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Abstract

In this paper we implement the results obtained by Vasilyev et al [11] on the numerical approxima-
tion of the exact control for the string equation. The computational part and the respective graphs are
made for a particular case. For that we have applied the Residues Theorem of holomorphic functions,
which, as far as we know, is the first time that this theorem is applied in the computational study of
exact control problems.
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1 Introduction

Let us consider a flexible elastic string of length L. Then its small transversal vibration can be studied
by the following problem:

Y (2,1) — Ype (z,t) =0, in @ =(0,L) x (0,T)
y(0.0) =), (L.t =0, 0<i<T 1)
y(xao)_yo(ﬂf): yt(mvo) :yl(x)a 0<z<L

where y(z,t) denote the displacement of the point z of the string (0 < x < L), at the instant ¢,
(0 <t <T). The functions yo(z) and y;(x) represent, respectively, the initial position and the initial
velocity of the string . In (1), v(#) denotes the control variable, which acts on the system through the
extreme = 0. The other extreme is held fixed.

The exact control problem for (1) consists of finding, for each initial data yo(z) and y;(z) that
belong to some class, a control v(t) that lies in some class such that the solution y(z,t) of Problem
(1) with these data satisfies the final condition

y(z,T) =0, y(z,T) =0, 0<z<L. (2)



Let us consider z(z,t) = y(z,T —t). Then Problem (1) and final condition (2) are, respectively,
equivalent to

Ztt(fl?,t) - Z.t.t(wat) = 07 Il Q = ( L) X (O,T)
2(0,t) =v(T —t), =2(L,T—1)=0, 0<t<T (3)
z(z,0) =0, 2z¢(z,0)=0, 0<z<L
and
Z(.’E,T) = yg((l?), Zt(waT) = —yl(.’E), 0<z <L (4)

The HUM (Hilbert Uniqueness Method) was introduced by Lions [5] in order to study the exact
control problem for distributed systems, in particular for (1) (or equivalently, (3) with the final
condition (4)). A number of authors have studied this method, among them, we can mention, Zuazua
[13], Medeiros [6], Komornik [4] and Milla Miranda [8]. In these works the exact control problem for
(1) was studied when €2 is an open bounded set of IR", which generalizes the case Q = (0, L). A study
of the numerical analysis of the exact control problem for the wave equation was done by Glowinski
et al [2]. They used finite elements and conjugate gradient methods. Similar results are obtained in
Rincon [9], by using the difference finite method.

F.P.Vasilyev, M.A. Kurzhanskii and A. Razgulin made a numerical study which allows us to obtain
an approximation vy (t) for the exact control u(t) of Problem (3), where u(t) is given by HUM. They
used the Fourier series method. In this paper we implement these results for the particular case
Yo =1, y1 = 01)> (6 = Dirac delta), T = 3L and L = 7.

We present the graphics of the approximations ux(t) of u(t) and yn(z,t) of the solution y(z,t)
of (3). For that we use non standard results on numerics series, which are obtained by applying the
Residues Theorem of holomorphic functions (see, the Appendix). The novelty in this paper is the use
of these results in the computational study of an exact control problem. As far as we know this is the
first time that it is done.

2 Preliminaries

In this part we describe the principal results obtained by Vasilyev et al [11], in order to obtain an
approximation uy(t) for the exact control u(t) of problem (3), where v(t) is given by HUM.
Let us consider the problem

ytt(xat) ywm(wvt) = Oa m Q = (0 ) (0 T)
y(ﬂ?,O) =0, yt(mvo) =0, 0<z<L
and the final condition
y(z,T) = yo(x), ye(z,T) = y1(x), 0<z<L. (6)
Let us consider v(t) € L?(0,T). Then the ultra weak solution y(z,t;v) of (5) has the following
form: .
2 mrx . mn(t—T)
y(z, t;v) = =7 z:: / v(T) sin TdT' (7
Note that

y € C°([0,T}; L*(0,L))  and  y, € C°([0,T]; H~'(0,L)).
Let us define the application

A:L*0,T) H '(0,L) x L*(0,L)
v Av = {y: (-, T;v), —y(-, T;0)},



where y(z,t;v) is the ultra weak solution of (5). The adjoint A* of A is the operador

A*: H(0,L) x L*(0, L) = L*(0,T)

. 3
{p0, p1} = A{p0, 1} = a—xw(O,-;{soo, o1})

where ¢ is the ultra weak solution of the backward problem:

th(mat) ‘Pwm(x t) in @
©(0,8) =0, o ,t) 0<t<T
o(z,T) = po(z), sat(x T) =pi(z), 0<z<L

Note that ¢ € C'([0, L]; L(0,T)).
We define A = AA*. By the above expressions, we have

Mo, o1} = {yt (-,T; (% ©(0, 3 {0, s01})>, -y <-,T; aa_a: ©(0, 3 {0, s01})> }; (8)

Thus
L*0,7) %  HY0,L)x L*0,L)=F
AR tA
HY0,L) x L*(0,L) = F
By Lions [5], we have that A is an isomorphism from F to F'. We observe that the system (5) is

exactly controllable when T' > 2L, see Lions [5]. Thus for each f = {y1,—yo} € FI, there exists a
unique ¢ = {yg, 1} € F such that

Mepo, w1} ={y1,~vo}- 9)
From (8) and (9) it follows that

0]
Yo = y<7T1 % ¥ (05 . a{QOOa 801})>

0
Y1 =Yt (-,T; 9 ¥ (0,., {wo, @1}))

which is the final condition (6) that we want to obtain.
Thus

u= 20 0, fgo, o1} (10)

is one control which permits that the ultra weak solution y(z,t;u) of (5) verifies the final condition
(6).

The method described above to determine u(t) defined by (10) is the HUM, which determine a
unique control of Problem (3) for each {y1,— yo} € F

Note that

U= A*{Sf’oa <P1}
Mepo, p1} ={y1,—yo} = f

In what follows one determines the approximations un(t) of the exact control u(t), given by (10).
For that, we project the functions obtained before on finite-dimensional space and use the properties
of the isomorphism A. In fact,

o

krx > kmc
wo(z) = ; ok i ——; z_: o1, sin ——



where the Fourier coefficients are given by

2 (L k 2 [ k
Yor = Z/o o () sin %dm, Y1k = Z/o p1(x) sin %dm

We are interested in a finite-dimensional subspace that contains the sum of the first N terms of g
and ¢;. Then we define the subspace Fy which is composed by elements ¢y = {@on, p1n}, where

N kmx N kmx
won(z) = ; CoNk Sin I pin(z) = 2 c1nk sin -

with conr and ¢1 yg belonging to IR. One uses the notation F]’V = AFy. Then dim FJIV =dim Fy = 2N.
We fix f = {y1,—yo} € F' in order to determine the unique exact control u(t) of Problem (3)
given by (10). We denote by fn the orthogonal projection of f in Fy, that is,

Ifx = fllpr = min Jign = fllp
gNEFy

Let us denote Acy = fn (therefore cxy = A= fn) and uny = A*cy. Then
UN = U in L*(0,7).

Thus uy is the required approximation of u(t). Note that, if fxn is known then so is uy.
In what follows, we construct an algorithm to determine upy. Let us introduce

k k
ear, = {sin %,0}, ear—1 = {0, sin %}, k=1,2,..

Then {e;,ea,...,ean} and {Ae;, Aea, ..., Aean} are basis, respectively, of the subspace Fy and FJIV
The elements Ae;, see Vasilyev et al [11], are give explicitly by

Aons — [/ 2kmn> . (m) s 2km . (mm:)
€o2p = mEZ:I <—L3 >amk Sin 7 , = Z <L2 )'Ymk Sin 7

m=1
> [ 2mm . /mnx > 2 . /mnx
Aesp—1 = <mz:1 <7> Bk sm( T ) ,—mz:; (Z) Omk sm( T ))
where -
( B / mm(T — ) kn(r—1T)
amr = | cos — 7 cos — 71 dr

Ymk

T —
L 6mk = /0 sin (W

The function fy has the form
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2N
fn =Y fnihex
k=1

because fy € Fj. Since we know Aey, in order to determine fy, it is sufficient to know the coefficients
fnk- This is obtained by solving the following system of linear equations:

2N

Zka(AekaAem)F’ :(faAem)F’a m:172a"'a2N (11)
k=1



This system is obtained from the relations
(f_fN,Aem)F/:O, m:l’Q’...’QN

which hold because f — fn is orthogonal to the subspace F'y.
Using the coefficients fnj, we obtain

2N 2N
en =AT N =D kAT Ae =D fer
k=1 k=1

2N
unN = A*CN = ZkaA*ek (12)
k=1
where un(t) is the approximate control that we seek.
From the above algorithm, ux(¢) can be determined after solving the linear system (11).
Let M = (my;), f: (fn1, - ',fN’QN)T and G = (g1, --,g>~n)T be the matrix of order 2N x 2N,
2N x 1 and 2N x 1, respectively. Then the system (11) can be written in the matrix form,

Mf=G
defined by
mi; = (AeivAej)F'a g; = (f:Aej)F’a Za]: 11272N (13)
In the particular case T' = 3L the entries m;; of the matrix A have the following form:
0 if (k1 + ko) is even
(Aeak,, Aeak, 1) =9 12k, k
e il if (k1 + k) is odd.
ki — k3
( 0 if k1, ko are even and ki # k»
5L if k1 is even and k1 = ko
4], .
(Aeag, —1, Nesgy,—1) pr = T ik if k1, ko are odd and ki # ks
4],
5L — 7{_2—]{:% if kl is odd and k'l = kQ
L 0 if k1 is even and ks is odd
( 0 if ky, ko are even and k1 # ko
k2 2
SITW if k1 is even and k; = ko
(Aeak, , Aeag,) = 3 0 if k1, ko are odd and ki # ko
2,2
‘r’le” if ky is odd and ki = ky
L 0 if k1 is odd and k- is even

In the obtention of this result we used the equalities (26),---,(33) of the Appendix.
In addition, for f = {612, —1}, by applying Proposition A.2 and result (25) of the Appendix, the
entries g; of the matrix G defined by (13) are given by

ki((—l)k/2 -1 if k is even

(f,Aeap1)p = %L
i if £ is odd

T



0 if k is even

(f, Aeap)r = 3(=1)*D/2 i ks odd.

3 Computational Results

In this section we determine the graphs of the approximate control un(t) and of the approximate
ultra weak solution yn(z,t) at the instant ¢t = T. Here y(x,t) denotes the solution of Problem (5)
with T' = 3L, exact control u(t) and initial data yo =1, y1 =/ -

By the characteristic of the matrix M defined by (13), the Crout form or (LT DL) (see Golub et
al [3]) is an appropriate method for solving the system, that is, for obtaining the coefficients fuy.

Note that if we know the fny's, then we will know un(t) defined by (12), because

km kn(t—T
A*eszcos% k=1,2---

kr(t—1T)

A*ep_1 =sin
L

In order to obtain yy(z,T'; u), we substitute the exact control u(t) in (7) by un(t), and compute
the respective integral,

2 T T -
y(z, t;un) = I Z sin m;m: / un(7) sin Mdr
m=1 0

L

We have the following graphs with L = 72,

0.6 I I I I I
0.4
0.2
X :“ ."
0F ' . —
un(t) TIARAY
v N ! i
—02 - * ‘i| I’ -
" i
-04 ‘ | -
\ M N=1000 ——
206 e N=100 ----o
N N=20 ------
0.8 1 1 1 1 1
0 5 10 15 20 25 30

Figure 1: Approximation Control un(t)



1.2

Figure 2: Approximation Solution yy(z,T,u)

Figure 1 describes the variation of the approximate control uy(t), when N = 20, 100 and 1000
and we note that uy () approximates a continuous function almost everywhere when N increases.
Since we use the Fourier series, the Gibbs phenomenon appears near the points of discontinuity.

Figure 2 shows the variation of the approximate solution yn(x,T) at the instant t =T = 3L. We

note that yn(z,T), for all z € (0, L), approximates the function yg = 1, except near the extremes
z =0 and x = L. This is due to the Gibbs phenomenon.

4 Error Estimates

In this part we analyze the error of the results obtained when N increase. In order to reduce the

influence of the other numerical errors, we have considered sufficiently large values of N, = L/Az =
1000 and Ny = T'/At = 1000.

The error estimate in the L2(0, L) norm for the solution y(z,t) at the instant t = T is given by

18, = { (A= @)+ 0 - (1))

N,—

1 1/2
+ Y (- yxlide, 1) Ax}

Since we do not know the exact control u(t), for the computation of the error, the approximation

un(t) with N = 1600 is used instead of u(t). The formula that approximates the error of the control
un(t), in the L?(0,T) norm, is given by

1B = { (@300 oo 0 + (o (T) ~ s (D)) 5
! 1/2
+ Z (un(jAt) — Uleoo(jAt))QAt}



We confirm that each of the above errors depend algebraically on N, that is, ||E|| ~ a(N)~“ (for some
a > 0) for N large enough. This conclusion is based on the analysis of the following data:

N 1B, 1B
1600 0,06342 0

800 0,088386 0,030861
400 0,124107 0,077274
200 0,17467 0,1217316
100 0,24622 0,179067
50 0,350747 0,256549
25 0,506850 0,358164

In fact, we note that if at NV, we have the numerical error F, and F,, then at 4N, we will have,
approximately, the numerical errors E,/2 and E,/2. This suggests us to formulate the following
hypotheses:

B, ~aN"Y%  a=tand (14)

|E.|| ~bN~'2;  b=tan6 (15)

In the first case, making the graph of the error for the exact solution, ||E,|| vs N~/ (see Figure
3) we observe that the error can be approximated by a straight line passing through the origin of
coordinates. This confirms our hypothesis (14). In the second case, for the graph of the control error,
|Eu|| vs N=1/2 (see Figure 4), we consider only the values N = 25, 50, 100, 200, 400, 800, since we
have taken uy(t) with N = 1600 instead of the exact control u(t) in the computation of the errors,
and it is natural that we can not obtain good approximations for u(¢) when N is near of the value
1600. Based on the hypothesis (14) and (15) we affirm that the order of convergence of the applied
method is 1/2. In what follows we present the graphs of the estimate errors.

0.6 T T T T T
0.5 _
04 _
(P2
0.3 _

0.2 - -

0.1 -

0 | | | | |
0 0.04 0.08 0.12 0.16 0.2

N—1/2

Figure 3: Error for Approximation Solution yy(z,T,u)
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Figure 4: Error for the exact control un(T')

Appendix

In this part by using the Residue Theorem of holomorphic functions we obtain some results on
numerical series. For other similar results, see Weinberger [12].

In what follows we fix some notations and write some results. Let O be an open set of ¢ and
f: O — € a holomorphic function. Let zo be a pole of order k of f(z). The residue of f(z) at zo,
which is denoted by R.,, is by definition

k—1
Ralf] = gy Jim { = 20 1) .

Note that if f(z) = g(z)/h(z), where g(z) and h(z) are holomorphic functions in O and zq is a pole
of order one of f(z), then

Ralf] = 522 (16)

In this case g(z9) # 0, h(zp) =0 and h'(zo) # 0.

Proposition A.1 Let f(z) be a holomorphic function in @, except in the poles zy, zo ---, such
that |z;| — oo, j — oo. Suppose that there exists a sequence (R,) of real positive numbers with
Ry =+ 00 q— oo, such that

lim (Rq max |f(z)|> =0 (17)
q—o0 |z|=Rq
Then -
D Rlf1=0
j=1

Proof We denote by ~y, the curve |z| = R,;. By hypothesis (17) we have that there exists gy such
that the curves 74, ¢ > o, do not intersect the poles z; since each time that 7, intersect some pole,

one has max |f(z)| = co.
|z|=Rq



Let us consider vy, with ¢ > go. By Residue Theorem we have
/ 1(2) dz = 2ix 3" R, 1] (18)
Yq i
where the summation is made on all poles that are inside ¢ € y,. We have

| f(z)dz| < < max |f(z)> 2rR; -0, q— o0
Yq ‘Z‘:Rq

which implies
/ f(z)dz =0, q— o0 (19)
.

q

Expressions (18) and (19) give the proposition. m
Let z = z + iy be a complex number. Then

|cos z|? = cos? z 4+ sinh®y and |sinz|? = sin®  + sinh® y (20)
In the sequel we obtain results on numerical series which have been used in the paper.
Proposition A.2 Let k. > 0 be an even number. Then

o0
> g =0
-1 -k

p=1

Proof Let us consider the function

1) = 1 cos?(z—kl)

22— k2 sinZ(z+1)

As cos g(ﬂ:ke + 1) = 0 it follows that z = +k. are removable singularities. The poles of f(z) are
zZn=n, n==1,43, £5,- -, and their order is one.

d
By (16) and noting that e <sin g(z + 1)> = g cos g (z + 1), we have that
z
2

=— % . p=41 43,
k) " :

Rnlf]

Thus, the sum of all residues is

- 2
> el (21)

n=-—o0 e
n odd

On the other hand, we have

1 |cos 5 (z+1))?
|22 — k217 [sin 5 (2 + 1)?

[f(2)]” =

Noting that, for z = x + iy,
2 ™ T ™
|22 — k2| > <|z|—ke> and §(Z+1):§(x+1)+i§y

and using (20), we obtain from the last equality

(z + 1) +sinh® Iy
(z + 1) + sinh® 3y

1 cos?

(|2] = ke)* sin?

If(2)]* <

113 [rofy

10



Let us consider, R, =2¢q, ¢=1,2,---, and |z2| =2¢;z =2+ iy. We have:

1. If [z| > 2q — 1, then

q7r+§§g(m+l)§q7r+g, z>0

+7r<7r(+1)< +37r <0
— - —(z - — x
mtg S5 S -9+

For these values of z, one has
cos? g (x+1) < sin? g (z+1).

This inequality and (22) imply that
1 1

PR < —my = Gt

2. If 2| < 2¢— 1, then

=~ =~

2> 44 - 2—12—2_1>
Y q q 2 = 2q 1 =
that is, |y| > g From (22) it follows that

FEP < ———— 6(y)

(l2] = ke)
where 6(y) is the function defined by

1+sinh®Z
O(y) = fﬂ, whenever y # 0
sinh” Jy

Noting that

1 d
sinh? gy = Z(eﬁy —2+e ™) and &y <sinh2 gy> = %(e”y —e ™),

we obtain
d 1 s

Lo) = -~ — T
dy ) (sinh® Zy)2 4

From that we conclude that 6(y) is decreasing in ]0, oo[ and increasing in | — oo, 0O[. Therefore

(e™ —e ™), whenever y #0.

o(y) < %) for y > %
G(Tﬁ) for y < 77‘/7

Nothing that 8(y) = 6(—y) , for y € R, y # 0, we derive then

o) < o(%) WY

5

FOF < Gt (?)

Thus by (24) we obtain



The above inequality and (23) give that

1
|f(2)] < MM’ |z = 2q, 2q > ke

where M? = 6 (4) The last inequality implies

lim <2q max | f(z )|> = 0.

q—00 |z|=2¢

Proposition A.1, (21) and this limit give us that

which implies the proposition. m

By applying similar arguments as in the proof of Proposition A.2, we derive the following results
on numerical series. We will present results and the respective function f(z) that allow us to obtain

each one of them.
Let k. > 0 be an even number. Then

& )erl T (_1)k/2 1

2 (2p - 1)( 2p—1) kg)_Z( 2R
1 1

f(2) =

2(22 —k2) sinZ(z+1)

Let k1 > 0 and koe > 0 be even numbers with ki, # ko.. Then

= 1
=0
2 R
1 cos §(z+1)
fO= G @ —R) i+
Let k. be an even number. Then
> .
Z(2p-1)?—k2)  16k2
1 cosZ(z+1)
f(Z) = 2 2 o 7% :
(22 —ke)? sin(z+1)
Let k1, > 0 and ksy > 0 be odd numbers with ki, # ks,. Then
i 1 1 1
= (2p) —K,) ((2p)* —k3,) 2k, k3,
1 cos Tz
f(2) = —

(22— R)(—F3,) siniz

Let k, > 0 be an odd number. Then

i": 1 o1
—((2p)? - k2> 16k} 20k
F2) = 1 cos 52

(22 —k2) sinZz’

12

(27)

(29)



Let k1. > 0 and ko > 0 be even numbers with ki, # ko.. Then

S (2p—1)° B
2 (2p—1)2 — kL) (2p—1)2 —k3,) 0

22 cos 5(z+1)
SRR st

Let k. > 0 be an even number. Then
i (2p-12  7?
(2p—1)2 —k2)2 16

p=1

flz) =

(31)

22 cos 5(z+1)

(22 —k2) sinZ(z2+1)°

Let k1, > 0 and ksy > 0 be odd numbers with ki, # ks,. Then

- (2p) B
2 Ry @)
&)= R =R, g

(32)

Let k, > 0 be an odd number. Then
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