

ESTUDO E MODELAGEM DA CINÉTICA DE CURA DE RESINAS EPOXÍDICAS POR MEIO DA CALORIMETRIA DIFERENCIAL DE VARREDURA NO MODO NÃO ISOTÉRMICO

Helena Patti Mund Mattos Henrique Ribeiro de Alencar Gonçalves Ronaldo Rozenbaum Paiva

Projeto Final de Curso

Orientadora: Prof^a Dr^a Verônica Maria de Araújo Calado

Novembro de 2012

ESTUDO E MODELAGEM DA CINÉTICA DE CURA DE RESINAS EPOXÍDICAS POR MEIO DA CALORIMETRIA DIFERENCIAL DE VARREDURA NO MODO NÃO ISOTÉRMICO

Helena Patti Mund Mattos

Henrique Ribeiro de Alencar Gonçalves

Ronaldo Rozenbaum Paiva

Projeto de Final de Curso submetido ao corpo docente da Escola de Química como parte dos requisitos necessários à obtenção do grau de Graduação de Engenharia Química.

Aprovado por:

Carlos André Vaz Júnior

Carla Reis de Araújo

Maria Elizabeth Ferreira Garcia

Orientado por:

Verônica Maria de Araújo Calado

Rio de Janeiro, RJ - Brasil

Novembro de 2012

Mattos, Helena Patti Mund.

Gonçalves, Henrique Ribeiro de Alencar.

Paiva, Ronaldo Rozenbaum.

Estudo e modelagem da cinética de cura de resinas epoxídicas por meio da calorimetria diferencial de varredura no modo não isotérmico / Helena Patti Mund Mattos, Henrique Ribeiro de Alencar Gonçalves e Ronaldo Rozenbaum Paiva. Rio de Janeiro: UFRJ/EQ, 2012.

vii, 107 p.; il.

(Projeto Final) - Universidade Federal do Rio de Janeiro, Escola de Química, 2012.

Orientadora: Verônica Maria de Araujo Calado.

 Resinas. 2. Cinética de Cura. 3. Estimação de Parâmetros. 4. Projeto Final (Graduação – UFRJ/EQ). 5. Prof. Dr^a Verônica Maria de Araujo Calado.

"Não se acostume com o que não o faz feliz, revolte-se quando julgar necessário. Alague seu coração de esperanças, mas não deixe que ele se afogue nelas. Se achar que precisa voltar, volte! Se perceber que precisa seguir, siga! Se estiver tudo errado, comece novamente. Se estiver tudo certo, continue. Se sentir saudades, mate-a. Se perder um amor, não se perca! Se o achar, segure-o!"

Fernando Pessoa

AGRADECIMENTOS

Em primeiro lugar, gostaríamos de agradecer à nossa orientadora, professora Verônica Calado, que, durante todo o tempo foi paciente com demoras e complicações que ocorreram durante o projeto e por ter estado presente em grande parte da nossa trajetória na universidade, sempre disposta a ajudar em todos os momentos que necessitávamos. Mais que uma professora e orientadora, a senhora foi uma amiga. Obrigado.

Gostaríamos também de agradecer ao nosso co-orientador Valery Zvetkov, da Bulgária, por toda a ajuda ao longo do projeto. Obrigado por fornecer o material necessário para que esse projeto pudesse ser feito e por estar presente para tirar todas as dúvidas que o grupo apresentava.

Também gostaríamos de agradecer aos nossos pais, irmãos, demais familiares e agregados (Daniela, Eduardo, Gustavo, Silvia, Sérgio, Felipe, Laís, Hannah e Victor), pelo apoio, compreensão e por serem um modelo para nós. Obrigado pela ajuda nos momentos que precisávamos tomar decisões importantes ao longo de toda a nossa vida. Vocês são o grande motivo de estarmos aqui hoje.

Aos nossos amigos da faculdade, que fizeram dos cinco anos de engenharia um momento bastante divertido e produtivo. Especialmente: Marcella, Mauricio, Felipe, Daniel, João, Yuri e Thomaz. Aos amigos antigos, que ainda fazem parte das nossas vidas. Especialmente: Camila, Amanda, Amandinha, Fafá, Cabeção, Diogo, Matheus, Gódon e Hélio.

Aos amigos do Laboratório de Análises Térmicas do LADEQ, que nos ensinaram, com muita paciência e nos ajudaram durante todo o projeto.

À banca examinadora pela disponibilidade de vir avaliar o nosso projeto.

Resumo do Projeto Final de Curso apresentado à Escola de Química como parte dos requisitos necessários para obtenção do grau de Graduação em Engenharia Química

ESTUDO E MODELAGEM DA CINÉTICA DE CURA DE RESINAS EPOXÍDICAS POR MEIO DA CALORIMETRIA DIFERENCIAL DE VARREDURA NO MODO NÃO ISOTÉRMICO

Helena Patti Mund Mattos

Henrique Ribeiro de Alencar Gonçalves

Ronaldo Rozenbaum Paiva

Novembro, 2012

Orientadora: Prof^a Dr^a Verônica Maria de Araújo Calado

As resinas epoxídicas têm utilizações das mais diversas no mundo atual, tais como a produção de tintas, adesivos, isolantes, encapsuladores e revestimentos. Elas podem ser utilizadas em várias indústrias, como a eletrônica, a da construção civil, a automobilística e aeronáutica. Algumas das características das resinas epoxídicas que permitem essa gama de utilidades são a sua alta capacidade de adesão a superfícies, boa resistência química e térmica, boas propriedades mecânicas e bom isolamento elétrico. As resinas sofrem um processo de cura, quando ocorrem diversas mudanças em propriedades físicas e químicas. Devido à sua vasta utilidade, o estudo do processo de cura das resinas epoxídicas torna-se importante para a obtenção de informações a respeito das condições de processamento e, também, para avaliar as diferenças das propriedades físicas e mecânicas dos sistemas. No presente estudo, buscamos encontrar parâmetros cinéticos que representem a cura da resina D.E.R. 332, usando como agente de cura o 4,4 diaminodifenilmetano (DDM). Para realizar o estudo, misturamos a resina com o endurecedor em estado líquido, em proporções estequiométricas. Usando um calorímetro diferencial (DSC), analisamos a liberação de calor da amostra durante o processo de cura a diferentes taxas de aquecimento, para posterior relacionamento desse calor com o grau de avanço da reação de cura. Com os dados de grau de avanço em relação à temperatura, para cada taxa de aquecimento, utilizamos diferentes abordagens (isoconversional, mecanicista e fenomenológica) para estimar os parâmetros cinéticos da cura. O estudo realizado apontou que os modelos fenomenológicos conseguem estimá-los com alto grau de confiabilidade, enquanto as demais abordagens requerem algumas modificações para serem consideradas confiáveis.

ÍNDICE

INTRODUÇÃO	11
1 REVISÃO BIBLIOGRÁFICA	13
1.1 Resinas	13
1.2 CURA DAS RESINAS	15
1.3 PARCERIA	16
1.4 Objetivos	17
2 ESTUDO DA CINÉTICA DE CURA	18
2.1 CINÉTICA DE CURA	18
2.1.1 Abordagem model-free ou isoconversional	20
2.1.1.1 Estimação da Energia de Ativação	21
2.1.1.2 FATOR PRÉ-EXPONENCIAL E MODELO DE REAÇÃO	23
2.1.2 Abordagem Mecanicista	23
2.1.3 FENOMENOLÓGICA	26
2.2 CALORIMETRIA DIFERENCIAL DE VARREDURA	28
3 Metodologia Experimental	31
3.1 Análises Experimentais	31
3.1.1 MATERIAIS E MÉTODOS	31
3.1.2 PREPARO DA MISTURA	31
3.1.3 CALORIMETRIA DIFERENCIAL DE VARREDURA - DSC	34
3.2 Estimação de Parâmetros	36
4 RESULTADOS E DISCUSSÃO	38
4.1 RESULTADOS EXPERIMENTAIS	38
4.1.1 Abordagem Isoconversional	41
4.1.1.1 Cálculo da Energia de Ativação	41
4.1.1.1.1 Método 1 - Kissinger-Akahira-Sunose	41
4.1.1.1.2 MÉTODO DE STARINK	43
4.1.1.1.3 Comparação dos Métodos	45
4.1.1.2 MODELO DE CURA E CÁLCULO DO FATOR PRÉ-EXPONENCIAL	45
4.1.1.2.1 Comparação dos Métodos	48
4.1.2 Abordagem Mecanicista	51

4.1.3	Abordagem Fenomenológica	.53
4.1.3.1	MODELO 1 – PROPOSTO POR KAMAL E SOUROUR	.54
4.1.3.2	MODELO 2 – KAMAL COM améx	.56
4.1.3.3	MODELO 3 – KAMAL SIMPLIFICADO (COM TRÊS PARÂMETROS)	.58
4.1.3.4	Modelo 4 – Kamal Modificado	.61
4.1.3.5	MODELO 5 – KARKANAS	.63
4.1.3.6	Comparação entre os Modelos	.65
CONCLU	JSÃO	.69
SUGEST	ÕES	.70
Referêi	NCIAS	.71

ÍNDICE DE FIGURAS

Figura 1 - Esquema de produção da resina DGEBA14
Figura 2 - Estrutura química do (a) DDM e (b) DGEBA15
Figura 3 - Calorímetro diferencial de varredura (DSC)29
Figura 4 - Fornos do DSC onde são colocadas a amostra (S) e a referência (R)29
Figura 5 – Estrutura química do DDM32
Figura 6 - Estrutura química da resina DGEBA32
Figura 7 – Fenômeno de cristalização34
Figura 8 – Equipamento utilizado para lacrar as cápsulas de alumínio
Figura 9 – Cápsula de alumínio em comparação com uma moeda de 50 centavos36
Figura 10 - Análise do sistema a 2,5 K /min
Figura 11 - Análise do sistema a 5 K/min
Figura 12 – Análise do sistema a 10 K/min40
Figura 13 – Gráficos para o cálculo da Energia de Ativação pela abordagem
Isoconversional pelo Método de Kissinger-Akahira-Sunose a uma taxa de aquecimento
de: (A) 2,5 K/min; (B): 5 K/min; (C) 10 K/min42
Figura 14 – Gráficos para o cálculo da Energia de Ativação pela abordagem
Isoconversional pelo Método de Starink a uma taxa de aquecimento de: (A) 2,5 K/min;
(B): 5 K/min; (C) 10 K/min44
Figura 15 – Gráficos para o cálculo do fator pré-exponencial pela abordagem
Isoconversional pelo Método de Kissinger-Akahira-Sunose a uma taxa de aquecimento
de: (A) 2,5 K/min; (B): 5 K/min;46
Figura 16 – Gráficos para o cálculo do fator pré-exponencial pela abordagem
Isoconversional pelo Método de Starink a uma taxa de aquecimento de: (A) 2,5 K/min;
(B): 5 K/min; (C) 10 K/min
Figura 17 – Gráficos de estimação de parâmetros cinéticos para o modelo de Kissinger-
Akahira-Sunose para uma taxa de: (A) 2,5 K/min; (B) 5 K/min; (C) 10 K/min49
Figura 18 – Gráficos de estimação de parâmetros cinéticos para o modelo de Starink
para uma taxa de: (A) 2,5 K/min; (B) 5 K/min; (C) 10 K/min50
Figura 19 – Gráficos de estimação de parâmetros cinéticos para a Abordagem
Mecanicista para uma taxa de: (A) 2,5 K/min; (B) 5 K/min; (C) 10 K/min51
Figura 20 – Gráficos de estimação dos parâmetros cinéticos para o modelo de Kamal e
Sourour a uma taxa de aquecimento de: (A) 2,5 K/min; (B) 5 K/min; (C) 10 K/min54
Figura 21 – Graficos de estimação dos parametros cinéticos para o conjunto de taxas do
modelo de Kamal e Sourour
Figura 22 – Graticos de estimação dos parametros cineticos para o modelo de Kamal
com $\alpha_{máx}$ a uma taxa de aquecimento de: (A) 2,5 K/min; (B) 5 K/min; (C) 10 K/min56
Figura $25 -$ Graticos de estimação dos parametros cinéticos para o conjunto de taxas do
modelo de Kamal com $\alpha_{máx}$

ÍNDICE DE TABELAS

Método de Kissinger-Akahira-Sunose a diferentes taxas de aquecimento
Tabela 2 - Comparação dos valores encontrados para a Energia de Ativação para o
Método de Starink a diferentes taxas de aquecimento44
Tabela 3 - Comparação dos método integrais de cálculo de Energia de Ativação45
Tabela 4 - Comparação dos método de cálculo do fator pré-exponencial48
Tabela 5 – Parâmetros estimados para o Modelo Mecanicista52
Tabela 6 – Parâmetros estimados para o Modelo de Kamal e Sourour56
Tabela 7 - Parâmetros estimados para o Modelo de Kamal com αmáx58
Tabela 8 - Parâmetros estimados para o Modelo de Kamal Simplificado60
Tabela 9 - Parâmetros estimados para o Modelo de Kamal Modificado63
Tabela 10 - Parâmetros estimados para o Modelo de Karkanas65
Tabela 11 - Parâmetros estimados para o Modelo de Kamal e Sourour66
Tabela 12 - Parâmetros estimados para o Modelo de Kamal com $\alpha_{máx}$ 66
Tabela 13 - Parâmetros estimados para o Modelo de Kamal Simplificado
Tabela 14 - Parâmetros estimados para o Modelo de Kamal Modificado67
Tabela 15 - Parâmetros estimados para o Modelo de Karkanas67

INTRODUÇÃO

As resinas epoxídicas possuem diversas utilizações no mundo atual, como a produção de tintas e acabamentos, adesivos, materiais industriais, sistemas elétricos, isolantes, encapsuladores, revestimentos, entre outros. Por possuírem algumas características singulares, essas resinas são foco de inúmeros estudos científicos. Dentre essas características, podemos citar: capacidade de adesão a superfícies, boas resistências química e térmica, boas propriedades mecânicas e o fato de serem bons isolantes elétricos.

As resinas sofrem um processo chamado cura, em que os reagentes epoxídicos de baixa massa molar são transformados em um material com estrutura tridimensional altamente reticulado. Esse processo envolve outro reagente, conhecido por endurecedor ou agente de cura (Riegel et al, 1999). Durante a cura, as resinas sofrem diversas mudanças em suas propriedades físicas e químicas e, por isso, esse processo é muito importante de ser estudado. Entretanto, a cura é bastante complexa e envolve uma gama de etapas, dificultando sua análise.

Nesse cenário, entra o estudo da cinética de cura, que visa estimar parâmetros que descrevam o processo de cura em toda sua extensão. Para isso, estudiosos propuseram diversas abordagens que fornecem esses parâmetros, baseadas em diferentes aproximações. No presente trabalho, iremos estimar parâmetros por meio de três abordagens: isoconversional, fenomenológica e mecanicista.

De acordo com Riegel et al (op.cit), o sistema curado DGEBA/DDM, que será estudado no presente trabalho, possui diversos usos comerciais, um deles é a utilização como encapsulador. O encapsulamento visa, principalmente, manter um alto nível de isolamento elétrico, garantindo estabilidade estrutural. Dessa forma, as propriedades de estabilidade elétrica e resistência fornecem características fundamentais para a utilização desse sistema no segmento de encapsulamento.

Sendo assim, foi utilizada uma mistura da resina DGEBA (diglicidil éter de bisfenol A) e do endurecedor DDM (4,4'-diaminodifenilmetano). O sistema foi analisado em um calorímetro diferencial de varredura (DSC), da marca PYRIS Diamond DSC, da Perkin Elmer e os reagentes - resina e endurecedor - foram comprados da empresa Sigma Aldrich.

O presente trabalho será dividido em quatro capítulos, além da conclusão, das sugestões finais e desta introdução.

No Capítulo 1, será apresentada uma revisão bibliográfica, contendo informações sobre o sistema estudado, fornecendo uma base teórica para melhor entendimento.

No Capítulo 2, serão apresentadas e analisadas as três abordagens que serão utilizadas para a estimação dos parâmetros da cinética de cura.

O Capítulo 3 irá apresentar a metodologia experimental utilizada, fornecendo os cálculos realizados e o procedimento experimental seguido pelo grupo.

No Capítulo 4, serão apresentados os resultados experimentais e computacionais obtidos pelo grupo, juntamente com uma discussão sobre os mesmos.

Em seguida, será feita uma conclusão do trabalho, seguida de sugestões para projetos futuros.

Finalmente, os anexos apresentarão uma exemplificação do código em Matlab, programado pelo grupo, para estimar os parâmetros cinéticos do sistema, para cada uma das abordagens, além das tabelas de dados experimentais utilizados pelo grupo.

1 REVISÃO BIBLIOGRÁFICA

1.1 RESINAS

As resinas podem ser classificadas de várias formas. Uma delas é em relação à ocorrência: podem ser naturais e sintéticas. A formação da resina natural se dá a partir de um corte na casca da árvore, que pode ser provocado por vento, fogo, raios ou outras causas¹. Entretanto, na indústria atual, as resinas mais utilizadas são as sintéticas, que podem ser classificadas, assim como os polímeros, em termorrígidas e termoplásticas.

Segundo Sobrinho (2009 apud MALLICK, 1993; US DEPARTMENT OF DEFENSE, 2002), os polímeros termoplásticos são formados por ligações secundárias fracas (como ligações de hidrogênio e van der Waals) que podem ser quebradas temporariamente, provocando aumento de pressão e temperatura - o que caracteriza a capacidade de amolecer e fluir. Além disso, quando resfriadas, as moléculas solidificam em novas posições e suas ligações são restauradas.

Por outro lado, em relação aos polímeros termorrígidos, que também podem ser chamados termofixos, a união das cadeias moleculares entre si é feita por ligações químicas primárias, que são mais fortes (reticulações ou ligações cruzadas) e é formado um sistema tridimensional insolúvel, infusível (que não pode ser fundido) e rígido. Nesse caso, as propriedades mecânicas variam com a densidade das ligações cruzadas e unidades moleculares do sistema.

De acordo com Calado e Advani (2000), podemos formar matrizes poliméricas por meio de resinas termoplásticas (acrílica, nylon, poliestireno, entre outras) ou

¹ Disponível em: http://www.biomania.com.br/bio/conteudo.asp?cod=2694. Capturado em 5 de julho de 2012.

termorrígidas (poliéster, fenólica, epóxi, entre outras). Os autores afirmam, também, que as resinas termorrígidas são frágeis à temperatura ambiente e não são passíveis de remoldagem quando aquecidas, mas possuem alta resistência à tração, boa resistência à fluência, excelentes propriedades de fadiga, resistências química e a solventes, são estáveis térmica e dimensionalmente e são fáceis de serem processadas devido à baixa viscosidade. Em decorrência das boas características dessas resinas, elas foram escolhidas para compor a pesquisa.

Dentro do cenário das resinas termorrígidas, Zhang et al. (mimeo) afirmaram que as resinas epoxídicas são os polímeros termorrígidos mais importantes e foram muito utilizadas em diversas áreas devido às suas boas propriedades mecânicas, estabilidade térmica, resistência química e retardo de chama. Além disso, os autores afirmam que o oligômero DGEBA (diglicidil éter de bisfenol A) é a resina epoxídica que está mais disponível comercialmente. Uma rota possível para produção dessa resina é pela reação entre o Bisfenol A e a Epicloridrina. O esquema de produção está apresentado na Figura 1.

diglidicidil etér de bisfenol A

Figura 1 - Esquema de produção da resina DGEBA. Fonte: PAGANO (2009)

Além da resina, foi necessário escolher um agente de cura, também chamado endurecedor. Por conta da versatilidade das resinas epoxídicas, o agente de cura pode ser escolhido dentre um grande número de materiais. No presente trabalho, decidimos utilizar a diamina aromática tetrafuncional, 4,4'-diaminodifenilmetano (DDM). A Figura 2Figura 2 mostra as fórmulas químicas dos dois compostos.

Figura 2 - Estrutura química do (a) DDM e (b) DGEBA. Fonte: RIEGEL et al. (1999) e Sigma Aldrich

1.2 CURA DAS RESINAS

De acordo com Calado e Advani (op.cit.), as resinas termorrígidas são obtidas por meio de uma reação de polimerização que possui caráter exotérmico e pode ser chamada cura, onde a mistura de monômeros e outros componentes menores, como os endurecedores, iniciadores, inibidores e catalisador reagem sob a ação de calor.

Além disso, os autores afirmam que, durante a cura, moléculas de grande dimensão e alta massa molar são formadas a partir de ligações cruzadas. Assim, ocorre uma diminuição na mobilidade, por conta de uma queda do volume disponível, afetando a viscosidade da resina.

Propriedades físicas e químicas de resinas são dependentes de quatro fatores: o grau de cura, o agente de reticulação, a temperatura e o tempo de cura. Dessa forma, é importante estudar a cura de resinas para entender as diferenças químicas e físicas entre os sistemas (COSTA et al, 2011). Entretanto, a cura de resinas é um processo complexo,

que provoca alterações químicas e físicas no sistema. Além disso, estas mudanças ocorrem de forma irreversível, intermediadas por reação química, sob variadas condições de pressão e vácuo e, geralmente, são acompanhadas da ação de calor. Finalmente, durante a cura de resinas termorrígidas, ocorrem dois fenômenos macroscópicos de extrema importância para o processo: a gelificação e a vitrificação (COSTA et al, 1999).

De acordo com Prime (1981), o processo de gelificação, também chamado ponto gel, é uma etapa do processo de cura na qual ocorre o crescimento de cadeias lineares que começam a se ligar. Por conta disso, a massa molar aumenta rapidamente e as cadeias formam redes de massa molar infinita. O processo é instantâneo, irreversível e acarreta a transformação de um líquido viscoso em um gel elástico. O autor afirma ainda que o processo de gelificação depende de três fatores: funcionalidade, reatividade e estequiometria dos reagentes. Além disso, o processo ocorre em um estágio bem definido e calculado, durante a reação química. Alguns meios de se identificar esse fenômeno são pela dificuldade das bolhas de atingir o topo da massa da resina e o rápido aumento da viscosidade até que se atinja valor infinito.

Outro fenômeno importante que ocorre durante a cura é a vitrificação. Esse processo é reversível e acarreta a transformação de um líquido viscoso ou gel elástico em vidro. A vitrificação inicia quando a temperatura de transição vítrea das redes torna-se idêntica à temperatura de cura. A reação de cura nesse estado torna-se muito lenta, e, na prática, podemos considerá-la nula. Finalmente, pode-se resumir a cura como o aquecimento para desvitrificar o termorrígido praticamente curado. Podemos observar esse fenômeno pela diminuição da taxa de reação (PRIME, op.cit).

1.3 PARCERIA

Foi realizada uma parceria com o professor Dr. Valery L. Zvetkov, da Bulgária, do Central Laboratory of Physical Chemical Mechanics, Bulgarian Academy of Sciences. Durante os experimentos, o professor auxiliou na condução do projeto, com dados comparativos de experimentos realizados por ele. A parceria foi fundamental para que o grupo pudesse buscar mais informações e analisar a aceitabilidade dos resultados obtidos.

1.4 Objetivos

Os objetivos do projeto foram:

Estimar parâmetros para a cinética de cura de um conjunto resina e endurecedor (DGEBA/DDM). Para isso, foram realizados estudos computacionais por meio de três abordagens: isoconversional, mecanicista e fenomenológica.

Comparar os valores encontrados com aqueles descritos na literatura, para analisar o grau de confiabilidade dos resultados obtidos pelo grupo e a melhor abordagem a ser utilizada no sistema em questão.

Analisar a possibilidade de utilização do Matlab como ferramenta computacional de estimação de parâmetros cinéticos de cura.

2 ESTUDO DA CINÉTICA DE CURA

2.1 CINÉTICA DE CURA

Para fazer o estudo da cinética de cura em um calorímetro diferencial de varredura, devemos, primeiramente, selecionar o modo de operação do equipamento: isotérmico ou não isotérmico. Em seguida, podemos realizar diversas abordagens com os dados experimentais obtidos, para estimar parâmetros, por meio da minimização de uma Função-objetivo (PAGANO et al, 2008).

Para estudar a cinética, é preciso fazer um equacionamento para entender o conceito do grau de cura (α). Devido ao fato de a cura ser exotérmica, podemos relacioná-la ao calor liberado. Dito isso, podemos definir o grau de cura em um determinado tempo como a razão entre o calor nesse tempo e o calor final, no caso de cura completa, ou seja, quando temos $\alpha = 1$ no final do aquecimento. De acordo com Calado e Advani (op.cit), podemos realizar o seguinte equacionamento:

$$\alpha(t) = \frac{\Delta H_t}{\Delta H_T} \tag{1}$$

em que: ΔH_t = entalpia no tempo te ΔH_T = entalpia total no final da cura.

Por meio da utilização de um DSC, obtemos curvas que relacionam a taxa de calor da reação com o tempo. O calor de reação final pode ser calculado pela área formada pela curva, pela integral:

$$\Delta H_t = \frac{1}{m_e} \int_0^{t_f} \frac{d\varrho}{dt} dt \tag{2}$$

sendo: $m_e = massa$ usada no experimento e $t_f = tempo$ final de reação.

Relacionando as equações (1) e (2):

$$\alpha(t) = \frac{\Delta H_c}{\Delta H_T} = \frac{1}{m_e \Delta H_T} \int_0^{t_f} \frac{dQ}{dt} dt$$
(3)

Assim:

$$\frac{d\alpha}{dt} = \frac{1}{m_e \Delta H_T} \frac{dQ}{dt} \tag{4}$$

Percebemos, então, que a taxa do grau de cura varia de acordo com o calor liberado, caracterizando uma relação entre efeitos térmicos e cinéticos.

A cinética também pode ser generalizada por uma equação que leva em conta a dependência da taxa de reação com a temperatura, o grau de cura, e a pressão ao longo da extensão da reação, como demonstrado na equação (5):

$$\frac{d\alpha}{dz} = k(T)f(\alpha)h(P) \tag{5}$$

em que: $\frac{d\alpha}{dt} = grau \, de \, cura$; t = tempo; k(T) = constante tipo Arrhenius e $f(a) = função grau \, de \, cura$; $h(P) = função \, da \, pressão$.

A dependência com a pressão é ignorada na maioria dos métodos cinéticos usados nas análises térmicas, segundo Vyazovkin et al (2011). Assim, podemos escrever que:

$$\frac{d\alpha}{dt} = k(T)f(\alpha) \tag{6}$$

Além disso, a constante de temperatura pode ser descrita pela equação tipo Arrhenius, demonstrada na equação (7):

$$\dot{\kappa}(T) - Ae^{-\frac{E_a}{RT}} \tag{7}$$

em que: E_a = energia de ativação; R = constante dos gases; T = Temperatura e A = fator pré – exponencial.

De posse do conceito do grau de cura, devemos estimar a função grau de cura e os dois parâmetros de Arrhenius (energia de ativação e o fator pré-exponencial), que são conhecidos como "kinetic triplet", ou tripé cinético, de acordo com Sewry e Brown (2002). Para estimar esses parâmetros, é preciso escolher uma abordagem a ser seguida. Existem três abordagens possíveis para o tratamento dos dados obtidos pelo DSC e essas serão discutidas nos tópicos a seguir.

2.1.1 ABORDAGEM MODEL-FREE OU ISOCONVERSIONAL

Como foi dito anteriormente, as análises cinéticas buscam estimar os parâmetros que formam o "kinetic triplet", para que possa ser feita uma extrapolação precisa do comportamento cinético do sistema. O método do "model-free", também conhecido por isoconversional, foca em um aspecto importante na análise cinética, que é a influência da escolha do modelo cinético na estimação dos parâmetros de Arrhenius. Dessa forma, essa abordagem adia o problema da escolha de um modelo cinético que se ajuste aos dados obtidos até que já se tenha uma estimativa dos parâmetros de Arrhenius (SEWRY e BROWN, op.cit).

De acordo com Vyazovkin, et al (op.cit), o método isoconversional tem origem no princípio que diz que a taxa de reação a uma determinada extensão de conversão é apenas função da temperatura, como demonstrado na equação (7):

$$\left[\frac{\partial \ln(\frac{d\alpha}{dt})}{\partial T^{-1}}\right]_{\alpha} = \left[\frac{\hbar \ln(k(T))}{\partial T^{-1}}\right]_{\alpha} + \left[\frac{\hbar \ln(f(\alpha))}{\partial T^{-1}}\right]_{\alpha}$$
(8)

em que a subscrito significa o valor daquela variável a uma determinada extensão de conversão.

Além disso, quando temos α constante, $f(\alpha)$ também será constante e, dessa forma, o termo final da equação (8) será zero, dando origem à equação (9):

$$\left[\frac{\partial \ln\left(\frac{d\alpha}{dt}\right)}{\partial T^{-1}}\right]_{\alpha} = \left[\frac{\delta \ln(\kappa(T))}{\partial T^{-1}}\right]_{\alpha} = -\frac{E_{\alpha}}{R}$$
(9)

Partindo da equação (9), podemos estimar a energia de ativação do sistema sem determinar uma forma para o modelo cinético. Entretanto, é importante ressaltar que, apesar de ser conhecida por "model-free", essa abordagem considera que a taxa de reação depende da conversão, obedecendo a um modelo descrito por uma função $f(\alpha)$ qualquer.

Existem duas etapas na utilização da abordagem isoconversional: a primeira consiste em encontrar a energia de ativação e a segunda consiste em encontrar o fator préexponencial e um modelo que descreva o sistema.

2.1.1.1 ESTIMAÇÃO DA ENERGIA DE ATIVAÇÃO

Como foi dito anteriormente, o primeiro passo na abordagem isoconversional é encontrar a energia de ativação que, posteriormente, servirá como base para determinar o fator pré-exponencial e o modelo cinético que descreve o sistema estudado. No presente estudo, iremos discutir dois métodos para encontrar a energia de ativação: diferencial ou integral, baseados no artigo de Vyazovkin, et al (op.cit).

Método diferencial

Segundo Vyazovkin, et al (op.cit), o método isoconversional diferencial mais comumente utilizado é aquele proposto por Friedman. Para o caso de programações não-isotérmicas lineares, esse método é baseado na equação descrita a seguir:

$$\ln\left[\beta_{i}\left(\frac{d\alpha}{aT}\right)\right]_{\alpha,i} = \ln[f(\alpha)A_{\alpha}] - \frac{E_{\alpha}}{RT_{\alpha,i}}$$
(10)

sendo: $\beta_i = taxa \ de \ aquecimento; T_{\alpha,i} = Temperatura \ para \ atingir \ a \ em \ \beta$.

Pela equação descrita anteriomente, podemos determinar a energia de ativação por meio de um gráfico de $\ln \left[\beta_i \left(\frac{d\alpha}{dT}\right)\right]_{\alpha,i}$ contra $\frac{1}{T_{\alpha,i}}$. Nesse caso, o coeficiente angular será $-\frac{F_{\alpha}}{R}$.

• Método integral

Já em relação ao método integral, Vyazovkin, et al (op.cit) diz que para os casos de programação com taxa de aquecimento constante, podemos utilizar o equacionamento apresentado a seguir:

$$\ln\left(\frac{\beta_l}{T_{\alpha,l}^B}\right) = const - C\left(\frac{E_{\alpha}}{RT_{\alpha}}\right)$$
(11)

em que B e C são parâmetros determinados pelo tipo de aproximação da integral de temperatura.

Os autores afirmam que foram propostos diversos valores para os parâmetros B e C na literatura, gerando diferentes equações para descrever os sistemas. Algumas dessas equações ficaram popularmente conhecidas. A seguir são descritas duas equações propostas no artigo, que serão testadas no presente trabalho:

Kissinger-Akahira-Sunose:
$$\ln(\beta_i/T_{\alpha,i}^2) - const - \left(\frac{E_{\alpha}}{RT_{\alpha}}\right)$$
 (12)

Equação proposta por Starink:
$$\ln(\beta_i/T_{\alpha,i}^{1.92}) = const - 1,0008 \left(\frac{E_{\alpha}}{RT_{\alpha}}\right)$$
 (13)

Existem outras formas mais complexas de descobrir a energia de ativação pelo método integral, mas essas estão fora do escopo do trabalho.

2.1.1.2 FATOR PRÉ-EXPONENCIAL E MODELO DE REAÇÃO

A segunda etapa da abordagem isoconversional se dá por meio da descoberta do fator pré-exponencial e, em seguida, da descoberta de um modelo que descreva bem o sistema em análise. Segundo Vyazovkin, et al (op.cit), essa etapa só pode ser realizada caso o processo possa ser descrito como uma cinética de um passo, ou seja, possa ser descrito pela equação (6).

Obedecido ao critério citado anteriormente, podemos encontrar o fator préexponencial e o modelo que descreve o sistema de diferentes formas. No presente trabalho, iremos escolher um modelo dependente apenas de α e substituí-lo na equação (6). A partir da equação obtida, iremos descobrir o valor do fator pré-exponencial e compará-lo com o de outros modelos. Dessa forma, o modelo que melhor descreve o sistema será aquele que apresentar a menor Função-objetivo, ou seja, o menor erro.

2.1.2 Abordagem Mecanicista

Os modelos mecanicistas tratam do nível microscópico e dependem do mecanismo de cada reação elementar do processo. Eles são mais representativos para estudo da cinética de cura de resinas, já que são baseados nos balanços estequiométricos envolvidos nas reações elementares da cura. Por conta disso, esses modelos são muito mais complexos de serem trabalhados. Nesse caso, é importante conhecer todas as reações que ocorrem e controlar as condições durante a cura de um sistema, para favorecer reações que forneçam propriedades desejáveis ao produto. Em alguns casos, as reações são tão complexas que nem a abordagem mecanicista consegue descrever completamente o fenômeno (CALADO E ADVANI, 2000).

Por conta de sua complexidade, de acordo com Santos (2009), os modelos mecanicistas raramente são utilizados na modelagem de cinética de cura de resinas termorrígidas, que é o caso das resinas epoxídicas, utilizadas no trabalho em questão. Segundo Blanco (2005), a principal desvantagem dos métodos mecanicistas é a necessidade de conhecer todas as espécies e reações envolvidas na cura, fator que depende dos reagentes utilizados.

Como foi dito anteriormente, o objeto de estudo do presente trabalho é analisar um sistema contendo uma resina epoxídica (DGEBA) e um endurecedor - que é uma amina - (DDM). Para equacionar a modelagem mecanicista, precisamos entender quais são as reações que ocorrem durante o processo de cura. De acordo com Hill et al (2001), o mecanismo geral de cura das resinas epoxídicas com aminas primárias (que é o caso do DDM) ocorre por meio de três reações fundamentais. Primeiramente, ocorre a abertura do anel da amina-epóxi primária, acarretando a formação de uma amina secundária e um grupo hidroxila. A partir daí, a amina-epóxi secundária reage formando mais um grupo hidroxila e uma amina terciária. Finalmente, a última etapa é uma reação de eterificação, que ocorre por meio da reação entre o grupo hidroxila e as funcionalidades da resina epoxídica.

Para simplificar o equacionamento do modelo mecanicista, podemos negligenciar alguns fenômenos que ocorrem durante a cura. Segundo Liu et al (2006), a reação de eterificação só ocorre a altas temperaturas e avançados graus de cura e a homopolimerização está condicionada à presença de ácidos ou bases de Lewis, podendo ambas serem negligenciadas no trabalho em questão. Além disso, de acordo com Blanco et al (2005), ao supor cura total da resina, fenômenos como a vitrificação podem ser negligenciados. O autor afirma também que a reação de eterificação não é importante nos sistemas que possuem excesso de amina ou proporções estequiométricas de resina e amina, que é o caso do sistema utilizado no presente trabalho.

Diversos autores propuseram o equacionamento de modelos mecanicistas para sistemas contendo resinas epoxídicas, considerando diferentes cenários de reações que ocorrem durante a cura. De forma a exemplificar a abordagem mecanicista, iremos apresentar um modelo simplificado, baseado em um artigo de Blanco et al (2005), que utiliza, dentre outros, o sistema DGEBA/DDM, que será analisado pelo grupo. O artigo representa o esquema de reações que ocorrem durante a cura como descrito a seguir:

$$E \mid OH \xrightarrow{k} E \quad OH \tag{14}$$

$$E + A_1 \xrightarrow{\kappa_1} A_2 + OH \tag{15}$$

$$E + A_2 \xrightarrow{k_2} A_3 + OH \tag{16}$$

$$E - OH + A_1 \xrightarrow{\kappa_1'} A_2 + OH \tag{17}$$

$$E - OH + A_2 \xrightarrow{k_2 l} A_3 + OH \tag{18}$$

sendo: E = grupo epóxi; OH = grupo hidroxila;

E - 0H = complexo entre epóxi e hidroxila; $A_1, A_2, A_3 = aminas primária, secundária e terciária, respectivamente;$ $k, k', k_1, k'_1, k_2, k'_2 = constantes de reação.$

Além disso, os autores fazem as seguintes definições:

$$N = \frac{k_2}{k_1} = \frac{k_2'}{k_1'}; K = ke_0; K' = k'; K_1 = k_1e_0; K_2 = k_2e_0; K_1' = k_1'e_0; K_2' = k_2'e_0; K_1 = k_1'e_0; K_2' = k_2'e_0; K_1 = k_1'e_0; K_2' = k_2'e_0; K_1 = k_1'e_0; K_2 = k_1'e_0; K_1 = k_1'e_0; K_2 = k_1'e_0; K_1 = k_1'e_0; K_1 = k_1'e_0; K_2 = k_1'e_0; K_1 = k_1'$$

 $e,e-oh,a_1,a_2,a_3,oh=concentrações \ molares \ normalizadas \ pela \ resina.$

Em seguida, é descrita a sequência de equações diferenciais que compõem o sistema:

$$\frac{de}{dt} = -(K)(e)(oh) + K'(e - oh) - K_1(e)(a_1 + Na_2)$$
(19)

$$\frac{de-oh}{dt} = (K)(e)(oh) - K'(e-oh) - K_1'(e-oh)(a_1 + Na_2)$$
(20)

$$\frac{da_1}{dt} = -2a_1(K_1e + K_1'e - oh)$$
(21)

$$\frac{du_2}{dt} = (K_1 e + K_1' e - oh)(a_1 - Na_2)$$
(22)

$$\frac{doh}{dt} = -(K)(e)(oh) + K'(e-oh) + (K_1e + 2K_1'e-oh)(a_1 + Na_2)$$
(23)

$$x = 1 - (e) - (e - oh) \tag{24}$$

De acordo com os autores, o valor utilizado para N no sistema DGEBA/DDM foi de 0,65, estipulado de acordo com o artigo de Blanco et al (2005). Os autores afirmam que esse valor está relacionado aos produtos mais flexíveis obtidos utilizando monoaminas, os polímeros lineares. Eles dizem, ainda, que o grupo adicional amino-fenil no endurecedor DDM aumenta a eletronegatividade no nitrogênio, deixando a amina mais reativa. Além disso, as constantes de reação podem ser descritas como equações tipo Arrhenius.

Para estimar os parâmetros cinéticos da cura nessa abordagem mecanicista, por existirem diversas equações diferenciais a serem resolvidas, pode-se utilizar um método de resolução, como por exemplo: o método de Euler, resolução por série de Taylor ou o método de Runge-Kutta (que foi o utilizado pelos autores do artigo). No presente trabalho, iremos utilizar um código em Matlab, programado pelo grupo, para estimar os parâmetros cinéticos.

2.1.3 FENOMENOLÓGICA

Finalmente, o modelo fenomenológico (também conhecido por empírico) trata do nível macroscópico, dependendo apenas de uma reação global. Em muitos casos não é simples encontrar um modelo mecanicista, principalmente quando temos uma reação de cura muito complexa, sendo assim, a abordagem fenomenológica é muito utilizada. A partir das equações (6) e (7), que descrevem a cinética de cura das resinas, a abordagem fenomenológica propõe um modelo para a função grau de cura. De acordo com Costa (2006), na literatura, as duas formas mais frequentes dessa função são: os modelos de reação de ordem n – equação (25) - e o modelo autocatalítico – equação (26):

$$f(\alpha) = (1 - \alpha)^n \tag{25}$$

$$f(\alpha) = (1 + k_2 \alpha^m)(1 - \alpha)^n \tag{26}$$

Sendo: *m* e *n* constantes que representam ordem de reação e k_2 pode ser descrito por uma equação tipo Arrhenius.

Partindo dessas equações, diversos autores propuseram modelos que são muito utilizados até hoje. Além disso, em cima de modelos base, diversas variações foram propostas para estudar a cinética de cura de variados sistemas. No presente trabalho, serão escolhidos alguns modelos retirados da literatura para serem testados com os dados experimentais, no intuito de analisar qual melhor se ajusta ao sistema estudado. Os quatro primeiros modelos utilizados pelo grupo foram retirados do artigo de Vafayan, et al (mimeo) e o último modelo foi retirado do artigo de Costa (2006). Os cinco modelos escolhidos para testar os dados experimentais são apresentados a seguir:

• <u>Modelo 1</u> – proposto por Kamal e Sourour

$$\frac{d\alpha}{d\varepsilon} = (k_1 + k_2 \alpha^m) (1 - \alpha)^n \tag{27}$$

• <u>Modelo 2</u> – modelo de Kamal com α_{max}

$$\frac{d\alpha}{dt} = (k_1 + k_2 . \alpha^m) . (\alpha_{m \pm x} - \alpha)^n$$
(28)

<u>Modelo 3</u> – modelo de Kamal Simplificado (com apenas três parâmetros)

$$\frac{d\alpha}{dt} = (k_1 + k_2, \alpha) \cdot (\alpha_{min} - \alpha)^n$$
(29)

• <u>Modelo 4</u> – modelo de Kamal Modificado

$$\frac{d\alpha}{dt} = k_1 (\alpha_{mix} - \alpha)^2 + k_2 \alpha^m (\alpha_{mix} - \alpha)^n$$
(30)

<u>Modelo 5</u> – variação do modelo de Kamal proposta por Karkanas

$$\frac{d\alpha}{dt} = k_1 (1-\alpha)^n + k_2 \alpha^m (1-\alpha)^{n_2}$$
(31)

2.2 CALORIMETRIA DIFERENCIAL DE VARREDURA

DSC (Differential scanning calorimetry) é uma técnica termoanalítica que mede a diferença de energia fornecida a uma substância e a um material de referência em função da temperatura. A referência e a substância ficam submetidas a uma programação definida previamente, com controle de temperatura. Por conta disso, esse equipamento pode ser utilizado para analisar a cinética de cura dos materiais.

De acordo com Zhang et al. (op.cit), devemos utilizar a análise da cinética de cura para entender melhor sobre a estrutura e as propriedades das resinas epóxi. É importante entender a cinética para um melhor controle das reações e para podermos otimizar as propriedades do produto final. Os autores afirmam que o estudo da cinética de cura das resinas epóxi pode ser feito através de diferentes técnicas, como calorimetria diferencial de varredura (DSC) e espectroscopia de infravermelho (IR). Nesse cenário, segundo Costa (1999), o mecanismo de cura das resinas epóxi é um dos mais estudados e a técnica mais utilizada para analisar o comportamento cinético dessas resinas é a calorimetria exploratória diferencial (DSC).

O calorímetro diferencial de varredura ou DSC pode ser empregado para medir parâmetros cinéticos e essa técnica consiste em monitorar o grau de cura por meio do calor gerado na reação. Visto isso, utilizamos esse equipamento para determinar parâmetros cinéticos a partir da suposição que o calor gerado pela reação química é proporcional à extensão da cura. Para realizar os cálculos dos parâmetros, será utilizado um código em Matlab, programado pelo grupo.

A Figura 3 Figura 3 ilustra o DSC do LABTeR, da Escola de Química da Universidade Federal do Rio de Janeiro, utilizado para realizar as análises do trabalho.

Figura 3 - Calorímetro diferencial de varredura (DSC)

Segundo Costa (2006), o DSC mede a energia envolvida nos eventos térmicos na amostra e em uma referência, que são mantidas à mesma temperatura, mas em fornos separados. Caso haja alguma alteração na temperatura da amostra durante a análise, o equipamento detecta essa mudança e modifica a potência de entrada do outro forno, onde está a referência, de forma a igualar as temperaturas. A Figura 4 representa um desenho esquemático do DSC.

Figura 4 - Fornos do DSC onde são colocadas a amostra (S) e a referência (R) Fonte: COSTA (2006)

A análise térmica no DSC pode ser feita por um programa onde a variação de temperatura é programável (por aquecimento ou resfriamento), conhecido por método não-isotérmico, ou pode operar de modo isotérmico. Depois de realizadas as análises, o equipamento registra uma curva que expressa a taxa de calor (mW/g) versus a

temperatura (°C) ou o tempo (min). Os gráficos obtidos apresentam picos invertidos e suas áreas são proporcionais à variação de entalpia do sistema (GIOVANELLI e NÓBREGA, op.cit).

CAPÍTULO 3

3 METODOLOGIA EXPERIMENTAL

3.1 ANÁLISES EXPERIMENTAIS

3.1.1 MATERIAIS E MÉTODOS

Os materiais utilizados pelo grupo para realização do experimento são listados abaixo:

- Balança analítica para pesagem dos reagentes;
- Dois bechers (de plástico) para realizar a pesagem dos reagentes;
- Placa de aquecimento e agitação para realizar a mistura;
- Cápsulas de alumínio para realizar a análise por Calorimetria Diferencial de Varredura (DSC);
- Equipamento para lacrar as cápsulas de alumínio;
- Equipamento para análise térmica (DSC);
- Bastão de vidro;
- Agitador magnético;
- Palito de madeira;

Com os materiais listados acima, foi possível realizar o procedimento experimental de análise térmica da mistura estequiométrica de DGEBA/DDM no DSC. Para isso, a mistura deve ser preparada, como descrito no item a seguir.

3.1.2 PREPARO DA MISTURA

Para iniciar os experimentos, foi necessário realizar o preparo da mistura resina e endurecedor. No presente trabalho, a proporção analisada é a estequiométrica. Para isso,

foi realizado um cálculo em função dos hidrogênios amínicos do endurecedor e do grupo epoxídico da resina, que são as funcionalidades que reagem durante a cura. Os cálculos realizados são demonstrados a seguir:

• Endurecedor (DDM)

Figura 5 – Estrutura química do DDM Fonte: Sigma Aldrich

quatro Hs amínicos

Massa Molar = 198,26 Amine H Eq wt = $\frac{198,26}{4}$ = 49,565

• Resina DER 332 (DGEBA)

Figura 6 - Estrutura química da resina DGEBA Fonte: RIEGEL et al. (1999)

massa molar de acordo com a literatura = 170 - 176 g/eq epóxi massa molar utilizada pelo grupo = 173 g/eq epóxi

Para pesagem dos reagentes, foi necessário realizar um cálculo para descobrir a massa total de resina e endurecedor necessária para obter um sistema em proporções

estequiométricas, levando em consideração os H's amínicos e os grupos epoxídicos. Os cálculos realizados pelo grupo são apresentados a seguir:

1 H amínico \rightarrow 1 grupo epoxídico

Escolhendo uma base de 5g de resina a ser pesada, devemos calcular a quantidade necessária de endurecedor para mistura estequiométrica:

49,565 de Endurecedor → 173 g Resina x de Endurecedor → 5 g Resina

$$x = \frac{49,565 * 5}{173} = 1,4325 \ g \ de \ Endurecedor$$

Entretanto, durante o processo de mistura, o endurecedor foi vertido na resina, acarretando em algumas perdas de material. Por conta disso, foi utilizada uma folga de 0,02g na pesagem do endurecedor, para compensar o material que ficou preso na parede do becher. Realizando os cálculos, foram encontrados os valores que deveriam ser pesados de cada reagente para preparar a mistura estequiométrica de resina e endurecedor.

Assim, os dois reagentes foram pesados em uma balança analítica e submetidos a aquecimento em fornos separados. O endurecedor foi pesado em um béquer menor (10 mL) e submetido a um forno a 93°C, para garantir que fosse todo derretido, facilitando a etapa seguinte, onde ele foi vertido no béquer contendo a resina. Já a resina foi pesada em um béquer maior (20 mL) e submetida a um forno a 80°C, para que estivesse em uma temperatura próxima à do endurecedor.

Com os dois reagentes quentes e líquidos, foi adicionado um agitador magnético no béquer contendo a resina, para garantir mistura completa. Em seguida, o endurecedor foi retirado do forno e vertido imediatamente no béquer de resina. O sistema permaneceu assim por aproximadamente dois minutos e uma solução amarelada foi obtida. Em seguida, foi retirado o agitador magnético e a mistura foi colocada em um banho de água para ser resfriada.

É importante ressaltar que a etapa de preparo da resina por aquecimento é fundamental para o processo, visto que, em experimentos anteriores, o grupo observou

que quando o endurecedor foi vertido no béquer contendo resina fria, ocorreu o fenômeno de cristalização, atrapalhando o procedimento experimental pela não correspondência da razão de reagentes com a estequiometria desejada. A Figura 7 retrata esse momento.

Figura 7 - Fenômeno de cristalização.

3.1.3 CALORIMETRIA DIFERENCIAL DE VARREDURA - DSC

Com a mistura preparada e os equipamentos prontos para serem utilizados, poderia ser iniciado o procedimento experimental. Primeiramente, foi necessário realizar a "baseline" (linha de base) do programa. Para isso, o DSC foi rodado completamente vazio, na faixa de temperatura desejada, que, no presente trabalho, foi de -50°C até certa temperatura, definida de acordo com a taxa de aquecimento (entre 270°C e 300°C). Feito isso, o resultado foi uma linha de base no programa, que, posteriormente, foi diminuída das curvas obtidas. Dessa forma, todos os dias, foi realizada uma análise da "baseline", que pode ser entendida como um "branco" da análise.

Em seguida, para utilizar o DSC, foi preciso colocar a mistura em uma cápsula de alumínio, que, posteriormente, foi introduzida no equipamento para análise. A forma de preparo dessa cápsula consiste em colocar a mistura em seu interior de forma a cobrir

toda a sua superfície interna, sem deixar que entrasse em contato com as bordas. Nesse passo, é importante que a quantidade de mistura colocada na cápsula esteja entre 4,5 e 8mg, de forma a não haver transbordamento da resina curada (com risco de vazamento de material da cápsula metálica). Finalmente, essa foi lacrada, pesada novamente e o peso anotado, pois esse dado é necessário ao programa do DSC, para que ele calcule a taxa de aquecimento por massa de resina. A Figura 8 mostra o equipamento utilizado para lacrar as cápsulas.

Figura 8 - Equipamento utilizado para lacrar as cápsulas de alumínio.

Feito isso, as duas cápsulas (amostra e referência) foram colocadas no DSC e as análises iniciadas. No projeto em questão, foi utilizado o método não isotérmico do equipamento, sendo trabalhado sempre com aquecimento a diferentes taxas de variação de temperatura. As taxas utilizadas foram de 2,5 K/min, 5 K/min e 10 K/min. Cada uma dessas taxas acarreta uma temperatura final, pois todos os experimentos iniciam na mesma temperatura. Sendo assim, obtivemos: 270°C (2,5 K/min), 285°C (5 K/min) e 305°C (10 K/min).

O resultado da análise descrita acima é fornecido na forma de curvas, que descrevem o comportamento do sistema analisado. Essas curvas devem ser diminuídas da "baseline" realizada naquela data e o resultado salvo no computador, na forma de
curvas e tabelas. Esses resultados servirão, posteriormente, para realizar uma estimativa dos parâmetros cinéticos da cura do sistema resina-endurecedor.

Para ilustrar o material utilizado no procedimento experimental, a Figura 9 faz uma comparação do tamanho da cápsula de alumínio com o de uma moeda de 50 centavos.

Figura 9 - Cápsula de alumínio em comparação com uma moeda de 50 centavos.

3.2 ESTIMAÇÃO DE PARÂMETROS

Como foi dito anteriormente, o objetivo do presente trabalho é analisar diferentes modelos cinéticos para um sistema especificado (proporções estequiométricas de DGEBA/DDM). Para isso, foram feitos experimentos com o sistema resina-endurecedor em um DSC, operando de forma não-isotérmica. A partir dos dados obtidos, serão feitos testes seguindo três abordagens - isoconversional, mecanicista e fenomenológica - para analisar qual delas fornece o melhor conjunto de parâmetros para esse sistema.

Como foi dito anteriormente, a abordagem isoconversional será baseada no artigo de Vyazovkin et al. (op.cit), a abordagem mecanicista será baseada no equacionamento do artigo de Blanco et al (2005) e a abordagem fenomenológica, em 5 modelos selecionados pelo grupo, retirados da literatura - Vafayan et al (op.cit) e Costa (2006). O código em Matlab, programado pelo grupo, irá fornecer os parâmetros cinéticos para a construção da curva e, posteriormente, será feita uma análise de qual modelo melhor se

adéqua ao sistema em estudo, por meio da minimização de uma Função-objetivo, também calculada pelo programa.

4 RESULTADOS E DISCUSSÃO

4.1 **RESULTADOS EXPERIMENTAIS**

Com o intuito de estudar a cura do sistema DGEBA/DDM, foi utilizada a técnica de calorimetria diferencial de varredura (DSC). Como resultado, foram gerados diversos gráficos que analisam a taxa de calor de acordo com as alterações na temperatura, a diferentes taxas de aquecimento. Como foi dito anteriormente, o gráfico gerado tem como característica um pico exotérmico (pela convenção adotada no equipamento). As análises de cada taxa de aquecimento foram feitas em duplicata, de forma a garantir a confiabilidade dos dados. A seguir, encontram-se os gráficos da primeira análise realizada para cada taxa de aquecimento, apenas como forma de ilustrar o comportamento do sistema no DSC.

Figura 10 - Análise do sistema a 2,5 K /min.

Figura 11 - Análise do sistema a 5 K/min.

Figura 12 – Análise do sistema a 10 K/min.

Em comparação com os dados do Dr. Valery Zvetkov, da Bulgária, observou-se que os resultados obtidos apresentavam uma pequena diferença nos valores da entalpia de cura da resina. Provavelmente, devido à linha de base do equipamento, que não estava totalmente reta. Isso aconteceu devido a um problema no calorímetro, que não foi possível de solucionar no decorrer das análises experimentais do grupo. Dessa forma, o

grupo decidiu utilizar os dados gerados para o mesmo sistema pelo co-orientador, Dr. Valery Zvetkov. Foi realizada uma análise desses dados com o intuito de estimar parâmetros para a cinética de cura do sistema, por meio de diferentes abordagens. Os resultados obtidos após o tratamento dos dados experimentais encontram-se descritos nos itens a seguir.

4.1.1 ABORDAGEM ISOCONVERSIONAL

A primeira abordagem utilizada para o tratamento dos dados foi a isoconversional, também, conhecida por *model-free* (livre de modelo). Nesse caso, como foi dito no Capítulo 2, o primeiro passo é encontrar a energia de ativação do sistema, que, posteriormente, servirá para encontrar o fator pré-exponencial e um modelo que descreva bem o sistema.

4.1.1.1 CÁLCULO DA ENERGIA DE ATIVAÇÃO

Como dito anteriormente, existem diversas forma de calcular a Energia de Ativação do sistema e, no presente trabalho, foram utilizados dois métodos integrais para tal. Os resultados obtidos por cada método serão apresentados nos itens a seguir.

4.1.1.1.1 MÉTODO 1 - KISSINGER-AKAHIRA-SUNOSE

Esse método tem como objetivo encontrar a Energia de Ativação do sistema por meio de uma equação com a forma de uma reta, em que esse é o único parâmetro desconhecido em um dos coeficientes da reta. A equação que descreve o sistema é apresentada a seguir.

$$\ln(\beta_i/T_{\alpha,i}^2) = const - \left(\frac{E_\alpha}{RT_\alpha}\right)$$
(32)

Nesse caso, podemos obter uma reta quando fazemos o gráfico de $\ln \begin{pmatrix} \beta_i \\ T_{\alpha,i}^z \end{pmatrix}$ versus $\frac{1}{T_{\alpha}}$. Dessa forma, o coeficiente angular será $-\begin{pmatrix} \frac{F_{\alpha}}{R} \end{pmatrix}$. Como sabemos o valor de R (constante dos gases), podemos facilmente encontrar o valor da Energia de Ativação do sistema. Esse procedimento será realizado para cada taxa de aquecimento (2,5 K/min, 5 K/min e 10 K/min). Os gráficos obtidos do tratamento dos dados experimentais e os respectivos valores de Energia de Ativação encontrados são mostrados a seguir.

Figura 13 – Gráficos para o cálculo da Energia de Ativação pela abordagem Isoconversional pelo Método de Kissinger-Akahira-Sunose a uma taxa de aquecimento de: (A) 2,5 K/min; (B): 5 K/min; (C) 10 K/min.

Os valores da Energia de Ativação encontrados nesse método são apresentados na Tabela 1.

Tabela 1 – Comparação dos valores encontrados para a Energia de Ativação para o Método de Kissinger-Akahira-Sunose a diferentes taxas de aquecimento

Taxa	Ea (kJ/mol)
2,5 K/min	103,04
5 K/min	103,79
10 K/min	98,62

Para analisar os dados obtidos, o grupo fez uma comparação com valores encontrados na literatura (ZVETKOV et al, 2010), que busca estimar parâmetros pela abordagem fenomenológica. Apesar de não usar a mesma abordagem, por conta delas partirem de uma premissa semelhante (a reação de cura pode ser descrita por uma reação global), o grupo espera encontrar valores coerentes para os parâmetros. Dessa análise, pudemos observar que os valores de Energia de Ativação encontrados pelo grupo estão na mesma ordem de grandeza daqueles encontrados pelos autores. No artigo citado anteriormente, o valor da Energia de Ativação para o sistema em estudo foi de aproximadamente 55kJ/mol, enquanto o grupo encontrou valores para Energia de Ativação próximos a 100kJ/mol. Dessa forma, o grupo entende que a abordagem isoconversional pelo método de Kissinger-Akahira-Sunose pode ser uma boa estimativa para a Energia de Ativação do sistema estudado.

4.1.1.1.2 MÉTODO DE STARINK

De forma similar ao anterior, esse método também tem como objetivo encontrar a Energia de Ativação do sistema por meio de uma equação com a forma de uma reta, na qual, novamente, a Energia de Ativação é o único parâmetro desconhecido em um dos coeficientes da reta. A equação que descreve o sistema é apresentada a seguir.

$$\ln(\beta_i/T_{\alpha,i}^{1.92}) = const - 1,0008 \left(\frac{E_{\alpha}}{RT_{\alpha}}\right)$$
(33)

Nesse caso, podemos obter uma reta quando realizamos o gráfico de $\ln\left(\frac{\beta_i}{T_{\alpha,i}^{1/22}}\right)$ versus $\frac{1,0008}{T_{\alpha}}$. Assim, o coeficiente angular será, novamente, $-\left(\frac{E_{\alpha}}{\kappa}\right)$. Esse procedimento será realizado para cada taxa de aquecimento (2,5 K/min, 5 K/min e 10 K/min).

Os valores da Energia de Ativação encontrados nesse método são apresentados na Tabela 2.

Tabela 2 - Comparação dos valores encontrados para a Energia de Ativação para o Método de Starink a diferentes taxas de aquecimento.

Taxa	Ea (kJ/mol)
2,5 K/min	98,43
5 K/min	99,10
10 K/min	93,90

O outro método utilizado pelo grupo para estimar a Energia de Ativação do sistema foi o método de Starink. Novamente, observamos os valores de Energia de Ativação próximos a 100kJ/mol. De forma semelhante ao método anterior, o grupo entende que a abordagem isoconversional pelo método de Starink também pode ser uma boa estimativa para a Energia de Ativação do sistema estudado.

4.1.1.1.3 COMPARAÇÃO DOS MÉTODOS

Podemos realizar uma tabela comparativa dos dois métodos utilizados para estimar uma Energia de Ativação média para o sistema em análise.

	* ·	-	-	•	
Taxa	Método	Ea (kJ/mol)	Diferença (%)	Ea médio (kJ/mol)	
2,5 K/min	Kissinger-Akahira-Sunose	103,04	4 47	100 72	
	Starink	98,43	4,47	100,75	
5 K/min	Kissinger-Akahira-Sunose	103,79	4.52	101,45	
	Starink	99,1	4,32		
10 K/min	Kissinger-Akahira-Sunose	98,62	4 70	06.26	
	Starink	93,9	4,79	90,20	
10 K/min	Kissinger-Akanira-Sunose Starink	98,62 93,9	4,79	96,26	

Tabela 3 - Comparação dos método integrais de cálculo de Energia de Ativação

Como podemos observar pela Tabela 3, os dois métodos forneceram valores muito próximos para a Energia de Ativação em cada uma das taxas analisadas. Isso sinaliza reprodutibilidade entre os dois métodos e confiabilidade dos dados. Dessa forma, a abordagem isoconversional pode ser uma boa escolha para determinar a Energia de Ativação de sistemas DGEBA/DDM em proporções equimolares.

A seguir, devemos encontrar um modelo de cura e um fator pré-exponencial que descrevam o sistema em questão.

4.1.1.2 MODELO DE CURA E CÁLCULO DO FATOR PRÉ-EXPONENCIAL

Determinada a Energia de Ativação do sistema, o próximo passo realizado pelo grupo foi estimar uma função para o grau de cura $f(\alpha)$ e, a partir dela, determinar o valor do fator pré-exponencial. É importante ressaltar que essa função deve ser dependente apenas de α . No presente trabalho, foi escolhida uma função também dependente de um parâmetro n, mas esse foi testado no *software* Microsoft Excel 2010, até que se encontrasse o maior valor possível para o coeficiente de determinação, R^2 , para cada taxa de aquecimento de cada modelo. Dessa forma, os resultados obtidos são aqueles que produzem o melhor valor para o fator pré-exponencial. A função escolhida está descrita a seguir.

$$f(\alpha) = (1 - \alpha)^n \tag{34}$$

Os valores obtidos para o parâmetro *n* variaram entre 1,53 e 1,76. Em seguida, encontramos o fator pré-exponencial. Para isso, foi traçado um gráfico de $f(\alpha)\left(\exp\left(-\frac{E_{\alpha}}{RT}\right)\right)$ versus $\frac{d\alpha}{dT}$. Assim, a partir da equação (35), pudemos determiná-lo.

$$\frac{d\alpha}{ar} = f(\alpha)Aexp\left(-\frac{E_{\alpha}}{Rr}\right)$$
(35)

Ou seja, quando traçamos esse gráfico, o coeficiente angular da reta obtida é o próprio fator pré-exponencial. Os resultados obtidos para cada modelo e taxa de aquecimento são apresentados a seguir.

Figura 15 – Gráficos para o cálculo do fator pré-exponencial pela abordagem Isoconversional pelo Método de Kissinger-Akahira-Sunose a uma taxa de aquecimento de: (A) 2,5 K/min; (B): 5 K/min; (C) 10 K/min.

Figura 16 – Gráficos para o cálculo do fator pré-exponencial pela abordagem Isoconversional pelo Método de Starink a uma taxa de aquecimento de: (A) 2,5 K/min; (B): 5 K/min; (C) 10 K/min.

Analisando os gráficos utilizados para calcular o fator pré-exponencial, pode-se perceber que a curva que descreve o comportamento real da amostra faz um *loop*, ou seja, ela inicia e termina em zero. Isso ocorre, pois o gráfico descreve o comportamento da derivada do grau de cura contra uma função que é dependente apenas do grau de cura. No início da reação, o grau de cura é zero ($\alpha = 0$) e esse vai aumentando até que atinja cura total ($\alpha = 1$). Em relação à derivada do grau de cura, essa se inicia pequena, pois, no início, a cura é lenta. Com o tempo, o sistema começa a curar mais rápido, até atingir um pico de velocidade e depois começa a diminuir novamente, pois a cura volta a ficar lenta até que atinja o valor nulo novamente (quando o sistema encontra-se totalmente curado).

Para analisar os dados obtidos para o valor do fator pré-exponencial, o grupo fez, novamente, uma comparação com valores encontrados no mesmo artigo. No artigo, o valor do fator pré-exponencial tem ordem de grandeza entre 10^{10} e 10^{12} min⁻¹, enquanto os valores encontrados pelo grupo possuem ordem de grandeza variando entre 10^9 e 10^{12} min⁻¹. Dessa forma, o grupo entende que a abordagem isoconversional

pode ser uma boa forma de estimar o fator pré-exponencial pelos métodos de Kissinger-Akahira-Sunose e Starink.

4.1.1.2.1 COMPARAÇÃO DOS MÉTODOS

A Tabela 4 compara os valores encontrados para o fator pré-exponencial nos dois métodos analisados.

Taxa	Método	A $(10^{10} \text{ min}^{-1})$	n	Função-objetivo
$2.5 \mathrm{K/min}$	Kissinger-Akahira-Sunose	123,24	1,71	9,0202
2,3 K/mm	Starink	29,55	1,64	8,3576
5 K/min	Kissinger-Akahira-Sunose	47,29	1,76	13,2287
	Starink	11,82	1,69	13,1741
10 K/min	Kissinger-Akahira-Sunose	2,79	1,60	8,6341
10 K/11111	Starink	0,73	1,53	10,6788

Tabela 4 - Comparação dos método de cálculo do fator pré-exponencial

Pela análise da Tabela 4, podemos observar que os valores encontrados para o fator pré-exponencial são distintos para uma mesma taxa de aquecimento quando utilizamos os dois modelos escolhidos, porém, de ordens de grandeza iguais ou próximas. Como foi dito anteriormente, essa diferença observada pode ser atribuída ao fato de a Energia de Ativação estar dentro da exponencial da fórmula. Por conta disso, uma pequena diferença na Energia de Ativação, causa uma grande diferença no fator pré-exponencial. Podemos analisar também a Função-objetivo calculada pela programação em Matlab, que, em todos os casos, encontra-se muito alta, apresentando um indicativo de que os métodos não são recomendáveis. Sendo assim, apesar de apresentar confiabilidade no cálculo da Energia de Ativação e do fator pré-exponencial, os métodos analisados (Kissinger-Akahira-Sunose e Starink) não são recomendáveis para modelar a cura do sistema DGEBA/DDM em proporções equimolares, quando utilizada a função escolhida pelo grupo.

Finalmente, para analisar a abordagem isoconversional de forma completa na estimação de parâmetros cinéticos, foram gerados gráficos no Matlab que comparam o

comportamento dos modelos utilizados com o comportamento real da mistura analisada, a cada taxa de aquecimento, para os dois modelos.

Figura 17 – Gráficos de estimação de parâmetros cinéticos para o modelo de Kissinger-Akahira-Sunose para uma taxa de: (A) 2,5 K/min; (B) 5 K/min; (C) 10 K/min.

Figura 18 – Gráficos de estimação de parâmetros cinéticos para o modelo de Starink para uma taxa de: (A) 2,5 K/min; (B) 5 K/min; (C) 10 K/min.

Podemos confirmar pelos gráficos o que havia sido observado anteriormente: a abordagem isoconversional não é uma forma interessante de estimar parâmetros cinéticos do sistema estudado quando utilizada a função grau de cura escolhida pelo grupo, pois a curva teórica descrita pelo modelo se afasta um pouco da curva gerada pelos pontos experimentais, principalmente quando estamos a altas temperaturas, no final da análise. Nesse caso, poderiam ser testadas novas funções, no intuito de encontrar resultados mais próximos ao comportamento real.

Sendo assim, outras duas abordagens serão desenvolvidas (mecanicista e fenomenológica) com o objetivo de encontrar alguma que forneça parâmetros confiáveis e próximos aos observados nos resultados experimentais.

4.1.2 Abordagem Mecanicista

A segunda abordagem utilizada pelo grupo para estimar os parâmetros cinéticos da cura foi a Mecanicista. Como foi dito anteriormente, para utilizar essa abordagem, é necessário entender todas as reações que estão ocorrendo, pois os cálculos são feitos com base nas equações elementares que descrevem o sistema. Dessa forma, o grupo realizou algumas aproximações e se baseou no equacionamento apresentado no artigo de Blanco et al (op.cit). Os resultados experimentais foram analisados por meio da programação em Matlab feita pelo grupo, gerando um gráfico para cada taxa de aquecimento. Os gráficos obtidos são apresentados a seguir, juntamente com uma tabela contendo os parâmetros encontrados.

Figura 19 – Gráficos de estimação de parâmetros cinéticos para a Abordagem Mecanicista para uma taxa de: (A) 2,5 K/min; (B) 5 K/min; (C) 10 K/min.

	2,5 K/min	5 K/min	10 K/min
Ea (kJ/mol)	55,11	58,19	60,72
A (\min^{-1})	1,87E+06	3,91E+06	6,02E+06
Ea1 (kJ/mol)	80,54	73,66	69,45
A1 (min ⁻¹)	3,35E+09	1,31E+08	1,05E+07
EaL (kJ/mol)	45,72	57,90	53,31
$AL (min^{-1})$	2,79E+08	6,98E+08	1,62E+09
Ea1L (kJ/mol)	13,27	9,75	11,26
A1L (min ⁻¹)	1,86E+06	3,65E+04	2,11E+05
F Obj.	9,9909	6,6087	3,0953

Tabela 5 - Parâmetros estimados para o Modelo Mecanicista

A programação em Matlab fornece todos os parâmetros do equacionamento, que, de forma geral, apresentaram o comportamento e ordem de grandeza esperados, e uma Função-objetivo que indica a confiabilidade desses dados. No caso da abordagem mecanicista, a Função-objetivo está relativamente alta, variando de 3 a 10. Esse comportamento pode ser explicado pelas aproximações realizadas para equacionar o modelo, pois não sabemos ao certo sobre todas as reações que estão ocorrendo durante a cura. Podemos observar pelos gráficos obtidos, que a curva teórica do modelo mecanicista se afasta bastante da curva obtida pelos dados experimentais para todas as taxas, mas, principalmente, para a taxa de 2,5 K/min, que foi aquela que apresentou maior valor da Função-objetivo.

De forma a analisar o que foi obtido, o grupo fez uma comparação dos resultados de cada parâmetro com a literatura utilizada como base para o equacionamento do presente trabalho (BLANCO, 2005). Em relação às Energias de Ativação, os valores encontrados pelo grupo, em geral, estão na mesma ordem de grandeza daqueles encontrados no artigo utilizado como base. Para o parâmetro Ea, os dados obtidos pelo grupo estão entre **5,5 x 10⁴ kJ/mol** e **6,1 x 10⁴ kJ/mol**, enquanto o artigo fornece como resultado **5,8 x 10⁴ kJ/mol**. Para o Eal o grupo encontrou valores entre **6,9 x 10⁴ kJ/mol** e **8,0 x 10⁴ kJ/mol** e o artigo encontrou **6,5 x 10⁴ kJ/mol**. Já para o EaL os valores do grupo estão entre **4,6 x 10⁴ kJ/mol** e **5,8 x 10⁴ kJ/mol** e o artigo fornece o valor de **7,8 x 10⁴ kJ/mol**. Em relação ao Ea1L, o grupo encontrou valores próximos a **10⁴ kJ/mol** e o artigo encontrou **4,1 x 10⁴ kJ/mol**, apresentando uma discrepância pouco maior que os outros.

Os outros parâmetros analisados foram os fatores pré-exponenciais. Nesse caso, alguns valores encontrados pelo grupo foram um pouco diferentes daqueles encontrados

no artigo. Para o A, o grupo encontrou valores na ordem de grandeza de **10⁶min⁻¹** e o artigo encontrou na ordem de **10⁷min⁻¹**. Para o A1, o grupo encontrou resultados das ordens de **10⁷min⁻¹** e **10⁹min⁻¹** e o artigo encontrou o resultado na ordem de **10⁵min⁻¹**. Já para o AL, enquanto o artigo encontrou seu resultado na ordem de grandeza de **10⁸min⁻¹**, o grupo encontrou valores entre **10⁸min⁻¹** e **10⁹min⁻¹**. Finalmente, o último parâmetro analisado foi o A1L, que no artigo apresentou ordem de grandeza de **10⁴min⁻¹** e o grupo encontrou valores entre **10⁴min⁻¹** e **10⁶min⁻¹**.

Nesse cenário, podemos observar que os valores de Energia de Ativação encontram-se, em geral, próximos àqueles fornecidos pelo artigo. Entretanto, alguns valores do fator pré-exponencial encontram-se distantes dos resultados do artigo, como foi o caso do A1. Isso pode ser explicado pelo fato de pequenas perturbações na energia de ativação causarem grandes perturbações no fator pré-exponencial. Além disso, não foi possível otimizar melhor esse resultados nem testar outros equacionamentos para essa abordagem devido à dificuldade de trabalhar com a sua programação em Matlab, por conta dessa ser muito lenta.

Sendo assim, não podemos afirmar se a abordagem mecanicista é ou não uma boa ferramenta de estimação de parâmetros cinéticos para esse sistema. Para confirmar se essa abordagem é interessante no estudo desse sistema, seria necessário testar outros equacionamentos, realizando diferentes aproximações. Outra forma de análise seria realizar um estudo mais aprofundado no mecanismo de cura desse sistema, de forma a prever melhor todas as reações que estão ocorrendo durante a cura.

4.1.3 Abordagem Fenomenológica

Finalmente, a última abordagem utilizada no tratamento dos dados experimentais foi a Fenomenológica. Nesse caso, devemos escolher alguns modelos e testar qual deles melhor descreve o sistema, por meio da minimização de uma Função-objetivo. Como foi dito anteriormente no presente trabalho, foram escolhidos cinco modelos cinéticos a serem testados, retirados da literatura. Foram testadas três taxas de aquecimento para cada modelo e, ao final, foi testado o conjunto de taxas de aquecimento no intuito de encontrar parâmetros que se ajustassem a toda a faixa estudada. Os gráficos obtidos pela programação em Matlab utilizada e a comparação dos resultados experimentais de cada modelo encontram-se nos itens a seguir.

4.1.3.1 MODELO 1 – PROPOSTO POR KAMAL E SOUROUR

Figura 20 – Gráficos de estimação dos parâmetros cinéticos para o modelo de Kamal e Sourour a uma taxa de aquecimento de: (A) 2,5 K/min; (B) 5 K/min; (C) 10 K/min.

O primeiro modelo utilizado foi aquele proposto por Kamal e Sourour. Para o conjunto de dados experimentais do sistema DGEBA/DDM em proporções equimolares, a curva obtida por esse modelo se apresentou próxima ao comportamento real. Podemos observar pelos gráficos que a melhor sobreposição das curvas acontece na taxa de 2,5 K/min.

Outro ponto que pode ser observado pelos gráficos é que ocorre um afastamento entre a curva descrita pelo modelo e a curva formada pelos pontos reais no pico exotérmico. Isso pode ser explicado pela premissa utilizada no calorímetro diferencial de varredura, que o calor total deve ser o mesmo nos dois casos. Dessa forma, a área obtida pelas duas curvas deve ser a mesma.

Figura 21 – Gráficos de estimação dos parâmetros cinéticos para o conjunto de taxas do modelo de Kamal e Sourour.

Nesse caso, o modelo de Kamal e Sourour foi analisado para o conjunto de taxas de aquecimento, ou seja, os parâmetros obtidos nesse caso devem servir para cada uma das taxas estudadas. Nesse caso, estamos supondo que esses parâmetros são constantes, independentes da taxa de aquecimento.

Podemos observar pelos gráficos que o comportamento obtido para o modelo se distancia bastante do comportamento real, em todas as três taxas estudadas. Dessa forma, o grupo entende que pelo menos alguns parâmetros cinéticos obtidos são dependentes da taxa de aquecimento, impossibilitando a análise por conjuntos para esse modelo.

A Tabela 6 mostra os resultados encontrados pelo grupo para o modelo de Kamal e Sourour para as três taxas de aquecimento e para a análise em conjunto.

	2,5 K/min	5 K/min	10 K/min	Conjunto
Ea (kJ/mol)	89,80	91,75	96,16	95,56
A (\min^{-1})	1,21E+10	7,57E+09	9,17E+09	1,47E-04
n	2,06	2,21	2,06	1,12
Ea2 (kJ/ mol)	85,70	88,24	93,24	3,10E-06
A2 (min^{-1})	1,60E+10	1,52E+10	1,45E+10	8,92E-02
m	1,31	1,38	1,41	0,85
n2	-	-	-	-
αmáx	-	-	-	-
F Obj.	0,0994	0,1836	0,2199	32,5023

Tabela 6 - Parâmetros estimados para o Modelo de Kamal e Sourour

4.1.3.2 MODELO 2 – KAMAL COM **a**mér

Figura 22 – Gráficos de estimação dos parâmetros cinéticos para o modelo de Kamal com α_{máx} a uma taxa de aquecimento de: (A) 2,5 K/min; (B) 5 K/min; (C) 10 K/min.

Outro modelo estudado foi uma variação de Kamal e Sourour, incluindo um parâmetro: $\alpha_{máx}$. Para o mesmo conjunto de dados, a curva obtida por esse modelo também se apresentou próxima ao comportamento real. Nesse modelo, podemos observar uma melhor sobreposição das curvas na menor taxa de aquecimento (2,5 K/min).

Novamente, podemos observar que ocorre um afastamento entre a curva descrita pelo modelo e a curva formada pelos pontos reais no pico exotérmico.

Figura 23 – Gráficos de estimação dos parâmetros cinéticos para o conjunto de taxas do modelo de Kamal com $\alpha_{máx}$.

Nesse caso, o modelo de Kamal e Sourour com $\alpha_{máx}$ foi analisado para o conjunto de taxas de aquecimento. Novamente, estamos supondo que esses parâmetros são constantes, independentes da taxa de aquecimento.

Podemos observar pelos gráficos que o comportamento obtido para o modelo também se distancia bastante do comportamento real, em todas as três taxas estudadas. Novamente, o grupo entende que pelo menos alguns parâmetros cinéticos obtidos são dependentes da taxa de aquecimento, impossibilitando a análise por conjuntos para esse modelo.

A Tabela 7 mostra os resultados encontrados pelo grupo para o modelo de Kamal com αmáx para as três taxas de aquecimento e para a análise em conjunto.

	2,5 K/min	5 K/min	10 K/min	Conjunto
Ea (kJ/ mol)	89,81	91,75	96,99	36,84
A (\min^{-1})	1,21E+10	7,57E+09	1,17E+10	1,26E+02
n	2,06	2,21	2,04	1,48
Ea2 (kJ/ mol)	85,73	88,24	91,74	24,17
A2 (min^{-1})	1,62E+10	1,52E+10	9,21E+09	8,56E+01
m	1,31	1,39	1,40	0,98
n2	-	-	-	-
αmáx	1	1	1	1
F Obj.	0,1195	0,2192	0,2227	70,8659

Tabela 7 - Parâmetros estimados para o Modelo de Kamal com amáx

Podemos perceber pelos resultados que em todos os casos o parâmetro α máximo teve valor igual a 1, o que tornaria esse modelo equivalente ao de Kamal (primeiro estudado pelo grupo). Apesar disso, vemos que os parâmetros encontrados nos dois modelos são diferentes, assim como os valores das funções-objetivo. Isso ocorre devido ao caminho diferente percorrido pela função da programação em MATLAB durante ambas as iterações (uma em cada modelo).

4.1.3.3 MODELO 3 – KAMAL SIMPLIFICADO (COM TRÊS PARÂMETROS)

Figura 24 – Gráficos de estimação dos parâmetros cinéticos para o modelo de Kamal Simplificado a uma taxa de aquecimento de: (A) 2,5 K/min; (B) 5 K/min; (C) 10 K /min.

O terceiro modelo estudado foi uma simplificação do modelo de Kamal e Sourour. Para o conjunto de dados, a curva obtida por esse modelo também se apresentou próxima ao comportamento real. Entretanto, nesse modelo, podemos observar uma distanciação maior entre as curvas na taxa de aquecimento de 5 K/min.

Semelhantemente aos modelos estudados anteriormente, podemos observar que ocorre um afastamento entre a curva descrita pelo modelo e a curva formada pelos pontos reais no pico exotérmico.

Figura 25 – Gráficos de estimação dos parâmetros cinéticos para o conjunto de taxas do modelo de Kamal Simplificado.

Nesse caso, o modelo de Kamal e Sourour Simplificado foi analisado para o conjunto de taxas de aquecimento. Como foi feito para os modelos anteriores, estamos supondo que esses parâmetros são constantes, independentes da taxa de aquecimento.

Podemos observar pelos gráficos que o comportamento obtido para o modelo também se distancia bastante do comportamento real, em todas as três taxas estudadas. Novamente, o grupo entende que pelo menos alguns parâmetros cinéticos obtidos são dependentes da taxa de aquecimento, impossibilitando a análise por conjuntos para esse modelo. A Tabela 8 mostra os resultados encontrados pelo grupo para o modelo de Kamal Simplificado para as três taxas de aquecimento e para a análise em conjunto.

	2,5 K/min	5 K/min	10 K/min	Conjunto
Ea (kJ/mol)	85,82	93,19	95,37	38,08
A (min ⁻¹)	2,83E+09	9,81E+09	6,13E+09	1,84E+02
n	1,93	2,12	1,98	1,46
Ea2 (kJ/mol)	82,26	91,18	95,10	25,11
A2 (min ⁻¹)	4,69E+09	2,60E+10	1,91E+10	1,19E+02
m	-	-	-	-
n2	-	-	-	-
αmáx	1	1	1	1
F Obj.	0,1399	0,4263	0,3024	49,3751

Tabela 8 - Parâmetros estimados para o Modelo de Kamal Simplificado

Esse modelo é equivalente ao segundo (Kamal com α máximo), com a retirada do expoente m (estipulação de seu valor como fixo e igual a 1). Podemos perceber pelos resultados que em todos os casos o parâmetro α máximo teve valor igual a 1, o que tornaria esse modelo equivalente, também, ao de Kamal (primeiro estudado pelo grupo) com a mesma restrição (m = 1). Porém nos dois modelos estudados anteriormente, os valores do parâmetro m estavam entre 1,3 e 1,4, tornando-os diferentes do de Kamal Simplificado.

4.1.3.4 MODELO 4 – KAMAL MODIFICADO

Figura 26 – Gráficos de estimação dos parâmetros cinéticos para o modelo de Kamal Modificado a uma taxa de aquecimento de: (A) 2,5 K/min; (B) 5 K/min; (C) 10 K/min.

Em seguida, foi estudado um modelo que é uma variação do modelo de Kamal e Sourour. Observamos novamente as curvas do modelo próximas ao comportamento real para o conjunto de dados. Semelhantemente ao modelo de Kamal Simplificado, podemos observar uma distanciação maior entre as curvas na taxa de aquecimento de 5 K/min.

Novamente, podemos observar que ocorre um afastamento entre a curva descrita pelo modelo e a curva formada pelos pontos reais no pico exotérmico.

Figura 27 – Gráficos de estimação dos parâmetros cinéticos para o conjunto de taxas do modelo de Kamal Modificado.

Nesse caso, o modelo de Kamal e Sourour Modificado foi analisado para o conjunto de taxas de aquecimento. Novamente, estamos supondo que esses parâmetros são constantes, independentes da taxa de aquecimento.

De forma semelhante ao que foi observado nos outros modelos, podemos observar um grande afastamento entre o comportamento obtido para o modelo e o comportamento real, em todas as três taxas. Novamente, o grupo entende que pelo menos alguns parâmetros cinéticos obtidos são dependentes da taxa de aquecimento, impossibilitando a análise por conjuntos para esse modelo.

A Tabela 9 mostra os resultados encontrados pelo grupo para o modelo de Kamal Modificado para as três taxas de aquecimento e para a análise em conjunto.

	2,5 K/min	5 K/min	10 K/min	Conjunto
Ea (kJ/mol)	89,78	90,76	96,33	96,87
A (\min^{-1})	1,22E+10	5,53E+09	9,61E+09	2,86E-01
n	2,08	2,25	2,09	0,92
Ea2 (kJ/mol)	85,63	88,44	95,15	2,99E-05
A2 (min ⁻¹)	1,60E+10	1,54E+10	2,38E+10	7,13E-02
m	1,36	1,38	1,39	0,83
n2	-	-	-	-
αmáx	1	1	1	0,99
F Obj.	0,1083	0,1979	0,2143	26,4714

Tabela 9 - Parâmetros estimados para o Modelo de Kamal Modificado

4.1.3.5 MODELO 5 – KARKANAS

Figura 28 – Gráficos de estimação dos parâmetros cinéticos para o modelo de Karkanas a uma taxa de aquecimento de: (A) 2,5 K/min; (B) 5 K/min; (C) 10 K/min.

Finalmente, o último modelo estudado pelo grupo foi uma variação do modelo de Kamal e Sourour, proposta por Karkanas. Nesse caso, as curvas obtidas pelo modelo encontram-se bastante próximas ao comportamento real para o conjunto de dados. Pela

análise dos gráficos, o modelo de Karkanas foi aquele que apresentou a melhor sobreposição de curvas para todas as taxas de aquecimento estudadas.

Apesar de pequeno, o afastamento entre as curvas teóricas e experimentais também ocorre no pico exotérmico.

Figura 29 – Gráficos de estimação dos parâmetros cinéticos para o conjunto de taxas do modelo de Karkanas.

Nesse caso, o modelo de Karkanas foi analisado para o conjunto de taxas de aquecimento. Novamente, estamos supondo que esses parâmetros são constantes, independentes da taxa de aquecimento.

Apesar de ter apresentado a melhor sobreposição das curvas quando estudamos as taxas separadamente, o modelo de Karkanas apresentou um grande afastamento entre o comportamento obtido para o modelo e o comportamento real, em todas as três taxas, para a modelagem em conjunto.

De forma semelhante aos outros quatro modelos estudados, o grupo entende que pelo menos alguns parâmetros cinéticos obtidos são dependentes da taxa de aquecimento, impossibilitando a análise por conjuntos para esse modelo. A Tabela 10 mostra os resultados encontrados pelo grupo para o modelo de Karkanas para as três taxas de aquecimento e para a análise em conjunto.

	2,5 K/min	5 K/min	10 K/min	Conjunto
Ea (kJ/mol)	88,87	91,87	93,94	94,68
A (\min^{-1})	9,42E+09	7,70E+09	4,84E+09	3,03E+00
n	1,61	1,74	1,59	0,06
Ea2 (kJ/mol)	80,09	87,79	89,11	3,34E-05
A2 (min^{-1})	5,68E+09	1,38E+10	1,46E+10	6,26E-02
m	1,91	1,45	2,27	0,81
n2	2,63	2,47	3,12	0,84
αmáx	-	-	-	-
F Obj.	0,0250	0,1643	0,0441	31,4725

Tabela 10 - Parâmetros estimados para o Modelo de Karkanas

Esse modelo é equivalente ao quarto (Kamal modificado), com o parâmetro n2 com valor variável (não fixo em 2, como no outro modelo). Porém nesse caso, os valores do parâmetro n2 estavam entre 2,4 e 3,1, tornando-os diferentes do de Kamal Modificado.

4.1.3.6 COMPARAÇÃO ENTRE OS MODELOS

De forma a comparar os resultados obtidos em cada modelo, as tabelas com os resultados contendo todos os parâmetros estimados e as funções-objetivo calculadas foram listadas a seguir, para facilitar a comparação entre os modelos. A partir dessas tabelas, podemos analisar qual aquele que melhor descreve o sistema estudado a cada taxa de aquecimento e se é possível estimar parâmetros que sejam adequados para todas as taxas de aquecimento simultaneamente (coluna "Conjunto" nas tabelas), confirmando o que foi analisado pela leitura dos gráficos.

	2,5 K/min	5 K/min	10 K/min	Conjunto
Ea (kJ/mol)	89,80	91,75	96,16	95,56
A (\min^{-1})	1,21E+10	7,57E+09	9,17E+09	1,47E-04
n	2,06	2,21	2,06	1,12
Ea2 (kJ/ mol)	85,70	88,24	93,24	3,10E-06
A2 (min^{-1})	1,60E+10	1,52E+10	1,45E+10	8,92E-02
m	1,31	1,38	1,41	0,85
n2	-	-	-	-
αmáx	-	-	-	-
F Obj.	0,0994	0,1836	0,2199	32,5023

Tabela 11 - Parâmetros estimados para o Modelo de Kamal e Sourour

Tabela 12 - Parâmetros estimados para o Modelo de Kamal com $\alpha_{máx}$

	2,5 K/min	5 K/min	10 K/min	Conjunto
Ea (kJ/ mol)	89,81	91,75	96,99	36,84
A (\min^{-1})	1,21E+10	7,57E+09	1,17E+10	1,26E+02
n	2,06	2,21	2,04	1,48
Ea2 (kJ/ mol)	85,73	88,24	91,74	24,17
A2 (min^{-1})	1,62E+10	1,52E+10	9,21E+09	8,56E+01
m	1,31	1,39	1,40	0,98
n2	-	-	-	-
αmáx	1	1	1	1
F Obj.	0,1195	0,2192	0,2227	70,8659

Tabela 13 - Parâmetros estimados para o Modelo de Kamal Simplificado

	2,5 K/min	5 K/min	10 K/min	Conjunto
Ea (kJ/mol)	85,82	93,19	95,37	38,08
A (\min^{-1})	2,83E+09	9,81E+09	6,13E+09	1,84E+02
n	1,93	2,12	1,98	1,46
Ea2 (kJ/mol)	82,26	91,18	95,10	25,11
A2 (min ⁻¹)	4,69E+09	2,60E+10	1,91E+10	1,19E+02
m	-	-	-	-
n2	-	-	-	-
αmáx	1	1	1	1
F Obj.	0,1399	0,4263	0,3024	49,3751

	2,5 K/min	5 K/min	10 K/min	Conjunto
Ea (kJ/mol)	89,78	90,76	96,33	96,87
A (\min^{-1})	1,22E+10	5,53E+09	9,61E+09	2,86E-01
n	2,08	2,25	2,09	0,92
Ea2 (kJ/mol)	85,63	88,44	95,15	2,99E-05
A2 (\min^{-1})	1,60E+10	1,54E+10	2,38E+10	7,13E-02
m	1,36	1,38	1,39	0,83
n2	-	-	-	-
αmáx	1	1	1	0,99
F Obj.	0,1083	0,1979	0,2143	26,4714

Tabela 14 - Parâmetros estimados para o Modelo de Kamal Modificado

Tabela 15 - Parâmetros estimados para o Modelo de Karkanas

	2,5 K/min	5 K/min	10 K/min	Conjunto
Ea (kJ/mol)	88,87	91,87	93,94	94,68
A (\min^{-1})	9,42E+09	7,70E+09	4,84E+09	3,03E+00
n	1,61	1,74	1,59	0,06
Ea2 (kJ/mol)	80,09	87,79	89,11	3,34E-05
A2 (min^{-1})	5,68E+09	1,38E+10	1,46E+10	6,26E-02
m	1,91	1,45	2,27	0,81
n2	2,63	2,47	3,12	0,84
αmáx	-	-	-	-
F Obj.	0,0250	0,1643	0,0441	31,4725

Para descobrir o melhor modelo que descreve o sistema estudado, devemos analisar os gráficos e dados obtidos nas tabelas anteriores para as taxas separadamente. Uma forma de realizar essa análise é por meio da Função-objetivo. Para todas as taxas estudadas (2,5 K/min, 5 K/min e 10 K/min), o modelo que apresentou os menores valores para a Função-objetivo foi o modelo de Karkanas, apresentando valores para essa função entre 0,02 e 0,16. Isso confirma o que foi observado nos gráficos e, dessa forma, o grupo entende que o modelo de Karkanas se mostrou como a melhor forma de estimar parâmetros cinéticos para a cura do sistema estudado.

A última coluna de cada tabela apresenta os parâmetros estimados para o conjunto de taxas estudadas. Em todos os modelos estudados, a Função-objetivo desse conjunto de taxas encontra-se bastante alta, variando entre 26,5 (para o caso do modelo de Kamal Modificado) e 70,9 (para o caso do modelo de Kamal com $\alpha_{máx}$). Nesse caso, observamos que o modelo de Kamal Modificado é o que apresenta a menor Função-objetivo, sendo a melhor forma de estimar os parâmetros para o conjunto de taxas. Entretanto, devido ao alto valor da Função-objetivo encontrada para os modelos

considerando simultaneamente todas as taxas de aquecimento (Conjunto), podemos confirmar o fato que foi obtido pela análise dos gráficos: que os valores dos parâmetros obtidos para um conjunto de taxas de aquecimento não são confiáveis.

Sendo assim, o grupo entende que os parâmetros cinéticos do sistema DGEBA/DDM em proporções equimolares não podem ser estimados para um conjunto de taxas de aquecimento para nenhum dos modelos estudados, sendo mais confiável utilizar os dados obtidos para cada taxa de aquecimento separadamente. O que pode vir a ser estudado em posteriores projetos é realizar uma estimação dos parâmetros dos modelos, considerando-os dependentes e independentes das taxas de aquecimento. Preliminarmente, pode-se dizer que provavelmente a Energia de Ativação e o Fator Pré-Exponencial aparentam ter grande variação com a taxa de aquecimento utilizada.

O grupo fez também uma comparação com artigos da literatura (ZVETKOV et al, 2010). Nessa análise, o grupo percebeu que para a abordagem fenomenológica, o comportamento é bastante parecido com a abordagem isoconversional, como era esperado. Em relação às análises individuais, ou seja, para cada taxa de aquecimento, os valores de Energia de Ativação mantiveram-se próximos a 100 kJ/mol. Esse valor é coerente com a ordem de grandeza encontrada nos valores da literatura. De forma ainda mais coerente, os valores do fator pré-exponencial encontraram-se alinhados com os do artigo, ambos com ordem de grandeza entre 10^9 e 10^{10} min⁻¹. Finalmente, os valores dos expoentes mantiveram-se próximos ao do artigo utilizado como base (entre 1 e 3).

CONCLUSÃO

O presente trabalho teve como objetivo estimar os parâmetros cinéticos da cura do sistema DGEBA/DDM em proporções equimolares, por meio de diferentes abordagens cinéticas. As abordagens utilizadas pelo grupo foram: Isoconversional, Mecanicista e Fenomenológica.

Os resultados obtidos pelo grupo apontam que o programa de Matlab desenvolvido pelo grupo é uma boa ferramenta de estimação de parâmetros cinéticos para cura de sistemas resina-endurecedor. Entretanto, é necessário realizar uma programação para cada abordagem utilizada e, por conta dessas programações serem bastante diferentes em sua essência, o procedimento torna-se um pouco trabalhoso. Isso ocorre, pois as abordagens partem de diferentes suposições, tornando o equacionamento muito diferente para cada caso.

Quanto aos resultados obtidos, em relação à abordagem isoconversional, esses não foram muito satisfatórios. Apesar de o cálculo da Energia de Ativação ter apresentado valores repetitivos e coerentes com aqueles calculados pela abordagem fenomenológica, o fator pré-exponencial não apresentou reprodutibilidade nos dados e as funções objetivo apresentaram valores altos. No que diz respeito à abordagem mecanicista, o grupo também não obteve bons resultados com o equacionamento utilizado. Nesse caso, não foi possível explorar melhor o método devido à dificuldade do grupo de analisar os dados por Matlab, pois exigiu um grande tempo computacional. Finalmente, a abordagem fenomenológica foi a que forneceu os melhores resultados para o sistema estudado. Além disso, dentre os métodos analisados nessa abordagem, o de Karkanas apresentou os resultados que mais se assemelhavam ao comportamento real do sistema, sendo o melhor modelo para estimação dos parâmetros para o sistema DGEBA/DDM em proporções equimolares.

SUGESTÕES

Para trabalhos futuros, é recomendável que sejam feitos mais testes para garantir a melhor forma de estimar os parâmetros cinéticos desse sistema. Dentre esses testes, podemos citar:

• Testar outras funções grau de cura para a abordagem isoconversional. Alguns exemplos são listados a seguir:

 $f(\alpha) = (1 - \alpha)^n \alpha^n$ $f(\alpha) = (1 - \alpha)^n (1 + \alpha)^n$

Entre outras;

- Realizar melhores estudos das reações individuais que ocorrem durante a cura e consequente mudança no equacionamento da abordagem mecanicista;
- Testar outros métodos para estimar parâmetros na abordagem fenomenológica presentes na literatura ou propor novas variações para métodos já existentes. Um exemplo é listado a seguir, retirado de Costa (2006):

Wisanrakkit e Gillham: $\frac{d\alpha}{dt} = k(1-\alpha)(\alpha+B)(r-\alpha)$

Em que: r = relação estequiométrica entre amina e grupo epóxi;

B = função tipo Arrhenius.

 Testar a dependência de alguns dos parâmetros estudados com as taxas de aquecimento, resultando em modelos fenomenológicos conjuntos com maior confiabilidade. BLANCO, M., et al. Mechanistic kinetic model of an epoxy resin cured with a mixture of amines of different functionalities. Elsevier. Polymer, 46. Spain, 2005.

CALADO, V. M. A.; ADVANI, S. G. . Thermoset Cure Kinetics And Rheology. In: Raju S. Dave; Alfred C. Loos. (Org.). Processing of Continuous Fiber Reinforced Composites. Processing of Continuous Fiber Reinforced Composites. 01ed.Estados Unidos: Hanser Publishers, 2000, v. 1, p. 32-107.

COSTA, Ana P. O.; GERBASE, Annelise E.; PETZHOLD, Cesar L.. Investigação da cinética de cura por calorimetria diferencial exploratória (DSC) de resinas epóxi preparadas a partir de óleo de soja epoxidado com diferentes anidridos e aminas terciárias. Polímeros, São Carlos, v. 21, n. 2, 2011. Disponível em: <<u>http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-14282011000200014&lng=en&nrm=iso></u>. Capturado em: 05 de Julho de 2012.

COSTA, C. C. Cinética de Cura e Análises Reológica, Mecânica e Térmica de Sistemas Epoxídicos Contendo Microesferas Ocas de Vidro. Tese de Doutorado. Universidade Federal do Rio de Janeiro, Escola de Química, Outubro, 2006.

COSTA, M. L., REZENDE, M. C. PARDINI, L. C. Métodos de estudo da cinética de cura de resinas epóxi. Polímeros, São José dos Campos, v. 9, n. 2, 1999. Disponível em: http://www.scielo.br/pdf/po/v9n2/7935.pdf. Capturado em: 05 de Junho de 2012.

GIOVANELLI, L. F. NÓBREGA, M. V. A. Estudo Cinético e Otimização de Compósitos Poliméricos Pultrudados via CFD. Projeto final de curso, UFRJ, 2011.

HILL, D., J., T., GEORGE, G., A., ROGERS, D., G. A systematic study of the microwave and thermal cure kinetics of the DGEBA/DDS and DGEBA/DDM epoxy-amine resin systems. Polymers for Advanced Technologies. Australia, 2001.

LIU, G. et al. Curing kinetics of diglycidyl ether of bisphenol a and diaminodiphenylmethane using a mechanistic model. Wiley, InterScience. Macromol. Theory Simul., 15, 339-346 China, 2006.

MALLICK, P. K., Fiber-Reinforced Composites: materials, manufacturing and design. 2nd ed. Marcel Dekker: New York, USA, 1993.

METTLER TOLEDO. Kinetic Studies in Thermal Analysis. Disponível em: http://publicpartner.mt.com/content/mailings/UK/Lab/Model%20Free%20Kinetics.pdf. Capturado em: 16 de Agosto de 2012.

NETCOMPOSITES. United Kingdom. Disponível em: http://www.netcomposites.com/downloads/RAP048chaptersample.pdf. Captura em: 06 de Julho de 2012.
PAGANO, R. L., et al. Cure kinetic parameter estimation of thermosetting resins with isothermal data by using particle swarm optimization. Elsevier, European Polymer Journal. Rio de Janeiro, Brazil. COPPE, UFRJ. 2008.

PAGANO, R. L., et al. New Approach for Parameter Estimation of Kinetic Cure using DSC Non-Isothermal Data. 36th North American Thermal Analysis Society Conference, Atlanta, Estados Unidos, 2008.

PAGANO, R. L. Modelagem, simulação e otimização de processos contínuos de produção de materiais compósitos. Tese de Doutorado. Universidade Federal do Rio de Janeiro, COPPE, Maio, 2009. Disponível em: http://teses2.ufrj.br/Teses/COPPE_D/RogerioLuzPagano.pdf. Capturado em: 06 de Julho de 2012.

PRIME, R. B. Thermosets. *In:* Thermal Characterization of Polymeric Materials. International Business Machines Corporation. San Jose, California, 1981.

RIEGEL, Izabel C.; FREITAS, Liane L.; SAMIOS, Dimitrios. Envelhecimento físico de sistemas DGEBA/DDM investigado por análise térmica (DSC/DMA). Polímeros, São Carlos, v. 9, n. 3, Sept, 1999. Disponível em: <hr/>
<http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-14281999000300011&lng=en&nrm=iso>. Capturado em: 05 de Julho de 2012.

SANTOS, L. S. Simulação e otimização do processo de pultrusão. Tese de Mestrado. Universidade Federal do Rio de Janeiro, Julho, 2009.

SCHAWE, J., E., K. A description of chemical and diffusion control in isothermal kinetics of cure kinetics. Elsevier. Switzerland, 2001.

SEWRY, J, D. BROWN, M. E. "Model-free" kinetic analysis?. Elsevier. Department of Chemistry, Rhodes University, South Africa, 2002.

SILVA, E. C.; PAOLA, M. V. R. V.; MATOS, J. R.. Análise térmica aplicada à cosmetologia. Rev. Bras. Cienc. Farm., São Paulo, v. 43, n. 3, Sept. 2007. Disponível em: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-93322007000300004&lng=en&nrm=iso. Capturado em: 09 de Julho de 2012.

SOBRINHO, L. L. Desenvolvimento de tubos de compósitos visando aplicação como risers. Universidade Federal do Rio de Janeiro. Março, 2009.

US DEPARTMENT OF DEFENSE, Composite Materials Handbook: Polymer Matrix Composites Guidelines for Characterization of Structural Materials. v. 1. CRC, 2002.

VAFAYAN, M., BEHESHTY, M. H., GHOREISHY, M. H. R., ABEDINI, H. A new approach in developing non-isothermal rate equation from isothermal rate equation for an epoxy prepreg. Iran Polymer & Petrochemical Institute, Iran. (mimeo).

VYAZOVKIN, S., BURNHAM, A. K., CRIADO J. M., PÉREZ-MAQUEDA, L. A., POPESCU, C., SBIRRAZZUOLI, N. ICTAC kinetic committee recommendations for performing kinetic computations on thermal analysis data. Elsevier, 2011.

WILLIAMSON, J. R., LEVAN, L., SEMPRIMOSCHNIG, C., VAN EESBEEK, M. Thermal analysis predictions for ablative phenolic composites. European Space Agency, The Netherland. Disponível em: http://esmat.esa.int/Materials_News/ISME09/pdf/3-Ground/Poster%20Ground%20Testing%20-%20%20Williamson%20Thermal.pdf. Capturado em: 16 de Agosto de 2012.

ZHANG, J., DONG, H., TONG, L., MENG, L., CHEN, Y., YUE, G. Investigation of curing kinetics of sodium carboxymethyl cellulose/epoxy resin system by dynamic thermal analysis. Harbin Engineering, China. (mimeo).

ZVETKOV, V. L., KRASTEV, R. K., PAZ-ABUIN, S. Is the Kamal's model appropriate in the study of the epoxy-amine addition kinetics?. Elsevier, 2010. Disponível em: http://e-polymers.free.bg/ZvetkovVL_TCA%202010%20505%2047.pdf. Capturado em: 10 de Julho de 2012.

ANEXOS

EXEMPLIFICAÇÃO DE ALGUNS CÓDIGOS EM MATLAB PROGRAMADOS PELO GRUPO

Abordagem Isoconversional

function ModelagemIsoconversional() clear all clc tic %Parâmetros a serem calculados Ea = 98618.28; %Energia de Ativação do k1 $A = 2.6589*10^{10}$; %Fator pré-exponencial do k1 %Pontos Experimentais - Substituir SEMPRE aqui os valores experimentais NumExperim = 194; %Número de pontos experimentais NumExperim = NumExperim - 1; T0 = 350.2; %Temperatura PassoT = 1; %Passo de Aumento da Temperatura nos Pontos Experimentais texp = 0:NumExperim;texp = texp'; Texp = texp*PassoT + T0;Alfaexp = [0.000016; 0.000038; 0.000071; 0.000116; 0.000173; 0.000243;0.000327;0.000425;0.000540;0.000671;0.000820;0.000986;0.001172;0.0013 77:0.001602:0.001849:0.002119:0.002413:0.002733:0.003079:0.003452:0.003855:0.00 4287;0.004751;0.005247;0.005775;0.006337;0.006934;0.007567;0.008237;0.008948;0. 009700:0.010497:0.011341:0.012235:0.013180:0.014181:0.015242:0.016368:0.017564 ;0.018835;0.020185;0.021619;0.023143;0.024761;0.026478;0.028298;0.030228;0.0322 76;0.034452;0.036766;0.039227;0.041845;0.044635;0.047610;0.050786;0.054173;0.05 7784:0.061631:0.065730:0.070099:0.074752:0.079707:0.084988:0.090618:0.096634:0. 103072;0.109968;0.117358;0.125266;0.133729;0.142795;0.152511;0.162915;0.174031 (0.185881; 0.198491; 0.211885; 0.226087; 0.241120; 0.257009; 0.273778; 0.291427; 0.3099)32;0.329257;0.349353;0.370161;0.391595;0.413560;0.435947;0.458611;0.481419;0.50 4239;0.526939;0.549375;0.571400;0.592931;0.613896;0.634221;0.653836;0.672679;0. 690702:0.707869:0.724180:0.739659:0.754342:0.768266:0.781455:0.793932:0.805723 ;0.816850;0.827339;0.837212;0.846495;0.855211;0.863397;0.871100;0.878357;0.8851 93;0.891631;0.897695;0.903409;0.908798;0.913886;0.918696;0.923247;0.927551;0.93 1619:0.935465:0.939099:0.942535:0.945784:0.948858:0.951770:0.954530:0.957146:0. 959624:0.961969;0.964185;0.966279;0.968258;0.970129;0.971898;0.973571;0.975157 ;0.976660;0.978087;0.979441;0.980726;0.981945;0.983100;0.984194;0.985228;0.9862 05;0.987129;0.988000;0.988822;0.989597;0.990328;0.991016;0.991665;0.992276;0.99 2852;0.993395;0.993909;0.994395;0.994854;0.995288;0.995698;0.996084;0.996447;0. 996788:0.997109:0.997410:0.997692:0.997955:0.998199:0.998427:0.998638:0.998832 ;0.999010;0.999170;0.999315;0.999445;0.999560;0.999661;0.999748;0.999821;0.9998 80;0.999927;0.999962;0.999985;0.999997;1]; %Parâmetros fixos R = 8.3145;Htot = 467; %Entalpia Total n = 1.64;VPF = [R PassoT n];%Condições Iniciais Alfa0 = Alfaexp(1);VCI = [T0; Alfa0];%Vetor de Parâmetros a ser otimizado par = [Ea, A];op = optimset('Display','iter','MaxIter',20000,'TolFun',1e-10,'MaxFunEvals',1); %Função de Otimização potim = fminsearch(@objetivo,par,op,Texp,Alfaexp,texp,VCI,VPF); %Parâmetros Otimizados Ea = potim(1)A = potim(2)% % Ea = 98618.28; %Energia de Ativação do k1 % A = $2.6589*10^{10}$; % Fator pré-exponencial do k1 %Construção de Vetores Teóricos Alfa = zeros(100*NumExperim+1,1); T = zeros(100*NumExperim+1,1);dAlfadt = zeros(100*NumExperim+1,1); H = zeros(100*NumExperim+1,1);dH = zeros(100*NumExperim+1,1);Alfa(1) = Alfa0;for i=2:100*NumExperim+1 T(i) = T0 + PassoT*(i-1)/100;dAlfadt(i) = (A*exp(-Ea/(R*T(i))))*(1-Alfa(i-1));Alfa(i) = Alfa(i-1) + dAlfadt(i)/100;dH(i) = -(Alfa(i) - Alfa(i-1)) * Htot * 100;H(i) = H(i-1) + dH(i)/100;end %Normalização dos Vetores Teóricos dAlfadt = dAlfadt/Alfa(100*NumExperim+1); dH = dH/Alfa(100*NumExperim+1);

```
H = H/Alfa(100*NumExperim+1);
Alfa = Alfa/Alfa(100*NumExperim+1);
%Plot dos Pontos Teóricos
plot(T,dH)
%Construção de Vetores Experimentais
Texp = zeros(NumExperim+1,1);
dHexp = zeros(NumExperim+1,1);
Hexp = zeros(NumExperim+1,1);
for i=1:NumExperim+1
  Texp(i) = T0 + PassoT^{(i-1)};
  if(i == 1)
    dHexp(i) = -Alfaexp(i)/100;
    Hexp(i) = dHexp(i);
  else
    dHexp(i) = -(Alfaexp(i) - Alfaexp(i-1)) * Htot;
    Hexp(i) = Hexp(i-1) + dHexp(i);
  end
end
%Plot dos Pontos Experimentais
hold on
plot(Texp,dHexp,'r')
toc
function fobj = objetivo(par, Texp, Alfaexp, texp, VCI, VPF)
%Condições Iniciais
T0 = VCI(1);
Alfa0 = VCI(2);
y0 = [T0 Alfa0];
%Otimização:
op = odeset('AbsTol',1e-6,'MaxStep',60);
[t,MODELO] = ode45(@deriv,texp,y0,op,VPF,par);
%Recebimento dos valores otimizados
T = MODELO(:,1);
Alfa = MODELO(:,2);
% Erro
erroT = T - Texp;
erroAlfa = Alfa - Alfaexp;
fobj = 100*(erroT'*erroT) + 100*(erroAlfa'*erroAlfa);
%Punição devido às restrições
fobj = fobj + (par(1) < 0) * 1000 + (par(2) < 0) * 1000;
```

```
function dMODELO = deriv(t, MODELO, VPF, par)
%Parâmetros
Ea = par(1);
A = par(2);
R = VPF(1);
PassoT = VPF(2);
n = VPF(3);
%Modelos
T = MODELO(1);
Alfa = MODELO(2);
T = (1/(1 + exp(-1e9*T)))*T;
Alfa = (1/(1+exp(-1e5*Alfa)))*Alfa;
%Taxa de aumento da Temperatura com o tempo
dTdt = PassoT;
%Taxa de aumento do Grau de Cura com o tempo
dAlfadt = ((1-Alfa)^n)^*(A^*exp(-Ea/(R^*T)));
% Disposição dos resultados
dMODELO = [dTdt; dAlfadt];
dMODELO = dMODELO(:);
```

Abordagem Mecanicista

```
function ModelagemMecanicista()

clear all

clc

tic

%Parâmetros a serem calculados

Ea = 62338; %Energia de Ativação do k

A = 15863000; %Fator pré-exponencial do k

Ea1 = 64912; %Energia de Ativação do k1

A1 = 2356300; %Fator pré-exponencial do k1

EaL = 52294; %Energia de Ativação do k'

AL = 1093200000; %Fator pré-exponencial do k'

Ea1L = 10001; %Energia de Ativação do k1'

A1L = 66425; %Fator pré-exponencial do k1'
```

%Pontos Experimentais - Substituir SEMPRE aqui os valores experimentais NumExperim = 196; %Número de pontos experimentais NumExperim = NumExperim - 1; T0 = 348.2; %Temperatura PassoT = 1; %Passo de Aumento da Temperatura nos Pontos Experimentais texp = 0:NumExperim; texp = texp';Texp = texp*PassoT + T0;Alfaexp = [0; 0.000004; 0.000016; 0.000038; 0.000071; 0.000116; 0.000173;0.000243;0.000327;0.000425;0.000540;0.000671;0.000820;0.000986;0.001172;0.0013 77;0.001602;0.001849;0.002119;0.002413;0.002733;0.003079;0.003452;0.003855;0.00 4287:0.004751:0.005247:0.005775:0.006337:0.006934:0.007567:0.008237:0.008948:0. 009700;0.010497;0.011341;0.012235;0.013180;0.014181;0.015242;0.016368;0.017564 :0.018835: 0.020185: 0.021619: 0.023143: 0.024761: 0.026478: 0.028298: 0.030228: 0.032276:0.034452:0.036766:0.039227:0.041845:0.044635:0.047610:0.050786:0.054173:0.05 7784:0.061631:0.065730:0.070099:0.074752:0.079707:0.084988:0.090618:0.096634:0. $103072: 0.109968: 0.117358: 0.125266: 0.133729: 0.142795: 0.152511: 0.162915: 0.174031 \\ 0.174031 \\ 0$;0.185881;0.198491;0.211885;0.226087;0.241120;0.257009;0.273778;0.291427;0.3099 32;0.329257;0.349353;0.370161;0.391595;0.413560;0.435947;0.458611;0.481419;0.50 4239:0.526939:0.549375:0.571400:0.592931:0.613896:0.634221:0.653836:0.672679:0. 690702;0.707869;0.724180;0.739659;0.754342;0.768266;0.781455;0.793932;0.805723 ;0.816850;0.827339;0.837212;0.846495;0.855211;0.863397;0.871100;0.878357;0.8851 93;0.891631;0.897695;0.903409;0.908798;0.913886;0.918696;0.923247;0.927551;0.93 1619:0.935465:0.939099:0.942535:0.945784:0.948858:0.951770:0.954530:0.957146:0. 959624:0.961969;0.964185;0.966279;0.968258;0.970129;0.971898;0.973571;0.975157 :0.976660: 0.978087: 0.979441: 0.980726: 0.981945: 0.983100: 0.984194: 0.985228: 0.986205:0.987129:0.988000:0.988822:0.989597:0.990328:0.991016:0.991665:0.992276:0.99 2852;0.993395;0.993909;0.994395;0.994854;0.995288;0.995698;0.996084;0.996447;0. 996788:0.997109:0.997410:0.997692:0.997955:0.998199:0.998427:0.998638:0.998832 ;0.999010;0.999170;0.999315;0.999445;0.999560;0.999661;0.999748;0.999821;0.9998 80:0.999927:0.999962:0.999985:0.999997:1]: %Parâmetros fixos R = 8.3145: Htot = 467; %Entalpia Total N = 0.65;e0 = 1: VPF = [R PassoT N e0];%Condições Iniciais Alfa0 = Alfaexp(1);eOH0 = 0;a10 = 0.25;a20 = 0: OH0 = 0.015: VCI = [T0; Alfa0; e0; eOH0; a10; a20; OH0]; %Vetor de Parâmetros a ser otimizado par = [Ea, A, Ea1, A1, EaL, AL, Ea1L, A1L];

```
op = optimset('Display','iter','MaxIter',1000,'TolFun',1e-10,'MaxFunEvals',500);
%Função de Otimização
potim = fminsearch(@objetivo,par,op,Texp,Alfaexp,texp,VCI,VPF);
%Parâmetros Otimizados
Ea = potim(1)
A = potim(2)
Ea1 = potim(3)
A1 = potim(4)
EaL = potim(5)
AL = potim(6)
EalL = potim(7)
A1L = potim(8)
%Construção de Vetores Experimentais
Texp = zeros(NumExperim+1,1);
dHexp = zeros(NumExperim+1,1);
Hexp = zeros(NumExperim+1,1);
for i=1:NumExperim+1
  Texp(i) = T0 + PassoT^{(i-1)};
  if(i == 1)
    dHexp(i) = -Alfaexp(i)/100;
    Hexp(i) = dHexp(i);
  else
    dHexp(i) = -(Alfaexp(i) - Alfaexp(i-1)) * Htot;
    Hexp(i) = Hexp(i-1) + dHexp(i);
  end
end
%Plot dos Pontos Experimentais
hold on
plot(Texp,dHexp,'r')
toc
function fobj = objetivo(par,Texp,Alfaexp,texp,VCI,VPF)
%Condições Iniciais
T0 = VCI(1);
Alfa0 = VCI(2);
e0 = VCI(3);
eOH0 = VCI(4);
a10 = VCI(5);
a20 = VCI(6);
OH0 = VCI(7);
y_0 = [T0 Alfa0 e0 eOH0 a_{10} a_{20} OH0];
%Otimização:
```

```
op = odeset('AbsTol',1e-6,'MaxStep',60);
[t,MODELO] = ode45(@deriv,texp,y0,op,VPF,par);
%Recebimento dos valores otimizados
T = MODELO(:,1);
Alfa = MODELO(:,2);
e = MODELO(:,3);
eOH = MODELO(:,4);
a1 = MODELO(:,5);
a2 = MODELO(:,6);
OH = MODELO(:,7);
% Erro
erroT = T - Texp;
erroAlfa = Alfa - Alfaexp;
fobi = 100*(erroT'*erroT) + 100*(erroAlfa'*erroAlfa);
for i=1:196
  T(i) = T0 + (i-1);
  if(i == 1)
    dH(i) = -Alfa(i) * 467;
    H(i) = dH(i);
  else
    dH(i) = -(Alfa(i) - Alfa(i-1)) * 467;
    H(i) = H(i-1) + dH(i);
  end
end
%Plot dos Pontos Teóricos
plot(T,dH)
%Punição devido às restrições
fobj = fobj + (par(1)<0)*1000 + (par(2)<0)*1000 + (par(3)<0)*1000 + (par(4)<0)*1000
+ (par(5)<0)*1000 + (par(6)<0)*1000 + (par(7)<0)*1000 + (par(8)<0)*1000;
function dMODELO = deriv(t, MODELO, VPF, par)
%Parâmetros
Ea = par(1);
A = par(2);
Ea1 = par(3);
A1 = par(4);
EaL = par(5);
AL = par(6);
Ea1L = par(7);
A1L = par(8);
R = VPF(1);
PassoT = VPF(2);
N = VPF(3);
```

```
e0 = VPF(4);
```

```
%Modelos
T = MODELO(1);
Alfa = MODELO(2);
e = MODELO(3);
eOH = MODELO(4);
a1 = MODELO(5);
a2 = MODELO(6);
OH = MODELO(7);
T = (1/(1 + \exp(-1e5*T)))*T;
Alfa = (1/(1+exp(-1e5*Alfa)))*Alfa;
e = (1/(1 + exp(-1e5*e)))*e;
eOH = (1/(1 + exp(-1e5 * eOH))) * eOH;
a1 = (1/(1 + \exp(-1e9*a1)))*a1;
a2 = (1/(1 + \exp(-1e5 * a2))) * a2;
OH = (1/(1 + exp(-1e5*OH)))*OH;
%Taxa de aumento da Temperatura com o tempo
dTdt = PassoT;
%K's
K = (A^{exp}(-Ea/(R^{T})))^{e0};
K1 = (A1*exp(-Ea1/(R*T)));
KL = (AL*exp(-EaL/(R*T)))*e0;
K1L = (A1L*exp(-Ea1L/(R*T)))*e0;
%Balancos Intermediários
dedt = -K^*e^*OH + KL^*eOH - K1^*e^*(a1 + N^*a2);
deOHdt = K^*e^*OH - KL^*eOH - K1L^*eOH^*(a1 + N^*a2);
da1dt = -2*a1*(K1*e + K1L*eOH - OH);
da2dt = (K1*e + K1L*eOH - OH)*(a1 - N*a2);
dOHdt = -K*e*OH + KL*eOH + (K1*e + 2*K1L*eOH - OH)*(a1 + N*a2);
%Taxa de aumento do Grau de Cura com o tempo
dAlfadt = - dedt - deOHdt;
% Disposição dos resultados
dMODELO = [dTdt; dAlfadt; dedt; deOHdt; da1dt; da2dt; dOHdt];
dMODELO = dMODELO(:);
```

• Abordagem Fenomenológica (programação para o modelo de Kamal)

function ModelagemKamal1() clear all clc tic

%Parâmetros a serem calculados Ea = 96156; %Energia de Ativação do k1 $A = 9.1735*10^9$; %Fator pré-exponencial do k1 n = 2.0603; %Ordem n Ea2 = 93242; %Energia de Ativação do k2 $A2 = 1.4512*10^{10}$; %Fator pré-exponencial do k2 m = 1.4122; %Ordem m %Pontos Experimentais - Substituir SEMPRE aqui os valores experimentais NumExperim = 196; %Número de pontos experimentais NumExperim = NumExperim - 1; T0 = 348.2; %Temperatura PassoT = 1; %Passo de Aumento da Temperatura nos Pontos Experimentais texp = 0:NumExperim; texp = texp': Texp = texp*PassoT + T0;Alfaexp = [0; 0.000004; 0.000016; 0.000038; 0.000071; 0.000116; 0.000173;0.000243;0.000327;0.000425;0.000540;0.000671;0.000820;0.000986;0.001172;0.0013 77;0.001602;0.001849;0.002119;0.002413;0.002733;0.003079;0.003452;0.003855;0.00 4287;0.004751;0.005247;0.005775;0.006337;0.006934;0.007567;0.008237;0.008948;0. 009700;0.010497;0.011341;0.012235;0.013180;0.014181;0.015242;0.016368;0.017564 ;0.018835;0.020185;0.021619;0.023143;0.024761;0.026478;0.028298;0.030228;0.0322 76;0.034452;0.036766;0.039227;0.041845;0.044635;0.047610;0.050786;0.054173;0.05 7784:0.061631:0.065730:0.070099:0.074752:0.079707:0.084988:0.090618:0.096634:0. 103072;0.109968;0.117358;0.125266;0.133729;0.142795;0.152511;0.162915;0.174031 ;0.185881;0.198491;0.211885;0.226087;0.241120;0.257009;0.273778;0.291427;0.3099 32:0.329257:0.349353:0.370161:0.391595:0.413560:0.435947:0.458611:0.481419:0.50 4239;0.526939;0.549375;0.571400;0.592931;0.613896;0.634221;0.653836;0.672679;0. 690702;0.707869;0.724180;0.739659;0.754342;0.768266;0.781455;0.793932;0.805723 0.816850; 0.827339; 0.837212; 0.846495; 0.855211; 0.863397; 0.871100; 0.878357; 0.8851; 0.816850; 0.827339; 0.878357; 0.8851; 0.816850; 0.827339; 0.816850; 0.827339; 0.816850; 0.827339; 0.816850; 0.81680; 0.8160; 0.893;0.891631;0.897695;0.903409;0.908798;0.913886;0.918696;0.923247;0.927551;0.93 1619;0.935465;0.939099;0.942535;0.945784;0.948858;0.951770;0.954530;0.957146;0. 959624;0.961969;0.964185;0.966279;0.968258;0.970129;0.971898;0.973571;0.975157 ;0.976660;0.978087;0.979441;0.980726;0.981945;0.983100;0.984194;0.985228;0.9862 05:0.987129:0.988000:0.988822:0.989597:0.990328:0.991016:0.991665:0.992276:0.99 2852:0.993395:0.993909:0.994395:0.994854:0.995288:0.995698:0.996084:0.996447:0. 996788:0.997109:0.997410:0.997692:0.997955:0.998199:0.998427:0.998638:0.998832 ;0.999010:0.999170:0.999315:0.999445:0.999560:0.999661:0.999748:0.999821:0.9998 80;0.999927;0.999962;0.999985;0.999997;1]; %Parâmetros fixos R = 8.3145;Htot = 467; %Entalpia Total VPF = [R PassoT];%Condições Iniciais Alfa0 = Alfaexp(1);

VCI = [T0; Alfa0];

```
%Vetor de Parâmetros a ser otimizado
par = [Ea, A, n, Ea2, A2, m];
op = optimset('Display','iter','MaxIter',20000,'TolFun',1e-10,'MaxFunEvals',50000);
%Função de Otimização
potim = fminsearch(@objetivo,par,op,Texp,Alfaexp,texp,VCI,VPF);
%Parâmetros Otimizados
Ea = potim(1)
A = potim(2)
n = potim(3)
Ea2 = potim(4)
A2 = potim(5)
m = potim(6)
%Construção de Vetores Teóricos
Alfa = zeros(100*NumExperim+1,1);
T = zeros(100*NumExperim+1,1);
dAlfadt = zeros(100*NumExperim+1,1);
H = zeros(100*NumExperim+1,1);
dH = zeros(100*NumExperim+1,1);
for i=1:100*NumExperim+1
  T(i) = T0 + PassoT*(i-1)/100;
  if(i == 1)
    dAlfadt(i) = real((A*exp(-Ea/(R*T(i)))));
    Alfa(i) = dAlfadt(i)/100;
    dH(i) = -Alfa(i) * Htot * 100;
    H(i) = dH(i)/100;
  else
                           real(((1-(Alfa(i-1)))^n)*((A*exp(-Ea/(R*T(i))))+(A2*exp(-
    dAlfadt(i)
                   =
Ea2/(R*T(i)))*(Alfa(i-1))^m);
    Alfa(i) = Alfa(i-1) + dAlfadt(i)/100;
    dH(i) = -(Alfa(i) - Alfa(i-1)) * Htot * 100;
    H(i) = H(i-1) + dH(i)/100;
  end
end
%Normalização dos Vetores Teóricos
dAlfadt = dAlfadt/Alfa(100*NumExperim+1);
dH = dH/Alfa(100*NumExperim+1);
H = H/Alfa(100*NumExperim+1);
Alfa = Alfa/Alfa(100*NumExperim+1);
%Plot dos Pontos Teóricos
plot(T,dH)
%Construção de Vetores Experimentais
```

```
Texp = zeros(NumExperim+1,1);
dHexp = zeros(NumExperim+1,1);
Hexp = zeros(NumExperim+1,1);
for i=1:NumExperim+1
  Texp(i) = TO + PassoT^{*}(i-1);
  if(i == 1)
    dHexp(i) = -Alfaexp(i)/100;
    Hexp(i) = dHexp(i);
  else
    dHexp(i) = -(Alfaexp(i) - Alfaexp(i-1)) * Htot;
    Hexp(i) = Hexp(i-1) + dHexp(i);
  end
end
%Plot dos Pontos Experimentais
hold on
plot(Texp,dHexp,'r')
toc
function fobj = objetivo(par, Texp, Alfaexp, texp, VCI, VPF)
%Condições Iniciais
T0 = VCI(1);
Alfa0 = VCI(2);
y0 = [T0 Alfa0];
%Otimização:
op = odeset('AbsTol',1e-6,'MaxStep',60);
[t,MODELO] = ode45(@deriv,texp,y0,op,VPF,par);
%Recebimento dos valores otimizados
T = MODELO(:,1);
Alfa = MODELO(:,2);
% Erro
erroT = T - Texp;
erroAlfa = Alfa - Alfaexp;
fobj = 100*(erroT'*erroT) + 100*(erroAlfa'*erroAlfa);
%Punição devido às restrições
fobj = fobj + (par(1)<0)*1000 + (par(2)<0)*1000 + (par(3)<0)*1000 + (par(4)<0)*1000
+ (par(5) < 0) * 1000 + (par(6) < 0) * 1000;
function dMODELO = deriv(t,MODELO,VPF,par)
%Parâmetros
Ea = par(1);
```

A = par(2);n = par(3);Ea2 = par(4);A2 = par(5);m = par(6);R = VPF(1);PassoT = VPF(2);%Modelos T = MODELO(1);Alfa = MODELO(2); $T = (1/(1 + \exp(-1e9*T)))*T;$ Alfa = (1/(1+exp(-1e5*Alfa)))*Alfa;%Taxa de aumento da Temperatura com o tempo dTdt = PassoT;%Taxa de aumento do Grau de Cura com o tempo $dAlfadt = ((1-Alfa)^n)^*((A^*exp(-Ea/(R^*T))) + (A2^*exp(-Ea2/(R^*T)))^*Alfa^m);$ % Disposição dos resultados dMODELO = [dTdt; dAlfadt]; dMODELO = dMODELO(:);

• Abordagem Fenomenológica (programação para o modelo de Kamal conjunto)

function ModelagemKamal1Conjunto()
clear all clc tic
%Parâmetros a serem calculados Ea = 0.0001; %Energia de Ativação do k1 A = 0.0001; %Fator pré-exponencial do k1 n = 1.2170; %Ordem n Ea2 = 0.0118; %Energia de Ativação do k2 A2 = 0.1144; %Fator pré-exponencial do k2 m = 1.1764; %Ordem m
%Pontos Experimentais 1 - Substituir SEMPRE aqui os valores experimentais NumExperim1 = 196; %Número de pontos experimentais NumExperim1 = NumExperim1 - 1; T01 = 348.2; %Temperatura Inicial TF1 = 543.2; %Temperatura Final PassoT1 = 1; %Passo de Aumento da Temperatura nos Pontos Experimentais

texp1 = 0:NumExperim1;

texp1 = texp1';

Texp1 = texp1*PassoT1 + T01;

Alfaexp1 = [0: 0.000004; 0.000016; 0.000038; 0.000071; 0.000116; 0.000173;0.000243;0.000327;0.000425;0.000540;0.000671;0.000820;0.000986;0.001172;0.0013 77:0.001602:0.001849:0.002119:0.002413:0.002733:0.003079:0.003452:0.003855:0.00 4287;0.004751;0.005247;0.005775;0.006337;0.006934;0.007567;0.008237;0.008948;0. 009700;0.010497;0.011341;0.012235;0.013180;0.014181;0.015242;0.016368;0.017564 (0.018835; 0.020185; 0.021619; 0.023143; 0.024761; 0.026478; 0.028298; 0.030228; 0.0322; 0.03228; 0.03228; 0.03228; 0.03228; 0.03228; 0.0322; 0.076;0.034452;0.036766;0.039227;0.041845;0.044635;0.047610;0.050786;0.054173;0.05 7784;0.061631;0.065730;0.070099;0.074752;0.079707;0.084988;0.090618;0.096634;0. 103072;0.109968;0.117358;0.125266;0.133729;0.142795;0.152511;0.162915;0.174031 ;0.185881;0.198491;0.211885;0.226087;0.241120;0.257009;0.273778;0.291427;0.3099 32;0.329257;0.349353;0.370161;0.391595;0.413560;0.435947;0.458611;0.481419;0.50 4239;0.526939;0.549375;0.571400;0.592931;0.613896;0.634221;0.653836;0.672679;0. 690702:0.707869:0.724180:0.739659:0.754342:0.768266:0.781455:0.793932:0.805723 :0.816850: 0.827339: 0.837212: 0.846495: 0.855211: 0.863397: 0.871100: 0.878357: 0.885193;0.891631;0.897695;0.903409;0.908798;0.913886;0.918696;0.923247;0.927551;0.93 1619:0.935465:0.939099:0.942535:0.945784:0.948858:0.951770:0.954530:0.957146:0. 959624:0.961969:0.964185:0.966279:0.968258:0.970129:0.971898:0.973571:0.975157 (0.976660; 0.978087; 0.979441; 0.980726; 0.981945; 0.983100; 0.984194; 0.985228; 0.9862)05;0.987129;0.988000;0.988822;0.989597;0.990328;0.991016;0.991665;0.992276;0.99 2852:0.993395:0.993909:0.994395:0.994854:0.995288:0.995698:0.996084:0.996447:0. 996788:0.997109:0.997410:0.997692:0.997955:0.998199:0.998427:0.998638:0.998832 ;0.999010;0.999170;0.999315;0.999445;0.999560;0.999661;0.999748;0.999821;0.9998 80:0.999927:0.999962:0.999985:0.999997:1];

%Pontos Experimentais 2 - Substituir SEMPRE aqui os valores experimentais NumExperim2 = 196; %Número de pontos experimentais

NumExperim2 = NumExperim2 - 1;

T02 = 333.2; %Temperatura Inicial

TF2 = 528.2; %Temperatura Final

PassoT2 = 1; %Passo de Aumento da Temperatura nos Pontos Experimentais

texp2 = 0:NumExperim2;

texp2 = texp2';

Texp2 = texp2*PassoT2 + T02;

 $\begin{aligned} Alfaexp2 &= [0; \ 0.000004; \ 0.000018; \ 0.000042; \ 0.000078; \ 0.000125; \ 0.000184; \\ 0.000255; 0.000340; 0.000438; 0.000550; 0.000676; 0.000817; 0.000974; 0.001147; 0.0013 \\ 38; 0.001548; 0.001776; 0.002025; 0.002294; 0.002587; 0.002906; 0.003254; 0.003634; 0.00 \\ 4048; 0.004497; 0.004985; 0.005514; 0.006086; 0.006704; 0.007369; 0.008085; 0.008853; 0. \\ 009676; 0.010556; 0.011495; 0.012495; 0.013560; 0.014692; 0.015891; 0.017161; 0.018504 \\ ; 0.019923; 0.021420; 0.022998; 0.024665; 0.026429; 0.028298; 0.030283; 0.032397; 0.0346 \\ 54; 0.037063; 0.039633; 0.042371; 0.045283; 0.048381; 0.051676; 0.055182; 0.058911; 0.06 \\ 2897; 0.067175; 0.071767; 0.076697; 0.081988; 0.087676; 0.093794; 0.100379; 0.107477; 0. \\ 115135; 0.123398; 0.132314; 0.141929; 0.152290; 0.163432; 0.175390; 0.188211; 0.201928 \\ ; 0.216567; 0.232161; 0.248758; 0.266391; 0.285085; 0.304840; 0.325621; 0.347381; 0.3700 \\ 38; 0.393476; 0.417543; 0.442075; 0.466911; 0.491875; 0.516758; 0.541630; 0.565543; 0.58 \\ 9167; 0.612092; 0.634213; 0.655459; 0.675738; 0.694992; 0.713232; 0.730469; 0.746716; 0. \\ 761995; 0.776330; 0.789756; 0.802321; 0.814069; 0.825048; 0.835305; 0.844885; 0.853835 \\ ; 0.862203; 0.870023; 0.877319; 0.884126; 0.890489; 0.896456; 0.902062; 0.907318; 0.9122 \\ \end{aligned}$

 $\begin{array}{l} 37; 0.916840; 0.921153; 0.925197; 0.929008; 0.932609; 0.936012; 0.939229; 0.942259; 0.94\\ 5114; 0.947807; 0.950348; 0.952749; 0.955022; 0.957184; 0.959248; 0.961221; 0.963111; 0.\\ 964921; 0.966657; 0.968323; 0.969923; 0.971458; 0.972932; 0.974346; 0.975703; 0.977005\\ ; 0.978255; 0.979454; 0.980604; 0.981706; 0.982761; 0.983771; 0.984737; 0.985660; 0.9865\\ 41; 0.987381; 0.988182; 0.988944; 0.989668; 0.990357; 0.991010; 0.991630; 0.992218; 0.99\\ 2777; 0.993309; 0.993816; 0.994298; 0.994757; 0.995192; 0.995605; 0.995996; 0.996366; 0.\\ 996714; 0.997042; 0.997350; 0.997639; 0.997908; 0.998159; 0.998392; 0.998608; 0.998806\\ ; 0.998988; 0.999153; 0.999302; 0.999435; 0.999552; 0.999655; 0.999743; 0.999817; 0.9998\\ 77; 0.999925; 0.999960; 0.999983; 0.999996; 1]; \end{array}$

%Pontos Experimentais 3 - Substituir SEMPRE aqui os valores experimentais NumExperim3 = 196; %Número de pontos experimentais

NumExperim3 = NumExperim3 - 1;

T03 = 318.2; %Temperatura Inicial

TF3 = 508.2; %Temperatura Final

PassoT3 = 1; %Passo de Aumento da Temperatura nos Pontos Experimentais

texp3 = 0:NumExperim3;

texp3 = texp3';

Texp3 = texp3*PassoT3 + T03;

Alfaexp3

[0.000000; 0.000003; 0.000011; 0.000027; 0.000051; 0.000084; 0.000125; 0.000176; 0.0002]38;0.000309;0.000393;0.000488;0.000595;0.000714;0.000846;0.000991;0.001151;0.00 1325;0.001513;0.001715;0.001932;0.002165;0.002415;0.002684;0.002972;.003280;0.0 03609:0.003959:0.004332:0.004731:0.005160:0.005620:0.006116:0.006651:0.007231: 0.007861;0.008549;0.009302;0.010127;0.011034;0.012031;0.013123;0.014317;0.0156 16:0.017026:0.018551:0.020196:0.021967:0.023868:0.025909:0.028100:0.030453:0.03 2977;0.035689;0.038612;0.041761;0.045151;0.048802;0.052734;0.056965;0.061513;0. 066400;0.071644;0.077268;0.083293;0.089745;0.096650;0.104042;0.111960;0.120450 :0.129563; 0.139355; 0.149883; 0.161204; 0.173377; 0.186473; 0.200564; 0.215710; 0.231963;0.249370;0.267970;0.287778;0.308779;0.330929;0.354160;0.378356;0.403347;0.42 8952;0.454992;0.481280;0.507613;0.533777;0.559588;0.584869;0.609458;0.633222;0. 656049:0.677870:0.698636:0.718314:0.736880:0.754322:0.770656:0.785922:0.800173 $0.813461 \\ 0.825835 \\ 0.837346 \\ 0.848045 \\ 0.857987 \\ 0.867228 \\ 0.875820 \\ 0.883808 \\ 0.8912 \\ 0.8912 \\ 0.813461 \\ 0.825835 \\ 0.825820 \\ 0.833808 \\ 0.8912 \\ 0.857987 \\ 0.867228 \\ 0.875820 \\ 0.875820 \\ 0.883808 \\ 0.8912 \\ 0.8$ 36;0.898144;0.904573;0.910561;0.916139;0.921339;0.926188;0.930714;0.934940;0.93 8889;0.942582;0.946037;0.949271;0.952298;0.955135;0.957796;0.960295;0.962644;0. 964855;0.966936;0.968898;0.970746;0.972489;0.974134;0.975686;0.977151;0.978535 ;0.979842;0.981077;0.982246;0.983351;0.984393;0.985377;0.986308;0.987187;0.9880 18;0.988803;0.989544;0.990244;0.990906;0.991530;0.992121;0.992678;0.993203;0.99 3700:0.994169:0.994613:0.995033:0.995430:0.995806:0.996160:0.996494:0.996809:0. 997104:0.997382:0.997642:0.997886:0.998114:0.998326:0.998523:0.998706:0.998875 :0.999030:0.999171:0.999299:0.999415:0.999519:0.999613:0.999695:0.999766:0.999826;0.999876;0.999917;0.999948;0.999972;0.999988;0.999997;1.000000;1.000000;1.00 0000;1.000000;1.000000;1.000000];

%Parâmetros fixos R = 8.3145; Htot1 = 467; %Entalpia Total Htot2 = 479; %Entalpia Total Htot3 = 483; %Entalpia Total VPF = [R PassoT1 PassoT2 PassoT3 TF1 TF2 TF3];

```
%Condições Iniciais
Alfa01 = Alfaexp1(1);
Alfa02 = Alfaexp2(1);
Alfa03 = Alfaexp3(1);
VCI = [T01; T02; T03; Alfa01; Alfa02; Alfa03];
%Vetor de Parâmetros a ser otimizado
par = [Ea, A, n, Ea2, A2, m];
op = optimset('Display','iter','MaxIter',20000,'TolFun',1e-10,'MaxFunEvals',50000);
%Função de Otimização
potim
fminsearch@objetivo,par,op,Texp1,Texp2,Texp3,Alfaexp1,Alfaexp2,Alfaexp3,texp1,t
exp2,texp3,VCI,VPF);
%Parâmetros Otimizados
Ea = potim(1)
A = potim(2)
n = potim(3)
Ea2 = potim(4)
A2 = potim(5)
m = potim(6)
%Construção de Vetores Teóricos - 1
Alfa1 = zeros(100*NumExperim1+1,1);
T1 = zeros(100*NumExperim1+1,1);
dAlfadt1 = zeros(100*NumExperim1+1,1);
H1 = zeros(100*NumExperim1+1,1);
dH1 = zeros(100*NumExperim1+1,1);
%Construção de Vetores Teóricos - 2
Alfa2 = zeros(100*NumExperim2+1,1);
T2 = zeros(100*NumExperim2+1,1);
dAlfadt2 = zeros(100*NumExperim2+1,1);
H2 = zeros(100*NumExperim2+1,1);
dH2 = zeros(100*NumExperim2+1,1);
%Construção de Vetores Teóricos - 3
Alfa3 = zeros(100*NumExperim3+1,1);
T3 = zeros(100*NumExperim3+1,1);
dAlfadt3 = zeros(100*NumExperim3+1,1);
H3 = zeros(100*NumExperim3+1,1);
dH3 = zeros(100*NumExperim3+1,1);
for i=1:100*NumExperim1+1
  T1(i) = T01 + PassoT1*(i-1)/100;
  if(i == 1)
    dAlfadt1(i) = real((A*exp(-Ea/(R*T1(i)))));
```

```
Alfa1(i) = dAlfadt1(i)/100;
    dH1(i) = -Alfa1(i) * Htot1 * 100;
    H1(i) = dH1(i)/100;
 else
    dAlfadt1(i)
                 =
                      Ea2/(R*T1(i)))*(Alfa1(i-1))^m));
    Alfa1(i) = Alfa1(i-1) + dAlfadt1(i)/100;
    dH1(i) = -(Alfa1(i) - Alfa1(i-1)) * Htot1 * 100;
    H1(i) = H1(i-1) + dH1(i)/100;
 end
end
for i=1:100*NumExperim2+1
 T2(i) = T02 + PassoT2*(i-1)/100;
 if(i == 1)
    dAlfadt2(i) = real((A*exp(-Ea/(R*T2(i)))));
    Alfa2(i) = dAlfadt2(i)/100:
    dH2(i) = -Alfa2(i) * Htot2 * 100;
    H2(i) = dH2(i)/100;
 else
    dAlfadt2(i)
                 =
                      Ea2/(R*T2(i)))*(Alfa2(i-1))^m);
    Alfa2(i) = Alfa2(i-1) + dAlfadt2(i)/100;
    dH2(i) = -(Alfa2(i) - Alfa2(i-1)) * Htot2 * 100;
    H2(i) = H2(i-1) + dH2(i)/100;
 end
end
for i=1:100*NumExperim3+1
 T3(i) = T03 + PassoT3*(i-1)/100;
 if(i == 1)
    dAlfadt3(i) = real((A*exp(-Ea/(R*T3(i)))));
    Alfa3(i) = dAlfadt3(i)/100;
    dH3(i) = -Alfa3(i) * Htot3 * 100;
    H_3(i) = dH_3(i)/100;
 else
    dAlfadt3(i)
                 =
                      Ea2/(R*T3(i)))*(Alfa3(i-1))^m));
    Alfa3(i) = Alfa3(i-1) + dAlfadt3(i)/100;
    dH3(i) = -(Alfa3(i) - Alfa3(i-1)) * Htot3 * 100;
    H3(i) = H3(i-1) + dH3(i)/100;
 end
end
%Normalização dos Vetores Teóricos - 1
dAlfadt1 = dAlfadt1/Alfa1(100*NumExperim1+1);
dH1 = dH1/Alfa1(100*NumExperim1+1);
H1 = H1/Alfa1(100*NumExperim1+1);
Alfa1 = Alfa1/Alfa1(100*NumExperim1+1);
```

```
%Normalização dos Vetores Teóricos - 2
dAlfadt2 = dAlfadt2/Alfa2(100*NumExperim2+1);
dH2 = dH2/Alfa2(100*NumExperim2+1);
H2 = H2/Alfa2(100*NumExperim2+1);
Alfa2 = Alfa2/Alfa2(100*NumExperim2+1);
%Normalização dos Vetores Teóricos - 3
dAlfadt3 = dAlfadt3/Alfa3(100*NumExperim3+1);
dH3 = dH3/Alfa3(100*NumExperim3+1);
H3 = H3/Alfa3(100*NumExperim3+1);
Alfa3 = Alfa3/Alfa3(100*NumExperim3+1);
%Construção de Vetores Experimentais - 1
Texp1 = zeros(NumExperim1+1,1);
dHexp1 = zeros(NumExperim1+1,1);
Hexp1 = zeros(NumExperim1+1,1);
%Construção de Vetores Experimentais - 2
Texp2 = zeros(NumExperim2+1,1);
dHexp2 = zeros(NumExperim2+1,1);
Hexp2 = zeros(NumExperim2+1,1);
%Construção de Vetores Experimentais - 3
Texp3 = zeros(NumExperim3+1,1);
dHexp3 = zeros(NumExperim3+1,1);
Hexp3 = zeros(NumExperim3+1,1);
for i=1:NumExperim1+1
  Texp1(i) = T01 + PassoT1*(i-1);
  if(i == 1)
    dHexp1(i) = -Alfaexp1(i)/100;
    Hexp1(i) = dHexp1(i);
  else
    dHexp1(i) = -(Alfaexp1(i) - Alfaexp1(i-1)) * Htot1;
    Hexp1(i) = Hexp1(i-1) + dHexp1(i);
  end
end
for i=1:NumExperim2+1
  Texp2(i) = T02 + PassoT2*(i-1);
  if(i == 1)
    dHexp2(i) = -Alfaexp2(i)/100;
    Hexp2(i) = dHexp2(i);
  else
    dHexp2(i) = -(Alfaexp2(i) - Alfaexp2(i-1)) * Htot2;
    \text{Hexp2}(i) = \text{Hexp2}(i-1) + \text{dHexp2}(i);
  end
end
for i=1:NumExperim3+1
```

```
Texp3(i) = T03 + PassoT3*(i-1);
  if(i == 1)
    dHexp3(i) = -Alfaexp3(i)/100;
     Hexp3(i) = dHexp3(i);
  else
     dHexp3(i) = -(Alfaexp3(i) - Alfaexp3(i-1)) * Htot3;
     \text{Hexp3}(i) = \text{Hexp3}(i-1) + d\text{Hexp3}(i);
  end
end
%Plot dos Pontos Experimentais e Teóricos
figure(1);
hold on
title('Modelo de Kamal - 10°C/min')
ylabel('dH/dt (J/kmol.s)')
xlabel('T (°C)')
plot(T1,dH1)
plot(Texp1,dHexp1,'r')
figure(2);
hold on
title('Modelo de Kamal - 5°C/min')
ylabel('dH/dt (J/kmol.s)')
xlabel('T (°C)')
plot(T2,dH2)
plot(Texp2,dHexp2,'r')
figure(3);
hold on
title('Modelo de Kamal - 2,5°C/min')
ylabel('dH/dt (J/kmol.s)')
xlabel('T (°C)')
plot(T3,dH3)
plot(Texp3,dHexp3,'r')
toc
function
                                              fobj
objetivo(par, Texp1, Texp2, Texp3, Alfaexp1, Alfaexp2, Alfaexp3, texp1, texp2, texp3, VCI,
VPF)
%Condições Iniciais
T01 = VCI(1);
Alfa01 = VCI(4);
T02 = VCI(2);
Alfa02 = VCI(5);
T03 = VCI(3);
Alfa03 = VCI(6);
y_0 = [T01 Alfa01 T02 Alfa02 T03 Alfa03];
```

```
%Otimização:
op = odeset('AbsTol',1e-6,'MaxStep',60);
[t,MODELO] = ode45(@deriv,texp1,v0,op,VPF,par);
%Recebimento dos valores otimizados
T1 = MODELO(:,1);
Alfa1 = MODELO(:,2);
T2 = MODELO(:,3);
Alfa2 = MODELO(:,4);
T3 = MODELO(:,5);
Alfa3 = MODELO(:,6);
% Erro
erroT1 = T1 - Texp1;
erroAlfa1 = Alfa1 - Alfaexp1;
erroT2 = T2 - Texp2;
erroAlfa2 = Alfa2 - Alfaexp2;
erroT3 = T3 - Texp3;
erroAlfa3 = Alfa3 - Alfaexp3;
fobj = 100*(erroT1'*erroT1) + 100*(erroAlfa1'*erroAlfa1) + 100*(erroT2'*erroT2) +
100*(erroAlfa2)*erroAlfa2) + 100*(erroT3)*erroT3) + 100*(erroAlfa3)*erroAlfa3);
%Punição devido às restrições
fobj = fobj + (par(1)<0)*1000 + (par(2)<0)*1000 + (par(3)<0)*1000 + (par(4)<0)*1000
+ (par(5) < 0) * 1000 + (par(6) < 0) * 1000;
function dMODELO = deriv(t1, MODELO, VPF, par)
%Parâmetros
Ea = par(1);
A = par(2);
n = par(3);
Ea2 = par(4);
A2 = par(5);
m = par(6);
R = VPF(1);
PassoT1 = VPF(2);
PassoT2 = VPF(3);
PassoT3 = VPF(4);
TF1 = VPF(5);
TF2 = VPF(6);
TF3 = VPF(7);
%Modelos
T1 = MODELO(1);
Alfa1 = MODELO(2);
T2 = MODELO(3);
Alfa2 = MODELO(4);
T3 = MODELO(5);
```

```
Alfa3 = MODELO(6);
T1 = (1/(1 + \exp(-1e9*T1)))*T1;
Alfa1 = (1/(1 + exp(-1e5*Alfa1)))*Alfa1;
T2 = (1/(1 + \exp(-1e9*T2)))*T2;
Alfa2 = (1/(1 + exp(-1e5*Alfa2)))*Alfa2;
T3 = (1/(1 + \exp(-1e9*T3)))*T3;
Alfa3 = (1/(1 + exp(-1e5*Alfa3)))*Alfa3;
%Taxa de aumento da Temperatura com o tempo
dTdt1 = PassoT1;
dTdt2 = PassoT2;
dTdt3 = PassoT3;
%Taxa de aumento do Grau de Cura com o tempo
if(T1 \ge TF1)
  dAlfadt1 = 0;
else
  dAlfadt1 = ((1-Alfa1)^n)*((A*exp(-Ea/(R*T1)))+(A2*exp(-Ea2/(R*T1)))*Alfa1^m);
end
if(T2 \ge TF2)
  dAlfadt2 = 0;
else
  dAlfadt2 = ((1-Alfa2)^n)*((A*exp(-Ea/(R*T2)))+(A2*exp(-Ea2/(R*T2)))*Alfa2^m);
end
if(T3 \ge TF3)
  dAlfadt3 = 0;
else
  dAlfadt3 = ((1-Alfa3)^n)*((A*exp(-Ea/(R*T3)))+(A2*exp(-Ea2/(R*T3)))*Alfa3^m);
end
% Disposição dos resultados
dMODELO = [dTdt1; dAlfadt1; dTdt2; dAlfadt2; dTdt3; dAlfadt3];
dMODELO = dMODELO(:);
```

TABELAS DE DADOS EXPERIMENTAIS UTILIZADOS PELO GRUPO

•	Taxa	= 2,5	K/min
---	------	-------	-------

T (⁰ C)	T (K)	dα/dT (1/K)	α
45	318,2	0	0,000000
46	319,2	0,000005	0,000003
47	320,2	0,000012	0,000011
48	321,2	0,000020	0,000027
49	322,2	0,000028	0,000051
50	323,2	0,000037	0,000084

51	324,2	0,000046	0,000125
52	325,2	0,000056	0,000176
53	326,2	0,000066	0,000238
54	327,2	0,000077	0,000309
55	328,2	0,000089	0,000393
56	329,2	0,000101	0,000488
57	330,2	0,000113	0,000595
58	331,2	0,000126	0,000714
59	332,2	0,000139	0,000846
60	333,2	0,000153	0,000991
61	334,2	0,000168	0,001151
62	335,2	0,000181	0,001325
63	336,2	0,000195	0,001513
64	337,2	0,000209	0,001715
65	338,2	0,000225	0,001932
66	339,2	0,000242	0,002165
67	340,2	0,000259	0,002415
68	341,2	0,000278	0,002684
69	342,2	0,000298	0,002972
70	343,2	0,000318	0,003280
71	344,2	0,000339	0,003609
72	345,2	0,000361	0,003959
73	346,2	0,000386	0,004332
74	347,2	0,000414	0,004731
75	348,2	0,000444	0,005160
76	349,2	0,000478	0,005620
77	350,2	0,000514	0,006116
78	351,2	0,000556	0,006651
79	352,2	0,000603	0,007231
80	353,2	0,000658	0,007861
81	354,2	0,000719	0,008549
82	355,2	0,000787	0,009302
83	356,2	0,000863	0,010127
84	357,2	0,000951	0,011034
85	358,2	0,001043	0,012031
86	359,2	0,001141	0,013123
87	360,2	0,001246	0,014317
88	361,2	0,001353	0,015616
89	362,2	0,001467	0,017026
90	363,2	0,001584	0,018551
91	364,2	0,001706	0,020196
92	365,2	0,001835	0,021967
93	366,2	0,001968	0,023868
94	367,2	0,002113	0,025909
95	368,2	0,002270	0,028100

96	369,2	0,002436	0,030453
97	370,2	0,002612	0,032977
98	371,2	0,002812	0,035689
99	372,2	0,003033	0,038612
100	373,2	0,003265	0,041761
101	374,2	0,003516	0,045151
102	375,2	0,003787	0,048802
103	376,2	0,004077	0,052734
104	377,2	0,004385	0,056965
105	378,2	0,004712	0,061513
106	379,2	0,005061	0,066400
107	380,2	0,005429	0,071644
108	381,2	0,005819	0,077268
109	382,2	0,006232	0,083293
110	383,2	0,006671	0,089745
111	384,2	0,007140	0,096650
112	385,2	0,007644	0,104042
113	386,2	0,008192	0,111960
114	387,2	0,008788	0,120450
115	388,2	0,009438	0,129563
116	389,2	0,010147	0,139355
117	390,2	0,010911	0,149883
118	391,2	0,011731	0,161204
119	392,2	0,012615	0,173377
120	393,2	0,013577	0,186473
121	394,2	0,014606	0,200564
122	395,2	0,015686	0,215710
123	396,2	0,016819	0,231963
124	397,2	0,017997	0,249370
125	398,2	0,019203	0,267970
126	399,2	0,020412	0,287778
127	400,2	0,021589	0,308779
128	401,2	0,022711	0,330929
129	402,2	0,023751	0,354160
130	403,2	0,024643	0,378356
131	404,2	0,025339	0,403347
132	405,2	0,025871	0,428952
133	406,2	0,026210	0,454992
134	407,2	0,026366	0,481280
135	408,2	0,026300	0,507613
136	409,2	0,026029	0,533777
137	410,2	0,025594	0,559588
138	411,2	0,024968	0,584869
139	412,2	0,024210	0,609458
140	413,2	0,023317	0.633222

141	414,2	0,022339	0,656049
142	415,2	0,021303	0,677870
143	416,2	0,020230	0,698636
144	417,2	0,019125	0,718314
145	418,2	0,018007	0,736880
146	419,2	0,016877	0,754322
147	420,2	0,015790	0,770656
148	421,2	0,014743	0,785922
149	422,2	0,013758	0,800173
150	423,2	0,012819	0,813461
151	424,2	0,011929	0,825835
152	425,2	0,011093	0,837346
153	426,2	0,010307	0,848045
154	427,2	0,009576	0,857987
155	428,2	0,008905	0,867228
156	429,2	0,008279	0,875820
157	430,2	0,007698	0,883808
158	431,2	0,007157	0,891236
159	432,2	0,006659	0,898144
160	433,2	0,006200	0,904573
161	434,2	0,005775	0,910561
162	435,2	0,005382	0,916139
163	436,2	0,005018	0,921339
164	437,2	0,004681	0,926188
165	438,2	0,004370	0,930714
166	439,2	0,004083	0,934940
167	440,2	0,003816	0,938889
168	441,2	0,003569	0,942582
169	442,2	0,003341	0,946037
170	443,2	0,003126	0,949271
171	444,2	0,002929	0,952298
172	445,2	0,002746	0,955135
173	446,2	0,002577	0,957796
174	447,2	0,002421	0,960295
175	448,2	0,002277	0,962644
176	449,2	0,002144	0,964855
177	450,2	0,002020	0,966936
178	451,2	0,001903	0,968898
179	452,2	0,001794	0,970746
180	453,2	0,001692	0,972489
181	454,2	0,001597	0,974134
182	455,2	0,001508	0,975686
183	456,2	0,001423	0,977151
184	457,2	0,001345	0,978535
185	458.2	0.001270	0.979842

186	459,2	0,001201	0,981077
187	460,2	0,001138	0,982246
188	461,2	0,001071	0,983351
189	462,2	0,001012	0,984393
190	463,2	0,000957	0,985377
191	464,2	0,000904	0,986308
192	465,2	0,000855	0,987187
193	466,2	0,000807	0,988018
194	467,2	0,000762	0,988803
195	468,2	0,000720	0,989544
196	469,2	0,000680	0,990244
197	470,2	0,000643	0,990906
198	471,2	0,000607	0,991530
199	472,2	0,000573	0,992121
200	473,2	0,000541	0,992678
201	474,2	0,000510	0,993203
202	475,2	0,000482	0,993700
203	476,2	0,000456	0,994169
204	477,2	0,000431	0,994613
205	478,2	0,000408	0,995033
206	479,2	0,000386	0,995430
207	480,2	0,000365	0,995806
208	481,2	0,000344	0,996160
209	482,2	0,000324	0,996494
210	483,2	0,000305	0,996809
211	484,2	0,000286	0,997104
212	485,2	0,000269	0,997382
213	486,2	0,000252	0,997642
214	487,2	0,000236	0,997886
215	488,2	0,000220	0,998114
216	489,2	0,000205	0,998326
217	490,2	0,000190	0,998523
218	491,2	0,000176	0,998706
219	492,2	0,000162	0,998875
220	493,2	0,000148	0,999030
221	494,2	0,000135	0,999171
222	495,2	0,000122	0,999299
223	496,2	0,000110	0,999415
224	497,2	0,000099	0,999519
225	498,2	0,000088	0,999613
226	499,2	0,000077	0,999695
227	500,2	0,000066	0,999766
228	501,2	0,000055	0,999826
229	502,2	0,000045	0,999876
230	503.2	0.000036	0.999917

		i.	i.
231	504,2	0,000027	0,999948
232	505,2	0,000020	0,999972
233	506,2	0,000012	0,999988
234	507,2	0,000006	0,999997
235	508,2	0	1,000000

• Taxa = 5 K/min

T (⁰ C)	T (K)	dα/dT (1/K)	α
60	333,2	0	0,000000
61	334,2	0,00008	0,000004
62	335,2	0,000019	0,000018
63	336,2	0,00003	0,000042
64	337,2	0,000041	0,000078
65	338,2	0,000053	0,000125
66	339,2	0,000065	0,000184
67	340,2	0,000078	0,000255
68	341,2	0,000091	0,000340
69	342,2	0,000105	0,000438
70	343,2	0,000119	0,000550
71	344,2	0,000133	0,000676
72	345,2	0,000149	0,000817
73	346,2	0,000165	0,000974
74	347,2	0,000182	0,001147
75	348,2	0,0002	0,001338
76	349,2	0,000219	0,001548
77	350,2	0,000238	0,001776
78	351,2	0,000259	0,002025
79	352,2	0,00028	0,002294
80	353,2	0,000305	0,002587
81	354,2	0,000333	0,002906
82	355,2	0,000364	0,003254
83	356,2	0,000396	0,003634
84	357,2	0,000431	0,004048
85	358,2	0,000468	0,004497
86	359,2	0,000508	0,004985
87	360,2	0,00055	0,005514
88	361,2	0,000594	0,006086
89	362,2	0,000641	0,006704
90	363,2	0,00069	0,007369
91	364,2	0,000741	0,008085
92	365,2	0,000795	0,008853
93	366,2	0,000851	0,009676

94	367,2	0,000909	0,010556
95	368,2	0,000969	0,011495
96	369,2	0,001032	0,012495
97	370,2	0,001098	0,013560
98	371,2	0,001165	0,014692
99	372,2	0,001234	0,015891
100	373,2	0,001306	0,017161
101	374,2	0,00138	0,018504
102	375,2	0,001457	0,019923
103	376,2	0,001537	0,021420
104	377,2	0,00162	0,022998
105	378,2	0,001714	0,024665
106	379,2	0,001814	0,026429
107	380,2	0,001923	0,028298
108	381,2	0,002047	0,030283
109	382,2	0,002182	0,032397
110	383,2	0,002331	0,034654
111	384,2	0,002487	0,037063
112	385,2	0,002653	0,039633
113	386,2	0,002823	0,042371
114	387,2	0,003002	0,045283
115	388,2	0,003193	0,048381
116	389,2	0,003398	0,051676
117	390,2	0,003613	0,055182
118	391,2	0,003846	0,058911
119	392,2	0,004126	0,062897
120	393,2	0,004429	0,067175
121	394,2	0,004755	0,071767
122	395,2	0,005105	0,076697
123	396,2	0,005478	0,081988
124	397,2	0,005897	0,087676
125	398,2	0,00634	0,093794
126	399,2	0,00683	0,100379
127	400,2	0,007366	0,107477
128	401,2	0,007949	0,115135
129	402,2	0,008578	0,123398
130	403,2	0,009253	0,132314
131	404,2	0,009977	0,141929
132	405,2	0,010746	0,152290
133	406,2	0,011538	0,163432
134	407,2	0,012378	0,175390
135	408,2	0,013263	0,188211
136	409,2	0,014172	0,201928
137	410,2	0,015105	0,216567
138	411,2	0,016084	0,232161

139	412,2	0,017109	0,248758
140	413,2	0,018158	0,266391
141	414,2	0,01923	0,285085
142	415,2	0,02028	0,304840
143	416,2	0,021282	0,325621
144	417,2	0,022237	0,347381
145	418,2	0,023077	0,370038
146	419,2	0,023799	0,393476
147	420,2	0,024335	0,417543
148	421,2	0,02473	0,442075
149	422,2	0,024941	0,466911
150	423,2	0,024988	0,491875
151	424,2	0,024777	0,516758
152	425,2	0,024427	0,541360
153	426,2	0,023939	0,565543
154	427,2	0,02331	0,589167
155	428,2	0,02254	0,612092
156	429,2	0,021701	0,634213
157	430,2	0,020792	0,655459
158	431,2	0,019766	0,675738
159	432,2	0,018741	0,694992
160	433,2	0,017739	0,713232
161	434,2	0,016736	0,730469
162	435,2	0,015757	0,746716
163	436,2	0,014801	0,761995
164	437,2	0,013869	0,776330
165	438,2	0,012984	0,789756
166	439,2	0,012145	0,802321
167	440,2	0,011352	0,814069
168	441,2	0,010606	0,825048
169	442,2	0,009907	0,835305
170	443,2	0,009253	0,844885
171	444,2	0,008648	0,853835
172	445,2	0,008088	0,862203
173	446,2	0,007552	0,870023
174	447,2	0,00704	0,877319
175	448,2	0,006573	0,884126
176	449,2	0,006153	0,890489
177	450,2	0,005781	0,896456
178	451,2	0,005431	0,902062
179	452,2	0,005082	0,907318
180	453,2	0,004755	0,912237
181	454,2	0,004452	0,916840
182	455,2	0,004173	0,921153
183	456,2	0,003916	0,925197

184	457,2	0,003706	0,929008
185	458,2	0,003496	0,932609
186	459,2	0,00331	0,936012
187	460,2	0,003123	0,939229
188	461,2	0,002937	0,942259
189	462,2	0,002774	0,945114
190	463,2	0,002611	0,947807
191	464,2	0,002471	0,950348
192	465,2	0,002331	0,952749
193	466,2	0,002215	0,955022
194	467,2	0,00211	0,957184
195	468,2	0,002017	0,959248
196	469,2	0,00193	0,961221
197	470,2	0,001849	0,963111
198	471,2	0,001772	0,964921
199	472,2	0,0017	0,966657
200	473,2	0,001632	0,968323
201	474,2	0,001567	0,969923
202	475,2	0,001504	0,971458
203	476,2	0,001443	0,972932
204	477,2	0,001385	0,974346
205	478,2	0,001329	0,975703
206	479,2	0,001276	0,977005
207	480,2	0,001224	0,978255
208	481,2	0,001174	0,979454
209	482,2	0,001125	0,980604
210	483,2	0,001079	0,981706
211	484,2	0,001032	0,982761
212	485,2	0,000988	0,983771
213	486,2	0,000944	0,984737
214	487,2	0,000902	0,985660
215	488,2	0,00086	0,986541
216	489,2	0,00082	0,987381
217	490,2	0,000781	0,988182
218	491,2	0,000743	0,988944
219	492,2	0,000706	0,989668
220	493,2	0,000671	0,990357
221	494,2	0,000636	0,991010
222	495,2	0,000603	0,991630
223	496,2	0,000573	0,992218
224	497,2	0,000545	0,992777
225	498,2	0,00052	0,993309
226	499,2	0,000494	0,993816
227	500,2	0,00047	0,994298
228	501,2	0,000447	0,994757

229	502,2	0,000424	0,995192
230	503,2	0,000402	0,995605
231	504,2	0,00038	0,995996
232	505,2	0,000359	0,996366
233	506,2	0,000338	0,996714
234	507,2	0,000318	0,997042
235	508,2	0,000298	0,997350
236	509,2	0,000279	0,997639
237	510,2	0,00026	0,997908
238	511,2	0,000242	0,998159
239	512,2	0,000224	0,998392
240	513,2	0,000207	0,998608
241	514,2	0,00019	0,998806
242	515,2	0,000173	0,998988
243	516,2	0,000157	0,999153
244	517,2	0,000141	0,999302
245	518,2	0,000125	0,999435
246	519,2	0,00011	0,999552
247	520,2	0,000095	0,999655
248	521,2	0,000081	0,999743
249	522,2	0,000067	0,999817
250	523,2	0,000054	0,999877
251	524,2	0,000041	0,999925
252	525,2	0,000029	0,999960
253	526,2	0,000018	0,999983
254	527,2	0,000008	0,999996
255	528,2	0	1,000000

• Taxa = 10 K/min

T (⁰ C)	T (K)	dα/dT (1/K)	α
75	348,2	0	0
76	349,2	0,000007	0,000004
77	350,2	0,000017	0,000016
78	351,2	0,000027	0,000038
79	352,2	0,000039	0,000071
80	353,2	0,000051	0,000116
81	354,2	0,000063	0,000173
82	355,2	0,000077	0,000243
83	356,2	0,000091	0,000327
84	357,2	0,000106	0,000425
85	358,2	0,000123	0,000540
86	359,2	0,00014	0,000671

87	360,2	0,000157	0,000820
88	361,2	0,000176	0,000986
89	362,2	0,000195	0,001172
90	363,2	0,000215	0,001377
91	364,2	0,000236	0,001602
92	365,2	0,000258	0,001849
93	366,2	0,000282	0,002119
94	367,2	0,000306	0,002413
95	368,2	0,000333	0,002733
96	369,2	0,000359	0,003079
97	370,2	0,000388	0,003452
98	371,2	0,000417	0,003855
99	372,2	0,000448	0,004287
100	373,2	0,00048	0,004751
101	374,2	0,000511	0,005247
102	375,2	0,000545	0,005775
103	376,2	0,000579	0,006337
104	377,2	0,000615	0,006934
105	378,2	0,000651	0,007567
106	379,2	0,00069	0,008237
107	380,2	0,000731	0,008948
108	381,2	0,000774	0,009700
109	382,2	0,00082	0,010497
110	383,2	0,000868	0,011341
111	384,2	0,000919	0,012235
112	385,2	0,000972	0,013180
113	386,2	0,00103	0,014181
114	387,2	0,001092	0,015242
115	388,2	0,00116	0,016368
116	389,2	0,001232	0,017564
117	390,2	0,001309	0,018835
118	391,2	0,001391	0,020185
119	392,2	0,001478	0,021619
120	393,2	0,00157	0,023143
121	394,2	0,001666	0,024761
122	395,2	0,001767	0,026478
123	396,2	0,001873	0,028298
124	397,2	0,001987	0,030228
125	398,2	0,00211	0,032276
126	399,2	0,002242	0,034452
127	400,2	0,002385	0,036766
128	401,2	0,002537	0,039227
129	402,2	0,0027	0,041845
130	403,2	0,002879	0,044635
131	404,2	0,003072	0,047610

132	405,2	0,003279	0,050786
133	406,2	0,003496	0,054173
134	407,2	0,003725	0,057784
135	408,2	0,003969	0,061631
136	409,2	0,004229	0,065730
137	410,2	0,004509	0,070099
138	411,2	0,004798	0,074752
139	412,2	0,005112	0,079707
140	413,2	0,005449	0,084988
141	414,2	0,005811	0,090618
142	415,2	0,006221	0,096634
143	416,2	0,006655	0,103072
144	417,2	0,007137	0,109968
145	418,2	0,007643	0,117358
146	419,2	0,008174	0,125266
147	420,2	0,008752	0,133729
148	421,2	0,009379	0,142795
149	422,2	0,010054	0,152511
150	423,2	0,010754	0,162915
151	424,2	0,011477	0,174031
152	425,2	0,012224	0,185881
153	426,2	0,012996	0,198491
154	427,2	0,013792	0,211885
155	428,2	0,014611	0,226087
156	429,2	0,015455	0,241120
157	430,2	0,016323	0,257009
158	431,2	0,017215	0,273778
159	432,2	0,018083	0,291427
160	433,2	0,018927	0,309932
161	434,2	0,019723	0,329257
162_	435,2	0,02047	0,349353
163	436,2	0,021145	0,370161
164	437,2	0,021724	0,391595
165	438,2	0,022206	0,413560
166	439,2	0,022568	0,435947
167	440,2	0,02276	0,458611
168	441,2	0,022856	0,481419
169	442,2	0,022784	0,504239
170	443,2	0,022616	0,526939
171	444,2	0,022255	0,549375
172	445,2	0,021796	0,571400
173	446,2	0,021266	0,592931
174	447,2	0,020663	0,613896
175	448,2	0,019988	0,634221
176	449,2	0,019241	0,653836

177	450,2	0,018445	0,672679
178	451,2	0,017601	0,690702
179	452,2	0,016733	0,707869
180	453,2	0,015889	0,724180
181	454,2	0,015069	0,739659
182	455,2	0,014298	0,754342
183	456,2	0,01355	0,768266
184	457,2	0,012827	0,781455
185	458,2	0,012128	0,793932
186	459,2	0,011453	0,805723
187	460,2	0,010802	0,816850
188	461,2	0,010175	0,827339
189	462,2	0,009572	0,837212
190	463,2	0,008993	0,846495
191	464,2	0,008439	0,855211
192	465,2	0,007933	0,863397
193	466,2	0,007474	0,871100
194	467,2	0,00704	0,878357
195	468,2	0,006631	0,885193
196	469,2	0,006245	0,891631
197	470,2	0,005883	0,897695
198	471,2	0,005546	0,903409
199	472,2	0,005232	0,908798
200	473,2	0,004943	0,913886
201	474,2	0,004678	0,918696
202	475,2	0,004424	0,923247
203	476,2	0,004183	0,927551
204	477,2	0,003954	0,931619
205	478,2	0,003737	0,935465
206	479,2	0,003532	0,939099
207	480,2	0,003339	0,942535
208	481,2	0,003159	0,945784
209	482,2	0,00299	0,948858
210	483,2	0,002833	0,951770
211	484,2	0,002688	0,954530
212	485,2	0,002544	0,957146
213	486,2	0,002411	0,959624
214	487,2	0,002279	0,961969
215	488,2	0,002153	0,964185
216	489,2	0,002035	0,966279
217	490,2	0,001924	0,968258
218	491,2	0,001818	0,970129
219	492,2	0,001719	0,971898
220	493,2	0,001628	0,973571
221	494,2	0,001543	0,975157

222	495,2	0,001464	0,976660
223	496,2	0,001389	0,978087
224	497,2	0,001319	0,979441
225	498,2	0,001252	0,980726
226	499,2	0,001186	0,981945
227	500,2	0,001124	0,983100
228	501,2	0,001063	0,984194
229	502,2	0,001005	0,985228
230	503,2	0,00095	0,986205
231	504,2	0,000897	0,987129
232	505,2	0,000846	0,988000
233	506,2	0,000798	0,988822
234	507,2	0,000752	0,989597
235	508,2	0,000709	0,990328
236	509,2	0,000668	0,991016
237	510,2	0,000629	0,991665
238	511,2	0,000593	0,992276
239	512,2	0,000559	0,992852
240	513,2	0,000528	0,993395
241	514,2	0,000499	0,993909
242	515,2	0,000473	0,994395
243	516,2	0,000446	0,994854
244	517,2	0,000422	0,995288
245	518,2	0,000398	0,995698
246	519,2	0,000374	0,996084
247	520,2	0,000352	0,996447
248	521,2	0,00033	0,996788
249	522,2	0,000311	0,997109
250	523,2	0,000292	0,997410
251	524,2	0,000272	0,997692
252	525,2	0,000253	0,997955
253	526,2	0,000236	0,998199
254	527,2	0,000219	0,998427
255	528,2	0,000203	0,998638
256	529,2	0,000186	0,998832
257	530,2	0,000169	0,999010
258	531,2	0,000152	0,999170
259	532,2	0,000137	0,999315
260	533,2	0,000123	0,999445
261	534,2	0,000108	0,999560
262	535,2	0,000094	0,999661
263	536,2	0,00008	0,999748
264	537,2	0,000065	0,999821
265	538,2	0,000053	0,999880
266	539,2	0,000041	0,999927

267	540,2	0,000029	0,999962
268	541,2	0,000017	0,999985
269	542,2	0,000007	0,999997
270	543,2	0	1