Universidade Federal do Rio de Janeiro Centro de Ciências Matemáticas e da Natureza Observatório do Valongo Departamento de Astronomia

ESTUDO EXPLORATÓRIO DO AGLOMERADO ABELL 2218

Aluna: Ana Paula Moura Reis Miceli

Orientador: Dr. Carlos Roberto Rabaça

Projeto de Conclusão de Curso de Graduação para a obtenção do título de Astrônomo

> Rio de Janeiro, RJ Outubro de 2015.

ESTUDO EXPLORATÓRIO DO AGLOMERADO ABELL 2218

Ana Paula Moura Reis Miceli

Observatório do Valongo - CCMN, UFRJ

Rio de Janeiro, outubro de 2015.

Ao meu querido marido Roberto, às minhas amadas filhas Ana Carolina e Maria, aos meus pais e aos meus irmãos por todo o amor que sempre me dedicaram.

Agradecimentos

Após tanto tempo decorrido de quando eu entrei no Curso de Astronomia, tenho muito a agradecer ao Grande e a muitas pessoas, a quem devo muito pelo apoio, pela compreensão, a amizade e a oportunidade de poder ter convivido com elas.

Aprendi muito durante o curso. Certamente, ainda sei muito pouco sobre Astronomia, pois que se apresenta um mundo maravilhoso de objetos e fenômenos a serem explicados.

Agradeço a essas pessoas por terem me ensinado o que é um ser humano melhor. Os professores sempre dedicados e dispostos a esclarecer. Sou muito grata ao Professor Carlos Rabaça, que muito me ajudou e de muitas formas, durante esse período, um amigo que fiz. Não posso me esquecer do Prof. François Cuisinier, a quem tive o privilégio de conhecer, com quem muito aprendi e pude sorrir. Ainda agradeço ao Prof. José Adolfo, sempre tão atencioso e gentil.

Ao pessoal da biblioteca, porque sempre me atenderam e auxiliaram com os livros, o Djalma, a Alice e outros. À querida Rosa, agradeço pela ajuda, a amizade e por tudo o mais, uma pessoa importante para resolver muitos assuntos, e amiga.

Quero agradecer à minha família, sobretudo, ao meu marido que, sempre e incondicionalmente, me ajudou inúmeras vezes, e em situações diferentes. Agradeço às minhas filhas Ana Carolina e Maria, porque torcem por mim e se alegram com meus pequenos passos, na caminhada da pesquisa. Minha mãe querida Terezinha também foi sempre um apoio, alicerce por toda a minha vida.

Por fim, agradeço aos meus colegas de turma e aos que não mencionei, mas me lembro, e ao governo brasileiro por proporcionar a possibilidade de acesso à academia e ao desenvolvimento de pesquisa, através das bolsas de estudo.

Dos corredores do Valongo, somente tenho boas lembranças, que levo comigo, e as pessoas de lá que estão em meu coração. Espero poder voltar sempre e prosseguir neste caminho. "If you can't explain it simply, you don't understand it well enough."

Albert Einstein

Resumo

Neste trabalho, testamos um método estatístico de identificação e classificação de objetos nas imagens do Aglomerado de Galáxias Abell 2218 obtidas com o Telescópio Espacial Hubble, pelo instrumento *Wide Field and Planetary Camera 2*. O campo observado tem dimensões de 5',38 x 5',38 e os dados das imagens são de fotometria nas bandas de passagem (filtros) B, V, R e I. Previamente ao desenvolvimento do método, realizamos a redução dos dados e a identificação dos objetos. Após isso, apresentamos a metodologia propriamente dita, que consiste nas etapas de seleção dos objetos em comum entre os filtros, calibração das magnitudes aparentes, composição dos subconjuntos de objetos e análise estatística. Foram compostos quatro conjuntos nas listas VRI e BVRI: estrelas, arcos gravitacionais, galáxias do aglomerado e outros objetos no campo observado. Ao final, apresentamos o esboço do algoritmo numérico de classificação, em que listamos as suas respectivas etapas. Comparamos objetos encontrados em catálogos com os subconjuntos e verificamos que a maioria foi classificada corretamente pelo nosso método.

Palavras-chave: Abell 2218, aglomerado de galáxias, algoritmo numérico, análise estatística de dados, classificação de objetos astronômicos.

Abstract

In this work, we test a statistical method to identify and classify objects in images of the Galaxy Cluster Abell 2218 obtained by Hubble Space Telescope, Wide Field Planetary Camera 2. The dimensions of the observed field are 5',38 x 5',38 and image data are photometry in the passbands (or filters) B, V, R and I. Before the development of the method, we carry out the data reduction and identification of objects. After that, we present the methodology, that consists of the stages of selecting objects in common between filters, calibrating apparent magnitudes, composing subsets of objects and statistical analysis. We compose four subsets in the VRI and BVRI lists: stars, gravitational arcs, galaxies of the cluster and other objects in the observed field. Finally, we sketch the numeric algorithm for classification and list the corresponding stages. We compare objects found in catalogues to the subsets and verify that the majority of objects was correctly classified by our method.

Keywords: Abell 2218, galaxy cluster, numeric algorithm, statistical analysis of data, classification of astronomical objects.

Lista de Figuras

1.1	Classificação de Galáxias de Hubble	4
1.2	Aglomerado Coma, um dos aglomerados mais ricos do catálogo de Abell	6
1.3	Aglomerado Abell 85	9
1.4	Aglomerado Abell 2218	10
2.1	Divisão de quadrantes na imagem observada	21
2.2	Número e coordenadas do objeto 56, nas bandas B, V, R e I, obtidas após	
	comparação	22
2.3	Proporção (%) de objetos em comum por quadrante, nos conjuntos VRI e	
	BVRI	23
2.4	Imagem $sex_obj.fits$ na banda V, mostrando o centro da imagem e a	
	divisão em quadrantes.	25
2.5	Representação dos desvios para o cálculo das constantes de calibração da	
	banda R	28
3.1	Imagem $sex_obj.fits$ na banda B, mostrando parte dos arcos gravitacionais.	32
3.2	Diagrama de dispersão da largura à meia altura e da magnitude R. $\ .\ .$.	37
3.3	Diagrama de dispersão da largura à meia altura e da magnitude I	37
3.4	Diagrama de dispersão da cor V - I e da magnitude aparente I	40
3.5	Imagem na banda V, mostrando parte das galáxias selecionadas. Os rótulos	
	E correspondem às galáxias do tipo early e S designa as espirais	41
3.6	Frequência absoluta da cor V - I das galáxias elípticas VRI	42
3.7	Dados e reta de regressão.	43

3.8	Reta de ajuste e retas de erro	44
3.9	Frequência absoluta das magnitudes, objetos na lista VRI	46
3.10	Frequência absoluta das magnitudes, objetos na lista BVRI	47
3.11	Frequências absolutas das magnitudes aparentes B, V, R e I dos arcos -	
	listas BVRI e VRI.	49
3.12	Frequências absolutas de magnitudes, para as galáxias VRI no aglomerado	
	A2218	51
3.13	Frequências absolutas de magnitudes, para as estrelas VRI no campo ob-	
	servado.	52
3.14	Frequência absoluta da magnitude B para os subconjuntos de objetos	53
3.15	Frequências absolutas da cor (V - I) de todos os objetos - esquerda VRI e	
	direita BVRI.	55
3.16	Frequência absoluta do índice de cor (V - I) das estrelas VRI.	56
3.17	Frequência absoluta do índice de cor (V - I) dos arcos.	57
3.18	Frequência absoluta do índice de cor (V - I) das galáxias do Abell 2218 -	
	lista VRI.	57
3.19	Diagrama cor-cor para arcos gravitacionais	59
3.20	Diagrama cor-cor para as galáxias de A2218	60
3.21	Diagrama cor-cor para outros objetos	61
3.22	Diagrama cor-cor com grupos de galáxias de A2218	63
3.23	Diagrama de dispersão da elipsidade e do ângulo de orientação	65
B.1	Objetos encontrados no catálogo RC3.	92
B.2	Imagem $sex_obj.fits$ na banda fotométrica R da região do 1º quadrante	93
B.3	Imagem $sex_obj.fits$ na banda fotométrica I do 1º quadrante	93

Lista de Tabelas

1.1	Resumo da estatística computada por NED a partir de 10 distâncias da	
	literatura (fonte: NASA/IPAC EXTRAGALACTIC DATABASE, acesso	
	em 21/05/2013)	12
2.1	Imagens resultantes para as bandas do conjunto de filtros BVRI	16
2.2	Quadrantes na imagem com intervalos para as coordenadas dos objetos $\ .$	21
2.3	Número de objetos por quadrante em cada banda separada e objetos em	
	comum	23
2.4	Parâmetros das galáxias escolhidas e constantes resultantes	27
3.1	Conjunto de Arcos Gravitacionais	33
3.2	Atributos das estrelas usadas no cálculo da largura à meia altura máxima	
	(em pixels)	35
3.3	Galáxias $early \ type$ selecionadas visualmente, com índices de cor e magnitudes.	41
3.4	Totais de objetos VRI por classe ou conjunto, galáxias segundo as meto-	
	dologias	45
3.5	Lista VRI, com bandas fotométricas, magnitudes médias e desvios padrão.	47
3.6	Lista BVRI, com bandas fotométricas, magnitudes médias e desvios padrão.	48
3.7	Medidas de tendência central e de dispersão das magnitudes dos arcos	50
3.8	Desvios padrão das magnitudes para galáxias e estrelas VRI	51
3.9	Médias, variâncias e desvios padrão da magnitude B para os subconjuntos.	54
3.10	Médias e dispersões (variância e desvio padrão) do índice de cor (V - I),	
	para os subconjuntos VRI	56

3.11	Covariância e correlação entre os índices, para os arcos gravitacionais. $\ . \ .$	59
3.12	Covariância e correlação entre os índices, para as galáxias de A2218	60
3.13	Covariância e correlação entre os índices, para outros objetos. \ldots	60
B.1	Totais de objetos BVRI por classe ou conjunto, galáxias do A2218 selecio-	
D.1	nadas segundo a Metodologia 2	87
		01

Índice

1		Introd	ução	1
	1.1	Catálo	ogos de Objetos	2
	1.2	Aglon	nerados de Galáxias - Abell 2218	6
	1.3	Objet	ivos	12
2		Reduç	ão de Dados e Calibração de Magnitudes	15
	2.1	Reduç	ao de Dados no IRAF	16
	2.2	Identi	ficação de Objetos com o SExtractor	17
	2.3	Seleçã	o de Objetos em Comum entre os Filtros	19
		2.3.1	Identificação de Objetos em Comum	19
		2.3.2	Listas VRI e BVRI	23
	2.4	Calibr	ação das Magnitudes Aparentes B-V-R-I	25
3		Anális	e dos Dados	29
	3.1	Comp	osição dos Conjuntos de Objetos	30
		3.1.1	Identificação dos Arcos Gravitacionais	32
		3.1.2	Identificação das Estrelas	33
		3.1.3	Identificação das Galáxias do Aglomerado	39
	3.2	Anális	e Estatística	46
	3.3	Esboç	o do Algoritmo de Classificação	65
4		Conclı	asões e Perspectivas	70

Re	Referências Bibliográficas										
A	CONCEITOS DA ESTATÍSTICA										
	A.1	Medidas de Tendência Central	77								
	A.2	Dispersão de uma Distribuição	77								
	A.3	Avaliação da Associação Linear	78								
в	(CONJUNTOS DE OBJETOS	80								
	B.1	Lista VRI	80								
	B.2	Lista BVRI	87								
	B.3	Objetos Catalogados - Teste	92								
	B.4	Imagens do Campo Observado	92								

Capítulo 1

Introdução

Neste projeto, realizamos um estudo exploratório de imagens fotométricas do Aglomerado de Galáxias Abell 2218 no sistema de filtros BVRI, em um campo de dimensões $5', 38 \times 5', 38$, para testar um método estatístico de identificação e classificação de objetos em quatro subconjuntos (arcos gravitacionais, estrelas, galáxias do aglomerado e outros objetos), e esboçar um algoritmo que permita a sua futura implementação em um código numérico.

O trabalho constitui-se em uma fase preliminar à análise do efeito de lente gravitacional em aglomerados de galáxias, sendo necessária para separar as galáxias que pertencem ao aglomerado, e portanto são responsáveis pelo efeito da lente, das demais. A identificação das galáxias do aglomerado será feita pela técnica estatística da Sequência Vermelha. O resultado pressupõe que todos os objetos que não forem classificados como estrelas ou galáxias do aglomerado estarão, em princípio, relacionados ao efeito da lente gravitacional, sendo identificados visualmente como arcos gravitacionais ou como outros objetos. O desenvolvimento também inclui alguns testes para verificar minimamente a coerência dos resultados, por meio da obtenção de estatísticas relacionadas aos subconjuntos identificados.

1.1 Catálogos de Objetos

Os objetos presentes no céu, observados à distância, nem sempre são o que aparentam ser. Para realizar uma classificação dos mesmos é necessário fazer uma avaliação científica, com a utilização de telescópios capazes de identificá-los com precisão, aplicar uma metodologia adequada para a separação em conjuntos de elementos com características semelhantes e, posteriormente, classificá-los.

A classificação dos corpos celestes é de suma importância porque, depois de ser determinado a que conjunto pertencem, pode-se quantificar as propriedades físicas que os diferenciam, e então caracterizá-los para estudar a sua evolução. O reconhecimento e a catalogação de objetos no céu já vêm sendo feitos há bastante tempo.

O catálogo astronômico mais antigo conhecido no Oriente teria sido elaborado pelos astrônomos chineses Gan De e Shi Shen (Ho 2000, Xiaochun & Jing 1993), no século V a.C.; é um catálogo estelar que contém as coordenadas das principais estrelas de 120 constelações.

Algum tempo depois, 260 a.C., surgiu o catálogo de estrelas dos gregos Aristilo (s.IV-III a.C.) e Timocares de Alexandria. Hiparco de Niceia (190 - 120 a.C.) foi reconhecido como autor do cálculo da precessão dos equinócios, e foi responsável por elaborar o primeiro catálogo extenso de estrelas do mundo ocidental, em 127 a.C.

No século XVII, o astrônomo e advogado alemão Johann Bayer Rhainani publicou o atlas estelar *Uranometria* (Rhainani, 1603), que foi o primeiro a cobrir toda a esfera celeste. Aquele trabalho revelou 12 constelações e introduziu um novo sistema para designar as estrelas, com o uso da notação grega e latina.

Entre 1774 e 1781, o astrônomo francês especialista em cometas Charles Messier, auxiliado por outros, compilou o primeiro catálogo que apresentou objetos não estelares, em alguns volumes; foi intitulado "Catálogo de Nebulosas e Aglomerados Estelares", composto por 110 objetos do céu profundo, e que continha nebulosas, aglomerados estelares e galáxias (Messier 1774, 1780, 1780a, 1781).

Em 1864, o astrônomo e matemático John Herschel publicou o catálogo Catalogue

of Nebulae and Clusters of Stars (Herschel, 1864) com observações suas e de seu pai, incluindo 5.079 objetos. Em 1888, John Louis Emil Dreyer preparou o New General Catalogue of Nebulae and Clusters of Stars (NGC) (Dreyer, 1888), o qual continha 7.840 objetos, em sua maioria eram galáxias e nebulosas. Após concluir esse trabalho, compilou seu complemento o Index Catalogue (IC) (Dreyer, 1895), em que foram listados 1.529 objetos, dentre esses constavam nebulosas, estrelas, aglomerados estelares, além de notas e posições mais precisas de objetos do catálogo NGC.

Em 1923, no telescópio de 100" do Monte Wilson, Edwin Powell Hubble observava estrelas variáveis na "nebulosa de Andrômeda" (M31), quando percebeu que a luz emitida por aquelas obedecia a mesma relação entre o período e a luminosidade que as Cepheidas da nossa Galáxia, então supôs que eram do mesmo tipo que as da Via Láctea. Desse modo, ele calculou suas distâncias relativas até o observador, usando a relação entre o fluxo de energia medido F, a luminosidade L e a distância d:

$$F(r) = \frac{L}{4\pi d^2}.\tag{1.1}$$

Obteve que essas estrelas se situavam a 300 kpc, no mínimo, portanto a suposta nebulosa era, na realidade, uma galáxia. Atualmente, sabe-se que Andrômeda está localizada a aproximadamente 800 kpc da Terra.

Em 1936, no livro intitulado *The Realm of the Nebulae* (Hubble, 1958), Hubble apresentou seu próprio esquema de classificação das galáxias, o qual é adotado ainda hoje com algumas alterações. Nesse sistema de classificação, ele agrupou as galáxias em três tipos principais: elípticas (E), espirais (S) e espirais barradas (SB); considerou também uma quarta classe, as galáxias irregulares, as quais não poderiam ser enquadradas em nenhuma das categorias anteriores. Na Figura 1.1, mostramos o esquema geral da Classificação de Galáxias de Hubble.

Esforços para compor um catálogo de galáxias começaram nessa mesma década. Em 1938, Zwicky já discutia a possibilidade de se fazer um levantamento para listar os aglomerados de galáxias existentes, utilizando as placas do Telescópio Schmidt do Observatório Palomar.

Figura 1.1: Classificação de Galáxias de Hubble (fonte: www.if.ufrgs.br/~fatima/ead/galaxias.htm, acessado em 15/01/2013).

George O. Abell deu início à catalogação de aglomerados de galáxias (Abell, 1958), de modo sistemático, a partir da inspeção visual de placas fotográficas do primeiro projeto *National Geographic Society Palomar Observatory Sky Survey* (Abell, 1959), a listagem foi publicada em 1958. Catalogou 2.712 aglomerados ricos e definiu critérios específicos, utilizados na metodologia de seleção de 1.682 aglomerados e inclusão dos mesmos em uma amostra estatisticamente homogênea.

Entre os anos de 1961 e 1968, Zwicky e seus colaboradores se dedicaram com afinco à observação de galáxias e à composição de catálogos desses objetos. O resultado foi a publicação do *Catálogo de Galáxias e Aglomerados de Galáxias* (Zwicky et al., 1961-1968) pelo Instituto de Tecnologia da Califórnia, que consistia de seis volumes, os quais continham aproximadamente 30.0000 galáxias e 9.000 aglomerados do Hemisfério Norte. Esse trabalho incluiu as imagens das placas do Telescópio Schmidt, cuja análise foi finalizada em 1968. Zwicky e sua esposa Margrit publicaram, em 1971, o *Catálogo de Galáxias Compactas Selecionadas e Pós-eruptivas* (Zwicky & Zwicky, 1971), composto de mais de 3.700 objetos e cerca de 250 espectros e velocidades de recessão.

Mais tarde, o catálogo de Abell foi aprimorado de modo a conter também aglomerados do Hemisfério Sul (Abell, Corwin Jr. & Olowin, 1989), totalizando 4.073 aglomerados ricos de galáxias. Na década de 90, com a possibilidade da digitalização de placas fotográficas, a utilização de CCDs e a disponibilidade de computadores mais potentes, recursos esses que facilitaram a detecção de objetos no campo, catálogos mais objetivos e confiáveis passaram a ser elaborados.

A série intitulada *Third Reference Catalogue of Bright Galaxies* (RC3), iniciada em 1991 (de Vaucouleurs, de Vaucouleurs, Corwin et al, 1991) por de Vaucouleurs e colaboradores foi disponibilizada na *internet*, contém mais de 23.000 galáxias, incluindo todas as galáxias com diâmetros aparentes maiores que um minuto de arco, magnitudes mais brilhantes que 15,5 aproximadamente, e muitos outros objetos.

A partir do projeto *Red-Sequence Cluster Survey* (RCS) (Hsieh, Yee, Lin & Gladders, 2005) foi gerado um catálogo fotométrico de galáxias abrangendo uma extensa região no céu, de grande profundidade, nas bandas z0 e Rc para a área de 90 graus quadrados e dados suplementares nas bandas V e B foram obtidos para a área de 33,6 graus quadrados. Na continuação do projeto, o *Red Sequence Cluster Survey 2* (RCS2) (Gilbank, Gladders, Yee & Hsieh, 2011), foram obtidas imagens de uma área da ordem de 1000 graus quadrados do céu, usando a câmera MegaCam, no Telescópio Canadá-França-Havaí (CFHT), nos filtros (g', r', z') a fim de encontrar aglomerados de galáxias até desvios para o vermelho $z \approx 1$. Esse projeto utilizou a *técnica da sequência vermelha de galáxias do tipo early* em aglomerados ¹, para identificar tais estruturas.

No ano de 2000, começaram as observações do projeto *Sloan Digital Sky Survey* (SDSS) (Szalay, Kunszt, Thakar, Gray & Slutz) que já se prolongam por quinze anos (SDSS-I, 2000-2005; SDSS-II, 2005-2008; SDSS-III, 2008-2014; SDSS-IV, 2014-2020). Um telescópio óptico de 2,5 m de abertura foi usado e imagens em grande extensão do céu foram adquiridas, utilizando um sistema fotométrico com cinco filtros (u - g - r - i - z). Foram coletados dados de um terço do céu e produzidos mapas tridimensionais, que contêm mais de 930.000 galáxias e 120.000 quasares. O conjunto final de dados das fases SDSS-I/II

 $^{^1 \}mathrm{Essa}$ técnica é apresentada no Capítulo 3.

incluiu imagens de uma área total de 12.000 graus quadrados. Esse catálogo é composto de mais de 350 milhões de objetos celestes, com espectros de 930.000 galáxias, 120.000 quasares e 460.000 estrelas. Atualmente, o projeto prossegue em sua fase IV e seus dados estão acessíveis através da base no portal².

Na seção seguinte, falaremos um pouco sobre os aglomerados de galáxias e algumas das características do Aglomerado Abell 2218.

1.2 Aglomerados de Galáxias - Abell 2218

Figura 1.2: Aglomerado Coma, um dos aglomerados mais ricos do catálogo de Abell (http://www.astronoo.com/pt/aglomerado-de-galaxias.html, acesso em 10/05/2013).

As galáxias podem ser encontradas em agrupamentos denominados aglomerados (Fig. 1.2) (Neto, IAG/USP; Saraiva et al., UFRGS; Sodré, IAG/USP), os quais podem conter centenas a milhares desses objetos e se estender por alguns megaparsecs, ou se agrupar em conjuntos menores, ou podem ainda estar dispersas no campo. Os aglomerados contêm gás

²http://www.sdss.org, acesso em 2014.

quente entre as galáxias, são grandes sistemas físicos mantidos íntegros por ação da força gravitacional, situam-se próximos entre si e por isso podem influenciar significativamente a evolução uns dos outros. Apresentam altas densidades de matéria e as componentes mais brilhantes são as galáxias elípticas e do tipo S0, características que os diferenciam de galáxias agrupadas e próximas, como as do conjunto do Grupo Local, em que as principais são as galáxias espirais. Na região central dos aglomerados, agrupadas em um raio da ordem de 1 Mpc são encontradas usualmente entre 50-100 galáxias, com luminosidades de aproximadamente $L \sim 10^{11-12} L_{\odot}$.

Na compilação dos catálogos de objetos celestes, a elaboração das metodologias de identificação e classificação é um fator decisivo. Citamos que o catálogo de Abell (1958) e seus complementos têm como base critérios objetivos de abordagem estatística, os quais compõem métodos efetivos para identificar e classificar os aglomerados de galáxias. Esse acervo é uma referência para calcular a dimensão média dos aglomerados ricos, e pode-se afirmar que varia entre 5 e 7 Mpc, somando massas totais no intervalo de 10^{14} a $10^{15} M_{\odot}$.

Nesse estudo, existe grande dificuldade em se delimitar a fronteira desses sistemas e, para resolver isso, pode-se considerar que todo aglomerado de galáxias é gravitacionalmente coeso, o que permite estimar sua extensão radial. Contudo, há outra questão relacionada ao fato de que apenas a projeção do aglomerado no plano do céu é observada; e é baseado nessa informação, que são elaborados modelos para reconstruir a distribuição de matéria, no volume ocupado por um aglomerado. Nessa tarefa, torna-se de grande valia a aplicação de métodos numéricos para modelagem de sistemas e estruturas em 2D e 3D, cuja finalidade é aprimorar nossa visualização de meios astronômicos ricos e complexos. Existem outros técnicas que permitem obter a massa do aglomerado, como a análise do Efeito de Lente Gravitacional³, em que a reconstrução da distribuição de massa é feita a partir da avaliação das distorções em imagens das galáxias de fundo.

Aglomerados são estruturas que detêm um vasto conjunto de informações, portanto,

³O termo *Lente Gravitacional*, que foi sugerido pela primeira vez por O. J. Lodge (1919), em geral é usado para se referir a todos os fenômenos associados à deflexão da luz, decorrentes de haver um campo gravitacional.

identificá-los, classificá-los, estudar seus componentes e fazer comparações entre diferentes aglomerados pode ajudar a solucionar questões importantes, dentre as quais podemos citar:

- A evolução dos componentes (galáxias, gás, matéria escura) dentro dos aglomerados;
- Distribuição de massa interna;
- Sua idade e tempo de vida;
- Formação e evolução de galáxias e de estruturas em larga escala;
- Determinação do modelo cosmológico correto;
- Datação mais precisa da idade do Universo.

Os aglomerados ricos contêm, por definição (Abell, 1958), pelo menos 50 galáxias mais brilhantes do que $m_3 + 2$ magnitudes⁴ dentro de um raio de R = 1, 5 $h^{-1}Mpc$, a partir do centro do aglomerado. Este corresponde ao critério de riqueza. Os aglomerados contêm além de galáxias, um meio interno constituído por plasma quente, cuja extensão é tão grande como a área de concentração principal de galáxias de $R \sim 1, 5$ h^{-1} Mpc. A temperatura típica do gás quente interno é de ~ 5 keV com um intervalo entre ~ 2 e 14 keV. Este gás é detectado através da emissão de raios-X luminosos, os quais são produzidos via mecanismo de radiação por bremsstrahlung térmico, com luminosidades de $L_x \sim 10^{44} erg \cdot s^{-1}$.

Somente em aglomerados são encontradas as galáxias chamadas de cD (denominação dada por Matthews, Morgan e Schmidt, 1964), que são elípticas gigantes situadas na região central. Por essa razão, sua localização pode servir como estimativa do centro do aglomerado e podem ser vistas tanto em aglomerados ricos quanto em pobres. Foram observadas galáxias cD com núcleos binários ou mesmo múltiplos e um envelope estelar extenso, o qual pode atingir até 300 kpc.

 $^{{}^{4}}$ A notação m_{3} corresponde à magnitude do terceiro membro mais brilhante do aglomerado de galáxias.

Aglomerados mais ricos apresentam geralmente uma estrutura mais regular e simetricamente esférica. A utilização tanto da distribuição de galáxias quanto das imagens em raios-X (Fig.1.3) permitiu verificar, que mais da metade dos aglomerados do catálogo de Abell possui algum tipo de subestrutura.

Figura 1.3: Aglomerado Abell 85

(www.astro.iag.usp.br/~gastao/AglomeradoGal/ AglomeradodeGalaxias.html, acesso em 2015).

Na Figura (1.3), os contornos correspondem à emissão em raios-X observada pelo satélite ROSAT. O centro de emissão coincide com a galáxia gigante central; na região

sul, observa-se uma subestrutura.

A investigação das galáxias em aglomerados pode fornecer informações acerca de estrutura e da origem desses objetos. É possível determinar a função de luminosidade das galáxias em aglomerados, ou seja, o número de galáxias por intervalo de luminosidade; o que pode ser útil para o entendimento dos processos físicos, que ocorrem durante a evolução das galáxias.

Figura 1.4: Aglomerado Abell 2218 (Andrew Fruchter (STScI) et al., WFPC2, HST, NASA, acesso em 27/05/2013).

Neste trabalho de Astronomia, escolhemos para analisar o belo Aglomerado de Galáxias Abell 2218 (Fig. 1.4), que é classificado no catálogo de Abell como um aglomerado rico classe 4 (Abell et al., 1989), situado a aproximadamente 2 bilhões de anos-luz ($\sim 600Mpc$), na Constelação de Draco, e no qual foram encontrados arcos e *arclets* (pequenos arcos) perto do centro, o que denota efeito de lente gravitacional; a primeira descrição fotométrica dos arcos foi feita por Pelló et al. (1992).

Frequentemente, consultamos o catálogo online RC3 - Third Reference Catalog of

Bright Galaxies - HEASARC - NASA, para confirmar os dados dos objetos e do próprio aglomerado A2218. Algumas das características do Aglomerado são apresentadas, em seguida.

• Coordenadas (Equ J2000):

RA 16h35m54,0s,

DEC + 66d13m00s;

- Velocidade > 30.000 km/s;
- Desvio para o vermelho z=0,175600 (Equ J2000);

(fonte: ned.ipac.caltech.edu, acesso em 2013)

• Massa (em M_{\odot}):

 $\sim 6 \times 10^{13}$ (lente gravitacional),

 $\sim 2,8 \times 10^{13}$ (raios-X).

(fonte: Cannon, Ponman & Hobbs, 1998)

Apresentamos na Tabela 1.1 distâncias⁵ do ABELL 2218, independentes do desvio para o vermelho.

Como foi citado, uma característica importante é que apresenta a Lente Gravitacional de efeitos fraco e forte. A2218 foi escolhido para nosso estudo pelo fato de haver uma extensa bibliografia sobre o mesmo e, principalmente, por apresentar tal fenômeno, o que torna evidente a existência do aglomerado de galáxias no campo estudado. Desse modo, o método de identificação e classificação de objetos, em aglomerados, pôde ser desenvolvido com base na avaliação de um sistema, que certamente contém o alvo deste trabalho. No entanto, para validar o método será necessário aplicá-lo a outros sistemas. Neste projeto,

⁵Módulo de distância é a diferença entre a magnitude aparente m e a magnitude absoluta M: $m-M = 5 \log d - 5$, em que d (pc) é a distância de luminosidade entre o observador e o objeto.

ABELL 2218	Módulo de distância (mag)	Distância métrica (Mpc)		
Média	40,15	1124,90		
Desv. Padrão	0,73	381,06		
Min.	39,10	660,00		
Max.	41,22	1750,00		
Mediana	40,11	1050,00		

Tabela 1.1: Resumo da estatística computada por NED a partir de 10 distâncias da literatura (fonte: NASA/IPAC EXTRAGALACTIC DATABASE, acesso em 21/05/2013).

não faremos a validação, deixando tal tarefa para a continuação do desenvolvimento feito aqui.

1.3 Objetivos

Neste projeto de finalização do Curso de Astronomia, trabalhamos com o tema **identificação e classificação dos objetos**, no campo observado. Desenvolvemos um estudo dos dados fotométricos de um aglomerado de galáxias, o Abell 2218, para avaliar objetos existentes no campo e iniciar a elaboração de um algoritmo computacional para isso. O Projeto tem como objetivos:

- Propor um teste para uma metodologia de identificação, seleção e classificação de objetos em imagens do aglomerado de galáxias Abell 2218, a partir do estudo de parâmetros fotométricos, com base estatística.
- Verificar a coerência dos dados fotométricos para os quatro subconjuntos de objetos (arcos gravitacionais, estrelas, galáxias do aglomerado e outros objetos).
- Esboçar o algoritmo lógico que permita a implementação de um futuro código numérico, para aplicação do método a outros aglomerados.

A motivação surgiu da perspectiva de separar as galáxias pertencentes ao Abell 2218 das galáxias de fundo, a fim de selecionar uma amostra para ser analisada no contexto da lente gravitacional e que permita reconstruir a distribuição de massa desse aglomerado. Outra motivação é estabelecer um algoritmo lógico, que permita implementar o método da Sequência Vermelha de Aglomerados como a técnica de separação das galáxias.

No estudo de aglomerados de galáxias, realiza-se a seleção dos objetos em conjuntos de estrelas, de galáxias do aglomerado e de galáxias de fundo, além de outros objetos que possam aparecer no campo de observação, e todos compõem subconjuntos para análise. Um algoritmo eficaz para seleção deve ser confeccionado com base em duas premissas: um conjunto de parâmetros para caracterizar os objetos e uma metodologia eficiente. Precisamos entender bem o conjunto de dados disponível para determinar cada passo do algoritmo.

Neste trabalho, fazemos um estudo dos dados de objetos num campo de observação de 28,98 *minutos de arco ao quadrado* de área, onde está localizado o Aglomerado de Galáxias Abell 2218 (Fig.1.4). Analisamos um conjunto de dados das imagens fotométricas, as quais foram requisitadas no banco de dados do Telescópio Hubble; consultamos o catálogo RC3 e alguns outros catálogos de referência na literatura, e baseamos nosso estudo na estatística descritiva e exploratória. O campo analisado de Abell 2218 mostra uma Lente Gravitacional com ambos os efeitos fraco e forte de lente⁶.

Como mencionamos, o método do algoritmo computacional elaborado está baseado essencialmente em um estudo estatístico dos dados fotométricos de Abell 2218, aplicando conceitos básicos da estatística. Acrescentamos que a metodologia pode ser codificada em várias linguagens, tais como Fortran, C e Phyton.

O trabalho subsequente é exposto da seguinte maneira: no capítulo 2, apresentamos a primeira parte do desenvolvimento realizado, em que falamos sobre a redução de da-

⁶O efeito fraco de lente gravitacional dá origem a uma orientação preferencial média das imagens de galáxias de fundo, com relação ao centro do aglomerado e o efeito forte é responsável por distorções maiores das imagens. Devido às lentes gravitacionais, podem ser observados arcos pequenos (*arclets*), grandes ou imagens múltiplas de um mesmo objeto (Schneider, Ehlers & Falco, 1992).

dos, a identificação e a seleção de objetos em comum entre os filtros e a calibração das magnitudes; no capítulo 3, abordamos a segunda parte do desenvolvimento, que abrange a composição dos subconjuntos de objetos, a análise estatística e o esboço do algoritmo de classificação; no capítulo 4, finalizamos com as conclusões do trabalho e perspectivas futuras de continuação.

Capítulo 2

Redução de Dados e Calibração de Magnitudes

No desenvolvimento do trabalho, analisamos dados de objetos em um campo que contém o Aglomerado de Galáxias Abell 2218, com o objetivo de testar um método estatístico de identificação e classificação dos objetos. Neste capítulo, é apresentada a primeira parte do desenvolvimento com seus resultados, a qual inclui as etapas de seleção dos objetos em comum entre os filtros e de calibração das magnitudes.

Previamente ao desenvolvimento do método, foi feita a redução dos dados de fotometria do aglomerado e a identificação de objetos. A redução foi realizada com o uso do *software* IRAF¹, em que os arquivos de imagens do HST² (*Hubble Space Telescope*) no formato geral *arquivo.fits* foram preprocessados.

Em sequência, os objetos foram identificados nas imagens com a aplicação do *software* SExtractor³(Bertin & Arnouts, 1996) e como resultado foram gerados arquivos de saída

¹IRAF é distribuído pelos National Optical Astronomy Observatories, que são operados pela Association of Universities for Research in Astronomy, Inc., sob um acordo de cooperação com a National Science Foundation. Portal: http://iraf.noao.edu/, acesso em 22/09/2014.

²Portal: https://archive.stsci.edu/hst/, acesso em 2015.

³SExtractor é um programa que constrói um catálogo de objetos a partir de uma imagem astronômica, e foi elaborado por Emmanuel Bertin. Portal: http://www.astromatic.net/software/sextractor, acesso em 15/08/2015.

contendo dados e com imagens, que foram usados nas análises seguintes.

A primeira etapa do método propriamente dito consistiu na seleção dos objetos que aparecem em comum entre os quatro filtros (B-F450W, V-F606W, R-F702W e I-F814W)⁴, de modo que os arquivos de dados com as coordenadas dos objetos, nas respectivas bandas de fotometria, foram carregados no Excel; depois, foi feita a calibração das magnitudes.

Nas seções seguintes, apresentamos cada parte anteriormente resumida.

2.1 Redução de Dados no IRAF

Foram requisitadas imagens de fotometria do Telescópio Espacial Hubble, adquiridas com a câmera *WFPC2*, de um campo de observação do Aglomerado de Galáxias Abell 2218, com as dimensões 5', $383 \times 5'$, 383, que foram disponibilizadas nas bandas fotométricas: B, V, R e I. Para cada banda, as imagens vieram divididas em 4 CCDs e foram preprocessadas no IRAF. A redução de dados compreende o que é exposto abaixo.

As imagens dos CCDs foram reunidas em um mosaico único em cada filtro, resultando em quatro arquivos listados na Tabela 2.1, cada um correspondendo a uma banda fotométrica do conjunto BVRI.

Imagem	arquivo	filtro(banda)	tempo(s)	$\mathrm{ganho}(e^-/\mathrm{DN})$
1	u60x0101b.mosaic.fits	F450W(B)	1000	7,0
2	u60x0201b.mosaic.fits	F606W(V)	1000	7,0
3	u2hs0302b.mosaic.rot.fits	F702W(R)	2167	7,0
4	u60x0301b.mosaic.fits	F814W(I)	1000	7,0

Tabela 2.1: Imagens resultantes para as bandas do conjunto de filtros BVRI.

Obs.: A imagem de número 3 foi rotacionada para fazer coincidir com as posições nas outras imagens.

 $^{{}^{4}\}text{PI}$: Fruchter (2000).

Na Tabela 2.1, na quarta coluna, aparece o *tempo* de exposição da câmera e, na quinta coluna, o *ganho* de sinal analógico para digital. Essas imagens foram reduzidas no IRAF e os arquivos finais usados no estudo.

Os próximos procedimentos consistiram em:

1[°]) Eliminar os raios cósmicos, em cada imagem individual da tabela 2.1, utilizando o procedimento padrão do IRAF (tarefa *cosmic rays*);

2º) Subtrair o "céu" (contagens de fundo) da imagem, o que foi calculado pela moda, isto
é, dividir as imagens por suas modas.

Uma vez que isso foi feito, as imagens estavam prontas para análise.

Em resumo, no IRAF, foram gerados os mosaicos, removidos os raios cósmicos e foi feito o registro de imagens. Estas foram usadas no próximo passo que é a identificação de objetos realizada com o SExtractor.

2.2 Identificação de Objetos com o SExtractor

Usamos o *software* SExtractor para realizar a identificação de objetos e gerar os respectivos dados. As imagens tratadas no IRAF serviram de entrada para o SExtractor, e como saída foram gerados para cada banda fotométrica: 1 imagem dividida pela sua moda, 1 imagem parametrizada e 1 imagem sem o ruído de fundo; e arquivos de dados contendo os parâmetros fotométricos escolhidos. As imagens receberam a denominação de três arquivos:

 $sex_back.fits \rightarrow com o ruído de fundo (background) e dividida pela moda;$ $<math>sex_filt.fits \rightarrow contendo objetos parametrizados;$ $sex_obj.fits \rightarrow imagem real sem ruído de fundo.$

As mais nítidas foram as que resultaram da subtração do ruído de fundo (*sex_obj.fits*) e foram usadas para checar os objetos visualmente. Para obter os parâmetros com o SExtractor, usamos uma função de espalhamento de ponto (PSF) gaussiana igual a 3,00 pixels, maior valor que foi obtido no IRAF a partir de três estrelas não-saturadas, para ser convoluída com a largura à meia altura FWHM (ver cálculo da largura à meia altura na seção 3.1.2).

Os dados fotométricos resultantes constam na lista seguinte.

Observações:

- 1 RMS -> root mean square, em Português valor quadrático médio ou valor eficaz.
- 2 FWHM -> largura à meia altura.

Embora tenhamos listado esses parâmetros, não analisamos todos, pretendemos avaliálos posteriormente como continuação deste trabalho. Os dados analisados são explicados ao longo do texto. Utilizamos somente o FLUXO BEST para cada objeto, pois é o melhor valor entre o fluxo isofotal corrigido FLUX_ISOCOR e o fluxo dentro de uma abertura elíptica do tipo Kron FLUX_AUTO; existem ainda outros parâmetros que não foram analisados, como ISOAREA, A_IMAGE e B_IMAGE.

Na próxima etapa, os arquivos de dados serão inseridos na planilha do *software* Excel e faremos a seleção de objetos que há em comum.

2.3 Seleção de Objetos em Comum entre os Filtros

A seleção de objetos corresponde a duas tarefas:

- Identificar (selecionar) todos os objetos em comum entre os filtros (bandas fotométricas) BVRI e depois VRI;
- Formar as respectivas listas de objetos nos conjuntos de bandas VRI e BVRI.

2.3.1 Identificação de Objetos em Comum

Para fazer o estudo estatístico das variáveis dos objetos, é necessário checar quais são aqueles detectados nas bandas fotométricas a serem analisadas, nos conjuntos de filtros VRI e BVRI. Essa primeira parte denominada identificação de objetos foi realizada em planilhas do *software* Excel, e consiste em separar todos os objetos observados em comum entre as bandas V, R e I, através da comparação visual⁵ entre as coordenadas (x, y) dos

⁵No caso de o conjunto dos dados ser muito grande, o processo mais eficiente é fazer uma inspeção visual inicial, a fim de estabelecer um intervalo de tolerância para efetuar a comparação de coordenada

objetos presentes nas imagens. Esse mesmo procedimento foi realizado para o conjunto de quatro bandas B, V, R e I. A rotina de trabalho que resume os passos seguidos nesta etapa é realizada na planilha, para cada quadrante, considerando o conjunto de filtros VRI e, ulteriormente, para o conjunto BVRI. Adiante, explicaremos cada tarefa.

Cabe, ainda, justificar o fato de termos realizado a seleção entre três bandas, como a tentativa de aumentar o número de objetos em comum e obter o maior conjunto de informações possível, a partir de um número menor de filtros, uma vez que nem sempre estão disponíveis dados de muitas bandas fotométricas. Nesse estágio, não consideramos nenhuma divisão por tipo de objeto.

ROTINA DE TRABALHO 1:

- Copiar os objetos em colunas adjacentes (número do objeto, x, y) para cada banda.
- 2. Classificar os objetos em ordem crescente da coordenada x.
- Por comparação das coordenadas (x,y) das bandas B-V-R-I, verificar os objetos em comum, organizados por quadrante (Tabela 2.2), para os conjuntos VRI e depois BVRI.
- Listar os conjuntos de objetos em comum, nos filtros VRI e BVRI (próxima tarefa).

Observações:

 a) Usar como referência, na comparação, o filtro de menor número de objetos, e em nosso trabalho usamos a banda I.

b) Quando necessário, checar o objeto no quadrante da imagem sex_obj.fits.

a coordenada. Esse intervalo é determinado por um valor de incerteza $(x \pm \Delta x, y \pm \Delta y)$. Depois disso, escrever um programa para fazer a comparação, em uma linguagem de computação escolhida.

Para facilitar a rotina 1, abrimos os arquivos de imagens $sex_obj.fits$, no software SAOimage⁶, verificamos os limites das coordenadas físicas e dividimos cada imagem em quatro quadrantes, conforme está esquematizado na Tabela 2.2. Para conhecer a escala nas imagens, calculamos a medida de um pixel em segundos de arco (0'',32). Depois, com base na distância métrica média do aglomerado (Tabela 1.1) e no fato que as dimensões da imagem são de 1024 pixels x 1024 pixels, obtivemos a correspondência: 1 pixel= 1,72 kpc.

Divisão da Imagem:

QUADRANTE	x (pixel)	y (pixel)
1	(795 a 1591]	(799 a 1598]
2	(0 a 795]	(799 a 1598]
3	(0 a 795]	(0 a 799]
4	(795 a 1591]	(0 a 799]
campo	0 - 1591	0 - 1598

Tabela 2.2: Quadrantes na imagem com intervalos para as coordenadas dos objetos.

Obs.: No quadrante 1, está situado o centro do aglomerado.

Q2	Q1
Q3	Q4

Figura 2.1: Divisão de quadrantes na imagem observada.

Os dados dos arquivos gerados no SExtractor com os parâmetros de todos os objetos foram convertidos para permitir a análise no Excel. As coordenadas (x,y) de cada objeto

⁶SAOimage DS9 é um software para visualização de imagens astronômicas. Foi elaborado, em 1990, no *Smithsonian Astrophysical Observatory* por Mike Van Hilst e tem sido atualizado por Doug Mink. Portal: http://ds9.si.edu/site/Home.html, acesso em 2012.

foram copiadas para uma planilha em colunas adjacentes, e inspecionadas visualmente, segundo a divisão em quadrantes (Tabela 2.2), sendo comparadas dentro de intervalos, para verificar quais eram os objetos comuns entre todas as bandas (conjuntos VRI e BVRI). Por exemplo, para o objeto 56 (Fig. 2.2), no primeiro quadrante, as coordenadas na banda I foram comparadas com suas respectivas, nas bandas V, R e B, para identificar o mesmo objeto. Após ter sido encontrado, listamos suas coordenadas e esse foi incluído em ambas as listas VRI e BVRI de objetos.

Número VRI	FILTRO V 201		FILTRO I 301		FILTRO R 302			FILTRO B 101				
	OBJETO	X_IMAGE M	Y_IMAGE M	OBJETO	X_IMAGE M	Y_IMAGE M	OBJETO	X_IMAGE M	Y_IMAGE M	OBJETO	X_IMAGE M	Y_IMAGE M
56	474	1255,953	1429,195	459	1256,776	1429.157	720	1257.284	1430.37	434	1256,308	1429.078

Figura 2.2: Número e coordenadas do objeto 56, nas bandas B, V, R e I, obtidas após comparação.

Para essa inspeção, adotamos que cada coordenada tem uma incerteza máxima de 5,00 pixels= 1",58, isto é, $(x\pm5,00)$ e $(y\pm5,00)^7$. Contudo, houve vários objetos para os quais a avaliação teve que ser feita diretamente na imagem, porque constatamos que apresentavam coordenadas com incertezas maiores que esse valor, sendo que, na maioria dos casos, ocorreu apenas em uma coordenada. Vale lembrar que o fato de ter sido feita a rotação da imagem *u2hs0302b.mosaic.rot.fits* pode ter introduzido pequenas variações de posicionamento. As outras três imagens na Tabela 2.1 pareciam estar com um bom registro de posicionamento, porém não verificamos se era o ideal.

Os objetos em comum foram primeiramente selecionados, através de suas coordenadas, entre as três bandas (V, R e I); neste ponto, já havia um conjunto de objetos cujos dados serviriam para o estudo estatístico; na sequência, os objetos restantes foram novamente verificados, e selecionados aqueles que foram confirmados em comum entre as quatro bandas (B, V, R e I).

⁷O valor de 5,00 pixels foi confirmado pela verificação visual das coordenadas, e além disso, considerando que encontramos a PSF igual a 3,00 e que o registro de objetos não é perfeito, passou a ser razoável adotarmos um valor maior que esse para as incertezas.

2.3.2 Listas VRI e BVRI

Nesta seção, apresentamos os resultados do procedimento de seleção dos objetos em comum entre os conjuntos de filtros VRI e BVRI, para compor respectivamente duas listas.

A Tabela 2.3 mostra os totais de objetos observados, por quadrante (coluna 1), em cada banda (colunas 2 a 5), os totais de objetos em comum por quadrante, nos conjuntos VRI (coluna 6) e BVRI (coluna 7).

Tabela 2.3: Número de objetos por quadrante em cada banda separada e objetos em comum.

QUADRANTE	V	В	R	Ι	VRI	BVRI
1	152	138	219	152	103	70
2	90	174	170	91	34	24
3	279	240	152	246	57	36
4	214	226	264	207	99	73
campo	735	778	805	696	293	203

Figura 2.3: Proporção (%) de objetos em comum por quadrante, nos conjuntos VRI e BVRI.
Vamos fazer uma interpretação dos maiores totais na Tabela 2.3.

- Totais para bandas de fotometria separadas:

No 3º quadrante, foi encontrado o maior total da tabela, 279 objetos, na banda V - visível; no 4º quadrante, o maior número de objetos detectados aparece na banda R - vermelho, um total de 264; no 1º quadrante, foram detectados mais objetos também na banda R, 219; no 2º quadrante, o maior número está na banda B - azul, 174 objetos.

- Para o conjunto de filtros VRI:

O maior total de objetos por quadrante está concentrado no 1º quadrante, 103 objetos; e

- Para o conjunto BVRI:

Maior total está no 4º quadrante e perfaz 73 objetos.

Consideramos o fato de que o centro do aglomerado está no primeiro quadrante, e por isso este deve concentrar a maioria das galáxias do aglomerado. Foi constatado que no caso da lista VRI esse quadrante totaliza o maior número de objetos. No caso da lista BVRI, o maior número de objetos está concentrado no quadrante adjacente, o 4^o.

Com relação ao campo observado, na banda R, foi detectado o maior número de objetos total, 805, em oposição o menor número foi detectado na banda I, perfazendo 696 objetos; esta banda foi usada como referência, na separação de coordenadas a fim de buscar um mesmo objeto.

Na Figura 2.3, podemos verificar as proporções de objetos em comum obtidas por quadrante, para os conjuntos de filtros VRI e BVRI. Para o conjunto VRI, o maior percentual de objetos detectado está no 1º quadrante, 35,15 %, e para o conjunto BVRI, o maior percentual está no 4º quadrante, 35,96 %, como era esperado. Deve haver um número menor de objetos em comum para o conjunto BVRI, em relação ao total de objetos de VRI, pois foi acrescentada mais uma banda, o que corresponde a ser menos provável de se encontrar objetos em comum. Lembramos que, quando se trata de fazer análises em que os objetos tenham que aparecer em várias bandas, é inevitável que ao coletar dados com um número maior de filtros, o total de objetos diminuirá. Nesse caso, a questão importante é descobrir que tipo de objeto foi excluído da nova lista. Vamos guardar essa pergunta para responder mais à frente.

Diante do levantamento feito, surgem outras questões:

- a) Em que banda observamos o maior número de galáxias do aglomerado Abell 2218?
- b) Em que banda observamos o maior número de galáxias?
- c) Em que banda observamos o maior número de estrelas?

Foi inserida a imagem na banda V, Fig.2.4, inspecionada na separação dos objetos em comum, para que possa ser feita uma visualização da divisão em quadrantes.

Figura 2.4: Imagem *sex_obj.fits* na banda V, mostrando o centro da imagem e a divisão em quadrantes.

2.4 Calibração das Magnitudes Aparentes B-V-R-I

Procuramos um catálogo de galáxias do Aglomerado A2218, com medidas nas bandas fotométricas que usamos e índices de cor, para calibrar as magnitudes aparentes. Em outras palavras, calculamos as constantes da equação que relaciona a magnitude e o fluxo de energia de um objeto celeste, e que se escreve como:

$$M = -2,5\log F + cte,\tag{2.1}$$

em que *M* é a magnitude aparente, *F* representa o fluxo de energia e *cte* é a constante de calibração. Aplicamos a equação 2.1 aos dados de fluxo obtidos com o SExtractor. Os catálogos de galáxias usados foram a referência Smail *et al.* (2001) e o Banco de dados *online* RC3. Na Tabela 1 do artigo, selecionamos 4 galáxias elípticas para calibrar as magnitudes aparentes e confirmamos que estavam presentes, nas imagens dos filtros B, V, R e I, uma galáxia em cada quadrante. Para o cálculo, foram adotadas as magnitudes das galáxias desse artigo, listadas no conjunto de filtros KBVI.

O cálculo foi feito para obter as magnitudes aparentes B, V e I. Foram usados os valores da tabela de magnitudes K e os índices de cor do referido catálogo, I-K, V-I e B-I, para chegar às magnitudes B, V e I. Após isso, foram inseridas as magnitudes obtidas e os nossos respectivos dados de fluxos nas bandas B, V e I, na expressão (2.1), para calcular as constantes de calibração. Isso foi feito para cada quadrante. Entretanto, no caso das constantes de R, somente encontramos a magnitude de uma galáxia, no 3º quadrante (RC3), e realizamos o mesmo procedimento anterior. Em seguida, colocamos em um gráfico (Fig. 2.5) os valores de todas as constantes obtidas, em cada quadrante e para cada magnitude, e percebemos que os desvios (diferenças) entre os quadrantes, em cada magnitude, são aproximadamente os mesmos. Assim, usamos os desvios das magnitudes B em relação à magnitude R no terceiro quadrante, para extrapolar os outros desvios e obter as constantes de R, nos outros quadrantes.

Na Fig. 2.5, são representadas as constantes de calibração para cada banda fotométrica. Foram desenhadas retas que unem os valores das constantes, segundo a divisão em quadrantes (Quad1, Quad2, Quad3 e Quad4). Na Tabela 2.4, aparecem os parâmetros dos objetos escolhidos a partir do artigo de Smail *et al.* e as constantes de calibração resultantes, em cada quadrante e para cada banda de passagem.

QUAD 1	FILTRO	Ι	V	В	R
VRI 32					
CAT301cD	FLUXO	860032,0	1099980,0	$96833,\!6$	2616690,0
DS9 (X,Y)	CONST	30,27	31,50	30,46	32,49
1068	X				
1110	Y				
QUAD 2	FILTRO	Ι	V	В	R
VRI 166					
CAT 563	FLUXO	9915,9	12945,3	$1407,\! 6$	$29592,\!6$
DS9 (X,Y)	CONST	29,21	30,45	$29,\!48$	31,50
403	X				
696	Y				
QUAD 3	FILTRO	Ι	V	В	R*
VRI 192					
CAT 503	FLUXO	4663,7	57573,8	6042,2	$135501,\!0$
DS9 (X,Y)	CONST	29,27	30,47	29,51	$31,\!53$
780	Х				
554	Y				
QUAD 4	FILTRO	Ι	V	В	R
VRI 199					
CAT 1047	FLUXO	25732,9	31186,8	3300,8	71189,4
DS9 (X,Y)	CONST	29,11	30,32	29,39	31,41
850	X				
466	Y				

Tabela 2.4: Parâmetros das galáxias escolhidas e constantes resultantes.

Na Tabela 2.4:

 $VRI \rightarrow$ número do objeto na lista VRI;

 $CAT \rightarrow n$ úmero do objeto na referência Smail *et al*;

DS9 $(X,Y) \rightarrow$ coordenadas físicas da galáxia na imagem;

 $FLUXO \rightarrow dados obtidos no SExtractor;$

 $\mathrm{CONST} \to \mathrm{constante}$ de calibração obtida no cálculo.

*Obtida do catálogo RC3.

PARA LEMBRAR:

Para calcularmos as magnitudes dos objetos, foram usados os fluxos de energia dos dados de saída do SExtractor e as constantes listadas na Tabela 2.4.

Figura 2.5: Representação dos desvios para o cálculo das constantes de calibração da banda R.

Utilizamos galáxias porque a calibração correta para o nosso objetivo não é tão importante, além disso as estrelas nas imagens são de muito baixo brilho e provavelmente não possuem magnitudes calibradas listadas. A diferença de 1,5 mag observada em relação aos desvios do primeiro quadrante se deve ao fato de termos usado dois catálogos diferentes.

Capítulo 3

Análise dos Dados

Neste capítulo, é apresentada a segunda parte do desenvolvimento do trabalho com seus respectivos resultados. É realizada a composição dos subconjuntos de objetos, com a identificação de arcos, estrelas e galáxias; fazemos ainda o cálculo do centro do aglomerado e um estudo estatístico de dados dos conjuntos formados. Tais etapas constituem parte da metodologia de classificação dos objetos. Ao final, apresentamos o esboço do algoritmo numérico para a posterior implementação computacional desse método.

Em resumo, foram utilizados dados fotométricos agrupados em quatro subconjuntos de objetos: arcos, estrelas, galáxias do aglomerado e outros objetos, existentes no campo observado. Aplicamos os conceitos da estatística descritiva e alguns dos recursos da análise exploratória¹, a fim de avaliar os parâmetros relevantes para a classificação dos objetos, pois essa análise visa estabelecer as relações entre os dados e verificar minimamente a coerência dos resultados.

Ao longo do desenvolvimento, não fizemos nenhuma discussão sobre erros, em razão de ainda estamos estabelecendo as etapas da metodologia para separar uma amostra de objetos a ser analisada, no contexto do efeito de lente gravitacional. Deixaremos a avaliação dos erros para a continuação do trabalho, no futuro.

¹Os conceitos aqui utilizados foram apresentados no Apêndice A.

3.1 Composição dos Conjuntos de Objetos

Nesta etapa do método, são formados subconjuntos de objetos semelhantes e é feita a sua classificação. No trabalho de Cypriano, Sodré Jr, Kneib e Campusano (2004), em que é feito o estudo de lentes gravitacionais fracas em 24 aglomerados Abell, os autores descrevem um procedimento para compor subcatálogos de objetos. Essa ideia inspirou a realização desta etapa, que é a composição de conjuntos de objetos, em que serão agrupados elementos similares.

O primeiro subconjunto a ser composto é o de **arcos gravitacionais**, o segundo é formado de **estrelas**, o terceiro compreende as **galáxias do aglomerado** e o quarto corresponde ao conjunto de **outros objetos**. Fazemos a observação de que a nossa metodologia não investigou este último conjunto. Essa tarefa será deixada para o prosseguimento do trabalho. A segunda rotina de trabalho resume os passos para realizarmos a presente tarefa.

ROTINA DE TRABALHO 2:

- Nas imagens, verificar os arcos gravitacionais e se foram detectados pelo SExtractor. Listá-los.
- Checar nas imagens as estrelas e se foram detectadas pelo SExtractor. Usar o índice estelar CLASS^a para separar o conjunto de estrelas, dentre os objetos com magnitude aparente R < 20,00.
- Fazer o gráfico da largura à meia altura FWHM^b para o filtro R e para o maior valor de FWHM, a fim de identificar as estrelas dentre os objetos não-saturados R ≥ 20,00.
- 4. Usar magnitudes para fazer o gráfico do índice de cor V-I, e identificar as galáxias do aglomerado. Primeiramente, para objetos selecionados na lista VRI e depois na lista BVRI.
- Identificar galáxias por métodos de ajuste de reta aos dados dos objetos, no *locus* da Sequência Vermelha do Aglomerado.

^bNo gráfico FHWM, os dados de cada lista (VRI ou BVRI) foram utilizados em cada banda. Lembramos que, como as galáxias do aglomerado A2218 apresentam boa nitidez, as imagens dos três (quatro) filtros não foram combinadas.

OBSERVAÇÃO:

Quando houve dúvidas, os arquivos de imagens *sex_obj.fits* foram examinados com o *software* DS9 (SAOimage) para confirmação visual do objeto (exs. Figs. 2.4, 3.1 e do Apêndice B).

^{*a*}Corresponde ao classificador da rede neural do SExtractor; índice estelar CLASS: 0 para galáxia e 1 para estrela.

3.1.1 Identificação dos Arcos Gravitacionais

Conforme a rotina de trabalho 2, realizamos a inspeção visual de todas as imagens, em formato geral *arq.fits* no visualizador SAOimage, a fim de buscar os arcos gravitacionais. Então, checamos se esses arcos haviam sido detectados na extração de parâmetros no SExtractor e se os dados dos arcos confirmados haviam sido listados nos arquivos de saída.

Figura 3.1: Imagem sex_obj.fits na banda B, mostrando parte dos arcos gravitacionais.

Nas imagens sex_obj.fits das bandas B, V, R e I, os quatro quadrantes foram examinados e confirmamos visualmente 29 arcos gravitacionais em comum. Contudo, no SExtraxtor foram detectados somente 16 arcos, cujos dados fotométricos foram também extraídos. Na Tabela 3.1, estão listados tais objetos que compõem o primeiro conjunto formado. Na Figura 3.1, podemos visualizar parte do conjunto de arcos, na banda de passagem B. O objeto circundado em verde corresponde a um arco detectado no SExtractor e os que foram envolvidos em amarelo são arcos não-detectados, nesse software. Todos os arcos identificados foram retirados das listagens para as análises subsequentes.

ANÁLISE DOS DADOS

VRI	QUADRANTE	ARCO	RA (h:m:s)	DEC (d:m:s)	В	V	R	Ι
7	Q1	A01	16:35:49.472	+66:13:07.14	22,80	21,75	21,74	21,04
15	Q1	A24	16:35:48.394	$+66{:}13{:}05{.}11$	$26,\!40$	$23,\!66$	$23,\!60$	$24,\!99$
26	Q1	A17	16:35:54.643	+66:12:43.81	$25,\!37$	$24,\!13$	$24,\!20$	$23,\!54$
50	Q1	A08	16:35:45:330	$+66{:}12{:}37.56$	$25,\!44$	$24,\!48$	$24,\!52$	$23,\!63$
57	Q1	A28	16:35:44.624	+66:12:34.42	24,71	$24,\!40$	$24,\!47$	$23,\!58$
67	Q1	A29	16:35:42.779	+66:12:33.59	$25,\!62$	24,72	$24,\!93$	23,91
78	Q1	A09	16:35:45.033	+66:12:23.43	$24,\!49$	23,72	23,75	23,09
123	Q2	A25	16:35:55.703	+66:13:14.04	$21,\!91$	20,50	$20,\!64$	$19,\!54$
136	Q2	A07	16:35:50.034	+66:13:12.91	$24,\!00$	$22,\!35$	22,71	$21,\!58$
164	Q3	A13	16:36:00.053	+66:13:33.58	$24,\!21$	$22,\!08$	$22,\!43$	21,28
183	Q3	A12	16:35:57.617	+66:13:15.13	$23,\!33$	$22,\!25$	$22,\!35$	$21,\!35$
191	Q3	A26	16:36:01.720	+66:12:54.16	$22,\!18$	21,06	21,01	20,07
218	Q4	A18	16:35:56.573	+66:12:33.79	$25,\!56$	$18,\!64$	22,98	21,80
226	Q4	A14	16:35:57.181	+66:12:25.64	$23,\!19$	$22,\!40$	$22,\!47$	21,39
233	Q4	A15	16:35:55.913	+66:12:24.23	$21,\!90$	20,40	20,84	19,60
286	Q4	A19	16:35:55.137	$+66{:}11{:}51.07$	-	18,26	$16,\!57$	$16,\!60$

Tabela 3.1: Conjunto de Arcos Gravitacionais.

Na Tabela 3.1:

 VRI -> número VRI do arco.

Quadrante -> quadrante em que se encontra.

Arco -> código.

 $\rm RA$ -> ascensão reta.

DEC -> declinação.

B, V, R, I -> magnitudes aparentes (Vega) nas bandas fotométricas.

3.1.2 Identificação das Estrelas

Depois da composição do conjunto de arcos gravitacionais, os objetos restantes da lista VRI foram submetidos à etapa de identificação para compor o conjunto das estrelas, e o mesmo foi feito para objetos da lista BVRI.

As estrelas foram separadas segundo critérios diferenciados. Aqui, realizamos o mesmo procedimento da referência Cypriano *et al.* (2004):

(i) objetos não-saturados e menos brilhantes, com $R \ge 20,00$ mag, fazer o diagrama ou gráfico de dispersão da largura à meia altura FWHM e da magnitude R;

(ii) objetos com brilhos maiores, com R < 20,00 mag, usar o índice CLASS do SExtractor (estrela CLASS=1).

Como resultado da identificação pelo índice estelar CLASS=1, para o caso de R < 20,00, não foi encontrado nenhum objeto classificado como estrela, nas listas de objetos VRI e BVRI.

Em continuação à rotina de trabalho 2, na qual os próximos itens são checar as estrelas nas imagens, usar o índice estelar CLASS e fazer o gráfico da largura à meia altura FWHM na banda R, é necessário calcular FHWM, a partir dos valores individuais de algumas estrelas, o que é feito em seguida.

Cálculo da Largura à Meia Altura Máxima para as Estrelas

Nos arquivos de imagens, verifica-se que as estrelas mais facilmente reconhecidas aparecem saturadas, dificultando selecioná-las para o cálculo da largura à meia altura máxima. Então, na lista de todos os objetos detectados na banda R, filtramos os que tinham índice CLASS=1, e verificamos se constavam da lista de objetos VRI. Somente 3 estrelas no campo foram confirmadas; nas imagens, confirmamos que não eram estrelas saturadas e pertenciam a quadrantes diferentes. Essas três estrelas foram usadas para o cálculo e seus atributos são mostrados na Tabela 3.2.

Tabela 3.2: Atributos das estrelas usadas no cálculo da largura à meia altura máxima (em pixels).

QUADRANTE	VRI	$FWHM_R$	R	$FWHM_V$	$FWHM_I$	$FWHM_B$
2	122	2,00	21,65	1,29	1,61	1,31
3	177	3,00	21,45	$1,\!87$	$2,\!68$	2,10
4	270	$2,\!47$	20,63	$2,\!10$	2,53	2,30

Na Tabela 3.2:

 $VRI \rightarrow n$ úmero do objeto na lista VRI;

 $FWHM_j \rightarrow$ largura à meia altura apresentada para a banda j do conjunto BVRI, valores em pixels;

 $\mathbf{R} \rightarrow$ magnitude na banda R.

Prosseguimos ao cálculo do desvio padrão amostral σ para cada banda:

$$\sigma = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$
(3.1)

em que n é o número de estrelas (n=3), x_i é o valor da FWHM individual e $\bar{x} = \overline{FWHM}$ é o valor médio. Na expressão 3.2 para a largura à meia altura máxima possível para classificarmos um objeto como uma estrela, o desvio padrão calculado foi multiplicado por 3 e adicionado² à \overline{FWHM} dos valores de três estrelas listados na Tabela 3.2, dados obtidos com o SExtractor.

$$FWHM_{max} = \overline{FWHM} + 3\,\sigma. \tag{3.2}$$

Para a banda R, obtivemos $(FWHM_{max})_R \approx 3,99$, que foi arredondado para 4,00, e $3\sigma = 2,58 \, kpc$. Fizemos ainda esse cálculo para as bandas V, I e B, para checar se os valores eram maiores que os do filtro R, e obtivemos os respectivos resultados: $(FWHM_{max})_V = 3,01; (FWHM_{max})_I = 4,01; (FWHM_{max})_B = 3,47.$

²Acrescentamos 3σ para garantir uma dispersão em torno da média. O valor de $FWHM_{max}$ resultante foi usado como limite superior para identificar estrelas.

Ao analisarmos $FWHM_{max}$ em função do comprimento de onda (λ) , e considerando o critério de difração de Rayleigh-Jeans $(1, 22 \lambda/D)$, onde D é o diâmetro da objetiva), esperávamos um crescimento linear desses valores na sequência B – V – R – I, proporcional às variações do comprimento de onda central de cada banda. Acreditamos que problemas residuais de registro entre as posições das imagens podem ter influenciado os resultados obtidos, apesar de a razão entre o maior e o menor comprimento de onda central ser inferior a 2.

Continuaremos, então, para traçar os diagramas.

Diagrama de Dispersão para Identificar as Estrelas

Os objetos da lista VRI foram dispostos em um diagrama de dispersão, da largura à meia altura FWHM e da magnitude aparente R, para separar as estrelas de menor brilho $(R \ge 20,00)$. Foi feito o mesmo para a maior FWHM obtida, que corresponde à banda I. São considerados como estrelas os objetos que obedecem à condição FWHM < 4,00 e R $\ge 20,00$. Acrescentamos ainda que também verificamos o índice estelar para objetos de brilhos menores R > 20,00 e FWHM < 4,00, e encontramos 3 com valores CLASS=1 que correspondiam a 3 estrelas, com numeração VRI: 122, 177 e 270, que constavam também na lista BVRI.

No gráfico da Fig.3.2, pode-se observar a área retangular inferior do lado direito (FWHM < 4,00 e magnitude $R \ge 20,00$), que limita os objetos classificados como estrelas. Na Fig. 3.3, o diagrama análogo foi feito para a magnitude aparente I, e a região que limita as estrelas corresponde a FWHM < 4,01 e I $\ge 20,00$.

Após fazer os diagramas para as bandas R e I, e a seleção pelo índice estelar, obtivemos os resultados:

• Banda R:

O total de 57 estrelas constando da lista VRI de objetos, sendo que nesse conjunto 34 estrelas pertenciam também à lista BVRI e 23 estrelas foram somente encontradas no

Figura 3.2: Diagrama de dispersão da largura à meia altura e da magnitude R.

Figura 3.3: Diagrama de dispersão da largura à meia altura e da magnitude I.

conjunto VRI. As três estrelas escolhidas para calcular a FWHM (class=1) também foram classificadas como estrelas com base no gráfico de dispersão (Tabela 3.2). Houve um objeto de número VRI 233, que foi classificado como estrela no diagrama de dispersão, porém trata-se de um arco gravitacional (ver Tabela 3.1) confirmado por inspeção visual das imagens e pelo índice CLASS= 0,23, o qual difere do valor considerado para estrelas.

• Banda I:

Total de 37 estrelas da lista VRI, sendo que 15 estão somente nessa lista e dentre elas 4 são estrelas diferentes das que encontramos na banda R.

Dentre as 37, apenas 22 estrelas constam da lista BVRI. Há 3 estrelas que pertencem a ambas as listas VRI e BVRI, com índice class=1 e magnitude I < 20,00 mag, porém 2 delas não foram classificadas como estrelas, segundo a análise da magnitude R.

Adotamos, para prosseguir nosso trabalho, o resultado da banda R cujo total somou 56 estrelas, mas guardamos o resultado da banda I para considerarmos na continuação do que foi desenvolvido aqui.

IMPORTANTE:

 O objeto 51, pela análise de FWHM versus mag R, havia sido classificado como estrela, porém durante o desenvolvimento do trabalho confirmamos visualmente nas imagens que é uma galáxia elíptica. O total de estrelas obtido passou a ser de 56.

2) Encontramos 33 estrelas que pertencem a ambas as listas VRI e BVRI, enquanto que 23 fazem parte somente da lista VRI.

Antes de fazermos a separação de galáxias, faremos um resumo do que foi obtido até este ponto da análise, considerando a lista de objetos VRI:

Total de objetos em comum= 293

Total de objetos sem $\arccos = 277$

Total de objetos sem arcos e nem estrelas= 221, que são os candidatos a galáxias.

OBS.:

Os objetos 129 e 261 não poderão ser analisados, porque não apresentam valores consistentes de magnitudes I. Assim, passaram a ser 219 objetos candidatos a galáxia.

3.1.3 Identificação das Galáxias do Aglomerado

A identificação das galáxias do aglomerado (Rotina 2 - item 4) A2218 foi realizada com base no Método da Sequência Vermelha do Aglomerado. Esse método foi publicado por Gladders & Yee (2000) e está baseado na verificação empírica de que um subconjunto de galáxias de um aglomerado, formado por uma população de elípticas e lenticulares (*early type*) conhecida como sequência vermelha, tem como característica que seus índices de cor estão estritamente relacionados às suas magnitudes. Em outras palavras, uma galáxia *early type* que pertence a um aglomerado apresenta uma cor específica e, por conseguinte, tem necessariamente um determinado brilho. Por isso, tais galáxias ocupam um *locus* evidente nos diagramas de cor-magnitude, a sequência vermelha do aglomerado. Como cada aglomerado observado contém essa sequência bem definida, é possível encontrar aglomerados, se procurarmos por sobredensidades de galáxias que compõem uma sequência vermelha. Esta pode ser visualizada no gráfico de índice de cor V-I por magnitude I (Fig.3.4), para valores de (V - I) próximos de 1, em que verificamos quais eram as galáxias do aglomerado, seguindo três procedimentos. Para realizar tal processo, temos que estimar o centro do aglomerado.

O Centro do Aglomerado

Consideramos como o centro do Abell 2218 a posição da galáxia dominante, que usamos como localização aproximada do centro. Essa escolha teve como argumento o fato de que, em aglomerados ricos, predominam as galáxias elípticas, sendo as maiores denominadas galáxias cD e são encontradas aproximadamente no centro, nas partes mais densas daqueles aglomerados. Em nossa amostra, corresponde ao objeto de número VRI 32, encontrado nas refs. Smail et al. (2001) e Pelló et al. (1992). Este ponto foi usado como referência na seleção de galáxias tipo "early" realizada na próxima seção, para se ter uma ideia da posição limite do arco mais distante do centro.

Na Fig.3.4, foram representadas as galáxias do conjunto de filtros VRI, já tendo sido retirados os arcos e as estrelas, que formaram subconjuntos conforme foi descrito nas seções anteriores.

Figura 3.4: Diagrama de dispersão da cor V - I e da magnitude aparente I.

METODOLOGIAS:

As galáxias que pertencem ao Aglomerado Abell 2218 foram separadas segundo as metodologias:

• Metodologia 1

VRI	RÓTULO	V - I	Ι
5	E-12	1,03	21,65
23	E-9	1,00	20,63
24	E-10	0,77	$21,\!65$
31	E-11	$0,\!94$	$21,\!45$
32	E-1	0,97	20,63
35	E-8	1,03	$21,\!65$
37	E-5	1,01	$21,\!45$
41	E-2	0,92	21,45
71	E-6	1,01	20,63

Tabela 3.3: Galáxias *early type* selecionadas visualmente, com índices de cor e magnitudes.

Figura 3.5: Imagem na banda V, mostrando parte das galáxias selecionadas. Os rótulos E correspondem às galáxias do tipo *early* e S designa as espirais.

Na imagem da banda V, foram selecionadas 9 galáxias possíveis de serem confirmadas visualmente como sendo do tipo *early*, no 1º quadrante, com base em três critérios: mais próximas da galáxia central cD (E1) e ainda situadas dentro da região dos arcos gravitacionais, o que corresponde a um raio de ~ 0, 39 Mpc; apresentando as morfologias E e S0; e orientadas aleatoriamente. Na Tabela 3.3, estão listadas as galáxias escolhidas, com

a respectiva numeração VRI, rótulos para reconhecimento na Figura 3.5, índices de cor V - I e magnitudes na banda I. Em sequência, foi feito o histograma do índice de cor V - I (Figura 3.6) do conjunto e obtivemos a média e o desvio padrão para as frequências absolutas.

Resultados obtidos para o índice V - I:

$$m = 0,97; \qquad \sigma = 0,08.$$
 (3.3)

onde m é a média e σ é o desvio padrão. As galáxias cujos valores do índice V - I estão no intervalo compreendido entre $m - 3\sigma \cong 0,70$ e $m + 3\sigma \cong 1,20$ foram consideradas como pertencentes ao aglomerado Abell 2218. Obtivemos um total de 136 galáxias pertencentes ao Abell 2218, dentre os 219 objetos analisados do conjunto VRI sem arcos e sem estrelas.

Figura 3.6: Frequência absoluta da cor V - I das galáxias elípticas VRI.

• Metodologia 2

A regressão linear por mínimos quadrados foi feita a fim de ajustar uma reta para identificar as galáxias, no *locus* da sequência vermelha. A reta foi calculada considerandose todos os 219 objetos.

Figura 3.7: Dados e reta de regressão.

Reta de regressão:

$$y = a_1 x + a_0 \tag{3.4}$$

- coeficiente angular:

$$a_1 = \frac{N \sum xy - \sum x \sum y}{N \sum x^2 - (\sum x)^2},$$
(3.5)

- coeficiente linear:

$$a_0 = \frac{\sum y - a_1 \sum x}{N},\tag{3.6}$$

em que N é o número total de objetos, x e y se referem, respectivamente, à magnitude e ao índice de cor. As somas são computadas de 1 a N. A reta resultante tem a expressão abaixo e aparece na Figura 3.7:

$$y = -0,05x + 1,94. \tag{3.7}$$

E para identificar as galáxias do aglomerado, foram calculados os erros na aproximação por regressão:

Erro médio:

$$Er_{med} = \frac{\sum |y_{reg} - y_{dado}|}{N}$$

$$Er_{med} = 0, 30;$$
(3.8)

Erro quadrático médio:

$$Erq_{med} = \frac{\sum (y_{reg} - y_{dado})^2}{N}$$

$$Erq_{med} = 0, 21;$$
(3.9)

em que y_{reg} representa a reta de regressão e y_{dado} é o valor do índice obtido com os dados do SExtractor.

Adotamos o erro quadrático médio, de modo que as galáxias selecionadas como membros do aglomerado estejam dentro do intervalo de valor y da reta de regressão $\pm 0, 21$. O resultado foi um total de 123 galáxias pertencentes ao aglomerado A2218.

• Metodologia 3

A regressão linear foi também realizada para descrever a dispersão entre o índice de cor V - I e a magnitude I, apenas para as galáxias *early type* e foi obtida a partir das 9 galáxias, listadas na Tabela 3.3. O resultado foi a reta expressa por

$$y = -0,02 \ x + 0,61. \tag{3.10}$$

Figura 3.8: Reta de ajuste e retas de erro.

Para identificar as galáxias, calculamos o erro quadrático médio Erq_{med} novamente,

considerando a diferença da equação (3.9). Realizamos um procedimento análogo ao anterior, em que objetos classificados como galáxias do aglomerado devem ter valores de índices (V - I) dentro do intervalo $y_{reg} \pm 0, 31$. A reta de ajuste e as outras referentes à soma e à subtração do erro estão representadas na Fig. 3.8. O resultado alcançado foi uma seleção de 134 galáxias pertencentes ao Abell 2218.

Os totais referentes aos objetos que restaram, ou seja, que não foram incluídos em nenhum subconjunto, correspondem ao conjunto de outros objetos, que podem conter galáxias do campo e algum outro tipo de objeto observado. O algoritmo desenvolvido aqui não contempla avaliações para a divisão desse conjunto.

Na Tabela 3.4, estão apresentados sucintamente os resultados obtidos para as três metodologias consideradas de identificação de galáxias, na etapa de composição dos subconjuntos. A listagem completa dos objetos VRI e BVRI consta no Apêndice B.

Tabela 3.4: Totais de objetos VRI por classe ou conjunto, galáxias segundo as metodologias.

Objetos VRI	Método 1	Método 2	Método 3
Galáxias	136	123	134
Arcos	16	16	16
Estrelas	56	56	56
Outros	96	83	85
Inconclusivos	2	2	2
Todos	293	293	293

Como foi mencionado, neste trabalho, não faremos a análise do Efeito de Lente Gravitacional, em que se observa galáxias do fundo orientadas tangencialmente. No campo que estudamos, as galáxias podem ter sido alteradas em decorrência desse fenômeno, e portanto não fariam parte do aglomerado de galáxias.

Na próxima seção, daremos prosseguimento ao desenvolvimento com a etapa de análise estatística. Escolhemos considerar os resultados da Metodologia 2 para esse estudo.

3.2 Análise Estatística

A análise estatística³ consistiu de alguns testes das variáveis fotométricas dos subconjuntos, para verificar a coerência dos resultados. Foram obtidas estatísticas relacionadas aos objetos de cada conjunto e foram feitas comparações entre os mesmos. As avaliações foram realizadas considerando-se as listas de objetos BVRI e VRI.

Para caracterizar uma amostra há variáveis que expressam melhor as semelhanças e as diferenças, entre seus elementos e são denominadas "variáveis robustas"⁴ da amostra. Ao final dessa análise poderemos propor quais são tais variáveis para estudar objetos em um aglomerado de galáxias.

Adiante, fazemos a análise de algumas das variáveis fotométricas dos objetos. Primeiramente, o estudo inclui todos os objetos em comum entre as listas VRI e BVRI.

Figura 3.9: Frequência absoluta das magnitudes, objetos na lista VRI.

Na Figura 3.9, são representadas graficamente as frequências absolutas do número

 $^{^{3}}$ Os conceitos da Estatística que foram aplicados neste trabalho são definidos no Apêndice A.

⁴Correspondem aos parâmetros ou variáveis que caracterizam um conjunto de dados, de maneira inequívoca, ou então que permitem minimizar os erros. No Censo Demográfico, como exemplos, podemos citar o *sexo* e a *idade* da pessoa como variáveis robustas de uma população.

Figura 3.10: Frequência absoluta das magnitudes, objetos na lista BVRI.

Tabela 3.5: Lista VRI, com bandas fotométricas, magnitudes médias e desvios padrão.

Banda	média	σ_{mag}
V	23,80	2,66
R	$23,\!67$	2,55
I	$23,\!07$	2,56

de objetos da lista VRI, segundo as magnitudes aparentes V, R e I; e, na Figura 3.10, mostramos frequências análogas para a lista BVRI. Os perfis referentes aos números de objetos VRI observados na Figura 3.9 apresentam comportamentos semelhantes. No caso de magnitudes I $\geq 26,00$, há um número bem menor de objetos detectados, em relação aos filtros V e R. Na figura 3.10, referente à lista BVRI, os perfis V, R e I do número de objetos são similares, porém o perfil para a magnitude B parece estar deslocado para a direita (maiores magnitudes), em relação às outras bandas.

Inspecionamos os dados e observamos que as galáxias menos brilhantes, na banda azul B, apresentam brilhos maiores nas outras bandas fotométricas⁵.

⁵Esse fato decorre de nossa metodologia não ter considerado a identificação das galáxias mais azuis, cujas cores estão distantes da sequência vermelha no diagrama (V - I) versus I. Essas galáxias mais azuis

Tabela 3.6: Lista BVRI, com bandas fotométricas, magnitudes médias e desvios padrão.

Banda	média	σ_{mag}
В	23,72	2,23
V	22,40	2,52
R	22,41	2,77
Ι	$21,\!56$	2,74

Na Tabela 3.5, são apresentadas as magnitudes aparentes médias para as bandas de passagem dos objetos da lista VRI. A magnitude média da banda I (23,07) é a menor, e corresponde a galáxias mais brilhantes, a maior magnitude média é a da banda V (23,80), correspondendo a objetos de menor brilho. Os valores de magnitudes médias das três bandas são muito próximos. A maior dispersão dos dados é verificada na banda V, que apresenta o maior desvio padrão, $\sigma = 2,66$. Já a banda I, apresenta o menor desvio padrão, $\sigma = 2,56$, ou seja, há menor dispersão dos valores de magnitudes.

Na Tabela 3.6, são apresentadas as magnitudes aparentes médias para as bandas de passagem dos objetos da lista BVRI. Observamos que a magnitude média B (23,72) é a maior e corresponde a galáxias menos brilhantes. O desvio padrão da magnitude R é um pouco maior que os outros, o que indica uma dispersão maior nos valores R para esse conjunto de objetos, enquanto que a banda B apresenta menor desvio padrão, ou seja, menor dispersão de magnitudes.

Ao compararmos as Tabelas 3.5 e 3.6, percebemos que, quando são considerados quatro bandas, as médias de magnitudes V, R e I diminuem, e a amostra passa a incluir apenas os objetos mais brilhantes. A partir desse resultado de nosso estudo, podemos afirmar que, quando nós aumentamos o número de bandas, a quantidade de objetos diminuiu e os ausentes têm menor brilho. Em outras palavras, perdemos informação acerca dos objetos de magnitudes maiores na nossa amostra.

não são reconhecidas como membros do aglomerado e não podem ser diferenciadas das galáxias de fundo, estas que serão usadas na análise do efeito de lente gravitacional.

Checamos a lista de objetos ausentes para verificar suas magnitudes aparentes no conjunto VRI. Constatamos que apenas 3 objetos apresentam magnitudes na banda V < 23,00, para 5 objetos, R < 23,00 e, para 8 objetos, I < 23,00. A grande maioria têm magnitudes V, R, I > 23,00. Assim, foi confirmado por que sem esses objetos na lista BVRI, as magnitudes médias diminuem.

Queremos acrescentar que o objeto VRI 286, um arco gravitacional, embora faça parte da lista BVRI, apresenta valor espúrio de fluxo na banda B, desse modo não tem valor admissível para a respectiva magnitude, porém suas magnitudes V, R e I permanecem com valores válidos.

Em seguida, considerando-se as listas BVRI e VRI, são apresentados gráficos e tabelas referentes aos arcos gravitacionais, estrelas, galáxias do aglomerado e outros objetos no campo.

Figura 3.11: Frequências absolutas das magnitudes aparentes B, V, R e I dos arcos - listas BVRI e VRI.

Banda	média	mediana	σ	σ^2
В	24,07	24,21	1,47	2,15
V	22,18	$22,\!30$	2,01	4,03
R	$22,\!45$	$22,\!59$	$2,\!07$	4,26
Ι	$21,\!69$	21,48	2,11	4,46

Tabela 3.7: Medidas de tendência central e de dispersão das magnitudes dos arcos.

Na Tabela 3.7 referente aos arcos gravitacionais, são apresentadas as medidas de tendência central das distribuições de magnitudes, média e mediana, e os parâmetros de dispersão, dados pelo desvio padrão amostral σ e pela variância amostral σ^2 . Como o conjunto de arcos é o mesmo para ambas as listas VRI e BVRI, suas frequências absolutas também são as mesmas para essas listas.

Na Figura 3.11, constam os histogramas de magnitudes aparentes das listas BVRI e VRI de arcos. Observamos maiores dispersões das magnitudes aparentes I e R, porque apresentam maiores valores do desvio padrão amostral, respectivamente 2,11 e 2,07, bem como maiores valores da variância conforme a Tab.3.7. A distribuição de magnitudes I apresenta leve assimetria para a direita (maiores magnitudes com altas frequências), pois sua mediana é um pouco menor que a média. As assimetrias observadas nas bandas B, V e R são ainda pequenas, visto que diferenças entre suas respectivas médias e medianas são menos significativas. Embora tenhamos obtido um número maior de arcos visualmente confirmados nas imagens, nesta análise avaliamos poucos arcos e um número reduzido pode introduzir um viés no resultado.

Nas Figuras 3.12 e 3.13, apresentamos as frequências absolutas de magnitudes VRI para as galáxias e para as estrelas, respectivamente. Podemos observar que as dispersões são maiores para as galáxias, o que também pode ser comprovado pelos valores da Tabela 3.8, que mostra maiores desvios padrão para galáxias em comparação com estrelas. As dispersões de magnitudes das galáxias têm valores próximos entre si, o que é confirmado pelos desvios padrão.

Figura 3.12: Frequências absolutas de magnitudes, para as galáxias VRI no aglomerado A2218.

A dispersão de magnitudes das galáxias nas três bandas são semelhantes entre si e parece indicar um grau de incompleteza amostral semelhante em cada filtro. É possível que parte da diferença obtida entre as dispersões para as estrelas advenha do fato de algumas galáxias não terem sido resolvidas (têm diâmetros menores que $FHWM_{max}$) e assim terem sido erroneamente classificadas como estrelas.

Tabela 3.8: Desvios padrão das magnitudes para galáxias e estrelas VRI.

Banda	σ galáxia	σ estrela
V	2,81	2,01
R	$2,\!90$	$2,\!12$
I	$2,\!93$	$2,\!16$

Figura 3.13: Frequências absolutas de magnitudes, para as estrelas VRI no campo observado.

Para concluir a análise de magnitudes aparentes, escolhemos a banda B para comparar as frequências de todos os subconjuntos, que se referem à lista BVRI. Como são objetos observados no comprimento de onda $\lambda = 450 \ nm$, espera-se que apresentem frequências absolutas diferentes das encontradas nas bandas R e I, como previamente sugeriu o histograma da Fig.3.10, em que aparece um número maior de objetos com magnitude B=25, de menor brilho, em comparação com as outras magnitudes (V, R e I).

Na Figura 3.14, observamos as frequências de magnitudes na banda fotométrica B, para os subconjuntos de arcos, galáxias do aglomerado, estrelas e outros objetos. Percebemos que as dispersões dos dados têm valores próximos para os conjuntos de estrelas, de arcos e de outros objetos; já as galáxias apresentam dispersão maior. Na Tabela 3.9, listamos as médias, desvios padrão e variâncias relativos à magnitude B para os subconjuntos. Verificamos que as galáxias apresentam a menor magnitude média B igual a 22,77, sendo

Figura 3.14: Frequência absoluta da magnitude B para os subconjuntos de objetos.

que a mediana para esta distribuição é 22,97, valor que divide a amostra à metade, portanto 50 % das galáxias do aglomerado têm magnitude B menor que ≈ 23 .

Nossa amostra é limitada por magnitude aparente, ou seja, identificamos os objetos presentes na imagem até um valor limite de magnitude aparente, correspondente ao objeto de brilho mais fraco detectado. Quanto maior for o tempo de exposição, maior será o número de objetos de menor brilho detectados. Entretanto, uma amostra só poderá ser considerada completa se incluir todas as galáxias até um limite de magnitude absoluta. Uma amostra assim definida permite-nos obter resultados estatisticamente mais precisos. Na amostra analisada, se consideramos que todas as galáxias estão à mesma distância do aglomerado, podemos notar nos histogramas apresentados um alto grau de incompleteza, em virtude da crescente diminuição do número de galáxias para magnitudes mais altas (baixa luminosidade).

Vamos continuar nosso estudo com a avaliação dos índices de cor, para estrelas, arcos

CAPÍTULO 3. ANÁLISE DOS DADOS

Conjunto	média	σ^2	σ
Estrelas	24,73	2,68	1,64
Arcos	$24,\!07$	$2,\!15$	1,47
Galáxias	22,77	$5,\!16$	2,27
Outros	24,80	$3,\!55$	1,88

Tabela 3.9: Médias, variâncias e desvios padrão da magnitude B para os subconjuntos.

gravitacionais e galáxias pertencentes ao Abell 2218.

Índices de Cor

Nesta seção, iniciamos a análise dos histogramas de cor e dos diagramas de cor versus cor, todos referentes aos dados de objetos das listas VRI e BVRI. Estudamos ainda a relação linear entre os índices de cor. As magnitudes obedecem à escala logarítmica, portanto o índice de cor, que é a diferença entre duas magnitudes, corresponde à razão entre dois fluxos, conforme a Eq.(2.1).

Vamos analisar o índice de cor (V - I), porque é usado no Método da Sequência Vermelha. Este índice foi muito utilizado por observadores do *Hubble Space Telescope*. Primeiramente, apresentamos (V - I) em histogramas de frequências absolutas para cada conjunto de objetos; depois, foram calculadas as médias e medidas de dispersão dos dados, que são a variância e o desvio padrão amostrais; e representamos também os diagramas de cor-cor para pares de magnitudes escolhidas.

Figura 3.15: Frequências absolutas da cor (V - I) de todos os objetos - esquerda VRI e direita BVRI.

Os histogramas de frequências absolutas do índice de cor (V - I), na Figura 3.15,

para ambas as listas de objetos VRI e BVRI, mostram que tais distribuições têm perfis similares e podem ser aproximadas por curvas gaussianas ou normais.⁶

Figura 3.16: Frequência absoluta do índice de cor (V - I) das estrelas VRI.

Tabela 3.10: Médias e dispersões (variância e desvio padrão) do índice de cor (V - I), para os subconjuntos VRI.

Conjunto	média	σ^2	σ
Estrelas	0,90	0,36	0,60
Arcos	0,49	1,31	1,14
Galáxias	0,88	$0,\!02$	$0,\!15$

A comparação entre as frequências de cor (V - I) das estrelas na Fig.3.16, dos arcos na Fig.3.17 e das galáxias do aglomerado na Fig.3.18, evidencia que a dispersão dos índices

 $^{^{6}\}mathrm{A}$ distribuição normal ou gaussiana é dada pela equação:

 $f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} exp\{-\frac{(x-\mu)^2}{2\sigma^2}\},$

com valor esperado μ e variância σ^2 . Para tais distribuições, a largura à meia altura é dada por $FWHM \approx 2\sqrt{2 \ln 2} \sigma$.

ANÁLISE DOS DADOS

Figura 3.17: Frequência absoluta do índice de cor (V - I) dos arcos.

Figura 3.18: Frequência absoluta do índice de cor (V - I) das galáxias do Abell 2218 - lista VRI.

de cor é menor para as galáxias que para as estrelas e arcos, o que é comprovado na Tabela 3.10, em que a variância σ^2 e o desvio padrão σ das galáxias correspondem aos menores valores calculados.

Os arcos gravitacionais da Figura 3.17 são o resultado do efeito de lente gravitacional, de maneira que as imagens de galáxias mais distantes que as do aglomerado (lente), foram distorcidas. Existe uma probabilidade associada à ocorrência desse efeito, que irá depender da distribuição de massa da lente, do posicionamento dos objetos em distância, do alinhamento da lente na linha de visada. Podemos fazer a aproximação⁷ de que as galáxias do A2218 estejam todas à mesma distância do observador, isto é, têm o mesmo desvio para o vermelho z. A eficiência da lente em defletir a luz das galáxias de fundo é função das distâncias entre o observador, a lente e as galáxias. Estas, por sua vez, situam-se a diferentes distâncias, ou seja, existe uma dispersão em termos de distâncias. Esse fato pode ser a razão de os arcos apresentarem um valor maior de dispersão no histograma do índice de cor.

As galáxias membros do Abell 2218 se encontram, em sua maioria, em um intervalo estreito de valores $\Delta(V-I)$, o que pode ser confirmado pela largura à meia altura FWHM $\cong 0,36$, da distribuição de cores na Figura 3.18. Esses resultados estão consistentes, porque decorrem de as galáxias terem sido selecionadas com base no método da Sequência Vermelha.

⁷Aproximação de Lente Fina.

Relação Linear entre Índices de Cor

Figura 3.19: Diagrama cor-cor para arcos gravitacionais.

Prosseguimos com a análise da relação linear entre os índice de cor, que é feita por medidas de covariância e do coeficiente de correlação linear. Vamos avaliar tais associações entre os pares de índices (V - R) x (R - I) e (B - V) x (R - I), para os arcos gravitacionais, as galáxias do aglomerado e o subconjunto de outros objetos, contidos na lista BVRI. Na Fig.3.19, representamos os diagramas de dispersão cor-cor desses índices para os arcos. Em ambos os gráficos, as dispersões sugerem que não há correlações significativas. Então, para comprovar esse fato, calculamos a covariância e a correlação linear, e os valores resultantes constam na Tabela 3.11.

Tabela 3.11: Covariância e correlação entre os índices, para os arcos gravitacionais.

Covariância	(V - R)	(B - V)
(R - I)	-0,16	-0,06
Correlação	(V - R)	(B - V)
(R - I)	-0,23	-0,06

Analogamente, para as galáxias representamos os pares de índices, em diagramas corcor, o que pode ser visto na Figura 3.20, e calculamos os respectivos parâmetros para

investigar se existe uma relação linear. O resultado consta na Tabela 3.12.

Figura 3.20: Diagrama cor-cor para as galáxias de A2218.

Tabela 3.12: Covariância e correlação entre os índices, para as galáxias de A2218.

Covariância	(V - R)	(B - V)
(R - I)	-0,37	0,04
Correlação	(V - R)	(B - V)
(R - I)	-0,98	0,11

Tabela 3.13: Covariância e correlação entre os índices, para outros objetos.

Covariância	(V - R)	(B - V)
(R - I)	-0,67	-0,45
Correlação	(V - R)	(B - V)
(R - I)	-0,75	-0,33

O gráfico, na Fig.3.20a, mostra que existe uma relação linear entre os índices (V - R) e (R - I); já na Fig.3.20b, o diagrama mostra que os dois índices não estão relacionados

Figura 3.21: Diagrama cor-cor para outros objetos.

linearmente.

Fizemos também os diagramas cor-cor para o subconjunto de outros objetos, apresentado na Fig.3.21 e calculamos a covariância e a correlação para o conjunto, resultado na Tab.3.13, entre os mesmos pares de índices, que havíamos considerado para as galáxias do aglomerado e os arcos. Não incluímos, neste estudo, os gráficos de todos os pares possíveis dos índices de cor, para as magnitudes B, V, R e I.

Resumimos nossos resultados para avaliar as associações, em seguida.

• Arcos gravitacionais:

 $(V - R) \ge (R - I) \rightarrow Obtivemos -0,16$ para a covariância, valor que denota associação (ou relação) não significativa entre as incertezas das variáveis; do mesmo modo, para o coeficiente de correlação linear obtivemos -0,23, que confirma não ter sido identificada uma relação linear entre esses índices.

 $(B - V) \ge (R - I) \rightarrow O$ resultado para a covariância foi -0,06, o que significa que a relação não é significativa entre as incertezas das variáveis; e o resultado -0,06 para o coeficiente de correlação linear confirma não ter sido identificada uma relação entre os índices.

Obs.1: Lembramos que dispomos dos dados de um número reduzido de arcos, e para tal avaliação o ideal é trabalhar com muitas medidas, contudo se ambas a covariância e a correlação são pequenas, há forte indicação de que os índices de cor não estejam relacionados linearmente.

Obs.2: O arco de número VRI 286 não foi incluído, nesta avaliação, por apresentar valor espúrio para a magnitude B.

• Galáxias do Abell 2218:

 $(V - R) \ge (R - I) \rightarrow O$ valor obtido para a covariância -0,37 indica que as incertezas dos índices estão fracamente relacionadas, porém a correlação de -0,98 é classificada como forte negativa. Nesse caso, pode-se fazer o ajuste de uma reta aos dados, por regressão ou outro método, o que fazemos mais à frente.

 $(B - V) \ge (R - I) \rightarrow A$ covariância resultante foi 0,04 e significa que não há relação entre as incertezas; e o resultado de 0,11 que corresponde a um coeficiente de correlação fraca, confirma não ter sido identificada uma relação linear entre os índices.

• Subconjunto outros objetos:

 $(V - R) \ge (R - I) \rightarrow O$ valor obtido para a covariância -0,67 indica que as incertezas dos índices estão moderadamente relacionadas, a correlação de -0,75 é moderada negativa entre os índices.

 $(B - V) \ge (R - I) \rightarrow A$ covariância de -0,45 indica que a relação é fraca entre as incertezas; e a correlação fraca negativa de -0,33 confirma não haver relação linear entre os índices.

Estudamos o gráfico em que há correlação forte, separando as galáxias em grupos a fim de compreender melhor a relação entre os filtros V, R e I, que é mostrada no diagrama cor-cor da Fig.3.22.

Grupos:

1) R menor, V e I maiores – 4 galáxias, que representam 3,25% do total de 123 galáxias;

Figura 3.22: Diagrama cor-cor com grupos de galáxias de A2218.

- 2) R, V e I comparáveis 116 galáxias ou 94,31% do total;
- 3) V e I menores e R
 maior 3 galáxias ou 2,44% do total.

Quando consideramos o par de índices (B - V) e (R - I), as correlações e covariâncias são fracas para todos os conjuntos, mas a análise tornou clara que, ao considerarmos os índices (V - R) e (R - I), a correlação é fraca para os arcos, porém para as galáxias do aglomerado é forte e para outros objetos é moderada. A constatação de que a correlação é moderada, para o subconjunto de outros objetos, requer que sejam feitos estudos para explicar o resultado. A correlação fraca dos arcos se deve a eles serem galáxias localizadas atrás do aglomerado, em distâncias diferentes do observador, portanto, não apresentam dependência evolutiva. No caso das galáxias, a correlação observada entre V e I ocorre devido à maneira de construção da metodologia de identificação das galáxias do aglomerado, baseada na Sequência Vermelha.

O gráfico da Fig.3.20a mostra a reta de ajuste via regressão linear por mínimos quadrados, usando uma planilha⁸, a qual tem como expressão:

⁸Testamos esse recurso quando fizemos a regressão linear por método de mínimos quadrados, na subseção intitulada "Identificação das Galáxias do Aglomerado". A reta resultante na planilha *Excel* foi a mesma que obtivemos.

$$y = -0,98 \ x + 0,89, \tag{3.11}$$

com $R^2 = 0,95$, que é uma medida do grau de proximidade entre as variáveis dependentes estimadas (V - R) e os seus valores na amostra, por meio da relação linear. R = 0,98 é o módulo da correlação entre os dois índices, e quando $R^2 = 1$ tem-se o ajuste perfeito e a variável dependente é calculada com a máxima precisão. Para o par de cores (V - R) e (I - R), existe um ótimo ajuste. Neste estudo, não fazemos a avaliação das relações de ordem superior entre as variáveis.

O cálculo dos índices de correlação linear é uma das etapas que está inserida, na estatística de análise multivariada dos dados. Esse é um método de classificação dos dados, o qual tem como objetivo formar agrupamentos de elementos, a classificação final, que apresentam um conjunto de características em comum. A correlação entre duas variáveis permite obter a variável dependente a partir da variável independente, por uma relação linear. O processo visa reduzir o número de variáveis a fim de formar um conjunto mínimo, que caracterize o sistema estudado e seja representativo da amostra.

Dispersão de Elipsidade x Ângulo de Orientação

Apresentamos, para terminar, o gráfico de dispersão de elipsidade e do ângulo de orientação, para as galáxias BVRI e os arcos gravitacionais, na Figura 3.23. Não identificamos nenhuma relação aparente entre as duas variáveis. Contudo, como os ângulos possíveis pertencem a um largo intervalo no espaço, $\theta \in [-\pi/2, \pi/2]$, uma alternativa para testar se há relação é usar a técnica de *binning*⁹ das duas variáveis, e depois fazer o diagrama de dispersão e o cálculo da correlação linear.

 $^{{}^{9}}$ É o recurso de agrupamento dos valores em um número menor de intervalos (*bins*).

Figura 3.23: Diagrama de dispersão da elipsidade e do ângulo de orientação.

3.3 Esboço do Algoritmo de Classificação

Antes de aplicar a metodologia de classificação aos dados, é necessário fazer a redução dos mesmos, para corrigir dificuldades inerentes à técnica de observação astronômica, depois fazer a identificação dos objetos com *softwares* específicos e gerar arquivos de dados e imagens, que contenham o conjunto de informações a ser analisado, incluindo variáveis de saída previamente escolhidas. Após isso, podemos iniciar o processo de classificação.

O esboço do algoritmo computacional para identificar e classificar objetos, no campo do aglomerado de galáxias, é composto dos estágios:

- Divisão das imagens em quadrantes. Separação dos objetos nos quadrantes por intervalos de coordenadas, para cada banda.
- Identificação dos objetos que existem em comum no campo, para um conjunto disponível de bandas fotométricas (ou de passagem):
 - Classificar em ordem crescente de X;
 - Copiar os objetos classificados em colunas adjacentes (número, X, Y);
 - Selecionar (verificar) quais são os objetos em comum entre os conjuntos de

filtros (BVRI e VRI), por comparação das coordenadas (considerar incertezas);

• Listar os conjuntos de objetos em comum, entre os filtros VRI e BVRI.

Obs.1: Na comparação, usar como referência o filtro do menor número de objetos. Obs.2: Quando necessário, checar os objetos nas imagens.

3. Calibração das magnitudes aparentes.

Procurar uma galáxia em cada quadrante, para ajustar as constantes das magnitudes. Usar catálogos de referência.

4. Composição dos conjuntos de objetos:

• 1º conjunto: Identificar nas imagens os arcos gravitacionais e se foram detectados pelo SExtractor. Listá-los. Subconjunto de arcos formado, retirar da listagem e analisar os objetos que restaram nas listas VRI e BVRI;

• 2º conjunto: Identificar as estrelas. Calcular FWHM. Usar o índice estelar CLASS, para separar as candidatas a estrelas, para objetos que obedecem à condição de magnitude aparente R < 20,00, isto é, de maior brilho. Depois, fazer o gráfico de dispersão da largura à meia altura FWHM e da magnitude aparente R, e também o mesmo gráfico para o maior valor da FWHM, para separar as estrelas dos outros objetos; nesse caso, são considerados estrelas aqueles objetos que obedecem à condição mag $R \ge 20,00$ (objetos não-saturados) e FWHM < 4,00. Subconjunto de estrelas formado, retirá-las das listas e analisar os objetos restantes;

Obs.1: CLASS - índice estelar; 0 para galáxia e 1 para estrela.

Obs.2: Para calcular a FWHM, escolher três estrelas não-saturadas (índice CLASS = 1), em quadrantes diferentes.

 3º conjunto: Identificar as galáxias do aglomerado. Estimar o centro do aglomerado. Usar fluxo na banda fotométrica, para fazer o gráfico de índice de cor V-I versus magnitude aparente I (obter Sequência Vermelha do Aglomerado).

Selecionar galáxias por três métodos:

(a) Índice de cor (V - I) médio de galáxias do tipo "early", que foram detectadas.

(b) Regressão linear por mínimos quadrados, para ajuste da sequência vermelha, considerando todos os objetos que não pertencem aos conjuntos anteriores.

(c) Regressão linear com base no diagrama de dispersão do índice (V - I) e magnitude aparente I, somente dos dados das galáxias do tipo "early".

Primeiro, listar galáxias identificadas em V, R e I, em seguida, as galáxias em B, V, R e I.

5. Análise Estatística dos conjuntos:

• Fazer histogramas das magnitudes de todos os conjuntos VRI e BVRI. Compará-los: medidas de tendência central (média e mediana) e da dispersão (desvio padrão e variância).

• Estudar os índices de cor. Fazer histogramas de índices de cor e diagramas de dispersão cor-cor (V-R, B-V e R-I), para arcos, galáxias e outros objetos. Compará-los por medidas de dispersão e da relação linear (covariação e correlação) entre as variáveis.

- Fazer outros diagramas de dispersão, por exemplo: elipsidade e orientação θ .
- Avaliar a consistência dos resultados de gráficos e tabelas.

6. Listar os conjuntos finais nos filtros VRI e BVRI.

FIM

CONSIDERAÇÕES FINAIS

Consultamos o Banco de Dados Astronômicos do SIMBAD, através do Catálogo RC3, para comparação e validação do nosso algoritmo. Procuramos alguns objetos pelo sistema equatorial de coordenadas e encontramos um total de 29. Checamos nas listas de subconjuntos VRI e BVRI, se haviam sido classificados corretamente por coordenadas, tipo e fotometria e constatamos que, para a maioria de 26 objetos, a resposta foi sim. Não foram classificado corretamente 2 estrelas e 1 arco gravitacional. A lista desses objetos nos subconjuntos pode ser consultada no apêndice B.

Neste ponto, respondemos às perguntas que fizemos na subseção denominada Listas VRI e BVRI.

 a) Em que banda fotométrica observamos o maior número de galáxias do Aglomerado Abell 2218?

R: Como avaliamos objetos em comum entre conjuntos de bandas, o número de galáxias é o mesmo obtido para todas as bandas, isto é, 123 galáxias na lista VRI e 97 galáxias na lista BVRI (Apêndice B).

b) Em que banda fotométrica observamos o maior número de galáxias?

R: Novamente, o número de galáxias obtido é igual para todas as bandas. Os totais de galáxias, somando-se arcos gravitacionais e galáxias pertencentes ao Abell 2218, foram de 139 para a lista VRI e de 113 para a lista BVRI.

c) Em que banda observamos o maior número de estrelas?

R: O raciocínio é análogo ao das respostas anteriores. Total de 56 estrelas na lista VRI e de 33 estrelas na lista BVRI.

Obs.: Os totais originais de objetos observados em cada banda fotométrica diferem entre si e foram mostrados na seção 2.3.2.

d) Que tipo de objeto foi excluído ao considerarmos a lista BVRI, em relação à lista
VRI? Os seguintes objetos: 23 estrelas (41,07 %), 26 galáxias (18,71 %) e 27 objetos (32,53 %) restantes no campo.

O algoritmo não analisou o subconjunto de outros objetos, para identificar a que classe pertencem e pode haver galáxias do campo entre eles. Consideramos os resultados da aplicação da Metodologia 2 (seção 3.1.3) para identificar as galáxias do aglomerado, porque o método de regressão por mínimos quadrados é confiável, porém não fizemos testes para verificar qual é a metodologia mais adequada.

Nosso algoritmo está terminado até este ponto do estudo e cumpriu o objetivo proposto de classificar objetos estatisticamente, para que seja separada uma amostra a ser analisada no contexto da lente gravitacional. O próximo passo é implementá-lo computacionalmente, fazendo a codificação em uma linguagem de programação, por exemplo o Fortran, o C ou o Phyton. Precisamos testar sua eficiência através da comparação dos resultados da classificação com catálogos de objetos.

Capítulo 4

Conclusões e Perspectivas

Neste trabalho, elaboramos um algoritmo com o objetivo de testar uma metodologia para identificar e classificar objetos no campo do Aglomerado de Galáxias Abell 2218, e esboçamos suas etapas para que futuramente seja implementado em um código numérico. Existem algumas etapas prévias à execução do nosso método, que são a redução dos dados, a geração dos arquivos de dados e imagens e a identificação dos objetos nas imagens. O algoritmo envolve as tarefas principais de seleção de objetos em comum, calibração das magnitudes, composição de subconjuntos e classificação. Alguns testes para verificar minimamente a coerência dos resultados foram feitos por meio da obtenção de estatísticas relacionadas aos subconjuntos identificados. Na classificação final, agrupamos quatro subconjuntos: arcos gravitacionais, estrelas, galáxias do A2218 e objetos restantes no campo observado.

As estrelas foram selecionadas basicamente por diagramas de dispersão da largura à meia altura FWHM e da magnitude R, e pelo índice CLASS do *SExtractor*. Os arcos foram selecionados visualmente nas imagens, mas podem ser usados outros métodos como a análise da lente gravitacional. As galáxias foram selecionadas em um diagrama de cor (V - I) e magnitude I, com base na ideia da *Sequência Vermelha do Aglomerado* (RCS). Utilizamos três metodologias para identificação das galáxias pertencentes ao aglomerado, sendo que o resultado adotado foi o da regressão linear por mínimos quadrados para ajuste da reta, método conhecido e muito utilizado, em que consideramos os objetos que haviam

restado após identificarmos os arcos e as estrelas.

Para comparação dos resultados da classificação final com catálogos já existentes, consultamos o Banco de Dados do SIMBAD por meio do catálogo RC3 - HEASARC e iniciamos a busca dos objetos para confirmar a classificação. Verificamos que a maior parte dos objetos encontrados foi classificada corretamente. Como este é um método estatístico de seleção, não é possível garantir que a identificação será correta para todos os objetos, contudo dos 29 investigados, apenas 3 foram classificados de forma errada (lista no Apêndice B). Continuaremos a consultar esse catálogo para fazer a confirmação de todos os objetos.

O estudo exploratório de todos os dados de saída do SExtractor não foi finalizado. Há dados de elipsidade, dos ângulos de orientação, de semi-eixos das elipses que representam geometricamente as galáxias, os quais podem ser avaliados como foi feito aqui, e também levando-se em consideração a lente gravitacional, efeitos fraco e forte. Existem ainda dados de áreas e dos fluxos das isofotas, os quais devem constituir parte do estudo para continuar o algoritmo, permitindo aprimorá-lo e ampliá-lo. Algumas questões¹ também não foram consideradas, como magnitudes de ponto zero, correções de extinção, e medidas da qualidade e de profundidade das imagens. Não incluímos a identificação das galáxias azuis na metodologia e será necessário aplicar uma outra técnica diferentes da RCS para a seleção dessas galáxias.

O método desenvolvido para o algoritmo numérico está baseado no estudo estatístico exploratório dos objetos e na ideia de similaridade². A avaliação da similaridade permite obter conjuntos mais homogêneos de objetos selecionados. Quando situamos parâmetros associados às propriedades de objetos dentro de intervalos e os agrupamos segundo uma classificação, estamos utilizando intrinsecamente a noção de similaridade. Os projetos

¹No Portal MAST de estudo de casos do Hubble, existe uma ferramenta para representar graficamente a sequência vermelha, a qual considera algumas das questões citadas:

https://mast.stsci.edu/portal/Mashup/Clients/Mast/Portal.html (acesso em setembro de 2015).

²O conceito de similaridade admite que objetos de mesma natureza apresentam características similares, por isso têm determinados parâmetros em comum, cujos valores se situam em intervalos restritos e que podem ser usados para diferenciá-los de outrem.

de pesquisa com abordagem estatística, como os censos demográficos, aplicam tal ideia e utilizam a noção de variáveis robustas.

A avaliação estatística feita, neste trabalho, mostrou que as variáveis magnitude e índice de cor podem ser consideradas como robustas na classificação de objetos celestes, no campo de um aglomerado de galáxias. Observamos que, quando consideramos um número maior de bandas fotométricas, os objetos de brilho menor são excluídos da amostra. Portanto, há que ser avaliado o custo e o benefício em se considerar um número muito grande de bandas e essa conduta irá depender dos objetivos do projeto de observação astronômica.

Podemos concluir ainda que nosso método, em sua forma final, contemplou o objetivo inicialmente proposto de identificar e classificar objetos, no campo do aglomerado de galáxias. Nossa meta, a longo prazo, é desenvolver um código numérico de classificação de objetos para refinar a seleção dos subconjuntos de estrelas, galáxias do aglomerado, arcos e outros objetos observados, e que permita separar a melhor amostra para ser analisada no contexto da lente gravitacional.

Existem algumas perspectivas de continuidade do trabalho:

- Comparar os resultados com a literatura e os bancos de dados digitais, como o Sloan Digital Sky Survey, buscando os espectros das galáxias no campo do aglomerado Abell 2218;
- Implementar a programação computacional do algoritmo;
- Avaliar as informações que restaram, em outras etapas, como por exemplo o estudo da lente gravitacional;
- Realizar testes para verificar o método da sequência vermelha;
- Incluir no algoritmo a seleção de galáxias do tipo *late* (espirais e irregulares);
- Validar o algoritmo através da análise de outros aglomerados;
- Fazer a análise da lente gravitacional da amostra selecionada.

A próxima etapa de avaliação do algoritmo será analisar os dados do Aglomerado de Galáxias Abell 2125, pois dispomos de dados do Telescópio Espacial Hubble. Esse aglomerado também apresenta os efeitos de lente gravitacional forte e fraca.

Referências Bibliográficas

- Abell, G. O., 1959, ASPL, v. 8, 366, 121.
- Abell, G. O., 1958, ApJS, v. 3, 211.
- Abell, G. O., Corwin, H. G., Jr., & Olowin, R. P., 1989, ApJS, 70, 1.
- Bertin, E., & Arnouts, S., 1996, A& AS, 117, 393.
- Cypriano, E. S., Sodré Jr, L., Kneib, J. P., & Campusano, L. E., 2004, ApJ, 613, 95. Cannon, D. B., Ponman, T. J., & Hobbs, I. S., 1998, MNRAS, 000, p. 1-16.
- de Vaucouleurs, G., de Vaucouleurs, A., Corwin, H. G., Buta, R. J., Paturel, G., &
- Fouque, P., 1991, Third Reference Catalogue of Bright Galaxies (RC3), Ed. Springer-Verlag, New York.
- Dreyer, J. L. E., 1895, MmRAS, v. 51, 185.
- Dreyer, J. L. E., 1888, MmRAS, v. 49, p.1.
- Gilbank, D. G., Gladders, M. D., Yee, H. K. C., & Hsieh, B. C., 2011, AJ, v. 141, i.
- 3, article id. 94, 17 pp.
- Gladders, M. D. & Yee, H. K. C., 2000, AJ, 120, 2148.
- Herschel, J. F. W., 1864, RSPT, 154, 1.
- Ho, P. Y., 2000, Li, Qi and Shu: An Introduction to Science and Civilization in China, Ed. Dover Publications, Inc., New York, 265 p.
- Hsieh, B. C., Yee, H. K. C., Lin, H., & Gladders, M. D., 2005, ApJS, 158, 161.
- Hubble, E., 1958, The Realm of the Nebulae, Ed. Dover Publications, Inc., New York, 207 p., ISBN 486-60455-1.
- Lodge, O. J., 1919, Nature, 104, 354.

Matthews, T. A., Morgan, W. W., Schmidt, M., 1964, ApJ, v. 140, p.35.

Messier, C., 1781. Catalogue des Nébuleuses & des amas d'Étoiles. Connoissance des Temps for 1784, p. 227-267.

Messier, C., 1780. Catalogue des Nébuleuses & des amas d'Étoiles. Connoissance des Temps for 1783, p. 225-249.

Messier, C., 1780a. Errata important, Année 1783. Catalogue des Nébuleuses, p. 225. Announce of the discovery of the Messsier objects M69 and M70. Connoissance des Temps for 1783, p. 408.

Messier, C., 1774. Catalogue des Nébuleuses & des amas d'Etoiles, que l'on découvre parmi les Étoiles fixes sur l'horizon de Paris, Mémoires de l'Académie Royale des Sciences for 1771, Paris, pp. 435-461 + Pl. VIII.

Neto, G. B. L., http://www.astro.iag.usp.br/gastao/AglomeradoGal/ Aglomerado-deGalaxias.html, último acesso em 2015.

Pelló, R., Le Borgne, J. F., Sanahuja, B., Mathez, G., & Fort., B., 1992, A& A, 266,6.

RC3 - Third Reference Catalog of Bright Galaxies - HEASARC - NASA, http://heasarc.nasa.gov/W3Browse/all/rc3.html, acesso em 2014.

Rhainani, I. B., 1603, Uranometria.

Saraiva, M. F. O., Saraiva, K. S. O., & Müller, A. M.,

http://www.if.ufrgs.br/fis02001/aulas/Aula24-132.pdf, último acesso em 2015.

Schneider, P., Ehlers, J., and Falco, E. E., 1992, "Gravitational Lenses", Ed. Springer-Verlag.

Smail, I., Kuntschner, H, Kodama, T., Smith, G. P., Packham, C., Fruchter, A.S., & Hook, R. N., 2001, MNRAS, 323, 839.

Sodré Jr, L., http://www.astro.iag.usp.br/ laerte/, último acesso em 2015.

Szalay, A. S., Kunszt, P., Thakar, A., Gray, J. & Slutz, D., 2000, Astronomical Data Analysis Software and Systems IX, ASP Conference Series, Eds. Nadine Manset, Christian Veillet, and Dennis Crabtree. v. 216, p.405, ISBN 1-58381-047-1.

Xiaochun, S., & Jing, T., 1993, Proc. Kon. Ned. Akad. v. Wetensch., v. 96, 4, 503.

Zwicky, F., Herzog, E., Wild, P., Karpowicz, M., & Kowal, C., 1961-68, Catalogue of Galaxies and of Clusters of Galaxies, Calif. Inst. of Techn., Pasadena, 6 vols.Zwicky, F., Zwicky, M.A., 1971, Catalogue of selected compact galaxies and of posteruptive galaxies, Guemligen: Zwicky, Bibcode 1971cscg.book.

Apêndice A

CONCEITOS DA ESTATÍSTICA

A.1 Medidas de Tendência Central

São parâmetros de análise estatística da distribuição de dados, que está representada em forma de frequências (histograma). Essas medidas avaliam o posicionamento da distribuição em relação o eixo central. As medidas de tendência central são a média aritmética, a mediana e a moda.

MÉDIA

$$\bar{x} = \frac{1}{N} \sum x_i,\tag{A.1}$$

em que N é o número total de valores x e i designa cada um dos valores.

MEDIANA

É o 50[°] percentil, isto é, 50% dos valores ficam à esquerda do eixo central e o restante à direita, em uma distribuição simétrica, isto é, esse parâmetro divide a amostra ao meio.

MODA

Corresponde ao valor mais frequente de uma amostra.

A.2 Dispersão de uma Distribuição

A dispersão das observações ou dados pode ser quantificada por várias medidas, e todas são calculadas como desvios em relação à média da distribuição. Vamos definir apenas aquelas que foram usadas neste trabalho.

VARIÂNCIA

A variância s^2 é uma medida do desvio quadrático em relação à media.

$$s^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (x_{i} - \bar{x})^{2}.$$
 (A.2)

DESVIO PADRÃO AMOSTRAL

É definido como a raiz quadrada da variância. Desse modo, o desvio padrão amostral têm a mesma unidade que as observações ou dados x.

$$s = \frac{1}{N-1} \sum_{i=1}^{N} \sqrt{(x_i - \bar{x})^2}.$$
(A.3)

A.3 Avaliação da Associação Linear

A associação ou relação linear entre duas variáveis pode ser avaliada por alguns parâmetros, os quais permitem estabelecer o quanto duas variáveis podem estar relacionadas linearmente, ou seja, se são independentes ou não. Definimos, em seguida, as medidas que utilizamos.

COVARIÂNCIA

É uma medida da relação numérica entre duas variáveis aleatórias, que permite avaliar conjuntamente os desvios das variáveis em uma distribuição conjunta, em relação aos seus respectivos valores esperados. A distribuição é representada por um diagrama de dispersão. A unidade da covariância é o produto das unidades de x e de y.

$$\sigma(x,y) = E[(x-\mu_x)(y-\mu_y)] \tag{A.4}$$

em que μ_x e μ_y são as médias dos valores de x e y, respectivamente, e *E* denota o valor esperado. A covariância é positiva quando as duas variáveis sofrem alterações no mesmo sentido, crescente ou decrescente; e é negativa quando as variáveis se modificam em sentidos contrários, uma é crescente e a outra decrescente.

CORRELAÇÃO LINEAR

Mede a relação linear entre duas variáveis, mas não depende de unidades das variáveis, é adimensional.

$$\rho(x,y) = \frac{\sigma(x,y)}{\sigma(x)\sigma(y)},\tag{A.5}$$

em que $\sigma(x)$ representa o desvio-padrão da variável x e o mesmo vale para y, e $\sigma(x, y)$ corresponde à covariância.

A correlação linear entre duas variáveis aleatórias assume valores dentro do intervalo [-1,1]; temse três casos extremos: se $\rho = 1$ a relação é linear positiva perfeita e pode ser feito o ajuste da reta de coeficiente angular positivo; se $\rho = -1$ a relação é linear negativa perfeita, porém, o ajuste é dado por uma reta de coeficiente angular negativo; se $\rho = 0$, as variáveis não são correlacionadas, são independentes. Outros valores podem determinar correlações moderadas ou fracas.

A análise da associação linear permite reduzir o conjunto de variáveis a serem analisadas, porque a variável dependente pode ser obtida a partir da variável independente pela função de 1º grau ou função afim, que relaciona as duas.

Apêndice B

CONJUNTOS DE OBJETOS

Apresentamos as listas de objetos classificados pelo algoritmo. No desenvolvimento e teste da metodologia, encontramos objetos catalogados no *RC3* - *Third Reference Catalog of Bright Galaxies - HE-ASARC*, outros confirmamos visualmente para verificar se a classificação estava correta. Esses objetos estão assinalados nas listas VRI e BVRI.

B.1 Lista VRI

Nesta seção, incluímos a lista de todos os objetos VRI com a respectiva classificação, a indicação do catálogo RC3, a marca 1 que significa pertencer somente à lista VRI e a marca 12 de objetos que estão em ambas VRI e BVRI, a numeração VRI do objeto, a numeração na banda V e as magnitudes nas bandas B, V, R e I. Também estão assinaladas as galáxias elípticas e espirais visualmente observadas, assim como o arco gravitacional 101, o qual consta do catálogo RC3 e foi erroneamente classificado como objeto do campo.

	TIPO OBJ	MARCA	NUM VRI	OBJ V	V	1	R	В
	ESTRELA	1	1	706	28,13806	26,69689	26,49671	#NÚM!
	A2218	12	2	565	23,459	22,47174	23,44947	24,68956
	A2218	12	3	598	23,92261	23,02873	23,97977	25,31358
		12	4	603	26,32905	26,00828	26,59747	26,39851
HEASARC	A2218	12	5	367	19,57324	18,54377	19,59672	21,07991
		1	6	675	24,28197	23,95521	23,42355	#NÚM!
	ARCO	12	7	588	21,74783	21,04178	21,7431	22,79957
	A2218	12	8	669	22,32989	21,44234	22,38305	23,86778
		12	9	528	22,20528	21,70816	22,4749	22,96911
		12	10	716	21,65147	20,41705	21,51244	23,13238
	A2218	1	11	648	27,57521	26,9244	23,57356	#NÚM!
		1	12	511	24,88468	25,09864	25,85264	#NÚM!
	A2218	12	13	733	24,9437	23,98552	24,7971	25,86436
		12	14	478	23,30113	22,85915	24,79329	26,64308
	ARCO	12	15	568	23,66378	24,99091	23,59581	26,39717
	A2218	12	16	732	24,50574	23,58941	24,52164	26,85329
	ESTRELA	12	17	731	24,74735	23,78414	24,7869	27,15492
		1	18	487	24,943	24,47123	25,32858	#NÚM!
	A2218	12	19	426	23,45463	22,64416	23,50467	24,60315
	ESTRELA	1	20	705	27,70365	26,82653	27,93647	#NÚM!
	A2218	12	21	472	19,43603	18,51454	19,58238	20,38463
	ESTRELA	12	22	613	24,57458	23,47103	24,53246	26,25583
HEASARC	A2218	12	23	697	21,6097	20,6065	21,62984	22,96874
		12	24	482	18,21052	17,43807	18,90679	20,52312
		1	25	421	24,69053	25,68545	27,55925	#NÚM!
	ARCO	12	26	630	24,13231	23,53841	24,19523	25,37219
		12	27	687	26,50438	25,62695	26,48311	27,74068
		1	28	680	25,01152	25,64983	26,41789	#NÚM!
	A2218	12	29	475	19,99724	18,84714	19,49528	21,36737
	A2218	1	30	452	26,08736	25,31711	25,94827	#NÚM!
	A2218	12	31	481	17,53677	16,6003	17,49702	21,25365
cD ELIPTICA	A2218	12	32	278	16,4	15,43	16,42755	17,99
	A2218	1	33	490	21,41156	20,41424	21,37731	#NÚM!
		12	34	464	18,92845	18,86937	18,67604	22,10161
	A2218	12	35	470	19,07986	18,05095	19,1015	20,49231
	A2218	12	36	409	25,37541	24,484	24,96883	27,13525
	A2218	12	37	388	19,63969	18,62531	19,64957	21,05012
		1	38	403	25,69547	24,65275	24,8674	#NÚM!
	ESTRELA	12	39	489	20,12666	19,50807	20,71681	21,94273
	A2218	1	40	454	27,04997	26,47403	27,01532	#NÚM!
HEASARC	A2218	12	41	465	18,83447	17,91147	18,96413	19,43253
	A2218	12	42	463	21,71802	21,05317	22,01338	22,95641
	A2218	1	43	577	27,01841	26,42941	26,74792	#NÚM!
		12	44	633	24,48586	23,5014	24,43376	26,14473
	A2218	12	45	526	24,24656	23,32717	24,21662	25,36104
		12	46	435	26,14176	24,79923	26,18993	26,62621
	A2218	1	47	593	23,57964	22,71064	23,58108	#NÚM!
	ESTRELA	1	48	450	27,72267	26,88177	27,72861	#NÚM!
		1	49	651	27,26289	26,25193	27,30367	#NÚM!

	ARCO	10	50	507	04 4770	22 62026	24 52147	25 11212
	ARCO	12	50	527	24,4770	23,02920	24,02147	20,44040
VIS ELIPTICA	AZ218	12	51	620	20,28144	19,23395	20,2723	21,77902
		12	52	553	21,10793	20,50202	20,98804	25,50385
	A2218	12	53	599	20,24763	19,14245	20,12581	21,86765
	ESTRELA	1	54	676	27,26221	26,39028	27,7179	#NUM!
	ESTRELA	12	55	547	21,0716	20,05872	21,08314	22,46989
		12	56	474	25,92537	25,8279	26,44951	27,35672
	ARCO	12	57	407	24,4036	23,57592	24,47439	24,70561
	ESTRELA	1	58	476	27,45938	26,82692	27,9706	#NÚM!
	A2218	12	59	434	18,21075	17,1874	18,25508	19,56486
		1	60	502	26,23787	25,25996	26,1547	#NÚM!
		1	61	436	26,33776	26,22089	27,40832	#NÚM!
	A2218	12	62	442	18,50682	17,35412	18,53857	20,1354
	A2218	12	63	594	21,54111	20,54109	21,58845	22,88805
	A2218	12	64	601	21,31202	20,2895	21,72205	23,62422
	ESTRELA	12	65	484	21,04386	20,58008	21,53335	21,63061
		1	66	699	27,44419	25,52886	26,69431	#NÚM!
	ARCO	12	67	471	24,7162	23,91335	24,92524	25,61607
	ESTRELA	12	68	370	25,3641	24,38677	25,49659	26,92349
		1	69	477	26,21474	25,16526	26,30332	#NÚM!
	ESTRELA	12	70	500	23,20963	21,16435	22,71342	24,81265
G SPIRAL	A2218	12	71	595	19,64912	18,64037	19,66305	21,03672
	ESTRELA	1	72	430	27,86564	27,02014	27,29995	#NÚM!
		12	73	698	26,64341	25,70451	26,90769	27,59449
		12	74	515	23,55942	23,62834	23,81301	26,45823
	A2218	12	75	497	22.20667	21,20186	22.38205	23.52583
		12	76	713	23.69895	22.62214	23.58785	26.64816
	A2218	12	77	422	23.35408	22,44689	23.20875	24.39165
	ARCO	12	78	543	23.7227	23.09306	23,74501	24,48673
		12	79	715	23.86328	22,75288	23.80886	26,40951
		1	80	461	23 91101	23 68046	23 65371	#NÚM!
	A2218	12	81	721	21 61468	20 69395	21 61333	22 79979
	/12210	1	82	723	26 58152	25,65655	26 76839	#NIÍMI
		1	83	532	26,00102	25 96554	27 36156	#NIÍMI
	Δ2218	12	84	654	23 17329	22,00004	23 21177	24 42329
		1	85	541	27 42874	26 45305	20,21177	#NIÍMI
	LOINELA	12	86	603	21,58866	20,40000	21,1344	23 67072
		1	87	562	26,00000	20,20440	25 08660	#NIÍMI
HEASARC	Δ2218	12	88	506	20,2303	27,00000	20,00000	7/ 72020
	A2210	12	80	702	20,02100	22,34213	21,2350	27,72023
TLASARC	A2210	12	09	102	21,12101	20,14400	21,10000	22,33200
	40040	12	90	429	23,06403	24,00039	20,09007	20,07424
HEASARC	A2210	12	91	120	21,00070	21,0907	22,1211	23,04392 #NIIÍIN/I
		1	92	720	25,01799	24,02945	20,10079	
HEASARC	GALAXIA	12	93	730	25,70472	23,68411	25,19332	20,05547
	A2218	1	94	570	24,89736	24,16366	25,28565	#NUM!
	ESIRELA	12	95	535	26,70893	25,81885	27,90825	26,94348
	A2218	1	96	608	25,71255	24,92071	26,25415	#NUM!
	A2218	12	97	364	20,98736	19,97257	20,98904	22,34123
	A2218	1	98	583	26,36454	25,51085	26,55436	#NUM!
	GALAXIA	1	99	711	25,96315	24,96318	26,15112	#NUM!

	A2218	12	100	572	21,42352	20,43903	21,47457	22,55668
HEASARC	LENS	12	101	712	22,57323	21,48691	21,91941	22,86841
		12	102	681	26,7254	25,50858	26,65309	27,45605
	ESTRELA	12	103	640	26,46511	26,54261	27,11195	23,54351
		1	104	619	25,50981	24,41595	24,71766	#NÚM!
		12	105	688	25,04984	24,59024	24,53831	24,92206
	A2218	12	106	639	25,87161	25,31008	25,75621	25,74812
		12	107	666	22,28152	20,7046	21,69266	25,26424
	ESTRELA	12	108	679	22,54864	21,45923	22,69721	24,52438
		1	109	690	22,82612	22,80764	24,09715	#NÚM!
		1	110	486	25,68968	23,97693	24,81796	#NÚM!
		12	111	734	25,89864	24,83845	26,13911	26,3136
		1	112	657	26,70582	25,75344	27,21855	#NÚM!
	ESTRELA	1	113	371	26,15779	24,84244	26,25405	#NÚM!
		1	114	614	23,9271	22,84415	23,93435	#NÚM!
	A2218	12	115	677	24,82694	24,2765	25,22716	24,77345
		12	116	617	23,99118	24,02103	24,9431	26,33963
	ESTRELA	12	117	735	25,20345	25,6335	27,22337	24,6677
		12	118	627	24,45032	24,93581	25,37659	26,42275
	ESTRELA	1	119	615	24,8971	23,5601	24,63772	#NÚM!
	A2218	12	120	718	23,50281	22,74384	22,79473	24,42291
	A2218	12	121	724	21,18866	20,2264	21,2023	21,69317
	ESTRELA	12	122	710	21,45571	20,77152	21,65272	21,91205
	ARCO	12	123	678	20,49572	19,53989	20,64101	21,90937
	A2218	12	124	653	24,70651	23,90617	24,58736	25,70379
	ESTRELA	12	125	646	23,54183	22,84634	23,91169	23,83694
		1	126	670	24,99673	23,0413	25,59218	#NÚM!
		12	127	662	22,69275	21,57107	21,98977	23,08139
		12	128	656	23,6371	22,21265	23,8974	24,79403
		1	129	579	26,23454	#NÚM!	23,2619	#NÚM!
	A2218	12	130	671	22,86924	22,09795	24,3326	22,97076
	A2218	12	131	708	24,66957	23,80145	24,75999	25,34367
	A2218	12	132	563	18,73421	17,70332	18,8644	20,19144
	A2218	12	133	695	19,95216	18,96352	20,12355	21,31083
		1	134	606	24,66472	23,53939	25,02539	#NÚM!
	A2218	12	135	647	23,19055	22,17253	23,2441	24,83234
	ARCO	12	136	607	22,34812	21,58114	22,70619	24,00474
	A2218	12	137	696	19,68169	18,70036	19,82586	21,17142
		1	138	510	26,58237	25,66979	25,96916	#NÚM!
	A2218	12	139	362	22,3969	21,57341	22,76122	23,26005
	A2218	12	140	445	22,3042	21,35667	21,89557	23,84264
		12	141	334	22,77427	21,49593	23,22926	23,97809
	ESTRELA	1	142	437	26,38957	25,93797	26,524	#NÚM!
	ESTRELA	1	143	338	26,3289	25,40497	26,76036	#NÚM!
		12	144	351	24,42404	23,90756	24,6089	24,77729
	A2218	1	145	404	24,86582	24,14884	25,68051	#NÚM!
		12	146	536	19,98205	19,41716	21,08635	21,15818
	A2218	12	147	423	25,39114	24,77323	25,55966	25,84328
	A2218	1	148	341	25,6603	24,95118	25,49778	#NÚM!
	A2218	12	149	317	24,48895	23,71197	25,04834	25,18394

		12	150	411	24,75048	24,42722	25,32665	26,13497
HEASARC	GALÁXIA	12	151	188	19,45703	19,28525	17,19955	22,34101
	A2218	12	152	347	22,52036	21,67239	22,68713	23,88504
	A2218	12	153	115	17,31746	16,29055	16,58425	19,8769
	A2218	12	154	172	19,5998	18,45379	17,20298	19,82741
	ESTRELA	12	155	346	26,06156	25,26926	26,47756	25,86407
	ESTRELA	12	156	493	25,02347	24,02215	24,97097	26,42656
	ESTRELA	12	157	344	25,37928	24,60862	25,90677	26,30442
	A2218	1	158	439	25,56066	24,96159	25,3174	#NÚM!
HEASARC	A2218	1	159	198	17,59819	16,45193	17,42775	#NÚM!
		1	160	512	24,59377	23,57226	24,23324	#NÚM!
	A2218	12	161	178	19,77554	18,78225	16,8733	21,32139
	A2218	12	162	358	23,52535	22,74012	23,63163	24,93342
HEASARC	A2218	12	163	90	17,90949	16,73189	17,93611	19,60973
	ARCO	12	164	309	22,08293	21,28184	22,42631	24,20893
	A2218	1	165	306	26,10655	25,62698	26,58209	#NÚM!
	A2218	12	166	328	20,19028	19,2809	20,3519	21,64178
	A2218	1	167	302	24,3678	23,42245	24,97292	#NÚM!
	A2218	12	168	288	24,86906	24,25642	23,21696	25,5151
	ESTRELA	12	169	529	25,41224	24,26531	25,37071	26,406
	A2218	1	170	281	25,39548	24,74833	24,59448	#NÚM!
	A2218	1	171	522	25,90348	25,07155	26,57369	#NÚM!
	ESTRELA	12	172	451	25,29972	24,34289	25,35893	26,32152
	A2218	12	173	157	17,37858	16,26906	17,63943	17,9314
		12	174	384	24,97975	23,92241	24,67746	26,26652
HEASARC	A2218	12	175	343	19,35704	18,38545	19,49925	20,84738
	A2218	12	176	301	24,99646	24,3237	24,38628	25,17365
	ESTRELA	12	177	329	21,46095	19,88262	21,446	22,90512
		1	178	412	23,78577	22,51105	24,29031	#NÚM!
	ESTRELA	1	179	383	26,56751	25,85031	26,96191	#NÚM!
		12	180	263	17,2841	18,65408	18,17502	22,73301
		1	181	495	26,20484	25,31422	26,61274	#NÚM!
	A2218	12	182	533	22,46486	21,48323	22,54095	23,89112
	ARCO	12	183	521	22,2532	21,35404	22,35014	23,3325
	ESTRELA	12	184	316	25,29771	24,33764	24,04075	26,752
	A2218	1	185	321	25,03416	24,25006	24,23942	#NÚM!
	A2218	1	186	387	26,27443	25,56464	26,80947	#NÚM!
	A2218	12	187	323	22,32993	21,46843	22,71875	23,44963
	ESTRELA	1	188	468	26,31851	25,67537	26,53058	#NÚM!
	ESTRELA	12	189	440	21,23681	19,09464	20,90283	22,61758
		1	190	356	25,13182	23,72329	23,82098	#NÚM!
	ARCO	12	191	240	21,05727	20,07238	21,00588	22,17563
	A2218	12	192	226	18,57	17,6	18,7	20,06
		1	193	516	26,80043	25,14375	26,36311	#NÚM!
		1	194	283	26,06449	25,96489	26,86531	#NÚM!
		12	195	250	24,18201	23,98757	25,60864	25,58519
	A2218	12	196	297	18,38971	17,43596	18,48266	20,6973
		12	197	380	24,53698	24,15612	24,91376	24,74103
	A2218	12	198	530	22,18685	21,28767	22,44995	23,46432
HEASARC	A2218	12	199	228	19,08	18,08	19,27238	20,59

	A2218	12	200	100	17,76521	16,70996	17,05503	21,24721
		1	201	491	24,63403	23,47164	24,65906	#NÚM!
	ESTRELA	12	202	382	24,76595	24,01367	25,2063	25,15589
	ESTRELA	12	203	378	22,86693	21,48072	22,75367	24,37476
		1	204	279	25,52631	24,58242	27,00516	#NÚM!
	A2218	12	205	104	19,3689	18,44725	18,27828	21,57577
	ESTRELA	12	206	339	24,72992	23,97658	25,06883	24,85828
HEASARC	A2218	12	207	1	17,49572	16,52206	16,93548	19,08035
		1	208	386	26,44602	25,23253	22,31606	#NÚM!
	A2218	12	209	312	24,54368	23,65523	24,85302	25,61107
		12	210	342	25,7967	25,41662	26,46004	26,34415
	A2218	12	211	318	23,76744	23,01836	24,4974	24,97344
	A2218	12	212	313	19,06156	18,17321	19,43482	20,3541
		12	213	499	21,54947	21,21339	22,40076	24,67567
	A2218	12	214	385	22,41416	21,60112	23,07554	25,1607
		12	215	229	24,80108	23,69039	26,06379	25,21011
		12	216	542	23,17279	23,08771	24,00333	25,6995
		12	217	537	23,22222	22,91957	23,95938	24,21685
	ARCO	12	218	413	18,63934	21,80124	22,98081	25,56172
		1	219	525	24,4483	25,3423	26,67937	#NÚM!
	ESTRELA	12	220	295	22,46757	21,51846	21,54927	23,78747
		1	221	513	26,01998	24,63677	26,21087	#NÚM!
	A2218	12	222	280	24,68762	23,83754	25,3585	26,26901
	A2218	12	223	458	22,33891	21,41286	22,13045	23,69193
HEASARC	A2218	12	224	197	20,18441	19,2493	20,19793	21,66761
		12	225	285	23,45508	22,11115	19,98177	26,2048
	ARCO	12	226	350	22,40051	21,38547	22,46526	23,18537
	ESTRELA	12	227	360	21,61994	20,67081	21,81868	23,14384
		12	228	296	23,8368	23,47689	24,11096	24,03748
	ESTRELA	1	229	294	26,45531	25,23029	25,71553	#NÚM!
	ESTRELA	1	230	357	26,108	25,41293	26,51308	#NÚM!
	ESTRELA	1	231	325	25,64994	24,40771	25,38975	#NÚM!
	A2218	12	232	332	19,80775	18,99708	20,04934	20,92467
	ARCO	12	233	416	20,40385	19,59949	20,83829	21,896
		12	234	548	20,46782	20,44032	17,96961	25,82009
		12	235	286	25,00782	24,64742	25,14189	21,33904
	A2218	12	236	261	18,94771	17,94749	19,07923	20,49717
	ESTRELA	1	237	355	26,47656	24,16644	26,9023	#NÚM!
	A2218	12	238	142	18,34721	17,26504	19,86913	21,20455
	A2218	12	239	354	19,7336	18,85296	19,92436	21,10953
	A2218	12	240	381	24,88291	24,1024	24,99598	26,38554
	A2218	1	241	305	24,56553	23,9944	24,81314	#NÚM!
HEASARC	A2218	12	242	30	17,74045	16,74061	17,88348	19,2533
	A2218	1	243	397	26.44122	25.89217	26.8047	#NÚM!
		12	244	303	22.52417	22.11023	22.96918	23.76408
	ESTRELA	1	245	393	26.53768	25.33472	26,44241	#NÚM!
		12	246	258	19.2547	17,57633	19,46104	22.8456
	A2218	1	247	455	24.70615	24,13873	25.39191	#NÚM!
HEASARC	A2218	12	248	96	21.42725	20.5851	20.8158	23,20744
	A2218	12	249	538	22,62256	21,76932	22,81058	23,97854
	-			-	,			

	A2218	1	250	520	24,64232	23,85573	24,76142	#NÚM!
		12	251	215	19,78056	18,21438	19,70226	21,60796
HEASARC	A2218	12	252	145	20,94493	19,92334	21,45329	22,68842
HEASARC	A2218	12	253	2	17,99881	16,98151	17,91908	19,59772
		1	254	505	25,25601	25,40036	25,48128	#NÚM!
		1	255	289	24,16637	23,68187	25,27954	#NÚM!
	ESTRELA	1	256	509	24,44755	25,67781	26,52191	#NÚM!
	A2218	12	257	447	22,41163	21,48778	22,57482	23,80994
	ESTRELA	1	258	401	26,06621	25,10512	25,64422	#NÚM!
HEASARC	GALÁXIA	12	259	185	16,81967	16,16273	17,15772	20,27596
	A2218	12	260	193	23,70854	22,8027	23,87855	25,01776
		12	261	609	#NÚM!	#NÚM!	23,41508	25,83745
		1	262	120	23,76661	21,73229	27,02776	#NÚM!
		12	263	213	23,9887	23,56874	24,51665	24,55376
	A2218	12	264	130	23,48368	22,53624	23,82679	24,6821
		12	265	132	24,91867	24,54905	25,41534	25,55327
	ESTRELA	12	266	192	24,67703	23,94819	24,90855	25,67482
	ESTRELA	12	267	392	24,52325	23,74173	24,80072	25,39772
	ESTRELA	12	268	155	25,75055	25,82772	25,61152	26,30734
	A2218	12	269	23	16,78474	15,76303	16,80243	18,31625
	ESTRELA	12	270	75	21,29998	19,37946	20,62633	22,8741
	A2218	12	271	152	22,63101	21,94057	22,98423	23,34572
	A2218	1	272	199	25,00001	24,27874	25,24986	#NÚM!
	A2218	12	273	128	23,47655	22,60715	23,68009	24,97902
		12	274	117	19,26795	16,36135	16,4406	21,57664
	A2218	12	275	448	22,02711	21,05754	22,48211	22,77355
	A2218	1	276	190	26,16174	25,38603	26,3291	#NÚM!
		1	277	398	23,95758	24,57324	25,58868	#NÚM!
	A2218	12	278	249	17,06384	16,01601	17,1217	18,53598
		12	279	408	23,27998	22,75089	24,92394	25,26217
	ESTRELA	12	280	165	24,3507	23,99882	24,76815	24,4124
		1	281	431	25,22853	24,80486	26,44313	#NÚM!
		12	282	109	24,38348	24,1344	25,40221	24,79483
		12	283	84	25,42239	25,45724	26,02713	24,95752
	A2218	12	284	125	24,08044	23,22776	24,2366	24,97337
	ESTRELA	12	285	108	24,61686	24,39191	25,47276	24,54052
	ARCO	12	286	266	18,25869	16,59886	16,57059	#NÚM!
	A2218	1	287	374	23,70025	22,78354	22,22432	#NÚM!
	ESTRELA	1	288	446	25,2006	25,05435	26,23033	#NÚM!
	A2218	12	289	186	24,62962	24,06506	24,99567	24,77392
	A2218	12	290	494	25,4148	24,59378	26,75439	26,2969
	ESTRELA	1	291	141	26,49172	25,81204	26,71715	#NÚM!
	ESTRELA	12	292	438	24,53619	23,69021	23,96313	25,21496
		12	293	359	25,22159	24,24725	25,36554	25,45963

B.2 Lista BVRI

A Tabela B.1 apresenta os totais de objetos da lista BVRI, sendo que as galáxias do aglomerado foram identificadas segundo a Metodologia 2. Em seguida, incluímos a lista de todos os objetos BVRI com a classificação, a indicação do catálogo RC3, a marca 12 que significa pertencer a ambas as listas VRI e BVRI, a numeração VRI, a numeração na banda V e as magnitudes nas bandas V, I, R e B. Também estão assinaladas as galáxias elípticas visualmente inspecionadas nas imagens.

Tabela B.1: Totais de objetos BVRI por classe ou conjunto, galáxias do A2218 selecionadas segundo a Metodologia 2.

Objetos BVRI	Método 2
Galáxias	97
Arcos	16
Estrelas	33
Outros	56
Inconclusivos	1
Todos	203

	TIPO OBJ	MARCA	NUM VRI	OBJ V	V	1	R	В
	A2218	12	2	565	23,459002	22,471742	23,449473	24,689555
	A2218	12	3	598	23,92261	23,028725	23,979769	25,313584
		12	4	603	26,329051	26,008284	26,597466	26,398507
HEASARC	A2218	12	5	367	19,573237	18,54377	19,596715	21,079911
	ARCO	12	7	588	21,747826	21,041776	21,743099	22,799569
	A2218	12	8	669	22,329888	21,442345	22,383048	23,867782
		12	9	528	22,205281	21,708164	22,474896	22,96911
		12	10	716	21,651465	20,417052	21,512439	23,132379
	A2218	12	13	733	24,943704	23,985516	24,797096	25,864361
		12	14	478	23,301129	22,85915	24,793286	26,643082
	ARCO	12	15	568	23,663779	24,990907	23,595814	26,397175
	A2218	12	16	732	24,505743	23,589411	24,521639	26,853292
	ESTRELA	12	17	731	24,747351	23,784135	24,786904	27,154923
	A2218	12	19	426	23,454625	22,644163	23,504668	24,603147
	A2218	12	21	472	19,436035	18,51454	19,582378	20,384634
	ESTRELA	12	22	613	24,574583	23,471029	24,532457	26,25583
HEASARC	A2218	12	23	697	21,609695	20,606503	21,629838	22,968738
		12	24	482	18,210519	17,438074	18,906785	20,523116
	ARCO	12	26	630	24,132309	23,538406	24,195225	25,37219
		12	27	687	26,504378	25,626947	26,48311	27,74068
	A2218	12	29	475	19,99724	18,847136	19,495277	21,367374
	A2218	12	31	481	17,536769	16,6003	17,497019	21,253653
cD ELIPTIC	A2218	12	32	278	16,4	15,43	16,427552	17,99
		12	34	464	18,928451	18,869368	18,676042	22,101612
	A2218	12	35	470	19,079858	18,050948	19,101496	20,492308
	A2218	12	36	409	25,375412	24,483998	24,968831	27,135248
	A2218	12	37	388	19,639692	18,62531	19,64957	21,05012
	ESTRELA	12	39	489	20,126659	19,50807	20,716806	21,942733
HEASARC	A2218	12	41	465	18,834474	17,911475	18,964127	19,432533
	A2218	12	42	463	21,718019	21,053173	22,01338	22,95641
		12	44	633	24,48586	23,501405	24,433757	26,144734
	A2218	12	45	526	24,246564	23,327169	24,216625	25,361041
		12	46	435	26,141762	24,799228	26,189931	26,626215
	ARCO	12	50	527	24,477797	23,629265	24,521467	25,443434
S ELIPTICA	A2218	12	51	620	20,281444	19,233947	20,272297	21,779021
		12	52	553	21,107925	20,502021	20,988044	25,503847
	A2218	12	53	599	20,247633	19,142452	20,125813	21,867653
	ESTRELA	12	55	547	21,071597	20,058722	21,083141	22,46989
		12	56	474	25,925374	25,827903	26,44951	27,356716
	ARCO	12	57	407	24,403597	23,575923	24,47439	24,705605
	A2218	12	59	434	18,210749	17,187402	18,25508	19,564862
	A2218	12	62	442	18,506819	17,354119	18,538572	20,135401
	A2218	12	63	594	21,54111	20,541092	21,588455	22,888048
	A2218	12	64	601	21,312025	20,289499	21,722048	23,624216
	ESTRELA	12	65	484	21,043864	20,580081	21,533349	21,630611
	ARCO	12	67	471	24,716201	23,913353	24,925243	25,616072
	ESTRELA	12	68	370	25,364101	24,386772	25,496591	26,92349
	ESTRELA	12	70	500	23,20963	21,164348	22,713416	24,812646
G SPIRAL	A2218	12	71	595	19,649122	18,640374	19,663054	21,036721
		12	73	698	26,643407	25,704511	26,90769	27,594486
		12	74	515	23,559419	23,62834	23,81301	26,458226
	A2218	12	75	497	22,206672	21,201864	22,382048	23,525832
		12	76	713	23,698947	22,62214	23,587853	26,648163
	A2218	12	77	422	23,354083	22,446889	23,208746	24,39165
	ARCO	12	78	543	23,722704	23,093059	23,74501	24,486733
		12	79	715	23,863278	22,752885	23,808858	26,409506
	A2218	12	81	721	21,61468	20,693946	21,613332	22,799786
	A2218	12	84	654	23,17329	22,234586	23,211766	24,423288
		12	86	693	21,588658	20,264432	21,439215	23,679721
HEASARC	A2218	12	88	506	23,321886	22,34213	21,293802	24,720295
HEASARC	A2218	12	89	702	21,121809	20,144677	21,153647	22,392063
		12	90	429	25,084635	24,068392	25,095868	26,574237
HEASARC	A2218	12	91	728	21,850753	21,090697	22,1277	23,043916
HEASARC	GALÁXIA	12	93	730	25,704723	23,684109	25,193316	26,055473
	ESTRELA	12	95	535	26,708933	25,818855	27,908248	26,943477

	A2218	12	97	364	20,987362	19,97257	20,989036	22,341228
	A2218	12	100	572	21,423518	20,439026	21,474575	22,556681
HEASARC	LENS	12	101	712	22,573227	21,486906	21,919408	22,868414
		12	102	681	26,725396	25,508576	26,65309	27,456054
	ESTRELA	12	103	640	26,465115	26.542614	27.111945	23.543514
		12	105	688	25 049845	24 590238	24 538312	24 922059
	A2218	12	106	639	25,871607	25 310084	25 756207	25 748115
	A2210	12	100	000	23,071007	20,310004	23,730207	25,740115
		12	107	000	22,281518	20,704599	21,092004	25,264242
	ESTRELA	12	108	679	22,548636	21,45923	22,697208	24,524383
		12	111	734	25,898644	24,83845	26,139107	26,313599
	A2218	12	115	677	24,826936	24,276505	25,227156	24,773453
		12	116	617	23,991178	24,021031	24,9431	26,339628
	ESTRELA	12	117	735	25,203446	25,633501	27,223374	24,6677
		12	118	627	24,450318	24,935812	25,376585	26,422752
	A2218	12	120	718	23,502812	22,74384	22,794731	24,42291
	A2218	12	121	724	21,188658	20,226401	21,202295	21,69317
	ESTRELA	12	122	710	21 455713	20 771518	21 652722	21 912047
	ARCO	12	123	678	20 495725	10 530880	20.6/1015	21,012011
	ANCO	12	125	070	20,495725	19,009009	20,041015	21,909371
	A2218	12	124	653	24,706514	23,906174	24,587362	25,703792
	ESTRELA	12	125	646	23,541828	22,846339	23,911692	23,836943
		12	127	662	22,692748	21,571074	21,989766	23,081388
		12	128	656	23,6371	22,212654	23,897398	24,794029
	A2218	12	130	671	22,869237	22,097953	24,332595	22,97076
	A2218	12	131	708	24,669567	23,801449	24,759988	25,343667
	A2218	12	132	563	18,734206	17,703317	18,864397	20,191438
	A2218	12	133	695	19.952161	18.963518	20.123555	21.310832
	A2218	12	135	647	23 190547	22 172526	23 244104	24 832344
	ARCO	12	136	607	22 3/8115	21 581144	22 706186	24 004730
	A1100	12	130	606	10 69160	10 700250	10 025050	24,004733
	A2210	12	137	090	19,00109	10,700359	19,020000	21,171421
	A2218	12	139	362	22,396895	21,573411	22,761215	23,26005
	A2218	12	140	445	22,304201	21,356666	21,895567	23,842645
		12	141	334	22,774266	21,495934	23,229257	23,978087
		12	144	351	24,424043	23,907562	24,608903	24,777287
		12	146	536	19,982052	19,417164	21,086354	21,158182
	A2218	12	147	423	25,391143	24,773232	25,559661	25,843281
	A2218	12	149	317	24,488947	23,711968	25,04834	25,183935
		12	150	411	24,750476	24,42722	25,326651	26,134968
HEASARC	GALÁXIA	12	151	188	19.45703	19.285252	17,199548	22.341014
	Δ2218	12	152	347	22 520355	21 672388	22 687132	23 885044
	A2210	12	152	115	17 217450	16 200552	16 59/25/	10 976004
	A2210	12	155	470	17,317459	10,290002	10,004204	19,070904
	AZZIO	12	154	172	19,5998	18,453789	17,202977	19,827414
	ESTRELA	12	155	346	26,061558	25,269259	26,477555	25,864075
	ESTRELA	12	156	493	25,023472	24,022154	24,970968	26,426563
	ESTRELA	12	157	344	25,379279	24,608615	25,906775	26,30442
	A2218	12	161	178	19,775537	18,782247	16,873303	21,321387
	A2218	12	162	358	23,525354	22,740124	23,63163	24,933417
HEASARC	A2218	12	163	90	17,909492	16,731892	17,936114	19,60973
	ARCO	12	164	309	22,08293	21,281839	22,426315	24,208934
	A2218	12	166	328	20,190282	19,280898	20,351898	21,641784
	A2218	12	168	288	24,869064	24,256417	23,216955	25,515097
	ESTRELA	12	169	529	25,412236	24,265307	25.370706	26,406003
		12	172	451	25 299717	24 342894	25 358925	26 321525
	A 2219	12	172	157	17 279592	16 26006	17 620426	17 021206
	A2210	40	175	204	04.070740	20,20300	04 07740	00.000547
		12	174	384	24,979749	23,922406	24,07740	20,200517
HEASARC	A2218	12	175	343	19,357042	18,385447	19,49925	20,847378
	A2218	12	176	301	24,996465	24,323698	24,386276	25,173649
	ESTRELA	12	177	329	21,460951	19,882624	21,445995	22,905116
		12	180	263	17,2841	18,654078	18,175019	22,73301
	A2218	12	182	533	22,464859	21,483233	22,540953	23,89112
	ARCO	12	183	521	22,253198	21,354039	22,350143	23,332503
	ESTRELA	12	184	316	25,297706	24,337636	24,04075	26,752002
	A2218	12	187	323	22.329929	21,468434	22,718752	23,449627
	ESTRELA	12	180	440	21 226805	10 00/620	20 002831	22 617576
	ARCO	12	103	240	21,200000	20.072220	20,002001	22,011010
	ARGO	12	191	240	21,00/2/	20,012318	∠1,000001 40 -	22,17002/
	A2218	12	192	226	18,57	17,6	18,7	20,06
		12	195	250	24,182006	23,987567	25,608636	25,585189

	A2218	12	196	297	18,389707	17,435961	18,482661	20,697301
		12	197	380	24,536979	24,156117	24,913758	24,741033
	A2218	12	198	530	22,186854	21,287666	22,44995	23,464324
HEASARC	A2218	12	199	228	19,08	18,08	19,27238	20,59
	A2218	12	200	100	17,765206	16,709959	17,055029	21,247207
	ESTRELA	12	202	382	24,765953	24,013672	25,206295	25,155886
	ESTRELA	12	203	378	22,866926	21,480717	22,753671	24,374759
	A2218	12	205	104	19,368896	18,44725	18,278284	21,575772
	ESTRELA	12	206	339	24,729919	23,976576	25,068833	24,858281
HEASARC	A2218	12	207	1	17,495724	16,522059	16,935483	19,080348
	A2218	12	209	312	24,543681	23.655233	24.853016	25.611067
		12	210	342	25,796697	25,416615	26.460038	26.344145
	A2218	12	211	318	23,767439	23.01836	24,497397	24.97344
	Δ2218	12	212	313	19 06156	18 173211	19 434817	20.354099
	/1210	12	213	499	21 54947	21 21 3389	22 400758	24 675675
	A2218	12	214	385	227,04047	21,210000	22,400700	25 160608
	A2210	12	217	220	24,901094	22,00112	26,073333	25,100030
		12	213	ZZ9 E40	24,001004	23,090391	20,003791	25,210111
		12	210	542	23,172700	23,007700	24,003334	25,6995
	4000	12	217	537	23,222219	22,919574	23,959377	24,216848
	ARCO	12	218	413	18,039330	21,801243	22,98081	20,001720
	ESTRELA	12	220	295	22,467569	21,518458	21,549267	23,787471
	A2218	12	222	280	24,687621	23,837535	25,358503	26,269007
	A2218	12	223	458	22,338909	21,412857	22,130451	23,691933
HEASARC	A2218	12	224	197	20,184414	19,249302	20,197929	21,667612
		12	225	285	23,455083	22,11115	19,981767	26,204795
	ARCO	12	226	350	22,400511	21,385474	22,465261	23,185366
	ESTRELA	12	227	360	21,619944	20,670809	21,818677	23,143837
		12	228	296	23,836801	23,476889	24,110963	24,037483
	A2218	12	232	332	19,807746	18,997079	20,049336	20,924669
	ARCO	12	233	416	20,403852	19,599494	20,838292	21,895998
		12	234	548	20,467822	20,440317	17,969612	25,820094
		12	235	286	25,007815	24,647419	25,141888	21,339038
	A2218	12	236	261	18,947707	17,94749	19,079234	20,497168
	A2218	12	238	142	18,34721	17,265037	19,869131	21,204552
	A2218	12	239	354	19,733599	18,852963	19,924363	21,109526
	A2218	12	240	381	24,882909	24,102396	24,995983	26,38554
HEASARC	A2218	12	242	30	17,740453	16,740615	17,88348	19,253298
		12	244	303	22,524172	22,110232	22,969176	23,764082
		12	246	258	19,2547	17,57633	19,461041	22,845599
HEASARC	A2218	12	248	96	21,427248	20,585105	20,815804	23,207442
	A2218	12	249	538	22,622562	21,769316	22,810584	23,978543
		12	251	215	19,780562	18,214379	19,702265	21,607958
HEASARC	A2218	12	252	145	20.944932	19.92334	21.453293	22.688418
HEASARC	A2218	12	253	2	17.998815	16.981508	17.919077	19.597715
	A2218	12	257	447	22,411627	21.487782	22.57482	23.809937
HEASARC	GALÁXIA	12	259	185	16.819669	16.162727	17.157719	20.275957
	A2218	12	260	193	23,708543	22.802703	23.878549	25.017758
		12	261	609	#NÚM!	#NÚM!	23.415081	25.837451
		12	263	213	23 988704	23 568742	24 516646	24 553764
	A2218	12	264	130	23 483679	22 536244	23 826787	24 682101
	/1210	12	265	132	24 918666	24 549047	25 415338	25 553275
		12	266	102	24,510000	23 0/8180	24 008547	25,000210
	ESTRELA	12	200	202	24,011023	23,340103	24,300347	25,074025
	ESTRELA	12	207	155	24,020240	25,741752	24,000710	20,007226
	ADDIA	12	200	100	25,750549	15 762022	46 902422	20,307330
	ESTDEL A	12	203	20 75	21 200002	10,703033	20 626225	22 974007
	ADDIA	12	270	10	21,299902	13,313402	20,020330	22,014091
	A2218	12	2/1	152	22,631007	21,940574	22,984232	23,345/24
	A2218	12	213	128	23,476547	22,60/15	23,080086	24,979025
		12	274	117	19,267948	16,361353	16,440602	21,576637
	A2218	12	275	448	22,027107	21,057536	22,482113	22,773546
	A2218	12	278	249	17,063841	16,016007	17,121695	18,535982
		12	279	408	23,279978	22,750886	24,923943	25,262168
	ESTRELA	12	280	165	24,350697	23,998819	24,768148	24,412398
		12	282	109	24,38348	24,134398	25,402212	24,794825
		12	283	84	25,422392	25,457239	26,027134	24,95752
	A2218	12	284	125	24,080442	23,227755	24,236604	24,973375

ESTRELA	12	285	108	24,616861	24,391913	25,472764	24,540517
ARCO	12	286	266	18,258688	16,598864	16,570593	#NÚM!
A2218	12	289	186	24,629625	24,065059	24,995674	24,773919
A2218	12	290	494	25,414799	24,593779	26,754387	26,296904
ESTRELA	12	292	438	24,536194	23,690213	23,963128	25,214965
	12	293	359	25,22159	24,247252	25,365542	25,459634

B.3 Objetos Catalogados - Teste

Listamos objetos já catalogados (RC3) no sistema equatorial de coordenadas celestes. Comparamos esse conjunto com a nossa lista final de objetos VRI e, então, verificamos que a maioria foi classificada corretamente. Na tabela seguinte, os 26 objetos grafados em azul e roxo foram classificados corretamente, enquanto que os 3 objetos em letras vermelhas não foram.

Estrelas	Gals A2218	Objetos de fundo
39 vis	5 RC3	93 RC3 gal
65 vis	23_RC3	101 RC3 arco
	32 cD vis elíptica	151 RC3 gal
ć	41 RC3	259 RC3 gal
ġ	51 vis elíptica	
	71 vis espiral	
	88 RC3	
	89 RC3	
	91 RC3	
	154 vis estrela	
	159 RC3	
	163 RC3	
	166 vis elíptica	
Ċ	173vis estrela	
6	175 RC3	
	192 vis elíptica	
	199 RC3 vis elíptica	
	207 RC3	
	224 RC3	
	242 RC3	
	248 RC3	
	252 RC3	
Ċ.	253 RC3	

Figura B.1: Objetos encontrados no catálogo RC3.

B.4 Imagens do Campo Observado

Apresentamos algumas imagens do campo do Aglomerado Abell 2218, em que pode ser visualizada a região próxima ao centro. As imagens foram usadas para checar os objetos e visualizadas no *software SAOImage*. A Figura B.2 destaca a galáxia elíptica central cD.

APÊNDICE B. CONJUNTOS DE OBJETOS

Figura B.2: Imagem $sex_obj.fits$ na banda fotométrica R
 da região do 1º quadrante.

Figura B.3: Imagem $sex_obj.fits$ na banda fotométrica I do 1º quadrante.