

Universidade Federal do Rio de Janeiro Centro de Ciências Matemáticas e da Natureza Observatório do Valongo

Fluxos Cromosféricos Absolutos em H α e a Relação Idade-Atividade em Estrelas de Tipo Solar

Paulo Vitor Souza dos Santos

Rio de Janeiro 2022

Fluxos Cromosféricos Absolutos em H α e a Relação Idade-Atividade em Estrelas de Tipo Solar

Paulo Vitor Souza dos Santos

Trabalho de conclusão de curso / Projeto final submetido ao Curso de Graduação em Astronomia, Observatório do Valongo, da Universidade Federal do Rio de Janeiro (OV/UFRJ), como parte dos requisitos necessários à obtenção do título de Astrônomo.

Orientador: Gustavo Frederico Porto de Mello

Rio de Janeiro 2022

CIP - Catalogação na Publicação

S729f	Souza dos Santos, Paulo Vitor Fluxos Cromosféricos Absolutos em H-alfa e a Relação Idade-Atividade em Estrelas de Tipo Solar / Paulo Vitor Souza dos Santos Rio de Janeiro, 2022. 179 f.
	Orientador: Gustavo Frederico Porto de Mello. Trabalho de conclusão de curso (graduação) - Universidade Federal do Rio de Janeiro, Observatório do Valongo, Bacharel em Astronomia, 2022.
	1. Estrelas de Tipo Solar. 2. Atividade Cromosférica. 3. Idades Estelares. 4. Vizinhança Solar. 5. Espectroscopia. I. Porto de Mello, Gustavo Frederico, orient. II. Título.

Elaborado pelo Sistema de Geração Automática da UFRJ com os dados fornecidos pelo(a) autor(a), sob a responsabilidade de Miguel Romeu Amorim Neto - CRB-7/6283.

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Centro de Ciências Matemáticas e da Natureza Observatório do Valongo

Aos vinte e nove dias do mês de junho de dois mil e vinte e dois, às onze horas, na Sala Orozimbo do Observatório do Valongo, reuniu-se a Comissão Examinadora da Defesa do Projeto Final de Curso de Graduação em Astronomia do aluno Paulo Vitor Souza dos Santos, matrícula DRE nr. 117035261, constituída pelo Professor Gustavo F. Porto de Mello – Orientador/Presidente - (OV/UFRJ); Professor Luan Ghezzi Ferreira Pinho- (OV/UFRJ); Dr. Marcelo Borges - (ON/UFRJ); Professor Wagner Luiz Ferreira Marcolino - (OV/UFRJ), com a finalidade de examinar o referido aluno, acerca do trabalho desenvolvido intitulado "FLUXOS CROMOSFÉRICOS ABSOLUTOS EM H α E A RELAÇÃO IDADE-ATIVIDADE EM ESTRELAS DE TIPO SOLAR". Após a apresentação do aluno, dentro dos prazos segmentais, a banca passou a arguí-lo. Tendo, o aluno, respondido satisfatoriamente às perguntas a ele direcionadas, a banca, após deliberação, decidiu unanimemente por sua aprovação, sem restrições. Nada mais havendo a tratar, lavro a presente ata que segue assinada pela banca e pelo aluno. Rio de Janeiro, 29 de junho de 2022.

lutoro Fridenco Port de Ullo

Professor Gustavo F. Porto de Mello Orientador/Presidente - (OV/UFRJ)

Juan Cheni F. Pinko Professor Luan Ghezzi Ferreira Pinho (OV/UFRJ)

ened

Dr. Marcelo Borges (ON/UFRJ)

Willmanuchero

Professor Wagner Luiz Ferreira Marcolino (OV/UFRJ)

,bx

Paulo Vitor Souza dos Santos

1

Marisa Pereira Soares Secretária Acadêmica

Agradecimentos

Aos meus pais, por terem me dado a melhor educação e por terem acreditado em mim por todos esses anos. À minha irmã, por todo o carinho já recebido. Tudo que conquisto é graças à vocês.

Às minhas tias Ângela e Rosângela, por todo o suporte durante não só a graduação, mas como em toda minha vida.

À todas as amizades que construí ao longo da graduação, que tornaram os dias tristes mais toleráveis e os dias felizes mais incríveis. Agradeço em especial às que estão comigo desde 2017: Augusto, Erica, Gabi, Jéssica, João, Júlia, Kadu e Mylena. Espero levar vocês comigo para sempre.

Ao meu orientador Gustavo F. Porto de Mello, pela excelente orientação, ensinamentos e amizade, e pelo exemplo de profissional que almejo ser.

À todos os professores que cruzaram meu caminho e inseriram a astronomia, a física e o cálculo em minhas veias com seus excelentes cursos. Em especial ao professor Luan Ghezzi, pelas aulas incríveis e pelo carinho e preocupação ao longo daquele ano, e à professora Diana Andrade, por todas as caronas que salvavam meus dias.

À toda equipe administrativa, secretaria e funcionários do Observatório do Valongo e da UFRJ, pela prontidão e competência em tornar a vida acadêmica mais confortável para nós alunos.

Aos pesquisadores que tiraram parte de seus tempos para contribuir com esse projeto: Dr. Ignasi Ribas (IEEC-Espanha), Dr. Felipe Fernandes (IAG/USP) e Dr. Diego Lorenzo de Oliveira (IAG/USP). Agradeço em especial ao Diego, pela atenção e dicas de extrema importância.

Ao apoio financeiro concedido pela FAPERJ e pelo CNPq por meio de bolsas de iniciação científica ao longo do desenvolvimento do projeto.

À equipe do Observatório do Pico dos Dias (LNA), pelo tempo cedido e por todo suporte durante as observações.

Ao Naruto, por ter me ensinado a nunca desistir.

"You're part of the human race All of the stars and the outer space Part of the system, a plan"

Coldplay

Resumo

Fluxos Cromosféricos Absolutos em H α e a Relação Idade-Atividade em Estrelas de Tipo Solar

Paulo Vitor Souza dos Santos

Orientador: Gustavo Frederico Porto de Mello

Linhas espectrais de alta absorção fotosférica são ferramentas a partir das quais podemos identificar e quantificar emissões provenientes da cromosfera das estrelas. Em estrelas de tipo solar, tais emissões estão intrinsecamente relacionadas à estrutura da estrela: os movimentos de rotação diferencial e convecção superficial do plasma são os responsáveis por gerar e manter campos magnéticos, que injetam energia não térmica na cromosfera. Essa injeção de energia decai monotonicamente com a idade estelar, à medida que a estrela evolui e tem sua taxa de rotação diminuída pelo transporte de momento angular por ventos estelares. A linha H α é um indicador de atividade magnética e idade em estrelas de tipo solar, porém ainda é pouco estudada. Neste trabalho, a partir de modelos teóricos modernos de atmosferas estelares MARCS e espectros com boa razão sinal/ruído (~ 170) e resolução moderadamente alta ($R \approx 11000$ - 30000), obtidos no Observatório do Pico dos Dias (LNA), determinamos os fluxos absolutos totais e cromosféricos, em erg cm⁻² s⁻¹, na linha H α para mais de 500 estrelas de tipo espectral F, G e K, anãs de sequência principal e subgigantes. Determinamos para toda a amostra temperaturas efetivas $(4600 \lesssim T_{ef} \lesssim 6600 \text{ K})$ a partir de calibrações fotométricas modernas, com erro médio de 40 K. Compilamos também valores de metalicidade para toda a amostra $(-1,0 \leq [Fe/H] \leq 0,5)$. Derivamos massas $(0.5 \leq M \leq 1.7 M_{\odot})$ e idades isocronais a partir de modelos evolutivos PAR-SEC e calculamos gravidades superficiais $(3, 2 \lesssim \log g \lesssim 4, 7 \text{ dex})$ e luminosidades $(0, 2 \lesssim L \lesssim 12)$ L_{\odot}). Derivamos uma escala de correção da componente fotosférica do fluxo total na linha H α de consistência inédita na literatura, e calculamos o fluxo estelar puramente cromosférico. Comparando o fluxo cromosférico em H α com o fluxo cromosférico nas linhas H e K do Ca II, mostramos que estrelas ricas em metais tendem a ser ativas no primeiro e mais inativas no segundo indicador de atividade, e vice-versa, sendo este possivelmente um efeito puramente espectral, onde a alta absorção da linha metálica em estrelas ricas simula uma cromosfera mais quieta, mascarando parte de sua atividade. Dessa forma, comprovamos sugestões prévias de que esse efeito é importante e deve ser levado em conta ao utilizar as linhas H e K do Ca II como indicadores cromosféricos. Demonstramos, através de uma regressão idade-atividade-massa-metalicidade, baseada em uma subamostra de estrelas com idades precisas, que o fluxo cromosférico de H α é passível de ser utilizado como um indicador de idades estelares, com precisão competitiva em relação às linhas H e K, para estrelas de até, pelo menos, idades levemente superiores à solar, até onde obtemos bom acordo entre as idades cromosféricas e idades astrosismológicas publicadas. Confirmamos também a influência estrutural significativa da massa e da metalicidade na relação idade-atividade, variáveis diretamente relacionadas à extensão da zona convectiva e, por consequência, ao efeito dínamo da estrela.

palavras chave: estrelas: tipo solar, estrelas: atividade cromosférica, estrelas: atmosferas, estrelas: espectroscopia, estrelas: idades, galáxia: vizinhança solar

Rio de Janeiro 2022

Abstract

Absolute Chromospheric Fluxes in $H\alpha$ and the Age-Activity Relation in Solar Type Stars

Paulo Vitor Souza dos Santos

Advisor: Gustavo Frederico Porto de Mello

Spectral lines with high photospheric absorption are tools from which we can identify and quantify emissions from stellar chromospheres. In solar-type stars, these emissions are intrinsically related to the structure of the star: the movements of differential rotation and superficial convection of the plasma are responsible for creating and maintaining magnetic fields, that inject non-thermal energy in the chromosphere. That energy injection monotonically decays with the stellar age, as the star evolves and has its rotation rate slowed down by transportation of angular momentum by stellar winds. The H α line is a magnetic activity and age indicator in solar-type stars, but still is very little studied. In this work, we employ MARCS theoretical models of stellar atmospheres and spectra of good signal to noise ratio (~ 170) and moderately high resolution ($R \approx 11000$ - 30000), obtained in the Observatório do Pico dos Dias (LNA), to determine absolute total and chromospheric fluxes in erg cm⁻² s⁻¹ in the H α line for more of 500 stars of spectral type F, G and K, main sequence dwarfs and subgiants. We determined for the whole sample effective temperatures (4600 $\lesssim T_{\rm eff} \lesssim 6600$ K) through modern photometric calibrations, with mean error of 40 K. We also compiled metallicities $(-1.0 \leq [Fe/H] \leq 0.5)$. We have derived masses $(0.5 \lesssim M \lesssim 1.7 M_{\odot})$ and isochronal ages through PARSEC evolutionary models and have calculated surface gravities (3.2 \lesssim log g \lesssim 4.7 dex) and luminosities $(0.2 \leq L \leq 12 L_{\odot})$. We have derived a photospheric correction scale for the total flux in the $H\alpha$ line of unprecedented consistency, and calculated the pure chromospheric fluxes. Comparing the chromospheric flux in H α with the chromospheric flux in the H and K lines of Ca II, we show that metal rich stars tend to be more active in the former and more inactive in the latter activity indicator, and vice versa, and we propose this effect to be a pure spectral effect, where the high absorption of the metal line in rich stars mimicks a quieter chromosphere. We therefore reinforce previous suggestions that this effect is important and must be taken into consideration when using the H and K lines of Ca II as chromospheric indicators. We have also shown, by means of an age-activity-mass-metallicity regression, based on a subsample of stars with precise ages, that the chromospheric flux in H α may be successfully used as an indicator of stellar age, with competitive precision compared to the H and K lines, for stars, at least, slightly older than the Sun, which is the age limit for which we have obtained good agreement between the chromospheric and asteroseismological ages. We have also confirmed the significant influence of mass and metallicity in the age-activity relation, variables directly related to the extent of the convective zone and, therefore, to the stellar dynamo.

keywords: stars: solar type, stars: chromospheric activity, stars: atmopheres, stars: spectroscopy, stars: ages, galaxy: solar neighborhood

> Rio de Janeiro 2022

Lista de Figuras

2.1	Diagrama HR ilustrando a ampliação da amostra de Dutra-Ferreira (2010). O Sol está representado por seu símbolo usual, em verde	25
2.2	Ampliação da amostra em termos da temperatura efetiva e da metalicidade.	26
2.3	Ampliação da amostra em termos da gravidade superficial e da massa	26
3.1	Histograma de S/R para a amostra de espectros	30
3.2	Raios cósmicos em um dos espectros da estrela HD 211080. H α é a linha em absorção mais intensa, aproximadamente no centro do espectro. Esta	
	é a janela usual gráfica do IRAF: o eixo X representa a a coordenada em	
	pixel e o eixo Y representa a contagem de elétrons no CCD.	31
3.3	Primeira etapa da tarefa apscatter , com a identificação da região da fenda	
2.4	(pico central).	33
3.4	Polinômio ajustado a ser subtraído pela tarefa apscatter	33
3.5	Sentido espacial do espectro após a correção da luz espalhada	34
3.6	Espectro linearizado, em uma dimensão, que é a informação contida na	~ ~
~ -	dimensao ortogonal ao sentido espacial, mostrado na Figura 3.5.	35
3.7	Marcação manual da linha de comprimento de onda 6588,5396 A no espec-	20
0.0	tro de torio-argonio, durante a execução da tarefa identify .	36
3.8	Identificação automática das demais linhas do espectro de torio-argonio	36
3.9	Espectro calibrado em comprimento de onda.	37
3.10	Ajuste da gaussiana à linha para medir seu centro	38
3.11	Espectros antes (branco) e depois (vermelho) da correção do desvio doppler para a estrela HD 126053	39
3.12	Histograma das incertezas referentes às velocidades radiais instrumentais	
	de todos os espectros da amostra nova	39
3.13	Espectros das estrelas HD 120136 (branco) e HD 209100 (vermelho) sobre-	
	postos	41
3.14	Espectro da estrela HD 126053 antes da normalização	41
3.15	Espectro da estrela HD 126053 após a normalização.	42
3.16	Comparação entre a normalização da amostra antiga e nova para a primeira	
	região de contínuo, através de um histograma de diferenças entre fluxos na	
	nova normalização e fluxos na normalização antiga.	43

3.17 3.18	Comparação entre a normalização da amostra antiga e nova para a segunda região de contínuo, através de um histograma de diferenças entre fluxos na nova normalização e fluxos na normalização antiga	43 44
4.1	Histograma de incertezas das primeiras temperaturas efetivas fotométricas médias calculadas.	51
4.2	Tendências das temperaturas efetivas fotométricas calculadas pelas cores $B - V \in B_T - V_T$ com a temperatura fotométrica média	52
4.3	Tendências das temperaturas efetivas fotométricas calculadas pelas cores $b-y \in G - RP$ com a temperatura fotométrica média	52
4.4	Tendências das temperaturas efetivas fotométricas calculadas pelas cores $BP - RP \in G - BP$ com a temperatura fotométrica média	53
4.5	Comparação entre a temperatura efetiva fotométrica média e a temperatura da literatura.	55
4.6	Comparação entre a metalicidade inicial (literatura) e a metalicidade corrigida.	56
4.7	Comparação entre as idades isocronais determinadas antes (esquerda) e depois (direita) da aplicação do <i>offset</i> em temperatura efetiva e magnitude absoluta e as idades da literatura	59
4.8	Distribuições de probabilidade para a idade e a massa da estrela HD 128620 (Alf Cen A)	60
4.9	Comparação entre a gravidade superficial determinada por nós, a partir dos diagramas evolutivos, e a da literatura	61
4.10	Distribuição dos valores finais de temperatura efetiva fotométrica adotados para amostra e seus erros.	63
4.11	Distribuição dos valores finais de [Fe/H] adotados para a amostra. O erro associado ao parâmetro foi estimado em 0.10 dex para 491 estrelas e 0.15	
4 1 0	para 41 estrelas.	63
4.12	Distribuição dos valores finais de log g adotados para amostra e seus erros.	64 64
4.13	Distribuição dos valores finais de massa adotados para amostra e seus erros.	04 64
4.14	Distribuição dos valores infais de faio adotados para amostra e seus erros T $_{\rm e}$ vg $[{\rm Fe}/{\rm H}]$ (osquerda) o T $_{\rm e}$ vg \log g (direita) para a amostra	04 65
4.10	T_{ef} vs. [Fe/H] (esquerda) e T_{ef} vs. log g (direita) para a amostra	65
4.10	$[Fe/H]$ vs. Massa (csquerda) e log σ vs. Massa (direita) para a amostra.	65
4.18	Diagrama HR da amostra com os diferentes intervalos de metalicidade iden- tificados. O Sol está demarcado com seu símbolo usual	66
5.1	Regiões de referência representativas do contínuo estelar para a determinação indireta do fluxo em H α , também demarcado no centro do espectro.	69
5.2	Resíduos da regressão polinomial de segundo (esquerda) e terceiro (direita) grau do fluxo da região 1 contra T_{ef} .	72

5.3	Resíduos da regressão polinomial de segundo (esquerda) e terceiro (direita) grau do fluxo da região 1 contra [Fe/H]	73
5.4	Resíduos da regressão polinomial de segundo (esquerda) e terceiro (direita) grau do fluxo da região 1 contra log g.	73
5.5	Sobreposição dos espectros das estrelas HD 4391 e HD 105901, destacando o diferente nível de atividade cromosférica no centro do perfil de H α	76
5.6	Curvas de razão entre os fluxos de estrelas ativas e inativas em função da largura de integração $\Delta\lambda$, para espectros de baixa (esquerda) e alta (direita) resolução	77
5.7	Espectros de razão sobrepostos aos espectros estelares para pares de estrelas com diferentes níveis de atividade (baixa resolução)	78
5.8	Espectros de razão sobrepostos aos espectros estelares para pares de estrelas com diferentes níveis de atividade (alta resolução)	79
5.9	Espectros de razão sobrepostos aos espectros estelares para pares de estrelas com diferentes log g's (baixa e alta resolução, respectivamente, da esquerda para a direita). O espectro da anã é representado pela linha azul, enquanto	
5 10	o da subgigante é representado pela linha laranja	80
5.11	HD 146233 sobrepostos	81
5.11	resolução, para a amostra comum de 64 estrelas	82 83
5.13	Derivação do envoltório de mínima atividade cromosférica, representando a contribuição fotosférica do fluxo total. A estrela cujo fluxo cromosférico	00
	foi arbitrado em zero (HD 114762) está identificada pela seta. \ldots	85
5.14	Escala de fluxo absoluto cromosférico para a amostra de estrelas	86
5.15	Incerteza relativa do fluxo absoluto total	88
$\begin{array}{c} 6.1 \\ 6.2 \end{array}$	Envoltório de correção de F_{HK} (esquerda) e fluxos corrigidos (direita) Relação entre os fluxos $F_{H\alpha}$ e F_{HK} . O erro típico está demarcado no canto inferior direito para o Sol, onde assumimos a incerteza em F_{HK} em aproxi-	90
6.3	madamente 2×10^5 erg cm ⁻² s ⁻¹ (Lorenzo-Oliveira, D., comunicação privada). Estratificação dos fluxos cromosféricos de H α e das linhas H e K do Ca II	91
	por [Fe/H]	92
6.4	Relação entre a diferença entre os fluxos F_{HK} e $F_{H\alpha}$ e a metalicidade [Fe/H].	93
6.5	Resíduos do ajuste $\log(F_{H\alpha}) = a \cdot \log(F_{HK}) + b$ em função de [Fe/H]	94
6.6	Função densidade de probabilidade para as idades isocronais das estrelas HD 195564 (esquerda) e HD 160346 (direita).	94
6.7	τ_c (dias) em função da massa e da metalicidade da estrela, decorridos t = 50×10^6 anos	96
6.8	Resíduos da calibração idade-atividade em função das idades médias. $\ .\ .$	98
6.9	Resíduos da calibração idade-atividade em função do fluxo cromosférico.	99
6.10	Comparação entre idades cromosféricas com idades astrosismológicas	100

6.11	Relação Idade-Atividade para todas as estrelas utilizadas na calibração. O	
	Sol está identificado em laranja.	101
6.12	Relação idade-atividade para estrelas com massa (esquerda) e tanto massa	
	quanto metalicidade (direita) solares	101

Lista de Tabelas

4.1	Coeficientes e incertezas das calibrações de Casagrande et al. (2010) (eq. 4.1.1).	6
4.2	Coeficientes e incertezas das calibrações de Casagrande et al. (2021) (eq. 4.1.2).	17
4.3	Metalicidades adotadas para as estrelas de associações e aglomerados. Para a única estrela da associação Beta Pictoris (HD 35850) adotamos o valor individual de -0,02 (Gray et al., 2006)	8
4.4	Relações entre o erro cometido em temperatura efetiva e a diferença gerada na metalicidade	64
4.5	Idades astrosismológicas das estrelas utilizadas para o teste da validade das isócronas.	59
5.1	Valores da regressão polinomial de grau 3 para a 1^a região de referência (6504,95 - 6507,55 Å)	'1
5.2	Valores da regressão polinomial de grau 3 para a 2^a região de referência (6599,96 - 6604,25 Å)	'1
5.3	Valores da regressão polinomial de grau 3 para a 3^a região de referência (6614,49 - 6616,15 Å)	'2
$5.4 \\ 5.5$	Variações nos fluxos frente às incertezas em T_{ef} , em unidade de erg cm ⁻² s ⁻¹ . 7 Variações nos fluxos frente às incertezas em [Fe/H], em unidade de erg cm ⁻²	'4
5.6	s^{-1}	5
	s^{-1}	5
6.1	Idades adotadas para as estrelas de aglomerados e associações estelares jovens presentes na amostra)5
6.2	Regressão multiparamétrica idade-atividade	7
A.1	Classificação evolutiva e relação sinal/ruído dos espectros da amostra 11	2
B.1	Temperaturas efetivas fotométricas	:5
C.1	Parâmetros Atmosféricos	8
D.1	Parâmetros Evolutivos	\mathbf{b}^2

E.1	Fluxos Absolutos	Totais e	Cromosféricos.	 							. 1	.67

Sumário

Ag	grade	ecimen	tos	2
Re	esum	0		4
Ał	ostra	ct		5
Li	sta d	e Figu	ras	
Li	sta d	e Tabe	elas	
Su	ımári	io		
1	Intr	oduçã	0	16
2	Sele	eção e .	Ampliação da Amostra	23
3	Obs 3.1 3.2	Especi Reduç 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.2.7 3.2.8	es e Reduções ficações Técnicas	 27 27 30 31 31 32 32 34 34 37 40
4	Det 4.1 4.2 4.3	ermina Cálcul Correç Deterr	ação dos Parâmetros Atmosféricos e Evolutivos o da Temperatura Efetiva Fotométrica Inicial	45 46 54 56

	4.4	Segunda Rodada de Iterações e Valores Finais	01
		dos Parametros	61
5	Det	erminação dos Fluxos Absolutos Cromosféricos	67
	5.1	Calibração do Fluxo Absoluto Teórico	67
	5.2	Determinação do Fluxo Absoluto em H α	75
		5.2.1 Escolha da largura ideal de medida do fluxo cromosférico	76
	F 0	5.2.2 Conversao dos fluxos absolutos medidos para as diferentes resoluções \vec{a}_{1}	81
	5.3	Subtração da Componente Fotosierica e Determinação do Fluxo Puramente Cromosfárico	83
			00
6	Res	ultados	89
	6.1	Comparação com os Fluxos das Linhas H e K do Ca II	89
	6.2	A Relação Idade - Atividade	94
7	Con	clusões	102
Re	eferê	ncias Bibliográficas	104
\mathbf{A}	Clas	sificação Evolutiva e Sinal/Ruído dos Espectros da Amostra	112
в	Ten	peraturas Efetivas Fotométricas	125
\mathbf{C}	Para	âmetros Atmosféricos	138
D	Para	âmetros Evolutivos	151
Б	T 1	rog Abgolutog Totoig o Cromosfárigog	167

Capítulo 1

Introdução

Apesar de haver registros de estudos durante vários eclipses solares desde, pelo menos, o início do século XVIII, Lockyer (1869) foi o primeiro a nomear como **cromosfera** um envoltório gasoso visto revestindo todo o Sol, durante seu estudo de proeminências na atmosfera solar. Atualmente, cerca de 150 anos depois, muitas questões acerca desta camada da atmosfera estelar já foram respondidas; entretanto, ainda estamos longe do completo entendimento de toda a física envolvida em sua origem, manutenção e evolução.

Localizada acima da fotosfera, a cromosfera solar se estende por uma espessura de aproximadamente 2000 km, sendo bem menos densa e brilhante que a camada que a antecede (Avrett & Loeser, 2008). Atingindo valores de temperatura maiores que a temperatura típica da fotosfera, o espectro característico da cromosfera é formado por linhas de emissão, em contraste com o espectro em absorção da fotosfera.

O aumento da temperatura da cromosfera está diretamente relacionado à magnetohidrodinâmica, ou seja, à existência e evolução de campos magnéticos devido ao fluido eletricamente condutor, campos magnéticos estes podendo ser observados indiretamente a partir das manchas solares (Hale, 1908). Segundo a teoria do dínamo estelar, os movimentos de rotação e convecção do interior da estrela são os responsáveis por gerar os campos magnéticos (Parker, 1955): quanto mais extensa a zona convectiva e quanto maior a taxa de rotação da estrela, maior a intensidade dos campos magnéticos gerados. Tais campos transportam energia através de ondas transversais, chamadas de ondas magnetohidrodinâmicas (ou ondas de *Alfvén*), ao se dissiparem na cromosfera. De Pontieu et al. (2001) e Fawzy et al. (2002) atribuem o amortecimento responsável pela dissipação destas ondas às colisões entre o plasma carregado pelas ondas e o plasma presente na cromosfera estelar.

Uma aparente fonte secundária de injeção de energia na cromosfera se dá através da dissipação de ondas acústicas, geradas pelos movimentos convectivos da estrela (Fawzy et al., 2002). Tais ondas longitudinais seriam dissipadas na cromosfera devido ao amortecimento causado pela mudança de meio de propagação, a partir da queda brusca de densidade.

Uma vez que o hidrogênio é o elemento químico de maior abundância na atmosfera estelar, temos com ele a maior fonte de opacidade. O objeto de estudo utilizado neste trabalho é a linha H α da série de Balmer, correspondendo à transição entre o segundo (n = 3) e o primeiro (n = 2) estado excitado do átomo de hidrogênio, com comprimento de onda característico $\lambda = 6562,797$ Å. Sendo necessário diferenciar as contribuições do fluxo referentes à cromosfera e à fotosfera da estrela, uma alta opacidade (baixo fluxo fotosférico) se torna desejada, para que a emissão cromosférica seja bem contrastada ao fluxo fotosférico. Nesse ponto, H α surge como uma das linhas espectrais nas quais é viável a observação espectroscópica das emissões provenientes da cromosfera. Entretanto, a linha H α recebe bem menos atenção do que, por exemplo, as linhas H e K do Ca II, consideradas indicadores de atividade cromosférica padrão e amplamente estudadas (Noyes et al., 1984; Pace & Pasquini, 2004; Lorenzo-Oliveira et al., 2016a,b). A utilização do índice S de Monte Wilson, métrica amplamente difundida e utilizada desde 1965 que caracteriza o fluxo cromosférico nas linhas H e K, também contribui para o alto número de trabalhos baseados nestes indicadores de atividade.

O estudo da atividade cromosférica em H α se iniciou há cerca de apenas cinco décadas. Schoolman (1972), através de modelagens teóricas, concluiu que o fluxo no centro da linha H α para estrelas de tipo solar apresenta uma clara contribuição da cromosfera estelar, mas reportou que uma contribuição substancial advinda da fotosfera da estrela também está presente no centro da linha. Analisando espectros de estrelas de tipo F8-G3, Zarro (1983) e Herbig (1985) notaram grande semelhança entre a linha H α destes espectros com espectros de *plages* (praias) solares, regiões brilhantes da cromosfera solar associadas à regiões de alta atividade magnética. Ambos os resultados foram obtidos em mais detalhes também por LaBonte (1986).

Indo para estrelas mais frias, Giampapa (1985) observou que estrelas de tipo espectral M quase não possuem contribuição fotosférica no centro de H α , explicação (em parte) para as reversões espectrais observadas em estrelas dMe, estrelas magneticamente muito ativas que apresentam fortes perfis de emissão, tanto em H α quanto nas linhas H e K do Ca II.

Voltando às estrelas de tipo solar (classe espectral F, G e K), Pasquini & Pallavicini (1991) confirmam a alta contribuição da fotosfera para o fluxo no centro de H α , sendo a contribuição da cromosfera dada por um preenchimento suave e pequeno no centro da linha. Este resultado foi demonstrado também por Lyra & Porto de Mello (2005), com uma amostra substancialmente maior de estrelas.

Martínez-Arnáiz et al. (2011) compararam a emissão cromosférica de H α com a emissão cromosférica nas linhas H e K do Ca II para uma amostra de 298 estrelas de tipos espectrais F, G, K e M, encontrando uma boa correlação entre os fluxos, havendo porém um espalhamento maior para estrelas mais frias e ativas em ambos indicadores. Morgenthaler et al. (2012) monitoraram por quatro anos a estrela Xi Bootis A (HD 131156) através de índices espectrais derivados para H α e H e K, encontrando também uma boa correlação entre ambos.

Ainda com índices espectrais, sem determinação de fluxos cromosféricos absolutos, Suárez Mascareño et al. (2015) encontraram uma boa correlação entre o período de rotação derivado a partir dos índices de H α com o período de rotação derivado a partir de índices das linhas H e K do Ca II, para algumas estrelas da amostra de 48 alvos de tipos espectrais F, G, K e M.

Zhang et al. (2020) analisaram espectros do survey LAMOST para mais de 400 mil estrelas classificadas como *late-type*, estudando a largura equivalente de H α como um indicador de atividade cromosférica. Pela baixa resolução espectral (R \approx 7500), apenas estrelas de tipo M (muito ativas) tiveram atividade cromosférica detectada, através dos perfis em emissão no centro da linha. He et al. (2019) utilizaram dados do mesmo survey, de resolução ainda mais baixa (R \approx 1800), para determinar uma boa correlação entre o fluxo em raio-X da estrela (obtido da base da dados *Chandra*) com a largura equivalente de H α para 484 estrelas.

A emissão cromosférica bem mais discreta em H α surge como uma explicação para seu baixo estudo como indicador da atividade magnética nas atmosferas estelares, em comparação às linhas H e K do Ca II, onde o fluxo cromosférico aparece em forma de linhas de emissão no espectro. Além do maior nível de complexidade em sua quantificação, temos o fato de que, historicamente, as placas fotográficas utilizadas na espectroscopia antes da implementação dos CCDs (*Charge Coupled Devices*) serem mais sensíveis na parte azul do espectro, em detrimento da parte vermelha, onde H α se localiza.

Apesar da maior complexidade na determinação do fluxo cromosférico, H α apresenta algumas vantagens. Estando na região do vermelho do espectro visível, H α está pouco sujeita à contaminação devido à fenômenos altamente energéticos da atmosfera solar, como *flares* e ejeções de massa, que comumente afetam mais a extremidade azul do espectro, aumentando em direção ao espectro ultravioleta. Além disso, H α é capaz de caracterizar o nível de atividade médio das estrelas, sendo menos influenciada pelos máximos e mínimos de seus ciclos de atividade (Lyra & Porto de Mello, 2005). Em relação à obtenção de espectros estelares, podemos ainda mencionar que os detectores CCDs modernos utilizados apresentam maior eficiência quântica na região do vermelho, onde a linha está localizada.

A medida que estrelas de baixa massa evoluem na sequência principal, há uma perda de massa em uma taxa, em geral, extremamente pequena, através de ventos estelares e ejeções de partículas. O vento estelar, no caso de estrelas com convecção superficial (aproximadamente aquelas de massa inferior a 1,5 M_{\odot}), é constituído de plasma ionizado, o qual é forçado a seguir as linhas de campo magnético que emanam da fotosfera. Tal vento carrega momento angular para longe da estrela, aplicando um torque à mesma. Como resultado, tem-se uma diminuição da velocidade de rotação da estrela, e consequentemente o dínamo estelar fica menos eficiente, o que diminui a intensidade dos campos magnéticos gerados e a injeção de energia na cromosfera. A diminuição da taxa de rotação sofre ainda contribuição do aumento do raio estelar, à medida que a estrela evolui. Essa configuração auto-dissipativa de energia nos permite inferir que estrelas mais velhas possuem um menor nível de atividade cromosférica, comparadas às estrelas menos evoluídas que ainda apresentam uma velocidade de rotação elevada (Noyes et al., 1984).

Tentativas de caracterizar a evolução do fluxo cromosférico frente à idade estelar se iniciaram por Skumanich (1972), utilizando as linhas H e K do Ca II de poucas estrelas de aglomerados abertos e grupos cinemáticos. Ainda utilizando essas linhas metálicas, podemos citar os trabalhos de Soderblom (1985), Barry et al. (1987) e Barry (1988). Dos trabalhos que se sucederam utilizando este indicador cromosférico, Pace & Pasquini (2004) e Pace (2013) sugerem que é impossível a determinação de uma relação idadeatividade para estrelas mais velhas que 2 Gano, resultado refutado por Lorenzo-Oliveira et al. (2016a).

Se o estudo da atividade cromosférica em H α já é escasso em comparação ao dubleto do cálcio, a caracterização de uma relação idade-atividade é ainda mais escassa. Herbig (1985) foi o primeiro a realizar tal estudo, com uma amostra de 40 estrelas, seguido por Pasquini & Pallavicini (1991), com uma amostra de 87 estrelas. Lyra & Porto de Mello (2005) construíram uma calibração de idade multiparamétrica com 175 estrelas incluindo, além da idade, massa e metalicidade como variáveis regressivas, recuperando resultados previstos por Noyes et al. (1984): a convecção superficial e a rotação diferencial, atreladas através do número de Rossby R_0^{-1} , refletem a eficiência de conversão de energia mecânica em energia magnética na estrela. Esse resultado, explicitado pela primeira vez por esses autores, sugere que as variáveis capazes de influenciar na presença e extensão das zonas convectivas de estrelas de baixa massa potencialmente afetarão a derivação de uma relação idade-atividade.

Mais recentemente, Douglas et al. (2014) estudaram a atividade cromosférica em H α , avaliada por larguras equivalentes, para estrelas dos aglomerados abertos Híades e Praesepe (Messier 44), ambos de idade $\approx 6 \times 10^8$ anos, encontrando uma dependência com o número de Rossby R_0 (Noyes et al., 1984), resultado esse que reforça o poder da linha como indicador evolutivo de idade. Ao investigarem a influência do fluxo cromosférico em H α na medida de velocidades radiais ultraprecisas, utilizadas na busca por exoplanetas em estrelas da vizinhança solar, Sissa et al. (2016) construíram uma relação idade-atividade,

¹Razão entre o período de rotação estelar e o tempo característico de convecção, $R_0 = P_{\rm rot}/\tau_c$.

concluindo que o decaimento do fluxo cromosférico se torna indetectável a partir de $1,5 \times 10^9$ anos, resultado que parece reforçar as conclusões de Pace & Pasquini (2004) e Pace (2013), destacando porém a baixa qualidade das idades isocronais utilizadas na construção da calibração.

Massa e metalicidade estelares são fatores que afetam diretamente a extensão da zona convectiva da estrela e, consequentemente, o efeito dínamo. Quanto maior a metalicidade (e, consequentemente, a opacidade) e menor a massa, mais a convecção se torna eficiente como mecanismo de transporte de energia (Kippenhahn et al., 2012). Torna-se, assim, interessante uma quantificação da evolução do fluxo cromosférico frente à idade e também a essas duas variáveis. A influência destes dois parâmetros estruturais na relação idadeatividade já foi evidenciada tanto em trabalhos que utilizaram H α (Lyra & Porto de Mello, 2005) como em trabalhos que utilizaram as linhas H e K (Lorenzo-Oliveira et al., 2016a) como indicador cromosférico.

Nosso trabalho surge como uma tentativa de contribuir para uma melhor caracterização do fluxo cromosférico em estrelas de tipos espectrais F, G e K, divididas entre anãs de sequência principal e subgigantes, no maior número possível de indicadores espectroscópicos de atividade cromosférica. A utilização de H α como indicador de atividade cromosférica é interessante para que haja uma alternativa às típicas linhas H e K do Ca II, amplamente estudadas. Nos propomos a dar continuidade aos trabalhos de Lyra & Porto de Mello (2005) e Dutra-Ferreira (2010), trabalhos estes feitos a partir de amostras substancialmente menores que a nossa amostra.

A determinação de idades estelares precisas é essencial para o entendimento de vários campos da astronomia, como o estudo da própria evolução estelar, da evolução química (e dinâmica) da Galáxia como um todo, da caracterização de sistemas planetários extrasolares e suas condições de habitabilidade, entre outros. Com uma calibração de idades baseada na atividade cromosférica, a idade poderia ser facilmente conhecida a partir da observação direta do fluxo cromosférico, sendo uma alternativa ao método isocronal. Sendo o método mais utilizado e difundido, a determinação de idades via isócronas pode apresentar altas incertezas, como em regiões do diagrama HR onde as curvas de idade estão muito próximas ou para estrelas com altas incertezas em luminosidade, temperatura e/ou metalicidade. Para estrelas mais jovens que o Sol, por exemplo, as curvas de idade para uma estrela de baixa massa podem ser tão próximas que se torna impossível a determinação de idade. Com uma calibração baseada na atividade magnética das estrelas, as incertezas nas idades seriam dominadas majoritariamente por erros na determinação do fluxo cromosférico (em maioria, erros instrumentais), que podem ser mais facilmente controlados.

Neste trabalho, propomos derivar fluxos absolutos totais e cromosféricos na linha H α para uma amostra composta de estrelas de tipo espectral F, G e K, a partir de modelos teóricos modernos e escalas de temperatura efetiva, metalicidade e gravidade superficial com boa precisão interna. A partir dos fluxos cromosféricos bem determinados, se torna interessante investigar a relação dos mesmos com os fluxos cromosféricos nas linhas H e K do Ca II, numa tentativa de observar a diferença física na formação destes fluxos na cromosfera estelar. Desejamos também investigar a capacidade do fluxo cromosférico em H α de ser utilizado como um indicador de idades para estrelas de tipo solar, comparando-a com calibrações idade-atividade baseadas nas linhas H e K do Ca II.

Esta monografia está organizada da seguinte maneira: apresentamos detalhes da amostra, como a ampliação em relação aos trabalhos anteriores em números de estrelas investigadas, no segundo capítulo. Descrevemos o processo de observação das estrelas, bem como a qualidade do espectros e o processo de redução deles, no Capítulo 3. No quarto capítulo abordamos a determinação dos parâmetros atmosféricos e evolutivos das estrelas, matérias-primas para a correta descrição dos fluxos absolutos e puramente cromosféricos das estrelas, a serem tratados no Capítulo 5.

Apresentamos os resultados do trabalho no Capítulo 6, analisando as relações entre os fluxos cromosféricos determinados por nós através de H α com os fluxos cromosféricos determinados através do índice S de Monte Wilson, característicos do fluxo observado a partir das linhas H e K do Ca II. Construímos também a primeira versão (preliminar) de uma relação idade-atividade, a partir de nossos fluxos cromosféricos e parâmetros estelares.

Capítulo 2

Seleção e Ampliação da Amostra

A amostra de estrelas utilizadas neste trabalho representa um esforço coletivo de G. F. Porto de Mello e seus colaboradores, abrangendo espectros de estrelas fisicamente parecidas com o Sol (tipos espectrais F, G e K), anãs e subgigantes, e pertencentes à vizinhança solar, colhidos nos últimos vinte e sete anos.

A primeira parte desta amostra foi utilizada por Lyra & Porto de Mello (2005), equivalendo às 175 estrelas observadas nos primeiros nove anos do projeto, subdivididas entre estrelas de campo, aglomerados (Plêiades e Híades) e grupos cinemáticos (Ursa Maior, HR 1614 e ζ Reticuli).

As estrelas de aglomerados são de extrema importância para o trabalho, uma vez que elas se originaram de uma mesma nuvem molecular (e portanto, apresentam basicamente a mesma composição química) e possuem, consequentemente, aproximadamente a mesma idade. Elas serão objetos importantes para a análise da coerência da calibração do fluxo cromosférico e da posterior calibração idade-atividade.

As estrelas de grupos cinemáticos são as que possuem basicamente a mesma velocidade vetorial galáctica, o que seria um indicativo de uma origem comum. Poderíamos, desta forma, considerar uma mesma composição química e idade, assim como os aglomerados estelares. Em um trabalho recente, Dopcke et al. (2019), entretanto, concluem que as estrelas do grupo Ursa Maior, apesar de possuírem valores similares de [Fe/H], não possuem o mesmo padrão de abundância química indicando uma origem dinâmica do grupo. Visto isso, trataremos em nosso trabalho as estrelas pertencentes ao grupo cinemático Ursa Maior, bem como as estrelas dos grupos HR 1614 e ζ Reticuli, como estrelas comuns de campo, tratamento diferenciado do qual daremos para estrelas de aglomerados e as estrelas das associações estelares jovens Tucana-Horologium e Beta Pictoris, conforme descrito nos próximos capítulos.

Dutra-Ferreira (2010) utilizou em seu trabalho as mesmas 175 estrelas de Lyra & Porto de Mello (2005), com a adição de 75 novos alvos que incluem estrelas de campo, estrelas de aglomerados estelares e estrelas subgigantes, essas últimas essenciais para caracterizar o envoltório de mínima atividade para a determinação do fluxo puramente cromosférico de toda a amostra (cap. 5).

Neste trabalho, somamos à amostra de 250 estrelas utilizada por Dutra-Ferreira (2010) mais 282 estrelas, de forma a incluir, além de estrelas de campo,

- mais estrelas membros de aglomerados/associações (Híades, Plêiades, Beta Pictoris e Tucana-Horologium);
- uma melhor amostragem de estrelas pobres em metais, na faixa de $[Fe/H] \sim -1$, que eram especialmente ausentes da amostra anterior;
- estrelas já conhecidas por possuírem baixa emissão cromosférica (Henry et al., 1996; Wright et al., 2004) e estrelas subgigantes, objetos especialmente relevantes por serem em geral inativos e, portanto, caracterizadores dos mais baixos níveis de emissão cromosférica, o que é necessário para quantificar de maneira acurada a correção fotosférica a ser aplicada no capítulo 5;
- estrelas da vizinhança solar, de forma a termos a melhor completeza possível, em termos de volume, de observação das estrelas de tipo solar até 20 pc de distância do Sol.

Mostramos no diagrama HR abaixo (Figura 2.1) a ampliação da amostra, comparando os dados atuais com os de Dutra-Ferreira (2010). Apesar de não termos ampliado o intervalo de temperatura efetiva considerado, povoamos regiões do diagrama que anteriormente possuíam poucas estrelas, como o intervalo de anãs mais frias e a região das subgigantes em geral.

FIGURA 2.1. Diagrama HR ilustrando a ampliação da amostra de Dutra-Ferreira (2010). O Sol está representado por seu símbolo usual, em verde.

Nas Figuras 2.2 e 2.3 mostramos a ampliação da amostra em termos da temperatura efetiva, metalicidade ([Fe/H]), gravidade superficial (log g) e massa. Tais parâmetros foram derivados conforme o procedimento descrito no capítulo 4. A inclusão de estrelas em uma faixa mais ampla de metalicidades e massas é essencial para a caracterização da relação fluxo-fluxo e da relação idade-atividade construída por nós, como demonstraremos no capítulo 6.

FIGURA 2.2. Ampliação da amostra em termos da temperatura efetiva e da metalicidade.

FIGURA 2.3. Ampliação da amostra em termos da gravidade superficial e da massa.

Capítulo 3

Observações e Reduções

3.1 Especificações Técnicas

Todos as estrelas de nossa amostra foram observadas no Observatório do Pico dos Dias, operado pelo Laboratório Nacional de Astrofísica (OPD/LNA), localizado em Brazópolis, Minas Gerais. Os espectros foram obtidos utilizando o telescópio de 1,6 m Perkin-Elmer, no foco coudé (razão focal f/31,2).

A amostra de estrelas consiste em uma extensa base de dados construída por G. F. Porto de Mello e seus colaboradores, ao longo dos últimos vinte e sete anos (1994-2021). Em termos cronológicos e no contexto de nosso trabalho, podemos dividir a amostra em dois grupos: o primeiro consiste nas 250 estrelas já utilizadas no trabalho realizado por Dutra-Ferreira (2010), identificadas neste capítulo como "amostra antiga", e o segundo grupo de estrelas equivale aos 282 alvos inéditos observados após 2010, o qual identificamos como "amostra nova". A junção das duas amostras, totalizando as 532 estrelas, será identificada como "amostra completa".

Como os espectros foram colhidos ao longo de um intervalo extenso de tempo, as configurações instrumentais utilizadas na obtenção deles variaram ao longo dos anos. Todos os espectros pertencentes à amostra antiga foram obtidos utilizando uma rede de 1800 linhas/mm em primeira ordem e uma fenda de 250 μ m, com a exceção de poucos

alvos com brilho mais fraco, como as estrelas das Plêiades, para as quais utilizou-se uma fenda de 500 μ m. Quanto aos novos espectros (amostra nova), foram utilizadas a rede de 1800 linhas/mm e fenda de 250 μ m para as três primeiras missões observacionais (2010-2011), totalizando cerca de 60 estrelas. De resto, utilizou-se uma rede de 600 linhas/mm e fenda de 250 μ m. A mudança na rede de difração ocorreu pois nosso grupo estimou que a resolução obtida com rede de 600 linhas/mm era suficiente para quantificar o fluxo cromosférico em H α , e essa rede apresenta a vantagem (em relação à rede de 1800 linhas/mm) de necessitar de um tempo de exposição bem mais curto (em torno de sete vezes) para a coleta dos espectros.

Os espectros da amostra antiga foram obtidos com três detectores CCDs diferentes: um CCD SITE, de imagem 1024x1024 pixels, sendo 24 μ m o tamanho de cada pixel, e dois CCDs Marconi, um de imagem 2048x4608 e outro de imagem 2048x2048 pixels, ambos de 13,5 μ m cada. Os CCDs utilizados para a coleta dos novos espectros foram também CCDs Marconi (2048x2048), com as mesmas especificações, além de CCDs Ikon (E2V), também com imagem de 2048x2048 pixels, 13,5 μ m cada. A dispersão linear das diferentes configurações instrumentais ficou em cerca de 0,08 Å/pixel, com exceção da configuração da rede 600 linhas/mm + CCDs Ikon, onde a dispersão ficou em cerca de 0,25 Å/pixel, e do CCD Site, onde a dispersão ficou em aproximadamente 0,13 Å/pixel.

O poder resolutor R, definido como a razão entre um comprimento de onda e a largura de uma estrutura estreita no espectro ($\mathbf{R} = \lambda/\Delta\lambda$), reflete a capacidade de se distinguir linhas espectrais muito próximas. Os espectros obtidos com a rede de 1800 linhas/mm possuem poder resolutor na faixa de R \approx 30000, enquanto todos os espectros colhidos com a rede de 600 linhas/mm possuem poder resolutor em torno de R \approx 11000. Os valores de R foram estimados utilizando-se linhas de emissão nos espectros de tórioargônio, colhidos a cada noite de observação para a posterior calibração em comprimento de onda dos espectros estelares (Seção 3.2.6). Ajustando uma gaussiana a uma série de linhas isoladas, com o uso da tarefa **splot** do IRAF, *software* utilizado também para a redução dos espectros (Seção 3.2), medimos o comprimento de onda de seus centros e suas larguras totais à meia altura (FWHM - *Full Width at Half Maximum*). A resolução dos espectros da noite de observação foi tomada como a média simples dos valores individuais de R calculados para cada linha, onde

$$R = \frac{\text{comprimento de onda do centro da linha}}{\text{FWHM}} .$$
(3.1.1)

Cada configuração de rede + detector garante uma cobertura espectral diferente. Sendo centrados na linha H α , a maioria dos novos espectros, colhidos com os CCDs de 2048x2048 pixels e rede de 600 linhas/mm, possuem uma cobertura de aproximadamente 500 Å. Essa cobertura é mais que o dobro da cobertura espectral atingida pela rede de 1800 linhas/mm, que ficou em menos de 200 Å. Apesar de não precisarmos de uma cobertura espectral tão grande para caracterizar o fluxo em H α , outra vantagem da substituição da rede surge ao considerarmos que quanto maior a cobertura espectral, maior a confiança que teremos na normalização do contínuo estelar (Seção 3.2.8).

A razão sinal/ruído (S/R) da amostra, medida que define a qualidade da medição do sinal proveniente de uma fonte e, consequentemente, a qualidade de um espectro, foi estimada com a tarefa **bplot** do IRAF. Com ela, utilizamos três regiões do espectro que refletem bem o contínuo, em geral sem linhas fotosféricas ou telúricas, e determinamos o valor de S/R do espectro como a média aritmética simples dos valores de S/R medidos nas três regiões. O valor de S/R de cada região é calculado pela tarefa seguindo a fórmula

$$S/R = \frac{\langle F \rangle}{\sqrt{\sum (F_i - \langle F \rangle)^2}} , \qquad (3.1.2)$$

onde $\langle F \rangle$ é o fluxo médio da região e F_i é o fluxo em dado comprimento de onda dentro da região em questão. As janelas de contínuo utilizadas foram as determinadas por Dutra-Ferreira (2010), e são as mesmas que utilizaremos para a calibração do fluxo absoluto das estrelas (cap. 5). A distribuição dos valores de S/R está disposta na Figura 3.1, bem como no apêndice A. Os valores da média e da mediana da distribuição ficaram em cerca de S/R ~ 170.

FIGURA 3.1. Histograma de S/R para a amostra de espectros.

3.2 Redução dos Espectros

Os espectros "brutos", tomados logo após a obtenção da luz proveniente da estrela, devidamente espalhada no CCD, não são os ideais para a análise científica. Antes disso, os espectros devem passar por um processo que visa atenuar os ruídos e fontes de incerteza da informação eletromagnética presentes, bem como calibrar corretamente suas escalas, no procedimento conhecido como redução. Os espectros da amostra antiga já estavam completamente reduzidos, trabalho feito por Dutra-Ferreira (2010) e demais colaboradores, então nosso esforço se limitou somente aos espectros da amostra nova. O trabalho de redução da amostra nova foi dividido com Erica Bhering, colaboradora do projeto que está utilizando a mesma amostra que nós para sua pesquisa. Utilizamos o IRAF (*Image Reduction and Analysis Facility*), ferramenta desenvolvida pelo *National Optical Astronomy Observatories* (NOAO), para tratar da redução dos espectros, conforme a descrição em etapas a seguir.

3.2.1 Combinação dos espectros em médias

Ao fazermos as observações no Observatório do Pico dos Dias, sempre optamos por colher mais de um espectro de uma mesma estrela. Com o procedimento de combinar espectros iguais em médias, além de garantir uma melhor relação sinal/ruído, minimizamos também a possibilidade de que raios cósmicos (partículas altamente energéticas provenientes de diversas regiões do espaço, às quais os CCDs são bastantes sensíveis) atrapalhem a posterior análise dos dados. Quando combinamos arquivos em médias, qualquer anomalia, como um raio cósmico, tem a chance de ser estatisticamente removida. Para fazer as médias, utilizamos a função **imcombine**. Na Figura 3.2 estão destacados alguns raios cósmicos para ilustração.

FIGURA 3.2. Raios cósmicos em um dos espectros da estrela HD 211080. H α é a linha em absorção mais intensa, aproximadamente no centro do espectro. Esta é a janela usual gráfica do IRAF: o eixo X representa a a coordenada em pixel e o eixo Y representa a contagem de elétrons no CCD.

3.2.2 Corte das bordas dos espectros

O detetor CCD é normalmente menos sensível nas bordas, e pode gerar inconsistências no espectro em alguns casos, como visto no extremo esquerdo da Figura 3.2. Por isso, aparamos as bordas dos espectros, utilizando a tarefa **imcopy**.

3.2.3 Correção do bias e do flat-field

Ambos são chamados de arquivos de calibração. O *bias* se refere ao espectros coletados bloqueando toda a luz incidente, ou seja, eles registram os valores das contagens que são inseridos de forma artificial no CCD. Para que não contemos esses valores em nossa análise, eles foram retirados subtraindo o espectro *bias* de todos os outros espectros. Já as imagens *flat-field* medem a sensibilidade (eficiência quântica pixel-a-pixel) do CCD e a variação na iluminação dele. Para obtê-las, uma lâmpada incandescente é acoplada ao espectrógrafo, iluminando o CCD de forma quase homogênea. Em um dispositivo CCD, nem todos os pixels possuem a mesma sensibilidade e, para corrigir este problema em nossos espectros estelares e de tório-argônio, bastou dividi-los pelo arquivo *flat-field*. Essas operações foram realizadas com a tarefa **imarith**.

3.2.4 Correção da luz espalhada

Na próxima etapa, realizamos a remoção da luz espalhada presente nos espectros. Geralmente há luz entrando na fenda e sendo espalhada sobre o CCD, fora do caminho óptico característico da luz da fonte em observação, o que pode alterar o valor da contagem em nossos espectros. Além disso, em noites claras (Lua cheia), ou quando observamos muito no início ou fim da noite, pode haver contaminação pela luz de fundo do céu, normalmente dispersada pelo espectrógrafo. Um exemplo de espectro com luz espalhada fora da região da fenda é mostrado na Figura 3.3. Percebam que a contagem do sinal fora da região da fenda não está no zero, com tendência crescente na direção das bordas.

A remoção da luz espalhada foi feita com o uso da tarefa **apscatter**, ajustando um polinômio de Legendre de ordem 5 ou 6 à região do espectro que não contempla a área do perfil da estrela. Com o polinômio bem ajustado, a tarefa subtrai todo o espectro por esse polinômio. Na Figura 3.4 temos ilustrado o polinômio ajustado, e a Figura 3.5 mostra o espectro após a correção da luz espalhada. Em um caso em que não há luz espalhada, a contagem na região fora da fenda deve ser basicamente zero, uma vez que as contagens artificiais (*bias*) já foram removidas e a variação na sensibilidade do CCD já foi levada em conta (ao dividir o espectro pelo *flat-field*), sobrando assim apenas as contagens referente ao perfil da estrela.

FIGURA 3.3. Primeira etapa da tarefa **apscatter**, com a identificação da região da fenda (pico central).

FIGURA 3.4. Polinômio ajustado a ser subtraído pela tarefa **apscatter**.

FIGURA 3.5. Sentido espacial do espectro após a correção da luz espalhada.

3.2.5 Extração do espectro unidimensional

Uma vez corrigida a luz espalhada, o próximo passo foi extrair os espectros unidimensionais das estrelas, com a tarefa **apsum**. Utilizamos a mesma abertura (identificação) do perfil espacial da estrela no espectro feita na tarefa anterior para extrair a informação presente nesse limite. Isso nos deu um espectro do tipo fluxo arbitrário vs pixel, com as linhas de absorção da estrela, incluindo H α , como mostrado na Figura 3.6.

3.2.6 Calibração em comprimento de onda

Em seguida calibramos os espectros em escala de comprimento de onda. Até agora, o eixo das abscissas dos espectros estava em uma escala de pixel, referente ao CCD utilizado, e não em escala de comprimento de onda, referente à física envolvida na questão, refletindo os valores exatos de comprimento de onda das transições atômicas.

Nos espectros de tório-argônio, que colhemos pelo menos duas vezes em todas as noites de observação (no início e no fim da noite), identificamos os comprimentos de onda

FIGURA 3.6. Espectro linearizado, em uma dimensão, que é a informação contida na dimensão ortogonal ao sentido espacial, mostrado na Figura 3.5.

de várias linhas em emissão utilizando um atlas de linhas com comprimentos de onda de laboratório de poder resolutor R = 18000 (disponível no site do IRAF¹), e uma vez calibrados esses espectros, aplicamos a mesma calibração sobre todos os espectros estelares de uma mesma noite.

A tarefa utilizada para marcar as linhas no espectro de tório-argônio foi a **identify**. Após inserirmos manualmente o comprimento de onda das várias linhas em emissão que identificamos (Figura 3.7) ao comparar com o atlas, a tarefa ajusta um polinômio e identifica automaticamente todas as demais linhas não marcadas (Figura 3.8). Esse polinômio é nossa calibração, que é salva e aplicada a todos os espectros estelares de uma mesma noite com a tarefa **dispcor**.

Antes da calibração ser de fato aplicada, precisamos também especificar no *header* da imagem a calibração que vamos usar (o nome do polinômio que é salvo); isso foi feito com a tarefa **hedit**. A Figura 3.9 mostra o espectro no processo atual da redução, calibrado em comprimento de onda. O erro associado à calibração do comprimento de onda não ultrapassou, na maioria dos casos, 0,01 Å.

¹http://iraf.noao.edu/specatlas/thar_photron/thar_photron.html

FIGURA 3.7. Marcação manual da linha de comprimento de onda 6588,5396 Å no espectro de tório-argônio, durante a execução da tarefa identify.

FIGURA 3.8. Identificação automática das demais linhas do espectro de tório-argônio.

FIGURA 3.9. Espectro calibrado em comprimento de onda.

3.2.7 Correção do desvio doppler

As estrelas geralmente não estão em repouso em relação ao aparato instrumental no momento da observação, mas sim possuem uma certa velocidade radial: ou estão se aproximando ou se afastando de nós. Essa velocidade relativa introduz um deslocamento no comprimento de onda das linhas do espectro, da forma

$$\frac{v_r}{c} = \frac{\lambda_{obs} - \lambda_{rep}}{\lambda_{rep}} , \qquad (3.2.1)$$

onde v_r é a velocidade radial da estrela, c é a velocidade da luz, e λ_{obs} e λ_{rep} são os comprimentos de onda observado e de repouso, respectivamente. Para nossa análise, queremos que o espectro da estrela esteja em repouso, para faciliar a medição do fluxo na linha H α de forma automática (cap. 5).

Selecionamos assim uma estrela padrão por missão (com boa razão sinal/ruído e não tão diferente, fisicamente, do Sol) e medimos o comprimento de onda observado de cerca de 10 linhas fotosféricas isoladas com a tarefa **splot**, ajustando gaussianas e medindo o seu centro, como mostrado na Figura 3.10. Através dos valores precisos dos comprimentos

de onda de repouso dessas mesmas linhas de absorção, identificadas no espectro solar da região do visível obtido no Sphinx Observatory por Delbouille et al. (1973), disponível no site BASS2000² (com comprimentos de onda provenientes do *Atomic Spectra Database*³), calculamos a velocidade radial individual v_r por cada linha, e a velocidade radial da estrela foi tomada como a média simples dos valores de v_r .

FIGURA 3.10. Ajuste da gaussiana à linha para medir seu centro.

Corrigimos então o espectro dessa estrela padrão com a tarefa **dopcor**, deslocando em λ o equivalente à velocidade radial encontrada, e utilizamos essa estrela para corrigir todas as demais estrelas da missão, calculando facilmente suas velocidades a partir do perfil de correlação cruzada entre ela e todas as demais estrelas, com a tarefa **fxcor**. Com essa tarefa, o perfil de correlação é representado por uma gaussiana, cuja base devemos ajustar manualmente para que a correlação seja a melhor. Por fim, temos o valor da velocidade relativa que melhor garante uma boa correlação.

De posse das velocidades calculadas, corrigimos cada estrela com a tarefa **dopcor**. Como exemplo, estão sobrepostos na Figura 3.11 os espectros da estrela HD 126053, antes e depois da correção do deslocamento doppler. A velocidade calculada para este exemplo,

²https://bass2000.obspm.fr/solar_spect.php

³https://www.nist.gov/pml/atomic-spectra-database

em relação ao espectro em repouso da estrela gabarito utilizada, foi -32,3 km/s, correspondendo ao deslocamento de aproximadamente 0,71 Å. Os erros associados à determinação da velocidade radial dos espectros pertencentes à amostra nova estão apresentados na Figura 3.12.

FIGURA 3.11. Espectros antes (branco) e depois (vermelho) da correção do desvio doppler para a estrela HD 126053.

FIGURA 3.12. Histograma das incertezas referentes às velocidades radiais instrumentais de todos os espectros da amostra nova.

3.2.8 Normalização do contínuo

Esta foi a última etapa do processo de redução dos espectros, e consistiu em calibrar a escala do eixo das ordenadas dos espectros. Até agora, esse eixo estava em uma escala arbitrária, referente também à contagem no CCD. Este procedimento visa ajustar a escala de fluxos arbitrários de todos os espectros de modo que o valor de fluxo do contínuo (onde não há linhas de absorção) tenha valor unitário. Essa uniformidade entre todos os espectros será importante durante a análise, ao calibrarmos o fluxo de forma absoluta de acordo com os modelos atmosféricos teóricos. Para normalizar os espectros, selecionamos várias regiões de contínuo aparente no espectro solar (Delbouille et al., 1973), em constante comparação com o atlas de fluxo solar de Kurucz (2005) e o atlas de Wallace et al. (2011), para garantir a segurança das escolhas.

Essas regiões de contínuo selecionadas estão todas fora da região 6515 - 6595 Å, região consideradas por nós sob influência da grande absorção de H α e, portanto, não adequadas para representar o contínuo. Para a estimativa do valor deste intervalo, sobrepusemos o espectro de uma das estrelas mais frias da amostra (HD 209100) com o espectro de uma das estrelas mais quentes (HD 120136), como mostrado na Figura 3.13, uma vez que a temperatura da estrela é o parâmetro atmosférico de maior contribuição para o alargamento da linha H α . Estimamos que fora desse intervalo o contínuo não parece ser rebaixado por H α , mesmo para as estrelas mais quentes.

O ajuste do contínuo dos espectros foi feito com a tarefa **continuum**. Após marcarmos manualmente os pontos de contínuo, a tarefa ajusta um polinômio de Legendre a eles, e por fim divide o espectro por esse polinômio ajustado. A ordem dos polinômios ajustados variou entre 3 e 5. Na Figura 3.14 mostramos um espectro antes de realizarmos a normalização do contínuo, e na Figura 3.15, temos o mesmo espectro já normalizado.

O processo de normalização do contínuo é o mais sensível e maior responsável pelos erros na determinação do fluxo absoluto das estrelas, de acordo com o procedimento descrito no capítulo 5. A determinação da forma do contínuo, o quanto consideramos o ruído nos ajustes e erros sistemáticos podem levar à situações em que espectros da mesma estrela apresentem contínuos em níveis ligeiramente diferentes, o que queremos minimizar.

FIGURA 3.13. Espectros das estrelas HD 120136 (branco) e HD 209100 (vermelho) sobrepostos.

FIGURA 3.14. Espectro da estrela HD 126053 antes da normalização.

Como quase a metade da amostra já estava previamente reduzida, nos atentamos em manter a normalização dos espectros novos coerentes com a normalização antiga. Para isso, selecionamos as estrelas da amostra antiga que possuem também espectros novos, e comparamos os valores dos fluxos médios dos espectros normalizados em três regiões

FIGURA 3.15. Espectro da estrela HD 126053 após a normalização.

de contínuo aparente (regiões de referência para a calibração do fluxo absoluto, cap. 5), medidos com tarefa **bplot**.

Nas Figuras 3.16, 3.17 e 3.18 mostramos as diferenças entre as normalizações. Os valores médios da diferença, para um total de 64 pares de espectros analisados entre as amostras antiga e nova, para as três regiões de contínuo são, respectivamente, $0,001\pm0,005$, $0,000\pm0,005$ e $0,002\pm0,004$, o que já demonstra bom acordo entre as normalizações. Tomando o valor médio da razão S/R ≈ 170 , podemos estimar que $\sigma = 1/170 \approx 0,006$ seria o erro associado aos valores dos fluxos médios calculados nos espectros normalizados devido apenas ao ruído. Percebam assim que tanto os valores médios quanto os espalhamentos das diferenças se comportam bem dentro do critério (devido apenas ao ruído fotônico e do processo de redução) de $2\sigma = 0,012$.

Por fim, realizamos uma inspeção em todos os espectros normalizados, checando suas integridades e buscando possíveis raios cósmicos que ainda afetem a região da linha $H\alpha$ e as regiões de referência do contínuo. Utilizamos a tarefa **splot** para remover os poucos raios cósmicos ainda presentes, através da interpolação manual de pixels vizinhos. Essa etapa encerra o processo de redução dos espectros.

FIGURA 3.16. Comparação entre a normalização da amostra antiga e nova para a primeira região de contínuo, através de um histograma de diferenças entre fluxos na nova normalização e fluxos na normalização antiga.

FIGURA 3.17. Comparação entre a normalização da amostra antiga e nova para a segunda região de contínuo, através de um histograma de diferenças entre fluxos na nova normalização e fluxos na normalização antiga.

 $\label{eq:FIGURA 3.18.} \ Comparação entre a normalização da amostra antiga e nova para a terceira região de contínuo, através de um histograma de diferenças entre fluxos na nova normalização e fluxos na normalização antiga.$

Capítulo 4

Determinação dos Parâmetros Atmosféricos e Evolutivos

Nesse capítulo, demonstraremos como determinamos a temperatura efetiva (T_{ef}), a gravidade superficial (log g) e a metalicidade ([Fe/H]) para as estrelas da amostra. Esses parâmetros serão a base para a posterior calibração do fluxo absoluto total das estrelas, seguindo os modelos teóricos. Mostraremos também como foram determinados os demais parâmetros evolutivos envolvidos em nossa análise, como a luminosidade, a massa, o raio estelar e a idade, essenciais para a construção da calibração idade-atividade.

Os três parâmetros atmosféricos (T_{ef} , log g e [Fe/H]) foram inicialmente levantados da literatura, dando preferência aos trabalhos mais recentes que os derivaram de forma espectroscópica, através do equilíbrio de excitação e de ionização de linhas do Fe I e Fe II. Reutilizamos algumas referências levantadas por Dutra-Ferreira (2010) e por Lorenzo-Oliveira (2016), que também utilizou parte de nossa amostra como objeto de estudo. Todos os parâmetros levantados estão dispostos no apêndice C, juntamente com suas respectivas referências. Não sendo estes os valores finais utilizados em nossa análise, os utilizamos para algumas iterações e comparações com os valores obtidos pelos métodos específicos de determinação dos parâmetros escolhidos por nós, conforme a descrição nas seções abaixo. Massas e idades foram determinadas de forma estatística com base em modelos teóricos de evolução, com os demais parâmetros sendo determinados de forma indireta.

4.1 Cálculo da Temperatura Efetiva Fotométrica Inicial

Giribaldi et al. (2019) determinaram que a temperatura efetiva derivada de forma fotométrica, através do método IRFM (*InfraRed Flux Method*), é a que mais se aproxima da definição fundamental do parâmetro, ou seja, a temperatura do corpo negro cuja a energia radiativa bolométrica emitida mais se aproxima a da estrela. Por este motivo, optamos por derivar a temperatura efetiva a ser utilizada de forma fotométrica, e utilizar a temperatura espectroscópica levantada da literatura como parâmetro de comparação e correção, conforme descrito na próxima seção.

Determinamos a temperatura efetiva das estrelas da amostra através das calibrações de temperatura fotométrica de Casagrande et al. (2010) e Casagrande et al. (2021). Nos certificamos de que todas as estrelas que analisamos possuem parâmetros atmosféricos dentro dos limites de validade das calibrações destes trabalhos. Essas calibrações se baseiam, respectivamente, nos índices de cor B - V (sistema Johnson), $B_T - V_T$ (sistema Tycho) e b-y (sistema Strömgren), e G-RP, BP-RP e G-BP (sistema GAIA), e estão dispostas a seguir, juntamente com os coeficientes e os respectivos valores de incerteza associados a cada calibração.

Calibração de T_{ef} para as cores B - V, $B_T - V_T \in b - y$:

$$T_{\rm ef} = 5040 \cdot \{a_0 + a_1 \cdot X + a_2 \cdot X^2 + a_3 \cdot X \cdot [{\rm Fe}/{\rm H}] + a_4 \cdot [{\rm Fe}/{\rm H}] + a_5 \cdot [{\rm Fe}/{\rm H}]^2\}^{-1}$$
(4.1.1)

Х	a_0	a_1	a_2	a_3	a_4	a_5	σ
B - V	0,5665	$0,\!4809$	-0,0060	-0,0613	-0,0042	-0,0055	$73~{ m K}$
$B_T - V_T$	$0,\!5839$	0,4000	-0,0067	-0,0282	-0,0346	-0,0087	$79~{ m K}$
b-y	$0,\!5796$	0,4812	$0,\!5747$	-0,0633	0,0042	-0,0055	$62~{ m K}$

TABELA 4.1. Coeficientes e incertezas das calibrações de Casagrande et al. (2010) (eq. 4.1.1).

Calibração de $T_{\rm ef}$ para as cores G - RP, $BP - RP \in G - BP$:

$$T_{\rm ef} = a_0 + a_1 \cdot X + a_2 \cdot X^2 + a_3 \cdot X^3 + a_4 \cdot X^5 + a_5 \cdot \log g + a_6 \cdot \log g \cdot X$$

$$+ a_7 \cdot \log g \cdot X^2 + a_8 \cdot \log g \cdot X^3 + a_9 \cdot \log g \cdot X^5 + a_{10} \cdot [{\rm Fe}/{\rm H}]$$

$$+ a_{11} \cdot [{\rm Fe}/{\rm H}] \cdot X + a_{12} \cdot [{\rm Fe}/{\rm H}] \cdot X^2 + a_{13} \cdot [{\rm Fe}/{\rm H}] \cdot X^3 + a_{14} \cdot [{\rm Fe}/{\rm H}] \cdot \log g \cdot X$$
(4.1.2)

Х	a_0	a_1	a_2	a_3	a_4	a_5
G - RP	7971	-5737,5049	0	1619,9946	-203,8234	255,7408
BP - RP	7928	-3663,1140	803,3017	-9,3727	0	325,1324
G - BP	7555	5830,7715	0	-2441,7124	437,7314	455,0997
Х	a_6	a_7	a_8	a_9	a_{10}	a_{11}
G - RP	-492,8268	160,1957	103,1114	0	-64,3289	34,3339
BP - RP	-500,1160	279,4832	-53,5062	0	-2,4205	-128,035
G - BP	2243,1333	3669,4924	1872,7035	0	19,1085	75,2198
Х	a_{12}	a_{13}	a_{14}	σ		
G - RP	0	0	54,7224	64 K		
BP - RP	49,4933	5,9146	41,3650	66 K		
G - BP	0	0	-83,9777	93 K		

TABELA 4.2. Coeficientes e incertezas das calibrações de Casagrande et al. (2021) (eq. 4.1.2).

As cores B - V (Johnson) e $B_T - V_T$ (Tycho) foram retiradas do catálogo HIPPARCOS (Van Leeuwen, 2007). A cor b - y, do sistema fotométrico de Strömgren, foi retirada de forma majoritária, dos trabalhos de Olsen (1983), Olsen (1993) e Olsen (1994). As cores b - y retiradas de outros trabalhos precisaram ser convertidas, uma vez compatíveis, para o sistema fotométrico de Olsen, de acordo com a equação dada pelo autor:

$$(b-y)_{corrigido} = 0.8858 \times (b-y) + 0.0532$$
 (4.1.3)

As cores G - RP, BP - RP e G - BP, do sistema fotométrico do Gaia, foram retiradas do Data Release 2 da missão (Gaia Collaboration et al., 2018), aplicando a correção na magnitude G (Apellániz & Weiler, 2018) necessária para utilizar a calibração de temperatura efetiva escolhida, seguindo a indicação de Casagrande et al. (2021). As calibrações de Casagrande et al. (2010) são equações que dependem, além dos índices de cor, da metalicidade da estrela; as calibrações de Casagrande et al. (2021) dependem da metalicidade e da gravidade superficial, como visto nas equações 4.1.1 e 4.1.2. Os valores de [Fe/H] e log g utilizados inicialmente foram os valores levantados da literatura. Como cerca de 96% das estrelas da amostra estão a menos de 100 parsecs de distância de nós, e aproximadamente 87% estão a menos de 60 parsecs de distância, ignoramos possíveis efeitos de extinção da luz no cálculo das temperaturas efetivas por estas calibrações fotométricas, que utilizam cores corrigidas pelo avermelhamento interestelar.

Em relação às estrelas pertencentes a associações e aglomerados, optamos por um tratamento diferenciado: essas são estrelas que nasceram da mesma nuvem molecular e, portanto, possuem aproximadamente a mesma quantidade de metais, evidências mostradas em trabalhos relativamente recentes. Dessa forma, ao invés de utilizar valores de [Fe/H] individualizados para cada estrela, adotamos um valor comum para todo o conjunto, de forma a atenuar a heterogeneidade dos dados. Os valores de metalicidade escolhidos para cada associação/aglomerado se encontram na tabela 4.3, com as respectivas referências.

Associação/Aglomerado	[Fe/H]	Referência
Híades	$+0,18 \pm 0,03$	Dutra-Ferreira et al. (2016)
Plêiades	$+0,01 \pm 0,02$	Schuler et al. (2010)
Tucana-Horologium	$-0,06 \pm 0,09$	Almeida et al. (2009)

TABELA 4.3. Metalicidades adotadas para as estrelas de associações e aglomerados. Para a única estrela da associação Beta Pictoris (HD 35850) adotamos o valor individual de -0.02 (Gray et al., 2006).

No levantamento dos parâmetros atmosféricos da literatura, não encontramos valores de metalicidade publicados para 41 estrelas, essenciais para utilizarmos as calibrações de temperatura efetiva fotométrica. A maior parte desses casos são estrelas já conhecidas de antemão por serem suspeitas a possuírem baixos valores de fluxo cromosférico. Para determinar os valores de [Fe/H] das estrelas que não possuíam esse parâmetro, utilizamos a calibração de Holmberg et al. (2007), que se baseia nos índices de cor b - y e nos índices $c_1 \equiv (u - v) - (v - b)$ e $m_1 \equiv (v - b) - (b - y)$:

$$\begin{aligned} \left[\text{Fe/H} \right]_{\text{fot}} &= -2,19 - 1,02 \cdot (b - y) + 7,34 \cdot m_1 - 0,27 \cdot c_1 + 5,86 \cdot (b - y)^2 & (4.1.4) \\ &- 43,74 \cdot m_1^2 - 0,14 \cdot c_1^2 + 25,03 \cdot (b - y) \cdot m_1 + 5,29 \cdot (b - y) \cdot c_1 \\ &+ 25,95 \cdot m_1 \cdot c_1 - 31,10 \cdot (b - y)^3 + 46,19 \cdot m_1^3 - 3,86 \cdot c_1^3 + 4,54 \cdot (b - y)^2 \cdot m_1 \\ &+ 19,31 \cdot (b - y)^2 \cdot c_1 - 17,46 \cdot m_1^2 \cdot (b - y) + 18,36 \cdot m_1^2 \cdot c_1 - 9,99 \cdot c_1^2 \cdot (b - y) \\ &+ 6,60 \cdot c_1^2 \cdot m_1 - 59,65 \cdot (b - y) \cdot m_1 \cdot c_1 \end{aligned}$$

Para testar a concordância entre a metalicidade derivada por essa calibração fotométrica e a metalicidade da literatura até então adotada por nós para a maioria das estrelas, colocamos em um gráfico do tipo [Fe/H]_{lit}-[Fe/H]_{fot} contra [Fe/H]_{fot} todas as estrelas da amostra que possuíam tanto a metalicidade da literatura (espectroscópica) quanto a metalicidade fotométrica. Pelo gráfico, percebemos certa tendência da metalicidade fotométrica derivada a partir da calibração 4.1.4 ser menor que os valores de [Fe/H] da literatura. Com isso, decidimos por somar aos valores de [Fe/H]_{fot} calculados uma certa correção, dada pela reta ajustada:

$$[Fe/H]_{fot,corr} = 0.0178 \times [Fe/H]_{fot} + 0.0868$$
 (4.1.5)

Tal correção foi realizada e melhor analisada por Erica Bhering, e mais detalhes podem ser encontrados em Costa-Bhering (2022).

Houve também alguns poucos casos de estrelas sem valores de gravidade superficial disponíveis. Para esses casos, utilizamos inicialmente apenas as três calibrações de temperatura efetiva que não dependem desse parâmetro (eq. 4.1.1).

A partir das seis calibrações utilizadas, determinamos seis temperaturas efetivas diferentes para cada estrela (quando todas as cores e parâmetros estavam disponíveis para a mesma). Utilizamos uma média ponderada para determinar a temperatura média fotométrica, em que os pesos são os quadrados dos inversos das incertezas das calibrações, de acordo com a equação

$$\langle T_{\rm ef} \rangle_{\rm fot} = \frac{\sum_i T_i \times \sigma_i^{-2}}{\sum_i \sigma_i^{-2}} , \qquad (4.1.6)$$

onde T_i e σ_i são as temperaturas fotométricas individuais e suas incertezas, respectivamente.

A incerteza da temperatura fotométrica média foi estimada de acordo com a fórmula:

$$\sigma = \sqrt{\frac{n}{n-1} \frac{\sum \sigma_i^{-2} \cdot (T_i - \bar{T})^2}{\sum \sigma_i^{-2}}}$$
(4.1.7)

onde n é o número de temperaturas efetivas individuais utilizadas na média, $T_i \in \sigma_i$ são, respectivamente, as temperaturas fotométricas individuais e suas incertezas e \overline{T} é a temperatura fotométrica média calculada com a equação 4.1.6.

Para checarmos a sanidade do acordo entre as calibrações, analisamos os casos em que as temperaturas efetivas fotométricas derivadas a partir de uma determinada cor se apresentavam como excessivamente incoerentes, quantitativamente, diferindo da média entre as seis cores por mais do que 2σ . Optamos por não utilizar essas temperaturas efetivas individuais. As cores não utilizadas para cada estrela podem ser identificadas pelos traços (-) na tabela do apêndice B. A maioria das estrelas que tiveram as cores do sistema fotométrico Gaia descartadas são estrelas bastante brilhantes, com magnitude G < 6. As anomalias presentes nas temperaturas calculadas com essas cores podem, em alguns casos, se justificar pelo forte efeito de saturação para essa extremidade brilhante de magnitude no DR2 (Evans et al., 2018; Arenou et al., 2018).

Adicionalmente, as temperaturas fotométricas encontradas para o sistema Alfa Centauri (A e B) estavam sistematicamente inferiores à maioria dos valores encontrados na literatura. Como este é um caso de estrelas bem conhecidas e estudadas, optamos por utilizar os valores de Porto de Mello et al. (2008). Após a remoção das temperaturas individuais anômalas, quando conveniente e possível, o valor médio das incertezas das temperaturas fotométricas médias ficou em 38 K, seguindo a distribuição do histograma da Figura 4.1.

Testamos em gráficos de $T_i - \langle T_{\rm ef} \rangle_{\rm fot}$ contra $\langle T_{\rm ef} \rangle_{\rm fot}$ possíveis tendências e outros problemas com as calibrações de temperatura efetiva utilizadas. Em um cenário ideal, a reta melhor ajustada aos pontos dos gráficos deveria possuir um valor baixo de coeficiente angular, indicando a ausência de tendência da calibração com a temperatura média

FIGURA 4.1. Histograma de incertezas das primeiras temperaturas efetivas fotométricas médias calculadas.

das estrelas. Consideramos também a significância estatística deste parâmetro, ou seja, tomamos que o coeficiente angular da reta é significante se ele é, no mínimo, duas vezes maior do que o seu erro ($|parâmetro t|^1 > 2$). Os gráficos e seus detalhes estão dispostos abaixo, nas Figuras 4.2, 4.3 e 4.4.

- A temperatura calculada utilizando a cor B V possui uma diferença média para a $\langle T_{\rm ef} \rangle_{\rm fot}$ de -15 K, com um desvio padrão de 37 K. A reta ajustada aos pontos possui um coeficiente angular de -0.025 ± 0.005 , sendo $|t| \approx 5$.
- A temperatura calculada utilizando a cor $B_T V_T$ possui uma diferença média para a $\langle T_{\rm ef} \rangle_{\rm fot}$ de +20 K, com um desvio padrão de 40 K. A reta ajustada aos pontos possui um coeficiente angular de 0,038 ± 0,005, sendo $|t| \approx 7,6$.
- A temperatura calculada utilizando a cor b y possui uma diferença média para a $\langle T_{\rm ef} \rangle_{\rm fot}$ de +1 K, com um desvio padrão de 41 K. A reta ajustada aos pontos possui um coeficiente angular de 0,000 ± 0,005, sendo $|t| \approx 0,0$.
- A temperatura calculada utilizando a cor G RP possui uma diferença média para a $\langle T_{\rm ef} \rangle_{\rm fot}$ de +5 K, com um desvio padrão de 41 K. A reta ajustada aos pontos possui um coeficiente angular de 0,020 ± 0,005, sendo $|t| \approx 4,0$.

¹O parâmetro t (ou *t-statistic*) é definido como a razão do coeficiente pelo seu erro.

FIGURA 4.2. Tendências das temperaturas efetivas fotométricas calculadas pelas cores $B - V \in B_T - V_T$ com a temperatura fotométrica média.

FIGURA 4.3. Tendências das temperaturas efetivas fotométricas calculadas pelas cores b - y e G - RP com a temperatura fotométrica média.

- A temperatura calculada utilizando a cor BP RP possui uma diferença média para a $\langle T_{\rm ef} \rangle_{\rm fot}$ de +2 K, com um desvio padrão de 22 K. A reta ajustada aos pontos possui um coeficiente angular de 0,008 ± 0,003, sendo $|t| \approx 2,7$.
- A temperatura calculada utilizando a cor G BP possui uma diferença média para a $\langle T_{\rm ef} \rangle_{\rm fot}$ de -17 K, com um desvio padrão de 46 K. A reta ajustada aos pontos possui um coeficiente angular de 0,038 \pm 0,006, sendo $|t| \approx 6,3$.

Como visto acima, a única temperatura individual que não apresenta tendência com a temperatura média, conforme o critério adotado de análise, é a temperatura da cor b-y.

FIGURA 4.4. Tendências das temperaturas efetivas fotométricas calculadas pelas cores $BP - RP \in G - BP$ com a temperatura fotométrica média.

O espalhamento maior para a temperaturas médias menores que ~ 5500 K, entretanto, é algo intrigante, uma vez que essa cor é uma das que fornecem os resultados de melhor qualidade. Resolvemos por aceitar tal comportamento, uma vez que a diferença entre as dispersões nos dois intervalos (63 K para $\langle T_{\rm ef} \rangle_{\rm fot} < 5500$ K e 34 K para $\langle T_{\rm ef} \rangle_{\rm fot} > 5500$ K) não é significativa comparada aos valores das incertezas das calibrações.

Nos atentando às temperaturas fotométricas individuais com maior tendência e espalhamento, realizamos testes explorando a remoção da temperatura da cor $B_T - V_T$, a remoção da temperatura da cor G-BP, e a remoção de ambas ao mesmo tempo do cálculo da temperatura média. Em todos os três casos, observamos o aumento dos parâmetros t's para quase todas as temperaturas permanecentes na média, além da invariância das incertezas das temperaturas médias. Decidimos então por manter todas as seis temperaturas no cálculo da média. Observem também que as temperaturas com maior tendência são as que possuem maiores erros internos (de suas calibrações fotométricas), e portanto são levadas menos em conta na média ponderada. Acreditamos que estudos mais aprofundados sobre as tendências observadas na derivação da temperatura efetiva fotométrica pelas várias cores devem ser realizados.

4.2 Correção da Metalicidade ([Fe/H])

Cada trabalho ao qual buscamos referências para os parâmetros atmosféricos os estimaram de forma similar, porém com certa dependência do método, modelos teóricos, aproximações, e estão ainda sujeitos a erros sistemáticos, introduzindo uma certa heterogeneidade nos dados de nossa amostra. Dessa forma, utilizamos uma comparação direta entre a temperatura efetiva fotométrica média calculada por nós e a temperatura efetiva da literatura para aplicarmos uma correção no valor da metalicidade, com o objetivo de reduzir essa heterogeneidade. Outra justificativa deste procedimento, além da vantagem da homogeneização dos dados, é o fato de que a escala de temperaturas efetivas fotométricas dos trabalhos de Casagrande et al. estão em excelente acordo com a escala fundamental de temperatura efetiva, baseada na medida direta de fluxos bolométricos e diâmetros angulares estelares (Giribaldi et al., 2019), ao contrário da escala de temperatura efetiva baseada nos equilíbrios de excitação e ionização de linhas de Fe I e Fe II, a qual mostra desvios sistemáticos importantes em relação à escala fundamental

Dutra-Ferreira (2010) levantou da literatura valores de correção da metalicidade [Fe/H] em função de erros cometidos em temperatura, na forma da razão Δ [Fe/H]/ Δ T_{ef}. Reaproveitamos essas referências, com a inclusão de um trabalho mais recente (Da Silva et al., 2012), conforme descrito na tabela abaixo:

Análise de referência	Δ [Fe/H]/ Δ T _{ef}
Clegg et al. (1981)	0,07 dex/100 K
Steenbock (1983)	0.06 dex/100 K
Cayrel de Strobel & Bentolila (1989)	0.04 dex/100 K
Zhao & Magain (1991)	0.06 dex/100 K
Da Silva et al. (2012)	0,06 dex/100 K

TABELA 4.4. Relações entre o erro cometido em temperatura efetiva e a diferença gerada na metalicidade.

Adotamos o valor representativo dessas razões para aplicarmos a correção, ou seja, a cada 100 K de diferença entre a temperatura fotométrica média e a temperatura da literatura, alteramos em 0,06 dex o valor de [Fe/H] que estávamos utilizando:

$$\frac{\Delta [Fe/H]}{\Delta T_{ef}} = \frac{0.06 \text{ dex}}{100 \text{ K}} .$$
 (4.2.1)

Se a temperatura fotométrica média foi menor que a temperatura da literatura, consideramos que o autor do respectivo trabalho estimou uma metalicidade alta demais, o necessário para explicar a largura/intensidade das linhas com uma temperatura mais alta, e a nossa correção foi negativa. Similarmente, se a temperatura fotométrica média foi maior que a temperatura da literatura, tomamos que o autor do trabalho estimou uma metalicidade menor que a real, e a correção foi positiva.

Com esse procedimento, colocamos os valores de [Fe/H] em aproximadamente uma mesma escala. Mostramos na Figura 4.5 a comparação entre a temperatura fotométrica média calculada por nós e a temperatura efetiva da literatura. No histograma da Figura 4.6 vemos que os valores de metalicidade da literatura não sofreram correções exageradamente grandes ou sistemáticas, de forma geral: a distribuição de valores da correção tem um pico muito significativo perto de zero. Ambos demonstram que os dados da literatura escolhidos por nós já estavam em um bom acordo de escala.

FIGURA 4.5. Comparação entre a temperatura efetiva fotométrica média e a temperatura da literatura.

De posse da metalicidade corrigida, realizamos um processo de iteração em T_{ef} , calculando novamente a temperatura fotométrica média das estrelas, através das calibrações 4.1.1 e 4.1.2. Destacamos aqui que as estrelas com metalicidade derivada de forma fotométrica (Holmberg et al., 2007) não passaram pela correção de metalicidade. O mesmo

FIGURA 4.6. Comparação entre a metalicidade inicial (literatura) e a metalicidade corrigida.

vale para as estrelas das Plêiades, Híades e das associações Tucana-Horologium e Beta Pictoris, cujas metalicidades fixadas por nós já são as finais.

4.3 Determinação da Massa, Idade, Raio, Gravidade Superficial e Luminosidade

Com a temperatura efetiva e a metalicidade das estrelas bem determinadas, prosseguimos para os demais parâmetros de interesse: gravidade superficial, massa, raio, idade e luminosidade.

A obtenção precisa da massa e da idade estelar foi feita de forma automática com o uso de um programa desenvolvido pelo Dr. Felipe Almeida Fernandes (IAG/USP), um de nossos colaboradores. Este *python script* toma como entrada a temperatura efetiva, metalicidade e magnitude bolométrica de cada estrela, com seus respectivos erros, e a posiciona em um diagrama HR com trajetórias evolutivas (curvas de massa fixa e idade variada) e isócronas (curvas de várias massas para uma idade fixa) específicas para a metalicidade dada como entrada. A partir da posição, determina a função densidade de probabilidade (PDF - *probability distribution function*) para os parâmetros de interesse (no nosso caso, massa e idade) com base na proximidade em relação às curvas que melhor refletem os parâmetros dados como entrada.

A grade de trajetórias evolutivas e isócronas utilizadas foi a grade PARSEC, de Bressan et al. (2012). Para a melhor determinação dos parâmetros de interesse, nos preocupamos em utilizar um grade densa, abrangendo os limites extremos dos parâmetros de nossa amostra. Selecionamos isócronas de idades 10^7 até 1.4×10^{10} anos e metalicidades que cobrem a faixa de -2.20 < [Fe/H] < 0.5. As massas consideradas variaram de 0.1 M_{\odot} até cerca de 5 M_{\odot} , intervalo mais que suficiente para caracterizar nossa amostra.

A magnitude bolométrica (M_{bol}) das estrelas dada como entrada para o programa foi calculada utilizando a correção bolométrica de Flower (1996), que consiste em uma calibração dependente apenas da temperatura efetiva da estrela. Determinamos a magnitude bolométrica através da equação

$$M_{\rm bol} = M_{\rm V} + CB$$
, (4.3.1)

onde $M_{\rm V}$ é a magnitude absoluta visual e CB é a correção bolométrica. O valor padronizado para a magnitude bolométrica do Sol seguindo essa calibração é de $M_{\rm bol,\odot} = 4,73$ (Torres, 2010). A magnitude visual absoluta $M_{\rm V}$ foi calculada por nós utilizando a equação do módulo de distância, utilizando paralaxes do DR2 da missão Gaia (e HIPPARCOS, quando não disponíveis do Gaia):

$$M_{\rm V} - V = -5 \times \log_{10} d + 5 , \qquad (4.3.2)$$

sendo V a magnitude visual aparente e d a distância (dada pelo inverso da paralaxe), em parsecs. Os valores de CB e $M_{\rm bol}$ para toda a amostra estão disponíveis no apêndice D. A partir dos valores de $M_{\rm bol}$, calculamos também os valores de luminosidade para toda a amostra, através da equação

$$L = 10^{0.4 \times (4,73 - M_{\rm bol})} , \qquad (4.3.3)$$

e com os valores de luminosidade e temperatura efetiva, os raios estelares a partir da Lei de Stefan-Boltzmann:

$$L = 4\pi R^2 \sigma T_{\rm ef}^4 \,, \tag{4.3.4}$$

onde L é a luminosidade da estrela e $\sigma = 5,6704 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$ é a constante de Stefan-Boltzmann. Para expressar os valores de R em unidades de R_{\odot} , tomamos que $L_{\odot} = 3,8275 \times 10^{26} \text{ W e } R_{\odot} = 6,957 \times 10^{8} \text{ m}$ (Prša et al., 2016).

A incerteza associada à metalicidade [Fe/H] foi estimada em 0,1 dex, erro típico pessimista do parâmetro em trabalhos de derivação de parâmetros atmosféricos estelares mais recentes. Para as 41 estrelas com metalicidades estimadas de forma fotométrica (Holmberg et al., 2007), a incerteza adotada foi de 0,15 dex, para contar o erro interno da calibração e de nossa correção aplicada.

A incerteza da magnitude bolométrica foi calculada seguindo a fórmula usual de propagação de incertezas,

$$\sigma_{M_{\rm bol}} = \sqrt{\left(\frac{\partial M_{\rm bol}}{\partial M_{\rm V}}\right)^2 \times \sigma_{M_{\rm V}}^2 + \left(\frac{\partial M_{\rm bol}}{\partial BC}\right)^2 \times \sigma_{BC}^2} . \tag{4.3.5}$$

Os erros da magnitude absoluta visual e da correção bolométrica que aparecem na equação 4.3.5, bem como os erros da luminosidade e do raio, foram estimadas da mesma forma, através da propagação de incertezas das variáveis envolvidas em seus cálculos. Devido à precisão da escala de temperatura efetiva utilizada e da paralaxe proveniente da missão Gaia, obtemos valores bem comportados de erros em magnitudes bolométricas. Essa precisão é fator marcante para o posicionamento da estrela no diagrama HR e a consequente derivação dos parâmetros.

Ao testar a concordância entre os valores de magnitude bolométrica e temperatura efetiva dados como entrada para o programa, percebemos certo desvio entre os valores de massa e idade retornados para o Sol, em comparação com os valores reais bem conhecidos. Investigando a grade PARSEC para a metalicidade solar, encontramos que os valores de $M_{\rm bol}$ e $T_{\rm ef}$ que retornam os valores solares de massa e idade, onde estamos adotando uma idade de $4,57 \times 10^9$ anos (Bonanno et al., 2002; Connelly et al., 2012), são $M_{\rm bol} = 4,662$ e $T_{\rm ef} = 5883$ K. A partir desses desvios, decidimos por aplicar em todas as estrelas um offset em temperatura de $\Delta T_{\rm ef} = +111$ K e em magnitude bolométrica de $\Delta M_{\rm bol} = -0,068$, uma vez que temos como canônico $T_{\rm ef,\odot} = 5772$ K (Prša et al., 2016) e $M_{\rm bol,\odot} = 4,73$, padrão para se utilizar a correção bolométrica de Flower (1996) com coerência. Este procedimento simplificado equivale a deslocar toda a grade PARSEC em temperatura efetiva e luminosidade de modo a recuperar os valores exatos do Sol.

Testamos a linearidade e validade destas correções para outras estrelas, comparando as idades isocronais obtidas por nosso método com idades bem determinadas na literatura (idades astrosismológicas). Tais valores de referência estão apresentados na tabela 4.5. Na Figura 4.7 mostramos o melhor acordo entre as idades ao aplicar a correção em temperatura e magnitude, onde as barras indicam os erros associados às idades e a linha pontilhada em azul indica a bissetriz do gráfico. Além dos pontos se aproximarem da bissetriz ao aplicarmos a correção, o coeficiente de correlação entre as idades sismológicas e as isocronais também sofre um leve aumento (r = 0.947 para r = 0.966).

FIGURA 4.7. Comparação entre as idades isocronais determinadas antes (esquerda) e depois (direita) da aplicação do *offset* em temperatura efetiva e magnitude absoluta e as idades da literatura.

Estrela	Idade (Gano)	Referência
HD 2151	$6{,}40\pm0{,}56$	Brandão et al. (2011)
HD 10700	[8 - 10]	Tang & Gai (2011)
$HD \ 17051$	$0,\!625 \pm 0,\!005$	Vauclair et al. (2008)
$HD \ 38529$	$3,\!07\pm0,\!39$	Ball et al. (2020)
HD 43587	$6,2\pm0,1$	Castro et al. (2021)
HD 43834	$6,2\pm1,4$	Chontos et al. (2021)
HD 128620	$5,3\pm0,3$	Joyce & Chaboyer (2018)
HD 146233	$4,67^{+0,87}_{-1,29}$	Bazot et al. (2018)
HD 160691	$6,\!34\pm0,\!80$	Soriano & Vauclair (2010)
HD 203608	$7{,}25\pm0{,}07$	Mosser et al. (2008)

TABELA 4.5. Idades astrosismológicas das estrelas utilizadas para o teste da validade das isócronas.

Com o ponto zero baseado no Sol fixado por nós, prosseguimos executando o programa para toda a amostra. Na Figura 4.8 temos como exemplo o retorno visual do programa para Alfa Centauri A. Em cada gráfico tem-se demarcado, além da PDF, o valor mais provável (ML - *Most Likely*), o valor esperado (E), o valor mediano (p50) e os percentis de 16% e 84% da distribuição de probabilidades. Sendo as PDFs muito bem comportadas e estreitas para a massa, os valores de média, mediana e moda são praticamente idênticos, com as diferenças sempre menores que as incertezas associadas. Para as idades, isto nem sempre se mostra verdadeiro, e as medidas de tendências podem divergir. Optamos por utilizar os valores da média (E) para as massas e para a maioria das idades, salvo exceções de estrelas jovens onde a moda (ML) da PDF se mostrava com maior poder indicativo da distribuição de idades.

FIGURA 4.8. Distribuições de probabilidade para a idade e a massa da estrela HD 128620 (Alf Cen A).

A partir dos valores de massa e raio, calculamos os valores da gravidade superficial através da fórmula

$$\log g = \log\left(\frac{GM}{R^2}\right),\tag{4.3.6}$$

onde M é a massa, R é o raio e $G = 6,67 \times 10^{-11} \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-2}$ é a constante de gravitação universal. As incertezas foram novamente estimadas com a propagação dos erros das variáveis presentes em seu cálculo (massa e raio).

4.4 Segunda Rodada de Iterações e Valores Finais dos Parâmetros

Na Figura 4.9 mostramos a comparação entre a gravidade superficial determinada por nós, a partir dos modelos evolutivos, e o valores da literatura, derivados de forma espectroscópica, na maioria dos casos.

FIGURA 4.9. Comparação entre a gravidade superficial determinada por nós, a partir dos diagramas evolutivos, e a da literatura.

Como os valores de gravidade superficial determinados por nós não estão em perfeito acordo com os valores da literatura, utilizados na determinação da temperatura efetiva através das calibrações 4.1.2, decidimos por novamente calcular a temperatura fotométrica média para as estrelas, desta vez com os valores de [Fe/H] corrigidos e o log g evolutivo calculado, realizando mais um ciclo de iterações em metalicidade e gravidade superficial. Em resumo, podemos descrever o procedimento de iterações realizados neste trabalho da seguinte forma:

1. Cálculo da temperatura fotométrica inicial, a partir dos índices de cor e das metalicidades e gravidades superficiais da literatura;

- Comparação desta temperatura com a da literatura, aplicando a primeira correção na metalicidade (0,06 dex/100 K);
- Cálculo da temperatura fotométrica iterada em [Fe/H], a partir dos valores corrigidos de metalicidade;
- 4. Determinação das magnitudes bolométricas, luminosidades, massas e raios a partir desta temperatura, e cálculo da gravidade superficial;
- 5. Cálculo da temperatura fotométrica iterada em [Fe/H] e em log g, a partir dos valores de metalicidade e gravidade determinados nos itens 2 e 4, respectivamente;
- Comparação desta temperatura com a da literatura, aplicando a segunda (e última) correção na metalicidade (0,06 dex/100 K);
- Cálculo da temperatura fotométrica iterada na nova [Fe/H], utilizando a metalicidade final determinada no item 6 e o log g determinado no item 4.
- Determinação das novas magnitudes bolométricas, luminosidades, massas e raios (finais) a partir desta temperatura, e cálculo de uma nova gravidade superficial (final);
- Cálculo da temperatura fotométrica final, a partir da metalicidade determinada no item 6 e da gravidade determinada no item 8.

Após esse duplo ciclo de iterações em [Fe/H] e log g, observamos a convergência dos parâmetros, com a temperatura efetiva variando no máximo 1 K entre as etapas 7 e 9. A rápida convergência era um fator esperado, visto que a dependência das calibrações de Casagrande et al. (2021) com o log g é relevante apenas para estrelas com $T_{ef} < 4500$ K, como discutido pelos autores.

Destacamos que as estrelas com metalicidades derivadas de forma fotométrica não tiveram seus valores de [Fe/H] alterados em nenhum momento durante as iterações; para elas, ignoramos os itens 2 e 6 do roteiro. As idades adotadas por nós foram as idades determinadas após a segunda iteração, no item 8.

Nos histogramas abaixo (Figuras 4.10 - 4.14) mostramos a distribuição dos valores finais dos parâmetros das estrelas, juntamente com suas incertezas. Todos os parâmetros

estão detalhados, com suas incertezas, nos apêndices C e D. Apresentamos gráficos colocando frente a frente os parâmetros físicos de importância da amostra (Figuras 4.15, 4.16 e 4.17), onde a boa distribuição deles se torna perceptível. Mostramos também, na Figura 4.18, a distribuição de metalicidades da amostra em um diagrama HR.

FIGURA 4.10. Distribuição dos valores finais de temperatura efetiva fotométrica adotados para amostra e seus erros.

FIGURA 4.11. Distribuição dos valores finais de [Fe/H] adotados para a amostra. O erro associado ao parâmetro foi estimado em 0.10 dex para 491 estrelas e 0.15 para 41 estrelas.

 ${\it FIGURA}$ 4.12. Distribuição dos valores finais de log g
 adotados para amostra e seus erros.

FIGURA 4.13. Distribuição dos valores finais de massa adotados para amostra e seus erros.

FIGURA 4.14. Distribuição dos valores finais de raio adotados para amostra e seus erros.

FIGURA 4.15. $T_{\rm ef}$ vs. [Fe/H] (esquerda) e $T_{\rm ef}$ vs. log g (direita) para a amostra.

FIGURA 4.16. $\rm T_{ef}$ vs. Massa (esquerda) e [Fe/H] vs. log g (direita) para a amostra.

 ${\rm Figura}$ 4.17. $[{\rm Fe}/{\rm H}]$ vs. Massa (esquerda) e log
g vs. Massa (direita) para a amostra.

 ${\rm FIGURA}$ 4.18. Diagrama HR da amostra com os diferentes intervalos de metalicidade identificados. O Sol está demarcado com seu símbolo usual.

Capítulo 5

Determinação dos Fluxos Absolutos Cromosféricos

Neste capítulo, será apresentado o método utilizado para a determinação dos fluxos absolutos totais e cromosféricos na linha H α . Até então, o fluxo acessível é o fluxo aparente, visível nos espectros reduzidos. Buscamos transformar o fluxo unitário dos espectros normalizados em fluxos fisicamente reais, em unidade de **erg cm**⁻² **s**⁻¹ para que, logo em seguida, possamos remover a contribuição fotosférica deles, restando a variável de interesse: o fluxo puramente cromosférico. O procedimento foi feito utilizando-se modelos teóricos de atmosferas estelares e regiões de referência representativas do contínuo; uma análise da largura ideal para a integração do fluxo no centro da linha; e a determinação de uma nova escala de ponto zero para a subtração do fluxo proveniente da fotosfera das estrelas, conforme descrito ao longo deste capítulo.

5.1 Calibração do Fluxo Absoluto Teórico

Utilizamos modelos teóricos de atmosferas estelares MARCS (Gustafsson et al., 2008) para o cálculo dos fluxos absolutos. Estes são modelos em uma dimensão, que se baseiam ainda em aproximações de homogeneidade, camadas plano-paralelo, equilíbrio

hidrostático e ETL (equilíbrio termodinâmico local). A grade de modelos utilizada reflete bem a variação nos parâmetros atmosféricos da amostra: 4800 K < $T_{\rm ef}$ < 6400 K, -1,0 dex < [Fe/H] < 0,4 dex e 3,4 dex < log g < 4,6 dex. Para um número pequeno de estrelas da amostra que estão fora desses intervalos consideramos a extrapolação válida, uma vez que os seus parâmetros atmosféricos diferem dos limites da grade de modelos por valores pouco significativos.

Pelo fato do centro da linha H α ser formada em uma região alta da atmosfera das estrelas, não podemos utilizar tais modelos teóricos para calcular diretamente o fluxo no centro da linha, uma vez que a presunção do equilíbrio termodinâmico local já não é mais válida. Uma alternativa é utilizar regiões de referência no espectro estelar que representem bem o contínuo da estrela, este facilmente descrito pelos modelos teóricos de atmosferas. Através do fluxo calculado para as regiões representativas do contínuo, podemos determinar o fluxo na linha H α através da comparação direta entre os fluxos aparentes medidos nos espectros:

$$\frac{F_{H\alpha}}{F_{ref}} = \frac{f_{H\alpha}}{f_{ref}} \times \Delta\lambda , \qquad (5.1.1)$$

onde $F_{H\alpha}$ é o fluxo absoluto real na linha (a variável de interesse), F_{ref} é o fluxo absoluto real na região de referência, dado pelos modelos teóricos, $f_{H\alpha} e f_{ref}$ são os fluxos aparentes, medidos nos espectros, e $\Delta \lambda$ é a largura de banda utilizada.

As regiões de referência utilizadas para a determinação indireta do fluxo em H α foram três: (1) 6504,95 - 6507,55 Å, (2) 6599,96 - 6604,25 Å e (3) 6614,49 - 6616,15 Å. Esses intervalos foram selecionados por Dutra-Ferreira (2010) por conseguirem representar bem o contínuo estelar, com pouca ou nenhuma presença de linhas fotosféricas e telúricas. Na Figura 5.1 temos destacadas as três regiões de referência em um dos espectros da estrela HD 146233, bem como a região demarcada para a medida do fluxo abaixo da linha H α , a ser discutida na próxima seção. Como decidimos por trabalhar com três regiões de referência, temos três valores de $F_{H\alpha}$ para cada espectro, seguindo a equação 5.1.1, sendo o valor final a média simples destes fluxos.

Os fluxos absolutos nas três regiões de referência $(F_{ref}$'s) foram calculados através dos modelos teóricos fornecidos pelo Dr. Ignasi Ribas (Institut d'Estudis Espacials de

FIGURA 5.1. Regiões de referência representativas do contínuo estelar para a determinação indireta do fluxo em $H\alpha$, também demarcado no centro do espectro.

Catalunya - IEEC, Barcelona, Espanha), nosso colaborador, para todas as combinações possíveis entre temperatura efetiva (passo de 200 K), metalicidade (passo de 0.2 dex) e gravidade superficial (passo de 0.2 dex). Através destes valores, realizamos regressões polinomiais para construir calibrações capazes de descrever o fluxo absoluto nas regiões consideradas para qualquer combinação de parâmetros atmosféricos da estrela.

As regressões consideradas foram realizadas utilizando-se o método dos mínimos quadrados (OLS - Ordinary Least Squares), de forma automática com os módulos statsmodels (Seabold & Perktold, 2010) e scikit-learn (Pedregosa et al., 2011) do Python. Testamos a princípio uma regressão utilizando um polinômio de segunda ordem com termos cruzados e uma constante, configuração esta adotada por Dutra-Ferreira (2010), da forma:

$$F_{ref} (\text{erg cm}^{-2} \text{ s}^{-1}) = \text{const.} + A \cdot \text{T}_{ef} + B \cdot [\text{Fe}/\text{H}] + C \cdot \log \text{g} + D \cdot \text{T}_{ef}^{2}$$

$$+ E \cdot \text{T}_{ef} \cdot [\text{Fe}/\text{H}] + F \cdot \text{T}_{ef} \cdot \log \text{g} + G \cdot [\text{Fe}/\text{H}]^{2}$$

$$+ H \cdot [\text{Fe}/\text{H}] \cdot \log \text{g} + I \cdot \log \text{g}^{2}$$

$$(5.1.2)$$

Ao analisar a qualidade da regressão, recuperamos o resultado encontrado por Dutra-Ferreira (2010), como esperado. Apesar do R² da regressão ter sido aproximadamente unitário, o que indica que quase 100% dos dados regredidos podem ser explicados pela regressão, os resíduos apresentam certa tendência com a temperatura efetiva, algo não desejado. Em relação aos outros dois parâmetros atmosféricos, [Fe/H] e log g, não foram observadas tendências significativas. No lado esquerdo das Figuras 5.2, 5.3 e 5.4, mostramos o comportamento e magnitude dos resíduos em função dos parâmetros atmosféricos utilizados na regressão para a primeira região de referência. O mesmo comportamento é observado para as outras duas regiões de referência.

Decidimos então dar mais liberdade ao ajuste e realizar a regressão utilizando um polinômio de terceiro grau, da forma:

$$F_{ref} (\text{erg cm}^{-2} \text{ s}^{-1}) = \text{const.} + A \cdot \text{T}_{ef} + B \cdot [\text{Fe}/\text{H}] + C \cdot \log \text{ g} + D \cdot \text{T}_{ef}^{2}$$
(5.1.3)
+ $E \cdot \text{T}_{ef} \cdot [\text{Fe}/\text{H}] + F \cdot \text{T}_{ef} \cdot \log \text{ g} + G \cdot [\text{Fe}/\text{H}]^{2}$
+ $H \cdot [\text{Fe}/\text{H}] \cdot \log \text{ g} + I \cdot \log \text{ g}^{2} + J \cdot \text{T}_{ef}^{3} + K \cdot \text{T}_{ef}^{2} \cdot [\text{Fe}/\text{H}]$
+ $L \cdot \text{T}_{ef}^{2} \cdot \log \text{ g} + M \cdot \text{T}_{ef} \cdot [\text{Fe}/\text{H}]^{2} + N \cdot \text{T}_{ef} \cdot [\text{Fe}/\text{H}] \cdot \log \text{ g}$
+ $O \cdot \text{T}_{ef} \cdot \log \text{ g}^{2} + P \cdot [\text{Fe}/\text{H}]^{3} + Q \cdot [\text{Fe}/\text{H}]^{2} \cdot \log \text{ g}$
+ $R \cdot [\text{Fe}/\text{H}] \cdot \log \text{ g}^{2} + S \cdot \log \text{ g}^{3}$.

Os valores dos coeficientes A - S e da constante da equação 5.1.3 para as três regiões de referência, assim como os seus respectivos erros, parâmetros t's e as probabilidades dos parâmetros não serem significativos (P > |t|), estão disponíveis nas tabelas 5.1, 5.2 e 5.3.

Com o aumento do número de termos e da ordem do polinômio, obtivemos uma melhora significativa em relação à magnitude dos resíduos. Se para a regressão realizada com um polinômio de grau 2 obtivemos um resíduo máximo de cerca de $8,1 \times 10^4$ erg cm⁻² s⁻¹ para a primeira região de referência, o maior valor de resíduo encontrado para esta mesma região utilizando-se um polinômio de terceiro grau se encontra em menos de $2,5 \times 10^4$ erg cm⁻² s⁻¹. Tomando o erro padrão σ_{reg} da regressão como a razão entre a raiz quadrada da soma dos quadrados dos resíduos e os graus de liberdade dos resíduos, progredimos de $\sigma_{reg} = 2,1 \times 10^4$ erg cm⁻² s⁻¹ para $\sigma_{reg} = 8 \times 10^3$ erg cm⁻² s⁻¹ ao aumentar a ordem do polinômio.

	Parâmetro	Coeficiente	Erro	t	P > t
	constante	$1,\!1189 \times 10^7$	$1,0286 \times 10^6$	10,877	0,000
Α	T_{ef}	$-6,9187 \times 10^3$	$3,\!8186 \times 10^2$	18,118	0,000
В	[Fe/H]	$1,9724 \times 10^{5}$	$1,\!6176 imes 10^{5}$	1,219	0,223
\mathbf{C}	$\log g$	$-1,0611 \times 10^{6}$	$4,5971 \times 10^{5}$	2,308	0,021
D	$\mathrm{T}_{\mathrm{ef}}^2$	1,0902	0,0615	17,739	0,000
\mathbf{E}	$T_{ef} \cdot [Fe/H]$	$-3,1443 \times 10^{2}$	$4,0278 \times 10^{1}$	7,806	0,000
\mathbf{F}	$T_{ef} \cdot \log g$	$6,\!4562 \times 10^2$	$5,\!8446 \times 10^{1}$	11,047	0,000
G	$[Fe/H]^2$	$-7,0420 \times 10^{5}$	$2,9143 \times 10^4$	24,163	0,000
Η	$[{\rm Fe}/{\rm H}] \cdot \log{\rm g}$	$-1,7944 \times 10^{5}$	$4,9768 \times 10^{4}$	$3,\!605$	0,000
Ι	$\log g^2$	$-1,9375 \times 10^{5}$	$1,0032 \times 10^{5}$	1,931	0,054
J	$\mathrm{T}_{\mathrm{ef}}^3$	$1,4704 \times 10^{-6}$	$3,5424 \times 10^{-6}$	0,415	$0,\!678$
Κ	$T_{ef}^2 \cdot [Fe/H]$	0,0673	0,0033	20,242	0,000
\mathbf{L}	$T_{ef}^2 \cdot \log g$	-0,0851	0,0038	22,345	0,000
Μ	$T_{ef} \cdot [Fe/H]^2$	$165,\!2331$	3,7680	43,851	0,000
Ν	$T_{ef} \cdot [Fe/H] \cdot \log g$	$42,\!8694$	3,7680	11,377	0,000
Ο	$T_{ef} \cdot \log g^2$	33,5674	4,9846	6,734	0,000
Р	$[Fe/H]^3$	$3,9092 \times 10^4$	$5,1740 \times 10^{3}$	$7,\!556$	0,000
\mathbf{Q}	$[Fe/H]^2 \cdot \log g$	$-6,1805 \times 10^{3}$	$4,8645 \times 10^{3}$	1,271	0,205
R	$[Fe/H] \cdot \log g^2$	$-6,6262 \times 10^3$	$5,6170 \times 10^{3}$	1,180	0,239
\mathbf{S}	$\log g^3$	$4,1753 \times 10^{3}$	$8,0260 \times 10^{3}$	0,520	$0,\!603$

TABELA 5.1. Valores da regressão polinomial de grau 3 para a 1^a região de referência (6504,95 - 6507,55 Å).

	Parâmetro	Coeficiente	Erro	t	P > t
	constante	$1,1349 \times 10^{7}$	$8,3633 \times 10^{5}$	13,571	0,000
А	T_{ef}	$-6,7195 \times 10^{3}$	$3,\!1048 \times 10^2$	$21,\!642$	0,000
В	[Fe/H]	$5,\!1426 \times 10^5$	$1,3152 \times 10^5$	$3,\!910$	0,000
С	log g	$-1,4635 \times 10^{6}$	$3,7378 \times 10^{5}$	3,915	0,000
D	T_{ef}^2	1,0539	0,0499	21,090	0,000
\mathbf{E}	$T_{ef} \cdot [Fe/H]$	$-2,3480 \times 10^{2}$	$3,\!2749 \times 10^1$	7,170	0,000
\mathbf{F}	$T_{ef} \cdot \log g$	$7,3755 \times 10^{2}$	$4,7520 \times 10^{1}$	15,521	0,000
G	$[Fe/H]^2$	$-3,9384 \times 10^{5}$	$2,3696 \times 10^4$	$16,\!621$	0,000
Η	$[Fe/H] \cdot \log g$	$-2,8744 \times 10^{5}$	$4,0465 \times 10^4$	$7,\!103$	0,000
Ι	$\log g^2$	$-1,6655 \times 10^{5}$	$8,1569 \times 10^{4}$	2,042	0,042
J	T_{ef}^3	$-2,0711 \times 10^{-7}$	$2,8802 \times 10^{-6}$	0,072	$0,\!943$
Κ	$T_{ef}^2 \cdot [Fe/H]$	0,0459	0,0027	16,975	0,000
\mathbf{L}	$T_{ef}^2 \cdot \log g$	-0,0877	0,0031	$28,\!295$	0,000
Μ	$T_{ef} \cdot [Fe/H]^2$	123,7002	3,0637	40,377	0,000
Ν	$T_{ef} \cdot [Fe/H] \cdot \log g$	59,3644	3,0637	19,377	0,000
Ο	$T_{ef} \cdot \log g^2$	27,2716	4,0528	6,729	0,000
Р	$[\mathrm{Fe}/\mathrm{H}]^3$	$5,3926 \times 10^4$	$4,2068 \times 10^{3}$	12,819	0,000
\mathbf{Q}	$[Fe/H]^2 \cdot \log g$	$-1,5703 \times 10^4$	$3,9552 \times 10^{3}$	$3,\!970$	0,000
R	$[\text{Fe/H}] \cdot \log \text{g}^2$	$-6,6838 \times 10^{3}$	$4,5670 \times 10^{3}$	1,463	0,144
\mathbf{S}	$\log g^3$	$4,7092 \times 10^{3}$	$6,5257 \times 10^{3}$	0,722	$0,\!471$

TABELA 5.2. Valores da regressão polinomial de grau 3 para a 2^a região de referência (6599,96 - 6604,25 Å).
	Parâmetro	Coeficiente	Erro	t	P > t
	constante	$9,1275 \times 10^{6}$	$7,\!9919 imes10^5$	11,421	0,000
Α	T_{ef}	$-5,3309 \times 10^{3}$	$2,9669 \times 10^{2}$	17,968	0,000
В	$[{\rm Fe}/{ m H}]$	$9,\!4994 \times 10^5$	$1,2568 \times 10^5$	7,558	0,000
\mathbf{C}	log g	$-1,5589 \times 10^{6}$	$3,5717 \times 10^{5}$	4,365	0,000
D	T_{ef}^2	0,7667	0,0477	16,057	0,000
\mathbf{E}	$T_{ef} \cdot [Fe/H]$	$-3,7192 \times 10^{2}$	$3,\!1294 \times 10^{1}$	11,885	0,000
\mathbf{F}	$T_{ef} \cdot \log g$	$7,8851 \times 10^{2}$	$4,5409 \times 10^{1}$	17,364	0,000
G	$[Fe/H]^2$	$-3,7782 \times 10^{5}$	$2,2643 \times 10^{4}$	16,686	0,000
Η	$[{\rm Fe}/{\rm H}] \cdot \log{\rm g}$	$-3,1223 \times 10^{5}$	$3,8667 \times 10^{4}$	8,075	0,000
Ι	$\log g^2$	$-1,8420 \times 10^{5}$	$7,7947 \times 10^{4}$	2,363	0,019
J	T_{ef}^3	$1,9318 \times 10^{-5}$	$2,7523 \times 10^{-6}$	7,019	0,000
Κ	$T_{ef}^2 \cdot [Fe/H]$	0,0550	0,0026	21,277	0,000
\mathbf{L}	$T_{ef}^2 \cdot \log g$	-0,0941	0,0029	31,788	0,000
Μ	$T_{ef} \cdot [Fe/H]^2$	$113,\!8218$	2,9276	38,879	0,000
Ν	$T_{ef} \cdot [Fe/H] \cdot \log g$	$65,\!2774$	2,9276	22,297	0,000
Ο	$T_{ef} \cdot \log g^2$	$31,\!3404$	$3,\!8728$	8,092	0,000
Р	$[Fe/H]^3$	$4,2046 \times 10^{4}$	$4,0200 \times 10^{3}$	$10,\!459$	0,000
\mathbf{Q}	$[Fe/H]^2 \cdot \log g$	$-1,0779 \times 10^{4}$	$3,7795 \times 10^{3}$	2,852	0,005
R	$[Fe/H] \cdot \log g^2$	$-6,7082 \times 10^{3}$	$4,3642 \times 10^{3}$	1,537	0,125
\mathbf{S}	$\log g^3$	$4,2380 \times 10^{3}$	$6,2359 \times 10^{3}$	0,680	0,497

TABELA 5.3. Valores da regressão polinomial de grau 3 para a 3^a região de referência (6614,49 - 6616,15 Å).

O comportamento dos resíduos contra as variáveis independentes da regressão do fluxo para a primeira região de referência está disposto nas Figuras 5.2, 5.3 e 5.4, à direita. Novamente, o mesmo comportamento é observado para as outras duas regiões de referência, onde obtemos $\sigma_{reg} = 6.5 \times 10^3$ erg cm⁻² s⁻¹ para a segunda região e $\sigma_{reg} = 6.2 \times 10^3$ erg cm⁻² s⁻¹ para a terceira região de referência.

FIGURA 5.2. Resíduos da regressão polinomial de segundo (esquerda) e terceiro (direita) grau do fluxo da região 1 contra T_{ef} .

FIGURA 5.3. Resíduos da regressão polinomial de segundo (esquerda) e terceiro (direita) grau do fluxo da região 1 contra [Fe/H].

FIGURA 5.4. Resíduos da regressão polinomial de segundo (esquerda) e terceiro (direita) grau do fluxo da região 1 contra log g.

Com o intuito de melhorar ainda mais a qualidade das regressões, testamos a exclusão de variáveis independentes pouco significativas (com alto de valor de P > |t|) através da técnica *stepwise*, que consiste na remoção de variáveis seguindo uma análise estatística, baseando-se em critérios de seleção previamente definidos por nós e sem explicação física: a remoção de variáveis está condicionada apenas aos seus níveis de significância na regressão. Em resumo, o procedimento consistiu em remover todas as variáveis com *p*-values maiores que 0,05, uma de cada vez em ordem decrescente de insignificância, começando sempre pelas variáveis de maior ordem. Realizamos novamente a regressão sem a variável excluída e comparamos o modelo original (com todas as variáveis) com o modelo reduzido. Se o modelo reduzido apresentar valores menores de σ_{reg} e BIC (*Bayesian Information Criterion* - Critério Bayesiano de Informação, que mede a qualidade da regressão em função do seu erro e do número de variáveis utilizadas), este modelo é tomado como o oficial, substituindo o original com todas as variáveis; se o critério apresentado não é atendido, voltamos com a variável para o modelo; seguimos para a próxima variável a ser removida. Uma descrição mais detalhada e precisa do algoritmo pode ser encontrada em Lorenzo-Oliveira (2011).

Com a implementação deste algoritmo, a única variável independente removida nas regressões do fluxo, em todas as três regiões de referência, foi a **log g**³. Apesar da qualidade da regressão ter melhorado ao removermos o termo cúbico da gravidade superficial, tal aprimoramento se mostrou muito pequeno e pouco significativo. O valor de σ_{reg} diminuiu menos de 0,1% em comparação com o valor original, e o padrão tendencioso dos resíduos (fig. 5.2) não apresentou qualquer sinal de melhora. Optamos assim por manter tal variável nas calibrações dos fluxos teóricos, por pura completeza.

Testamos ainda o aumento da ordem do polinômio regredido, considerando até o sétimo grau para as variáveis, mas não obtivemos nenhuma melhora significativa, como ao passar de um polinômio de segunda para um de terceira ordem.

Em uma regressão acurada e precisa, esperamos que os resíduos não ultrapassem as variações de fluxo referentes às incertezas dos parâmetros atmosféricos, as variáveis independentes do modelo. Para estimar estas variações, calculamos através das calibrações construídas os fluxos para uma temperatura fria, intermediária e quente da amostra, mantendo [Fe/H] e log g fixos nos valores solares, e comparamos com o mesmo fluxo com as temperaturas perturbadas em 40 K, incerteza média associada ao parâmetro. Fizemos o mesmo teste perturbando também a metalicidade e a gravidade superficial em suas incertezas médias (0,10 e 0,05 dex, respectivamente), conforme mostrado nas tabelas 5.4, 5.5 e 5.6.

$T_{ef} \pm 1\sigma$	Região 1	Região 2	Região 3
$4800\pm40~\mathrm{K}$	$1,4 \times 10^5$	$1,4 \times 10^5$	$1,4 \times 10^5$
5750 ± 40 K	$2,0 \times 10^5$	$1,9 \times 10^5$	$1,9 \times 10^5$
6400 \pm 40 K	$2,4 \times 10^5$	$2,2 \times 10^5$	$2,3 \times 10^5$

TABELA 5.4. Variações nos fluxos frente às incertezas em $\rm T_{ef},$ em unidade de erg $\rm cm^{-2}~s^{-1}.$

$[{\rm Fe}/{\rm H}]\pm 1\sigma$	Região 1	Região 2	Região 3
-1.0 \pm 0.1 dex	$4,7 \times 10^4$	$4,7 \times 10^{4}$	$4,7 \times 10^4$
0.0 \pm 0.1 dex	$8,0 \times 10^{4}$	$8,3 \times 10^{4}$	$8,2 \times 10^{4}$
$0{,}4$ \pm 0{,}1 dex	$9,5 \times 10^4$	$1,0 \times 10^{5}$	$1,0 \times 10^{5}$

TABELA 5.5. Variações nos fluxos frente às incertezas em [Fe/H], em unidade de erg cm⁻² s⁻¹.

$\log g \pm 1\sigma$	Região 1	Região 2	Região 3
3,6 \pm 0,05 dex	$4,7 \times 10^2$	$4,5 \times 10^2$	$2,4 \times 10^{2}$
4,0 \pm 0,05 dex	$1,5 \times 10^3$	$1,4 \times 10^{3}$	$1,8 \times 10^{3}$
4,6 \pm 0,05 dex	$4,8 \times 10^3$	$4,5 \times 10^{3}$	$4,9 \times 10^{3}$

TABELA 5.6. Variações nos fluxos frente às incertezas em log g, em unidade de erg cm $^{-2}$ s $^{-1}.$

Como visto, os erros associados às regressões ($\sigma_{reg} = 8 \times 10^3$, 6.5×10^3 e 6.2×10^3 erg cm⁻² s⁻¹) são inferiores em duas ordens de grandeza comparados aos erros cometidos ao perturbar a T_{ef} com sua incerteza típica, e uma ordem de grandeza menor ao perturbar a metalicidade. Em relação à gravidade superficial, o erro devido às perturbações são da mesma ordem ou até maiores que os erros das regressões. Consideramos, entretanto, que isso não representa um problema, uma vez que a variável é bem pouco significativa para o fluxo absoluto teórico, com um coeficiente de correlação de cerca de r = 0,002 (r = 0,989 para a temperatura e r = 0,121 para a metalicidade).

Concluímos assim que as regressões construídas a partir de um modelo cúbico, com todas as variáveis, são suficientes para descrever o fluxo em nosso trabalho; seus erros não comprometem a qualidade da estimativa.

5.2 Determinação do Fluxo Absoluto em H α

Com as calibrações de fluxo teórico para as regiões de referência prontas, podemos prosseguir para a medição do fluxo na linha H α . Primeiro, precisamos determinar a largura ideal da banda $\Delta\lambda$ para se fazer a integração dentro do perfil de H α , para que possamos determinar os fluxos aparentes e medir os fluxos absolutos $F_{H\alpha}$ através da equação 5.1.1.

5.2.1 Escolha da largura ideal de medida do fluxo cromosférico

Uma das vantagens que as linhas H e K do Ca II apresentam em relação à H α é a clara distinção entre a contribuição fotosférica e cromosférica do fluxo, uma vez o fluxo cromosférico é visível diretamente no espectro através dos picos de emissão nos centros das linhas, definidos pelos mínimos H₁ e K₁. Na linha H α , para estrela de tipos F, G e K, a contribuição da cromosfera se dá como um preenchimento no centro da linha, na forma de um excesso, como mostrado na Figura 5.5, onde sobrepomos os espectros das estrelas HD 4391 e HD 105901. Tendo essas duas estrelas parâmetros atmosféricos bem similares (T_{ef} ≈ 5815 K, [Fe/H] ≈ -0.05 dex e log g ≈ 4.45 dex), a diferença entre os espectros no centro da linha se dá basicamente pela discrepância entre suas atividades cromosféricas.

FIGURA 5.5. Sobreposição dos espectros das estrelas HD 4391 e HD 105901, destacando o diferente nível de atividade cromosférica no centro do perfil de H α .

O problema agora se resume em escolher uma largura ideal em torno do centro de H α para realizar a integração do fluxo na linha. Tal largura ideal deve, ao mesmo tempo, maximizar a contribuição cromosférica e minimizar a inclusão de componente fotosférica no fluxo. Lyra & Porto de Mello (2005) utilizaram uma largura de banda $\Delta \lambda = 1,7$ Å, valor adotado por Dutra-Ferreira (2010). Esse valor foi definido pelos autores através da análise da mudança de comportamento do fluxo na linha ao se aumentar a largura de

integração a partir do centro: a partir de $\Delta \lambda = 1,7$ Å, a curva de crescimento do fluxo integrado inicia um crescimento linear rápido, sendo esse resultado interpretado como um indicativo de que o fluxo cromosférico já foi todo contabilizado e o aumento linear mostra que apenas a parte fotosférica do fluxo segue tendo seu valor aumentado. Poucas larguras de integração, todavia, foram consideradas na análise ($\Delta \lambda = 1,4, 1,7, 2,0$ e 2,5 Å). Pasquini & Pallavicini (1991) adotaram o mesmo valor em seu trabalho.

Começamos esta análise selecionando pares de estrelas com diferentes níveis de atividade, com parâmetros atmosféricos praticamente idênticos e com espectros na mesma resolução. Para cada par, calculamos a razão entre a área abaixo da linha H α da estrela ativa e da estrela inativa (f_{ativa}/f_{inativa}) para diferentes valores de $\Delta\lambda$. O resultado está exibido na Figura 5.6. Decidimos por realizar essa análise de forma separada em relação à resolução para podermos quantificar uma possível perda de sensibilidade da linha como indicador cromosférico em função da qualidade dos espectros.

FIGURA 5.6. Curvas de razão entre os fluxos de estrelas ativas e inativas em função da largura de integração $\Delta\lambda$, para espectros de baixa (esquerda) e alta (direita) resolução.

Como esperado, o contraste $F_{ativa}/F_{inativa}$ é máximo para menores valores da largura da banda de integração, uma vez que estamos integrando apenas a região onde o fluxo cromosférico está visivelmente presente e contribuindo para o fluxo total. Com o aumento da largura, o fluxo fotosférico, dominante, continua a ser cada vez mais incluído, ao contrário do fluxo cromosférico, que deixa de contribuir à medida que nos afastamos do centro da linha. Apesar deste máximo contraste, a contribuição da cromosfera para o fluxo claramente se estende para além destes pequenos valores de $\Delta\lambda$. Optar por larguras maiores é assim uma escolha inteligente, uma vez que queremos inserir todo o fluxo cromosférico possível, idealmente, garantindo a determinação de um ponto zero fisicamente correto para este fluxo. Além disso, para pequenos valores de $\Delta\lambda$, o ruído da razão se mostra bastante expressivo, como observado na fígura 5.6, principalmente para as estrelas de espectros da base de dados com resolução mais baixa, onde a amostragem de pixels também é pior.

Para cada par de estrelas selecionado realizamos a divisão do espectro da estrela ativa pelo espectro da estrela inativa, através da tarefa **sarith** do IRAF. Nas Figuras 5.7 e 5.8 mostramos alguns exemplos de espectros de razão sobrepostos aos espectros estelares, na região de H α . Percebam que apenas na região do centro da linha H α a razão assume valores mais altos, caindo para valores aproximadamente unitários para comprimentos de onda mais distantes do centro. Interpretamos que, nas regiões onde a razão tende ao valor unitário, a semelhança dos parâmetros atmosféricos das estrelas consideradas produz uma igualdade dos fluxos fotosféricos, sendo a diferença observada na região central devida apenas à atividade cromosférica.

FIGURA 5.7. Espectros de razão sobrepostos aos espectros estelares para pares de estrelas com diferentes níveis de atividade (baixa resolução).

Além de pares de estrelas com todos os parâmetros atmosféricos semelhantes, comparamos também estrelas com diferentes valores de log g, mantendo T_{ef} e [Fe/H] ainda parecidos. Isso pois, para uma mesma temperatura efetiva, esperamos que uma largura de integração $\Delta \lambda$ ideal seja capaz de incluir o máximo de fluxo cromosférico tanto de

FIGURA 5.8. Espectros de razão sobrepostos aos espectros estelares para pares de estrelas com diferentes níveis de atividade (alta resolução).

anãs de sequência principal quanto de subgigantes. Outra motivação para o estudo da dependência da largura característica de emissão cromosférica com a gravidade superficial está no fato de que Pasquini & Pallavicini (1991) e Lyra & Porto de Mello (2005) relataram que estrelas mais evoluídas (menores valores de log g) tendem a apresentar maiores valores de largura do perfil de H α , em comparação com estrelas anãs de mesma temperatura efetiva. Uma vez que o contraste cromosférico é mais visível em regiões de maior opacidade, o aumento da largura da linha nas subgigantes poderia estar relacionado a um possível espalhamento do fluxo cromosférico para regiões mais distantes do centro da linha. Na Figura 5.9 mostramos espectros de razão para ambas as classes de resolução da amostra, comparando uma estrela mais ativa (anã) com uma menos ativa (subgigante).

Como perceptível nas imagens apresentadas, não encontramos um valor único ideal de $\Delta\lambda$, representada pelas retas verticais. Medindo a largura ideal através das bases dos picos presentes nos espectros de razão, ou seja, a região central contida entre os limites onde a razão passa a ter valor unitário, encontramos $\Delta\lambda$ variando entre 1,2 Å e 1,4 Å para os espectros de anãs de sequência principal de resolução mais alta, enquanto as subgigantes chegaram a sugerir larguras de até 1,8 Å. Para os espectros de resolução mais baixa, estrelas anãs frias sugeriram larguras entre 1,3 e 1,6 Å, anãs mais quentes sugeriram a faixa entre 2,0 e 2,2 Å, enquanto as subgigantes pediram uma largura de até 2,4 Å. Esses valores já nos permitem concluir que espectros de mais alta resolução apresentam a contribuição cromosférica do fluxo mais concentrada ao redor do centro do

FIGURA 5.9. Espectros de razão sobrepostos aos espectros estelares para pares de estrelas com diferentes log g's (baixa e alta resolução, respectivamente, da esquerda para a direita). O espectro da anã é representado pela linha azul, enquanto o da subgigante é representado pela linha laranja.

núcleo da linha, em comparação com espectros de resolução mais baixa. Esse é um fator, contudo, esperado, uma vez que, matematicamente, espectros de baixa resolução assim o são pois a convolução mais alargada, dada pela instrumentação, espalha a informação em uma região maior de comprimento de onda. A discrepância observada entre os fluxos nas diferentes resoluções espectrais presentes na amostra é exemplificada na próxima subseção.

As possíveis tendências da largura $\Delta\lambda$ com a T_{ef} e com o log g das estrelas que surgiram foram investigados por nós, mas não obtivemos nenhum resultado conclusivo. Sendo este um tópico que pede um pouco mais de esforço e atenção, além de uma subamostra específica para os testes necessários, pretendemos tratá-lo em trabalhos futuros.

Optamos, assim, por escolher os maiores valores de $\Delta\lambda$ que surgiram para caracterizar o fluxo cromosférico: $\Delta\lambda = 1.8$ Å para os espectros com $R \approx 30000$ e $\Delta\lambda = 2.4$ Å para os espectros com $R \approx 11000$, que são os valores necessários para a inclusão de toda a contribuição cromosférica do fluxo para as estrelas com as maiores larguras do perfil H α observadas (subgigantes).

5.2.2 Conversão dos fluxos absolutos medidos para as diferentes resoluções

Voltando à equação 5.1.1, já conseguimos calcular os valores de fluxo absoluto em $H\alpha$ ($F_{H\alpha}$): temos determinado os fluxos aparentes $f_{H\alpha}$ e f_{ref} , medidos diretamente nos espectros a partir da tarefa **bplot** do IRAF, com as regiões de referência bem definidas e as larguras escolhidas para a integração do fluxo em $H\alpha$ determinadas na seção anterior, e os fluxos F_{ref} , calculados a partir das calibrações dos modelos teóricos. Trabalharemos a partir de agora com os fluxos absolutos em $H\alpha$ ($F_{H\alpha}$).

Como explicitado no capítulo 2, nossa base de dados é composta por espectros estelares com duas resoluções representativas diferentes: $R \approx 11000$ e $R \approx 30000$. Através da alteração entre a rede de 1800 linhas/mm e a rede de 600 linhas/mm utilizada, uma diferença na intensidade das linhas espectrais é claramente notada, sendo este efeito um fator puramente instrumental. Tal diferença pode ser observada na Figura 5.10, onde sobrepomos os espectros da mesma estrela, HD 146233, observada tanto em alta quanto em baixa resolução. Como pode ser observado, a expectativa é que os valores de fluxo absoluto total sejam maiores para os espectros de baixa resolução, tanto pela necessidade de se utilizar uma banda maior de integração quanto pelo notável maior valor de fluxo em razão do espalhamento de fluxo em comprimento de onda, causado pelo perfil instrumental.

FIGURA 5.10. Espectros de alta (R \approx 30000) e baixa (R \approx 11000) resoluções da estrela HD 146233 sobrepostos.

Para colocar todos os fluxos em uma mesma escala, comparamos os fluxos de 64 estrelas que possuem espectros tanto em baixa quanto em alta resolução. Já utilizando as larguras definidas para a integração do fluxo total, $\Delta \lambda = 1,8$ Å e $\Delta \lambda = 2,4$ Å (alta e baixa resolução, respectivamente), realizamos uma regressão linear entre os pontos mostrados na Figura 5.11. A reta ajustada nos deu a equação de conversão do fluxo em baixa resolução (F₁₁₀₀₀) para a escala do fluxo em alta resolução (F₃₀₀₀₀):

$$F_{30000} = 0.619 \times F_{11000} - 9.04 \times 10^4$$
(5.2.1)

FIGURA 5.11. Fluxos totais dos espectros de alta resolução contra os fluxos em baixa resolução, para a amostra comum de 64 estrelas.

A regressão se mostrou bem comportada, com $R^2 = 0.955$ e um erro de $\sigma = 1.47 \times 10^5$ ergs cm⁻² s⁻¹, valor comparável aos erros máximos obtidos ao refletir as incertezas médias do parâmetros atmosféricos sobre os fluxos teóricos.

A partir desta equação de conversão, colocamos todos os fluxos absolutos em uma mesma escala. À esquerda da Figura 5.12 mostramos os fluxos absolutos totais em função da temperatura para as estrelas de nossa amostra, separando as duas classes de resolução. No painel direito da mesma figura, apresentamos o mesmo gráfico após a conversão dos fluxos F_{11000} em fluxos F_{30000} .

FIGURA 5.12. Conversão dos fluxos absolutos totais entre as duas bases de dados da amostra.

Deste ponto em diante, o fluxo absoluto considerado para cada estrela será o fluxo médio obtido a partir dos fluxos de cada espectro individual, quando mais de um espectro se mostra presente para a estrela em questão. O número de espectros presentes de cada estrela está disponível no apêndice A.

5.3 Subtração da Componente Fotosférica e Determinação do Fluxo Puramente Cromosférico

Com o fluxo absoluto em H α das estrelas homogenizados na mesma escala, prosseguimos para uma das etapas finais do trabalho: a subtração da parte do fluxo advinda da fotosfera da estrela.

Como observado na Figura 5.12, o fluxo total (cromosfera + fotosfera) possui uma clara dependência com a temperatura efetiva das estrelas, tendência mais forte do que com qualquer outro parâmetro atmosférico. Neste trabalho optamos por utilizar tal fato para determinar a parte fotosférica do fluxo de uma maneira arbitrária: estimamos um envoltório de mínima atividade composto pelas estrelas de menor fluxo total para dada temperatura, e subtraímos o fluxo de cada estrela por esse envoltório. Este procedimento foi utilizado por Dutra-Ferreira (2010) e Lyra & Porto de Mello (2005), e consiste em, basicamente, assumir que estrelas com os fluxos totais mais baixos possuem a componente cromosférica do fluxo nula. Sabemos que essa presunção não é verdadeira, uma vez que a teoria indica que o aquecimento cromosférico via dissipação de ondas acústicas, independentemente do dínamo estelar, continua presente até para estrelas mais evoluídas, bem como a atividade gerada pela magnetohidrodinâmica nunca cessa por completo. Consideramos, porém, que com tal envoltório bem determinado, os valores de fluxo cromosférico determinados desta forma sofrem apenas um deslocamento linear, o que implica apenas em um deslocamento do ponto zero da escala de fluxos em relação ao ponto zero real, variável desconhecida. Para a relação idade-atividade a ser construída (cap. 6), o que nos interessa de fato é a diferença entre o nível de atividade de diferentes estrelas, o que não é, ou pouco é, alterado com esse procedimento.

Em ambos trabalhos previamente mencionados, a determinação do envoltório de mínima atividade foi realizada ajustando funções matemáticas às estrelas mais inativas do gráfico por faixa de temperatura. Lyra & Porto de Mello (2005) utilizaram um polinômio de sexto grau, enquanto Dutra-Ferreira (2010) utilizou uma parábola. Em ambos os trabalhos, o ajuste foi feito utilizando-se menos de 10 das estrelas mais inativas no gráfico Fluxo Absoluto $\times T_{ef}$.

Em nosso trabalho, devido ao grande número de estrelas utilizado, percebemos um comportamento linear do fluxo total em função da temperatura, comportamento menos visível nos trabalhos anteriores, pela amostragem inferior. Dessa forma, decidimos por assumir tal comportamento linear para a componente fotosférica, ajustando uma reta à todos os pontos do gráfico seguido do deslocamento vertical da mesma, até que todas as estrelas sejam incluídas, de forma a não termos valores negativos de fluxo cromosférico após a subtração.

Para este ajuste, selecionamos apenas as estrelas dentro do intervalo 5000 K < T_{ef} < 6200 K, onde a amostra está bem representada por estrelas em diferentes níveis de atividade. Removemos também do ajuste oito estrelas excessivamente pobres, com metalicidade [Fe/H] < -1,2 dex, cujos fluxos determinados não são confiáveis, pois fogem dos limites em que os modelos teóricos de atmosferas utilizados são válidos. Ficaram também de fora 13 estrelas classificadas como gigantes de acordo com os modelos evolutivos PARSEC, identificadas também pelo programa do Dr. Felipe Almeida Fernandes, cuja evolução fez com que o mecanismo de aquecimento cromosférico difira dos mecanismos típicos considerados para o intervalo de massa e temperatura de interesse, que queremos caracterizar. Essas estrelas classificadas como gigantes já sofreram grande evolução rotacional e aumento de raio, o que as leva para um regime de interação da zona convectiva superficial com a rotação diferente do experimentado pelas anãs e subgigantes.

O ajuste da melhor reta aos pontos é mostrado na Figura 5.13, em linha tracejada. Com a linha contínua, mostramos a mesma reta deslocada verticalmente, cortando a estrela mais inativa para sua temperatura (HD 114762), cujo fluxo cromosférico arbitramos ser nulo. A equação da reta que descreve o envoltório de mínima atividade é

$$F_{fot}(erg \ cm^{-2} \ s^{-1}) = 2166 \cdot T_{ef} - 7,926 \times 10^{6}$$
. (5.3.1)

FIGURA 5.13. Derivação do envoltório de mínima atividade cromosférica, representando a contribuição fotosférica do fluxo total. A estrela cujo fluxo cromosférico foi arbitrado em zero (HD 114762) está identificada pela seta.

Subtraindo todos os fluxos por esse envoltório de mínima atividade, determinamos os fluxos puramente cromosféricos das estrelas. Mostramos o resultado na Figura 5.14.

FIGURA 5.14. Escala de fluxo absoluto cromosférico para a amostra de estrelas.

A incerteza padrão σ do fluxo cromosférico foi estimada considerando todas as fontes de erro que apareceram ao longo do trabalho, em unidade de erg cm⁻² s⁻¹:

- incerteza das calibrações do fluxo absoluto total seguindo os modelos teóricos ($\sim 7 \times 10^3$; Seção 5.1);
- perturbação dos erros médios dos parâmetros atmosféricos nas calibrações de fluxo absoluto (~ 8,2 × 10⁴ para [Fe/H] e ~ 4,7 × 10³ para log g, considerando valores de [Fe/H] e log g solares; tabelas 5.5 e 5.6);
- desvio padrão das medidas de fluxo total a partir de cada uma das três janelas de referência, quando possuímos apenas um espectro da estrela;
- desvio padrão das medidas de fluxo total médio entre os vários espectros, quando possuímos dois ou mais espectros de uma mesma estrela;
- incerteza da reta de conversão entre os fluxos de espectros de baixa para alta resolução, apenas para as estrelas com espectros de baixa resolução (~ $1,47 \times 10^5$; Seção 5.2.2).

A incerteza devido à perturbação do erro médio em T_{ef} (~ 40 K) não foi considerada no cálculo da incerteza do fluxo puramente cromosférico, pois admitimos que a mesma incide apenas sobre o fluxo total (cromosfera + fotosfera), sem reflexos expressivos no fluxo puramente cromosférico, resultado encontrado por Lorenzo-Oliveira et al. (2016b) para o fluxo cromosférico no tripleto do infravermelho do Ca II. A explicação está no fato de que o fluxo absoluto total calculado por nós apresenta uma correlação muito forte com a temperatura efetiva, de modo que o erro associado ao parâmetro não se reflete no fluxo cromosférico, que não apresenta correlação com a temperatura efetiva. Interpretamos, assim, que os erros em temperatura efetiva incidem sobre a determinação do fluxo absoluto total apenas pelo estabelecimento do ponto zero arbitrário. Errar em temperatura efetiva para uma determinada estrela desloca o ponto zero da escala juntamente com o valor final de σ foi estimado admitindo-se independência entre as incertezas σ_i listadas acima, de acordo com a expressão $\sigma^2 = \sum \sigma_i^2$.

O erro do fluxo absoluto cromosférico se mostra importante à medida que vamos para o ramo das estrelas mais inativas da amostra, consequência da arbitrariedade do método de determinação da variável. Os valores de fluxo total, fluxo cromosférico e a incerteza associada para cada estrela estão disponíveis no apêndice E.

Para estimar a qualidade dos dados, calculamos ainda a incerteza do fluxo total (cromosfera + fotosfera), desta vez incluindo o erro em temperatura efetiva na relação $\sigma^2 = \sum \sigma_i^2$. Adotamos o valor de ~ 2 × 10⁵ erg cm⁻² s⁻¹, valor característico da perturbação em 40 K no fluxo total de uma estrela de temperatura aproximadamente solar (tabela 5.4). A incerteza relativa do fluxo total se mostrou bem comportada, com um valor médio de cerca de 4 %, seguindo a distribuição do histograma da Figura 5.15.

 ${\it Figura~5.15.}$ Incerteza relativa do fluxo absoluto total.

Capítulo 6

Resultados

Neste capítulo, discutiremos os resultados que dão título ao trabalho. Analisamos os resultados encontrados para os valores de fluxo cromosférico em H α , comparando com os fluxos obtidos através das linhas H e K do Ca II, indicador de atividade mais usual. Damos início também à criação de uma relação idade-atividade multiparamétrica, criando uma forma de quantificar a idade estelar dado seu fluxo cromosférico na linha H α .

6.1 Comparação com os Fluxos das Linhas H e K do Ca II

Os fluxos cromosféricos provenientes das linhas H e K do Ca II, a partir daqui identificados por F_{HK} , utilizados para comparação foram calculados por Erica Bhering, através das cores B - V e dos índices $\langle S \rangle$ de Monte-Wilson levantados da literatura, métrica padrão amplamente utilizada. Detalhes podem ser encontrados em Costa-Bhering (2022).

Investigando os valores de F_{HK} , percebemos uma tendência residual com a temperatura efetiva para as estrelas mais quentes da amostra, indicativo este de uma possível deficiência na correção da componente basal fotosférica para este intervalo de temperatura, como observado na Figura 6.1. Na região do ultravioleta do espectro, onde as linhas H e K do Ca II se localizam, a dependência da parte fotosférica do fluxo com a temperatura efetiva é bastante acentuada, em especial para as estrelas mais quentes. Por isso, decidimos por corrigir a tendência traçando um envoltório de mínima atividade e subtraindo os fluxos por esse envoltório, mesmo procedimento realizado para o cálculo do fluxo cromosférico em H α (F_{H α}). Neste caso, utilizamos 4 das estrelas mais inativas do gráfico para traçar uma reta para T_{ef} < 5473 K (valor de T_{ef} da estrela mais inativa utilizada para a correção, até onde o fluxo cromosférico em H e K não apresenta tendência com a temperatura efetiva) e uma parábola para T_{ef} \geq 5473 K, a partir de onde a tendência basal já é visível, seguindo as equações:

$$\mathbf{F}_{fot}^{HK}(\text{erg cm}^{-2} \text{ s}^{-1}) = -8.48 \cdot \mathbf{T}_{\text{ef}} + 2.65 \times 10^5 \qquad (\mathbf{T}_{\text{ef}} < 5473 \text{K}) \qquad (6.1.1)$$

$$\mathbf{F}_{fot}^{HK}(\text{erg cm}^{-2} \text{ s}^{-1}) = +6.82 \cdot \mathbf{T}_{ef}^2 - 7428 \cdot \mathbf{T}_{ef} + 2.04 \times 10^7 \quad (\mathbf{T}_{ef} \ge 5473 \text{K})$$
(6.1.2)

Após a subtração dos fluxos pelo envoltório de correção da componente basal residual, visível à esquerda da Figura 6.1, obtivemos os fluxos F_{HK} sem tendência com a temperatura efetiva, apresentados na Figura 6.1, à direita, seguindo o mesmo comportamento dos fluxos $F_{H\alpha}$ (Figura 5.14).

FIGURA 6.1. Envoltório de correção de F_{HK} (esquerda) e fluxos corrigidos (direita).

Com os fluxos F_{HK} corrigidos, testamos sua relação direta com os fluxos $F_{H\alpha}$. Mostramos na Figura 6.2 a correlação entre as duas medidas, onde as cores indicam diferentes metalicidades. Em geral, os fluxos apresentam uma boa correlação para o conjunto de estrelas mais ativas da amostra, composto majoritariamente pelas estrelas de aglomerados e associações estelares jovens. Abaixo de ~ 10^6 erg cm⁻² s⁻¹, para as duas variáveis, o espalhamento começa a ficar importante.

Dentro deste espalhamento, a estratificação em [Fe/H] no gráfico 6.2 nos revela uma tendência: estrelas mais ricas em metais apresentam maior nível de atividade cromosférica em H α , em comparação com o nível de atividade nas linhas H e K do Ca II. Como exemplo, o grupo de estrelas com log(F_{H α}) ~ 5,8 e 5,2 < log(F_{HK}) < 5,5 é caracterizado pelos maiores valores de [Fe/H] da amostra. Em contrapartida, podemos observar as estrelas mais pobres da amostra se deslocando no sentido oposto ao grupo de estrelas mais ricas, em log(F_{H α}) < 5,5 e 5,6 < log(F_{HK}) < 6,0, representando estrelas com maior nível de atividade nas linhas do Ca II, em comparação com H α .

FIGURA 6.2. Relação entre os fluxos $F_{H\alpha}$ e F_{HK} . O erro típico está demarcado no canto inferior direito para o Sol, onde assumimos a incerteza em F_{HK} em aproximadamente 2×10^5 erg cm⁻² s⁻¹ (Lorenzo-Oliveira, D., comunicação privada).

Por serem linhas metálicas, as linhas H e K do Ca II se mostram mais sensíveis à variação da metalicidade. Quanto mais rica em metais a estrela, mais profunda é a linha metálica (sendo a causa a maior absorção na fotosfera). Essa alta absorção pode ser mal interpretada, confundida com uma cromosfera mais inativa. Nesse tipo de situação, o efeito em que estamos interessados em caracterizar, o nível de atividade cromosférica, pode ser mascarado por efeitos puramente atmosféricos, e as medições podem acabar por não refletir os efeitos estruturais com fidelidade. Esse problema, a princípio, não está presente em H α , uma vez que o perfil da linha se mostra muito pouco sensível a variações em [Fe/H], sendo influenciado majoritariamente pela temperatura efetiva, diferentemente das demais linhas da série de Balmer (Fuhrmann et al., 1993) e das linhas do Ca II.

Mostramos na Figura 6.3 a estratificação dos fluxos cromosféricos, nos dois indicadores em questão, por metalicidade. Em H α , a região do gráfico de maior nível de atividade é povoada com estrelas mais ricas, o que representa uma expectativa teórica sugerida, pela primeira vez, por Lyra & Porto de Mello (2005), seguindo uma explicação estrutural: estrelas com maior concentração de metais apresentam zonas convectivas mais profundas, devido à maior opacidade, e têm seu efeito dínamo potencializado. Do mesmo modo, estrelas mais pobres têm suas zonas convectivas menos desenvolvidas, e um dínamo menos eficiente. Já nos fluxos $F_{\rm HK}$, este comportamento não é recuperado, como observamos à direita da Figura 6.3: as estrelas mais ricas não povoam a região superior do gráfico, indicando alto nível de atividade, mas se espalham pelo gráfico, caracterizando, de certa forma, a região das estrelas mais inativas.

FIGURA 6.3. Estratificação dos fluxos cromosféricos de H α e das linhas H e K do Ca II por [Fe/H].

Para caracterizar a dependência de F_{HK} com [Fe/H], em comparação com $F_{H\alpha}$, analisamos a diferença entre os dois fluxos para uma mesma estrela em função de sua metalicidade. O resultado está disposto na Figura 6.4. À direita, consideramos apenas um intervalo de massa estreito em torno do valor solar, para testar possíveis efeitos da variável nessa estrutura. Percebemos que a tendência global se mantém, e concluímos que ela é causada, de fato, pela metalicidade da estrela.

FIGURA 6.4. Relação entre a diferença entre os fluxos $F_{\rm HK}$ e $F_{\rm H\alpha}$ e a metalicidade [Fe/H].

Por fim, consideramos ainda um ajuste linear do tipo $\log(\mathbf{F}_{H\alpha}) = a \cdot \log(\mathbf{F}_{HK}) + b$, e verificamos a dependência dos resíduos (valor do ajuste – valor real $(\log(\mathbf{F}_{H\alpha}))$ em função de [Fe/H], mostrada na Figura 6.5. A correlação obtida foi r = 0.52.

Investigamos a dependência de outras variáveis na diferença entre os fluxos nos dois indicadores, mas nenhuma além da [Fe/H] se mostrou significativa.

A partir desses resultados, concluímos que as linhas H e K do Ca II apresentam certa deficiência ao serem utilizados como indicadoras de atividade cromosférica: a alta absorção da linha metálica em estrelas ricas simula uma cromosfera mais quieta, mascarando parte de sua atividade; em contrapartida, estrelas mais pobres em metais apresentam linhas em absorção menos intensas, o que pode ser confundido com uma cromosfera mais ativa. Essa característica deve ser levada em conta ao se utilizar linhas metálicas no estudo da atividade cromosférica, o que é algo com que não precisamos nos preocupar ao utilizarmos a linha H α .

FIGURA 6.5. Resíduos do ajuste $\log(F_{H\alpha}) = a \cdot \log(F_{HK}) + b$ em função de [Fe/H].

6.2 A Relação Idade - Atividade

Para investigar a relação idade-atividade, nos preocupamos em utilizar apenas idades isocronais precisas, cujos erros não ultrapassem 1 Gano, e cuja distribuição de probabilidades se mostre bem comportada. Na Figura 6.6 mostramos à esquerda um exemplo de idade isocronal precisa dentro de nosso critério, a ser utilizada na calibração, e um exemplo de idade não tão precisa, à direita, que não utilizamos.

FIGURA 6.6. Função densidade de probabilidade para as idades isocronais das estrelas HD 195564 (esquerda) e HD 160346 (direita).

Para as estrelas de aglomerados e associações estelares jovens presentes na amostra, utilizamos os valores de idade da literatura, determinados para todo o conjunto de estrelas. As estrelas com idades astrosismológicas publicadas também não foram incluídas na construção da calibração global multiparamétrica, servindo apenas como testes para a validação posterior da mesma. Os valores de idade isocronal utilizados na calibração, bem como seus erros, estão dispostos no apêndice D, juntamente com as idades astrosismológicas, a idade solar e as idades de aglomerados e associações, estas últimas também apresentadas na tabela 6.1, com suas respectivas referências.

Aglomerado/Associação	Idade	Referência
Beta Pictoris	$(25 \pm 3) \times 10^{6}$ anos	Messina et al. (2016)
Híades	$(625 \pm 50) \times 10^6$ anos	Perryman et al. (1998)
Plêiades	$(112 \pm 5) \times 10^{6}$ anos	Dahm (2015)
Tucana-Horologium	$(45 \pm 4) \times 10^{6}$ anos	Bell et al. (2015)

TABELA 6.1. Idades adotadas para as estrelas de aglomerados e associações estelares jovens presentes na amostra.

Ainda para a seleção de estrelas para a calibração da relação idade-atividade, nos atentamos para as estrelas mais massivas da amostra, com massa superiores ou próximas à 1,5 M_{\odot} , que possivelmente jamais apresentaram um nível significativo de convecção superficial durante a sequência principal, podendo não ter sofrido a frenagem magnética nesta fase que estamos interessados em caracterizar. Para esses casos, o efeito dínamo da estrela teria sido muito fraco durante a sequência principal, devido à fraca convecção, e a atividade cromosférica apresentaria valores relativamente baixos. A medida que este tipo de estrela se esfria em direção ao ramo das subgigantes ocorre o desenvolvimento da zona convectiva, e consequentemente a atividade cromosférica tende a aumentar. Essa configuração é o inverso da relação que queremos caracterizar, o fluxo cromosférico decaindo à medida que a estrela evolui, e por isso devem ser retiradas da construção da relação idade-atividade.

Para essa análise, utilizamos os valores de τ_c (convective turnover time), medida que reflete a eficiência da convecção da estrela, indicando o tempo de vida de um célula convectiva. Tais valores foram calculados pelo Dr. Diego Lorenzo de Oliveira (IAG/USP), outro de nossos colaboradores, utilizando a relação de Gunn et al. (1998), através das temperaturas efetivas de estrelas de diferentes massas, 50 milhões de anos após o início das ZAMS (tempo suficiente para que se complete sua contração inicial e os valores de τ_c convirjam para os possíveis valores baixos ou nulos que queremos identificar). A dependência de τ_c com a massa e a metalicidade está mostrada na Figura 6.7. Com isso, optamos por não incluir na calibração de idade-atividade as estrelas HD 126868, HD 201242, HD 30966, HD 219610, HD 210460, HD 72954, HD 111199 e HD 124850, que apresentam, para os respectivos valores de massa e metalicidade, τ_c em t = 50 × 10⁶ anos muito próximo de zero.

FIGURA 6.7. τ_c (dias) em função da massa e da metalicidade da estrela, decorridos t = 50×10^6 anos.

Com os cortes feitos, começamos de fato a testar regressões para a construção da relação idade-atividade, com um total de 217 estrelas. Utilizamos, além do fluxo cromosférico (erg cm⁻² s⁻¹), a massa (M/M_{\odot}) e a metalicidade ([Fe/H]) como variáveis independentes; todas as variáveis entraram na regressão sob a forma de logaritmos, com exceção de [Fe/H], que já é um logaritmo em sua própria definição.

Massa e [Fe/H] foram incluídas na calibração pois são variáveis estruturais que influenciam diretamente o aquecimento cromosférico (Lyra & Porto de Mello, 2005). Estrelas de menor massa possuem zonas convectivas mais extensas comparadas às estrelas de maior massa, com os demais parâmetros mantidos constantes. Conjuntamente, se novamente os demais parâmetros são mantidos constantes, estrelas mais ricas em metais também apresentam uma convecção mais eficiente comparadas às mais pobres, devido ao aumento do coeficiente de opacidade. Sendo a convecção um dos dois fatores que configuram o dínamo estelar, a inclusão da massa e da metalicidade na regressão se mostra um procedimento lógico. Testamos primeiro uma regressão linear simples, do tipo

$$\log(\text{Idade}) = \text{Const.} + A \cdot \log(\text{F}_{\text{crom}}) + B \cdot \log(\text{Massa}) + C \cdot [\text{Fe}/\text{H}] , \qquad (6.2.1)$$

e obtivemos pouco êxito. Com $R^2 \approx 0,46$ e $\sigma_{reg} \approx 0,36$ dex, concluímos que a relação exige termos de ordem mais alta.

A próxima regressão considerada, à qual se tornou nosso melhor resultado de calibração, foi feita considerando variáveis de ordem quadrática com termos cruzados, do tipo

$$log(Idade) = Const. + A \cdot log(F_{crom}) + B \cdot log(Massa) + C \cdot [Fe/H] + D \cdot log(F_{crom})^{2} + E \cdot log(F_{crom}) \cdot log(Massa) + F \cdot log(F_{crom}) \cdot [Fe/H] + G \cdot log(Massa)^{2} + H \cdot log(Massa) \cdot [Fe/H] + I \cdot [Fe/H]^{2} .$$
(6.2.2)

Os coeficientes A - I e a constante que aparecem na equação 6.2.2 estão dispostos na tabela 6.2, com suas estatísticas. Nenhum parâmetro se mostrou insignificante na regressão, e obtivemos $\mathbb{R}^2 \approx 0.76$ e $\sigma_{reg} \approx 0.24$ dex para a determinação da idade. Essas estatísticas são levemente superiores às encontradas por Dutra-Ferreira (2010) ($\mathbb{R}^2 \approx$ 0.66), porém não tão boas quanto o resultado encontrado por Lorenzo-Oliveira et al. (2016a), utilizando as linhas H e K do Ca II como indicador cromosférico, para sua calibração de idade-atividade ($\sigma_{reg} \approx 0.14$ dex).

	Parâmetro	Coeficiente	Erro	t	P > t
	constante	-33,377	8,958	3,726	0,000
А	$\log(\mathrm{F_{crom}})$	+17,714	$3,\!053$	5,801	0,000
В	$\log(Massa)$	-82,261	$12,\!045$	6,829	0,000
С	[Fe/H]	+15,960	3,742	4,265	0,000
D	$\log(\mathrm{F_{crom}})^2$	-1,778	0,260	6,827	0,000
Ε	$\log(F_{crom}) \cdot \log(Massa)$	$+13,\!554$	2,042	$6,\!637$	0,000
\mathbf{F}	$\log(F_{\rm crom}) \cdot [{\rm Fe}/{\rm H}]$	-2,569	$0,\!639$	4,023	0,000
G	$\log(Massa)^2$	+18,937	6,066	3,122	0,002
Η	$\log(Massa) \cdot [Fe/H]$	$-12,\!647$	2,821	4,484	0,000
Ι	$[Fe/H]^2$	+2,148	$0,\!472$	4,547	0,000

TABELA 6.2. Regressão multiparamétrica idade-atividade.

Tentamos melhorar a calibração testando a inversão da variável dependente, regredindo o fluxo cromosférico em função da idade, massa e [Fe/H] (mais uma vez, com todas as variáveis sob a forma logarítmica), mas não obtivemos melhora. A remoção de *outliers* seguindo o critério de 2σ também não mostrou resultados, bem como o aumento da ordem do polinômio. Resolvemos, assim, manter essa calibração como nosso resultado final.

Mostramos na Figura 6.8 o comportamento dos resíduos da regressão em função da idade, onde os pontos indicam os valores médios e as barras de erro indicam a dispersão dos resíduos, para dado intervalo de idade. Para as estrelas muito jovens, de aglomerados e associações, onde temos um grande espalhamento, poderíamos estar percebendo a dependência da massa e, possivelmente, até outras variáveis não consideradas para explicar a alta dispersão do fluxo, uma vez que estes subgrupos da amostra possuem a mesma idade e aproximadamente a mesma metalicidade.

FIGURA 6.8. Resíduos da calibração idade-atividade em função das idades médias.

O fato de todas estas estrelas de aglomerados/associações apresentarem concentração de metais comparável ou maior que a solar também incide como um problema na construção de uma calibração global, uma vez que não temos amostrado estrelas pobres em metais e, ao mesmo tempo, jovens, sendo a influência de [Fe/H] na calibração para esta faixa de idades difícil de ser analisada. Este tipo de estrela não existe mais na vizinhança solar e possivelmente nem mesmo na Via Láctea, dada sua evolução química. É possível que, apenas com o avanço dos telescópios de grande porte, possamos realizar espectroscopia destes alvos, em outras galáxias.

Os resíduos da calibração não mostram tendência significativa com a massa e nem com [Fe/H], mas apresentam certo padrão quando postos frente ao fluxo cromosférico (Figura 6.9). A investigação das causas deste cenário e o que ele implica serão estudadas em trabalhos futuros.

FIGURA 6.9. Resíduos da calibração idade-atividade em função do fluxo cromosférico.

Apresentamos na Figura 6.10 a comparação das idades determinadas por nossa calibração com idades astrosismológicas publicadas (tabela 4.5), para as quais obtivemos uma correlação de r = 0.73. Até idades levemente superiores à solar, a calibração se mostra bem comportada, com um espalhamento pequeno. O Sol, por exemplo, teve sua idade muito bem determinada pela calibração, onde encontramos 4.7 Gano (a ser comparada com a idade canônica de 4.57 Gano). Para estrelas mais velhas, a calibração está longe de ser perfeita: encontramos idades comparáveis e/ou superiores à idade do Universo para alguns casos. Entre os pontos mais distantes da bissetriz do gráfico, podemos destacar a estrela HD 10700 (Idade Sism. = [8-10] Gano, Idade Crom. = 13,86 Gano), cujos baixos valores de massa e metalicidade (M = 0.76 M_☉, [Fe/H] = -0.51 dex) estão pouco representados na calibração. As outras duas estrelas em grande desacordo são a HD 43587 e a HD 43834, ambas com idade astrosismológica de 6,2 Gano, para as quais encontramos idades cromosféricas de, respectivamente, 11,43 e 13,53 Gano. Não encontramos explicações para essas duas anomalias.

FIGURA 6.10. Comparação entre idades cromosféricas com idades astrosismológicas.

Por fim, analisamos visualmente o comportamento do fluxo cromosférico com a idade estelar. Na Figura 6.11 estão presentes todas as estrelas utilizadas na construção da calibração. Como esperado, o enorme espalhamento observado reforça a necessidade de outras variáveis além do fluxo cromosférico para explicar a relação.

Isolando a amostra em estrelas com idades bem determinadas, com valores de, inicialmente, massa e, posteriormente, tanto massa e metalicidade aproximadamente solares, para que estas variáveis sejam aproximadamente fixadas e não influenciem no padrão a ser observado, conseguimos ver claramente a dependência da atividade cromosférica com a idade da estrela, conforme mostrado na Figura 6.12.

Os resultados encontrados por nós até aqui reforçam a utilidade e poder do fluxo cromosférico de H α em indicar um cronômetro estelar, bem como a influência da massa e da metalicidade em uma relação global. Uma investigação mais detalhada dos resultados encontrados até aqui será foco principal em um futuro próximo. Possivelmente contamos

 ${\rm FIGURA}$ 6.11. Relação Idade-Atividade para todas as estrelas utilizadas na calibração. O Sol está identificado em laranja.

FIGURA 6.12. Relação idade-atividade para estrelas com massa (esquerda) e tanto massa quanto metalicidade (direita) solares.

ainda com idades isocronais errôneas, fluxos cromosféricos com alta incerteza e subamostragem de regiões chave para uma calibração mais eficiente, bem como não temos total entendimento das variáveis que devem ser consideradas na relação.

Capítulo 7

Conclusões

Neste trabalho, utilizamos uma amostra de 532 estrelas de tipo solar para caracterizar o fluxo cromosférico em H α e sua relação com a idade estelar. Contamos com espectros de baixa e moderada resolução (R \approx 11000, R \approx 30000) centrados em $\lambda = 6562,8$ Å, com uma razão sinal/ruído média de \approx 170.

Calculamos temperaturas efetivas para os alvos com seis calibrações fotométricas diferentes, das quais conseguimos temperaturas médias com um erro interno típico de 40 K. Compilamos metalicidades [Fe/H] através de dados da literatura recente, aplicando correções em função da temperatura efetiva da estrela. Obtivemos massas e idades através das trajetórias evolutivas PARSEC (Bressan et al., 2012), e calculamos os demais parâmetros, raio e gravidade superficial, de forma indireta.

Determinamos o fluxo estelar absoluto em H α indiretamente através da construção de uma calibração de fluxo absoluto, regredindo o fluxo teórico calculado a partir de modelos atmosféricos MARCS (Gustafsson et al., 2008), em regiões de contínuo estelar, em função de T_{ef}, [Fe/H] e log g. Evidenciamos uma necessidade de se utilizar larguras de integração do fluxo em H α de diferentes comprimentos para espectros de diferentes resoluções (1,8 Å para R \approx 30000, 2,4 Å para R \approx 11000). Os fluxos cromosféricos foram determinados de forma empírica, assumindo um envoltório de mínima atividade em função da temperatura efetiva e arbitrando um ponto zero de escala. Comparamos os fluxos cromosféricos em H α com o fluxo cromosférico nas linhas H e K do Ca II. Neste ponto, demonstramos uma deficiência do fluxo cromosférico F_{HK} ao observarmos sua dependência com a metalicidade estelar, em comparação com os fluxos $F_{H\alpha}$. Estrelas ricas em metais tendem a ser ativas em H α e inativas em H e K. Para estrelas mais pobres, a relação é inversa. Este comportamento indica, possivelmente, um efeito espectral, onde a alta absorção das linhas metálicas em estrelas ricas simula um ambiente de baixa emissão cromosférica, ao passo que estrelas mais pobres em metais apresentam linhas metálicas menos profundas, o que é erroneamente confundido com um maior nível de atividade cromosférica. Essa interpretação é fortalecida ao observarmos a correlação entre as diferenças entre os fluxos absolutos cromosféricos medidos nos dois indicadores e os valores de [Fe/H], bem como a correlação entre os resíduos do ajuste $\log(F_{H\alpha}) = a \cdot \log(F_{HK}) + b$ com a metalicidade, correlação ausente em relação aos demais parâmetros estelares.

Por fim, investigamos a relação entre a idade e o fluxo cromosférico das estrelas. Demonstramos a significância da massa e [Fe/H] como parâmetros estruturais na calibração, e atingimos valores razoáveis de poder preditivo das idades (76 %), com uma incerteza associada de 0,24 dex no logaritmo da idade, em anos. Ao utilizarmos apenas estrelas com massa e metalicidade solares, observamos a clara queda do fluxo cromosférico com a idade, indicativo este da utilidade de H α como indicador cromosférico e de idades, sendo uma alternativa competitiva às usuais linhas H e K do Ca II.

Para trabalhos futuros, pretendemos ampliar ainda mais a amostra de estrelas, realizando mais observações no Observatório do Pico dos Dias (LNA-OPD) e utilizando dados de outros observatórios. Tenderemos a observar estrelas chave para nossa análise, como estrelas mais pobres em metais, estrelas inativas e estrelas jovens de aglomerados abertos e associações estelares jovens. Investigaremos a possível dependência da largura característica da emissão cromosférica nos espectros ($\Delta\lambda$) com os parâmetros atmosféricos e com a própria resolução espectral. Analisaremos também, com um maior nível de detalhe, a calibração de idade-atividade aqui construída.

Referências Bibliográficas

- Adibekyan V. Z., Sousa S., Santos N., Mena E. D., Hernández J. G., Israelian G., Mayor M., Khachatryan G., 2012, Astronomy & Astrophysics, 545, A32
- Aguilera-Gómez C., Ramírez I., Chanamé J., 2018, Astronomy & Astrophysics, 614, A55
- Almeida P. V., Santos N., Melo C., Ammler-von Eiff M., Torres C., Quast G., Gameiro J., Sterzik M., 2009, Astronomy & Astrophysics, 501, 965
- Apellániz J. M., Weiler M., 2018, Astronomy & Astrophysics, 619, A180
- Arenou F., et al., 2018, Astronomy & Astrophysics, 616, A17
- Avrett E. H., Loeser R., 2008, The Astrophysical Journal Supplement Series, 175, 229
- Ball W. H., et al., 2020, Monthly Notices of the Royal Astronomical Society, 499, 6084
- Barry D. C., 1988, The Astrophysical Journal, 334, 436
- Barry D. C., Cromwell R. H., Hege E. K., 1987, The Astrophysical Journal, 315, 264
- Bazot M., Creevey O., Christensen-Dalsgaard J., Meléndez J., 2018, Astronomy and Astrophysics, 619, A172
- Bell C. P., Mamajek E. E., Naylor T., 2015, Monthly Notices of the Royal Astronomical Society, 454, 593
- Bensby T., Feltzing S., Oey M., 2014, Astronomy & Astrophysics, 562, A71
- Boesgaard A. M., Friel E. D., 1990, The Astrophysical Journal, 351, 467

- Boesgaard A. M., Armengaud E., King J. R., Deliyannis C. P., Stephens A., 2004, The Astrophysical Journal, 613, 1202
- Bonanno A., Schlattl H., Paternò L., 2002, Astronomy & Astrophysics, 390, 1115
- Brandão I., et al., 2011, Astronomy & Astrophysics, 527, A37
- Bressan A., Marigo P., Girardi L., Salasnich B., Dal Cero C., Rubele S., Nanni A., 2012, Monthly Notices of the Royal Astronomical Society, 427, 127
- Buder S., et al., 2019, Astronomy & Astrophysics, 624, A19
- Carrera R., et al., 2019, Astronomy & Astrophysics, 623, A80
- Casagrande L., Ramírez I., Melendez J., Bessell M., Asplund M., 2010, Astronomy & Astrophysics, 512, A54
- Casagrande L., et al., 2021, Monthly Notices of the Royal Astronomical Society, 507, 2684
- Castro M., et al., 2021, Monthly Notices of the Royal Astronomical Society, 505, 2151
- Cayrel de Strobel G., Bentolila C., 1989, Astronomy and Astrophysics, 211, 324
- Chaffee Jr F. H., Carbon D. F., Strom S. E., 1971, The Astrophysical Journal, 166, 593
- Chontos A., et al., 2021, The Astrophysical Journal, 922, 229
- Clegg R., Lambert D., Tomkin J., 1981, The Astrophysical Journal, 250, 262
- Connelly J. N., Bizzarro M., Krot A. N., Nordlund Å., Wielandt D., Ivanova M. A., 2012, Science, 338, 651
- Costa-Bhering E., 2022, Trabalho de Conclusão de Curso (em preparação), Observatório do Valongo/UFRJ
- Da Silva R., Porto de Mello G. F., Milone A., da Silva L., Ribeiro L., Rocha-Pinto H., 2012, Astronomy & Astrophysics, 542, A84
- Dahm S., 2015, The Astrophysical Journal, 813, 108
- Datson J., Flynn C., Portinari L., 2015, Astronomy & Astrophysics, 574, A124

- De Pontieu B., Martens P., Hudson H., 2001, The Astrophysical Journal, 558, 859
- Del Peloso E. F., Da Silva L., Porto de Mello G. F., 2005a, Astronomy & Astrophysics, 434, 275
- Del Peloso E. F., Da Silva L., Porto de Mello G. F., Arany-Prado L., 2005b, Astronomy & Astrophysics, 440, 1153
- Delbouille L., Roland G., Neven L., 1973, Atlas photométrique du spectre solaire de $\lambda = 3000$ à $\lambda = 10000$: Photometric atlas of the solar spectrum from $\lambda = 3000$ to $\lambda = 10000$. Institut d'astrophysique l'Université de Liège
- Dopcke G., Porto de Mello G. F., Sneden C., 2019, Monthly Notices of the Royal Astronomical Society, 485, 4375
- Douglas S., et al., 2014, The Astrophysical Journal, 795, 161
- Dutra-Ferreira L., 2010, Dissertação de Mestrado: A relação idade-atividade em estrelas de tipo solar a partir da linha Hα, Observatório do Valongo/UFRJ
- Dutra-Ferreira L., Pasquini L., Smiljanic R., Porto de Mello G. F., Steffen M., 2016, Astronomy & Astrophysics, 585, A75
- Evans D., et al., 2018, Astronomy & Astrophysics, 616, A4
- Favata F., Micela G., Sciortino S., 1997, Astronomy & Astrophysics, 323, 809
- Fawzy D., Rammacher W., Ulmschneider P., Musielak Z., Stepień K., 2002, Astronomy & Astrophysics, 386, 971
- Flower P. J., 1996, The Astrophysical Journal, 469, 355
- Fuhrmann K., Axer M., Gehren T., 1993, Astronomy and Astrophysics, 271, 451
- Gaia Collaboration et al., 2018, A&A, 616, A1
- Gehren T., Liang Y., Shi J., Zhang H., Zhao G., 2004, Astronomy & Astrophysics, 413, 1045
- Ghezzi L., 2005, Monografia de Conclusão de Curso: Projeto SOL (Solar Origin and Life): A Busca do Sol no Tempo, Observatório do Valongo/UFRJ

- Giampapa M., 1985, The Astrophysical Journal, 299, 781
- Giribaldi R. E., Ubaldo-Melo M. L., Porto de Mello G. F., Pasquini L., Ludwig H.-G., Ulmer-Moll S., Lorenzo-Oliveira D., 2019, Astronomy & Astrophysics, 624, A10
- Gratton R. G., Carretta E., Claudi R., Lucatello S., Barbieri M., 2003, Astronomy & Astrophysics, 404, 187
- Gray R., Corbally C., Garrison R., McFadden M., Bubar E., McGahee C., O'Donoghue A., Knox E., 2006, The Astronomical Journal, 132, 161
- Gunn A., Mitrou C., Doyle J., 1998, Monthly Notices of the Royal Astronomical Society, 296, 150
- Gustafsson B., Edvardsson B., Eriksson K., Jørgensen U. G., Nordlund Å., Plez B., 2008, Astronomy & Astrophysics, 486, 951
- Hale G. E., 1908, ApJ, 28, 315
- He L., Wang S., Liu J., Soria R., Bai Z., Yang H., Bai Y., Guo J., 2019, The Astrophysical Journal, 871, 193
- Henry T. J., Soderblom D. R., Donahue R. A., Baliunas S. L., 1996, The Astronomical Journal, 111
- Herbig G., 1985, The Astrophysical Journal, 289, 269
- Holmberg J., Nordström B., Andersen J., 2007, Astronomy & Astrophysics, 475, 519
- Joyce M., Chaboyer B., 2018, The Astrophysical Journal, 864, 99
- Kippenhahn R., Weigert A., Weiss A., 2012, Stellar Structure and Evolution. Springer Science & Business Media
- Kounkel M., et al., 2019, The Astronomical Journal, 157, 196
- Kurucz R. L., 2005, Memorie della Societa Astronomica Italiana Supplementi, 8, 189
- LaBonte B., 1986, The Astrophysical Journal Supplement Series, 62, 241
- Lockyer J. N., 1869, Philosophical Transactions of the Royal Society of London, pp 425–444
- Lorenzo-Oliveira D., 2011, Dissertação de Mestrado: A Relação entre Atividade Cromosférica e Idade em Estrelas de Tipo Solar: O Tripleto Infravermelho do Ca II, Observatório do Valongo/UFRJ
- Lorenzo-Oliveira D., 2016, Tese de Doutorado: Cronômetros Estelares: Calibrando a Atividade Cromosférica em Estrelas de Baixa Massa, Observatório do Valongo/UFRJ
- Lorenzo-Oliveira D., Porto de Mello G. F., Schiavon R. P., 2016a, Astronomy & Astrophysics, 594, L3
- Lorenzo-Oliveira D., Porto de Mello G. F., Dutra-Ferreira L., Ribas I., 2016b, Astronomy & Astrophysics, 595, A11
- Luck R. E., 2016, The Astronomical Journal, 153, 21
- Luck R. E., 2018, The Astronomical Journal, 155, 111
- Lyra W., Porto de Mello G. F., 2005, Astronomy & Astrophysics, 431, 329
- Martínez-Arnáiz R., López-Santiago J., Crespo-Chacón I., Montes D., 2011, Monthly Notices of the Royal Astronomical Society, 414, 2629
- Messina S., et al., 2016, Astronomy & Astrophysics, 596, A29
- Mishenina T., Soubiran C., Kovtyukh V., Katsova M., Livshits M., 2012, Astronomy & Astrophysics, 547, A106
- Mishenina T., Pignatari M., Korotin S., Soubiran C., Charbonnel C., Thielemann F.-K., Gorbaneva T., Basak N. Y., 2013, Astronomy & astrophysics, 552, A128
- Montes D., et al., 2018, Monthly Notices of the Royal Astronomical Society, 479, 1332
- Morgenthaler A., et al., 2012, Astronomy & Astrophysics, 540, A138
- Mosser B., Deheuvels S., Michel E., Thévenin F., Dupret M.-A., Samadi R., Barban C., Goupil M., 2008, Astronomy & Astrophysics, 488, 635

- Noyes R., Hartmann L., Baliunas S., Duncan D., Vaughan A., 1984, The Astrophysical Journal, 279, 763
- Olsen E., 1983, Astronomy and Astrophysics Supplement Series, 54, 55
- Olsen E., 1993, Astronomy and Astrophysics Supplement Series, 102, 89
- Olsen E., 1994, Astronomy and Astrophysics Supplement Series, 104, 429
- Pace G., 2013, Astronomy & Astrophysics, 551, L8
- Pace G., Pasquini L., 2004, Astronomy & Astrophysics, 426, 1021
- Parker E. N., 1955, The Astrophysical Journal, 122, 293
- Pasquini L., Pallavicini R., 1991, Astronomy and Astrophysics, 251, 199
- Paulson D. B., Yelda S., 2006, Publications of the Astronomical Society of the Pacific, 118, 706
- Paulson D. B., Sneden C., Cochran W. D., 2003, The Astronomical Journal, 125, 3185
- Pedregosa F., et al., 2011, Journal of Machine Learning Research, 12, 2825
- Perryman M. A. C., et al., 1998, A&A, 331, 81
- Porto de Mello G. F., Lyra W., Keller G., 2008, Astronomy & Astrophysics, 488, 653
- Porto de Mello G. F., Da Silva R., Da Silva L., De Nader R., 2014, Astronomy & Astrophysics, 563, A52
- Prša A., et al., 2016, The Astronomical Journal, 152, 41
- Ramírez I., Fish J., Lambert D. L., Prieto C. A., 2012, The Astrophysical Journal, 756, 46
- Ramírez I., Prieto C. A., Lambert D. L., 2013, The Astrophysical Journal, 764, 78
- Randich S., Gratton R., Pallavicini R., Pasquini L., Carretta E., 1999, Astronomy and Astrophysics, 348, 487
- Santos N. C., Israelian G., Mayor M., 2004, Astronomy & Astrophysics, 415, 1153

- Santos N. C., Israelian G., Mayor M., Bento J., Almeida P., Sousa S., Ecuvillon A., 2005, Astronomy & Astrophysics, 437, 1127
- Schoolman S. A., 1972, Solar Physics, 22, 344
- Schuler S. C., Plunkett A. L., King J. R., Pinsonneault M. H., 2010, Publications of the Astronomical Society of the Pacific, 122, 766
- Seabold S., Perktold J., 2010, in Proceedings of the 9th Python in Science Conference. p. 61
- Sissa E., et al., 2016, Astronomy & Astrophysics, 596, A76
- Sitnova T., et al., 2015, The Astrophysical Journal, 808, 148
- Skumanich A., 1972, The Astrophysical Journal, 171, 565
- Soderblom D. R., 1985, The Astronomical Journal, 90, 2103
- Soriano M., Vauclair S., 2010, Astronomy & Astrophysics, 513, A49
- Soto M., Jenkins J. S., 2018, Astronomy & Astrophysics, 615, A76
- Sousa S., Santos N., Israelian G., Mayor M., Monteiro M., 2006, Astronomy & Astrophysics, 458, 873
- Steenbock W., 1983, Astronomy and Astrophysics, 126, 325
- Suárez Mascareño A., Rebolo R., González Hernández J., Esposito M., 2015, Monthly Notices of the Royal Astronomical Society, 452, 2745
- Tagliaferri G., Cutispoto G., Pallavicini R., Randich S., Pasquini L., 1994, Astronomy & Astrophysics, 285, 272
- Tang Y., Gai N., 2011, Astronomy & Astrophysics, 526, A35
- Torres G., 2010, The Astronomical Journal, 140, 1158
- Trevisan M., Barbuy B., Eriksson K., Gustafsson B., Grenon M., Pompéia L., 2011, Astronomy & Astrophysics, 535, A42

- Valenti J. A., Fischer D. A., 2005, The Astrophysical Journal Supplement Series, 159, 141
- Van Leeuwen F., 2007, Astronomy & Astrophysics, 474, 653
- Vauclair S., Laymand M., Bouchy F., Vauclair G., Hoa A. H. B., Charpinet S., Bazot M., 2008, Astronomy & Astrophysics, 482, L5
- Wallace L., Hinkle K., Livingston W., Davis S., 2011, The Astrophysical Journal Supplement Series, 195, 6
- Wittenmyer R. A., Liu F., Wang L., Casagrande L., Johnson J. A., Tinney C., 2016, The Astronomical Journal, 152, 19
- Wright J. T., Marcy G. W., Butler R. P., Vogt S. S., 2004, The Astrophysical Journal Supplement Series, 152, 261
- Zarro D., 1983, The Astrophysical Journal, 267, L61
- Zhang L.-y., et al., 2020, Monthly Notices of the Royal Astronomical Society, 495, 1252
- Zhao G., Magain P., 1991, Astronomy and Astrophysics, 244, 425

Apêndice A

Classificação Evolutiva e Sinal/Ruído dos Espectros da Amostra

Neste primeiro apêndice, apresentamos as identificações (Henry Draper, ou Bonner Durchmusterung quando indicada) de todas as estrelas que constituem a amostra deste trabalho, com a devida classificação. Dividimos as estrelas entre anãs (de sequência principal), subgigantes e gigantes, classificação esta dada pelo modelos evolutivos PARSEC, e indicamos a pertinência a aglomerados/associações estelares jovens. Indicamos a qualidade dos espectros pelas letras **A** (alta resolução), **B** (baixa resolução) ou **C** (observada em ambas a resoluções). A repetibilidade das observações da estrela está identificada pelo número de espectros; quando possuímos espectros de ambos os grupos de resolução, indicamos o número de espectros em alta e baixa resolução, respectivamente, separadamente. A razão sinal/ruído também está mostrada, onde expressamos o maior valor obtido quando mais de um espectro se mostra presente.

HD	Classificação	Aglomerado/Associação	Res.	N° de Esp.	S/R
Sol	anã		С	14/2	523
105	anã	Tucana-Horologium	В	1	164
166	anã		В	1	140
1237	anã		В	1	183
1461	anã		\mathbf{C}	1/1	182

TABELA A.1. Classificação evolutiva e relação sinal/ruído dos espectros da amostra.

HD	Classificação	Aglomerado/Associação	Res.	N° de Esp.	S/R
1466	anã	Tucana-Horologium	В	1	209
1581	anã		А	4	320
1835	anã	Híades	А	6	257
2151	subgigante		\mathbf{C}	4/1	287
3047	subgigante		А	1	147
3443	anã		В	2	208
3460	subgigante		А	1	164
3651	anã		В	1	107
3795	subgigante		А	1	150
3823	anã		А	1	289
4203	subgigante		В	1	118
4304	anã		А	1	234
4307	subgigante		А	1	209
4308	anã		А	1	177
4391	anã		\mathbf{C}	1/1	174
4628	anã		В	1	127
4747	anã		В	1	154
4813	anã		В	1	157
5133	anã		В	1	176
6512	anã		В	1	126
6734	gigante		А	1	135
7134	anã		В	1	216
7570	anã		\mathbf{C}	1/2	275
8291	anã		А	1	85
8331	subgigante		А	1	135
9280	anã		В	1	88
9540	anã		В	1	156
9562	subgigante		А	2	196
9986	anã		В	1	320
10009	subgigante		А	1	213
10360	anã		В	1	130
10476	anã		В	1	241
10519	subgigante		А	1	96
10647	anã		А	1	208
10697	subgigante		А	1	214
10700	anã		С	4/3	356
10800	subgigante		А	1	229
11131	anã		А	3	205
11505	anã		В	1	173
11592	anã		В	1	250
11964	subgigante		С	1/1	176
12235	anã		А	1	138
12264	anã		А	1	127
13421	anã		А	2	157
13445	$an\tilde{a}$		В	1	146

Tabela A.1 – continuação

	<u>Ol :0 ~</u>	Tabela A.1 – continuaçã			
HD	Classificação	Aglomerado/Associaçao	Res.	N° de Esp.	S/R
13531	ana		A	1	136
13612	subgigante ~		A	1	172
13612B	ana ~		A	1	180
13724	ana ~		A	1	115
13974	ana		В	1	187
14214	anã		A	1	166
14412	anã		В	1	189
14680	anã		А	1	45
14802	$\operatorname{subgigante}$		\mathbf{C}	2/1	385
15064	$\operatorname{subgigante}$		А	1	200
15335	$\operatorname{subgigante}$		А	2	195
15942	anã		А	2	124
16141	anã		А	2	144
16160	anã		А	1	133
16417	subgigante		А	1	244
16548	subgigante		А	1	159
16589	$an\tilde{a}$		А	1	127
16673	anã		А	1	207
17051	anã		\mathbf{C}	2/1	220
17925	anã		В	1	79
18907	gigante		А	1	194
19308	anã		А	1	136
19518	anã		В	1	229
19994	anã		А	1	120
20010	subgigante		А	2	193
20407	anã		В	1	150
20630	anã		А	2	291
20766	anã		\mathbf{C}	2/1	292
20794	anã		В	1	138
20807	anã		А	2	337
21411	anã		А	1	108
22049	anã		А	1	204
22072	gigante		А	1	178
22484	anã		А	1	84
22879	anã		\mathbf{C}	1/1	172
23195	anã	Plêiades	В	1	104
23249	subgigante		А	1	98
23269	anã	Plêiades	В	1	90
23713	anã	Plêiades	В	1	154
24040	$an\tilde{a}$		А	1	107
24062	subgigante		А	1	142
24293	anã		А	1	155
24616	gigante		А	1	125
24892	subgigante		А	2	183
25457	anã		А	1	201

	<u> </u>				
HD	Classificação	Aglomerado/Associação	Kes.	N° de Esp.	<u>S/R</u>
25535	subgigante		A	1	141
25740	subgigante		В	1	81
25825	anã	Híades	В	1	126
25874	anã		А	3	216
25918	anã		А	1	108
26345	anã	Híades	В	1	183
26491	anã		В	1	147
26767	anã	Híades	В	1	98
26913	anã		А	2	229
26923	anã		А	1	225
27406	anã	Híades	В	2	202
27685	anã	Híades	А	1	145
27808	anã	Híades	В	1	230
27836	anã	Híades	В	1	251
27859	anã	Híades	А	2	171
28068	anã	Híades	В	1	214
28099	anã	Híades	А	1	178
28205	anã	Híades	В	1	200
28237	anã	Híades	В	1	119
28344	anã	Híades	\mathbf{C}	1/1	143
28388	subgigante		В	1	95
28471	anã		А	1	61
28608	anã	Híades	В	1	201
28635	anã	Híades	В	1	182
28821	anã		А	1	177
28992	anã	Híades	А	1	130
29859	anã		А	1	193
30495	anã		А	1	253
30562	subgigante		А	1	126
30589	anã	Híades	В	1	199
30606	anã		А	1	217
30876	anã		В	1	159
30809	anã	Híades	В	1	128
30966	subgigante		В	1	132
32147	anã		A	1	80
32923	subgigante		A	1	181
33021	subgigante		A	1	152
33262	anã		B	1	197
33473	subgigante		B	1	96
34721	anã		A	1	152
35850	anã	Reta-Pictoris	R	± 1	147
35854	anã	DO00-1 1000119	B	± 1	1/6
36/35	ana		B	1 1	
36553	ana		Δ	1 1	186
36880	ana		л R	1 9	134
90009	subgigante		р	4	194

Tabela A.1 – continuação

HD	Classificação	Aglomerado/Associação	Res.	N° de Esp.	S/R
37986	anã		А	1	82
38393	$an\tilde{a}$		В	1	263
38529	$\operatorname{subgigante}$		В	1	168
39587	$an\tilde{a}$		А	1	213
41593	$an\tilde{a}$		А	2	182
43587	$an\tilde{a}$		С	1/1	191
43834	$an\tilde{a}$		А	1	183
43947	$an\tilde{a}$		А	1	172
44120	subgigante		А	1	130
45067	subgigante		\mathbf{C}	1/2	186
46569	anã		А	1	197
48938	$an\tilde{a}$		А	1	170
50692	$an\tilde{a}$		В	1	166
50806	$\operatorname{subgigante}$		А	1	110
52298	$an\tilde{a}$		А	1	119
52698	$an\tilde{a}$		В	1	143
52711	$an ilde{a}$		В	1	147
53143	$an\tilde{a}$		В	1	191
53705	anã		С	2/3	220
53706	$an\tilde{a}$		В	1	208
55720	$an ilde{a}$		А	2	105
57095	$an\tilde{a}$		В	1	212
57853	subgigante		А	1	101
58551	anã		А	2	78
59984	subgigante		С	1/1	200
61033	anã		А	1	104
61606	anã		В	1	124
61902	ana		В	1	406
62644	subgigante		A	1	144
63077	ana		C	1/1	271
63637	subgigante		В	1	164
64096	ana ~		В	1	186
64114	ana ~		A	1	115
64468	ana		в	1	83
64606	ana ~		A	1	55
65583	ana ~		в	1	170
65907	ana ~		A	1	312
66653	ana ~		В	1	206
07199	ana		В	1	198
07228	subgigante		В	1	150
07581	subgigante		В	1	128
07907	subgigante		Б	1	84 176
00100	ana		N D	ے 1	105
09809	ana ~		A C	1 1 /1	105
09830	ana		C	1/1	180

HD	Classificação	Aglomerado/Associação	Res.	N° de Esp.	S/R
71334	anã		А	1	186
72234	subgigante		В	1	215
72579	$an\tilde{a}$		В	1	148
72673	anã		В	1	153
72954	subgigante		А	1	122
73350	$an\tilde{a}$		А	1	221
73667	$an\tilde{a}$		В	1	219
74576	$an\tilde{a}$		В	1	156
74698	$an\tilde{a}$		А	2	145
75732	$an\tilde{a}$		В	1	86
76151	$an\tilde{a}$		А	2	294
76932	$an\tilde{a}$		А	1	180
77902	subgigante		В	1	178
78366	$an\tilde{a}$		В	1	125
78429	$an\tilde{a}$		В	1	192
78643	$\operatorname{subgigante}$		В	1	155
79969	$an\tilde{a}$		В	1	159
81174	subgigante		В	1	150
82443	$an\tilde{a}$		В	1	150
82885	$an\tilde{a}$		В	1	136
83529	anã		В	1	154
84117	$an\tilde{a}$		\mathbf{C}	1/3	302
84937	$an\tilde{a}$		А	1	86
85380	$\operatorname{subgigante}$		А	1	102
85725	$\operatorname{subgigante}$		В	1	141
86728	$an\tilde{a}$		В	1	93
87883	anã		В	1	113
88084	anã		А	2	246
88218	$\operatorname{subgigante}$		А	1	208
88725	$an\tilde{a}$		А	1	83
90711	anã		В	1	156
90722	$an\tilde{a}$		В	1	164
92588	$\operatorname{subgigante}$		В	1	186
94028	anã		А	1	71
94340	$an\tilde{a}$		А	1	169
94765	$an\tilde{a}$		В	1	241
97037	anã		В	1	152
97320	$an\tilde{a}$		В	1	21
98649	$an\tilde{a}$		А	1	113
99491	$an\tilde{a}$		В	1	217
99492	$an\tilde{a}$		В	1	107
100623	$an\tilde{a}$		В	1	219
101259	gigante		А	1	146
101367	anã		В	1	42
101501	anã		В	3	161

Tabela A.1 – continuação

HD	Classificação	Aglomerado/Associação	Res.	N° de Esp.	S/R
101612	anã		В	1	226
101676	$an\tilde{a}$		А	1	65
102200	anã		В	1	45
102300	anã		В	2	196
102365	anã		\mathbf{C}	1/1	266
102438	anã		В	2	234
102902	$\operatorname{subgigante}$		В	1	111
103026	subgigante		А	1	218
104304	anã		\mathbf{C}	1/5	242
104800	anã		В	1	137
105590	anã		А	1	147
105618	anã		В	1	106
105901	anã		\mathbf{C}	1/1	166
106116	anã		В	1	167
106516	anã		А	1	128
106742	anã		В	1	106
107213	anã		В	1	149
108309	anã		\mathbf{C}	1/1	189
108317	gigante		А	1	45
109200	anã		В	1	187
109409	subgigante		В	1	136
109684	anã		В	1	150
111199	subgigante		\mathbf{C}	1/1	206
111395	anã		В	1	395
111398	anã		А	1	180
112164	anã		Α	2	147
114260	anã		А	2	198
114613	subgigante		\mathbf{C}	2/4	322
114710	anã		\mathbf{C}	1/1	387
114762	anã		Α	1	92
114946	gigante		\mathbf{C}	1/4	192
115382	anã		\mathbf{C}	1/1	105
115383	anã		А	15	294
115404	anã		В	1	217
115617	anã		\mathbf{C}	1/1	292
116442	anã		В	1	227
116443	anã		В	1	166
117105	anã		В	1	97
117176	subgigante		А	2	202
117939	anã		\mathbf{C}	1/1	128
118598	anã		А	2	294
118972	anã		В	1	216
119550	subgigante		А	1	126
120066	anã		С	1/1	276
120136	anã		С	2/1	261

Tabela A.1 – continuação

HD	Classificação	Aglomerado/Associação	Res.	N° de Esp.	S/R
120237	anã	118101101000/11000010300	A	1	196
120690	anã		B	1	178
120780	anã		B	1	153
121370	anã		C	1/1	265
121384	subgigante		C	1/1	270
122196	subgigante		B	2	171
122130 122742	anã		B	1	237
122142	subgigante		Δ	2	206
122002	anã		R	1	284
120019 12/553	anã		Δ	1	144
124550 124570	anã		C	1/1	262
124850	subgigante		C	1/1	296
124000	anã		B	1	106
12518/	subgigante		Δ	1	162
125276	anã		R	1	183
125566	subgigante		B	1	190
126053	anã		B	1	238
126614	anã		R	1	113
126868	subgigante		Δ	1	193
120000	anã		B	1	172
128428	subgigante		B	1	212
128571	anã		R	1	174
128620	anã		A	4	228
128621	anã		A	1	104
120021	subgigante		R	1	153
130004	anã		B	1	113
130307	anã		B	1	64
130948	anã		C	1/1	226
131117	subgigante		Ă	2	179
131183	anã		B	-	192
131509	gigante		B	1	182
131511	anã		B	1	217
131923	anã		A	1	153
131977	anã		A	1	110
132505	anã		B	1	188
134113	subgigante		B	1	127
134169	anã		A	1	117
134439	anã		R	1	162
134440	anã		B	1	157
134664	anã		A	2	93
135101A	subgigante		R	1	157
135101B	anã		B	1	94
135204	anã		B	1	243
135599	anã		B	- 1	210
136202	subgigante		Ă	2	234
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		- <del>-</del>	-	

Tabela A.1 – continuação

		Tabela A.1 – continuaçã	io		~ /5
HD	Classificação	Aglomerado/Associação	Res.	N° de Esp.	S/R
136352	anã		С	2/1	269
137510	anã		A	1	130
137676	subgigante		В	1	220
137763	$an ilde{a}$		В	1	177
137812	subgigante		А	1	153
138573	$an\tilde{a}$		А	3	174
138776	$an\tilde{a}$		В	1	128
139503	$\operatorname{subgigante}$		В	1	124
140283	$\operatorname{subgigante}$		В	3	297
140538	$an\tilde{a}$		А	1	141
140690	$an\tilde{a}$		А	1	188
140901	$an\tilde{a}$		В	1	156
141004	$an\tilde{a}$		А	1	219
141885	$an\tilde{a}$		В	1	150
142072	anã		А	1	111
142267	$an\tilde{a}$		В	1	180
143337	anã		А	1	130
143761	anã		$\mathbf{C}$	1/1	344
143885	anã		В	1	141
144585	anã		В	1	94
144628	anã		В	1	164
144988	subgigante		В	1	203
145825	anã		А	1	152
146233	anã		$\mathbf{C}$	10/9	398
146835	anã		В	1	73
147513	anã		$\mathbf{C}$	8/1	387
147584	$an\tilde{a}$		В	1	224
147743	$an\tilde{a}$		В	1	221
148577	anã		А	1	100
148816	$an\tilde{a}$		В	1	142
149661	$an\tilde{a}$		В	1	184
149724	subgigante		В	1	142
150248	anã		А	2	127
150474	subgigante		В	1	218
150698	subgigante		А	1	122
151090	gigante		А	1	149
151337	gigante		А	1	108
152311	subgigante		В	1	227
152391	anã		С	1/1	139
153075	anã		А	1	151
153458	anã		А	1	152
154088	anã		В	1	125
154160	subgigante		В	1	140
154417	anã		А	2	200
154857	subgigante		В	1	429
	00				

HD	Classificação	Aglomerado/Associação	Res.	N° de Esp.	S/R
154931	subgigante	د ۱	А	1	203
154962	subgigante		А	2	125
155114	anã		А	1	103
155885	$an\tilde{a}$		В	1	147
156274	anã		С	2/1	291
156365	subgigante		А	1	140
156411	subgigante		А	1	139
156826	subgigante		В	1	282
156846	subgigante		А	1	137
157060	anã		А	1	195
157089	anã		$\mathbf{C}$	1/1	185
157214	anã		В	1	149
157347	anã		В	1	146
157750	anã		А	1	123
158226	anã		В	1	194
159222	anã		А	1	97
159332	anã		А	1	258
159656	anã		А	1	123
159784	anã		В	1	107
160346	anã		В	1	142
160411	subgigante		А	1	169
160691	anã		$\mathbf{C}$	1/1	174
161239	anã		А	1	128
161555	subgigante		В	1	226
161612	anã		А	1	188
161797	subgigante		А	2	154
162396	anã		А	2	213
163153	subgigante		А	1	110
164507	subgigante		С	1/1	126
164595	anã		А	3	230
165185	anã		$\mathbf{C}$	7/1	332
165271	subgigante		В	1	221
165341	anã		В	1	137
165499	anã		С	1/1	169
167300	anã		В	1	120
167665	anã		А	1	56
168443	subgigante		А	1	96
169830	anã		А	1	243
170657	anã		В	1	154
170829	subgigante		А	2	123
171990	subgigante		А	1	147
172051	anã		С	1/1	324
175425	anã		А	1	138
175541	gigante		С	2/2	203
177565	anã		$\mathbf{C}$	1/1	154

Tabela A.1 – continuação

HD	Classificação	Aglomerado/Associação	Res.	N° de Esp.	S/R
178904	anã		В	1	199
179699	anã		В	2	167
179949	anã		А	1	222
180684	subgigante		В	1	180
181321	anã		А	1	154
182488	anã		В	1	168
182572	anã		А	7	93
182619	anã		А	1	137
182807	anã		А	1	203
183263	anã		В	1	161
183577	subgigante		А	1	226
183870	anã		В	1	120
187013	anã		А	1	279
187237	anã		А	1	124
187691	anã		А	1	223
187923	subgigante		А	1	121
188376	subgigante		$\mathbf{C}$	2/1	262
188512	subgigante		А	1	215
188815	anã		В	1	295
189406	anã		В	1	182
189567	anã		$\mathbf{C}$	1/1	171
189625	anã		А	1	114
189733	anã		В	1	111
190067	anã		В	1	114
190228	subgigante		А	1	134
190248	anã		$\mathbf{C}$	4/1	205
190360	anã		В	1	135
190404	anã		В	1	126
190406	anã		$\mathbf{C}$	1/1	257
190580	subgigante		А	1	213
190613	anã		В	1	137
190771	anã		$\mathbf{C}$	1/1	147
191408	anã		$\mathbf{C}$	2/1	155
191487	anã		А	1	85
191760	anã		В	1	155
192263	anã		В	2	233
192310	anã		В	1	146
192344	subgigante		А	2	145
193193	anã		В	1	215
193307	anã		А	2	339
193901	anã		В	1	102
194640	anã		$\mathbf{C}$	1/1	228
195564	subgigante		А	1	194
195838	anã		А	1	143
196050	anã		А	1	171

Tabela A.1 – continuação

HD	Classificação	Aglomerado/Associação	Res.	N° de Esp.	S/R
196378	subgigante	- I 3	А	4	316
196755	subgigante		С	2/1	199
196761	anã		$\mathbf{C}$	1/1	193
196794	anã		В	1	123
196800	anã		А	1	62
196885	anã		А	1	206
197210	anã		А	1	216
197536	anã		В	1	159
197963	anã		В	1	274
197964	gigante		В	1	86
198802	subgigante		А	1	184
199288	anã		А	1	180
199960	anã		А	1	171
200525	anã		В	1	144
200580	anã		В	1	181
200968	anã		В	1	119
201242	subgigante		А	1	182
201891	anã		А	1	137
202072	anã		А	1	93
202707	subgigante		А	1	173
202917	anã	Tucana-Horologium	В	1	158
202940	anã	_	В	1	204
203608	anã		А	1	270
205158	anã		А	1	113
205390	anã		В	1	189
206255	subgigante		А	1	178
206301	subgigante		А	1	187
206860	anã		$\mathbf{C}$	9/1	208
207043	anã		А	1	101
207129	anã		В	1	267
207978	anã		А	1	171
209100	anã		А	2	180
210277	anã		А	1	88
210460	subgigante		А	1	222
210918	anã		А	1	162
211038	gigante		А	1	161
211080	subgigante		А	1	99
211415	anã		$\mathbf{C}$	1/1	255
211786	anã		А	1	107
211998	gigante		А	1	233
212330	subgigante		А	1	261
212708	anã		А	1	93
213042	anã		А	1	48
019400					
213429	anã		А	1	239

Tabela A.1 – continuação

		Tabela A.1 – continuaçã	ão		
HD	Classificação	Aglomerado/Associação	Res.	N° de Esp.	S/R
214953	$an\tilde{a}$		А	1	186
215028	$an\tilde{a}$		А	1	65
215257	anã		А	1	93
215942	anã		А	1	81
216385	$an\tilde{a}$		А	1	351
216435	subgigante		А	2	191
216436	$an\tilde{a}$		А	1	77
216437	$an\tilde{a}$		А	1	148
217004	$\operatorname{subgigante}$		А	1	184
217014	$an\tilde{a}$		$\mathbf{C}$	1/1	264
217107	$an\tilde{a}$		$\mathbf{C}$	1/1	207
219048	subgigante		А	1	192
219077	subgigante		А	1	133
219610	subgigante		В	1	157
219834	subgigante		А	1	145
220096	gigante		В	1	154
220339	anã		В	2	213
220507	$an\tilde{a}$		В	1	206
221343	anã		А	5	127
221420	subgigante		А	1	121
221627	subgigante		А	1	216
222335	$an\tilde{a}$		В	1	144
223641	subgigante		В	1	246
223691	subgigante		А	1	124
224022	$an\tilde{a}$		А	1	214
224930	$an\tilde{a}$		В	1	157
225045	$an\tilde{a}$		А	1	223
282962	$an\tilde{a}$	Plêiades	А	1	83
282973	$an\tilde{a}$	Plêiades	В	1	124
282975	subgigante	Plêiades	А	1	80
$BD+15\ 3364$	$an\tilde{a}$		А	1	156
$BD+23\ 527$	anã		А	1	81

#### Apêndice B

#### Temperaturas Efetivas Fotométricas

Neste apêndice, apresentamos as temperaturas efetivas fotométricas calculadas a partir dos índices de cor B - V,  $B_T - V_T$ , b - y, G - RP, BP - RP e G - BP, e das calibrações de Casagrande et al. (2010) e Casagrande et al. (2021), a partir dos valores finais de [Fe/H] e log g, conforme as iterações descritas no capítulo 4. Nas últimas duas colunas indicamos a temperatura fotométrica média adotada e a dispersão entre as temperaturas individuais calculadas por cada cor, a qual tomamos como a incerteza interna do valor médio. Todos os valores estão em unidades de K. A ausência de valor (-) significa que a temperatura efetiva referente ao índice de cor não foi utilizada, pela inexistência do índice de cor ou alta inconsistência com as demais temperaturas.

TABELA B.1. Temperaturas efetivas fotométricas.

HD	$T_{B-V}$	$T_{B_T-V_T}$	$T_{b-y}$	$T_{G-RP}$	$T_{BP-RP}$	$T_{G-BP}$	Ī	$\sigma_{ar{\mathrm{T}}}$
105	5909	5978	5986	5956	5964	5957	5960	27
166	5502	5538	5495	5534	5543	5518	5521	21
1237	5483	5494	5475	5508	5476	5411	5480	28
1461	5730	5759	5728	5748	5754	5742	5743	13
1466	6107	6201	6104	6175	6142	6098	6139	41
1581	5946	-	6012	6102	5960	-	6009	70
1835	5776	5774	5791	5734	5775	5799	5772	23
2151	5831	-	5958	-	5871	-	5893	65
3047	5886	5939	5913	5903	5887	5870	5901	22
3443	5504	5512	5608	-	-	-	5551	61
3460	5404	5447	5420	5397	5407	5387	5411	19
3651	5243	-	5244	5214	5252	5252	5239	16

HD	$\overline{T_{B-V}}$	$\overline{T}_{B_T-V_T}$	$\overline{T}_{b-y}$	$\overline{T}_{G-RP}$	$T_{BP-RP}$	$T_{G-BP}$	$\bar{T}$	$\sigma_{ar{T}}$
3795	5389	5420	5492	5400	5405	5375	5419	44
3823	5941	5983	6024	5984	6030	6077	6004	42
4203	5505	5583	5476	5550	5557	5555	5533	41
4304	6157	6169	6138	6182	6180	6193	6167	20
4307	5839	5816	5887	5785	5814	5834	5830	38
4308	5649	5690	5735	5674	5684	5662	5686	31
4391	5777	5818	5823	5809	5836	5841	5816	22
4628	5008	5007	5137	4963	4989	4973	5020	70
4747	5349	5393	5436	5371	5381	5344	5384	34
4813	6172	6230	6290	6226	6221	6214	6230	40
5133	4953	5000	5040	4931	4945	4928	4970	47
6512	5764	5778	5811	5695	5792	5885	5779	58
6734	5070	5073	5105	5040	5060	5058	5069	24
7134	5865	5912	5949	5942	5951	5944	5929	33
7570	6049	6119	6035	6177	6083	5977	6081	67
8291	5790	5766	-	5773	5786	5772	5778	10
8331	5649	5732	5686	5694	5664	5621	5677	34
9280	5515	5595	5531	5650	5632	5602	5588	57
9540	5406	5420	5514	5470	5467	5423	5458	42
9562	5847	5914	5878	5823	5843	5869	5859	32
9986	5765	5815	5793	5791	5784	5755	5786	19
10009	6100	6170	6118	6148	6135	6128	6132	23
10360	5061	5012	5202	5141	5127	5073	5115	68
10476	5229	-	5300	5337	5267	5168	5274	58
10519	5712	5780	5709	5703	5705	5679	5714	30
10647	6053	6137	6075	6132	6124	6107	6104	34
10697	5589	5703	5596	5645	5620	5585	5623	42
10700	5382	-	-	-	-	-	5382	73
10800	5808	5874	5866	5946	5865	5770	5865	57
11131	5709	5791	5826	5825	5826	5803	5801	45
11505	5736	5771	5785	5783	5767	5726	5766	23
11592	6294	6369	6246	6298	6315	6341	6303	42
11964	5278	5272	5179	5166	5220	5255	5220	49
12235	5936	5996	5978	5884	5927	5982	5945	43
12264	5731	5777	5782	5804	5800	5771	5780	26
13421	6016	6116	6074	6128	6096	6075	6086	40
13445	5225	-	5302	5236	5219	5160	5238	48
13531	5599	5607	5596	5601	5607	5579	5599	9
13612	6049	6030	6012	6156	6068	5978	6057	62
13612B	5620	5651	5741	5719	5706	5667	5692	47
13724	5761	5816	5752	5804	5783	5742	5778	$\frac{1}{28}$
13974	5757	5775	5830	5872	5749	5587	5781	$\frac{-0}{86}$
14214	5996	6061	6056	6155	6067	5973	6062	62
14412	5396	5392	5533	5423	5427	5378	5435	59
14680	4972	4923	5090	4988	4991	4959	4997	59
	1014	1040	0000	10000	1001	1000	1001	00

Tabela B.1 – continuação

HD	$T_{B-V}$	$T_{B_T-V_T}$	$T_{b-y}$	$T_{G-RP}$	$\overline{T_{BP-RP}}$	$\overline{T_{G-BP}}$	$\bar{T}$	$\sigma_{ar{T}}$
14802	5861	5886	5918	5787	5768	5740	5832	71
15064	5791	5860	5808	5784	5785	5782	5800	28
15335	5885	5931	5890	5785	5844	5904	5866	53
15942	5812	5865	5771	5873	5836	5790	5825	42
16141	5724	5769	5669	5780	5751	5713	5734	44
16160	4969	-	4912	4755	4782	4788	4843	94
16417	5764	5807	5757	5721	5758	5791	5761	29
16548	5650	5705	5625	5625	5632	5638	5642	29
16589	6223	6306	6160	6204	6167	6145	6198	54
16673	6162	6261	6181	6189	6192	6196	6194	31
17051	6086	6126	6102	6152	6104	6047	6108	33
17925	5204	5169	5205	5299	5237	5148	5220	52
18907	5178	5155	5165	5081	5119	5126	5136	38
19308	5715	5837	5705	5843	5817	5776	5781	64
19518	5735	5725	5795	5843	5822	5773	5789	47
19994	6039	6132	6122	6251	6137	6021	6130	81
20010	6024	6185	6175	6162	6096	6022	6120	70
20407	5844	5856	5883	5902	5909	5890	5883	26
20630	5679	5741	5750	5848	5737	5597	5740	77
20766	5720	-	5779	5814	5750	5647	5755	56
20794	5472	-	5545	5652	5475	-	5541	84
20807	5844	-	5911	5945	5845	5711	5870	78
21411	5487	5465	5577	5511	5524	5494	5516	40
22049	5102	5080	5234	5263	5002	-	5146	11
22072	5014	5014	-	4996	5016	5021	5011	10
22484	5973	6034	6089	-	-	-	6039	60
22879	5876	5937	6017	5924	5920	5884	5934	53
23195	5784	-	-	5989	6005	6022	5949	10
23249	5054	5028	4950	-	4904	-	4976	68
23269	-	-	6107	6114	6121	6124	6115	7
23713	-	-	6028	5880	6045	-	5984	90
24040	5791	5780	5783	5790	5786	5773	5785	6
24062	5847	5914	5887	5930	5890	5845	5890	33
24293	5708	5764	5749	5723	5728	5708	5731	21
24616	5079	5095	5101	4997	5039	5051	5059	42
24892	5385	5383	5414	5348	5368	5362	5378	25
25457	6167	6212	6169	6170	6235	6318	6202	51
25535	5785	5787	5842	-	-	-	5810	34
25740	5725	5777	5767	5747	5742	5722	5749	20
25825	5985	5939	5994	5971	5978	5976	5976	18
25874	5703	5741	5735	5758	5736	5690	5731	23
25918	5515	5536	5578	5536	5556	5543	5546	23
26345	6587	6676	6723	6638	6638	6668	6656	48
26491	5768	5832	5783	5791	5765	5716	5779	32
26767	5835	5862	5841	5831	5842	5837	5841	10

Tabela B.1 – continuação

HD	$T_{B-V}$	$T_{B_T-V_T}$	$T_{b-y}$	$T_{G-RP}$	$\overline{T_{BP-RP}}$	$T_{G-BP}$	$\bar{T}$	$\sigma_{ar{T}}$
26913	5667	5735	5687	5658	5653	5615	5671	35
26923	6012	6021	5969	6027	6017	5992	6006	24
27406	6096	6126	6125	6084	6105	6129	6109	19
27685	5721	5744	5722	5704	5717	5710	5719	13
27808	6243	6282	6257	6231	6239	6257	6249	18
27836	5949	5912	5905	5749	5860	5982	5880	82
27859	5965	6131	5943	5869	5919	5963	5954	85
28068	5800	5836	5803	5739	5766	5778	5784	34
28099	5761	5718	5785	5773	5772	5750	5764	23
28205	6175	6196	6197	6167	6172	6183	6181	13
28237	6096	6086	6105	6104	6094	6080	6096	9
28344	5933	6055	5924	5949	5940	5918	5951	46
28388	5355	5319	5387	5318	5335	5332	5344	28
28471	5738	5797	5783	5781	5766	5727	5769	24
28608	6412	6473	6439	6399	6409	6439	6425	26
28635	6165	6210	6177	6168	6167	6166	6175	16
28821	5626	5705	5708	5685	5692	5673	5684	30
28992	5863	5942	5873	5880	5880	5866	5883	26
29859	6127	6180	6185	6084	6114	6169	6139	43
30495	5806	5830	5852	5818	5834	5827	5829	17
30562	5869	5909	5901	5844	5873	5905	5880	26
30589	6035	6010	6053	6059	6054	6245	6064	67
30606	6097	6142	6119	6079	6118	-	6109	23
30876	5024	5015	5135	5010	5022	-	5046	56
30809	6211	6199	6217	6234	6243	6263	6227	21
30966	5396	5404	5329	5335	5345	5347	5356	32
32147	4827	4763	4743	4747	4778	4801	4772	33
32923	5670	5725	5748	5782	5687	5571	5711	66
33021	5789	5854	5820	5762	5787	5799	5800	31
33262	6128	6217	6141	6329	6251	6155	6210	82
33473	5679	5712	5684	5699	5679	5651	5686	18
34721	5989	6036	6079	6097	6065	6024	6055	40
35850	6046	6128	6022	6003	5998	5984	6028	48
35854	4922	4927	5008	4899	4899	4874	4928	49
36435	5430	5461	5487	5465	5430	5357	5447	40
36553	5948	6012	5941	6013	5935	5874	5959	47
36889	5724	5792	5731	5767	5745	5719	5747	26
37986	5389	5449	5398	5505	5500	5471	5452	53
38393	6342	6368	6456	6369	-	-	6389	52
38529	5489	5537	-	5490	5494	5504	5501	19
39587	5912	5945	5979	5951	5940	5908	5944	26
41593	5283	5270	-	5339	5313	5249	5299	35
43587	5865	5909	5930	5869	5872	5860	5887	29
43834	5594	5576	5584	5633	5596	5532	5592	30
43947	5963	6023	5945	6026	6033	6026	5999	40

Tabela B.1 – continuação

HD	$T_{B-V}$	$T_{B_T-V_T}$	$T_{b-y}$	$T_{G-RP}$	$\overline{T_{BP-RP}}$	$T_{G-BP}$	$\bar{T}$	$\sigma_{ar{T}}$
44120	5955	6040	$598\overline{6}$	5996	5978	5959	5986	28
45067	5997	6073	6063	5975	6005	6041	6023	40
46569	6146	6192	6184	6168	6128	6098	6157	32
48938	5985	6101	6088	6055	6054	6039	6056	40
50692	5958	5910	5928	5933	5947	5946	5937	16
50806	5581	5610	5605	5656	5645	5619	5621	29
52298	6266	6328	6325	6322	6299	6271	6305	26
52698	5184	5170	-	5166	5171	5144	5169	13
52711	5887	5908	5891	5915	5916	5898	5903	13
53143	5413	5435	5361	5424	5396	5336	5396	35
53705	5776	5825	5832	5807	5839	5855	5821	26
53706	5307	-	5370	5294	5307	5276	5316	36
55720	5508	5517	5566	5568	5552	5495	5541	30
57095	4874	-	-	-	4870	-	4872	3
57853	6000	-	5952	5970	5921	5863	5948	44
58551	6272	6253	6292	6205	6215	6219	6244	37
59984	5947	6008	6038	5926	5963	5988	5978	45
61033	5512	5486	5557	5409	5411	5374	5465	71
61606	5102	4963	5000	4943	4940	4914	4980	64
61902	6157	6183	6191	6146	6155	6156	6165	19
62644	5402	5438	5392	5410	5393	5365	5401	21
63077	5749	-	5861	5957	5861	5722	5848	90
63637	5693	5694	5712	5688	5690	5678	5694	11
64096	5876	5869	5913	-	-	-	5890	25
64114	5583	5670	5619	5645	5646	5617	5630	29
64468	4970	4887	-	4911	4924	4913	4922	30
64606	5272	5300	5401	5128	5262	5333	5278	10
65583	5385	5388	5439	5379	5384	5333	5391	32
65907	5915	5969	5986	6054	6002	5925	5984	51
66653	5776	5841	5791	5857	5833	5789	5817	34
67199	5145	5105	5182	5127	5131	5099	5137	30
67228	5807	5871	5780	5822	5798	5772	5808	33
67581	5925	-	5830	5841	5816	5776	5841	49
67907	5483	5444	5490	5489	5469	5431	5473	22
68168	5733	5825	5788	5744	5747	5731	5762	35
69809	5755	5821	5816	5809	5804	5789	5801	24
69830	5439	5404	5478	5417	5448	5440	5440	27
71334	5746	5705	5726	5721	5719	5689	5720	17
72234	5648	5726	5683	5673	5650	5618	5669	32
72579	5402	5410	5390	5461	5452	5415	5423	31
72673	5275	5290	5338	5303	5306	5260	5301	27
72954	5352	5377	5344	5258	5288	5302	5317	45
73350	5770	5820	5775	5800	5798	5774	5790	19
73667	5095	5074	5173	5053	5071	5040	5091	50
74576	5025	4993	5014	5010	5008	4976	5007	15

Tabela B.1 – continuação

HD	$T_{B-V}$	$T_{B_T-V_T}$	$T_{b-y}$	$T_{G-RP}$	$T_{BP-RP}$	$T_{G-BP}$	$\bar{T}$	$\sigma_{ar{T}}$
74698	5715	5756	5726	5753	5746	5724	5737	17
75732	5279	5280	5095	5262	5298	5306	5242	86
76151	5742	5755	5764	5757	5767	5754	5758	9
76932	5983	5993	6005	5928	5976	6005	5979	30
77902	5694	5727	5709	5699	5703	5706	5706	11
78366	5951	5937	5964	5928	5987	6043	5963	36
78429	5727	5861	5718	5730	5723	5699	5740	53
78643	5948	6011	5943	5938	5961	5984	5959	27
79969	4842	4800	4831	-	-	-	4826	20
81174	5204	5239	5191	5185	5193	5178	5197	20
82443	5367	5367	-	5348	5328	5268	5340	35
82885	5494	5498	-	5590	5505	5397	5510	64
83529	5900	5955	5867	5935	5915	5875	5908	33
84117	6099	6142	6121	6319	6194	6048	6168	95
84937	6551	6273	6419	6403	6391	6348	6405	85
85380	6000	6074	6046	6038	6029	6027	6036	23
85725	5835	5912	5832	5821	5835	5857	5844	31
86728	5743	5798	5757	5779	5758	5722	5762	23
87883	4939	4927	-	4975	4970	4941	4954	21
88084	5725	5789	5775	5767	5762	5732	5761	23
88218	5805	5885	5781	5670	5773	5878	5784	77
88725	5722	5672	5734	5751	5733	5672	5721	31
90711	5378	5375	5376	5477	5447	5392	5412	46
90722	5625	5667	5603	5687	5651	5603	5641	35
92588	5110	5117	5090	5112	5107	5092	5105	11
94028	5979	5980	6037	6114	6091	6025	6045	57
94340	5795	5889	5810	5798	5784	5760	5806	39
94765	5061	5043	-	5056	5055	5024	5051	13
97037	5839	5922	5851	5891	5863	5817	5866	34
97320	6087	6121	6118	6129	6142	6133	6122	19
98649	5714	5735	5752	5721	5731	5713	5730	15
99491	5469	5438	5367	5465	5467	5441	5439	43
99492	4921	-	4843	4911	4906	4889	4892	33
100623	5184	5198	5264	5233	5243	5202	5226	31
101259	5079	5099	5096	5046	5062	5054	5073	22
101367	5539	5663	-	5576	5584	5571	5585	43
101501	5517	5494	5546	5568	5549	5492	5534	30
101612	6168	6238	6271	6294	6299	6306	6264	51
101676	6154	6218	6133	6215	6193	6166	6179	36
102200	6291	6284	6153	6168	6176	6160	6200	62
102300	6009	6054	6056	6017	6006	5985	6024	27
102365	5629	-	5682	5770	5698	5589	5686	65
102438	5583	5598	5591	5631	5635	5600	5608	23
102902	5561	5583	5464	5433	5449	5458	5485	62
103026	6024	6115	6066	6092	6092	6097	6079	31

Tabela B.1 – continuação

HD	$T_{B-V}$	$T_{B_T-V_T}$	$T_{b-y}$	$T_{G-RP}$	$\overline{T_{BP-RP}}$	$T_{G-BP}$	$\bar{T}$	$\sigma_{ar{T}}$
104304	5525	5523	5489	5472	5507	5516	5502	22
104800	5775	5854	5813	5821	5827	5794	5815	25
105590	5695	5712	5704	5758	5749	5713	5724	27
105618	5675	5778	5656	5711	5714	5706	5702	41
105901	5817	5772	5791	5828	5836	5825	5812	24
106116	5644	5676	5676	5661	5670	5657	5665	12
106516	6212	-	6293	6273	6300	6325	6279	39
106742	5924	6025	5936	5980	5957	5941	5960	35
107213	6252	6321	6231	6242	6233	6245	6250	31
108309	5709	5760	5674	5748	5748	5737	5726	34
108317	5461	5484	5392	5321	5361	5311	5387	67
109200	5157	-	5218	5152	5149	5104	5163	39
109409	5722	5772	5682	5720	5743	5768	5728	33
109684	5850	5912	6003	6005	6012	6008	5969	66
111199	6067	6106	6080	6058	6061	6081	6073	17
111395	5623	5647	5613	5639	5646	5624	5632	14
111398	5745	5827	5690	5705	5709	5698	5724	48
112164	5875	5961	5857	5862	5895	5944	5890	41
114260	5523	5494	5500	5560	5536	5476	5520	30
114613	5661	5664	5599	5800	5642	5484	5656	97
114710	6014	6022	6052	6039	5986	5915	6013	43
114762	5997	6035	5976	5956	5966	5951	5979	29
114946	5097	5100	5068	5123	5087	5047	5090	25
115382	5787	5743	5726	5781	5773	5741	5760	26
115383	5994	6056	6005	6134	6052	5959	6041	61
115404	4953	4978	-	4981	5002	4985	4981	18
115617	5584	-	5633	5789	5641	5467	5644	10
116442	5280	-	5376	5285	5279	5225	5299	54
116443	5049	5069	5224	5115	5110	5061	5116	68
117105	5888	5836	5898	5894	5887	5859	5881	23
117176	5532	5561	5504	5660	5526	5382	5540	83
117939	5657	5714	5666	5754	5720	5655	5698	41
118598	5738	5794	5742	5718	5720	5695	5735	30
118972	5166	5190	5200	5214	5203	5154	5192	21
119550	5809	5862	5846	5750	5748	5742	5794	53
120066	5818	5864	5830	5834	5832	5822	5833	15
120136	6273	6401	6382	6463	6366	6268	6370	73
120237	6038	6149	6110	6133	6128	6119	6113	38
120690	5581	-	5622	5531	5548	5531	5567	41
120780	4992	5003	5091	4989	5012	4992	5018	43
121370	6034	6015	5959	-	-	-	5997	41
121384	5259	5296	5296	5265	5274	5260	5276	17
122196	6079	6140	5994	5999	5999	5951	6025	62
122742	5509	5519	5514	5434	5469	5469	5485	35
122862	5934	5977	5969	5939	5950	5958	5954	17

Tabela B.1 – continuação

HD	$T_{B-V}$	$T_{B_T-V_T}$	$T_{b-y}$	$T_{G-RP}$	$T_{BP-RP}$	$T_{G-BP}$	$\bar{T}$	$\sigma_{ar{T}}$
123619	6112	6183	6077	6137	6134	6126	6125	$\overline{35}$
124553	5991	6085	5933	5979	5992	6016	5991	49
124570	6135	6165	6137	6100	6097	6106	6122	26
124850	6138	6142	6229	6105	6112	6131	6146	50
125072	4859	4833	4803	4870	4876	4868	4850	30
125184	5596	-	5532	5595	5581	5557	5572	29
125276	6036	6130	6157	6214	6219	6210	6163	70
125566	5364	5382	5356	5370	5364	5324	5362	16
126053	5689	5716	5750	5758	5738	5683	5729	30
126614	5445	5412	-	5468	5450	5421	5444	22
126868	5617	5678	5601	5663	5571	5486	5610	60
128311	4887	4888	-	4870	4882	4870	4879	9
128428	5545	5542	5480	5439	5519	5592	5508	52
128571	6059	6188	6106	6180	6183	6182	6147	54
128620	5603	-	5594	-	-	-	5598	6
128621	5127	-	-	-	-	-	5127	73
129010	5959	6113	5978	5992	5979	5971	5995	52
130004	4867	4854	-	4945	4929	4880	4902	41
130307	5041	5026	5088	5034	5028	4987	5040	32
130948	5959	5949	5927	5918	5944	5956	5939	17
131117	5904	5974	5909	5905	5915	5928	5919	25
131183	5593	5546	5591	5638	5630	5604	5604	32
131509	5025	5015	4930	4989	5021	5036	4996	41
131511	5229	5222	5214	5193	5185	5144	5201	27
131923	5599	5676	5578	5528	5544	5539	5574	52
131977	4803	4636	4649	4666	4615	4601	4664	70
132505	5819	5931	5908	5958	5940	5922	5915	49
134113	5814	5910	5822	5790	5803	5789	5819	41
134169	5838	5975	5937	5920	5915	5882	5914	44
134439	5076	-	5162	5127	5094	4990	5104	57
134440	4851	-	4962	4835	4816	4744	4855	76
134664	5751	5803	5783	5836	5839	5824	5806	35
$135101 \mathrm{A}$	-	-	5611	5646	5653	5645	5637	20
$135101\mathrm{B}$	-	-	5475	5547	5543	5513	5519	36
135204	5371	5383	5409	5415	5416	5376	5399	20
135599	5230	5240	-	5249	5239	5189	5234	20
136202	6073	6129	6152	6199	6124	6047	6131	52
136352	5713	5760	5742	5706	5727	5720	5728	20
137510	5957	5983	5888	5914	5920	5940	5928	34
137676	5261	5304	5302	5280	5292	5273	5287	17
137763	5358	5299	5319	5246	5266	5248	5291	44
137812	5259	5264	5085	5247	5225	5188	5206	74
138573	5731	5739	5745	5791	5774	5731	5756	25
138776	5570	5536	-	5601	5598	5583	5581	26
139503	5780	5837	5819	5837	5852	5864	5830	28

Tabela B.1 – continuação

HD	$T_{B-V}$	$T_{B_T-V_T}$	$T_{b-y}$	$T_{G-RP}$	$T_{BP-RP}$	$T_{G-BP}$	$\bar{T}$	$\sigma_{ar{T}}$
140283	5955	5931	5824	5735	5775	5746	5824	91
140538	5655	5710	5681	5697	5712	5699	5692	21
140690	5734	5795	5707	5756	5759	5741	5746	30
140901	5585	5607	5569	5593	5616	5609	5594	19
141004	5896	5932	5948	5892	5901	5901	5913	24
141885	5785	5886	5778	5828	5835	5854	5822	40
142072	5742	5797	5704	5773	5776	5759	5756	34
142267	5815	5858	5830	5809	5850	5867	5835	22
143337	5726	5707	5723	5655	5723	5770	5712	36
143761	5805	5844	5846	5804	5831	5843	5828	20
143885	5991	6081	5964	5933	5940	5959	5972	51
144585	5807	5904	5777	5806	5815	5818	5816	41
144628	5079	5117	5217	5085	5099	5067	5118	59
144988	5873	5924	5860	5829	5845	5862	5862	31
145825	5774	5800	5820	5776	5795	5792	5794	18
146233	5755	5777	5807	5841	5824	5785	5803	32
146835	5915	5993	6018	5999	5999	5991	5988	36
147513	5837	5859	5837	5933	5887	5816	5867	43
147584	6047	6102	6098	6123	6085	6032	6087	32
147743	5864	5866	5827	5769	5789	5817	5818	40
148577	5681	5722	5720	5702	5713	5705	5708	15
148816	5922	5915	5935	5923	5938	5932	5928	9
149661	5258	5215	5285	5212	5268	5281	5253	33
149724	5462	5537	5512	5624	5626	5620	5563	70
150248	5723	5730	5711	5728	5731	5708	5722	10
150474	5373	5384	5362	5361	5372	5368	5369	8
150698	5727	5798	5714	5774	5775	5777	5757	33
151090	5025	5075	4896	5048	5052	5043	5015	70
151337	5048	5003	4861	5023	5021	5012	4988	74
152311	5682	5719	5640	5624	5644	5657	5656	33
152391	5447	5456	5481	5453	5472	5450	5462	14
153075	5856	5837	5835	5852	5850	5821	5844	12
153458	5797	5864	5785	5812	5828	5827	5815	27
154088	5364	5352	5190	5382	5375	5340	5328	81
154160	5514	5575	-	5522	5525	5524	5530	23
154417	5985	6044	6067	5997	6041	6084	6033	37
154857	5532	5591	5580	5530	5535	5524	5550	28
154931	5801	5885	5842	5826	5844	5858	5840	26
154962	5678	5728	5620	5712	5703	5692	5685	41
155114	5779	5789	5802	5797	5803	5782	5794	10
155885	5114	5090	-	5193	5141	5059	5130	50
156274	5337	-	5294	5437	5380	5282	5353	64
156365	5835	5807	5758	5797	5770	5743	5785	32
156411	5819	5901	5830	5804	5823	5844	5832	32
156826	5130	5148	5091	5105	5118	5118	5115	20

Tabela B.1 – continuação

HD	$T_{B-V}$	$T_{B_T-V_T}$	$T_{b-y}$	$T_{G-RP}$	$T_{BP-RP}$	$T_{G-BP}$	$\bar{T}$	$\sigma_{ar{T}}$
156846	5991	5990	5985	5990	5992	6000	5990	4
157060	6107	6123	6164	6124	6099	6076	6120	29
157089	5893	5928	5869	5861	5875	5873	5881	23
157214	5751	5781	5774	5780	5767	5724	5766	19
157347	5658	5689	5670	5688	5691	5667	5678	14
157750	5742	5870	5785	5805	5780	5735	5788	43
158226	5692	5759	5816	5824	5830	5812	5793	53
159222	5822	5847	5802	5854	5852	5834	5834	22
159332	6167	6247	6252	6200	6223	6264	6223	35
159656	5795	5850	5766	5795	5795	5779	5795	27
159784	6049	6095	6015	6041	6035	6047	6043	26
160346	4928	4916	4943	4838	4855	4851	4890	47
160411	5755	5804	5755	5785	5769	5754	5770	19
160691	5690	5727	5670	5774	5715	5644	5708	45
161239	5713	5814	5721	5722	5745	5777	5742	37
161555	5697	5787	5751	5792	5767	5737	5757	35
161612	5504	5530	5563	5612	5610	5579	5570	44
161797	5527	5554	5416	-	-	-	5487	76
162396	6082	6116	6042	6064	6080	6093	6075	25
163153	5541	5539	5413	5539	5528	5514	5507	55
164507	5497	5570	5462	5561	5518	5472	5514	45
164595	5777	5773	5754	5769	5763	5730	5763	14
165185	5861	5948	5910	5882	5912	5926	5904	29
165271	5723	5715	5714	5775	5752	5722	5736	26
165341	5172	-	5186	5330	5287	5214	5243	71
165499	5879	5906	5940	5899	5930	5951	5917	26
167300	5837	6017	5837	5846	5861	5857	5869	64
167665	6082	6197	6116	6137	6135	6131	6131	35
168443	5550	5572	5504	5599	5563	5513	5552	38
169830	6206	6274	6217	6160	6181	6222	6205	38
170657	5116	5100	-	5044	5059	5034	5070	34
170829	5364	5397	5244	5353	5381	5396	5346	61
171990	5935	5999	5982	5941	5946	5956	5959	25
172051	5620	5671	5691	5821	5739	5620	5706	$\overline{77}$
175425	5715	5731	5713	5790	5791	5780	5753	39
175541	5114	5041	4861	5017	5019	5019	5002	89
177565	5626	5646	5623	5690	5689	5663	5652	$\frac{32}{32}$
178904	5658	5727	5668	5699	5701	5681	5688	24
179699	5969	6008	5972	6000	5984	5974	5985	16
179949	6128	6219	6114	6124	6140	6161	6142	36
180684	5955	6111	6088	6040	6038	6042	6046	52
181321	5802	5850	5825	5809	5817	5797	5817	17
182488	5365	5377	5373	5396	5405	5380	5384	16
182572	5535	5580	5480	5548	5558	5556	5540	33
182610	5520	5550	5581	5503	5500	5570	5574	$\frac{55}{97}$
104019	0049	0000	0001	0030	0099	0010	0014	41

Tabela B.1 – continuação

HD	$T_{B-V}$	$T_{B_T-V_T}$	$T_{b-y}$	$T_{G-RP}$	$\overline{T_{BP-RP}}$	$\overline{T_{G-BP}}$	$\bar{T}$	$\sigma_{ar{T}}$
182807	6076	6145	-	6130	6146	6160	6129	32
183263	5731	5833	5816	5894	5881	5861	5838	59
183577	6071	6137	6095	6094	6120	6150	6107	27
183870	5022	5008	5068	4996	5014	4997	5021	29
187013	6319	6378	6401	6383	6378	6388	6376	28
187237	5761	5862	5797	5833	5824	5793	5812	34
187691	6062	6160	6119	6134	6108	6083	6113	33
187923	5741	5782	5722	5730	5731	5716	5736	21
188376	5470	-	5479	5483	5413	5341	5448	52
188512	5137	5145	5163	-	-	-	5150	14
188815	6211	6260	6145	6222	6204	6177	6201	40
189406	5981	5992	6016	5859	5975	6123	5978	79
189567	5695	5732	5766	5727	5755	5756	5739	26
189625	5810	5873	5788	5828	5828	5811	5821	28
189733	4984	4996	5072	5033	5034	5003	5026	33
190067	5471	5454	5469	5441	5456	5424	5455	16
190228	5275	5318	5302	5263	5276	5269	5284	21
190248	5569	-	5535	5679	-	-	5595	78
190360	5520	5543	5488	5509	5547	5563	5523	27
190404	5129	5073	5221	5079	5091	5051	5116	65
190406	5935	5963	5929	5908	5959	6006	5943	31
190580	5607	5579	5568	5551	5569	5580	5573	19
190613	5819	5758	5835	5786	5782	5761	5795	31
190771	5785	5833	5775	5770	5786	5782	5786	21
191408	4999	-	5108	5014	5008	4958	5027	55
191487	5737	5780	5839	5898	5869	5819	5831	60
191760	5761	5867	5829	5850	5835	5821	5828	35
192263	4973	4963	5046	4965	4971	4948	4983	37
192310	5146	-	5184	5139	5131	5091	5144	31
192344	5654	5694	5612	5630	5641	5645	5642	27
193193	5912	5978	5901	5954	5943	5919	5934	29
193307	5996	5969	6025	6000	6015	6024	6006	20
193901	5846	5903	5793	5854	5879	5862	5852	39
194640	5535	5569	5569	5560	5551	5508	5552	20
195564	5640	5645	5644	5585	5609	5621	5623	25
195838	6034	6079	6073	6103	6118	6137	6089	34
196050	5777	5868	5810	5827	5835	5840	5824	29
196378	6011	6075	6097	6013	6054	6102	6056	40
196755	5596	5692	5634	5582	5598	5614	5616	38
196761	5495	5478	5560	5494	5516	5495	5511	31
196794	5056	5030	-	5076	5078	5047	5061	20
196800	5949	6000	5916	5947	5954	5959	5950	27
196885	6067	6166	6056	6138	6172	6221	6127	61
197210	5561	5588	5636	5597	5602	5572	5597	27
197536	5977	6019	5997	6055	6077	6094	6033	44

Tabela B.1 – continuação

HD	$T_{B-V}$	$T_{B_T-V_T}$	$T_{b-y}$	$T_{G-RP}$	$T_{BP-RP}$	$T_{G-BP}$	$\bar{T}$	$\sigma_{ar{T}}$
197963	6276	6230	-	6221	6228	6260	6240	24
197964	4778	4781	-	4824	4778	4759	4788	25
198802	5719	5768	5734	5689	5710	5728	5722	26
199288	5821	5854	5816	5834	5859	5855	5838	19
199960	5844	5902	5876	5901	5900	5894	5886	23
200525	5923	5980	5958	5984	5906	5808	5936	56
200580	5954	5998	5918	5869	5913	5943	5926	43
200968	5084	5072	-	5170	5176	5147	5135	49
201242	6119	6199	6242	6160	6173	6209	6184	44
201891	5946	5966	6005	5984	5997	5978	5982	22
202072	5653	5727	5764	5766	5762	5728	5738	43
202707	5714	5740	5639	5685	5672	5647	5681	37
202917	5611	5660	5606	5499	5508	5480	5561	70
202940	5427	5491	5491	-	-	-	5471	36
203608	6126	6152	6219	6293	6169	6008	6181	87
205158	5960	6040	5980	5874	5978	6111	5976	73
205390	5055	5044	5118	5037	5038	5001	5055	39
206255	5545	5624	5590	5602	5599	5592	5592	25
206301	5662	5709	5679	5755	5677	5600	5688	47
206860	5933	6006	5978	5905	5945	5974	5953	36
207043	5734	5778	5740	5781	5762	5715	5754	24
207129	5915	5957	5927	5862	5923	5976	5920	38
207978	6401	6379	6445	6360	6389	6433	6400	34
209100	4667	4665	4723	4644	4639	4641	4666	35
210277	5454	5524	5429	5529	5515	5476	5487	44
210460	5578	5600	5538	5481	5480	5471	5523	52
210918	5725	-	5723	5730	5734	5715	5727	6
211038	5022	5004	4884	5004	5002	4987	4979	56
211080	5523	5603	5608	5702	5659	5615	5624	62
211415	5798	5877	5846	5711	5824	5929	5819	71
211786	5672	5752	5807	5780	5786	5765	5765	48
211998	5392	5444	5396	5304	5367	5373	5375	47
212330	5709	5719	5685	5662	5677	5681	5687	21
212708	5595	5639	5560	5605	5620	5617	5602	28
213042	4659	4606	4586	4648	4651	4661	4632	32
213429	6027	6095	6046	6018	5997	5965	6027	39
213575	5652	5704	5662	5657	5663	5651	5664	18
214953	5968	6088	6082	6084	6096	6108	6071	49
215028	5523	5578	5680	5635	5643	5617	5619	56
215257	6043	6061	5979	5874	5993	6114	5994	80
215942	5648	5722	5735	5703	5702	5674	5701	31
216385	6254	6306	6364	6383	6288	6188	6311	67
216435	5891	5938	5890	5877	5893	5915	5897	21
216436	5673	5756	5703	5717	5712	5679	5708	27

Tabela B 1 continuação

		L	Labela D	.1 – comm	uaçao			
HD	$T_{B-V}$	$T_{B_T-V_T}$	$T_{b-y}$	$T_{G-RP}$	$T_{BP-RP}$	$T_{G-BP}$	$\bar{T}$	$\sigma_{ar{T}}$
217004	5647	5760	5663	5717	5711	5696	5697	39
217014	5770	5830	5774	5830	5806	5766	5798	29
217107	5589	5629	5553	5746	5604	5452	5608	92
219048	5427	5464	5426	5429	5421	5394	5428	19
219077	5311	5358	5312	5327	5331	5314	5325	17
219610	5555	5574	5590	5498	5559	5618	5560	40
219834	5376	-	5379	-	5459	5201	5375	93
220096	5237	5264	5176	5126	5181	5246	5195	52
220339	5036	4972	5134	5015	5022	4988	5037	60
220507	5622	5744	5658	5662	5676	5670	5669	37
221343	5734	5777	5767	5790	5793	5773	5773	21
221420	5734	5798	5704	5716	5741	5772	5737	34
221627	5745	5811	5742	5767	5763	5759	5762	23
222335	5282	5255	-	5306	5292	5236	5280	26
223641	5411	5385	5457	5425	5415	5381	5418	27
223691	5495	5515	5530	5488	5483	5460	5498	24
224022	6031	6056	6015	6062	6070	6083	6050	25
224930	5413	-	5523	5468	5407	5290	5438	77
225045	6171	6248	6182	6184	6178	6195	6190	26
282962	-	5560	-	5703	5715	5702	5676	70
282973	6116	-	-	6131	6120	6102	6120	11
282975	-	-	-	5534	5508	5463	5510	32
$BD+15\ 3364$	5774	5788	5733	5755	5763	5749	5759	19
$BD+23\ 527$	-	-	-	5778	5782	5760	5776	10

Tabela B.1 – continuação

# Apêndice C

## Parâmetros Atmosféricos

Neste apêndice listamos os parâmetros atmosféricos ( $T_{ef}$ , [Fe/H] e log g) levantados da literatura, com as respectivas referências. As estrelas com a ausência de parâmetros publicados e metalicidade calculada de forma fotométrica estão indicadas por Holmberg et al. (2007). Listamos também as versões finais dessas mesmas três variáveis, calculados conforme a descrição no capítulo 4.

	I	Este trabalho		lho			
HD	$T_{ef}$	[Fe/H]	log g	Referência	$T_{ef}$	[Fe/H]	log g
Sol	5772	+0.00	4.44	Prša et al. (2016)			
105	6126	+0.08	4.65	Valenti & Fischer (2005)	5960	-0.06	4.42
166	5465	+0.14	4.53	Ramírez et al. $(2012)$	5521	+0.17	4.55
1237	5541	+0.12	4.54	Ramírez et al. $(2012)$	5480	+0.08	4.51
1461	5724	+0.17	4.35	Ramírez et al. $(2012)$	5743	+0.18	4.37
1466	6135	-0.06	4.39	Luck (2018)	6139	-0.06	4.40
1581	5922	-0.21	4.35	Ramírez et al. $(2012)$	6009	-0.16	4.43
1835	5817	+0.21	4.46	Ramírez et al. $(2012)$	5772	+0.18	4.44
2151	5816	-0.12	3.95	Ramírez et al. $(2012)$	5893	-0.07	4.00
3047	-	+0.02	-	Holmberg et al. $(2007)$	5901	+0.02	3.98
3443	5501	-0.21	4.28	Luck (2016)	5551	-0.18	4.23
3460	-	-0.47	-	Holmberg et al. $(2007)$	5411	-0.47	3.87
3651	5220	+0.16	4.49	Ramírez et al. $(2012)$	5239	+0.17	4.50
3795	5385	-0.61	3.84	Ramírez et al. $(2013)$	5419	-0.59	3.85
3823	5981	-0.35	4.12	Ramírez et al. $(2012)$	6004	-0.34	4.13
4203	5574	+0.36	4.19	Ramírez et al. $(2012)$	5533	+0.34	4.11

TABELA C.1. Parâmetros Atmosféricos.

Literatura					Este trabalho		
HD	$T_{ef}$	[Fe/H]	log g	Referência	$T_{ef}$	[Fe/H]	$\log g$
4304	-	-0.05	-	Holmberg et al. $(2007)$	6167	-0.05	3.92
4307	5785	-0.25	4.01	Ramírez et al. $(2012)$	5830	-0.22	3.99
4308	5720	-0.29	4.44	Porto de Mello et al. $(2014)$	5686	-0.31	4.34
4391	5878	-0.03	4.74	Santos et al. $(2004)$	5816	-0.07	4.49
4628	5036	-0.28	4.61	Ramírez et al. $(2012)$	5020	-0.29	4.60
4747	5335	-0.22	4.65	Valenti & Fischer $(2005)$	5384	-0.19	4.58
4813	6229	-0.13	4.40	Ramírez et al. $(2012)$	6230	-0.13	4.38
5133	4955	-0.11	4.60	Ramírez et al. $(2012)$	4970	-0.10	4.61
6512	5867	+0.16	4.44	Ramírez et al. $(2012)$	5779	+0.11	4.32
6734	4962	-0.52	3.31	Ramírez et al. $(2013)$	5069	-0.46	3.45
7134	5940	-0.29	4.41	Adibekyan et al. $(2012)$	5929	-0.30	4.28
7570	6087	+0.15	4.32	Ramírez et al. $(2012)$	6081	+0.15	4.32
8291	5810	+0.03	4.30	Porto de Mello et al. (2014)	5778	+0.01	4.54
8331	5695	-0.01	4.05	Valenti & Fischer (2005)	5677	-0.02	4.00
9280	5759	+0.38	4.42	Valenti & Fischer (2005)	5588	+0.28	4.16
9540	5462	-0.02	4.56	Valenti & Fischer (2005)	5458	-0.02	4.56
9562	5827	+0.19	3.98	Ramírez et al. (2012)	5859	+0.21	4.00
9986	5796	+0.04	4.41	Ramírez et al. $(2012)$	5786	+0.03	4.42
10009	-	-0.21	-	Holmberg et al. (2007)	6132	-0.21	3.97
10360	5117	-0.19	4.65	Ramírez et al. (2012)	5115	-0.19	4.59
10476	5225	-0.02	4.55	Ramírez et al. $(2012)$	5274	+0.01	4.57
10519	5679	-0.57	4.03	Ramírez et al. $(2012)$	5714	-0.55	4.01
10647	6133	-0.06	4.42	Ramírez et al. $(2012)$	6104	-0.08	4.39
10697	5680	+0.19	4.12	Valenti & Fischer (2005)	5623	+0.16	4.00
10700	5330	-0.54	4.50	Ramírez et al. (2012)	5382	-0.51	4.52
10800	-	-0.13	-	Holmberg et al. (2007)	5865	-0.13	4.07
11131	5817	-0.09	4.46	Ramírez et al. (2012)	5801	-0.10	4.45
11505	5725	-0.24	4.29	Ramírez et al. $(2012)$	5766	-0.22	4.26
11592	6310	-0.34	4.20	Ramírez et al. $(2012)$	6303	-0.34	4.20
11964	5332	+0.08	3.90	Adibekyan et al. $(2012)$	5220	+0.01	3.84
12235	6151	+0.32	4.08	Ramírez et al. (2012)	5945	+0.20	4.04
12264	5810	+0.06	4.54	Porto de Mello et al. (2014)	5780	+0.04	4.49
13421	6248	+0.11	3.85	Ramírez et al. (2012)	6086	+0.01	3.82
13445	5204	-0.24	4.54	Ramírez et al. $(2012)$	5238	-0.22	4.57
13531	5621	+0.01	4.52	Valenti & Fischer (2005)	5599	+0.00	4.52
13612	6180	-0.09	3.89	Ramírez et al. (2012)	6057	-0.16	3.84
13612B	5722	+0.08	4.22	Luck (2016)	5692	+0.06	4.41
13724	5820	+0.24	4.16	Porto de Mello et al. (2014)	5778	+0.21	4.42
13974	5795	-0.49	4.32	Ramírez et al. (2012)	5781	-0.50	4.29
14214	6079	+0.13	4.07	Luck (2016)	6062	+0.16	4.21
14412	5428	-0.49	4.59	Ramírez et al. $(2012)$	5435	-0.49	4.58
14680	5011	-0.17	4.46	Adibekyan et al. $(2012)$	4997	-0.18	4.59
14802	5840	-0.08	3.97	Ramírez et al. (2012)	5832	-0.08	3.96
15064	-	+0.17	_	Holmberg et al. $(2007)$	5800	+0.17	4.07
				<u> </u>			

Tabela C.1 – continuação

	Literatura				Este traball		lho
HD	$T_{ef}$	[Fe/H]	log g	Referência	$T_{ef}$	[Fe/H]	log g
15335	5868	-0.20	3.93	Ramírez et al. (2012)	5866	-0.20	3.95
15942	5869	+0.39	4.18	Ghezzi (2005)	5825	+0.36	4.29
16141	5747	+0.13	4.08	Ramírez et al. $(2012)$	5734	+0.12	4.11
16160	4914	-0.15	4.62	Ramírez et al. $(2012)$	4843	-0.19	4.56
16417	5784	+0.09	4.05	Ramírez et al. $(2012)$	5761	+0.08	4.07
16548	5750	+0.25	4.12	Valenti & Fischer $(2005)$	5642	+0.19	3.89
16589	6194	+0.15	3.90	Randich et al. $(1999)$	6198	+0.15	3.92
16673	6245	+0.00	4.36	Ramírez et al. $(2012)$	6194	-0.03	4.35
17051	6122	+0.17	4.37	Luck (2018)	6108	+0.16	4.39
17925	5146	+0.10	4.56	Ramírez et al. $(2012)$	5220	+0.14	4.61
18907	5065	-0.62	3.50	Ramírez et al. $(2013)$	5136	-0.58	3.55
19308	5807	+0.13	4.34	Valenti & Fischer $(2005)$	5781	+0.11	4.30
19518	5798	-0.13	4.34	Ramírez et al. $(2012)$	5789	-0.14	4.43
19994	6122	+0.16	4.03	Ramírez et al. $(2012)$	6130	+0.16	4.08
20010	6182	-0.26	3.95	Ramírez et al. $(2012)$	6120	-0.30	3.93
20407	5866	-0.44	4.50	Adibekyan et al. $(2012)$	5883	-0.43	4.41
20630	5730	+0.06	4.50	Luck (2016)	5740	+0.08	4.51
20766	5710	-0.24	4.48	Ramírez et al. $(2012)$	5755	-0.21	4.51
20794	5439	-0.40	4.45	Ramírez et al. $(2012)$	5541	-0.34	4.49
20807	5852	-0.25	4.43	Ramírez et al. $(2012)$	5870	-0.24	4.45
21411	5473	-0.26	4.51	Adibekyan et al. (2012)	5516	-0.23	4.56
22049	5060	-0.09	4.58	Ramírez et al. (2012)	5146	-0.04	4.62
22072	5027	-0.25	3.65	Valenti & Fischer (2005)	5011	-0.26	3.46
22484	6001	-0.09	4.07	Ramírez et al. $(2012)$	6039	-0.07	4.09
22879	5891	-0.82	4.31	Ramírez et al. $(2012)$	5934	-0.79	4.31
23195	6446	-0.07	4.15	Buder et al. $(2019)$	5949	+0.01	4.17
23249	5012	+0.09	3.74	Ramírez et al. $(2013)$	4976	+0.07	3.72
23269	6156	+0.03	4.30	Buder et al. $(2019)$	6115	+0.01	4.42
23713	6380	-0.03	4.50	Boesgaard & Friel (1990)	5984	+0.01	4.15
24040	5853	+0.21	4.36	Valenti & Fischer (2005)	5785	+0.17	4.21
24062	6107	+0.28	4.62	Adibekyan et al. $(2012)$	5890	+0.15	4.11
24293	5760	-0.04	4.10	Porto de Mello et al. (2014)	5731	-0.06	4.37
24616	5010	-0.73	3.21	Ramírez et al. $(2013)$	5059	-0.70	3.23
24892	5363	-0.28	4.12	Valenti & Fischer (2005)	5378	-0.27	3.88
25457	6245	-0.09	4.34	Ramírez et al. $(2012)$	6202	-0.12	4.31
25535	-	-0.12	-	Holmberg et al. $(2007)$	5810	-0.12	3.94
25740	-	-0.11	-	Holmberg et al. $(2007)$	5749	-0.11	4.06
25825	5941	+0.07	4.38	Valenti & Fischer (2005)	5976	+0.18	4.43
25874	5770	+0.04	4.40	Porto de Mello et al. (2014)	5731	+0.02	4.36
25918	5533	-0.05	4.52	Valenti & Fischer (2005)	5546	-0.04	4.43
26345	6664	+0.23	4.27	Luck (2018)	6656	+0.18	4.25
26491	5816	-0.07	4.37	Valenti & Fischer (2005)	5779	-0.09	4.29
26767	5807	+0.15	4.48	Ramírez et al. (2013)	5841	+0.18	4.45
26913	5660	+0.02	4.50	Dopcke et al. $(2019)$	5671	+0.03	4.54

Tabela C.1 – continuação

	]	3	Este trabalho				
HD	$T_{ef}$	[Fe/H]	log g	Referência	$T_{ef}$	[Fe/H]	log g
26923	6090	+0.06	4.50	Dopcke et al. (2019)	6006	+0.01	4.47
27406	5949	+0.04	4.10	Mishenina et al. $(2012)$	6109	+0.18	4.37
27685	5783	+0.10	4.46	Ramírez et al. $(2012)$	5719	+0.18	4.38
27808	6230	+0.16	4.30	Luck (2016)	6249	+0.18	4.35
27836	5727	+0.16	4.30	Chaffee Jr et al. $(1971)$	5880	+0.18	4.22
27859	5855	+0.10	4.32	Luck (2018)	5954	+0.18	4.41
28068	5843	+0.10	4.47	Ramírez et al. $(2012)$	5784	+0.18	4.36
28099	5809	+0.13	4.47	Ramírez et al. $(2012)$	5764	+0.18	4.45
28205	6147	+0.23	4.31	Luck (2018)	6181	+0.18	4.34
28237	6078	+0.18	4.33	Luck (2018)	6096	+0.18	4.38
28344	5931	+0.18	4.39	Luck (2018)	5951	+0.18	4.42
28388	-	-0.34	-	Holmberg et al. $(2007)$	5344	-0.34	3.60
28471	5718	-0.07	4.37	Ramírez et al. $(2012)$	5769	-0.04	4.38
28608	6423	+0.15	4.32	Luck (2018)	6425	+0.18	4.33
28635	6142	+0.13	4.35	Luck (2018)	6175	+0.18	4.44
28821	5690	-0.08	4.58	Porto de Mello et al. $(2014)$	5684	-0.08	4.37
28992	5864	+0.17	4.40	Luck (2018)	5883	+0.18	4.42
29859	6155	+0.11	3.89	Valenti & Fischer $(2005)$	6139	+0.10	3.84
30495	5812	-0.01	4.48	Ramírez et al. $(2012)$	5829	+0.00	4.49
30562	5878	+0.20	4.09	Ramírez et al. $(2012)$	5880	+0.20	4.10
30589	6100	+0.15	4.40	Paulson et al. $(2003)$	6064	+0.18	4.40
30606	6292	+0.01	3.88	Ramírez et al. $(2012)$	6109	-0.10	3.83
30876	5045	-0.14	4.57	Ramírez et al. $(2012)$	5046	-0.14	4.58
30809	6224	+0.26	4.37	Luck (2018)	6227	+0.18	4.34
30966	-	-0.24	-	Holmberg et al. $(2007)$	5356	-0.24	3.43
32147	4765	+0.29	4.57	Ramírez et al. $(2012)$	4772	+0.29	4.55
32923	5695	-0.22	4.06	Ramírez et al. $(2012)$	5711	-0.21	4.05
33021	5804	-0.14	4.31	Valenti & Fischer $(2005)$	5800	-0.14	4.10
33262	6147	-0.17	4.43	Ramírez et al. $(2012)$	6210	-0.13	4.45
33473	5726	-0.10	3.93	Valenti & Fischer $(2005)$	5686	-0.12	3.79
34721	6004	-0.08	4.14	Luck (2016)	6055	-0.05	4.25
35850	6131	-0.02	4.37	Gray et al. $(2006)$	6028	-0.08	4.29
35854	4928	-0.13	4.46	Adibekyan et al. $(2012)$	4928	-0.13	4.59
36435	5356	-0.09	4.50	Ramírez et al. $(2012)$	5447	-0.04	4.55
36553	6017	+0.32	3.81	Datson et al. $(2015)$	5959	+0.29	3.69
36889	5937	+0.23	4.06	Ramírez et al. $(2012)$	5747	+0.12	3.96
37986	5507	+0.26	4.29	Adibekyan et al. $(2012)$	5452	+0.23	4.36
38393	6410	+0.06	4.30	Dopcke et al. $(2019)$	6389	+0.05	4.36
38529	5663	+0.41	3.80	Ramírez et al. $(2012)$	5501	+0.31	3.70
39587	5961	-0.05	4.48	Ramírez et al. $(2012)$	5944	-0.06	4.45
41593	5280	-0.01	4.40	Dopcke et al. $(2019)$	5299	+0.00	4.56
43587	5892	-0.04	4.33	Valenti & Fischer $(2005)$	5887	-0.04	4.27
43834	5569	+0.11	4.42	Ramírez et al. $(2012)$	5592	+0.12	4.45
43947	5942	-0.31	4.30	Ramírez et al. $(2012)$	5999	-0.28	4.34

Tabela C.1 – continuação

Literatura						Este trabalho		
HD	$T_{ef}$	[Fe/H]	log g	Referência	$T_{ef}$	[Fe/H]	log g	
44120	6052	+0.12	4.25	Adibekyan et al. (2012)	5986	+0.08	4.12	
45067	6051	-0.10	3.98	Ramírez et al. $(2012)$	6023	-0.12	3.99	
46569	-	+0.04	-	Holmberg et al. $(2007)$	6157	+0.04	3.91	
48938	5937	-0.43	4.31	Valenti & Fischer $(2005)$	6056	-0.36	4.30	
50692	5891	-0.18	4.36	Valenti & Fischer $(2005)$	5937	-0.15	4.38	
50806	5633	+0.03	4.11	Adibekyan et al. $(2012)$	5621	+0.02	4.07	
52298	6305	-0.31	4.41	Del Peloso et al. $(2005a)$	6305	-0.31	4.35	
52698	5034	+0.15	4.49	Ramírez et al. $(2012)$	5169	+0.23	4.56	
52711	5904	-0.14	4.34	Ramírez et al. $(2012)$	5903	-0.14	4.37	
53143	5462	+0.22	4.47	Santos et al. $(2005)$	5396	+0.18	4.53	
53705	5798	-0.21	4.30	Ramírez et al. $(2012)$	5821	-0.20	4.26	
53706	5245	-0.28	4.57	Valenti & Fischer $(2005)$	5316	-0.24	4.50	
55720	5486	-0.30	4.58	Valenti & Fischer $(2005)$	5541	-0.27	4.46	
57095	4945	-0.03	4.45	Santos et al. $(2005)$	4872	-0.07	4.43	
57853	-	-0.07	-	Holmberg et al. $(2007)$	5948	-0.07	4.07	
58551	6232	-0.52	4.32	Ramírez et al. $(2012)$	6244	-0.51	4.30	
59984	5983	-0.69	4.01	Ramírez et al. $(2012)$	5978	-0.69	3.99	
61033	5650	+0.05	4.53	Ghezzi (2005)	5465	-0.06	4.49	
61606	4927	+0.01	4.61	Ramírez et al. $(2012)$	4980	+0.04	4.63	
61902	6209	-0.62	4.38	Adibekyan et al. $(2012)$	6165	-0.65	4.12	
62644	5365	-0.06	3.70	Randich et al. $(1999)$	5401	-0.04	3.78	
63077	5760	-0.86	4.21	Ramírez et al. $(2012)$	5848	-0.81	4.22	
63637	-	-0.24	-	Holmberg et al. $(2007)$	5694	-0.24	3.92	
64096	-	-0.12	-	Holmberg et al. $(2007)$	5890	-0.12	4.18	
64114	5653	+0.16	4.53	Ghezzi $(2005)$	5630	+0.15	4.53	
64468	4936	+0.07	4.47	Valenti & Fischer $(2005)$	4922	+0.06	4.55	
64606	5224	-0.86	4.59	Ramírez et al. $(2013)$	5278	-0.83	4.64	
65583	5329	-0.67	4.56	Ramírez et al. $(2013)$	5391	-0.63	4.55	
65907	5996	-0.31	4.38	Ramírez et al. $(2012)$	5984	-0.32	4.38	
66653	5840	+0.15	4.40	Porto de Mello et al. $(2014)$	5817	+0.14	4.45	
67199	5135	+0.03	4.53	Valenti & Fischer $(2005)$	5137	+0.03	4.56	
67228	5809	+0.11	3.97	Ramírez et al. $(2013)$	5808	+0.11	3.98	
67581	-	-0.32	-	Holmberg et al. $(2007)$	5841	-0.32	3.94	
67907	-	-0.29	-	Holmberg et al. $(2007)$	5473	-0.29	3.76	
68168	5710	+0.09	4.38	Ramírez et al. $(2012)$	5762	+0.12	4.39	
69809	5817	+0.27	4.30	Valenti & Fischer $(2005)$	5801	+0.26	4.26	
69830	5428	-0.03	4.51	Ramírez et al. $(2012)$	5440	-0.02	4.51	
71334	5770	-0.06	4.50	Porto de Mello et al. $(2014)$	5720	-0.09	4.40	
72234	5693	-0.12	3.89	Valenti & Fischer $(2005)$	5669	-0.13	3.81	
72579	5449	+0.20	4.27	Adibekyan et al. $\left(2012\right)$	5423	+0.18	4.38	
72673	5290	-0.36	4.59	Ramírez et al. $(2012)$	5301	-0.35	4.58	
72954	5204	-0.42	3.40	Randich et al. $(1999)$	5317	-0.35	3.45	
73350	5830	+0.14	4.45	Porto de Mello et al. $(2014)$	5790	+0.12	4.47	
73667	4990	-0.57	4.65	Valenti & Fischer $(2005)$	5091	-0.51	4.58	

Tabela C.1 – continuação

Literatura						Este trabalho		
HD	$T_{ef}$	[Fe/H]	log g	Referência	$T_{ef}$	[Fe/H]	log g	
74576	5005	-0.01	4.61	Ramírez et al. $(2012)$	5007	-0.01	4.61	
74698	5783	+0.07	4.27	Adibekyan et al. $(2012)$	5737	+0.04	4.18	
75732	5282	+0.44	4.48	Ramírez et al. $(2012)$	5242	+0.42	4.45	
76151	5756	+0.09	4.42	Ramírez et al. $(2012)$	5758	+0.09	4.47	
76932	5958	-0.87	4.16	Ramírez et al. $(2012)$	5979	-0.86	4.15	
77902	-	-0.12	-	Holmberg et al. $(2007)$	5706	-0.12	3.69	
78366	6010	+0.00	4.44	Ramírez et al. $(2012)$	5963	-0.03	4.42	
78429	5732	+0.07	4.27	Ramírez et al. $(2012)$	5740	+0.07	4.26	
78643	5925	-0.06	-	Favata et al. $(1997)$	5959	-0.19	3.98	
79969	4825	-0.05	4.40	Mishenina et al. $(2013)$	4826	-0.05	4.45	
81174	-	-0.23	-	Holmberg et al. $(2007)$	5197	-0.23	3.83	
82443	5334	-0.03	4.40	Mishenina et al. $(2013)$	5340	-0.03	4.57	
82885	5532	+0.31	4.47	Ramírez et al. $(2012)$	5510	+0.30	4.47	
83529	5878	-0.25	4.34	Valenti & Fischer $(2005)$	5908	-0.23	4.27	
84117	6150	-0.14	4.28	Ramírez et al. $(2012)$	6168	-0.13	4.32	
84937	6377	-2.02	-	Ramírez et al. $(2012)$	6405	-2.00	4.22	
85380	6111	+0.09	4.04	Ramírez et al. $(2012)$	6036	+0.05	4.01	
85725	5855	+0.00	3.73	Ramírez et al. $(2012)$	5844	-0.01	3.74	
86728	5730	+0.22	4.30	Ramírez et al. $(2012)$	5762	+0.24	4.34	
87883	4958	+0.07	4.56	Valenti & Fischer $(2005)$	4954	+0.07	4.56	
88084	5743	-0.11	4.41	Ramírez et al. $(2012)$	5761	-0.10	4.38	
88218	5878	-0.14	4.16	Adibekyan et al. $(2012)$	5784	-0.20	3.99	
88725	5581	-0.70	4.55	Valenti & Fischer $(2005)$	5721	-0.62	4.41	
90711	5466	+0.30	4.50	Valenti & Fischer $(2005)$	5412	+0.27	4.44	
90722	5679	+0.33	4.23	Ramírez et al. $(2012)$	5641	+0.31	4.21	
92588	5199	+0.04	3.79	Adibekyan et al. $(2012)$	5105	-0.02	3.68	
94028	5970	-1.47	4.33	Sitnova et al. $(2015)$	6045	-1.43	4.37	
94340	5870	+0.14	3.99	Porto de Mello et al. $(2014)$	5806	+0.10	4.13	
94765	5091	+0.15	4.76	Valenti & Fischer $(2005)$	5051	+0.13	4.59	
97037	5826	-0.12	4.22	Ramírez et al. $(2012)$	5866	-0.10	4.25	
97320	6165	-1.05	4.57	Adibekyan et al. $(2012)$	6122	-1.08	4.27	
98649	5770	-0.02	4.63	Porto de Mello et al. $(2014)$	5730	-0.04	4.43	
99491	5463	+0.30	4.48	Ramírez et al. $(2012)$	5439	+0.29	4.45	
99492	4973	+0.32	4.58	Luck (2016)	4892	+0.27	4.55	
100623	5241	-0.37	4.59	Ramírez et al. $(2012)$	5226	-0.38	4.58	
101259	5067	-0.69	3.51	Valenti & Fischer $(2005)$	5073	-0.69	3.12	
101367	5615	+0.29	4.38	Adibekyan et al. $(2012)$	5585	+0.27	4.35	
101501	5532	-0.05	4.53	Ramírez et al. $(2012)$	5534	-0.05	4.53	
101612	6281	-0.36	4.41	Adibekyan et al. $(2012)$	6264	-0.37	4.30	
101676	6176	-0.45	4.14	Ramírez et al. $(2012)$	6179	-0.45	4.08	
102200	6185	-1.10	4.59	Adibekyan et al. $(2012)$	6200	-1.09	4.35	
102300	5987	-0.31	4.23	Adibekyan et al. $(2012)$	6024	-0.29	4.14	
102365	5646	-0.30	4.39	Ramírez et al. $(2012)$	5686	-0.28	4.43	
102438	5523	-0.31	4.44	Ramírez et al. $(2012)$	5608	-0.26	4.47	

Tabela C.1 – continuação
	]	Este trabalho					
HD	$T_{ef}$	[Fe/H]	log g	Referência	$T_{ef}$	[Fe/H]	log g
102902	_	-0.12	-	Holmberg et al. (2007)	5485	-0.12	3.60
103026	6266	-0.04	4.08	Ramírez et al. (2012)	6079	-0.15	4.01
104304	5508	+0.31	4.42	Ramírez et al. $(2012)$	5502	+0.31	4.42
104800	5822	-0.75	4.42	Ramírez et al. $(2012)$	5815	-0.75	4.39
105590	5790	+0.02	4.58	Porto de Mello et al. (2014)	5724	-0.02	4.41
105618	-	+0.34	-	Holmberg et al. (2007)	5702	+0.34	4.28
105901	5840	-0.01	4.50	Porto de Mello et al. (2014)	5812	-0.03	4.38
106116	5666	+0.16	4.36	Ramírez et al. (2013)	5665	+0.16	4.37
106516	6246	-0.71	4.37	Ramírez et al. $(2012)$	6279	-0.69	4.40
106742	-	+0.04	-	Holmberg et al. $(2007)$	5960	+0.05	3.85
107213	6274	+0.28	4.06	Valenti & Fischer (2005)	6250	+0.27	4.04
108309	5731	+0.11	4.17	Ramírez et al. $(2012)$	5726	+0.11	4.16
108317	5250	-2.42	2.70	Ramírez et al. $(2013)$	5387	-2.34	2.98
109200	5082	-0.29	4.55	Ramírez et al. $(2012)$	5163	-0.24	4.57
109409	5886	+0.33	4.16	Adibekyan et al. (2012)	5728	+0.24	4.01
109684	5992	-0.34	4.38	Adibekyan et al. (2012)	5969	-0.35	4.20
111199	6231	-0.11	3.67	Ramírez et al. $(2012)$	6073	-0.20	3.62
111395	5605	+0.09	4.48	Ramírez et al. $(2012)$	5632	+0.11	4.51
111398	5714	+0.08	4.29	Valenti & Fischer (2005)	5724	+0.09	4.22
112164	6031	+0.32	4.05	Da Silva et al. (2012)	5890	+0.24	3.90
114260	5509	-0.09	4.49	Valenti & Fischer (2005)	5520	-0.08	4.46
114613	5702	+0.17	3.89	Ramírez et al. $(2012)$	5656	+0.14	3.89
114710	6010	+0.04	4.41	Ramírez et al. $(2012)$	6013	+0.04	4.41
114762	5855	-0.78	4.17	Ramírez et al. $(2012)$	5979	-0.71	4.21
114946	5114	-0.21	3.54	Valenti & Fischer (2005)	5090	-0.22	3.37
115382	5780	-0.08	4.40	Porto de Mello et al. (2014)	5760	-0.09	4.37
115383	6046	+0.12	4.27	Ramírez et al. $(2012)$	6041	+0.12	4.26
115404	5045	-0.14	4.62	Ramírez et al. $(2012)$	4981	-0.18	4.57
115617	5566	-0.01	4.41	Ramírez et al. $(2012)$	5644	+0.04	4.48
116442	5182	-0.40	4.56	Valenti & Fischer (2005)	5299	-0.33	4.59
116443	5038	-0.38	4.58	Valenti & Fischer (2005)	5116	-0.33	4.60
117105	5861	-0.30	4.24	Ramírez et al. $(2012)$	5881	-0.29	4.26
117176	5522	-0.10	3.91	Ramírez et al. $(2012)$	5540	-0.09	3.93
117939	5730	-0.10	4.44	Porto de Mello et al. (2014)	5698	-0.12	4.40
118598	5800	+0.02	4.52	Porto de Mello et al. (2014)	5735	-0.02	4.42
118972	5160	-0.06	4.55	Ramírez et al. (2012)	5192	-0.04	4.56
119550	5830	+0.02	3.98	Porto de Mello et al. (2014)	5794	+0.00	3.89
120066	5866	+0.04	4.09	Ramírez et al. (2012)	5833	+0.02	4.12
120136	6464	+0.22	4.30	Ramírez et al. $(2012)$	6370	+0.16	4.25
120237	6061	-0.04	4.32	Ramírez et al. $(2012)$	6113	-0.01	4.34
120690	5579	-0.02	4.38	Ramírez et al. $(2012)$	5567	-0.03	4.43
120780	5129	-0.27	4.62	Ramírez et al. $(2012)$	5018	-0.34	4.56
121370	6121	+0.27	3.78	Ramírez et al. $(2012)$	5997	+0.20	3.75
121384	5276	-0.41	3.80	Valenti & Fischer (2005)	5276	-0.41	3.61

Tabela C.1 – continuação

Literatura			a		Este trabalho		
HD	$T_{ef}$	[Fe/H]	log g	Referência	$T_{ef}$	[Fe/H]	log g
122196	6043	-1.82	3.87	Bensby et al. (2014)	6025	-1.83	3.93
122742	5519	+0.04	4.43	Ramírez et al. $(2012)$	5485	+0.02	4.43
122862	5953	-0.14	4.10	Ramírez et al. $(2012)$	5954	-0.14	4.07
123619	6166	-0.32	4.45	Adibekyan et al. $(2012)$	6125	-0.34	4.20
124553	6125	+0.28	4.22	Sousa et al. $(2006)$	5991	+0.20	4.03
124570	6180	+0.11	3.91	Luck (2016)	6122	+0.04	3.94
124850	6203	-0.28	3.73	Ramírez et al. $(2012)$	6146	-0.31	3.74
125072	4947	+0.24	4.57	Ramírez et al. $(2012)$	4850	+0.18	4.52
125184	5680	+0.27	4.10	Adibekyan et al. $(2012)$	5572	+0.21	4.05
125276	6108	-0.68	4.41	Luck (2018)	6163	-0.65	4.44
125566	-	-0.61	-	Holmberg et al. $(2007)$	5362	-0.61	3.84
126053	5676	-0.38	4.41	Ramírez et al. $(2012)$	5729	-0.35	4.44
126614	5594	+0.56	4.44	Valenti & Fischer (2005)	5444	+0.47	4.19
126868	5521	-0.06	3.30	Randich et al. (1999)	5610	-0.01	3.46
128311	5035	+0.05	4.61	Ramírez et al. $(2012)$	4879	-0.04	4.57
128428	5739	+0.47	4.34	Valenti & Fischer (2005)	5508	+0.33	4.04
128571	6159	-0.37	4.40	Adibekyan et al. (2012)	6147	-0.38	4.22
128620	5824	+0.24	4.34	Porto de Mello et al. (2008)	5824	+0.24	4.23
128621	5223	+0.25	4.44	Porto de Mello et al. (2008)	5223	+0.25	4.48
129010	6052	+0.10	4.01	Valenti & Fischer (2005)	5995	+0.07	3.98
130004	5250	-0.24	4.60	Paulson & Yelda (2006)	4902	-0.45	4.58
130307	5024	-0.16	4.62	Valenti & Fischer (2005)	5040	-0.15	4.60
130948	5942	-0.11	4.39	Ramírez et al. (2012)	5939	-0.11	4.40
131117	6097	+0.15	4.03	Ramírez et al. $(2012)$	5919	+0.04	4.00
131183	5670	+0.09	4.24	Adibekyan et al. (2012)	5604	+0.05	4.16
131509	5112	-0.11	3.84	Valenti & Fischer (2005)	4996	-0.18	3.62
131511	5248	+0.08	4.51	Ramírez et al. $(2012)$	5201	+0.05	4.49
131923	5660	+0.13	4.26	Ramírez et al. $(2012)$	5574	+0.08	4.20
131977	4666	+0.05	4.62	Ramírez et al. $(2012)$	4664	+0.05	4.60
132505	5986	+0.28	4.30	Aguilera-Gómez et al. (2018)	5915	+0.24	4.15
134113	5789	-0.75	4.02	Ramírez et al. (2012)	5819	-0.73	4.04
134169	5894	-0.79	4.05	Ramírez et al. $(2013)$	5914	-0.78	4.10
134439	4896	-1.48	4.55	Valenti & Fischer (2005)	5104	-1.36	4.70
134440	4913	-1.37	4.75	Luck (2018)	4855	-1.40	4.70
134664	5810	+0.13	4.36	Porto de Mello et al. (2014)	5806	+0.13	4.43
135101A	5648	+0.03	4.25	Ramírez et al. (2012)	5637	+0.02	4.10
135101B	5537	+0.09	4.10	Ramírez et al. $(2012)$	5519	+0.08	4.35
135204	5413	-0.16	4.00	Mishenina et al. $(2013)$	5399	-0.17	4.45
135599	5221	-0.05	4.46	Valenti & Fischer (2005)	5234	-0.04	4.58
136202	6160	-0.13	3.95	Ramírez et al. (2012)	6131	-0.15	3.94
136352	5520	-0.38	4.30	Ramírez et al. (2012)	5728	-0.26	4.36
137510	5966	+0.37	3.99	Valenti & Fischer (2005)	5928	+0.35	3.96
137676	5253	-0.53	3.93	Adibekvan et al. (2012)	5287	-0.51	3.80
137763	5403	+0.09	4.34	Montes et al. $(2018)$	5291	+0.02	4.43
					-		-

Tabela C.1 – continuação

			14	bela C.1 continuação				
Literatura			a	Este		ste traba	e trabalho	
HD	$T_{ef}$	[Fe/H]	log g	Referência	$T_{ef}$	[Fe/H]	log g	
137812	5303	+0.04	4.14	Valenti & Fischer (2005)	5206	-0.02	3.85	
138573	5760	+0.00	4.42	Porto de Mello et al. (2014)	5756	+0.00	4.43	
138776	5681	+0.38	4.31	Valenti & Fischer (2005)	5581	+0.32	4.19	
139503	-	-0.15	-	Holmberg et al. $(2007)$	5830	-0.15	3.92	
140283	5772	-2.30	-	Ramírez et al. (2012)	5824	-2.27	3.71	
140538	5662	+0.01	4.47	Ramírez et al. $(2012)$	5692	+0.03	4.48	
140690	5780	+0.06	4.40	Porto de Mello et al. (2014)	5746	+0.04	4.38	
140901	5587	+0.10	4.44	Ramírez et al. (2012)	5594	+0.10	4.47	
141004	5867	-0.03	4.15	Ramírez et al. $(2012)$	5913	+0.00	4.22	
141885	-	+0.14	-	Holmberg et al. $(2007)$	5822	+0.14	3.78	
142072	5790	+0.20	4.46	Porto de Mello et al. (2014)	5756	+0.18	4.45	
142267	5756	-0.43	4.48	Valenti & Fischer (2005)	5835	-0.38	4.42	
143337	5750	-0.19	4.36	Porto de Mello et al. (2014)	5712	-0.21	4.28	
143761	5816	-0.25	4.20	Ramírez et al. $(2012)$	5828	-0.24	4.17	
143885	-	+0.19	-	Holmberg et al. $(2007)$	5972	+0.19	3.93	
144585	5854	+0.31	4 33	Valenti & Fischer $(2005)$	5816	+0.29	4 23	
144628	5079	-0.36	4 60	$\begin{array}{c} \text{Bamírez et al}  (2012) \end{array}$	5118	-0.34	4 60	
144988	5862	-0.18	3.86	Valenti & Fischer $(2005)$	5862	-0.18	3.82	
145825	5840	+0.07	4.52	Porto de Mello et al (2014)	5794	+0.04	4 46	
146233	5817	+0.05	4.48	Porto de Mello et al. (2014)	5803	+0.04	4.43	
146835	-	-0.16	-	Holmberg et al $(2007)$	5988	-0.16	4 17	
147513	5856	+0.02	4.49	$\operatorname{Ram}(\operatorname{rez et al.}(2012))$	5867	+0.03	4.49	
147584	6030	-0.08	4.43	Ramírez et al. $(2012)$	6087	-0.05	4.45	
147743	-	+0.09	-	Holmberg et al. $(2007)$	5818	+0.09	3.78	
148577	5713	-0.09	4.29	Adibekvan et al. $(2012)$	5708	-0.09	4.17	
148816	5925	-0.72	4.13	$\operatorname{Ram}(\operatorname{rez} et al. (2012))$	5928	-0.72	4.12	
149661	5222	+0.01	4.53	$\operatorname{Ram(rez et al. (2012))}_{\text{Ram(rez et al. (2012))}}$	5253	+0.03	4.54	
149724	5738	+0.41	4.29	Valenti & Fischer (2005)	5563	+0.31	4.12	
150248	5750	-0.04	4.38	Porto de Mello et al. (2014)	5722	-0.06	4.40	
150474	5459	+0.05	4.13	Valenti & Fischer (2005)	5369	+0.00	3.88	
150698	5878	+0.24	4.12	Valenti & Fischer (2005)	5757	+0.17	3.94	
151090	5060	-0.20	3.86	Valenti & Fischer (2005)	5015	-0.23	3.55	
151337	5056	-0.02	3.71	Valenti & Fischer (2005)	4988	-0.06	3.55	
152311	5619	+0.11	3.98	$\operatorname{Ram}(\operatorname{rez et al.}(2012))$	5656	+0.13	3.98	
152391	5454	-0.04	4.51	$\operatorname{Ram(rez et al. (2012))}_{\text{Ram(rez et al. (2012))}}$	5462	-0.04	4.55	
153075	5677	-0.55	4.25	$\operatorname{Ram(rez et al. (2012))}_{\text{Ram(rez et al. (2012))}}$	5844	-0.45	4.28	
153458	5850	+0.20	4.44	Porto de Mello et al. $(2014)$	5815	+0.18	4.48	
154088	5409	+0.31	4.46	Valenti & Fischer $(2005)$	5328	+0.26	4.42	
154160	5650	+0.43	4.12	Valenti & Fischer (2005)	5530	+0.36	3.98	
154417	6019	+0.00	4.40	$\operatorname{Ram}(\operatorname{rez} \text{ et al} (2012))$	6033	+0.01	4.41	
154857	5606	-0.22	3.99	Valenti & Fischer $(2005)$	5550	-0.25	3.78	
154931	5869	-0.09	3.97	Luck (2016)	5840	-0.12	4.01	
154962	5800	+0.30	4.06	$\operatorname{Bam'(rez et al} (2012)$	5685	+0.23	3.99	
155114	5830	-0.02	4.46	Porto de Mello et al $(2014)$	5794	-0.04	4.51	
TOOTTT	0000	0.02	1.10	= $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$	0.01	0.01	T.O.T	

Tabela C.1 – continuação

Literatura			Este trabalh		lho		
HD	$T_{ef}$	[Fe/H]	log g	Referência	$T_{ef}$	[Fe/H]	log g
155885	5108	-0.23	4.58	Ramírez et al. (2012)	5130	-0.22	4.37
156274	5247	-0.34	4.51	Ramírez et al. $(2012)$	5353	-0.28	4.54
156365	5856	+0.29	4.09	Valenti & Fischer (2005)	5785	+0.25	3.99
156411	5910	-0.11	3.99	Adibekyan et al. $(2012)$	5832	-0.16	3.79
156826	5249	-0.13	3.79	Valenti & Fischer $(2005)$	5115	-0.21	3.52
156846	6195	+0.15	3.97	Ramírez et al. $(2012)$	5990	+0.03	3.98
157060	6158	+0.01	4.14	Luck (2018)	6120	-0.01	4.12
157089	5827	-0.47	4.09	Del Peloso et al. $(2005b)$	5881	-0.44	4.09
157214	5713	-0.39	4.26	Ramírez et al. $(2012)$	5766	-0.36	4.27
157347	5689	+0.01	4.39	Ramírez et al. $(2012)$	5678	+0.00	4.38
157750	5840	+0.21	4.54	Porto de Mello et al. $(2014)$	5788	+0.18	4.44
158226	5782	-0.52	4.18	Ramírez et al. $(2012)$	5793	-0.51	4.16
159222	5850	+0.14	4.34	Porto de Mello et al. $(2014)$	5834	+0.13	4.41
159332	6301	-0.23	3.94	Ramírez et al. $(2012)$	6223	-0.28	3.88
159656	5840	+0.09	4.32	Porto de Mello et al. $(2014)$	5795	+0.06	4.33
159784	6056	+0.28	3.87	Aguilera-Gómez et al. $(2018)$	6043	+0.27	3.92
160346	4823	-0.05	4.56	Ramírez et al. $(2012)$	4890	-0.01	4.61
160411	-	+0.07	-	Holmberg et al. $(2007)$	5770	+0.07	3.82
160691	5739	+0.26	4.21	Ramírez et al. $(2012)$	5708	+0.24	4.19
161239	5810	+0.23	3.77	Luck (2016)	5742	+0.21	3.78
161555	5821	+0.08	4.03	Ramírez et al. $(2012)$	5757	+0.04	3.97
161612	5586	+0.15	4.47	Ramírez et al. $(2012)$	5570	+0.14	4.45
161797	5486	+0.23	3.96	Ramírez et al. $(2012)$	5487	+0.23	3.98
162396	6090	-0.35	4.27	Adibekyan et al. $(2012)$	6075	-0.36	4.09
163153	5744	+0.49	4.35	Valenti & Fischer $(2005)$	5507	+0.35	3.98
164507	5647	+0.19	3.93	Valenti & Fischer $(2005)$	5514	+0.11	3.75
164595	5810	-0.04	4.67	Porto de Mello et al. $(2014)$	5763	-0.07	4.42
165185	5942	+0.02	4.53	Santos et al. $(2005)$	5904	+0.00	4.48
165271	-	-0.04	-	Holmberg et al. $(2007)$	5736	-0.04	3.92
165341	5315	+0.06	4.53	Ramírez et al. $(2012)$	5243	+0.02	4.43
165499	6016	-0.15	4.31	Ramírez et al. $(2012)$	5917	-0.21	4.24
167300	5837	-0.45	4.30	Adibekyan et al. $(2012)$	5869	-0.43	4.13
167665	6179	-0.14	4.25	Luck (2016)	6131	-0.17	4.23
168443	5558	+0.07	4.04	Ramírez et al. $(2012)$	5552	+0.07	4.04
169830	6302	+0.10	4.07	Ramírez et al. $(2012)$	6205	+0.04	4.00
170657	5101	-0.14	4.61	Ramírez et al. $(2012)$	5070	-0.16	4.58
170829	5398	+0.13	3.93	Valenti & Fischer $(2005)$	5346	+0.10	3.89
171990	6045	+0.06	4.14	Adibekyan et al. $(2012)$	5959	+0.01	3.96
172051	5650	-0.24	4.52	Ramírez et al. $(2012)$	5706	-0.21	4.54
175425	5772	+0.09	4.24	Ramírez et al. $(2012)$	5753	+0.08	4.22
175541	5055	-0.07	3.52	Valenti & Fischer $(2005)$	5002	-0.10	3.29
177565	5640	+0.13	4.45	Ramírez et al. $(2012)$	5657	+0.14	4.47
178904	5727	+0.09	4.41	Adibekyan et al. $(2012)$	5688	+0.07	4.35
179699	-	+0.16	-	Holmberg et al. $(2007)$	5985	+0.16	4.04

Tabela C.1 – continuação

			14	bela 0:1 continuação			
	]	Literatur	a		Es	ste trabal	lho
HD	$T_{ef}$	[Fe/H]	log g	Referência	$T_{ef}$	[Fe/H]	log g
179949	6177	+0.17	4.35	Ramírez et al. $(2012)$	6142	+0.15	4.34
180684	6090	+0.05	4.07	Valenti & Fischer $(2005)$	6046	+0.02	4.02
181321	5810	-0.06	4.34	Da Silva et al. $(2012)$	5817	-0.06	4.52
182488	5453	+0.22	4.67	Valenti & Fischer (2005)	5384	+0.18	4.49
182572	5679	+0.43	4.19	Ramírez et al. (2012)	5540	+0.35	4.17
182619	5761	+0.05	4.53	Ghezzi (2005)	5574	-0.06	4.49
182807	6100	-0.33	4.21	Gehren et al. (2004)	6129	-0.31	4.22
183263	5924	+0.27	4.30	Ramírez et al. $(2012)$	5838	+0.22	4.26
183577	-	-0.36	_	Holmberg et al. (2007)	6107	-0.36	4.03
183870	5067	+0.05	4.69	Valenti & Fischer (2005)	5021	+0.02	4.60
187013	6442	-0.07	4.17	Ramírez et al. (2012)	6376	-0.11	4.15
187237	5850	+0.16	4.48	Porto de Mello et al. (2014)	5812	+0.14	4.48
187691	6140	+0.12	4.21	Ramírez et al. (2012)	6113	+0.10	4.18
187923	5726	-0.13	4.28	Valenti & Fischer (2005)	5736	-0.12	4.10
188376	5495	+0.06	3.66	Ramírez et al. $(2012)$	5448	+0.03	3.68
188512	5062	-0.19	3.54	Ramírez et al. $(2013)$	5150	-0.14	3.58
188815	6217	-0.53	4.34	Adibekyan et al. $(2012)$	6201	-0.54	4.20
189406	-	+0.02	-	Holmberg et al. $(2007)$	5978	+0.02	3.85
189567	5677	-0.26	4.34	Ramírez et al. (2012)	5739	-0.22	4.37
189625	5870	+0.27	4.45	Porto de Mello et al. (2014)	5821	+0.24	4.45
189733	5058	-0.01	4.59	Ramírez et al. (2012)	5026	-0.03	4.57
190067	5356	-0.37	4.61	Valenti & Fischer (2005)	5455	-0.31	4.58
190228	5348	-0.18	3.98	Valenti & Fischer (2005)	5284	-0.22	3.71
190248	5576	+0.36	4.28	Ramírez et al. $(2012)$	5595	+0.37	4.32
190360	5504	+0.19	4.27	Ramírez et al. $(2012)$	5523	+0.20	4.29
190404	5038	-0.60	4.61	Ramírez et al. $(2012)$	5116	-0.55	4.61
190406	5895	+0.06	4.39	Ramírez et al. $(2012)$	5943	+0.09	4.43
190580	-	-0.16	-	Holmberg et al. $(2007)$	5573	-0.16	3.67
190613	5776	+0.00	4.33	Adibekyan et al. $(2012)$	5795	+0.01	4.26
190771	5840	+0.19	4.56	Porto de Mello et al. (2014)	5786	+0.16	4.46
191408	5003	-0.54	4.62	Ramírez et al. $(2012)$	5027	-0.53	4.60
191487	5820	-0.01	4.24	Porto de Mello et al. $(2014)$	5831	+0.00	4.40
191760	6016	+0.33	4.25	Soto & Jenkins $(2018)$	5828	+0.22	4.02
192263	5015	+0.00	4.61	Ramírez et al. $(2012)$	4983	-0.02	4.59
192310	5091	+0.05	4.53	Ramírez et al. $(2012)$	5144	+0.08	4.58
192344	5772	+0.30	4.22	Valenti & Fischer $(2005)$	5642	+0.22	4.02
193193	5845	-0.11	4.19	Ramírez et al. $(2012)$	5934	-0.06	4.26
193307	5987	-0.34	4.09	Ramírez et al. $(2012)$	6006	-0.33	4.10
193901	5859	-0.94	4.59	Ramírez et al. $(2012)$	5852	-0.94	4.51
194640	5550	+0.02	4.45	Ramírez et al. $(2012)$	5552	+0.02	4.47
195564	5676	+0.06	4.03	Adibekyan et al. $(2012)$	5623	+0.03	3.97
195838	6142	-0.23	4.10	Ramírez et al. $(2012)$	6089	-0.26	4.05
196050	5881	+0.29	4.24	Ramírez et al. $(2012)$	5824	+0.26	4.18
196378	6064	-0.34	4.02	Valenti & Fischer (2005)	6056	-0.34	3.92

Tabela C.1 – continuação

	Literatura						Este trabalho			
HD	$T_{ef}$	$[\mathrm{Fe}/\mathrm{H}]$	log g	Referência	$T_{ef}$	$[\mathrm{Fe}/\mathrm{H}]$	log g			
196755	5665	+0.04	3.70	Del Peloso et al. $(2005b)$	5616	+0.01	3.68			
196761	5414	-0.23	4.51	Ramírez et al. $(2012)$	5511	-0.17	4.55			
196794	5094	+0.33	4.64	Trevisan et al. $(2011)$	5061	+0.04	4.57			
196800	5880	+0.17	4.25	Ramírez et al. $(2012)$	5950	+0.21	4.28			
196885	6328	+0.19	4.31	Ramírez et al. $(2012)$	6127	+0.07	4.20			
197210	5577	-0.03	4.42	Adibekyan et al. $(2012)$	5597	-0.02	4.51			
197536	5990	-0.50	4.12	Ramírez et al. $(2012)$	6033	-0.47	4.15			
197963	6446	+0.12	3.77	Ramírez et al. $(2012)$	6240	+0.00	3.82			
197964	4783	+0.09	3.05	Wittenmyer et al. $(2016)$	4788	+0.09	2.93			
198802	5767	+0.04	3.96	Valenti & Fischer $(2005)$	5722	+0.01	3.87			
199288	5693	-0.60	4.31	Ramírez et al. $(2012)$	5838	-0.51	4.39			
199960	5833	+0.13	4.20	Ramírez et al. $(2012)$	5886	+0.16	4.22			
200525	-	-0.07	-	Holmberg et al. $(2007)$	5936	-0.07	4.24			
200580	5878	-0.57	4.01	Ramírez et al. $(2012)$	5926	-0.54	4.11			
200968	5221	+0.11	4.61	Valenti & Fischer $(2005)$	5135	+0.06	4.53			
201242	-	-0.25	-	Holmberg et al. $(2007)$	6184	-0.25	3.61			
201891	5965	-0.99	4.32	Ramírez et al. $(2012)$	5982	-0.98	4.37			
202072	5750	-0.17	4.48	Porto de Mello et al. $(2014)$	5738	-0.18	4.40			
202707	-	-0.33	-	Holmberg et al. $(2007)$	5681	-0.33	3.71			
202917	5617	+0.11	4.39	Valenti & Fischer $(2005)$	5561	-0.06	4.50			
202940	5433	-0.25	4.43	Luck (2016)	5471	-0.23	4.42			
203608	6168	-0.66	4.34	Ramírez et al. $(2012)$	6181	-0.65	4.36			
205158	-	+0.13	-	Holmberg et al. $(2007)$	5976	+0.13	3.97			
205390	5068	-0.21	4.61	Ramírez et al. $(2012)$	5055	-0.22	4.59			
206255	-	+0.08	-	Holmberg et al. $(2007)$	5592	+0.08	3.84			
206301	5765	-0.02	3.67	Ramírez et al. $(2012)$	5688	-0.07	3.62			
206860	5942	-0.08	4.45	Ramírez et al. $(2012)$	5953	-0.07	4.46			
207043	5790	+0.07	4.55	Porto de Mello et al. $(2014)$	5754	+0.05	4.50			
207129	5934	+0.04	4.39	Ramírez et al. $(2012)$	5920	+0.03	4.44			
207978	6416	-0.63	4.07	Ramírez et al. $(2012)$	6400	-0.64	4.08			
209100	4649	-0.19	4.63	Ramírez et al. $(2013)$	4666	-0.18	4.59			
210277	5526	+0.22	4.38	Ramírez et al. $(2012)$	5487	+0.20	4.34			
210460	5658	-0.12	3.95	Valenti & Fischer $(2005)$	5523	-0.20	3.55			
210918	5728	-0.11	4.27	Ramírez et al. $(2012)$	5727	-0.11	4.27			
211038	5009	-0.22	3.87	Valenti & Fischer $(2005)$	4979	-0.24	3.58			
211080	5820	+0.39	4.19	Valenti & Fischer $(2005)$	5624	+0.27	3.95			
211415	5812	-0.24	4.33	Ramírez et al. $(2012)$	5819	-0.24	4.33			
211786	5780	-0.09	4.42	Porto de Mello et al. (2014)	5765	-0.10	4.46			
211998	5211	-1.56	3.36	Gratton et al. $(2003)$	5375	-1.46	3.46			
212330	5739	+0.05	4.15	Valenti & Fischer $(2005)$	5687	+0.02	4.03			
212708	5669	+0.31	4.40	Ramírez et al. $(2012)$	5602	+0.27	4.31			
213042	4831	+0.08	4.38	Adibekyan et al. $(2012)$	4632	-0.04	4.53			
213429	6064	+0.02	4.30	Boesgaard et al. $(2004)$	6027	+0.00	4.29			
213575	5671	-0.15	4.18	Adibekyan et al. $(2012)$	5664	-0.15	4.09			

Tabela C.1 – continuação

	]	Este trabalho					
HD	T _{ef}	[Fe/H]	log g	Referência	T _{ef}	[Fe/H]	log g
214953	6070	+0.02	4.33	Ramírez et al. $(2012)$	6071	+0.02	4.31
215028	5889	-0.36	4.18	Ghezzi (2005)	5619	-0.52	4.19
215257	6059	-0.63	4.26	Ramírez et al. $(2012)$	5994	-0.67	4.21
215942	5662	-0.17	4.31	Aguilera-Gómez et al. (2018)	5701	-0.21	4.26
216385	6304	-0.20	4.00	Ramírez et al. (2012)	6311	-0.20	4.00
216435	5962	+0.21	4.05	Ramírez et al. $(2012)$	5897	+0.17	4.02
216436	5750	+0.04	3.94	Porto de Mello et al. (2014)	5708	+0.01	4.43
216437	5775	+0.22	4.15	Ramírez et al. (2012)	5792	+0.23	4.14
217004	5694	-0.05	3.99	Valenti & Fischer (2005)	5697	-0.05	3.95
217014	5745	+0.20	4.31	Ramírez et al. (2012)	5798	+0.23	4.36
217107	5660	+0.40	4.37	Ramírez et al. $(2012)$	5608	+0.37	4.34
219048	-	-0.27	-	Holmberg et al. $(2007)$	5428	-0.27	3.72
219077	5362	-0.13	4.00	Adibekyan et al. (2012)	5325	-0.15	3.86
219610	-	-0.22	-	Holmberg et al. $(2007)$	5560	-0.22	3.53
219834	5379	+0.07	3.82	Luck (2016)	5375	+0.07	3.82
220096	5250	-0.10	3.70	Tagliaferri et al. $(1994)$	5195	-0.13	2.84
220339	4975	-0.31	4.53	Valenti & Fischer (2005)	5037	-0.27	4.61
220507	5670	+0.00	4.26	Ramírez et al. $(2012)$	5669	+0.00	4.22
221343	5800	+0.04	4.05	Porto de Mello et al. $(2014)$	5773	+0.02	4.46
221420	5820	+0.31	3.99	Ramírez et al. $(2012)$	5737	+0.26	3.95
221627	5790	+0.17	4.14	Porto de Mello et al. $(2014)$	5762	+0.15	3.96
222335	5282	-0.11	4.56	Ramírez et al. $(2012)$	5280	-0.11	4.57
223641	5338	-0.36	3.70	Bensby et al. $(2014)$	5418	-0.31	3.85
223691	5506	-0.17	4.08	Valenti & Fischer $(2005)$	5498	-0.17	3.87
224022	6134	+0.15	4.30	Sousa et al. $(2006)$	6050	+0.10	4.19
224930	5449	-0.84	4.46	Ramírez et al. $(2012)$	5438	-0.85	4.42
225045	-	+0.03	-	Holmberg et al. $(2007)$	6190	+0.03	3.82
282962	5889	+0.11	4.51	Buder et al. $(2019)$	5676	+0.01	4.43
282973	6237	+0.05	-	Carrera et al. $(2019)$	6120	+0.01	4.38
282975	5565	+0.01	5.09	Kounkel et al. $(2019)$	5510	+0.01	4.11
$BD+15\ 3364$	5800	+0.07	4.40	Porto de Mello et al. $(2014)$	5759	+0.05	4.42
$BD+23\ 527$	5834	+0.05	4.34	Buder et al. $(2019)$	5776	+0.01	4.49

Tabela C.1 – continuação

## Apêndice D

## Parâmetros Evolutivos

Neste apêndice apresentamos os parâmetros evolutivos da amostra de estrelas, calculados conforme explicado no capítulo 4: correções bolométricas (CB), magnitudes absolutas bolométricas ( $M_{bol}$ ), luminosidades (L), raios (R), massas (M) e idades. As luminosidades, raios, massas e seus respectivos erros estão em unidades solares. As idades estão expressas em bilhões de anos.

As idades listadas abaixo são as idades isocronais que puderam ser obtidas com um grau de confiança elevado, sendo utilizadas na construção do indicador de idade-atividade (estrelas com ausência de valor de idade são estrelas que não tiveram a idade bem determinada pelos modelos PARSEC). Exceções são estrelas pertencentes à aglomerados/associações estelares jovens, onde adotamos idades já bem determinadas na literatura: para as estrelas pertencentes às Plêiades,  $(112 \pm 5) \times 10^6$  anos (Dahm, 2015); para as estrelas pertencentes às Híades,  $(625 \pm 50) \times 10^6$  anos (Perryman et al., 1998); para as estrelas da associação Tucana-Horologium,  $(45 \pm 4) \times 10^6$  anos (Bell et al., 2015); para a única estrela da associação Beta-Pictoris,  $(25 \pm 3) \times 10^6$  anos (Messina et al., 2016). Estas estrelas estão indicadas pela letra **A** na última coluna da tabela. Indicamos também estrelas cujas idades astrosismológicas são conhecidas (tabela 4.5), utilizadas como testes da calibração idade-atividade. Estas estão marcadas com um *.

HD	СВ	M _{bol}	L/LO	$ m R/R_{\odot}$	${\rm M/M_{\odot}}$	Idade	
Sol	-0.080	$4.730\substack{+0.010 \\ -0.010}$	$1.000\substack{+0.009\\-0.009}$	$1.000\substack{+0.011\\-0.011}$	$1.000\substack{+0.043\\-0.059}$	$4.570\substack{+0.100 \\ -0.100}$	*
105	-0.051	$4.513\substack{+0.008\\-0.008}$	$1.222\substack{+0.009\\-0.009}$	$1.037\substack{+0.010\\-0.010}$	$1.036\substack{+0.050\\-0.042}$	$0.045\substack{+0.004\\-0.004}$	А
166	-0.133	$5.241\substack{+0.007\\-0.007}$	$0.625\substack{+0.004\\-0.004}$	$0.864^{+0.007}_{-0.007}$	$0.963\substack{+0.021\\-0.032}$		
1237	-0.144	$5.223\substack{+0.009\\-0.009}$	$0.635\substack{+0.005\\-0.005}$	$0.884\substack{+0.010\\-0.010}$	$0.933\substack{+0.053\\-0.043}$		
1461	-0.086	$4.531\substack{+0.006\\-0.006}$	$1.201\substack{+0.007\\-0.007}$	$1.107\substack{+0.006\\-0.006}$	$1.049\substack{+0.065\\-0.026}$		
1466	-0.027	$4.267\substack{+0.007 \\ -0.007}$	$1.532\substack{+0.011\\-0.011}$	$1.094\substack{+0.015\\-0.015}$	$1.099\substack{+0.043\\-0.059}$	$0.045\substack{+0.004\\-0.004}$	А
1581	-0.044	$4.530\substack{+0.012\\-0.012}$	$1.202\substack{+0.014\\-0.014}$	$1.011\substack{+0.024\\-0.024}$	$1.008\substack{+0.043\\-0.055}$		
1835	-0.081	$4.666\substack{+0.007\\-0.007}$	$1.061\substack{+0.007\\-0.007}$	$1.030\substack{+0.009\\-0.009}$	$1.067\substack{+0.041\\-0.045}$	$0.625\substack{+0.050\\-0.050}$	А
2151	-0.061	$3.396\substack{+0.011\\-0.011}$	$3.417\substack{+0.036\\-0.036}$	$1.773_{-0.040}^{+0.040}$	$1.139\substack{+0.049\\-0.032}$	$6.400\substack{+0.560\\-0.560}$	*
3047	-0.059	$3.246\substack{+0.053\\-0.053}$	$3.921\substack{+0.190 \\ -0.190}$	$1.894\substack{+0.048\\-0.048}$	$1.237\substack{+0.053 \\ -0.130}$	$4.880\substack{+0.611 \\ -0.476}$	
3443	-0.126	$4.506\substack{+0.064\\-0.064}$	$1.229_{-0.072}^{+0.072}$	$1.199\substack{+0.044\\-0.044}$	$0.893\substack{+0.023 \\ -0.026}$	$12.70^{+1.130}_{-0.640}$	
3460	-0.162	$3.724_{-0.009}^{+0.009}$	$2.525\substack{+0.020\\-0.020}$	$1.808\substack{+0.015\\-0.015}$	$0.878\substack{+0.041\\-0.028}$		
3651	-0.214	$5.432\substack{+0.007\\-0.007}$	$0.524\substack{+0.004\\-0.004}$	$0.878\substack{+0.006\\-0.006}$	$0.891\substack{+0.039\\-0.044}$		
3795	-0.159	$3.709\substack{+0.016\\-0.016}$	$2.561\substack{+0.037\\-0.037}$	$1.815\substack{+0.032\\-0.032}$	$0.853\substack{+0.022\\-0.035}$	$12.30\substack{+0.950\\-0.660}$	
3823	-0.044	$3.834\substack{+0.008\\-0.008}$	$2.282\substack{+0.017\\-0.017}$	$1.396\substack{+0.020\\-0.020}$	$0.964\substack{+0.030\\-0.035}$	$8.270\substack{+0.805\\-0.539}$	
4203	-0.131	$4.012\substack{+0.015\\-0.015}$	$1.938\substack{+0.026\\-0.026}$	$1.515\substack{+0.025\\-0.025}$	$1.083\substack{+0.034\\-0.025}$	$8.320\substack{+0.946\\-0.805}$	
4304	-0.024	$2.781\substack{+0.006\\-0.006}$	$6.022\substack{+0.035\\-0.035}$	$2.150\substack{+0.015\\-0.015}$	$1.386\substack{+0.016\\-0.010}$	$3.040\substack{+0.191\\-0.263}$	
4307	-0.071	$3.523\substack{+0.009\\-0.009}$	$3.040\substack{+0.025\\-0.025}$	$1.709\substack{+0.023\\-0.023}$	$1.036\substack{+0.031\\-0.058}$	$7.420\substack{+0.837\\-0.479}$	
4308	-0.097	$4.738\substack{+0.008\\-0.008}$	$0.993\substack{+0.007\\-0.007}$	$1.027\substack{+0.012\\-0.012}$	$0.847\substack{+0.017\\-0.027}$		
4391	-0.073	$4.847\substack{+0.007\\-0.007}$	$0.897\substack{+0.006\\-0.006}$	$0.933\substack{+0.008\\-0.008}$	$0.982\substack{+0.057\\-0.031}$		
4628	-0.297	$6.086\substack{+0.031\\-0.031}$	$0.287\substack{+0.008\\-0.008}$	$0.708\substack{+0.022\\-0.022}$	$0.734\substack{+0.024\\-0.025}$		
4747	-0.169	$5.610\substack{+0.012\\-0.012}$	$0.445\substack{+0.005\\-0.005}$	$0.766\substack{+0.011\\-0.011}$	$0.812\substack{+0.034\\-0.044}$		
4813	-0.017	$4.149\substack{+0.009\\-0.009}$	$1.708\substack{+0.013\\-0.013}$	$1.122\substack{+0.015\\-0.015}$	$1.105\substack{+0.047\\-0.050}$		
5133	-0.304	$6.119\substack{+0.029\\-0.029}$	$0.278\substack{+0.007\\-0.007}$	$0.711\substack{+0.016\\-0.016}$	$0.757\substack{+0.023\\-0.035}$		
6512	-0.080	$4.390\substack{+0.013\\-0.013}$	$1.368\substack{+0.017\\-0.017}$	$1.167\substack{+0.024\\-0.024}$	$1.032\substack{+0.055\\-0.044}$		
6734	-0.277	$2.812\substack{+0.012\\-0.012}$	$5.848^{+0.066}_{-0.066}$	$3.135\substack{+0.035\\-0.035}$	$1.003\substack{+0.089\\-0.103}$		
7134	-0.055	$4.320\substack{+0.008\\-0.008}$	$1.459\substack{+0.011\\-0.011}$	$1.145\substack{+0.013\\-0.013}$	$0.911\substack{+0.039\\-0.040}$		
7570	-0.034	$4.030\substack{+0.011\\-0.011}$	$1.906\substack{+0.020\\-0.020}$	$1.244_{-0.028}^{+0.028}$	$1.170\substack{+0.046\\-0.036}$		
8291	-0.080	$5.019\substack{+0.016\\-0.016}$	$0.766\substack{+0.011\\-0.011}$	$0.874_{-0.007}^{+0.007}$	$0.965\substack{+0.015\\-0.035}$		
8331	-0.099	$3.617\substack{+0.015\\-0.015}$	$2.788^{+0.038}_{-0.038}$	$1.726\substack{+0.024\\-0.024}$	$1.100\substack{+0.046\\-0.061}$	$7.640\substack{+0.421\\-0.817}$	
9280	-0.118	$4.099\substack{+0.016\\-0.016}$	$1.788\substack{+0.026\\-0.026}$	$1.426\substack{+0.031\\-0.031}$	$1.067\substack{+0.032\\-0.039}$		
9540	-0.149	$5.397\substack{+0.012\\-0.012}$	$0.541\substack{+0.006\\-0.006}$	$0.823\substack{+0.013\\-0.013}$	$0.889\substack{+0.045\\-0.054}$		
9562	-0.066	$3.318\substack{+0.011\\-0.011}$	$3.672^{+0.036}_{-0.036}$	$1.860\substack{+0.022\\-0.022}$	$1.273_{-0.091}^{+0.043}$	$4.330\substack{+0.923 \\ -0.566}$	
9986	-0.078	$4.662\substack{+0.006\\-0.006}$	$1.065\substack{+0.006\\-0.006}$	$1.027\substack{+0.007\\-0.007}$	$1.005\substack{+0.063\\-0.031}$		
10009	-0.028	$3.117\substack{+0.041\\-0.041}$	$4.416\substack{+0.167\\-0.167}$	$1.862\substack{+0.038\\-0.038}$	$1.180\substack{+0.050\\-0.112}$	$4.570\substack{+0.903 \\ -0.299}$	
10360	-0.258	$5.934\substack{+0.027\\-0.027}$	$0.330\substack{+0.008\\-0.008}$	$0.731\substack{+0.021\\-0.021}$	$0.763\substack{+0.024\\-0.034}$		
10476	-0.202	$5.632\substack{+0.019\\-0.019}$	$0.436\substack{+0.008\\-0.008}$	$0.790\substack{+0.019\\-0.019}$	$0.843\substack{+0.048\\-0.040}$		

TABELA D.1. Parâmetros Evolutivos.

				3			
HD	CB	$M_{bol}$	L/L⊙	$ m R/R_{\odot}$	${ m M/M_{\odot}}$	Idade	
10519	-0.092	$3.901\substack{+0.010\\-0.010}$	$2.145_{-0.019}^{+0.019}$	$1.494_{-0.017}^{+0.017}$	$0.837\substack{+0.014\\-0.020}$	$12.90\substack{+0.520\\-0.410}$	
10647	-0.031	$4.293\substack{+0.007\\-0.007}$	$1.496\substack{+0.010\\-0.010}$	$1.094\substack{+0.013\\-0.013}$	$1.075\substack{+0.052\\-0.048}$		
10697	-0.110	$3.557\substack{+0.011\\-0.011}$	$2.945\substack{+0.029\\-0.029}$	$1.808\substack{+0.028\\-0.028}$	$1.203\substack{+0.028\\-0.069}$	$6.560\substack{+0.378\\-0.520}$	
10700	-0.170	$5.537\substack{+0.022\\-0.022}$	$0.476\substack{+0.009\\-0.009}$	$0.793\substack{+0.023\\-0.023}$	$0.763\substack{+0.017\\-0.030}$	$9.000^{+1.000}_{-1.000}$	*
10800	-0.065	$3.670\substack{+0.013\\-0.013}$	$2.654_{-0.033}^{+0.033}$	$1.578^{+0.032}_{-0.032}$	$1.060\substack{+0.061\\-0.078}$		
11131	-0.076	$4.773\substack{+0.011\\-0.011}$	$0.961\substack{+0.010\\-0.010}$	$0.970\substack{+0.016\\-0.016}$	$0.962\substack{+0.053\\-0.047}$		
11505	-0.082	$4.392\substack{+0.011\\-0.011}$	$1.365\substack{+0.014\\-0.014}$	$1.171\substack{+0.011\\-0.011}$	$0.903\substack{+0.026\\-0.035}$		
11592	-0.010	$3.703\substack{+0.009\\-0.009}$	$2.575\substack{+0.020\\-0.020}$	$1.346^{+0.019}_{-0.019}$	$1.051\substack{+0.038\\-0.032}$	$5.130\substack{+0.868\\-0.406}$	
11964	-0.220	$3.570\substack{+0.017\\-0.017}$	$2.910\substack{+0.046\\-0.046}$	$2.086\substack{+0.042\\-0.042}$	$1.109\substack{+0.037\\-0.038}$	$7.090\substack{+0.568\\-0.310}$	
12235	-0.053	$3.326\substack{+0.011\\-0.011}$	$3.645\substack{+0.036\\-0.036}$	$1.799\substack{+0.028\\-0.028}$	$1.287\substack{+0.093\\-0.045}$	$3.970\substack{+0.575\\-1.080}$	
12264	-0.080	$4.852\substack{+0.008\\-0.008}$	$0.893\substack{+0.006\\-0.006}$	$0.943\substack{+0.009\\-0.009}$	$1.000\substack{+0.043\\-0.054}$		
13421	-0.034	$2.533_{-0.015}^{+0.015}$	$7.566^{+0.104}_{-0.104}$	$2.474_{-0.037}^{+0.037}$	$1.463\substack{+0.034\\-0.049}$	$2.730_{-0.370}^{+0.249}$	
13445	-0.214	$5.741_{-0.017}^{+0.017}$	$0.394\substack{+0.006\\-0.006}$	$0.762^{+0.015}_{-0.015}$	$0.783\substack{+0.033\\-0.035}$		
13531	-0.115	$5.149\substack{+0.006\\-0.006}$	$0.680\substack{+0.004\\-0.004}$	$0.876\substack{+0.004\\-0.004}$	$0.936\substack{+0.050\\-0.017}$		
13612	-0.037	$2.712_{-0.028}^{+0.028}$	$6.414\substack{+0.165\\-0.165}$	$2.300\substack{+0.056\\-0.056}$	$1.342^{+0.103}_{-0.062}$	$3.270_{-0.501}^{+0.197}$	
13612B	-0.096	$4.726\substack{+0.012\\-0.012}$	$1.003\substack{+0.011\\-0.011}$	$1.030\substack{+0.018\\-0.018}$	$0.988\substack{+0.046\\-0.055}$	$3.270_{-0.501}^{+0.197}$	
13724	-0.080	$4.617\substack{+0.008\\-0.008}$	$1.110\substack{+0.008\\-0.008}$	$1.052\substack{+0.011\\-0.011}$	$1.072^{+0.027}_{-0.065}$		
13974	-0.079	$4.552\substack{+0.018\\-0.018}$	$1.178^{+0.020}_{-0.020}$	$1.082\substack{+0.033\\-0.033}$	$0.831\substack{+0.024\\-0.028}$		
14214	-0.037	$3.754_{-0.022}^{+0.022}$	$2.457\substack{+0.049\\-0.049}$	$1.421_{-0.032}^{+0.032}$	$1.188\substack{+0.037\\-0.061}$	$4.160\substack{+1.090\\-0.698}$	
14412	-0.155	$5.633_{-0.017}^{+0.017}$	$0.435\substack{+0.007\\-0.007}$	$0.744_{-0.017}^{+0.017}$	$0.759\substack{+0.023\\-0.036}$		
14680	-0.287	$6.053\substack{+0.036\\-0.036}$	$0.296\substack{+0.010\\-0.010}$	$0.725_{-0.021}^{+0.021}$	$0.752^{+0.023}_{-0.034}$		
14802	-0.071	$3.341\substack{+0.019\\-0.019}$	$3.594_{-0.063}^{+0.063}$	$1.857^{+0.048}_{-0.048}$	$1.140\substack{+0.046\\-0.028}$	$5.780^{+0.294}_{-0.559}$	
15064	-0.076	$3.605\substack{+0.023\\-0.023}$	$2.819\substack{+0.060\\-0.060}$	$1.662\substack{+0.024\\-0.024}$	$1.178\substack{+0.044\\-0.074}$	$5.660\substack{+0.768\\-0.737}$	
15335	-0.065	$3.331\substack{+0.012\\-0.012}$	$3.629\substack{+0.041\\-0.041}$	$1.844_{-0.035}^{+0.035}$	$1.096\substack{+0.034\\-0.053}$	$6.160\substack{+0.595\\-0.341}$	
15942	-0.072	$4.169\substack{+0.010\\-0.010}$	$1.677^{+0.015}_{-0.015}$	$1.271_{-0.019}^{+0.019}$	$1.151\substack{+0.045\\-0.037}$		
16141	-0.088	$3.853^{+0.011}_{-0.011}$	$2.243_{-0.022}^{+0.022}$	$1.517\substack{+0.024\\-0.024}$	$1.090\substack{+0.039\\-0.031}$	$7.370\substack{+0.619 \\ -1.060}$	
16160	-0.380	$6.112\substack{+0.057\\-0.057}$	$0.280^{+0.015}_{-0.015}$	$0.751_{-0.035}^{+0.035}$	$0.745_{-0.023}^{+0.024}$		
16417	-0.083	$3.672^{+0.008}_{-0.008}$	$2.650^{+0.019}_{-0.019}$	$1.634_{-0.017}^{+0.017}$	$1.130\substack{+0.042\\-0.027}$	$6.550\substack{+0.275\\-0.782}$	
16548	-0.106	$3.238^{+0.014}_{-0.014}$	$3.953\substack{+0.051\\-0.051}$	$2.081^{+0.025}_{-0.025}$	$1.237\substack{+0.027\\-0.064}$	$4.890_{-0.359}^{+0.532}$	
16589	-0.021	$2.730\substack{+0.009\\-0.009}$	$6.312\substack{+0.050\\-0.050}$	$2.179_{-0.039}^{+0.039}$	$1.432^{+0.013}_{-0.150}$	$3.200^{+0.794}_{-0.234}$	
16673	-0.021	$4.064_{-0.013}^{+0.013}$	$1.846^{+0.022}_{-0.022}$	$1.180\substack{+0.014\\-0.014}$	$1.135\substack{+0.052\\-0.045}$	$2.770^{+0.854}_{-0.957}$	
17051	-0.031	$4.176_{-0.007}^{+0.007}$	$1.667^{+0.010}_{-0.010}$	$1.153\substack{+0.013\\-0.013}$	$1.201\substack{+0.060\\-0.035}$	$0.625\substack{+0.005\\-0.005}$	*
17925	-0.220	$5.753_{-0.018}^{+0.018}$	$0.390\substack{+0.007\\-0.007}$	$0.763^{+0.017}_{-0.017}$	$0.856\substack{+0.033\\-0.037}$		
18907	-0.250	$3.104\substack{+0.016\\-0.016}$	$4.472_{-0.068}^{+0.068}$	$2.671\substack{+0.044\\-0.044}$	$0.931\substack{+0.062\\-0.082}$		
19308	-0.079	$4.331\substack{+0.014\\-0.014}$	$1.445_{-0.018}^{+0.018}$	$1.198\substack{+0.028\\-0.028}$	$1.036\substack{+0.055\\-0.044}$		
19518	-0.078	$4.764\substack{+0.011\\-0.011}$	$0.969\substack{+0.010\\-0.010}$	$0.978\substack{+0.017\\-0.017}$	$0.941\substack{+0.058\\-0.048}$		
19994	-0.028	$3.277\substack{+0.015\\-0.015}$	$3.812\substack{+0.051\\-0.051}$	$1.731_{-0.047}^{+0.047}$	$1.301\substack{+0.054\\-0.051}$	$3.000\substack{+0.420\\-0.718}$	

Tabela D.1 – continuação

HD	CB	$M_{bol}$	$L/L\odot$	$ m R/R_{\odot}$	${\rm M}/{\rm M}_{\odot}$	Idade	
20010	-0.029	$3.048\substack{+0.013\\-0.013}$	$4.709\substack{+0.058\\-0.058}$	$1.930\substack{+0.046\\-0.046}$	$1.156\substack{+0.035\\-0.052}$	$5.000\substack{+0.508\\-0.201}$	
20407	-0.062	$4.737\substack{+0.007 \\ -0.007}$	$0.994\substack{+0.006\\-0.006}$	$0.960\substack{+0.009\\-0.009}$	$0.854\substack{+0.036\\-0.047}$		
20630	-0.087	$4.947\substack{+0.016\\-0.016}$	$0.819\substack{+0.012\\-0.012}$	$0.915\substack{+0.026\\-0.026}$	$0.986\substack{+0.040\\-0.054}$		
20766	-0.084	$5.043\substack{+0.012\\-0.012}$	$0.750\substack{+0.008\\-0.008}$	$0.871\substack{+0.018\\-0.018}$	$0.904\substack{+0.043\\-0.050}$		
20794	-0.129	$5.239\substack{+0.021\\-0.021}$	$0.626\substack{+0.012\\-0.012}$	$0.858\substack{+0.027\\-0.027}$	$0.820\substack{+0.028\\-0.045}$		
20807	-0.064	$4.771\substack{+0.014\\-0.014}$	$0.963\substack{+0.013\\-0.013}$	$0.949\substack{+0.026\\-0.026}$	$0.927\substack{+0.059\\-0.056}$		
21411	-0.135	$5.422_{-0.011}^{+0.011}$	$0.529\substack{+0.005\\-0.005}$	$0.796\substack{+0.012\\-0.012}$	$0.831\substack{+0.039\\-0.046}$		
22049	-0.247	$5.946\substack{+0.043\\-0.043}$	$0.326\substack{+0.013\\-0.013}$	$0.719\substack{+0.035\\-0.035}$	$0.790\substack{+0.033\\-0.040}$		
22072	-0.280	$2.750\substack{+0.010 \\ -0.010}$	$6.192\substack{+0.057\\-0.057}$	$3.303\substack{+0.020\\-0.020}$	$1.149_{-0.046}^{+0.128}$		
22484	-0.040	$3.526\substack{+0.019\\-0.019}$	$3.032\substack{+0.053\\-0.053}$	$1.591\substack{+0.035\\-0.035}$	$1.132\substack{+0.053\\-0.035}$	$5.000\substack{+0.576\\-0.730}$	
22879	-0.054	$4.536\substack{+0.010\\-0.010}$	$1.196\substack{+0.011\\-0.011}$	$1.035\substack{+0.019\\-0.019}$	$0.794\substack{+0.020\\-0.024}$		
23195	-0.052	$3.840\substack{+0.030\\-0.030}$	$2.270\substack{+0.063\\-0.063}$	$1.418\substack{+0.055\\-0.055}$	$1.098\substack{+0.052\\-0.059}$	$0.112\substack{+0.005\\-0.005}$	А
23249	-0.300	$3.431\substack{+0.042\\-0.042}$	$3.308\substack{+0.129\\-0.129}$	$2.447\substack{+0.082\\-0.082}$	$1.140\substack{+0.077\\-0.064}$		
23269	-0.030	$4.319\substack{+0.017\\-0.017}$	$1.461\substack{+0.023\\-0.023}$	$1.077\substack{+0.009\\-0.009}$	$1.120\substack{+0.044\\-0.074}$	$0.112\substack{+0.005\\-0.005}$	А
23713	-0.047	$3.721_{-0.129}^{+0.129}$	$2.533\substack{+0.301 \\ -0.301}$	$1.481\substack{+0.099\\-0.099}$	$1.125\substack{+0.057\\-0.049}$	$0.112\substack{+0.005\\-0.005}$	А
24040	-0.079	$4.075\substack{+0.008\\-0.008}$	$1.827\substack{+0.014\\-0.014}$	$1.346\substack{+0.006\\-0.006}$	$1.069\substack{+0.056\\-0.011}$	$6.400\substack{+0.125\\-1.560}$	
24062	-0.061	$3.652\substack{+0.008\\-0.008}$	$2.698\substack{+0.019\\-0.019}$	$1.577^{+0.019}_{-0.019}$	$1.174_{-0.081}^{+0.037}$		
24293	-0.089	$4.635\substack{+0.007 \\ -0.007}$	$1.091\substack{+0.007\\-0.007}$	$1.059\substack{+0.008\\-0.008}$	$0.947\substack{+0.054\\-0.042}$		
24616	-0.281	$2.396\substack{+0.019\\-0.019}$	$8.582^{+0.147}_{-0.147}$	$3.813\substack{+0.071\\-0.071}$	$0.909\substack{+0.056\\-0.095}$		
24892	-0.171	$3.665\substack{+0.009\\-0.009}$	$2.667\substack{+0.022\\-0.022}$	$1.881\substack{+0.019\\-0.019}$	$0.971\substack{+0.023 \\ -0.026}$	$9.350\substack{+0.452 \\ -0.586}$	
25457	-0.020	$3.992\substack{+0.009\\-0.009}$	$1.973\substack{+0.016\\-0.016}$	$1.216\substack{+0.021\\-0.021}$	$1.106\substack{+0.052\\-0.043}$		
25535	-0.074	$3.333\substack{+0.008\\-0.008}$	$3.622\substack{+0.028\\-0.028}$	$1.878^{+0.023}_{-0.023}$	$1.110\substack{+0.052\\-0.069}$	$6.110\substack{+0.765\\-0.405}$	
25740	-0.085	$3.809\substack{+0.008\\-0.008}$	$2.336\substack{+0.017\\-0.017}$	$1.541\substack{+0.012\\-0.012}$	$1.000\substack{+0.040\\-0.080}$	$9.060\substack{+0.792 \\ -0.888}$	
25825	-0.048	$4.415\substack{+0.007\\-0.007}$	$1.336\substack{+0.009\\-0.009}$	$1.078\substack{+0.007\\-0.007}$	$1.149\substack{+0.055\\-0.037}$	$0.625\substack{+0.050\\-0.050}$	А
25874	-0.089	$4.579\substack{+0.007\\-0.007}$	$1.149\substack{+0.007\\-0.007}$	$1.087\substack{+0.009\\-0.009}$	$0.981\substack{+0.043\\-0.046}$		
25918	-0.127	$5.012\substack{+0.008\\-0.008}$	$0.771\substack{+0.006\\-0.006}$	$0.951\substack{+0.009\\-0.009}$	$0.896\substack{+0.040\\-0.057}$		
26345	+0.017	$3.259\substack{+0.008\\-0.008}$	$3.876\substack{+0.028\\-0.028}$	$1.480\substack{+0.022\\-0.022}$	$1.429_{-0.049}^{+0.066}$	$0.625\substack{+0.050\\-0.050}$	А
26491	-0.080	$4.430\substack{+0.008\\-0.008}$	$1.318\substack{+0.009\\-0.009}$	$1.145_{-0.013}^{+0.013}$	$0.942\substack{+0.044\\-0.050}$		
26767	-0.069	$4.606\substack{+0.009\\-0.009}$	$1.121\substack{+0.010\\-0.010}$	$1.034\substack{+0.006\\-0.006}$	$1.096\substack{+0.043\\-0.056}$	$0.625\substack{+0.050\\-0.050}$	А
26913	-0.100	$5.117\substack{+0.009\\-0.009}$	$0.700\substack{+0.006\\-0.006}$	$0.867\substack{+0.011\\-0.011}$	$0.954\substack{+0.036\\-0.036}$		
26923	-0.044	$4.555\substack{+0.007\\-0.007}$	$1.175\substack{+0.007\\-0.007}$	$1.001\substack{+0.009\\-0.009}$	$1.069\substack{+0.064\\-0.021}$		
27406	-0.031	$4.101\substack{+0.012\\-0.012}$	$1.784\substack{+0.020\\-0.020}$	$1.192\substack{+0.010\\-0.010}$	$1.200\substack{+0.050\\-0.073}$	$0.625\substack{+0.050\\-0.050}$	А
27685	-0.091	$4.572\substack{+0.032\\-0.032}$	$1.157\substack{+0.035\\-0.035}$	$1.096\substack{+0.017\\-0.017}$	$1.043\substack{+0.038\\-0.034}$	$0.625\substack{+0.050\\-0.050}$	А
27808	-0.015	$3.934\substack{+0.006\\-0.006}$	$2.083\substack{+0.012\\-0.012}$	$1.231\substack{+0.008\\-0.008}$	$1.230\substack{+0.043\\-0.052}$	$0.625\substack{+0.050\\-0.050}$	А
27836	-0.063	$3.972\substack{+0.058\\-0.058}$	$2.011\substack{+0.107 \\ -0.107}$	$1.366\substack{+0.053\\-0.053}$	$1.126\substack{+0.048\\-0.048}$	$0.625\substack{+0.050\\-0.050}$	А
27859	-0.051	$4.417\substack{+0.015\\-0.015}$	$1.334\substack{+0.018\\-0.018}$	$1.085\substack{+0.032\\-0.032}$	$1.112\substack{+0.048\\-0.053}$	$0.625\substack{+0.050\\-0.050}$	А
28068	-0.079	$4.449\substack{+0.018\\-0.018}$	$1.296\substack{+0.022\\-0.022}$	$1.133\substack{+0.016\\-0.016}$	$1.063\substack{+0.039\\-0.037}$	$0.625\substack{+0.050\\-0.050}$	А

Tabela D.1 – continuação

HD	CB	$M_{\rm bol}$	$L/L\odot$	$ m R/R_{\odot}$	${\rm M}/{\rm M}_{\odot}$	Idade	
28099	-0.082	$4.706\substack{+0.009\\-0.009}$	$1.022\substack{+0.009\\-0.009}$	$1.014\substack{+0.009\\-0.009}$	$1.055\substack{+0.042\\-0.039}$	$0.625\substack{+0.050\\-0.050}$	Α
28205	-0.022	$3.991\substack{+0.008\\-0.008}$	$1.975\substack{+0.015\\-0.015}$	$1.226\substack{+0.007\\-0.007}$	$1.209\substack{+0.037\\-0.097}$	$0.625\substack{+0.050\\-0.050}$	А
28237	-0.032	$4.172\substack{+0.006\\-0.006}$	$1.672\substack{+0.010\\-0.010}$	$1.159\substack{+0.005\\-0.005}$	$1.190\substack{+0.059\\-0.052}$	$0.625\substack{+0.050\\-0.050}$	А
28344	-0.052	$4.433\substack{+0.010\\-0.010}$	$1.314\substack{+0.012\\-0.012}$	$1.078^{+0.017}_{-0.017}$	$1.118\substack{+0.050\\-0.033}$	$0.625\substack{+0.050\\-0.050}$	А
28388	-0.181	$2.734_{-0.038}^{+0.038}$	$6.285\substack{+0.219\\-0.219}$	$2.925\substack{+0.060\\-0.060}$	$1.240^{+0.065}_{-0.076}$	$3.550\substack{+0.377\\-0.463}$	
28471	-0.082	$4.606\substack{+0.007\\-0.007}$	$1.121\substack{+0.007\\-0.007}$	$1.060\substack{+0.010\\-0.010}$	$0.973\substack{+0.066\\-0.036}$		
28608	+0.001	$3.695\substack{+0.008\\-0.008}$	$2.595\substack{+0.020\\-0.020}$	$1.300\substack{+0.012\\-0.012}$	$1.320\substack{+0.050\\-0.026}$	$0.625\substack{+0.050\\-0.050}$	Α
28635	-0.023	$4.303\substack{+0.010\\-0.010}$	$1.481\substack{+0.014\\-0.014}$	$1.063\substack{+0.008\\-0.008}$	$1.146\substack{+0.035\\-0.015}$	$0.625\substack{+0.050\\-0.050}$	А
28821	-0.098	$4.717\substack{+0.009\\-0.009}$	$1.012\substack{+0.008\\-0.008}$	$1.037\substack{+0.012\\-0.012}$	$0.915\substack{+0.043 \\ -0.057}$		
28992	-0.062	$4.508\substack{+0.008\\-0.008}$	$1.227\substack{+0.009\\-0.009}$	$1.066\substack{+0.010\\-0.010}$	$1.103\substack{+0.035\\-0.058}$	$0.625\substack{+0.050\\-0.050}$	А
29859	-0.027	$2.525\substack{+0.013\\-0.013}$	$7.617\substack{+0.090\\-0.090}$	$2.440^{+0.037}_{-0.037}$	$1.490\substack{+0.053\\-0.077}$	$2.640\substack{+0.123 \\ -0.549}$	
30495	-0.071	$4.809\substack{+0.006\\-0.006}$	$0.929\substack{+0.005\\-0.005}$	$0.945\substack{+0.006\\-0.006}$	$0.997\substack{+0.041\\-0.052}$		
30562	-0.063	$3.618\substack{+0.008\\-0.008}$	$2.786\substack{+0.021\\-0.021}$	$1.608\substack{+0.015\\-0.015}$	$1.180\substack{+0.021\\-0.052}$	$5.300\substack{+0.545\\-0.398}$	
30589	-0.036	$4.252\substack{+0.012\\-0.012}$	$1.554\substack{+0.017\\-0.017}$	$1.129\substack{+0.026\\-0.026}$	$1.173\substack{+0.060\\-0.046}$	$0.625\substack{+0.050\\-0.050}$	А
30606	-0.031	$2.616\substack{+0.009\\-0.009}$	$7.006\substack{+0.056\\-0.056}$	$2.363\substack{+0.020\\-0.020}$	$1.380\substack{+0.149\\-0.045}$	$2.890\substack{+0.340 \\ -0.325}$	
30876	-0.286	$5.963\substack{+0.024\\-0.024}$	$0.321\substack{+0.007\\-0.007}$	$0.742_{-0.018}^{+0.018}$	$0.769\substack{+0.023\\-0.032}$		
30809	-0.017	$3.932\substack{+0.009\\-0.009}$	$2.085\substack{+0.018\\-0.018}$	$1.241\substack{+0.010\\-0.010}$	$1.228^{+0.045}_{-0.027}$	$0.625\substack{+0.050\\-0.050}$	Α
30966	-0.177	$2.075\substack{+0.016\\-0.016}$	$11.54_{-0.174}^{+0.174}$	$3.944_{-0.056}^{+0.056}$	$1.539\substack{+0.041\\-0.133}$		
32147	-0.423	$6.063\substack{+0.021\\-0.021}$	$0.293\substack{+0.006\\-0.006}$	$0.792\substack{+0.013\\-0.013}$	$0.811\substack{+0.018\\-0.037}$		
32923	-0.092	$3.813\substack{+0.016\\-0.016}$	$2.328\substack{+0.034\\-0.034}$	$1.558\substack{+0.038\\-0.038}$	$0.996\substack{+0.041\\-0.048}$	$9.590\substack{+0.641 \\ -1.050}$	
33021	-0.076	$3.870\substack{+0.008\\-0.008}$	$2.208\substack{+0.016\\-0.016}$	$1.472_{-0.017}^{+0.017}$	$1.001\substack{+0.020\\-0.033}$	$8.690\substack{+0.396 \\ -0.136}$	
33262	-0.019	$4.364\substack{+0.011\\-0.011}$	$1.401\substack{+0.014\\-0.014}$	$1.023\substack{+0.027\\-0.027}$	$1.080\substack{+0.057\\-0.052}$		
33473	-0.097	$2.952\substack{+0.007\\-0.007}$	$5.144_{-0.033}^{+0.033}$	$2.337\substack{+0.017 \\ -0.017}$	$1.232\substack{+0.015\\-0.051}$	$4.170\substack{+0.507 \\ -0.122}$	
34721	-0.038	$3.958\substack{+0.008\\-0.008}$	$2.036\substack{+0.015\\-0.015}$	$1.297\substack{+0.018\\-0.018}$	$1.081\substack{+0.049\\-0.062}$		
35850	-0.041	$4.112\substack{+0.008\\-0.008}$	$1.767\substack{+0.013\\-0.013}$	$1.219\substack{+0.020\\-0.020}$	$1.051\substack{+0.059\\-0.042}$	$0.025\substack{+0.003\\-0.003}$	А
35854	-0.329	$6.109\substack{+0.030\\-0.030}$	$0.281\substack{+0.008\\-0.008}$	$0.727\substack{+0.018\\-0.018}$	$0.754_{-0.033}^{+0.022}$		
36435	-0.152	$5.390\substack{+0.012\\-0.012}$	$0.544_{-0.006}^{+0.006}$	$0.828^{+0.013}_{-0.013}$	$0.879^{+0.048}_{-0.049}$		
36553	-0.051	$2.171\substack{+0.012\\-0.012}$	$10.56_{-0.117}^{+0.117}$	$3.049\substack{+0.051\\-0.051}$	$1.655\substack{+0.041\\-0.081}$	$2.260^{+0.500}_{-0.109}$	
36889	-0.086	$3.369\substack{+0.010\\-0.010}$	$3.504_{-0.032}^{+0.032}$	$1.888^{+0.019}_{-0.019}$	$1.192\substack{+0.035\\-0.053}$	$5.450_{-0.328}^{+0.456}$	
37986	-0.151	$4.817\substack{+0.015\\-0.015}$	$0.923\substack{+0.013\\-0.013}$	$1.077\substack{+0.022\\-0.022}$	$0.960\substack{+0.039\\-0.037}$		
38393	-0.002	$3.846^{+0.009}_{-0.009}$	$2.258^{+0.019}_{-0.019}$	$1.226^{+0.021}_{-0.021}$	$1.244_{-0.045}^{+0.069}$	$2.400^{+0.869}_{-0.624}$	
38529	-0.138	$2.675\substack{+0.009\\-0.009}$	$6.640\substack{+0.053\\-0.053}$	$2.837\substack{+0.023 \\ -0.023}$	$1.472_{-0.009}^{+0.008}$	$3.070\substack{+0.390\\-0.390}$	*
39587	-0.053	$4.605\substack{+0.009\\-0.009}$	$1.122\substack{+0.009\\-0.009}$	$0.999\substack{+0.010\\-0.010}$	$1.023\substack{+0.044\\-0.031}$		
41593	-0.195	$5.575\substack{+0.012\\-0.012}$	$0.459\substack{+0.005\\-0.005}$	$0.804\substack{+0.012\\-0.012}$	$0.849\substack{+0.046\\-0.039}$		
43587	-0.062	$4.210\substack{+0.008\\-0.008}$	$1.614\substack{+0.012\\-0.012}$	$1.221\substack{+0.013\\-0.013}$	$1.012\substack{+0.037\\-0.058}$	$6.200\substack{+0.100\\-0.100}$	*
43834	-0.117	$4.917\substack{+0.008\\-0.008}$	$0.842^{+0.007}_{-0.007}$	$0.978\substack{+0.011\\-0.011}$	$0.974\substack{+0.047\\-0.035}$		
43947	-0.045	$4.381\substack{+0.008\\-0.008}$	$1.379\substack{+0.010\\-0.010}$	$1.087\substack{+0.015\\-0.015}$	$0.953\substack{+0.039\\-0.056}$		

Tabela D.1 – continuação

HD	CB	$M_{\rm bol}$	$L/L\odot$	$ m R/R_{\odot}$	${\rm M/M}_{\odot}$	Idade
44120	-0.047	$\overline{3.602^{+0.007}_{-0.007}}$	$2.825_{-0.018}^{+0.018}$	$1.563^{+0.015}_{-0.015}$	$1.173_{-0.026}^{+0.027}$	$5.\overline{010^{+0.526}_{-0.477}}$
45067	-0.042	$3.234\substack{+0.009\\-0.009}$	$3.966\substack{+0.034\\-0.034}$	$1.829\substack{+0.026\\-0.026}$	$1.180\substack{+0.039\\-0.094}$	$4.840\substack{+1.120 \\ -0.455}$
46569	-0.025	$2.722\substack{+0.008\\-0.008}$	$6.355\substack{+0.049\\-0.049}$	$2.215\substack{+0.025\\-0.025}$	$1.441\substack{+0.076\\-0.064}$	$2.780\substack{+0.156 \\ -0.571}$
48938	-0.037	$4.244\substack{+0.007\\-0.007}$	$1.565\substack{+0.011\\-0.011}$	$1.136\substack{+0.015\\-0.015}$	$0.947\substack{+0.046\\-0.044}$	
50692	-0.054	$4.475_{-0.007}^{+0.007}$	$1.265\substack{+0.008\\-0.008}$	$1.063\substack{+0.007\\-0.007}$	$0.992\substack{+0.044\\-0.039}$	
50806	-0.111	$3.879^{+0.008}_{-0.008}$	$2.190\substack{+0.017\\-0.017}$	$1.560^{+0.017}_{-0.017}$	$1.031\substack{+0.038\\-0.029}$	$8.930\substack{+0.301 \\ -0.684}$
52298	-0.010	$4.055\substack{+0.006\\-0.006}$	$1.861\substack{+0.010\\-0.010}$	$1.143^{+0.010}_{-0.010}$	$1.064^{+0.034}_{-0.037}$	$3.280\substack{+0.652\\-0.604}$
52698	-0.238	$5.639^{+0.007}_{-0.007}$	$0.433^{+0.003}_{-0.003}$	$0.820\substack{+0.005\\-0.005}$	$0.889^{+0.038}_{-0.028}$	
52711	-0.059	$4.483^{+0.007}_{-0.007}$	$1.256\substack{+0.008\\-0.008}$	$1.071^{+0.006}_{-0.006}$	$0.984^{+0.041}_{-0.051}$	
53143	-0.166	$5.325^{+0.011}_{-0.011}$	$0.578^{+0.006}_{-0.006}$	$0.870^{+0.012}_{-0.012}$	$0.935^{+0.053}_{-0.040}$	
53705	-0.072	$4.329^{+0.007}_{-0.007}$	$1.447^{+0.010}_{-0.010}$	$1.183^{+0.011}_{-0.011}$	$0.921^{+0.032}_{-0.034}$	
53706	-0.189	$5.482^{+0.012}_{-0.012}$	$0.500^{+0.006}_{-0.006}$	$0.834^{+0.012}_{-0.012}$	$0.806^{+0.015}_{-0.038}$	
55720	-0.129	$5.166^{+0.009}_{-0.009}$	$0.669^{+0.005}_{-0.005}$	$0.888^{+0.010}_{-0.010}$	$0.831^{+0.030}_{-0.034}$	
57095	-0.363	$5.516^{+0.019}_{-0.019}$	$0.485^{+0.008}_{-0.008}$	$0.977^{+0.008}_{-0.008}$	$0.947^{+0.008}_{-0.008}$	$13.40^{+0.070}_{-0.080}$
57853	-0.052	$3.571^{+0.036}_{-0.036}$	$2.909^{+0.096}_{-0.096}$	$1.606^{+0.035}_{-0.035}$	$1.114_{-0.051}^{+0.063}$	$6.000^{+0.795}_{-0.871}$
58551	-0.016	$4.074_{-0.007}^{+0.007}$	$1.829^{+0.012}_{-0.012}$	$1.156^{+0.014}_{-0.014}$	$0.967^{+0.040}_{-0.037}$	$5.000^{+0.671}_{-1.020}$
59984	-0.048	$3.560^{+0.009}_{-0.009}$	$2.939^{+0.024}_{-0.024}$	$1.598^{+0.025}_{-0.025}$	$0.901^{+0.027}_{-0.034}$	$10.00^{+0.828}_{-0.658}$
61033	-0.147	$5.228^{+0.061}_{-0.061}$	$0.632^{+0.035}_{-0.035}$	$0.887^{+0.034}_{-0.034}$	$0.876^{+0.040}_{-0.050}$	
61606	-0.298	$6.136\substack{+0.039\\-0.039}$	$0.274^{+0.010}_{-0.010}$	$0.703^{+0.022}_{-0.022}$	$0.778^{+0.035}_{-0.016}$	
61902	-0.024	$3.725^{+0.007}_{-0.007}$	$2.524^{+0.017}_{-0.017}$	$1.392^{+0.010}_{-0.010}$	$0.923^{+0.055}_{-0.025}$	$7.600^{+0.334}_{-1.620}$
62644	-0.164	$3.117^{+0.016}_{-0.016}$	$4.417^{+0.066}_{-0.066}$	$2.400^{+0.026}_{-0.026}$	$1.260^{+0.066}_{-0.027}$	$3.800^{+0.194}_{-0.493}$
63077	-0.068	$4.361^{+0.017}_{-0.017}$	$1.405^{+0.023}_{-0.023}$	$1.155^{+0.037}_{-0.037}$	$0.808^{+0.016}_{-0.023}$	$12.80^{+1.200}_{-0.560}$
63637	-0.096	$3.426^{+0.007}_{-0.007}$	$3.323^{+0.022}_{-0.022}$	$1.873^{+0.010}_{-0.010}$	$1.070^{+0.008}_{-0.008}$	$7.000\substack{+0.080\\-0.079}$
64096	-0.061	$4.011^{+0.022}_{-0.022}$	$1.939^{+0.039}_{-0.039}$	$1.337^{+0.018}_{-0.018}$	$0.999^{+0.068}_{-0.069}$	
64114	-0.109	$5.106^{+0.008}_{-0.008}$	$0.707^{+0.005}_{-0.005}$	$0.884^{+0.010}_{-0.010}$	$0.974^{+0.040}_{-0.011}$	
64468	-0.333	$5.936^{+0.023}_{-0.023}$	$0.329^{+0.007}_{-0.007}$	$0.789^{+0.013}_{-0.013}$	$0.802^{+0.014}_{-0.036}$	
64606	-0.201	$6.025^{+0.036}_{-0.036}$	$0.303^{+0.010}_{-0.010}$	$0.659^{+0.027}_{-0.027}$	$0.685^{+0.023}_{-0.031}$	
65583	-0.167	$5.638^{+0.010}_{-0.010}$	$0.433^{+0.004}_{-0.004}$	$0.755^{+0.010}_{-0.010}$	$0.738^{+0.020}_{-0.020}$	
65907	-0.047	$4.495^{+0.009}_{-0.009}$	$1.241^{+0.010}_{-0.010}$	$1.036^{+0.018}_{-0.018}$	$0.937^{+0.043}_{-0.052}$	
66653	-0.073	$4.639^{+0.008}_{-0.008}$	$1.087^{+0.008}_{-0.008}$	$1.026^{+0.013}_{-0.013}$	$1.070^{+0.056}_{-0.058}$	
67199	-0.250	$5.743^{+0.012}_{-0.012}$	$0.393^{+0.004}_{-0.004}$	$0.792^{+0.010}_{-0.010}$	$0.828^{+0.043}_{-0.029}$	
67228	-0.075	$3.360^{+0.010}_{-0.010}$	$3.531^{+0.032}_{-0.032}$	$1.856^{+0.023}_{-0.023}$	$1.193^{+0.036}_{-0.056}$	$5.310^{+0.518}_{-0.361}$
67581	-0.069	$3.411_{-0.012}^{+0.012}$	$3.368^{+0.038}_{-0.038}$	$1.792^{+0.032}_{-0.032}$	$1.029^{+0.058}_{-0.053}$	$7.280^{+0.697}_{-0.854}$
67907	-0.145	$3.096\substack{+0.013\\-0.013}$	$4.502\substack{+0.052\\-0.052}$	$2.360^{+0.023}_{-0.023}$	$1.159_{-0.056}^{+0.088}$	$4.970_{-0.633}^{+0.499}$
68168	-0.083	$4.588^{+0.010}_{-0.010}$	$1.140^{+0.010}_{-0.010}$	$1.071_{-0.014}^{+0.014}$	$1.031\substack{+0.042\\-0.043}$	11.000
69809	-0.076	$4.149_{-0.009}^{+0.009}$	$1.707\substack{+0.014\\-0.014}$	$1.293\substack{+0.012\\-0.012}$	$1.110\substack{+0.024\\-0.051}$	$6.200^{+1.000}_{-0.592}$
69830	-0.154	$5.301\substack{+0.009\\-0.009}$	$0.591\substack{+0.005\\-0.005}$	$0.866^{+0.009}_{-0.009}$	$0.880^{+0.047}_{-0.044}$	

Tabela D.1 – continuação

HD	CB	M _{bol}	L/L⊙	R/R _o	${\rm M/M_{\odot}}$	Idade
71334	-0.091	$4.749\substack{+0.007\\-0.007}$	$0.983\substack{+0.006\\-0.006}$	$1.009\substack{+0.007\\-0.007}$	$0.932\substack{+0.063\\-0.034}$	
72234	-0.101	$3.014\substack{+0.009\\-0.009}$	$4.859\substack{+0.040\\-0.040}$	$2.285\substack{+0.027\\-0.027}$	$1.216\substack{+0.054\\-0.043}$	$4.430\substack{+0.388\\-0.387}$
72579	-0.158	$4.929\substack{+0.010\\-0.010}$	$0.833\substack{+0.008\\-0.008}$	$1.034\substack{+0.013\\-0.013}$	$0.936\substack{+0.039\\-0.033}$	
72673	-0.194	$5.758\substack{+0.010\\-0.010}$	$0.388\substack{+0.004\\-0.004}$	$0.739\substack{+0.008\\-0.008}$	$0.763\substack{+0.028\\-0.036}$	
72954	-0.189	$2.204_{-0.026}^{+0.026}$	$10.24_{-0.247}^{+0.247}$	$3.771_{-0.078}^{+0.078}$	$1.475_{-0.027}^{+0.014}$	
73350	-0.078	$4.730\substack{+0.006\\-0.006}$	$1.000\substack{+0.006\\-0.006}$	$0.993\substack{+0.007\\-0.007}$	$1.056\substack{+0.065\\-0.046}$	
73667	-0.268	$6.011\substack{+0.021\\-0.021}$	$0.307\substack{+0.006\\-0.006}$	$0.713\substack{+0.016\\-0.016}$	$0.711\substack{+0.019\\-0.026}$	
74576	-0.281	$6.055\substack{+0.010\\-0.010}$	$0.295\substack{+0.003\\-0.003}$	$0.722\substack{+0.006\\-0.006}$	$0.772\substack{+0.031\\-0.018}$	
74698	-0.087	$4.107\substack{+0.007\\-0.007}$	$1.776\substack{+0.011\\-0.011}$	$1.349\substack{+0.009\\-0.009}$	$1.006\substack{+0.032\\-0.048}$	$8.900\substack{+0.959\\-0.920}$
75732	-0.213	$5.247\substack{+0.029\\-0.029}$	$0.621\substack{+0.017\\-0.017}$	$0.955\substack{+0.034\\-0.034}$	$0.940\substack{+0.040\\-0.041}$	
76151	-0.084	$4.793\substack{+0.006\\-0.006}$	$0.943\substack{+0.005\\-0.005}$	$0.976\substack{+0.004\\-0.004}$	$1.022\substack{+0.039\\-0.057}$	
76932	-0.048	$4.096\substack{+0.007\\-0.007}$	$1.794\substack{+0.012\\-0.012}$	$1.248^{+0.013}_{-0.013}$	$0.800\substack{+0.009\\-0.031}$	$12.90\substack{+0.840 \\ -0.710}$
77902	-0.094	$2.505\substack{+0.010\\-0.010}$	$7.761\substack{+0.075\\-0.075}$	$2.852\substack{+0.018\\-0.018}$	$1.444_{-0.018}^{+0.237}$	$3.000\substack{+0.068\\-0.068}$
78366	-0.050	$4.502\substack{+0.008\\-0.008}$	$1.234\substack{+0.009\\-0.009}$	$1.041\substack{+0.013\\-0.013}$	$1.046\substack{+0.051\\-0.049}$	
78429	-0.087	$4.310\substack{+0.011\\-0.011}$	$1.472_{-0.016}^{+0.016}$	$1.227\substack{+0.024\\-0.024}$	$1.009\substack{+0.039\\-0.048}$	
78643	-0.051	$3.351\substack{+0.012\\-0.012}$	$3.562\substack{+0.040\\-0.040}$	$1.771\substack{+0.019\\-0.019}$	$1.105\substack{+0.048\\-0.058}$	$6.200\substack{+0.741\\-0.255}$
79969	-0.391	$5.624_{-0.031}^{+0.031}$	$0.439\substack{+0.013\\-0.013}$	$0.948\substack{+0.016\\-0.016}$	$0.926\substack{+0.045\\-0.018}$	
81174	-0.228	$3.683\substack{+0.009\\-0.009}$	$2.623^{+0.023}_{-0.023}$	$1.997\substack{+0.017\\-0.017}$	$0.976_{-0.037}^{+0.112}$	
82443	-0.182	$5.582^{+0.012}_{-0.012}$	$0.456\substack{+0.005\\-0.005}$	$0.789^{+0.011}_{-0.011}$	$0.848\substack{+0.048\\-0.038}$	
82885	-0.136	$5.017\substack{+0.017\\-0.017}$	$0.768^{+0.012}_{-0.012}$	$0.961\substack{+0.024\\-0.024}$	$1.000\substack{+0.043\\-0.051}$	
83529	-0.058	$4.284\substack{+0.008\\-0.008}$	$1.508\substack{+0.011\\-0.011}$	$1.172_{-0.014}^{+0.014}$	$0.933\substack{+0.039\\-0.043}$	
84117	-0.024	$4.052\substack{+0.013\\-0.013}$	$1.868^{+0.023}_{-0.023}$	$1.197\substack{+0.038\\-0.038}$	$1.079\substack{+0.058\\-0.049}$	
84937	-0.001	$4.019\substack{+0.124\\-0.124}$	$1.925\substack{+0.219\\-0.219}$	$1.127\substack{+0.071\\-0.071}$	$0.766\substack{+0.016\\-0.022}$	
85380	-0.040	$3.229\substack{+0.009\\-0.009}$	$3.985\substack{+0.032\\-0.032}$	$1.825\substack{+0.016\\-0.016}$	$1.250\substack{+0.057\\-0.049}$	$3.600\substack{+0.914\\-0.495}$
85725	-0.069	$2.548^{+0.008}_{-0.008}$	$7.463\substack{+0.055\\-0.055}$	$2.665\substack{+0.030\\-0.030}$	$1.428^{+0.059}_{-0.102}$	$2.920\substack{+0.311\\-0.084}$
86728	-0.083	$4.417\substack{+0.010\\-0.010}$	$1.334_{-0.012}^{+0.012}$	$1.159^{+0.011}_{-0.011}$	$1.075_{-0.021}^{+0.034}$	$5.280^{+0.978}_{-0.961}$
87883	-0.314	$5.934_{-0.014}^{+0.014}$	$0.330\substack{+0.004\\-0.004}$	$0.780\substack{+0.008\\-0.008}$	$0.804^{+0.018}_{-0.045}$	
88084	-0.083	$4.666^{+0.008}_{-0.008}$	$1.061\substack{+0.007\\-0.007}$	$1.034_{-0.009}^{+0.009}$	$0.940^{+0.054}_{-0.045}$	
88218	-0.079	$3.553_{-0.015}^{+0.015}$	$2.958^{+0.041}_{-0.041}$	$1.713_{-0.047}^{+0.047}$	$1.048^{+0.037}_{-0.046}$	$7.640_{-0.683}^{+0.451}$
88725	-0.090	$4.957\substack{+0.011\\-0.011}$	$0.812^{+0.008}_{-0.008}$	$0.917\substack{+0.011\\-0.011}$	$0.789^{+0.018}_{-0.021}$	
90711	-0.161	$5.065\substack{+0.015\\-0.015}$	$0.735\substack{+0.010\\-0.010}$	$0.975_{-0.018}^{+0.018}$	$0.961\substack{+0.037\\-0.039}$	
90722	-0.106	$4.184_{-0.011}^{+0.011}$	$1.654_{-0.016}^{+0.016}$	$1.346^{+0.018}_{-0.018}$	$1.080\substack{+0.039\\-0.036}$	
92588	-0.262	$3.106\substack{+0.008\\-0.008}$	$4.463^{+0.031}_{-0.031}$	$2.700^{+0.015}_{-0.015}$	$1.278^{+0.077}_{-0.014}$	$3.600\substack{+0.266\\-0.384}$
94028	-0.039	$4.678^{+0.013}_{-0.013}$	$1.049\substack{+0.013\\-0.013}$	$0.934\substack{+0.018\\-0.018}$	$0.739^{+0.011}_{-0.017}$	
94340	-0.075	$3.844_{-0.014}^{+0.014}$	$2.262^{+0.029}_{-0.029}$	$1.486\substack{+0.022\\-0.022}$	$1.093\substack{+0.044\\-0.046}$	
94765	-0.284	$5.894_{-0.007}^{+0.007}$	$0.342^{+0.002}_{-0.002}$	$0.764_{-0.005}^{+0.005}$	$0.831\substack{+0.046\\-0.018}$	
97037	-0.065	$4.189\substack{+0.008\\-0.008}$	$1.645\substack{+0.013\\-0.013}$	$1.242_{-0.015}^{+0.015}$	$0.988\substack{+0.034\\-0.037}$	$8.100^{+1.180}_{-0.653}$

Tabela D.1 – continuação

HD	СВ	M _{bol}	L/LO	R/R _☉	$M/M_{\odot}$	Idade
97320	-0.029	$4.332^{+0.008}_{-0.008}$	$1.443^{+0.010}_{-0.010}$	$1.068\substack{+0.008\\-0.008}$	$0.779^{+0.031}_{-0.013}$	
98649	-0.089	$4.783^{+0.007}_{-0.007}$	$0.952\substack{+0.006\\-0.006}$	$0.990\substack{+0.006\\-0.006}$	$0.966\substack{+0.037\\-0.051}$	
99491	-0.154	$5.034\substack{+0.013\\-0.013}$	$0.755\substack{+0.009\\-0.009}$	$0.979\substack{+0.016\\-0.016}$	$0.976\substack{+0.038\\-0.038}$	
99492	-0.351	$5.927\substack{+0.022\\-0.022}$	$0.332\substack{+0.007\\-0.007}$	$0.802\substack{+0.013\\-0.013}$	$0.832^{+0.037}_{-0.023}$	
100623	-0.218	$5.843^{+0.012}_{-0.012}$	$0.359\substack{+0.004\\-0.004}$	$0.730^{+0.010}_{-0.010}$	$0.746^{+0.021}_{-0.036}$	
101259	-0.275	$1.971\substack{+0.012\\-0.012}$	$12.70_{-0.140}^{+0.140}$	$4.612_{-0.047}^{+0.047}$	$1.030^{+0.110}_{-0.112}$	
101367	-0.119	$4.632_{-0.013}^{+0.013}$	$1.095\substack{+0.013\\-0.013}$	$1.117\substack{+0.018\\-0.018}$	$1.018\substack{+0.039\\-0.035}$	
101501	-0.130	$5.273\substack{+0.009\\-0.009}$	$0.607\substack{+0.005\\-0.005}$	$0.847\substack{+0.010\\-0.010}$	$0.895\substack{+0.043\\-0.053}$	
101612	-0.014	$4.001\substack{+0.008\\-0.008}$	$1.958\substack{+0.015\\-0.015}$	$1.188\substack{+0.020\\-0.020}$	$1.023\substack{+0.042\\-0.039}$	
101676	-0.023	$3.547^{+0.008}_{-0.008}$	$2.974_{-0.023}^{+0.023}$	$1.505\substack{+0.018\\-0.018}$	$1.005\substack{+0.029\\-0.058}$	$7.200^{+1.280}_{-0.253}$
102200	-0.020	$4.436\substack{+0.010\\-0.010}$	$1.311\substack{+0.012\\-0.012}$	$0.992\substack{+0.020\\-0.020}$	$0.804\substack{+0.023\\-0.034}$	
102300	-0.042	$3.792\substack{+0.009\\-0.009}$	$2.373\substack{+0.020 \\ -0.020}$	$1.414\substack{+0.014\\-0.014}$	$1.003\substack{+0.039\\-0.033}$	$7.260\substack{+0.720\\-0.762}$
102365	-0.097	$4.952\substack{+0.014\\-0.014}$	$0.815\substack{+0.011\\-0.011}$	$0.930\substack{+0.022\\-0.022}$	$0.859\substack{+0.037\\-0.049}$	
102438	-0.113	$5.122\substack{+0.007\\-0.007}$	$0.697\substack{+0.005\\-0.005}$	$0.884\substack{+0.008\\-0.008}$	$0.846\substack{+0.033\\-0.048}$	
102902	-0.142	$2.464\substack{+0.018\\-0.018}$	$8.064\substack{+0.134\\-0.134}$	$3.143\substack{+0.075\\-0.075}$	$1.448^{+0.032}_{-0.048}$	$2.820\substack{+0.346\\-0.125}$
103026	-0.034	$3.310\substack{+0.010\\-0.010}$	$3.699\substack{+0.033\\-0.033}$	$1.734\substack{+0.019\\-0.019}$	$1.133\substack{+0.032\\-0.039}$	$5.270\substack{+0.417\\-0.154}$
104304	-0.138	$4.883\substack{+0.008\\-0.008}$	$0.868\substack{+0.006\\-0.006}$	$1.025\substack{+0.009\\-0.009}$	$1.001\substack{+0.035\\-0.044}$	
104800	-0.073	$4.847\substack{+0.013\\-0.013}$	$0.898\substack{+0.011\\-0.011}$	$0.933\substack{+0.010\\-0.010}$	$0.779\substack{+0.012\\-0.020}$	$12.70^{+1.040}_{-0.380}$
105590	-0.090	$4.743\substack{+0.009\\-0.009}$	$0.988\substack{+0.008\\-0.008}$	$1.011\substack{+0.010\\-0.010}$	$0.963\substack{+0.038\\-0.042}$	
105618	-0.094	$4.303\substack{+0.012\\-0.012}$	$1.481\substack{+0.017\\-0.017}$	$1.247\substack{+0.019\\-0.019}$	$1.080\substack{+0.049\\-0.043}$	
105901	-0.074	$4.575\substack{+0.010\\-0.010}$	$1.153\substack{+0.011\\-0.011}$	$1.059\substack{+0.010\\-0.010}$	$0.991\substack{+0.044\\-0.048}$	
106116	-0.101	$4.639\substack{+0.007\\-0.007}$	$1.087\substack{+0.007\\-0.007}$	$1.082\substack{+0.006\\-0.006}$	$1.008\substack{+0.040\\-0.040}$	
106516	-0.012	$4.351\substack{+0.040\\-0.040}$	$1.417\substack{+0.052\\-0.052}$	$1.006\substack{+0.022\\-0.022}$	$0.927\substack{+0.034\\-0.033}$	
106742	-0.051	$2.728^{+0.009}_{-0.009}$	$6.323\substack{+0.050\\-0.050}$	$2.358\substack{+0.029\\-0.029}$	$1.424_{-0.057}^{+0.115}$	$3.130\substack{+0.409\\-0.562}$
107213	-0.015	$2.971\substack{+0.008\\-0.008}$	$5.056\substack{+0.036\\-0.036}$	$1.918\substack{+0.020\\-0.020}$	$1.464\substack{+0.026\\-0.043}$	$2.400\substack{+0.160\\-0.148}$
108309	-0.089	$4.017\substack{+0.009\\-0.009}$	$1.929\substack{+0.015\\-0.015}$	$1.411\substack{+0.018\\-0.018}$	$1.046\substack{+0.044\\-0.042}$	
108317	-0.168	$1.388\substack{+0.038\\-0.038}$	$21.71_{-0.763}^{+0.763}$	$5.350^{+0.163}_{-0.163}$	$1.006^{+0.142}_{-0.132}$	
109200	-0.240	$5.842^{+0.015}_{-0.015}$	$0.359\substack{+0.005\\-0.005}$	$0.749^{+0.012}_{-0.012}$	$0.765_{-0.036}^{+0.023}$	
109409	-0.089	$3.397\substack{+0.011\\-0.011}$	$3.413_{-0.034}^{+0.034}$	$1.876^{+0.024}_{-0.024}$	$1.312_{-0.236}^{+0.084}$	
109684	-0.049	$4.060\substack{+0.014\\-0.014}$	$1.854_{-0.025}^{+0.025}$	$1.273_{-0.029}^{+0.029}$	$0.937\substack{+0.042\\-0.041}$	
111199	-0.035	$2.031\substack{+0.009\\-0.009}$	$12.01\substack{+0.104\\-0.104}$	$3.131_{-0.022}^{+0.022}$	$1.475_{-0.014}^{+0.009}$	
111395	-0.108	$5.017\substack{+0.006\\-0.006}$	$0.768^{+0.004}_{-0.004}$	$0.920\substack{+0.005\\-0.005}$	$0.991\substack{+0.044\\-0.057}$	
111398	-0.090	$4.207\substack{+0.011\\-0.011}$	$1.619\substack{+0.017\\-0.017}$	$1.294_{-0.023}^{+0.023}$	$1.022_{-0.043}^{+0.039}$	
112164	-0.061	$2.903\substack{+0.011\\-0.011}$	$5.380\substack{+0.056\\-0.056}$	$2.227^{+0.033}_{-0.033}$	$1.428\substack{+0.094\\-0.035}$	$3.290\substack{+0.153\\-0.628}$
114260	-0.134	$5.116\substack{+0.009\\-0.009}$	$0.701\substack{+0.006\\-0.006}$	$0.915\substack{+0.011\\-0.011}$	$0.879^{+0.045}_{-0.045}$	
114613	-0.103	$3.210\substack{+0.023\\-0.023}$	$4.056\substack{+0.085\\-0.085}$	$2.097\substack{+0.075\\-0.075}$	$1.255\substack{+0.041\\-0.046}$	$4.700_{-0.233}^{+0.445}$
114710	-0.043	$4.372_{-0.010}^{+0.010}$	$1.391\substack{+0.013\\-0.013}$	$1.087^{+0.016}_{-0.016}$	$1.094_{-0.058}^{+0.046}$	

Tabela D.1 – continuação

HD	СВ	M _{bol}	L/LO	R/R _o	${\rm M/M_{\odot}}$	Idade
114762	-0.048	$4.229_{-0.025}^{+0.025}$	$1.586\substack{+0.036\\-0.036}$	$1.174_{-0.018}^{+0.018}$	$0.825^{+0.029}_{-0.026}$	
114946	-0.268	$2.177\substack{+0.016\\-0.016}$	$10.50\substack{+0.155\\-0.155}$	$4.167\substack{+0.051\\-0.051}$	$1.488\substack{+0.044\\-0.048}$	
115382	-0.083	$4.635\substack{+0.009\\-0.009}$	$1.092\substack{+0.009\\-0.009}$	$1.049\substack{+0.010\\-0.010}$	$0.943_{-0.047}^{+0.055}$	
115383	-0.039	$3.931\substack{+0.013 \\ -0.013}$	$2.088^{+0.026}_{-0.026}$	$1.319\substack{+0.028\\-0.028}$	$1.148^{+0.054}_{-0.034}$	
115404	-0.297	$5.989\substack{+0.012\\-0.012}$	$0.314\substack{+0.004\\-0.004}$	$0.752\substack{+0.007\\-0.007}$	$0.763^{+0.014}_{-0.031}$	
115617	-0.106	$4.986\substack{+0.023\\-0.023}$	$0.790\substack{+0.017\\-0.017}$	$0.930\substack{+0.037\\-0.037}$	$0.948\substack{+0.060\\-0.045}$	
116442	-0.194	$5.765\substack{+0.018\\-0.018}$	$0.385\substack{+0.006\\-0.006}$	$0.736\substack{+0.016\\-0.016}$	$0.767\substack{+0.027\\-0.037}$	
116443	-0.258	$5.995\substack{+0.027\\-0.027}$	$0.312\substack{+0.008\\-0.008}$	$0.711\substack{+0.021\\-0.021}$	$0.739\substack{+0.026\\-0.035}$	
117105	-0.063	$4.323\substack{+0.008\\-0.008}$	$1.455\substack{+0.010\\-0.010}$	$1.162\substack{+0.010\\-0.010}$	$0.900\substack{+0.028\\-0.042}$	
117176	-0.129	$3.576\substack{+0.021\\-0.021}$	$2.896\substack{+0.057\\-0.057}$	$1.847\substack{+0.058\\-0.058}$	$1.055\substack{+0.034\\-0.038}$	$7.840\substack{+0.624\\-0.415}$
117939	-0.095	$4.795\substack{+0.010\\-0.010}$	$0.942\substack{+0.009\\-0.009}$	$0.996\substack{+0.015\\-0.015}$	$0.907\substack{+0.046\\-0.057}$	
118598	-0.088	$4.742\substack{+0.010\\-0.010}$	$0.989\substack{+0.009\\-0.009}$	$1.007\substack{+0.011\\-0.011}$	$0.968\substack{+0.039\\-0.050}$	
118972	-0.230	$5.712\substack{+0.009\\-0.009}$	$0.405\substack{+0.003\\-0.003}$	$0.786\substack{+0.007\\-0.007}$	$0.818\substack{+0.026\\-0.050}$	
119550	-0.077	$3.132\substack{+0.012\\-0.012}$	$4.357\substack{+0.049\\-0.049}$	$2.071\substack{+0.039\\-0.039}$	$1.217\substack{+0.039\\-0.025}$	$4.830\substack{+0.475\\-0.137}$
120066	-0.070	$3.769\substack{+0.006\\-0.006}$	$2.424_{-0.014}^{+0.014}$	$1.524_{-0.009}^{+0.009}$	$1.107\substack{+0.028\\-0.033}$	$6.640\substack{+0.525\\-0.471}$
120136	-0.004	$3.522\substack{+0.014\\-0.014}$	$3.041\substack{+0.040\\-0.040}$	$1.432\substack{+0.034\\-0.034}$	$1.318\substack{+0.032\\-0.041}$	$1.800\substack{+0.562\\-0.576}$
120237	-0.030	$4.137\substack{+0.007 \\ -0.007}$	$1.727\substack{+0.012\\-0.012}$	$1.172_{-0.015}^{+0.015}$	$1.106\substack{+0.030\\-0.051}$	$3.480\substack{+0.979\\-1.020}$
120690	-0.123	$4.964\substack{+0.017\\-0.017}$	$0.806\substack{+0.013\\-0.013}$	$0.965\substack{+0.016\\-0.016}$	$0.908\substack{+0.040\\-0.057}$	
120780	-0.298	$5.963\substack{+0.020\\-0.020}$	$0.321\substack{+0.006\\-0.006}$	$0.750\substack{+0.015\\-0.015}$	$0.743^{+0.017}_{-0.019}$	
121370	-0.045	$2.351\substack{+0.032\\-0.032}$	$8.946\substack{+0.260\\-0.260}$	$2.771_{-0.055}^{+0.055}$	$1.560\substack{+0.040\\-0.076}$	$2.680\substack{+0.514\\-0.144}$
121384	-0.202	$2.847^{+0.015}_{-0.015}$	$5.666^{+0.078}_{-0.078}$	$2.849^{+0.027}_{-0.027}$	$1.201\substack{+0.055\\-0.033}$	$3.910\substack{+0.519\\-0.600}$
122196	-0.041	$3.579^{+0.017}_{-0.017}$	$2.886\substack{+0.044\\-0.044}$	$1.559_{-0.034}^{+0.034}$	$0.760^{+0.013}_{-0.014}$	
122742	-0.142	$5.049\substack{+0.011\\-0.011}$	$0.746\substack{+0.008\\-0.008}$	$0.956\substack{+0.013\\-0.013}$	$0.905\substack{+0.038\\-0.055}$	
122862	-0.051	$3.633\substack{+0.006\\-0.006}$	$2.747_{-0.016}^{+0.016}$	$1.558\substack{+0.010\\-0.010}$	$1.046\substack{+0.014\\-0.054}$	$6.980\substack{+0.905\\-0.134}$
123619	-0.029	$3.877^{+0.010}_{-0.010}$	$2.194\substack{+0.021\\-0.021}$	$1.315\substack{+0.016\\-0.016}$	$1.001\substack{+0.038\\-0.034}$	$6.200\substack{+0.697\\-0.894}$
124553	-0.046	$3.250\substack{+0.009\\-0.009}$	$3.907^{+0.033}_{-0.033}$	$1.835\substack{+0.031\\-0.031}$	$1.305\substack{+0.053\\-0.051}$	$4.400\substack{+0.756\\-0.569}$
124570	-0.029	$2.868^{+0.009}_{-0.009}$	$5.556^{+0.048}_{-0.048}$	$2.095^{+0.020}_{-0.020}$	$1.404\substack{+0.037\\-0.066}$	$2.990^{+0.384}_{-0.231}$
124850	-0.026	$2.333_{-0.022}^{+0.022}$	$9.094_{-0.182}^{+0.182}$	$2.660^{+0.051}_{-0.051}$	$1.417^{+0.084}_{-0.049}$	
125072	-0.376	$5.917\substack{+0.019\\-0.019}$	$0.335\substack{+0.006\\-0.006}$	$0.820^{+0.013}_{-0.013}$	$0.815\substack{+0.021\\-0.029}$	
125184	-0.121	$3.769^{+0.009}_{-0.009}$	$2.422^{+0.020}_{-0.020}$	$1.670^{+0.019}_{-0.019}$	$1.136\substack{+0.029\\-0.045}$	$7.470_{-0.625}^{+0.386}$
125276	-0.024	$4.569\substack{+0.010\\-0.010}$	$1.160\substack{+0.011\\-0.011}$	$0.945_{-0.022}^{+0.022}$	$0.896^{+0.043}_{-0.045}$	
125566	-0.175	$3.731^{+0.020}_{-0.020}$	$2.510^{+0.046}_{-0.046}$	$1.836\substack{+0.020\\-0.020}$	$0.843^{+0.018}_{-0.028}$	
126053	-0.089	$4.954\substack{+0.008\\-0.008}$	$0.814_{-0.006}^{+0.006}$	$0.916\substack{+0.010\\-0.010}$	$0.844_{-0.052}^{+0.035}$	
126614	-0.153	$4.333\substack{+0.011\\-0.011}$	$1.441\substack{+0.014\\-0.014}$	$1.349\substack{+0.013\\-0.013}$	$1.038\substack{+0.031\\-0.018}$	
126868	-0.113	$1.844\substack{+0.020\\-0.020}$	$14.27\substack{+0.266\\-0.266}$	$3.998\substack{+0.093\\-0.093}$	$1.684\substack{+0.038\\-0.026}$	
128311	-0.358	$6.056\substack{+0.007\\-0.007}$	$0.295\substack{+0.002\\-0.002}$	$0.760\substack{+0.004\\-0.004}$	$0.777\substack{+0.022\\-0.030}$	
128428	-0.136	$3.774_{-0.029}^{+0.029}$	$2.412_{-0.065}^{+0.065}$	$1.705\substack{+0.039\\-0.039}$	$1.150_{-0.025}^{+0.034}$	$7.350\substack{+0.639\\-0.853}$

Tabela D.1 – continuação

				3000			
HD	CB	$M_{\rm bol}$	$L/L\odot$	$ m R/R_{\odot}$	${\rm M/M_{\odot}}$	Idade	
128571	-0.026	$3.940\substack{+0.009\\-0.009}$	$2.070\substack{+0.017\\-0.017}$	$1.269\substack{+0.023\\-0.023}$	$0.979\substack{+0.032\\-0.040}$	$7.200\substack{+1.400 \\ -0.496}$	
128620	-0.116	$4.229\substack{+0.008\\-0.008}$	$1.586\substack{+0.012\\-0.012}$	$1.339\substack{+0.006\\-0.006}$	$1.109\substack{+0.028\\-0.027}$	$5.300\substack{+0.300\\-0.300}$	*
128621	-0.254	$5.451\substack{+0.024\\-0.024}$	$0.515\substack{+0.012\\-0.012}$	$0.909\substack{+0.028\\-0.028}$	$0.905\substack{+0.037\\-0.051}$	$5.300\substack{+0.300\\-0.300}$	*
129010	-0.046	$3.124_{-0.013}^{+0.013}$	$4.388\substack{+0.051\\-0.051}$	$1.942\substack{+0.036\\-0.036}$	$1.320\substack{+0.040\\-0.118}$	$4.400\substack{+1.020\\-0.428}$	
130004	-0.345	$6.153\substack{+0.025\\-0.025}$	$0.270\substack{+0.006\\-0.006}$	$0.720\substack{+0.015\\-0.015}$	$0.712\substack{+0.019\\-0.022}$		
130307	-0.289	$6.033\substack{+0.015\\-0.015}$	$0.301\substack{+0.004\\-0.004}$	$0.720\substack{+0.010\\-0.010}$	$0.758\substack{+0.024\\-0.035}$		
130948	-0.054	$4.505\substack{+0.006\\-0.006}$	$1.231\substack{+0.007\\-0.007}$	$1.048^{+0.007}_{-0.007}$	$1.004\substack{+0.023\\-0.044}$		
131117	-0.057	$3.313\substack{+0.008\\-0.008}$	$3.687^{+0.026}_{-0.026}$	$1.826^{+0.017}_{-0.017}$	$1.220^{+0.026}_{-0.133}$	$4.780^{+1.310}_{-0.437}$	
131183	-0.114	$4.205\substack{+0.011\\-0.011}$	$1.622^{+0.016}_{-0.016}$	$1.351\substack{+0.017\\-0.017}$	$0.969\substack{+0.033\\-0.034}$		
131509	-0.288	$3.227^{+0.027}_{-0.027}$	$3.994\substack{+0.100\\-0.100}$	$2.667\substack{+0.055\\-0.055}$	$1.071\substack{+0.102 \\ -0.077}$		
131511	-0.227	$5.493\substack{+0.016\\-0.016}$	$0.495\substack{+0.007\\-0.007}$	$0.866\substack{+0.011\\-0.011}$	$0.853^{+0.026}_{-0.037}$		
131923	-0.121	$4.339\substack{+0.014\\-0.014}$	$1.433_{-0.018}^{+0.018}$	$1.284_{-0.025}^{+0.025}$	$0.960\substack{+0.036\\-0.042}$		
131977	-0.490	$6.382\substack{+0.045\\-0.045}$	$0.218\substack{+0.009\\-0.009}$	$0.716\substack{+0.026\\-0.026}$	$0.749_{-0.022}^{+0.022}$		
132505	-0.057	$3.722_{-0.011}^{+0.011}$	$2.531\substack{+0.027\\-0.027}$	$1.515\substack{+0.026\\-0.026}$	$1.177_{-0.024}^{+0.027}$	$5.000\substack{+0.362\\-0.592}$	
134113	-0.073	$3.891\substack{+0.015\\-0.015}$	$2.167\substack{+0.029\\-0.029}$	$1.448^{+0.023}_{-0.023}$	$0.828^{+0.027}_{-0.026}$	$12.60\substack{+0.770\\-0.900}$	
134169	-0.057	$3.996\substack{+0.013\\-0.013}$	$1.965\substack{+0.024\\-0.024}$	$1.335\substack{+0.022\\-0.022}$	$0.823^{+0.017}_{-0.026}$	$12.40\substack{+0.540\\-0.950}$	
134439	-0.263	$6.464\substack{+0.023\\-0.023}$	$0.203\substack{+0.004\\-0.004}$	$0.575\substack{+0.014\\-0.014}$	$0.610\substack{+0.019\\-0.025}$		
134440	-0.373	$6.697\substack{+0.046\\-0.046}$	$0.163\substack{+0.007\\-0.007}$	$0.571\substack{+0.022\\-0.022}$	$0.592\substack{+0.008\\-0.008}$		
134664	-0.075	$4.630\substack{+0.010\\-0.010}$	$1.097\substack{+0.010\\-0.010}$	$1.035\substack{+0.013\\-0.013}$	$1.059\substack{+0.054\\-0.052}$		
135101A	-0.107	$3.983\substack{+0.007\\-0.007}$	$1.990\substack{+0.013\\-0.013}$	$1.479_{-0.012}^{+0.012}$	$0.996\substack{+0.035\\-0.049}$		
135101B	-0.134	$4.777_{-0.011}^{+0.011}$	$0.958\substack{+0.009\\-0.009}$	$1.070\substack{+0.015\\-0.015}$	$0.933\substack{+0.050\\-0.036}$		
135204	-0.165	$5.230\substack{+0.008\\-0.008}$	$0.631\substack{+0.004\\-0.004}$	$0.908\substack{+0.007\\-0.007}$	$0.841\substack{+0.018\\-0.022}$		
135599	-0.216	$5.709\substack{+0.008\\-0.008}$	$0.406\substack{+0.003\\-0.003}$	$0.775\substack{+0.007\\-0.007}$	$0.823\substack{+0.042\\-0.035}$		
136202	-0.028	$2.989\substack{+0.018\\-0.018}$	$4.969\substack{+0.082\\-0.082}$	$1.976\substack{+0.037\\-0.037}$	$1.247_{-0.101}^{+0.043}$	$3.900\substack{+0.855\\-0.465}$	
136352	-0.089	$4.726_{-0.007}^{+0.007}$	$1.004\substack{+0.006\\-0.006}$	$1.017\substack{+0.008\\-0.008}$	$0.863^{+0.033}_{-0.041}$		
137510	-0.055	$3.039\substack{+0.011\\-0.011}$	$4.747_{-0.046}^{+0.046}$	$2.065_{-0.026}^{+0.026}$	$1.414_{-0.032}^{+0.097}$	$4.000\substack{+0.804\\-0.308}$	
137676	-0.198	$3.620\substack{+0.009\\-0.009}$	$2.779^{+0.023}_{-0.023}$	$1.987\substack{+0.015\\-0.015}$	$0.901\substack{+0.071\\-0.042}$		
137763	-0.197	$5.237\substack{+0.035\\-0.035}$	$0.627^{+0.020}_{-0.020}$	$0.942^{+0.022}_{-0.022}$	$0.872^{+0.022}_{-0.032}$		
137812	-0.225	$3.617\substack{+0.027\\-0.027}$	$2.787^{+0.069}_{-0.069}$	$2.052\substack{+0.064\\-0.064}$	$1.080\substack{+0.041\\-0.036}$	$7.200\substack{+0.392 \\ -0.768}$	
138573	-0.084	$4.748^{+0.008}_{-0.008}$	$0.984^{+0.007}_{-0.007}$	$0.997\substack{+0.009\\-0.009}$	$0.986\substack{+0.042\\-0.066}$		
138776	-0.119	$4.196\substack{+0.015\\-0.015}$	$1.635_{-0.023}^{+0.023}$	$1.368^{+0.016}_{-0.016}$	$1.060\substack{+0.035\\-0.038}$		
139503	-0.071	$3.273_{-0.013}^{+0.013}$	$3.825_{-0.044}^{+0.044}$	$1.917\substack{+0.022\\-0.022}$	$1.124_{-0.046}^{+0.058}$	$5.810^{+0.359}_{-0.533}$	
140283	-0.072	$3.164\substack{+0.019\\-0.019}$	$4.230\substack{+0.074\\-0.074}$	$2.020\substack{+0.066\\-0.066}$	$0.766^{+0.171}_{-0.010}$		
140538	-0.096	$4.917\substack{+0.007\\-0.007}$	$0.842\substack{+0.005\\-0.005}$	$0.943\substack{+0.008\\-0.008}$	$0.977\substack{+0.044\\-0.032}$		
140690	-0.086	$4.610\substack{+0.010\\-0.010}$	$1.116\substack{+0.010\\-0.010}$	$1.066\substack{+0.012\\-0.012}$	$0.996\substack{+0.046\\-0.050}$		
140901	-0.117	$4.976\substack{+0.007\\-0.007}$	$0.797\substack{+0.005\\-0.005}$	$0.951\substack{+0.007\\-0.007}$	$0.977\substack{+0.045\\-0.037}$		
141004	-0.058	$4.000\substack{+0.009\\-0.009}$	$1.960\substack{+0.016\\-0.016}$	$1.334\substack{+0.012\\-0.012}$	$1.070\substack{+0.056\\-0.035}$		

Tabela D.1 – continuação

HD	СВ	M _{bol}	L/Lo	R/R _o	$M/M_{\odot}$	Idade
141885	-0.072	$2.578^{+0.013}_{-0.013}$	$7.259_{-0.088}^{+0.088}$	$2.648^{+0.040}_{-0.040}$	$1.533^{+0.057}_{-0.036}$	$2.770_{-0.433}^{+0.177}$
142072	-0.084	$4.720\substack{+0.009\\-0.009}$	$1.010\substack{+0.008\\-0.008}$	$1.010\substack{+0.013\\-0.013}$	$1.053\substack{+0.039\\-0.039}$	
142267	-0.070	$4.801\substack{+0.011\\-0.011}$	$0.936\substack{+0.009\\-0.009}$	$0.947\substack{+0.009\\-0.009}$	$0.860\substack{+0.036\\-0.041}$	
143337	-0.092	$4.522\substack{+0.010\\-0.010}$	$1.211\substack{+0.011\\-0.011}$	$1.124_{-0.015}^{+0.015}$	$0.884^{+0.029}_{-0.030}$	
143761	-0.071	$4.107\substack{+0.007\\-0.007}$	$1.776\substack{+0.011\\-0.011}$	$1.307\substack{+0.010\\-0.010}$	$0.930\substack{+0.072\\-0.042}$	
143885	-0.049	$2.945\substack{+0.019 \\ -0.019}$	$5.176\substack{+0.089\\-0.089}$	$2.124_{-0.041}^{+0.041}$	$1.405\substack{+0.063\\-0.077}$	$3.230\substack{+0.171\\-0.633}$
144585	-0.073	$4.047\substack{+0.009\\-0.009}$	$1.876\substack{+0.016\\-0.016}$	$1.349\substack{+0.020\\-0.020}$	$1.136\substack{+0.045\\-0.038}$	
144628	-0.257	$5.996\substack{+0.023\\-0.023}$	$0.311\substack{+0.007\\-0.007}$	$0.710\substack{+0.018\\-0.018}$	$0.738\substack{+0.026\\-0.035}$	
144988	-0.066	$2.921\substack{+0.013 \\ -0.013}$	$5.290\substack{+0.062\\-0.062}$	$2.230^{+0.027}_{-0.027}$	$1.205\substack{+0.021\\-0.054}$	$4.400\substack{+0.526\\-0.100}$
145825	-0.077	$4.740\substack{+0.007\\-0.007}$	$0.991\substack{+0.006\\-0.006}$	$0.988\substack{+0.007\\-0.007}$	$1.024\substack{+0.080\\-0.048}$	
146233	-0.075	$4.664\substack{+0.008\\-0.008}$	$1.063\substack{+0.008\\-0.008}$	$1.020\substack{+0.012\\-0.012}$	$1.017\substack{+0.052\\-0.039}$	$4.670^{+0.870}_{-1.290}$ *
146835	-0.047	$3.870\substack{+0.011\\-0.011}$	$2.208^{+0.022}_{-0.022}$	$1.381\substack{+0.018\\-0.018}$	$1.032\substack{+0.060\\-0.068}$	
147513	-0.065	$4.751\substack{+0.009\\-0.009}$	$0.981\substack{+0.009\\-0.009}$	$0.959\substack{+0.015\\-0.015}$	$1.024\substack{+0.063\\-0.020}$	
147584	-0.033	$4.439\substack{+0.008\\-0.008}$	$1.308\substack{+0.009\\-0.009}$	$1.028\substack{+0.011\\-0.011}$	$1.080\substack{+0.059\\-0.063}$	
147743	-0.073	$2.628\substack{+0.021\\-0.021}$	$6.930\substack{+0.132\\-0.132}$	$2.591\substack{+0.043 \\ -0.043}$	$1.489^{+0.093}_{-0.047}$	$2.940\substack{+0.432\\-0.204}$
148577	-0.093	$4.176\substack{+0.008\\-0.008}$	$1.666\substack{+0.013\\-0.013}$	$1.320\substack{+0.009\\-0.009}$	$0.940\substack{+0.048\\-0.023}$	$10.60\substack{+0.220\\-1.570}$
148816	-0.055	$4.059\substack{+0.007\\-0.007}$	$1.855\substack{+0.011\\-0.011}$	$1.291\substack{+0.006\\-0.006}$	$0.811\substack{+0.016\\-0.017}$	$12.90\substack{+0.540\\-0.410}$
149661	-0.209	$5.578^{+0.012}_{-0.012}$	$0.458\substack{+0.005\\-0.005}$	$0.817\substack{+0.011\\-0.011}$	$0.851\substack{+0.044\\-0.042}$	
149724	-0.124	$3.987\substack{+0.018\\-0.018}$	$1.982\substack{+0.033\\-0.033}$	$1.515\substack{+0.041\\-0.041}$	$1.093\substack{+0.034\\-0.032}$	$7.890\substack{+1.040\\-0.830}$
150248	-0.090	$4.720\substack{+0.006\\-0.006}$	$1.009\substack{+0.006\\-0.006}$	$1.022\substack{+0.005\\-0.005}$	$0.958\substack{+0.067\\-0.050}$	
150474	-0.173	$3.571\substack{+0.010\\-0.010}$	$2.907\substack{+0.028\\-0.028}$	$1.970\substack{+0.011\\-0.011}$	$1.085\substack{+0.019\\-0.011}$	$7.400_{-0.257}^{+0.203}$
150698	-0.084	$3.273_{-0.011}^{+0.011}$	$3.826^{+0.037}_{-0.037}$	$1.966^{+0.024}_{-0.024}$	$1.232_{-0.058}^{+0.026}$	$4.950_{-0.419}^{+0.277}$
151090	-0.299	$3.035\substack{+0.031\\-0.031}$	$4.762_{-0.136}^{+0.136}$	$2.891\substack{+0.091\\-0.091}$	$1.074_{-0.127}^{+0.126}$	
151337	-0.293	$2.974\substack{+0.046\\-0.046}$	$5.041_{-0.215}^{+0.215}$	$3.006\substack{+0.110\\-0.110}$	$1.169\substack{+0.146\\-0.119}$	
152311	-0.103	$3.503\substack{+0.020\\-0.020}$	$3.095\substack{+0.057\\-0.057}$	$1.832^{+0.027}_{-0.027}$	$1.159_{-0.033}^{+0.022}$	$6.200\substack{+0.490\\-0.283}$
152391	-0.148	$5.376\substack{+0.006\\-0.006}$	$0.552^{+0.003}_{-0.003}$	$0.829^{+0.005}_{-0.005}$	$0.888^{+0.043}_{-0.040}$	
153075	-0.069	$4.454_{-0.006}^{+0.006}$	$1.289^{+0.007}_{-0.007}$	$1.108\substack{+0.006\\-0.006}$	$0.849^{+0.018}_{-0.020}$	$12.00\substack{+0.640\\-0.370}$
153458	-0.073	$4.722_{-0.008}^{+0.008}$	$1.008\substack{+0.008\\-0.008}$	$0.989^{+0.010}_{-0.010}$	$1.071_{-0.028}^{+0.048}$	
154088	-0.185	$5.095_{-0.025}^{+0.025}$	$0.715_{-0.016}^{+0.016}$	$0.992^{+0.032}_{-0.032}$	$0.937^{+0.040}_{-0.041}$	
154160	-0.131	$3.584_{-0.008}^{+0.008}$	$2.875^{+0.020}_{-0.020}$	$1.847^{+0.017}_{-0.017}$	$1.188^{+0.023}_{-0.018}$	$6.200_{-0.173}^{+0.556}$
154417	-0.040	$4.384_{-0.008}^{+0.008}$	$1.376^{+0.010}_{-0.010}$	$1.074_{-0.014}^{+0.014}$	$1.089^{+0.043}_{-0.058}$	
154857	-0.127	$3.097\substack{+0.010\\-0.010}$	$4.498^{+0.041}_{-0.041}$	$2.294_{-0.025}^{+0.025}$	$1.155_{-0.026}^{+0.031}$	$5.030^{+0.109}_{-0.359}$
154931	-0.069	$3.456\substack{+0.008\\-0.008}$	$3.232_{-0.024}^{+0.024}$	$1.756^{+0.017}_{-0.017}$	$1.139_{-0.081}^{+0.028}$	$6.450_{-0.216}^{+0.286}$
154962	-0.097	$3.487^{+0.010}_{-0.010}$	$3.141_{-0.029}^{+0.029}$	$1.827^{+0.028}_{-0.028}$	$1.197\substack{+0.033\\-0.028}$	$6.200\substack{+0.411\\-0.499}$
155114	-0.077	$4.895_{-0.006}^{+0.006}$	$0.859^{+0.005}_{-0.005}$	$0.920^{+0.004}_{-0.004}$	$0.999^{+0.042}_{-0.068}$	
155885	-0.253	$5.201\substack{+0.020\\-0.020}$	$0.648^{+0.012}_{-0.012}$	$1.019\substack{+0.022\\-0.022}$	$0.885^{+0.019}_{-0.086}$	
156274	-0.178	$5.573\substack{+0.020\\-0.020}$	$0.460\substack{+0.008\\-0.008}$	$0.789\substack{+0.020\\-0.020}$	$0.794\substack{+0.026\\-0.040}$	

Tabela D.1 – continuação

HD	СВ	M _{bol}	L/L⊙	$ m R/R_{\odot}$	${\rm M}/{\rm M}_{\odot}$	Idade
156365	-0.079	$3.355\substack{+0.009\\-0.009}$	$3.548\substack{+0.030\\-0.030}$	$1.875_{-0.022}^{+0.022}$	$1.256\substack{+0.036\\-0.079}$	$4.800\substack{+0.798\\-0.234}$
156411	-0.071	$2.822\substack{+0.010\\-0.010}$	$5.799\substack{+0.054\\-0.054}$	$2.359\substack{+0.028 \\ -0.028}$	$1.256\substack{+0.038\\-0.012}$	$3.690\substack{+0.108\\-0.189}$
156826	-0.258	$2.657\substack{+0.010 \\ -0.010}$	$6.747\substack{+0.063\\-0.063}$	$3.306\substack{+0.030\\-0.030}$	$1.333\substack{+0.146\\-0.013}$	$3.000\substack{+0.103\\-0.379}$
156846	-0.046	$3.057\substack{+0.007\\-0.007}$	$4.670\substack{+0.031\\-0.031}$	$2.006\substack{+0.008\\-0.008}$	$1.408\substack{+0.298\\-0.023}$	$4.360\substack{+0.080\\-0.079}$
157060	-0.029	$3.504\substack{+0.019\\-0.019}$	$3.093\substack{+0.054\\-0.054}$	$1.564_{-0.020}^{+0.020}$	$1.174_{-0.024}^{+0.035}$	$4.560_{-0.552}^{+0.428}$
157089	-0.063	$3.900\substack{+0.007\\-0.007}$	$2.148^{+0.014}_{-0.014}$	$1.412\substack{+0.012\\-0.012}$	$0.906\substack{+0.025\\-0.028}$	$10.30\substack{+0.779\\-0.330}$
157214	-0.082	$4.484\substack{+0.007\\-0.007}$	$1.254\substack{+0.008\\-0.008}$	$1.122\substack{+0.008\\-0.008}$	$0.859\substack{+0.031 \\ -0.016}$	$12.20\substack{+0.320\\-1.480}$
157347	-0.099	$4.713\substack{+0.006\\-0.006}$	$1.016\substack{+0.006\\-0.006}$	$1.041\substack{+0.006\\-0.006}$	$0.953\substack{+0.052\\-0.044}$	
157750	-0.078	$4.658\substack{+0.011\\-0.011}$	$1.069\substack{+0.011\\-0.011}$	$1.028\substack{+0.016\\-0.016}$	$1.072_{-0.054}^{+0.048}$	
158226	-0.077	$4.189\substack{+0.012\\-0.012}$	$1.646\substack{+0.018\\-0.018}$	$1.273_{-0.024}^{+0.024}$	$0.847^{+0.022}_{-0.018}$	
159222	-0.070	$4.529\substack{+0.006\\-0.006}$	$1.204\substack{+0.007\\-0.007}$	$1.074_{-0.009}^{+0.009}$	$1.068\substack{+0.038\\-0.053}$	
159332	-0.018	$2.696\substack{+0.009\\-0.009}$	$6.511\substack{+0.054\\-0.054}$	$2.195\substack{+0.026 \\ -0.026}$	$1.322_{-0.015}^{+0.155}$	$3.140_{-0.561}^{+0.142}$
159656	-0.077	$4.413\substack{+0.008\\-0.008}$	$1.339\substack{+0.010\\-0.010}$	$1.148^{+0.012}_{-0.012}$	$1.022\substack{+0.043\\-0.036}$	
159784	-0.039	$2.788\substack{+0.017\\-0.017}$	$5.982\substack{+0.095\\-0.095}$	$2.231\substack{+0.026\\-0.026}$	$1.496\substack{+0.094\\-0.157}$	
160346	-0.352	$6.159\substack{+0.039\\-0.039}$	$0.268\substack{+0.010\\-0.010}$	$0.721\substack{+0.019\\-0.019}$	$0.766\substack{+0.019\\-0.032}$	
160411	-0.081	$2.818\substack{+0.013\\-0.013}$	$5.819\substack{+0.070\\-0.070}$	$2.414\substack{+0.021\\-0.021}$	$1.416\substack{+0.025\\-0.113}$	$3.380\substack{+0.670\\-0.108}$
160691	-0.093	$4.061\substack{+0.011\\-0.011}$	$1.852\substack{+0.018\\-0.018}$	$1.392\substack{+0.023\\-0.023}$	$1.092\substack{+0.042\\-0.054}$	$6.340^{+0.800}_{-0.800}$ *
161239	-0.086	$2.666\substack{+0.010\\-0.010}$	$6.691\substack{+0.060\\-0.060}$	$2.614\substack{+0.036\\-0.036}$	$1.513\substack{+0.083\\-0.038}$	$2.950\substack{+0.380 \\ -0.195}$
161555	-0.084	$3.388\substack{+0.011\\-0.011}$	$3.443_{-0.034}^{+0.034}$	$1.865\substack{+0.024\\-0.024}$	$1.187\substack{+0.028\\-0.045}$	$5.840\substack{+0.370\\-0.458}$
161612	-0.122	$4.933\substack{+0.012\\-0.012}$	$0.829\substack{+0.009\\-0.009}$	$0.978\substack{+0.016\\-0.016}$	$0.974\substack{+0.041\\-0.046}$	
161797	-0.142	$3.658\substack{+0.022\\-0.022}$	$2.684_{-0.053}^{+0.053}$	$1.813_{-0.053}^{+0.053}$	$1.149\substack{+0.035\\-0.030}$	$7.120\substack{+0.615\\-0.370}$
162396	-0.035	$3.631\substack{+0.007\\-0.007}$	$2.752_{-0.017}^{+0.017}$	$1.498^{+0.013}_{-0.013}$	$0.999\substack{+0.034\\-0.043}$	$6.600\substack{+0.756\\-0.428}$
163153	-0.137	$3.580\substack{+0.016\\-0.016}$	$2.883\substack{+0.042\\-0.042}$	$1.864\substack{+0.040\\-0.040}$	$1.196\substack{+0.026\\-0.026}$	$6.130\substack{+0.552\\-0.348}$
164507	-0.135	$2.858^{+0.013}_{-0.013}$	$5.609\substack{+0.065\\-0.065}$	$2.595\substack{+0.045\\-0.045}$	$1.379_{-0.022}^{+0.063}$	$3.530\substack{+0.303\\-0.083}$
164595	-0.083	$4.730\substack{+0.006\\-0.006}$	$1.000\substack{+0.005\\-0.005}$	$1.003\substack{+0.006\\-0.006}$	$0.964_{-0.036}^{+0.028}$	
165185	-0.059	$4.703\substack{+0.008\\-0.008}$	$1.025\substack{+0.007\\-0.007}$	$0.968\substack{+0.010\\-0.010}$	$1.030\substack{+0.046\\-0.043}$	
165271	-0.088	$3.294_{-0.012}^{+0.012}$	$3.752_{-0.042}^{+0.042}$	$1.961\substack{+0.021\\-0.021}$	$1.168\substack{+0.063\\-0.069}$	$5.620^{+0.494}_{-0.625}$
165341	-0.212	$5.287^{+0.026}_{-0.026}$	$0.599\substack{+0.014\\-0.014}$	$0.938\substack{+0.028\\-0.028}$	$0.869^{+0.020}_{-0.036}$	
165499	-0.057	$4.167\substack{+0.008\\-0.008}$	$1.680^{+0.012}_{-0.012}$	$1.233_{-0.012}^{+0.012}$	$0.960^{+0.029}_{-0.033}$	$8.460\substack{+0.950\\-0.549}$
167300	-0.064	$4.014\substack{+0.014\\-0.014}$	$1.933\substack{+0.025\\-0.025}$	$1.345\substack{+0.031\\-0.031}$	$0.891\substack{+0.033\\-0.030}$	$10.90\substack{+0.972\\-0.830}$
167665	-0.028	$3.899\substack{+0.008\\-0.008}$	$2.151_{-0.015}^{+0.015}$	$1.300\substack{+0.016\\-0.016}$	$1.056\substack{+0.039\\-0.049}$	$5.460_{-0.791}^{+0.843}$
168443	-0.126	$3.802^{+0.012}_{-0.012}$	$2.352^{+0.026}_{-0.026}$	$1.657^{+0.025}_{-0.025}$	$1.093\substack{+0.038\\-0.059}$	$8.860^{+0.488}_{-0.493}$
169830	-0.020	$3.002^{+0.011}_{-0.011}$	$4.913\substack{+0.048\\-0.048}$	$1.918\substack{+0.025\\-0.025}$	$1.336\substack{+0.071\\-0.049}$	$3.600\substack{+0.470\\-0.589}$
170657	-0.276	$5.937\substack{+0.015\\-0.015}$	$0.329\substack{+0.004\\-0.004}$	$0.743^{+0.011}_{-0.011}$	$0.767\substack{+0.020\\-0.034}$	
170829	-0.180	$3.572^{+0.019}_{-0.019}$	$2.906\substack{+0.050\\-0.050}$	$1.987\substack{+0.049\\-0.049}$	$1.124_{-0.033}^{+0.035}$	$7.200\substack{+0.556\\-0.168}$
171990	-0.051	$3.150\substack{+0.007\\-0.007}$	$4.286\substack{+0.026\\-0.026}$	$1.942^{+0.017}_{-0.017}$	$1.242_{-0.144}^{+0.013}$	$5.000^{+1.360}_{-0.231}$
172051	-0.093	$5.179\substack{+0.016\\-0.016}$	$0.661\substack{+0.010\\-0.010}$	$0.832\substack{+0.023\\-0.023}$	$0.886\substack{+0.055\\-0.054}$	

Tabela D.1 – continuação

HD	CB	M _{bol}	L/L⊙	R/R _☉	${\rm M/M_{\odot}}$	Idade
175425	-0.084	$4.159\substack{+0.009\\-0.009}$	$1.692\substack{+0.015\\-0.015}$	$1.309\substack{+0.019\\-0.019}$	$1.028\substack{+0.041\\-0.047}$	
175541	-0.284	$2.165\substack{+0.057 \\ -0.057}$	$10.62\substack{+0.560 \\ -0.560}$	$4.339\substack{+0.192 \\ -0.192}$	$1.327\substack{+0.209 \\ -0.208}$	
177565	-0.103	$4.904\substack{+0.009\\-0.009}$	$0.852\substack{+0.007\\-0.007}$	$0.961\substack{+0.012\\-0.012}$	$1.005\substack{+0.036\\-0.049}$	
178904	-0.097	$4.597\substack{+0.009\\-0.009}$	$1.131\substack{+0.010\\-0.010}$	$1.095\substack{+0.010\\-0.010}$	$0.982\substack{+0.045\\-0.043}$	
179699	-0.047	$3.330\substack{+0.010\\-0.010}$	$3.630\substack{+0.033\\-0.033}$	$1.772_{-0.012}^{+0.012}$	$1.253\substack{+0.150\\-0.032}$	$3.800\substack{+0.508\\-1.490}$
179949	-0.027	$4.028\substack{+0.008\\-0.008}$	$1.909\substack{+0.014\\-0.014}$	$1.220\substack{+0.015\\-0.015}$	$1.197\substack{+0.043 \\ -0.050}$	$2.250\substack{+1.010\\-0.741}$
180684	-0.039	$3.240\substack{+0.010\\-0.010}$	$3.945\substack{+0.035\\-0.035}$	$1.810\substack{+0.032\\-0.032}$	$1.247\substack{+0.066\\-0.060}$	$3.600\substack{+0.873\\-0.602}$
181321	-0.073	$4.914\substack{+0.018\\-0.018}$	$0.844\substack{+0.014\\-0.014}$	$0.904\substack{+0.009\\-0.009}$	$0.978\substack{+0.039\\-0.017}$	
182488	-0.169	$5.234\substack{+0.007\\-0.007}$	$0.629\substack{+0.004\\-0.004}$	$0.911\substack{+0.006\\-0.006}$	$0.938\substack{+0.056\\-0.035}$	
182572	-0.129	$4.167\substack{+0.010\\-0.010}$	$1.680\substack{+0.015\\-0.015}$	$1.407\substack{+0.018\\-0.018}$	$1.062\substack{+0.030\\-0.031}$	
182619	-0.121	$5.113\substack{+0.009\\-0.009}$	$0.703\substack{+0.005\\-0.005}$	$0.899\substack{+0.009\\-0.009}$	$0.904\substack{+0.051\\-0.049}$	
182807	-0.028	$3.910\substack{+0.007\\-0.007}$	$2.127\substack{+0.013\\-0.013}$	$1.294\substack{+0.014\\-0.014}$	$1.004\substack{+0.032\\-0.046}$	$6.420\substack{+0.905\\-0.810}$
183263	-0.070	$4.117\substack{+0.012\\-0.012}$	$1.758\substack{+0.019\\-0.019}$	$1.296\substack{+0.027\\-0.027}$	$1.110\substack{+0.039\\-0.047}$	
183577	-0.031	$3.364\substack{+0.008\\-0.008}$	$3.518\substack{+0.025\\-0.025}$	$1.676\substack{+0.016\\-0.016}$	$1.104\substack{+0.071\\-0.105}$	$5.890\substack{+0.788\\-1.220}$
183870	-0.297	$5.994\substack{+0.014\\-0.014}$	$0.312\substack{+0.004\\-0.004}$	$0.738\substack{+0.010\\-0.010}$	$0.795\substack{+0.034\\-0.053}$	
187013	-0.003	$3.396\substack{+0.008\\-0.008}$	$3.417\substack{+0.025\\-0.025}$	$1.515\substack{+0.014\\-0.014}$	$1.190\substack{+0.033\\-0.042}$	$3.560\substack{+0.472\\-0.371}$
187237	-0.074	$4.756\substack{+0.008\\-0.008}$	$0.976\substack{+0.007\\-0.007}$	$0.974\substack{+0.012\\-0.012}$	$1.050\substack{+0.045\\-0.037}$	
187691	-0.030	$3.636\substack{+0.009\\-0.009}$	$2.740\substack{+0.024\\-0.024}$	$1.476_{-0.017}^{+0.017}$	$1.193\substack{+0.031\\-0.052}$	$4.080\substack{+0.524\\-0.783}$
187923	-0.088	$3.916\substack{+0.007\\-0.007}$	$2.116\substack{+0.014\\-0.014}$	$1.473_{-0.012}^{+0.012}$	$1.000\substack{+0.051\\-0.033}$	$9.060\substack{+0.358\\-1.130}$
188376	-0.152	$2.701\substack{+0.032\\-0.032}$	$6.479\substack{+0.189\\-0.189}$	$2.857\substack{+0.069\\-0.069}$	$1.428^{+0.031}_{-0.023}$	$3.020\substack{+0.074\\-0.074}$
188512	-0.245	$2.833_{-0.013}^{+0.013}$	$5.737^{+0.067}_{-0.067}$	$3.008\substack{+0.024\\-0.024}$	$1.243_{-0.020}^{+0.053}$	$3.600^{+0.214}_{-0.322}$
188815	-0.020	$3.880\substack{+0.009\\-0.009}$	$2.187\substack{+0.018\\-0.018}$	$1.281\substack{+0.017\\-0.017}$	$0.953\substack{+0.026\\-0.036}$	$7.150\substack{+0.920\\-0.711}$
189406	-0.048	$2.733\substack{+0.037\\-0.037}$	$6.293\substack{+0.213 \\ -0.213}$	$2.338\substack{+0.073\\-0.073}$	$1.414\substack{+0.096\\-0.066}$	$3.110\substack{+0.273\\-0.552}$
189567	-0.087	$4.717\substack{+0.007 \\ -0.007}$	$1.012\substack{+0.007\\-0.007}$	$1.018\substack{+0.010\\-0.010}$	$0.878\substack{+0.037\\-0.044}$	
189625	-0.072	$4.601\substack{+0.008\\-0.008}$	$1.126\substack{+0.008\\-0.008}$	$1.043\substack{+0.011\\-0.011}$	$1.108\substack{+0.055\\-0.046}$	
189733	-0.295	$5.895\substack{+0.015\\-0.015}$	$0.342^{+0.005}_{-0.005}$	$0.771\substack{+0.011\\-0.011}$	$0.797\substack{+0.025\\-0.045}$	
190067	-0.150	$5.573_{-0.007}^{+0.007}$	$0.460^{+0.003}_{-0.003}$	$0.759\substack{+0.005\\-0.005}$	$0.803\substack{+0.040\\-0.026}$	
190228	-0.199	$3.110\substack{+0.009\\-0.009}$	$4.446_{-0.038}^{+0.038}$	$2.516^{+0.023}_{-0.023}$	$1.189\substack{+0.050\\-0.080}$	$4.560\substack{+0.494\\-0.545}$
190248	-0.116	$4.509\substack{+0.019\\-0.019}$	$1.226^{+0.021}_{-0.021}$	$1.178_{-0.034}^{+0.034}$	$1.054_{-0.036}^{+0.043}$	
190360	-0.133	$4.575\substack{+0.008\\-0.008}$	$1.154_{-0.009}^{+0.009}$	$1.173_{-0.012}^{+0.012}$	$0.971\substack{+0.033\\-0.031}$	
190404	-0.258	$6.054\substack{+0.026\\-0.026}$	$0.295\substack{+0.007\\-0.007}$	$0.692\substack{+0.019\\-0.019}$	$0.703\substack{+0.014\\-0.033}$	
190406	-0.053	$4.504\substack{+0.007\\-0.007}$	$1.231_{-0.008}^{+0.008}$	$1.047\substack{+0.011\\-0.011}$	$1.089\substack{+0.048\\-0.056}$	
190580	-0.121	$2.650\substack{+0.008\\-0.008}$	$6.789\substack{+0.051\\-0.051}$	$2.795\substack{+0.022\\-0.022}$	$1.348\substack{+0.036\\-0.088}$	
190613	-0.077	$4.266\substack{+0.009\\-0.009}$	$1.534\substack{+0.013\\-0.013}$	$1.229\substack{+0.014\\-0.014}$	$1.005\substack{+0.033\\-0.051}$	
190771	-0.078	$4.706\substack{+0.006\\-0.006}$	$1.022\substack{+0.006\\-0.006}$	$1.006\substack{+0.008\\-0.008}$	$1.057\substack{+0.045\\-0.033}$	
191408	-0.294	$6.129\substack{+0.024\\-0.024}$	$0.276\substack{+0.006\\-0.006}$	$0.692\substack{+0.017\\-0.017}$	$0.698\substack{+0.015\\-0.023}$	
191487	-0.071	$4.589_{-0.012}^{+0.012}$	$1.138_{-0.013}^{+0.013}$	$1.045_{-0.022}^{+0.022}$	$1.009\substack{+0.049\\-0.049}$	

Tabela D.1 – continuação

				2			
HD	СВ	$M_{\rm bol}$	$L/L\odot$	$ m R/R_{\odot}$	${\rm M}/{\rm M}_{\odot}$	Idade	
191760	-0.071	$3.399\substack{+0.031\\-0.031}$	$3.406\substack{+0.097\\-0.097}$	$1.810\substack{+0.034\\-0.034}$	$1.260\substack{+0.068\\-0.087}$		
192263	-0.296	$6.028\substack{+0.023\\-0.023}$	$0.303\substack{+0.006\\-0.006}$	$0.738\substack{+0.014\\-0.014}$	$0.779\substack{+0.033\\-0.019}$		
192310	-0.247	$5.761\substack{+0.013\\-0.013}$	$0.387\substack{+0.005\\-0.005}$	$0.783\substack{+0.011\\-0.011}$	$0.840\substack{+0.051\\-0.040}$		
192344	-0.106	$3.604\substack{+0.010\\-0.010}$	$2.820\substack{+0.027\\-0.027}$	$1.757\substack{+0.019\\-0.019}$	$1.179_{-0.029}^{+0.026}$	$6.290\substack{+0.186 \\ -0.694}$	
193193	-0.055	$4.137\substack{+0.008 \\ -0.008}$	$1.727\substack{+0.012\\-0.012}$	$1.244_{-0.013}^{+0.013}$	$1.017\substack{+0.035 \\ -0.047}$		
193307	-0.044	$3.745\substack{+0.006\\-0.006}$	$2.477_{-0.015}^{+0.015}$	$1.453\substack{+0.011\\-0.011}$	$0.977\substack{+0.023 \\ -0.042}$	$8.050\substack{+1.030\\-0.390}$	
193901	-0.067	$5.174\substack{+0.010\\-0.010}$	$0.664\substack{+0.006\\-0.006}$	$0.793\substack{+0.011\\-0.011}$	$0.751\substack{+0.021\\-0.025}$		
194640	-0.126	$5.055\substack{+0.007\\-0.007}$	$0.741_{-0.005}^{+0.005}$	$0.930\substack{+0.007\\-0.007}$	$0.925\substack{+0.047\\-0.040}$		
195564	-0.110	$3.581\substack{+0.009\\-0.009}$	$2.882\substack{+0.024\\-0.024}$	$1.789\substack{+0.017\\-0.017}$	$1.098\substack{+0.036\\-0.038}$	$7.300\substack{+0.292 \\ -0.406}$	
195838	-0.033	$3.441\substack{+0.007\\-0.007}$	$3.277^{+0.022}_{-0.022}$	$1.627\substack{+0.019\\-0.019}$	$1.086\substack{+0.040\\-0.029}$	$5.730\substack{+0.317\\-0.526}$	
196050	-0.072	$3.901\substack{+0.008\\-0.008}$	$2.146\substack{+0.016\\-0.016}$	$1.439\substack{+0.015\\-0.015}$	$1.148^{+0.044}_{-0.034}$	$5.610\substack{+0.734\\-0.884}$	
196378	-0.037	$3.091\substack{+0.011\\-0.011}$	$4.525\substack{+0.048\\-0.048}$	$1.932\substack{+0.027\\-0.027}$	$1.126\substack{+0.039\\-0.031}$	$5.100\substack{+0.139\\-0.396}$	
196755	-0.112	$2.553\substack{+0.014\\-0.014}$	$7.430\substack{+0.099\\-0.099}$	$2.879_{-0.043}^{+0.043}$	$1.434\substack{+0.026\\-0.044}$	$3.000\substack{+0.068\\-0.068}$	
196761	-0.136	$5.391\substack{+0.009\\-0.009}$	$0.544_{-0.005}^{+0.005}$	$0.809\substack{+0.010\\-0.010}$	$0.851\substack{+0.042\\-0.045}$		
196794	-0.280	$5.857\substack{+0.010 \\ -0.010}$	$0.354_{-0.003}^{+0.003}$	$0.774_{-0.007}^{+0.007}$	$0.815\substack{+0.033\\-0.038}$		
196800	-0.052	$4.057\substack{+0.008\\-0.008}$	$1.858\substack{+0.013\\-0.013}$	$1.283\substack{+0.013\\-0.013}$	$1.143\substack{+0.040\\-0.046}$		
196885	-0.029	$3.691\substack{+0.009\\-0.009}$	$2.603^{+0.023}_{-0.023}$	$1.431\substack{+0.029\\-0.029}$	$1.177\substack{+0.040\\-0.049}$	$4.220\substack{+1.130 \\ -0.650}$	
197210	-0.116	$5.120\substack{+0.008\\-0.008}$	$0.699\substack{+0.005\\-0.005}$	$0.889\substack{+0.009\\-0.009}$	$0.926\substack{+0.056\\-0.027}$		
197536	-0.040	$3.909\substack{+0.010\\-0.010}$	$2.131\substack{+0.020\\-0.020}$	$1.336\substack{+0.020\\-0.020}$	$0.928\substack{+0.043\\-0.043}$		
197963	-0.016	$2.401\substack{+0.013\\-0.013}$	$8.543\substack{+0.101\\-0.101}$	$2.501\substack{+0.024\\-0.024}$	$1.501\substack{+0.079\\-0.023}$		
197964	-0.413	$1.132\substack{+0.040\\-0.040}$	$27.49^{+1.005}_{-1.005}$	$7.619\substack{+0.160\\-0.160}$	$1.818\substack{+0.171\\-0.134}$		
198802	-0.090	$3.063\substack{+0.008\\-0.008}$	$4.644_{-0.033}^{+0.033}$	$2.193\substack{+0.021\\-0.021}$	$1.284^{+0.100}_{-0.011}$	$4.170\substack{+0.098\\-0.453}$	
199288	-0.070	$4.779\substack{+0.006\\-0.006}$	$0.956\substack{+0.006\\-0.006}$	$0.956\substack{+0.007\\-0.007}$	$0.818\substack{+0.026\\-0.036}$		
199960	-0.062	$3.981\substack{+0.007\\-0.007}$	$1.994\substack{+0.013\\-0.013}$	$1.358\substack{+0.011\\-0.011}$	$1.127\substack{+0.072\\-0.041}$		
200525	-0.054	$4.082\substack{+0.020\\-0.020}$	$1.816\substack{+0.033\\-0.033}$	$1.274_{-0.027}^{+0.027}$	$1.024\substack{+0.057\\-0.064}$		
200580	-0.056	$3.950\substack{+0.057\\-0.057}$	$2.052\substack{+0.107 \\ -0.107}$	$1.359\substack{+0.041\\-0.041}$	$0.877\substack{+0.030\\-0.032}$	$11.00\substack{+0.939 \\ -1.030}$	
200968	-0.251	$5.665\substack{+0.019\\-0.019}$	$0.423\substack{+0.007\\-0.007}$	$0.821\substack{+0.017\\-0.017}$	$0.838\substack{+0.041\\-0.041}$		
201242	-0.022	$1.891\substack{+0.030\\-0.030}$	$13.66\substack{+0.380 \\ -0.380}$	$3.220\substack{+0.064\\-0.064}$	$1.552\substack{+0.036\\-0.149}$		
201891	-0.047	$4.693\substack{+0.006\\-0.006}$	$1.035\substack{+0.006\\-0.006}$	$0.947\substack{+0.008\\-0.008}$	$0.759\substack{+0.009\\-0.021}$		
202072	-0.087	$4.785\substack{+0.011\\-0.011}$	$0.951\substack{+0.010\\-0.010}$	$0.987\substack{+0.016\\-0.016}$	$0.899\substack{+0.043\\-0.058}$		
202707	-0.098	$2.746_{-0.012}^{+0.012}$	$6.216\substack{+0.070\\-0.070}$	$2.573_{-0.037}^{+0.037}$	$1.231\substack{+0.043\\-0.102}$	$3.200\substack{+0.386\\-0.379}$	
202917	-0.124	$5.173_{-0.017}^{+0.017}$	$0.665\substack{+0.011\\-0.011}$	$0.879^{+0.023}_{-0.023}$	$0.895\substack{+0.048\\-0.051}$	$0.045\substack{+0.004\\-0.004}$	А
202940	-0.146	$5.108\substack{+0.013\\-0.013}$	$0.706\substack{+0.008\\-0.008}$	$0.935\substack{+0.013\\-0.013}$	$0.842\substack{+0.024\\-0.026}$		
203608	-0.022	$4.352\substack{+0.014\\-0.014}$	$1.417\substack{+0.018\\-0.018}$	$1.038\substack{+0.030\\-0.030}$	$0.891\substack{+0.044\\-0.051}$	$7.250\substack{+0.070 \\ -0.070}$	*
205158	-0.048	$3.098\substack{+0.015\\-0.015}$	$4.494\substack{+0.062\\-0.062}$	$1.978\substack{+0.050\\-0.050}$	$1.333\substack{+0.088\\-0.075}$	$3.740\substack{+0.747\\-0.579}$	
205390	-0.282	$6.004\substack{+0.017\\-0.017}$	$0.309\substack{+0.005\\-0.005}$	$0.725\substack{+0.013\\-0.013}$	$0.752\substack{+0.023\\-0.036}$		
206255	-0.117	$3.116\substack{+0.009\\-0.009}$	$4.421\substack{+0.038\\-0.038}$	$2.240^{+0.022}_{-0.022}$	$1.267\substack{+0.079\\-0.015}$	$4.470_{-0.394}^{+0.330}$	

Tabela D.1 – continuação

HD	СВ	M _{bol}	L/LO	R/R _☉	${\rm M/M_{\odot}}$	Idade
206301	-0.097	$2.328^{+0.021}_{-0.021}$	$9.133_{-0.177}^{+0.177}$	$3.112^{+0.060}_{-0.060}$	$1.458^{+0.034}_{-0.044}$	$2.760^{+0.231}_{-0.105}$
206860	-0.052	$4.617\substack{+0.008\\-0.008}$	$1.110\substack{+0.008\\-0.008}$	$0.990\substack{+0.012\\-0.012}$	$1.026\substack{+0.050\\-0.050}$	
207043	-0.084	$4.895\substack{+0.007\\-0.007}$	$0.859\substack{+0.006\\-0.006}$	$0.932\substack{+0.008\\-0.008}$	$0.996\substack{+0.029\\-0.054}$	
207129	-0.056	$4.553\substack{+0.008\\-0.008}$	$1.177\substack{+0.009\\-0.009}$	$1.031\substack{+0.014\\-0.014}$	$1.062\substack{+0.055\\-0.057}$	
207978	-0.001	$3.352\substack{+0.008\\-0.008}$	$3.559\substack{+0.027\\-0.027}$	$1.534_{-0.017}^{+0.017}$	$1.033\substack{+0.038\\-0.030}$	$5.470_{-0.348}^{+0.416}$
209100	-0.489	$6.396\substack{+0.023\\-0.023}$	$0.216\substack{+0.005\\-0.005}$	$0.710\substack{+0.013\\-0.013}$	$0.717\substack{+0.020 \\ -0.025}$	
210277	-0.142	$4.755\substack{+0.012\\-0.012}$	$0.977\substack{+0.011\\-0.011}$	$1.094\substack{+0.019\\-0.019}$	$0.958\substack{+0.044\\-0.038}$	
210460	-0.133	$2.286\substack{+0.015\\-0.015}$	$9.499_{-0.132}^{+0.132}$	$3.366\substack{+0.068\\-0.068}$	$1.479_{-0.052}^{+0.025}$	
210918	-0.089	$4.424\substack{+0.018\\-0.018}$	$1.326\substack{+0.022\\-0.022}$	$1.170\substack{+0.010\\-0.010}$	$0.929\substack{+0.026\\-0.028}$	$10.40\substack{+0.981\\-0.910}$
211038	-0.298	$3.228\substack{+0.035\\-0.035}$	$3.988\substack{+0.127\\-0.127}$	$2.684\substack{+0.074\\-0.074}$	$1.006\substack{+0.090\\-0.100}$	
211080	-0.110	$3.391\substack{+0.017\\-0.017}$	$3.432\substack{+0.054\\-0.054}$	$1.951\substack{+0.046\\-0.046}$	$1.247\substack{+0.049\\-0.035}$	$5.080\substack{+0.147\\-0.545}$
211415	-0.073	$4.554\substack{+0.013\\-0.013}$	$1.176\substack{+0.015\\-0.015}$	$1.067\substack{+0.027\\-0.027}$	$0.897\substack{+0.041\\-0.061}$	
211786	-0.082	$4.841\substack{+0.015\\-0.015}$	$0.903\substack{+0.013\\-0.013}$	$0.953\substack{+0.017\\-0.017}$	$0.949\substack{+0.056\\-0.045}$	
211998	-0.172	$2.837\substack{+0.016\\-0.016}$	$5.716\substack{+0.082\\-0.082}$	$2.757\substack{+0.052\\-0.052}$	$0.807\substack{+0.025\\-0.035}$	
212330	-0.097	$3.659\substack{+0.008\\-0.008}$	$2.682\substack{+0.021\\-0.021}$	$1.687\substack{+0.014\\-0.014}$	$1.102\substack{+0.032\\-0.031}$	$7.400_{-0.347}^{+0.228}$
212708	-0.115	$4.515\substack{+0.009\\-0.009}$	$1.219\substack{+0.010\\-0.010}$	$1.172_{-0.013}^{+0.013}$	$1.028\substack{+0.054\\-0.029}$	
213042	-0.511	$6.161\substack{+0.022\\-0.022}$	$0.268\substack{+0.005\\-0.005}$	$0.804\substack{+0.014\\-0.014}$	$0.790\substack{+0.014\\-0.014}$	
213429	-0.041	$4.075\substack{+0.035\\-0.035}$	$1.829\substack{+0.060\\-0.060}$	$1.240^{+0.026}_{-0.026}$	$1.091\substack{+0.050\\-0.051}$	
213575	-0.102	$3.973\substack{+0.009\\-0.009}$	$2.008\substack{+0.017\\-0.017}$	$1.472^{+0.011}_{-0.011}$	$0.973\substack{+0.012\\-0.036}$	$10.40\substack{+0.280\\-0.320}$
214953	-0.035	$4.069\substack{+0.008\\-0.008}$	$1.838\substack{+0.014\\-0.014}$	$1.225\substack{+0.020\\-0.020}$	$1.111\substack{+0.036\\-0.042}$	$4.050\substack{+0.917 \\ -0.966}$
215028	-0.111	$4.254\substack{+0.015\\-0.015}$	$1.550\substack{+0.022\\-0.022}$	$1.314_{-0.028}^{+0.028}$	$0.966\substack{+0.026\\-0.269}$	
215257	-0.046	$4.170\substack{+0.014\\-0.014}$	$1.675\substack{+0.021\\-0.021}$	$1.200\substack{+0.033\\-0.033}$	$0.845\substack{+0.029\\-0.032}$	
215942	-0.094	$4.477\substack{+0.009\\-0.009}$	$1.262\substack{+0.010\\-0.010}$	$1.152\substack{+0.013\\-0.013}$	$0.890\substack{+0.032\\-0.029}$	
216385	-0.009	$2.999\substack{+0.013\\-0.013}$	$4.924\substack{+0.057\\-0.057}$	$1.856\substack{+0.041\\-0.041}$	$1.258\substack{+0.093\\-0.054}$	$3.530\substack{+0.728\\-0.768}$
216435	-0.060	$3.376\substack{+0.008\\-0.008}$	$3.479_{-0.026}^{+0.026}$	$1.787^{+0.014}_{-0.014}$	$1.209\substack{+0.038\\-0.070}$	$4.990\substack{+0.663\\-0.388}$
216436	-0.093	$4.799\substack{+0.008\\-0.008}$	$0.939\substack{+0.007\\-0.007}$	$0.991\substack{+0.010\\-0.010}$	$0.968^{+0.042}_{-0.042}$	
216437	-0.077	$3.829^{+0.009}_{-0.009}$	$2.293^{+0.019}_{-0.019}$	$1.504_{-0.022}^{+0.022}$	$1.146\substack{+0.031\\-0.046}$	$6.030\substack{+0.924\\-0.814}$
217004	-0.095	$3.472^{+0.011}_{-0.011}$	$3.186^{+0.033}_{-0.033}$	$1.832^{+0.027}_{-0.027}$	$1.099^{+0.023}_{-0.046}$	$6.840_{-0.213}^{+0.690}$
217014	-0.076	$4.426^{+0.008}_{-0.008}$	$1.323^{+0.010}_{-0.010}$	$1.140^{+0.012}_{-0.012}$	$1.087^{+0.039}_{-0.044}$	
217107	-0.113	$4.543^{+0.021}_{-0.021}$	$1.188^{+0.023}_{-0.023}$	$1.154_{-0.039}^{+0.039}$	$1.056^{+0.047}_{-0.039}$	
219048	-0.157	$3.014_{-0.035}^{+0.035}$	$4.859_{-0.157}^{+0.157}$	$2.493_{-0.044}^{+0.044}$	$1.188^{+0.059}_{-0.061}$	$4.430_{-0.546}^{+0.580}$
219077	-0.186	$3.606^{+0.008}_{-0.008}$	$2.816^{+0.020}_{-0.020}$	$1.972^{+0.014}_{-0.014}$	$1.027^{+0.029}_{-0.011}$	$8.350\substack{+0.220\\-0.367}$
219610	-0.124	$2.191\substack{+0.074\\-0.074}$	$10.37^{+0.710}_{-0.710}$	$3.470_{-0.129}^{+0.129}$	$1.488^{+0.054}_{-0.057}$	
219834	-0.172	$3.290\substack{+0.038\\-0.038}$	$3.769_{-0.132}^{+0.132}$	$2.239^{+0.087}_{-0.087}$	$1.220\substack{+0.040\\-0.046}$	$5.030\substack{+0.520\\-0.445}$
220096	-0.229	$0.365\substack{+0.027\\-0.027}$	$55.70^{+1.366}_{-1.366}$	$9.212_{-0.216}^{+0.216}$	$2.159_{-0.137}^{+0.157}$	
220339	-0.290	$6.096\substack{+0.026\\-0.026}$	$0.284^{+0.007}_{-0.007}$	$0.700\substack{+0.019\\-0.019}$	$0.735\substack{+0.024\\-0.025}$	
220507	-0.101	$4.305\substack{+0.010\\-0.010}$	$1.479\substack{+0.013\\-0.013}$	$1.261\substack{+0.017\\-0.017}$	$0.962\substack{+0.047\\-0.036}$	

Tabela D.1 – continuação

		14		minuação			
HD	CB	$M_{\rm bol}$	$L/L\odot$	$ m R/R_{\odot}$	${\rm M}/{\rm M}_{\odot}$	Idade	
221343	-0.081	$4.768\substack{+0.007\\-0.007}$	$0.966\substack{+0.006\\-0.006}$	$0.982\substack{+0.008\\-0.008}$	$1.003\substack{+0.045\\-0.045}$		
221420	-0.087	$3.264\substack{+0.009\\-0.009}$	$3.858\substack{+0.030\\-0.030}$	$1.987\substack{+0.025\\-0.025}$	$1.287\substack{+0.057\\-0.118}$		
221627	-0.083	$3.290\substack{+0.008\\-0.008}$	$3.765\substack{+0.026\\-0.026}$	$1.946\substack{+0.018\\-0.018}$	$1.259\substack{+0.055\\-0.018}$	$5.010\substack{+0.165\\-0.505}$	
222335	-0.200	$5.673\substack{+0.010\\-0.010}$	$0.419\substack{+0.004\\-0.004}$	$0.774\substack{+0.008\\-0.008}$	$0.820\substack{+0.034\\-0.042}$		
223641	-0.160	$3.529\substack{+0.012\\-0.012}$	$3.022\substack{+0.033\\-0.033}$	$1.973\substack{+0.022\\-0.022}$	$1.001\substack{+0.029\\-0.024}$	$8.350\substack{+0.387 \\ -0.341}$	
223691	-0.139	$3.448^{+0.011}_{-0.011}$	$3.258\substack{+0.032\\-0.032}$	$1.989\substack{+0.020\\-0.020}$	$1.058\substack{+0.024\\-0.049}$	$7.190\substack{+0.336 \\ -0.194}$	
224022	-0.038	$3.728\substack{+0.008\\-0.008}$	$2.516\substack{+0.018\\-0.018}$	$1.444_{-0.013}^{+0.013}$	$1.172\substack{+0.041\\-0.023}$	$4.450\substack{+0.481 \\ -0.675}$	
224930	-0.154	$5.136\substack{+0.026\\-0.026}$	$0.688\substack{+0.017\\-0.017}$	$0.935\substack{+0.029\\-0.029}$	$0.844\substack{+0.085\\-0.024}$		
225045	-0.021	$2.400\substack{+0.010\\-0.010}$	$8.550\substack{+0.078\\-0.078}$	$2.542\substack{+0.024\\-0.024}$	$1.542\substack{+0.059\\-0.067}$	$2.370\substack{+0.178 \\ -0.133}$	
282962	-0.099	$4.821\substack{+0.020\\-0.020}$	$0.920\substack{+0.017\\-0.017}$	$0.992\substack{+0.026\\-0.026}$	$0.958\substack{+0.060\\-0.049}$	$0.112\substack{+0.005\\-0.005}$	А
282973	-0.030	$4.191\substack{+0.017\\-0.017}$	$1.643\substack{+0.025\\-0.025}$	$1.140\substack{+0.010\\-0.010}$	$1.138\substack{+0.051\\-0.064}$	$0.112\substack{+0.005\\-0.005}$	А
282975	-0.136	$4.160\substack{+0.018\\-0.018}$	$1.690\substack{+0.028\\-0.028}$	$1.426\substack{+0.020\\-0.020}$	$0.952\substack{+0.044\\-0.046}$	$0.112\substack{+0.005\\-0.005}$	А
BD+15 3364	-0.083	$4.681\substack{+0.008\\-0.008}$	$1.047\substack{+0.008\\-0.008}$	$1.028\substack{+0.008\\-0.008}$	$1.004\substack{+0.036\\-0.051}$		
$\operatorname{BD+23}527$	-0.080	$4.859\substack{+0.014\\-0.014}$	$0.888\substack{+0.011\\-0.011}$	$0.941\substack{+0.007\\-0.007}$	$0.993\substack{+0.046\\-0.058}$	$0.112\substack{+0.005\\-0.005}$	А

Tabela D.1 – continuação

## Apêndice E

## Fluxos Absolutos Totais e Cromosféricos

Neste apêndice mostramos os valores de fluxo absoluto total ( $F_{tot}$ ) e os valores do fluxo puramente cromosférico ( $F_{crom}$ ) na linha H $\alpha$ , estes últimos obtidos a partir da subtração do envoltório de mínima atividade (capítulo 5). A estrela com fluxo cromosférico nulo (HD 114762) representa a estrela escolhida para determinação do envoltório de mínima atividade. Todas as medidas estão em unidade de erg cm⁻² s⁻¹. Não determinamos o fluxo cromosférico para as estrelas excessivamente pobres em metais ou já classificadas como gigantes, conforme explicado no capítulo 5, e os fluxos totais podem não ser acurados para estes casos. As incertezas apresentadas ( $\sigma_{Fcrom}$ ) se referem ao fluxo absoluto cromosférico, calculada de acordo com a explicação no capítulo 5.

HD	$\mathrm{F}_{\mathrm{tot}}$	$F_{\rm crom}$	$\sigma_{ m Fcrom}$
Sol	5.15E + 6	5.67E + 5	1.71E + 5
105	6.18E + 6	1.19E + 6	2.31E + 5
166	5.11E + 6	1.07E + 6	1.93E + 5
1237	4.78E + 6	8.31E + 5	1.85E + 5
1461	5.21E + 6	6.96E + 5	1.69E + 5
1466	6.55E + 6	1.18E + 6	2.60E + 5
1581	5.53E + 6	4.40E + 5	1.37E + 5
1835	5.49E + 6	9.11E + 5	1.24E + 5

TABELA E.1. Fluxos Absolutos Totais e Cromosféricos.

		- E	
HD	<u> </u>	F _{crom}	$\sigma_{\rm Fcrom}$
2151	5.08E+6	2.40E + 5	1.90E + 5
3047	5.33E+6	4.72E + 5	1.27E + 5
3443	4.59E + 6	4.84E + 5	1.72E + 5
3460	4.04E + 6	2.45E + 5	$9.56E{+4}$
3651	4.10E + 6	6.72E + 5	1.93E + 5
3795	3.97E + 6	1.50E + 5	1.01E + 5
3823	5.43E + 6	3.49E + 5	1.16E + 5
4203	4.76E + 6	7.01E + 5	1.84E + 5
4304	5.71E + 6	2.77E + 5	1.24E + 5
4307	5.01E + 6	3.06E + 5	1.06E + 5
4308	4.82E + 6	4.28E + 5	1.04E + 5
4391	5.30E + 6	6.25E + 5	$1.69E{+}5$
4628	3.38E + 6	4.30E + 5	1.73E + 5
4747	4.32E + 6	5.83E + 5	1.83E + 5
4813	$6.19E{+}6$	6.20E + 5	2.19E + 5
5133	3.40E + 6	5.59E + 5	1.73E + 5
6512	5.08E + 6	4.87E + 5	2.09E + 5
7134	5.35E + 6	4.32E + 5	1.99E + 5
7570	5.79E + 6	5.36E + 5	1.74E + 5
8291	5.41E + 6	8.17E + 5	9.54E + 4
8331	4.88E + 6	5.06E + 5	1.06E + 5
9280	4.87E + 6	6.83E + 5	2.00E + 5
9540	4.57E + 6	6.69E + 5	1.78E + 5
9562	5.32E + 6	5.47E + 5	8.93E + 4
9986	5.16E + 6	5.49E + 5	2.11E + 5
10009	5.78E + 6	4.17E + 5	1.23E + 5
10360	3.60E + 6	4.43E + 5	1.76E + 5
10476	4.09E + 6	5.89E + 5	1.82E + 5
10519	4.79E + 6	3.39E + 5	1.04E + 5
10647	5.82E + 6	5.19E + 5	1.35E + 5
10697	4.70E + 6	4.46E + 5	1.10E + 5
10700	4.10E + 6	3.69E + 5	1.73E + 5
10800	5.83E + 6	1.05E + 6	1.18E + 5
11131	5.85E + 6	1.21E + 6	1.03E + 5
11505	5.09E + 6	5.19E + 5	1.99E + 5
11592	6.31E + 6	5.80E + 5	2.39E + 5
11964	3.75E + 6	3.69E + 5	1.69E + 5
12235	5.44E + 6	4.80E + 5	1.19E + 5
12264	5.43E + 6	8.27E + 5	1.21E + 5
13421	5.61E + 6	3.51E + 5	8.27E + 4
13445	$3.99E{+}6$	5.71E + 5	1.95E + 5
13531	5.32E + 6	1.12E + 6	9.45E + 4
13612	5.58E + 6	3.81E + 5	1.24E + 5
13612B	5.07E + 6	6.58E + 5	1.03E + 5
13724	5.37E + 6	7.80E + 5	1.06E + 5

Tabela E.1 – continuação

	Tabela E.1	commuação	
HD	$\mathrm{F}_{\mathrm{tot}}$	$\mathbf{F}_{\mathbf{crom}}$	$\sigma_{ m Fcrom}$
13974	5.19E + 6	5.92E + 5	2.15E+5
14214	5.98E + 6	7.73E + 5	1.25E + 5
14412	4.14E + 6	2.85E + 5	1.88E + 5
14680	3.74E + 6	8.35E + 5	$8.62E{+}4$
14802	5.24E + 6	5.29E + 5	1.73E + 5
15064	5.20E + 6	5.62E + 5	1.09E + 5
15335	5.08E + 6	2.93E + 5	1.21E + 5
15942	5.37E + 6	6.71E + 5	8.47E + 4
16141	5.06E + 6	5.65E + 5	8.38E + 4
16160	3.13E + 6	5.64E + 5	8.70E + 4
16417	4.94E + 6	3.86E + 5	1.24E + 5
16548	4.77E + 6	4.74E + 5	1.09E + 5
16589	6.70E + 6	1.20E + 6	1.71E + 5
16673	6.19E + 6	6.96E + 5	1.25E + 5
17051	6.00E + 6	6.87E + 5	1.70E + 5
17925	4.43E + 6	1.04E + 6	1.99E + 5
19308	5.09E + 6	4.86E + 5	1.04E + 5
19518	5.12E + 6	4.98E + 5	2.01E + 5
19994	5.58E + 6	2.28E + 5	1.42E + 5
20010	5.61E + 6	2.79E + 5	1.10E + 5
20407	4.94E + 6	1.20E + 5	1.93E + 5
20630	5.32E + 6	8.13E + 5	1.37E + 5
20766	5.11E + 6	5.69E + 5	$1.95E{+}5$
20794	4.56E + 6	4.81E + 5	2.07E + 5
20807	5.19E + 6	3.95E + 5	1.13E + 5
21411	4.66E + 6	6.32E + 5	1.00E + 5
22049	4.23E + 6	1.00E + 6	$8.99E{+}4$
22484	5.23E + 6	7.60E + 4	1.46E + 5
22879	5.21E + 6	2.83E + 5	1.75E + 5
23195	5.10E + 6	1.40E + 5	2.02E + 5
23249	3.17E + 6	3.17E + 5	$8.53E{+}4$
23269	6.55E + 6	1.23E + 6	2.29E + 5
23713	5.53E + 6	4.91E + 5	2.01E + 5
24040	5.39E + 6	7.82E + 5	1.11E + 5
24062	5.30E + 6	4.62E + 5	1.21E + 5
24293	4.89E + 6	3.95E + 5	1.06E + 5
24892	3.99E + 6	2.65E + 5	$8.97E{+}4$
25457	6.37E + 6	8.55E + 5	1.42E + 5
25535	5.10E + 6	4.37E + 5	9.77E + 4
25740	4.93E + 6	4.03E + 5	2.58E + 5
25825	5.98E + 6	9.58E + 5	2.36E + 5
25874	4.95E + 6	4.56E + 5	8.28E + 4
25918	4.42E + 6	$3.26E{+}5$	9.87E + 4
26345	7.66E + 6	1.17E + 6	3.07E + 5
26491	4.98E + 6	3.83E + 5	1.98E + 5

Tabela E.1 – continuação

		commuação	
HD	$\mathrm{F}_{\mathrm{tot}}$	F _{crom}	$\sigma_{ m Fcrom}$
26767	5.65E + 6	9.18E + 5	2.07E + 5
26913	5.11E + 6	7.51E + 5	$8.26E{+}4$
26923	5.71E + 6	6.25E + 5	$1.13E{+}5$
27406	6.28E + 6	9.65E + 5	2.34E + 5
27685	5.33E + 6	8.67E + 5	1.06E + 5
27808	6.57E + 6	9.57E + 5	2.45E + 5
27836	6.38E + 6	1.57E + 6	2.54E + 5
27859	6.29E + 6	1.32E + 6	$9.09E{+}4$
28068	5.75E + 6	1.15E + 6	2.15E + 5
28099	5.46E + 6	8.99E + 5	$1.19E{+}5$
28205	6.28E + 6	8.13E + 5	$2.56E{+}5$
28237	6.20E + 6	9.18E + 5	$2.52E{+}5$
28344	6.03E + 6	1.06E + 6	1.78E + 5
28388	3.87E + 6	2.14E + 5	1.83E + 5
28471	4.94E + 6	3.69E + 5	1.30E + 5
28608	7.26E + 6	1.26E + 6	2.84E + 5
28635	6.46E + 6	1.01E + 6	2.77E + 5
28821	4.93E + 6	5.38E + 5	$9.82E{+}4$
28992	5.66E + 6	8.42E + 5	1.50E + 5
29859	5.77E + 6	3.89E + 5	1.21E + 5
30495	5.54E + 6	8.32E + 5	1.30E + 5
30562	5.32E + 6	5.05E + 5	1.30E + 5
30589	5.83E + 6	6.15E + 5	2.61E + 5
30606	5.59E + 6	2.79E + 5	1.26E + 5
30876	$3.56E{+}6$	5.53E + 5	1.80E + 5
30809	6.39E + 6	8.27E + 5	2.47E + 5
30966	3.80E + 6	1.23E + 5	2.07E + 5
32147	3.11E + 6	7.00E + 5	8.82E + 4
32923	4.78E + 6	3.28E + 5	1.02E + 5
33021	5.06E + 6	4.21E + 5	$1.19E{+}5$
33262	6.56E + 6	1.03E + 6	2.35E + 5
33473	4.68E + 6	2.83E + 5	2.55E + 5
34721	5.57E + 6	3.77E + 5	1.22E + 5
35850	7.25E + 6	2.12E + 6	2.91E + 5
35854	3.16E + 6	4.11E + 5	1.80E + 5
36435	4.52E + 6	6.42E + 5	2.00E + 5
36553	5.24E + 6	2.53E + 5	1.32E + 5
36889	4.85E + 6	3.21E + 5	1.74E + 5
37986	4.48E + 6	5.92E + 5	1.23E + 5
38393	6.85E + 6	9.38E + 5	2.82E + 5
38529	4.48E + 6	4.86E + 5	1.96E + 5
39587	6.02E + 6	1.07E + 6	1.30E + 5
41593	4.57E + 6	1.01E + 6	8.35E + 4
43587	5.19E + 6	3.56E + 5	1.94E + 5
43834	4.67E + 6	4.82E + 5	1.01E + 5

Tabela E.1 – continuação

		- commuação	
HD	$\mathrm{F}_{\mathrm{tot}}$	$F_{\rm crom}$	$\sigma_{ m Fcrom}$
43947	5.46E + 6	3.89E + 5	1.15E + 5
44120	5.70E + 6	6.59E + 5	1.08E + 5
45067	5.45E + 6	$3.29E{+}5$	1.79E + 5
46569	5.67E + 6	2.58E + 5	1.31E + 5
48938	5.65E + 6	4.59E + 5	1.18E + 5
50692	5.12E + 6	1.80E + 5	2.13E + 5
50806	4.74E + 6	4.84E + 5	1.29E + 5
52298	6.25E + 6	5.18E + 5	1.35E + 5
52698	3.94E + 6	6.62E + 5	1.79E + 5
52711	5.29E + 6	4.29E + 5	3.24E + 5
53143	$4.39E{+}6$	6.24E + 5	1.88E + 5
53705	5.02E + 6	3.30E + 5	2.03E + 5
53706	3.96E + 6	3.64E + 5	2.22E + 5
55720	4.48E + 6	4.01E + 5	8.71E + 4
57095	$3.19E{+}6$	5.60E + 5	1.80E + 5
57853	5.80E + 6	8.43E + 5	1.20E + 5
58551	5.94E + 6	3.38E + 5	$9.59E{+}4$
59984	5.27E + 6	2.41E + 5	1.70E + 5
61033	5.39E + 6	1.47E + 6	9.71E + 4
61606	3.61E + 6	7.45E + 5	1.78E + 5
61902	5.80E + 6	3.71E + 5	2.42E + 5
62644	4.08E + 6	3.04E + 5	9.41E + 4
63077	5.09E + 6	3.47E + 5	1.87E + 5
63637	4.76E + 6	3.53E + 5	2.37E + 5
64096	5.43E + 6	5.94E + 5	2.10E + 5
64114	4.82E + 6	5.49E + 5	$9.79E{+}4$
64468	3.20E + 6	4.57E + 5	1.74E + 5
64606	$3.92E{+}6$	4.09E + 5	1.13E + 5
65583	4.01E + 6	2.57E + 5	1.85E + 5
65907	5.40E + 6	3.65E + 5	1.17E + 5
66653	5.31E + 6	6.37E + 5	2.03E + 5
67199	3.74E + 6	5.34E + 5	1.87E + 5
67228	5.12E + 6	4.61E + 5	2.06E + 5
67581	4.91E + 6	1.80E + 5	1.90E + 5
67907	4.17E + 6	2.38E + 5	2.10E + 5
68168	5.13E + 6	5.67E + 5	2.88E + 5
69809	5.27E + 6	6.31E + 5	1.08E + 5
69830	4.50E + 6	6.41E + 5	1.70E + 5
71334	5.02E + 6	5.51E + 5	1.03E + 5
72234	4.69E + 6	3.34E + 5	1.93E + 5
72579	4.47E + 6	6.50E + 5	2.00E + 5
72673	3.98E + 6	4.16E + 5	1.79E + 5
72954	$3.73E{+}6$	$1.39E{+}5$	8.76E + 4
73350	5.38E + 6	7.66E + 5	1.26E + 5
73667	3.47E + 6	3.70E + 5	1.76E + 5

Tabela E.1 – continuação

	Tabela E.1	commuação	
HD	$\mathrm{F}_{\mathrm{tot}}$	$\mathbf{F}_{\mathbf{crom}}$	$\sigma_{ m Fcrom}$
74576	3.70E+6	7.80E + 5	1.71E+5
74698	4.81E + 6	3.03E + 5	1.08E + 5
75732	4.13E + 6	$6.98E{+}5$	1.86E + 5
76151	4.97E + 6	$4.19E{+}5$	1.25E + 5
76932	5.29E + 6	2.62E + 5	1.29E + 5
77902	4.74E + 6	3.02E + 5	1.97E + 5
78366	5.69E + 6	6.91E + 5	2.91E + 5
78429	$5.06E{+}6$	5.51E + 5	2.17E + 5
78643	5.43E + 6	4.43E + 5	2.30E + 5
79969	3.04E + 6	5.13E + 5	1.74E + 5
81174	3.60E + 6	2.67E + 5	1.99E + 5
82443	4.97E + 6	1.33E + 6	1.75E + 5
82885	4.58E + 6	5.64E + 5	2.27E + 5
83529	5.32E + 6	4.48E + 5	2.32E + 5
84117	5.70E + 6	2.64E + 5	3.11E + 5
85380	5.43E + 6	$2.75E{+}5$	$9.62E{+}4$
85725	$5.05E{+}6$	$3.16E{+}5$	2.17E + 5
86728	5.27E + 6	7.08E + 5	2.40E + 5
87883	3.26E + 6	4.55E + 5	1.77E + 5
88084	$5.09E{+}6$	$5.35E{+}5$	8.24E + 4
88218	4.83E + 6	2.21E + 5	1.21E + 5
88725	4.75E + 6	2.82E + 5	$9.79E{+}4$
90711	4.53E + 6	7.27E + 5	1.91E + 5
90722	5.03E + 6	7.34E + 5	2.35E + 5
92588	3.47E + 6	3.34E + 5	1.89E + 5
94340	5.44E + 6	7.90E + 5	1.11E + 5
94765	$3.71E{+}6$	$6.92E{+}5$	1.74E + 5
97037	5.16E + 6	3.77E + 5	1.96E + 5
97320	5.97E + 6	6.34E + 5	3.42E + 5
98649	5.01E + 6	$5.19E{+}5$	1.06E + 5
99491	4.54E + 6	6.84E + 5	1.94E + 5
99492	$3.25E{+}6$	5.73E + 5	1.73E + 5
100623	3.83E + 6	$4.32E{+}5$	1.80E + 5
101367	$4.99E{+}6$	8.18E + 5	3.45E + 5
101501	4.57E + 6	5.04E + 5	1.95E + 5
101612	6.17E + 6	5.26E + 5	2.47E + 5
101676	5.68E + 6	$2.17E{+}5$	1.33E + 5
102200	5.98E + 6	$4.69E{+}5$	3.89E + 5
102300	5.61E + 6	4.81E + 5	1.85E + 5
102365	4.73E + 6	3.34E + 5	1.81E + 5
102438	4.67E + 6	4.41E + 5	1.81E + 5
102902	4.28E + 6	$3.17E{+}5$	2.24E + 5
103026	5.57E + 6	$3.26E{+}5$	1.26E + 5
104304	4.69E + 6	$6.93E{+}5$	1.69E + 5
104800	4.87E + 6	$1.95E{+}5$	2.02E + 5

Tabela E.1 – continuação

		E	
	r _{tot}	$r_{\rm crom}$	$\sigma_{\rm Fcrom}$
105590	4.87E+0	3.89E+5	1.10E+5
105618	5.09E+6	6.64E + 5	2.06E+5
105901	5.12E+6	4.54E + 5	1.69E+5
106116	5.06E+6	7.11E + 5	2.14E + 5
106516	6.57E + 6	8.89E + 5	1.29E + 5
106742	5.30E + 6	3.10E + 5	2.11E + 5
107213	6.07E + 6	4.58E + 5	2.58E + 5
108309	4.93E + 6	4.51E + 5	1.69E + 5
109200	3.74E + 6	4.77E + 5	1.75E + 5
109409	4.86E + 6	3.70E + 5	1.92E + 5
109684	5.35E + 6	3.42E + 5	2.42E + 5
111199	5.35E + 6	1.17E + 5	1.69E + 5
111395	4.91E + 6	6.32E + 5	1.89E + 5
111398	4.94E + 6	4.67E + 5	1.05E + 5
112164	5.15E + 6	3.15E + 5	1.19E + 5
114260	4.60E + 6	5.64E + 5	8.68E + 4
114613	4.75E + 6	4.23E + 5	1.92E + 5
114710	5.60E + 6	4.95E + 5	1.69E + 5
114762	5.03E + 6	0.00E + 1	1.12E + 5
115382	5.06E + 6	5.02E + 5	1.71E + 5
115383	6.25E + 6	1.08E + 6	$9.76E{+}4$
115404	3.41E + 6	5.46E + 5	1.74E + 5
115617	4.97E + 6	6.65E + 5	$1.79E{+}5$
116442	3.92E + 6	3.65E + 5	1.84E + 5
116443	3.52E + 6	3.61E + 5	1.73E + 5
117105	5.22E + 6	4.01E + 5	2.13E + 5
117176	4.34E + 6	2.66E + 5	$9.31E{+}4$
117939	4.93E + 6	5.13E + 5	1.84E + 5
118598	5.11E + 6	6.06E + 5	9.04E + 4
118972	4.13E + 6	8.07E + 5	$1.79E{+}5$
119550	4.81E + 6	1.85E + 5	1.02E + 5
120066	5.22E + 6	5.07E + 5	2.01E + 5
120136	6.52E + 6	6.47E + 5	1.87E + 5
120237	5.76E + 6	4.42E + 5	1.26E + 5
120690	4.68E + 6	5.39E + 5	2.02E + 5
120780	3.33E + 6	3.88E + 5	1.79E + 5
121370	5.30E + 6	2.36E + 5	1.87E + 5
121384	3.58E + 6	7.89E + 4	1.70E + 5
122742	4.55E + 6	5.95E + 5	1.89E + 5
122862	5.29E + 6	3.13E + 5	8.34E + 4
123619	5.69E + 6	3.47E + 5	2.09E + 5
124553	5.44E + 6	3.83E + 5	1.17E + 5
124570	5.83E + 6	4.91E + 5	1.72E + 5
124850	5.84E + 6	4.46E + 5	1.79E + 5
125072	3.10E+6	5.19E + 5	1.84E + 5

Tabela E.1 – continuação

		- commuação	
HD	$\mathrm{F}_{\mathrm{tot}}$	$\mathrm{F}_{\mathrm{crom}}$	$\sigma_{ m Fcrom}$
125184	4.60E + 6	4.50E + 5	1.04E + 5
125276	5.75E + 6	3.24E + 5	2.41E + 5
125566	3.86E + 6	1.70E + 5	1.81E + 5
126053	4.89E + 6	4.02E + 5	$1.95E{+}5$
126614	4.70E + 6	8.27E + 5	1.93E + 5
126868	4.99E + 6	7.64E + 5	1.00E + 5
128311	3.27E + 6	6.26E + 5	1.74E + 5
128428	4.65E + 6	6.41E + 5	1.98E + 5
128571	5.82E + 6	4.29E + 5	$2.26E{+}5$
128620	5.45E + 6	7.54E + 5	1.14E + 5
128621	4.26E + 6	8.64E + 5	$9.21E{+}4$
129010	5.53E + 6	4.66E + 5	2.20E + 5
130004	3.00E + 6	3.03E + 5	1.81E + 5
130307	$3.65E{+}6$	6.51E + 5	1.78E + 5
130948	5.74E + 6	8.03E + 5	1.89E + 5
131117	5.49E + 6	5.91E + 5	2.18E + 5
131183	4.74E + 6	5.19E + 5	$1.95E{+}5$
131511	4.07E + 6	7.31E + 5	1.77E + 5
131923	4.63E + 6	4.74E + 5	1.03E + 5
131977	2.82E + 6	6.36E + 5	8.46E + 4
132505	5.47E + 6	5.84E + 5	2.21E + 5
134113	5.02E + 6	3.41E + 5	2.22E + 5
134169	5.09E + 6	2.07E + 5	1.08E + 5
134664	5.02E + 6	3.69E + 5	8.82E + 4
135101A	4.84E + 6	5.48E + 5	1.85E + 5
135101B	4.68E + 6	6.44E + 5	1.82E + 5
135204	4.33E + 6	5.55E + 5	1.87E + 5
135599	4.07E + 6	6.55E + 5	1.83E + 5
136202	5.58E + 6	2.17E + 5	$9.19E{+4}$
136352	4.93E + 6	4.43E + 5	1.70E + 5
137510	5.29E + 6	3.77E + 5	1.12E + 5
137676	3.76E + 6	2.33E + 5	1.81E + 5
137763	4.13E + 6	5.92E + 5	1.82E + 5
137812	3.74E + 6	3.82E + 5	$9.15E{+4}$
138573	5.23E + 6	6.88E + 5	1.91E + 5
138776	4.83E + 6	6.65E + 5	1.98E + 5
139503	5.02E + 6	3.13E + 5	2.13E + 5
140538	4.79E + 6	3.86E + 5	1.06E + 5
140690	5.17E + 6	6.50E + 5	$1.19E{+}5$
140901	4.84E + 6	6.49E + 5	1.92E + 5
141004	5.24E + 6	$3.58E{+}5$	1.26E + 5
141885	5.11E + 6	4.25E + 5	2.14E + 5
142072	5.55E + 6	1.00E + 6	1.11E + 5
142267	5.07E + 6	3.50E + 5	2.18E + 5
143337	4.83E + 6	3.77E + 5	1.04E + 5

Tabela E.1 – continuação

HD	$\mathrm{F}_{\mathrm{tot}}$	$F_{crom}$	$\sigma_{ m Fcrom}$
143761	5.06E + 6	3.55E + 5	1.74E + 5
143885	5.56E + 6	5.46E + 5	2.09E + 5
144585	5.47E + 6	7.90E + 5	2.24E + 5
144628	$3.60E{+}6$	4.35E + 5	1.77E + 5
144988	5.12E + 6	3.44E + 5	1.95E + 5
145825	5.25E + 6	6.23E + 5	1.06E + 5
146233	5.20E + 6	5.49E + 5	1.75E + 5
146835	5.66E + 6	6.16E + 5	2.51E + 5
147513	5.65E + 6	8.63E + 5	1.69E + 5
147584	5.97E + 6	7.12E + 5	2.46E + 5
147743	4.96E + 6	2.79E + 5	2.12E + 5
148577	4.93E + 6	4.90E + 5	1.21E + 5
148816	5.20E + 6	2.84E + 5	1.96E + 5
149661	4.05E + 6	5.98E + 5	1.79E + 5
149724	4.79E + 6	6.58E + 5	1.94E + 5
150248	5.00E + 6	5.23E + 5	1.29E + 5
150474	4.06E + 6	3.50E + 5	1.80E + 5
150698	5.01E + 6	4.65E + 5	1.13E + 5
152311	4.91E + 6	5.83E + 5	1.98E + 5
152391	4.64E + 6	7.32E + 5	1.98E + 5
153075	5.15E + 6	4.15E + 5	1.33E + 5
153458	5.53E + 6	8.59E + 5	1.19E + 5
154088	4.25E + 6	6.32E + 5	1.99E + 5
154160	4.77E + 6	7.10E + 5	1.91E + 5
154417	6.21E + 6	1.06E + 6	8.83E + 4
154857	4.35E + 6	2.52E + 5	1.95E + 5
154931	5.05E + 6	3.19E + 5	1.08E + 5
154962	4.93E + 6	5.39E + 5	1.23E + 5
155114	5.30E + 6	6.70E + 5	9.89E + 4
155885	3.76E + 6	5.66E + 5	1.74E + 5
156274	4.18E + 6	5.07E + 5	1.69E + 5
156365	5.25E + 6	6.37E + 5	1.24E + 5
156411	4.93E + 6	2.17E + 5	1.11E + 5
156826	$3.38E{+}6$	2.20E + 5	1.77E + 5
156846	5.36E + 6	3.11E + 5	1.33E + 5
157060	5.72E + 6	3.90E + 5	1.34E + 5
157089	5.20E + 6	3.82E + 5	1.75E + 5
157214	4.94E + 6	3.73E + 5	2.13E + 5
157347	4.95E + 6	5.78E + 5	2.06E + 5
157750	5.42E + 6	8.08E + 5	1.23E + 5
158226	4.87E + 6	2.48E + 5	2.15E + 5
159222	5.41E + 6	6.96E + 5	1.21E + 5
159332	5.92E + 6	$3.59E{+}5$	1.31E + 5
159656	5.40E + 6	7.66E + 5	1.21E + 5
159784	5.73E + 6	5.62E + 5	2.33E + 5

Tabela E.1 – continuação

		commuação	
HD	$\mathrm{F}_{\mathrm{tot}}$	$F_{\rm crom}$	$\sigma_{ m Fcrom}$
160346	3.12E+6	4.53E + 5	1.72E + 5
160411	4.83E + 6	2.58E + 5	1.07E + 5
160691	4.97E + 6	5.31E + 5	1.69E + 5
161239	4.85E + 6	3.33E + 5	1.05E + 5
161555	4.95E + 6	4.01E + 5	2.50E + 5
161612	4.88E + 6	7.33E + 5	9.52E + 4
161797	4.43E + 6	4.68E + 5	8.27E + 4
162396	5.52E + 6	2.85E + 5	8.31E + 4
163153	4.63E + 6	6.26E + 5	1.05E + 5
164507	4.43E + 6	4.09E + 5	2.16E + 5
164595	5.03E + 6	4.69E + 5	1.18E + 5
165185	5.85E + 6	9.83E + 5	2.20E + 5
165271	4.95E + 6	4.44E + 5	1.84E + 5
165341	3.97E + 6	5.33E + 5	1.89E + 5
165499	5.21E + 6	3.14E + 5	2.01E + 5
167300	5.10E + 6	3.13E + 5	1.87E + 5
167665	$6.53E{+}6$	1.17E + 6	1.18E + 5
168443	4.61E + 6	5.04E + 5	9.01E + 4
169830	5.95E + 6	4.32E + 5	1.33E + 5
170657	$3.58E{+}6$	5.21E + 5	1.73E + 5
170829	4.06E + 6	4.00E + 5	9.70E + 4
171990	5.41E + 6	4.21E + 5	1.34E + 5
172051	$4.95E{+}6$	5.15E + 5	1.71E + 5
175425	5.10E + 6	5.57E + 5	1.11E + 5
177565	4.97E + 6	6.36E + 5	1.69E + 5
178904	5.04E + 6	6.45E + 5	2.05E + 5
179699	5.61E + 6	5.70E + 5	1.74E + 5
179949	6.06E + 6	6.76E + 5	1.45E + 5
180684	5.73E + 6	5.58E + 5	2.28E + 5
181321	$6.15E{+}6$	1.47E + 6	1.18E + 5
182488	4.43E + 6	6.90E + 5	1.84E + 5
182572	4.80E + 6	7.23E + 5	$9.57E{+}4$
182619	4.71E + 6	5.62E + 5	9.70E + 4
182807	5.72E + 6	3.65E + 5	1.18E + 5
183263	5.40E + 6	6.75E + 5	2.12E + 5
183577	5.51E + 6	2.01E + 5	1.21E + 5
183870	3.61E + 6	6.53E + 5	1.79E + 5
187013	$6.55E{+}6$	$6.58E{+}5$	1.46E + 5
187237	5.40E + 6	7.28E + 5	1.07E + 5
187691	5.83E + 6	$5.09E{+}5$	8.58E + 4
187923	4.94E + 6	4.41E + 5	8.66E + 4
188376	4.15E + 6	$2.73E{+}5$	1.74E + 5
188512	$3.50E{+}6$	$2.63E{+}5$	8.83E + 4
188815	$5.95E{+}6$	4.36E + 5	2.41E + 5
189406	5.54E + 6	5.17E + 5	2.45E + 5

Tabela E.1 – continuação

	Tabela E.1	commuação	
HD	$\mathrm{F}_{\mathrm{tot}}$	$F_{crom}$	$\sigma_{ m Fcrom}$
189567	4.85E+6	3.37E + 5	1.83E + 5
189625	5.45E + 6	7.61E + 5	1.14E + 5
189733	$3.62E{+}6$	6.51E + 5	1.72E + 5
190067	$4.35E{+}6$	4.56E + 5	1.77E + 5
190228	$3.76E{+}6$	2.33E + 5	$9.53E{+}4$
190248	5.03E + 6	8.28E + 5	1.79E + 5
190360	4.67E + 6	6.26E + 5	2.02E + 5
190404	$3.55E{+}6$	3.93E + 5	1.79E + 5
190406	5.42E + 6	4.71E + 5	1.73E + 5
190580	4.17E + 6	1.96E + 4	$9.54E{+4}$
190613	5.25E + 6	6.22E + 5	2.01E + 5
190771	5.62E + 6	1.01E + 6	1.96E + 5
191408	3.46E + 6	4.97E + 5	1.72E + 5
191487	5.36E + 6	6.52E + 5	1.26E + 5
191760	5.30E + 6	5.96E + 5	2.09E + 5
192263	3.44E + 6	5.71E + 5	1.88E + 5
192310	3.87E + 6	6.46E + 5	1.82E + 5
192344	4.85E + 6	5.51E + 5	$8.29E{+}4$
193193	5.42E + 6	4.84E + 5	2.47E + 5
193307	5.42E + 6	3.32E + 5	1.10E + 5
193901	4.98E + 6	2.29E + 5	2.09E + 5
194640	4.65E + 6	5.45E + 5	1.90E + 5
195564	4.68E + 6	4.25E + 5	$9.60E{+}4$
195838	5.63E + 6	3.66E + 5	1.35E + 5
196050	5.31E + 6	6.19E + 5	1.03E + 5
196378	5.48E + 6	2.82E + 5	1.17E + 5
196755	4.48E + 6	2.42E + 5	1.83E + 5
196761	4.53E + 6	5.13E + 5	1.71E + 5
196794	$3.57E{+}6$	5.34E + 5	1.76E + 5
196800	5.66E + 6	6.94E + 5	1.25E + 5
196885	5.86E + 6	5.12E + 5	$8.63E{+}4$
197210	4.99E + 6	7.89E + 5	$9.89E{+}4$
197536	5.56E + 6	4.13E + 5	2.12E + 5
197963	5.90E + 6	3.06E + 5	2.75E + 5
198802	4.75E + 6	2.78E + 5	1.02E + 5
199288	5.03E + 6	3.07E + 5	1.11E + 5
199960	5.34E + 6	5.16E + 5	1.09E + 5
200525	5.54E + 6	$6.09E{+}5$	2.02E + 5
200580	5.37E + 6	4.55E + 5	2.16E + 5
200968	$3.91E{+}6$	7.09E + 5	1.77E + 5
201242	$6.15E{+}6$	6.81E + 5	1.23E + 5
201891	5.38E + 6	3.48E + 5	1.18E + 5
202072	5.04E + 6	5.31E + 5	1.16E + 5
202707	4.50E + 6	1.18E + 5	1.05E + 5
202917	$6.55E{+}6$	2.43E + 6	1.91E + 5

Tabela E.1 – continuação

		D	
HD	F'tot	F'crom	$\sigma_{\rm Fcrom}$
202940	4.52E+6	5.93E + 5	1.86E + 5
203608	5.94E + 6	4.76E + 5	1.32E + 5
205158	5.56E + 6	5.37E + 5	1.24E + 5
205390	3.64E + 6	6.11E + 5	1.81E + 5
206255	4.49E + 6	2.98E + 5	1.02E + 5
206301	5.22E + 6	8.18E + 5	8.41E + 4
206860	6.09E + 6	1.12E + 6	2.42E + 5
207043	5.22E + 6	6.80E + 5	9.90E + 4
207129	5.41E + 6	5.07E + 5	2.24E + 5
207978	6.55E + 6	6.08E + 5	1.60E + 5
209100	2.75E + 6	5.63E + 5	$8.25E{+}4$
210277	4.55E + 6	5.84E + 5	$9.32E{+}4$
210460	4.42E + 6	3.84E + 5	$9.76E{+}4$
210918	4.93E + 6	4.51E + 5	$9.68E{+}4$
211080	4.76E + 6	4.98E + 5	1.03E + 5
211415	5.12E + 6	4.33E + 5	$1.69E{+}5$
211786	5.07E + 6	5.03E + 5	$9.97E{+}4$
212330	4.82E + 6	4.22E + 5	$8.55E{+}4$
212708	5.01E + 6	8.02E + 5	$1.05E{+}5$
213042	$2.56E{+}6$	4.53E + 5	$8.56E{+}4$
213429	5.80E + 6	6.68E + 5	1.26E + 5
213575	4.78E + 6	4.38E + 5	$9.95E{+}4$
214953	5.78E + 6	5.47E + 5	1.24E + 5
215028	4.63E + 6	3.80E + 5	1.11E + 5
215257	5.41E + 6	$3.50E{+}5$	1.04E + 5
215942	4.85E + 6	4.22E + 5	1.22E + 5
216385	6.29E + 6	5.37E + 5	$1.37E{+}5$
216435	5.22E + 6	3.70E + 5	$1.56E{+}5$
216436	4.99E + 6	5.45E + 5	1.00E + 5
216437	5.11E + 6	4.84E + 5	$1.15E{+}5$
217004	4.79E + 6	3.71E + 5	$1.12E{+}5$
217014	5.41E + 6	7.73E + 5	$1.69E{+}5$
217107	5.10E + 6	8.72E + 5	$1.72E{+}5$
219048	4.03E + 6	1.92E + 5	$9.18E{+4}$
219077	3.94E + 6	3.27E + 5	9.11E + 4
219610	4.47E + 6	3.47E + 5	1.87E + 5
219834	4.11E + 6	3.87E + 5	$8.76E{+}4$
220339	3.46E + 6	4.71E + 5	1.70E + 5
220507	4.99E + 6	6.30E + 5	1.82E + 5
221343	5.28E + 6	7.02E + 5	1.09E + 5
221420	4.87E + 6	3.62E + 5	1.04E + 5
221627	5.06E + 6	5.00E + 5	$9.73E{+}4$
222335	4.09E + 6	5.78E + 5	1.84E + 5
223641	4.12E + 6	3.07E + 5	1.78E + 5
223691	4.29E + 6	3.02E + 5	9.61E + 4

Tabela E.1 – continuação

	Tabela E.1 -	- commuação	
HD	$\mathrm{F}_{\mathrm{tot}}$	$F_{\rm crom}$	$\sigma_{ m Fcrom}$
224022	5.72E + 6	5.39E + 5	1.25E + 5
224930	4.10E + 6	2.47E + 5	2.01E + 5
225045	5.98E + 6	4.91E + 5	1.37E + 5
282962	5.90E + 6	$1.53E{+}6$	$9.21E{+}4$
282973	6.28E + 6	9.44E + 5	2.90E + 5
282975	5.18E + 6	1.16E + 6	$9.36E{+}4$
$BD+15\ 3364$	5.20E + 6	6.51E + 5	1.05E + 5
$BD+23\ 527$	5.67E + 6	1.08E + 6	1.07E + 5

Tabela E.1 – continuação