8.664901	8.436157	9.92115	14.962211
1237661388142018563	214.944160	54.387439	9.370163	8.408971	11.48830	1.880522
1237661417141567519	222.074330	51.005174	8.743454	8.517395	10.09250	12.783932
1237661387609604345	228.891040	48.810425	8.650404	8.416366	10.04310	11.911677
1237661387611177135	233.259300	46.759904	9.066714	8.925242	10.30040	1.918327
1237661387611963622	235.333430	45.605324	8.493233	8.296351	9.26932	12.123049
1237659161200820433	239.935690	40.557001	8.397852	8.133048	9.13880	6.006318
1237659162814972004	248.067780	35.413764	8.694563	8.390672	9.60607	19.695843
1237659324420391168	248.803070	35.738049	8.814310	8.623581	9.85023	13.655498
1237661873488593153	219.545940	40.075882	9.060229	8.919607	11.37270	39.811792
1237661852021424148	229.643050	36.272721	8.917616	8.693246	9.97821	5.669960
1237661851995996169	152.948300	41.165580	8.950413	8.607286	10.58030	22.221754
1237661873470046434	161.953730	43.228197	9.017151	8.674663	10.07960	6.972312
1237661852537651243	167.019380	44.775540	8.850931	8.539246	9.75681	17.060880
1237661852003729464	176.593360	45.470847	8.809286	8.452643	9.77531	1.455636
1237661871867559950	187.641080	44.308657	8.693365	8.438199	9.80097	5.383153
1237661850934247440	190.405210	44.748304	9.141172	8.736471	10.78840	7.306199
1237661850400587858	200.429930	43.405880	8.507995	8.164113	9.83594	10.653201
1237662194534645763	209.331160	39.679259	9.043916	8.913289	11.31120	28.432280
Cor	ntinua na pró	xima página				

objID	RA	DEC	$Z_{-}T04$	Z_P04	$\log M_* (M_{\odot})$	$SFR(H_{\alpha})$
1237662194001248362	218.887020	36.775165	8.533465	8.199883	9.39557	2.563752
1237662306735948037	238.640180	28.686676	8.746805	8.376047	9.62251	6.176449
1237661360765730849	216.023870	42.279534	8.297887	8.141594	9.28424	13.206832
1237661362913148984	216.822040	43.934608	8.767536	8.887390	10.79100	0.792418
1237661360769859734	227.020150	38.161607	8.818164	8.560979	10.02450	9.655141
1237662337871184196	251.466520	24.815956	8.830359	8.620986	10.50730	16.634035
1237662503757021474	239.429260	34.558783	8.503793	8.240202	9.39287	1.824392
1237661139033784538	153.574010	38.782139	8.625677	8.338315	9.72737	14.723675
1237661137424023712	156.540480	38.204365	9.146030	9.041257	11.00320	2.548927
1237661139035095163	157.288780	39.740563	8.541809	8.227839	9.55003	3.930690
1237660634388037699	167.146680	45.052714	8.947699	8.793386	10.17870	3.168479
1237662193985388777	171.985220	41.318765	8.627874	8.442277	9.81068	26.674717
1237662193447927955	170.426470	40.572649	8.954523	8.996055	10.87230	4.648049
1237661852541190252	178.489390	46.018666	9.006981	8.981294	11.14620	22.690013
1237662193988927502	182.752530	41.889741	8.584149	8.268822	9.72600	3.064338
1237661435380891789	180.737190	48.200627	8.538665	8.227703	9.39895	9.025033
1237661433771655331	185.610730	47.066746	8.459448	8.267494	9.56810	17.592034
1237661362367889448	189.506090	48.035233	8.805999	8.808426	10.96910	15.576159
1237662193454743780	191.054780	41.456743	8.536852	8.227486	9.46683	5.567172
1237661434848870460	197.352100	47.132391	8.773572	8.454533	9.99224	8.229976
1237661435386200305	198.970900	47.377845	9.023131	8.927532	10.91300	3.851021
1237662193994694749	200.353310	40.891622	8.815245	8.666818	9.66576	17.132069
1237661435924447447	203.466320	47.115784	9.021127	9.043495	10.75870	8.355923
1237662665891184773	250.509850	21.062720	8.633817	8.381910	10.02850	10.452065
1237662665890005145	248.317080	22.796741	8.678085	8.375153	10.45760	45.157888
1237662335183945796	244.504990	27.581763	8.735271	8.627529	9.76680	3.915049
1237662619724415104	239.097130	30.078732	8.725690	8.461086	10.36880	22.509405
1237661124543709436	137.879810	31.457442	8.459536	8.127675	9.09743	7.175258
1237661383843184771	138.111150	32.599809	8.699054	8.484175	9.62706	2.831975
1237661137420025987	145.867270	34.786284	8.721940	8.409596	9.96927	7.229805
1237661383847116816	147.816520	36.675328	8.610340	8.325436	8.92131	5.157595
1237661950780178545	158.705150	11.930646	8.678351	8.450953	10.35980	12.863042
1237661950781227033	161.132360	12.157019	8.631398	8.366893	10.10110	6.479194
1237660670894211198	160.890350	11.905204	8.651981	8.415006	10.03110	11.651949
1237661950782341130	163.633470	12.481090	8.684950	8.468409	8.50412	2.041727
Cor	tinua na pró	xima página				

objID	RA	DEC	$Z_{-}T04$	Z_P04	$\log M_* (M_{\odot})$	$\left SFR\left(H_{\alpha} ight) ight $
1237661949716398243	181.975370	12.390801	8.642794	8.373023	10.02630	11.430791
1237661813886484597	187.360120	13.339033	9.010096	8.969439	10.94300	8.920566
1237658425172557851	178.632960	8.577085	8.466665	8.244235	-1.00000	5.609110
1237671127519461589	181.899090	8.370976	8.668666	8.531057	-1.00000	3.943391
1237661970111135922	183.484570	6.392653	8.748880	8.474910	-1.00000	15.875899
1237661970649514074	186.957570	6.803832	8.893053	8.611803	-1.00000	2.741556
1237664295836057626	210.900990	37.920301	9.110140	8.882795	10.66520	7.787777
1237662225154834435	223.132320	33.583219	9.011239	8.992604	10.11110	3.608123
1237662663753990197	240.537160	26.329324	8.853307	8.934533	10.66450	7.265605
1237662225699045589	240.579810	26.069882	8.703429	8.407084	10.31200	7.813432
1237662225163681931	243.522450	23.889657	8.612138	8.405912	9.82211	16.554938
1237662300824076470	213.568620	47.741567	8.553038	8.268616	9.60588	3.018911
1237662301900964026	223.648240	45.482332	8.530048	8.303736	9.26881	13.043103
1237662498927083665	226.101750	43.551746	9.093769	8.705816	10.44020	9.438380
1237662301368811622	235.205120	39.064112	8.680899	8.440377	10.22480	33.651121
1237662302979162150	235.733010	40.567189	8.784020	8.423234	9.91553	8.522403
1237662500542808117	239.574110	37.857476	8.957579	8.911626	10.76570	16.153378
1237662301907255358	239.147010	37.105523	8.762851	8.430595	9.87721	8.149506
1237661817096962164	192.144310	12.567482	8.319065	8.094603	9.12735	10.846860
1237661949726884129	206.495440	11.479934	8.551504	8.289462	9.89772	9.626051
1237662200424562759	212.865320	12.021407	8.464269	8.186167	9.27046	4.828124
1237662528992378986	214.053640	12.394568	8.821242	8.592254	10.06080	10.703467
1237662635828248703	216.150990	11.887677	8.845369	8.787282	10.61360	25.076068
1237661950269653233	220.173800	10.659891	8.563275	8.278120	9.71772	3.148301
1237661949196959858	222.378510	9.392593	8.861993	8.479272	9.87422	4.600487
1237668348139339917	222.708870	12.843315	8.913862	8.841780	10.58520	14.653596
1237662637442662629	225.208890	11.869635	8.411312	8.131055	9.31854	7.426919
1237662199358160912	229.620030	9.145951	9.021805	8.778366	10.46400	5.962650
1237662534893895705	230.117040	11.166527	8.553107	8.270706	9.64263	12.559024
1237662199895031836	229.663880	9.534891	8.731034	8.440260	10.37560	17.021488
1237662264860737758	231.341210	7.955638	8.759680	8.533152	9.38512	3.410852
1237662264860344485	230.422600	7.989381	8.605686	8.320467	9.54817	3.196719
1237662637450592299	243.189690	8.283616	8.804831	8.687121	10.05710	17.250277
1237668348686434779	245.894910	7.968890	9.060514	8.769585	10.60550	9.251184
1237671260125135132	134.011710	10.223772	9.062228	9.126845	10.85210	13.183304
Con	ntinua na pró	xima página				

objID	RA	DEC	Z_T04	Z_P04	$\log M_* (M_{\odot})$	$\left SFR\right.\left(H_{lpha} ight)$
1237664105241510164	149.503050	11.738118	8.500528	8.309743	9.46246	1.638907
1237664104706801858	154.574910	12.048638	8.718221	8.361195	9.85462	9.179359
1237664133165285446	160.176630	14.780563	8.931884	8.538213	10.40360	17.406427
1237661069791133877	163.840560	14.187278	8.843985	8.497377	9.95193	10.729419
1237661068181635280	166.638250	13.015758	8.565096	8.267629	9.87904	3.733001
1237664291534864452	175.097840	15.469372	9.553512	8.502046	11.34080	0.373279
1237661070336852109	184.766600	15.435700	8.358779	8.111371	9.26560	9.138374
1237661070336852023	184.749220	15.588549	9.215597	8.604880	10.68050	3.238578
1237664289929756750	188.080340	14.467933	8.800408	8.440644	10.09320	12.747358
1237662530060222573	200.298190	14.646620	9.008808	9.002946	10.59170	2.185241
1237664289937096760	205.371670	13.537582	8.628227	8.270418	9.71305	2.272966
1237664292084318332	204.867940	15.278371	8.298871	8.160000	9.29794	12.680617
1237663546907033732	137.588970	61.097267	9.080241	8.759913	10.43690	26.660523
1237662238542856325	191.287720	10.727820	8.418786	8.241431	9.56424	17.955518
1237658491210104849	190.365260	8.872042	9.073857	9.038136	10.76200	7.994125
1237664813374177417	197.949940	8.486821	9.100010	8.936128	10.52660	1.673457
1237671990800810135	201.340240	9.094108	8.810730	8.464653	9.73825	4.924235
1237661972267925544	204.850990	7.657669	8.634226	8.400590	10.05900	15.297684
1237661971731054647	204.887430	7.124883	8.876343	8.523457	10.13160	6.901964
1237662238547902582	202.865810	10.228147	8.531150	8.221370	9.50414	5.759348
1237662262701392130	203.921980	8.822618	9.164199	8.917816	10.97800	4.110019
1237662245520736336	206.539500	6.544816	9.043324	8.778775	10.52960	1.192729
1237662264313708678	207.831790	9.724271	8.903692	8.808624	10.74320	26.649263
1237661972807352342	210.719780	7.671884	8.585078	8.347053	9.49483	20.115548
1237661970122408107	209.339990	5.757875	8.650636	8.329250	9.82108	3.954958
1237662263245996115	221.730530	7.756073	8.447309	8.210830	9.59931	4.963334
1237662263249862681	230.496330	6.680647	9.013456	8.767436	10.32610	15.253343
1237662262718169534	242.277770	4.666967	9.097067	8.802256	10.60990	7.090762
1237661974949593250	214.914490	5.992755	8.796228	8.503071	9.99254	11.920355
1237662268069511204	217.445860	6.726379	8.359921	8.224403	9.44518	19.491055
1237655743483478250	228.341310	5.173286	9.105429	9.146165	11.28050	1.074162
1237662236949741850	231.507760	6.457928	8.830752	8.955816	10.99900	6.272374
1237655743486820505	235.932630	4.520192	8.705553	8.391974	9.90819	18.556673
1237664672720945236	209.330410	34.633543	8.764643	8.482675	10.04830	4.827347
1237664673796522016	214.587020	34.366028	8.808638	8.452818	10.19720	3.051371
Cor	ntinua na pró	xima página				

objID	RA	DEC	$Z_{-}T04$	Z_P04	$\log M_* (M_{\odot})$	$SFR(H_{\alpha})$
1237664853644804129	217.163030	33.395961	8.667478	8.377870	9.88138	5.875077
1237664853645525235	219.127050	32.760905	9.189669	8.586093	10.74540	5.578027
1237662697573646430	237.479080	25.123094	8.796416	8.487453	10.23240	22.664264
1237673809192091898	121.581230	19.824254	8.491117	8.204654	9.26167	5.342331
1237664837535531012	123.536490	21.249804	8.576484	8.307782	9.76685	9.023046
1237664092897083648	125.698600	22.695583	8.339988	8.225525	9.56193	23.380784
1237664834852094289	126.653270	20.626315	9.027285	8.817740	10.79790	15.910415
1237664834854846618	132.487700	23.776632	9.054577	9.011156	11.44880	9.613884
1237664874583294277	130.789920	24.034690	8.785646	8.379454	10.23610	4.910630
1237664837005344875	138.472460	28.530681	8.779666	8.490710	10.40170	10.512208
1237664092367224927	141.459010	30.416247	8.931695	8.912011	9.66215	5.619400
1237664871362855102	148.238330	32.827897	8.511253	8.259524	9.65978	9.319135
1237664878878851215	148.858400	31.584867	8.649788	8.339718	9.62508	7.984963
1237664879416115330	149.655650	32.453331	8.736109	8.816526	10.71600	2.239139
1237664880491364470	153.262240	34.271005	8.579830	8.342047	9.50347	10.899430
1237665098468425917	154.563210	31.501689	8.545200	8.225835	9.57151	1.564961
1237664668435677291	156.451610	36.382899	8.412747	8.177605	9.17677	6.497633
1237665428092616885	202.132380	28.302500	8.770521	8.469734	10.13880	14.697102
1237665126924943420	162.303950	31.778517	8.734645	8.792464	10.43920	5.144558
1237664337709957136	159.620710	34.434567	8.678229	8.344373	9.73835	6.546288
1237662226208456820	165.523380	39.279906	8.544694	8.193960	9.58509	2.551993
1237665225692872838	179.728340	31.433099	8.572203	8.241913	9.45552	13.644090
1237665127469744233	183.720830	34.305996	8.892529	8.632498	10.36650	9.950087
1237665128010809424	195.265510	34.193459	9.094508	8.972251	10.94120	5.530016
1237665227309383769	195.692910	32.454905	8.783794	8.469634	9.82649	3.395552
1237667259356151932	198.092170	30.063129	8.679622	8.437110	9.79916	8.312733
1237665129613885585	174.342260	35.407415	8.421138	8.213107	9.33143	12.760972
1237664819292274703	196.708780	37.204863	8.825730	8.473784	9.89517	5.065374
1237665024909377681	196.846160	34.359510	9.010052	8.875653	10.96000	9.233496
1237665429167472662	205.284930	28.778420	8.755941	8.565903	10.26620	41.414281
1237664338250104890	168.539850	36.539846	8.569133	8.230824	9.66879	8.273254
1237664854177743035	206.906590	36.178832	8.872187	8.624401	10.12110	9.675630
1237664337180098570	179.185370	36.556480	8.735286	8.395670	9.69137	13.515250
1237662223526068296	171.657360	38.050805	8.359433	8.110529	9.47448	15.445127
1237665367970480195	168.641460	30.883208	8.765886	8.425711	9.94458	7.265787
Cor	ntinua na pró	xima página				

objID	RA	DEC	$Z_{-}T04$	Z_P04	$\log M_* \ (M_\odot)$	$SFR (H_{\alpha})$
1237664339320635487	159.389690	35.672832	8.671128	8.397643	9.90009	13.046406
1237664674328608912	201.550490	37.321479	9.052199	8.940045	11.02940	3.334057
1237664337180033111	179.063760	36.578517	9.042496	8.910557	11.16100	12.109261
1237665025977811052	182.174750	35.611581	8.581237	8.298115	9.43679	5.071276
1237665126927564859	169.235690	32.769276	8.685928	8.429329	9.56476	5.445159
1237664819287097458	181.943070	37.682458	8.855918	8.551032	9.67350	5.668624
1237665126939164687	200.850390	32.878818	8.624244	8.610251	10.33260	4.984765
1237665129613492377	173.276360	35.452126	8.748020	8.538121	9.93763	3.788706
1237665329323901094	207.321900	29.767580	8.871479	8.760409	10.70460	11.775744
1237665102208892942	208.890630	32.531419	8.611440	8.303270	9.61256	12.201006
1237665442595078288	209.296170	28.259594	8.882958	8.577453	10.08390	8.745088
1237665129091694595	214.582340	31.900559	8.701704	8.372046	9.86974	5.545483
1237665429171470387	215.279360	26.912292	8.609368	8.316212	9.76061	13.149073
1237665351317913635	218.234930	27.713846	8.930498	8.859435	10.53780	15.157667
1237665440988594304	219.214490	24.750076	8.500342	8.370427	9.71629	14.753632
1237665548892373070	221.307870	22.529452	8.529311	8.252618	9.49926	10.133379
1237665549966377208	222.189600	22.993119	8.960725	8.604537	8.72128	2.087501
1237665549966704896	223.076550	22.846094	9.075091	8.839237	10.60670	4.307176
1237662695957332050	223.540530	29.715313	8.649218	8.295845	9.79423	9.703330
1237665128023130171	227.177570	27.152157	9.354558	8.434107	11.29660	0.431228
1237665532254159185	226.998830	21.461091	8.639749	8.327098	9.57960	1.720678
1237665442070135057	237.615780	19.349660	8.393357	8.258056	9.42198	12.121991
1237665535467258083	238.600540	20.190402	9.241672	8.678105	11.48560	0.252064
1237668706224046555	250.614540	13.995400	9.238735	8.582804	10.59930	2.235409
1237667429567823877	167.057540	25.898880	8.558117	8.260645	9.40753	5.571790
1237667212133728444	168.349520	29.510939	8.670784	8.297327	9.62543	0.673680
1237667444577271891	173.496680	28.146150	9.092613	8.742719	10.60070	6.168556
1237667442967969840	177.059620	27.223877	8.593275	8.317764	9.80945	4.217837
1237667212674072602	177.409490	30.752998	8.505774	8.185935	9.43759	2.996233
1237667322718060642	179.626910	27.123929	8.661447	8.347679	9.72395	3.469839
1237667442969084041	179.886910	27.242746	8.931938	8.982443	10.94830	0.782944
1237667442434506777	185.721520	26.872648	8.769864	8.438024	9.53561	4.831258
1237667444044791940	184.872910	28.262242	8.611136	8.304328	9.73838	4.127587
1237667442974195874	192.986280	27.182686	8.709941	8.442242	9.71805	11.109556
1237667442438373483	195.667180	26.517077	8.894022	8.621290	10.19820	7.530080
Continua na próxima página						

objID	RA	DEC	$Z_{-}T04$	Z_P04	$\log M_* (M_{\odot})$	$\left SFR\left(H_{\alpha} ight) ight $	
1237665532244328639	202.985830	26.733583	8.908084	8.623212	10.00540	5.138914	
1237667292647850470	128.705970	15.797726	9.058706	9.007728	10.91050	11.132860	
1237667253992554723	127.997350	17.343755	8.649705	8.363852	9.74139	6.411916	
1237667107429548310	132.841230	20.600710	9.046166	8.966502	10.16370	2.451083	
1237667113867280552	134.656410	23.057431	8.759943	8.529237	9.89828	5.107405	
1237667209972482059	135.403450	19.384466	8.623862	8.353912	9.59979	7.908168	
1237667429018697946	137.805600	18.518943	8.617560	8.328559	9.33035	15.488182	
1237667212661030960	144.432770	24.643493	8.863352	8.741471	10.39190	4.935907	
1237667255073570983	144.257620	24.443817	8.455303	8.173903	9.49609	3.657734	
1237667113871409234	144.213990	26.717690	8.404381	8.181310	9.38527	15.062818	
1237667293195075652	152.395210	23.805360	8.700554	8.489070	10.13120	11.639699	
1237667254002450519	150.792850	25.505202	8.743520	8.388040	9.81406	13.643342	
1237667111189938320	152.042470	26.884217	8.802531	8.548699	10.44910	11.214255	
1237667291585839230	155.982250	23.394082	8.890496	8.817542	10.06880	8.204317	
1237667254542991466	159.654540	27.931890	9.006097	8.958190	10.67380	8.129197	
1237667254006120664	159.779860	27.472518	8.508754	8.227663	8.94329	3.393878	
1237667536393142625	141.869490	17.671837	8.301418	8.113590	9.22454	10.419382	
1237667537470750850	150.775360	20.798872	8.619223	8.300491	9.61748	3.201547	
1237667536933945523	151.002680	20.288686	8.475684	8.285837	9.19706	6.471877	
1237667549803118738	152.541270	20.843152	9.016946	8.893150	10.61940	6.853052	
1237667551415697456	156.950010	23.087329	8.836631	8.501027	10.01830	4.970076	
1237667537473700042	157.846410	22.188879	8.725745	8.434101	9.93615	9.327401	
1237667735568253083	150.083830	18.985798	8.759262	8.598732	9.83298	3.844862	
1237667734497329239	156.980980	19.491446	8.609569	8.287146	9.23209	0.451845	
1237667782273073365	126.409690	11.816013	9.066879	8.987591	10.28640	23.952842	
1237667731271712981	130.142110	13.747596	8.390323	8.244620	9.27523	8.933658	
1237667783352844487	139.688360	16.778843	8.916567	8.579120	10.50350	6.008489	
1237670965922955462	141.262220	15.242242	8.454224	8.221422	9.48278	11.881964	
1237668293908627596	166.177220	19.087041	8.755932	8.395802	9.88770	7.946474	
1237668496853696676	171.319340	18.049249	8.688993	8.347552	9.51915	8.788485	
1237668496856776746	178.631900	18.297690	8.979804	8.614652	10.43260	1.057883	
1237668270839300236	236.248620	11.838210	8.722862	8.430339	9.82102	3.274966	
1237668349218521146	235.224150	11.061946	8.770218	8.800082	10.74540	14.744547	
1237668365849067667	235.458750	14.243783	9.307567	8.667891	11.06390	1.304001	
1237668349758931198	243.276320	9.496995	8.534273	8.254790	9.34391	7.871193	
Continua na próxima página							

objID	RA	DEC	$Z_{-}T04$	Z_P04	$\log M_* (M_{\odot})$	$\left SFR\right.\left(H_{lpha} ight)$
1237668310021767710	246.320510	9.198068	8.775515	8.452816	9.92239	16.482696
1237671261730701451	122.410360	8.549285	8.634239	8.282580	9.76777	8.826743
1237670965387395398	144.379340	15.492239	8.597533	8.401577	9.87241	6.202311
1237671124839497734	146.584240	14.446538	8.556882	8.264690	9.68500	7.254188
1237667781209424006	149.502090	17.422317	8.885644	9.026411	10.66880	1.786645
1237671124305117441	152.536340	14.909722	8.909561	8.650753	10.13820	4.226816
1237671262281072899	153.226710	15.671319	8.824079	8.503164	10.14060	7.374987
1237668623012921457	186.096300	16.452793	9.053139	8.964236	10.82220	10.974156
1237668589730398421	202.470200	16.342063	8.313643	8.104759	9.39843	10.565182
1237667733974679670	191.638000	21.426172	8.873750	8.571828	10.19050	10.396772
1237668270824489205	201.779620	18.348823	8.830447	8.695738	10.69010	9.899075
1237667733971927066	184.884250	21.556943	8.414834	8.199412	9.18468	10.172968
1237667735583719460	187.778790	22.841697	8.681879	8.340547	9.61668	5.820518
1237667736658837731	191.183510	23.460513	8.489321	8.286148	9.14964	4.768299
1237667910061064263	196.736810	23.416150	8.529106	8.282460	9.74218	13.252937
1237667735050846428	197.653080	21.804736	8.567467	8.316010	9.12772	6.286227
1237667783377158160	198.664340	22.523163	8.766181	8.840163	10.40680	5.274367
1237667734515482654	201.265190	21.192722	8.815829	8.822960	10.04150	20.293274
1237667782304989222	202.513260	21.261020	9.128425	9.043993	11.00410	8.325814
1237667448875384946	180.030740	26.087195	8.754942	8.392154	9.77547	7.255027
1237668349744709702	210.685490	15.999065	8.997779	8.916065	11.05070	1.242656
1237662638512537750	216.379480	14.092443	8.738466	8.527776	10.02760	12.180093
1237668350287872034	225.358540	14.076732	8.728582	8.457349	10.26870	11.348416
1237668332567527605	226.487510	13.575321	8.501933	8.256069	9.35426	9.290501
1237668299286642843	206.434210	19.608735	8.597125	8.334950	9.74120	13.446468
1237668273512644783	211.181360	19.216047	8.758171	8.553883	9.57017	3.198919
1237668316459696279	214.956030	16.398344	8.932446	8.601030	10.17240	9.712765
1237668297680683015	217.235090	16.894261	8.618328	8.358156	9.64858	10.721989
1237667733986148413	219.252080	17.941584	8.918917	8.649489	10.64300	33.160614
1237667736128389134	206.934150	21.703319	8.845252	8.522751	9.93596	4.809698
1237667782843957346	207.600850	21.138375	8.657391	8.355452	9.59065	9.685716
1237667912213921828	210.165230	23.479538	8.937074	8.849906	10.47500	23.958960
1237665566074470628	224.699330	19.683175	8.739820	8.824192	10.68590	3.540273
1237674474902650936	175.087630	60.327375	8.422403	8.182082	-1.00000	7.016978
1237655469138575370	234.750490	1.788770	8.852504	8.593891	-1.00000	4.181666
Continua na próxima página						

objID	RA	DEC	Z_T04	Z_P04	$\log M_* \ (M_\odot)$	$SFR(H_{\alpha})$
1237665536006029423	242.932570	18.668564	9.095623	9.141456	-1.00000	8.806121
1237665372260532536	241.503070	18.583519	8.592623	8.306244	-1.00000	6.870811
1237665536006488410	243.941760	18.177373	8.982196	8.857735	-1.00000	1.076834
Apêndice B

Imageamento de UVLGs compactas na banda Ks

FIGURA B.1: As imagens das UVLGs classificadas como disco, com um tamanho de 10"x 10", foram obtidas na banda Ks com o instrumento FOURSTAR no telescópio Baade no Observatório Las Campanas, Chile. Os contornos marcam regiões com contagem mínima ou igual ao valor indicado.

FIGURA B.2: As imagens das UVLGs classificadas como esferoidais, com um tamanho de 10"x 10", foram obtidas na banda Ks com o instrumento FOURSTAR no telescópio Baade no Observatório Las Campanas, Chile. Os contornos marcam regiões com contagem mínima ou igual ao valor indicado.

FIGURA B.3: As imagens das UVLGs classificadas como mergers, com um tamanho de 10"x 10", foram obtidas na banda Ks com o instrumento FOURSTAR no telescópio Baade no Observatório Las Campanas, Chile. Os contornos marcam regiões com contagem mínima ou igual ao valor indicado.

FIGURA B.4: Continuação da Figura B.3.

FIGURA B.5: Continuação da Figura B.3.

Referências Bibliográficas

- Ade, P. A. R., Aghanim, N., Arnaud, M., et al. 2015, Astronomy & Astrophysics, 580, A22, doi: 10.1051/0004-6361/201424496
- Amodeo, S., Mei, S., Stanford, S. A., et al. 2017
- Arnouts, S., Cristiani, S., Moscardini, L., et al. 1999, Monthly Notices, Volume 310, Issue 2, pp. 540-556., 310, 540, doi: 10.1046/j.1365-8711.1999.02978.x
- Bertin, E. 2011, Analysis, 442, 435
- Bertin, E., & Arnouts, S. 1996, Astronomy and Astrophysics Supplement Series, 117, 393, doi: 10.1051/aas:1996164
- Burgarella, D., Buat, V., & Iglesias-Paramo, J. 2005, Monthly Notices of the Royal Astronomical Society, Volume 360, Issue 4, pp. 1413-1425., 360, 1413, doi: 10.1111/ j.1365-2966.2005.09131.x
- Buta, R., Sheth, K., Regan, M., et al. 2010, The Astrophysical Journal Supplement, Volume 190, Issue 1, pp. 147-165 (2010)., 190, 147, doi: 10.1088/0067-0049/190/1/ 147
- Butcher, H., & Oemler, A., J. 1978, The Astrophysical Journal, 226, 559, doi: 10.1086/ 156640
- Calvi, R., Poggianti, B. M., Fasano, G., & Vulcani, B. 2011, Mon. Not. R. Astron. Soc, 000, 1. https://arxiv.org/abs/arXiv:1110.0802v1
- Charbonnier, A., Huertas-Company, M., Gonçalves, T. S., et al. 2017, MNRAS, 000, 1. https://arxiv.org/abs/arXiv:1701.03471v2
- Conselice, C. J., & Arnold, J. 2009, Monthly Notices of the Royal Astronomical Society, Volume 397, Issue 1, pp. 208-231., 397, 208, doi: 10.1111/j.1365-2966.2009.14959.
- Curti, M., Cresci, G., Mannucci, F., et al. 2016, MNRAS, 000, doi: 10.1093/mnras/ stw2766

- De Souza, R. E., Gadotti, D. A., & Dos Anjos, S. 2004. https://arxiv.org/abs/ 0404103v1
- de Vaucouleurs, G. 1948, Astronomy and Astrophysics, vol. 99, no. 1, June 1981, p. 126-140., 99, 126
- Dressler, A. 1980, The Astrophysical Journal, 236, 351, doi: 10.1086/157753
- Dreyer, J. L. E., & E., J. L. 1888, Memoirs of the Royal Astronomical Society, Vol. 49, p.1, 49, 1
- Erb, D. K., Shapley, A. E., Pettini, M., et al. 2006, The Astrophysical Journal, 644, 813, doi: 10.1086/503623
- Gonçalves, T. S., Basu-Zych, A., Overzier, R., et al. 2010, Astrophys. J., 724, 1373, doi: 10.1088/0004-637X/724/2/1373
- Heckman, T. M., Hoopes, C. G., Seibert, M., et al. 2005, The Astrophysical Journal, 619, L35, doi: 10.1086/425979
- Hernquist, L., & Mihos, C. 1995, Astrophysical Journal v.448, p.41, 448, 41, doi: 10. 1086/175940
- Holmberg, E. 1958
- Hoopes, C. G., Heckman, T. M., Salim, S., et al. 2007, The Astrophysical Journal Supplement Series, 173, 441, doi: 10.1086/516644
- Hubble, E. 1926, Contributions from the Mount Wilson Observatory, 324, 1
- Ilbert, O., Arnouts, S., McCracken, H. J., et al. 2006, Astronomy and Astrophysics, Volume 457, Issue 3, October III 2006, pp.841-856, 457, 841, doi: 10.1051/0004-6361: 20065138
- Kauffmann, G., Heckman, T. M., White, S. D. M., et al. 2003, Mon. Not. R. Astron. Soc, 341, 33
- Kobulnicky, H. A., & Kewley, L. J. 2004, The Astrophysical Journal, 617, 240, doi: 10. 1086/425299
- Law, D. R., Steidel, C. C., Erb, D. K., et al. 2009, The Astrophysical Journal, Volume 697, Issue 2, pp. 2057-2082 (2009)., 697, 2057, doi: 10.1088/0004-637X/697/2/2057
- Madau, P., & Dickinson, M. 2014, doi: 10.1146/annurev-astro-081811-125615
- Martin, D. C., Fanson, J., Schiminovich, D., et al. 2005, The Astrophysical Journal, 619, L1, doi: 10.1086/426387

- Mathews, W. G., & Brighenti, F. 2003, Annual Review of Astronomy and Astrophysics, vol. 41, pp.191-239, 41, 191, doi: 10.1146/annurev.astro.41.090401.094542
- Merlin, E., Chiosi, C., Piovan, L., et al. 2012, Monthly Notices of the Royal Astronomical Society, Volume 427, Issue 2, pp. 1530-1554., 427, 1530, doi: 10.1111/j.1365-2966. 2012.21965.x
- Messier, C., & Charles. 1781, Connoissance des Temps ou des Mouvements Célestes, for 1784, p. 227-267, 227
- Overzier, R. A., Heckman, T. M., Schiminovich, D., et al. 2009, doi: 10.1088/ 0004-637X/710/2/979
- Peng, C. Y., Ho, L. C., Impey, C. D., & Rix, H.-W. 2002, The Astronomical Journal, Volume 124, Issue 1, pp. 266-293., 124, 266, doi: 10.1086/340952
- Pettini, M., & Pagel, B. E. J. 2004, Monthly Notices of the Royal Astronomical Society, 348, 5, doi: 10.1111/j.1365-2966.2004.07591.x
- Renzini, A. 2006, Annual Review of Astronomy and Astrophysics, 44, 141, doi: 10. 1146/annurev.astro.44.051905.092450
- Rix, H.-W., & Zaritsky, D. 1995, The Astrophysical Journal, 447, 82, doi: 10.1086/ 175858
- Rix, H.-W., Barden, M., Beckwith, S. V. W., et al. 2004, The Astrophysical Journal Supplement Series, Volume 152, Issue 2, pp. 163-173., 152, 163, doi: 10.1086/420885
- Roberts, M. S., & Haynes, M. P. 1994, Annual Review of Astronomy and Astrophysics, 32, 115, doi: 10.1146/annurev.aa.32.090194.000555
- Rykoff, E. S., Rozo, E., Busha, M. T., et al. 2014, The Astrophysical Journal, 785, 104, doi: 10.1088/0004-637X/785/2/104
- Salim, S., Rich, R. M., Charlot, S., et al. 2007. https://arxiv.org/abs/arXiv:0704. 3611v2
- Sandage, A., & Allan. 1961, Washington: Carnegie Institution, 1961
- Santini, P., Fontana, A., Grazian, A., et al. 2009. https://arxiv.org/abs/arXiv: 0905.0683v2
- Scarlata, C., Carollo, C. M., Lilly, S. J., et al. 2006, eprint arXiv:astro-ph/0611644. https://arxiv.org/abs/0611644
- Seibert, M., Budavari, T., Rhee, J., et al. 2005, The Astrophysical Journal, 619, L23, doi: 10.1086/427842

Sérsic, J. L. 1963

- Sheth, K., Elmegreen, D. M., Elmegreen, B. G., et al. 2008, The Astrophysical Journal, Volume 675, Issue 2, article id. 1141-1155, pp. (2008)., 675, doi: 10.1086/524980
- Springob, C. M., Haynes, M. P., Giovanelli, R., & Kent, B. R. 2005. https://arxiv. org/abs/0505025v1
- Steidel, C., Giavalisco, M., Pettini, M., Dickinson, M., & Adelberger, K. 1996, Astrophysical Journal Letters v.462, p.L17, 462, L17, doi: 10.1086/310029
- Takey, A., Schwope, A., & Lamer, G. 2013, Astronomy & Astrophysics, 18, doi: 10. 1051/0004-6361/201220213
- The SDSS collaboration, K., Abazajian, K., Agüeros, M. A., et al. 2003, The Astronomical Journal, Volume 126, Issue 4, pp. 2081-2086., 126, 2081, doi: 10.1086/378165
- Tremonti, C. A., Heckman, T. M., Kauffmann, G., et al. 2004, The Astrophysical Journal, 613, 898, doi: 10.1086/423264
- Wen, Z. L., Han, J. L., & Liu, F. S. 2012, The Astrophysical Journal Supplement Series, 199, 34, doi: 10.1088/0067-0049/199/2/34
- Wyder, T. K., Treyer, M. A., Milliard, B., et al. 2005, The Astrophysical Journal, 619, 15
- Yin, J., Hou, J. L., Prantzos, N., et al. 2009, Astronomy and Astrophysics, Volume 505,
 Issue 2, 2009, pp.497-508, 505, 497, doi: 10.1051/0004-6361/200912316
- York, D. G., Adelman, J., Anderson, John E., J., et al. 2000, The Astronomical Journal, Volume 120, Issue 3, pp. 1579-1587., 120, 1579, doi: 10.1086/301513
- Zahid, H. J., Geller, M. J., Kewley, L. J., et al. 2013, The Astrophysical Journal, 771, L19, doi: 10.1088/2041-8205/771/2/L19