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Abstract

A mathematical model for the small vibration of an elastic string is
considered. The model takes into account the change of tension due to
the movement of the end points of the string. Under the assumptions that
the velocity of the moving ends be less than the characteristic velocity of
the equation, the global existence and the local umqueness of the solution
are proved.
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1 Introduction

The mathematical model of D' ALEMBERT for small vibration of elastic strings
is given by

82u 82U 7"
~ = c2ã;;2' c2 = ;;;' (1)

where u(x,t) is the transverse displacement ofthe string and m is the mass per
unit length. The basic assumption of the model is that the string must be well
stretched so that the tension 7" can be regarded as constant during the vibration.
However, due to the change of length of the string, the tension may have a small
variation during the vibration. A model which takes this into consideration for
the string with fixed ends is proposed later in [2, 5], known as the equation of
KIRCHHOFF-CARRIER:

82u 1 { K. 1~ (8u)2 }82u ~ -;;; 7"0 + ~ Q a; dx ã;;2 = o, (2)

where 7"0 is the tension and Lo = .B -a is the length of the string at rest; K. is
the Young's modulus. The nonlinear term containing the displacement gradient
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has since attracted much attention in mathematical analysis of the model by
various authors [6,8,10]. In [9] Medeiros et al further generalized the Kirchhoff-
Carrier model for a linear elastic string with moving ends. In [7] Liu & Rincon
aIso proposed the modeI for nonlinear elastic strings in general given by the

following equation:

~ Ô2u ( r.8(t)
(ÔU ) 2 ) Ô2u Lu(x, t) = w- a(t) + b(t) Ja(t) & dx 8-;;-2 = O, (3)

a(t) < x < fJ(t), t > O,

where a(t) and fJ(t) are the positions ofthe left and the right ends at the instant t
respectively; the horizontal Iength ofthe string is given by ..,.(t) = fJ(t)-a(t) > 0.

The two coefficient functions a(t) and b(t) depend on the elastic properties
of the string. Let s be the length of the string. We define the mean Lagrangian
strain c as

s- Loc = c(s) = "L;-' (4)

where Lo is the length of the string at some reference state. The stress-strain
relation of an elastic string is nonlinear in general and is given by

T = O"(c). (5)

For the vibration model, the string is assumed to be under tension and the
elastic modulus is non-negative,

O"(c) > 0, O"/(c) ~ 0. (6)

From the modeI proposed in [7] , we have the following relations:

1 1a{t) = -0"(c(..,.(t»)), b(t) = -
2 L O"/(c(..,.(t))). (7)

m mo

From (6), it follows that

a(t) > 0, b(t) ~ 0. (8)

When the stress-strain relation is linear [9] ,

T = O"(t:) = TO + Kt:,

where K is the Young's modulus and TO is the tension ofthe string at the reference
state with length Lo, then from (7) we have

TO K ..,.(t) -Lo K
a(t) = -+ -, b(t) = -.(9)

m m Lo 2mLo
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Let Q = {(z,t) E 1R2; a(t) < z < .B(t), t > O} bethe non-cylindricaldomain

with boundary f; = U {a(t),.B(t)} x {t} and consider the following problem:
O<t<T

~ ~{ Lu(z,t)=f(z,t) 'v'(z,t)EQ,

(I) u(z,t)=o 'v'(z,t)Ef;, (10)
âu

u(z,o) = uo(z), &t(x,o) = U1(X); a(O) < x < .B(O).

In [9] the ex.istence and the uniqueness of the local solution of the problem (10)
have been proved under the following hypotheses:

hl: a,.BEC2([0,T);1R),

a(t) < .B(t), a'(t) < O, .B'(t) > 0, for 0 ~ t < T,

la'(t) +'Y'(t)yl < (mo/2)1/2, for 0 ~ t < T, 0 ~ y ~ 1.

h2: a E W1,00(0, 00), a(t) ~ mo > 0.

Theorem 1 Let Qt = (a(t),.B(t)) and Qo = (a(O),.B(O)). Then, under the

hypotheses (h1) and (h2), given Uo E HJ(Qo) nH2(Qo), u1 E HJ(Qo), f E
CO([O,T);HJ(Qt)), there exists 0 < To < T and a unique solution u : Q-+ 1R
of the problem (I) satisfying the following conditions:

u E LOO(O, To; HJ(Qt) n H2(Qt)),

u' E LOO(O,To;HJ(Qt)),

u'l E L2(o,To;V(Qt)).

Numerical simulations and stability analysis in [7] seem to indicate that it is
unnecessary to restrict the conditions a'(t) < 0 and .B'(t) > 0 at the end points
as required by the hypothesis (h1) in order that the length of the string can

only increase.
In this paper, we consider the case in which the change of length due to

transverse displacements is insignificant and consequently the equation is linear
by neglecting the nonlinear term, but the tension is not constant in general
because of the moving ends.

We remark that although we neglect the term with b(t) as coefficient, it is
different from assuming b(t) = 0. Because, otherwise, it would require a(t) to be
a constant from our formulation. The case with constant tension with moving
boundary, has been considered elsewhere [1,3,4].

Moreover, we shall consider initial conditions less restrictive than those re-
quired in Theorem 1 cited from [9]. The main result is given in Theorem 3, in
which we do not require the length of the string be only increasing. However ,
we do require that the velocities ofthe end points, a'(t) and .B'(t), be less than
the characteristic velocity of the equation, which seems to be reasonable from
physical intuition. Such a condition has also been assumed in [3, 4] in the case
with constant tension.
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2 Formulation of Linear Problem

The equation (3) without the nonlinear term is given by

-Ô2u Ô2u
Lu(x, t) = "'8i2" -a(t)ã-;2 = O. (11)

We can formulate the following linear problem:

{ Lu(x,t)=f(x,t) \i(x,t)EQ,

(II) u(x,t) = 0 \i (x,t) E f;,
ôuu(x,o) = uo(x), &(x, 0) = Ul(X), a(O) < x < {:J(O).

(12)
where Q and f; has been defined previously and

a(t) < x < {:J(t), t > 0.

The horizontallength of the string is given by I(t) = {:J(t) -a(t) > 0.
In order to prove the existence and uniqueness of the solution of problem

(II) we shall consider an equivalent problem defined in a fixed domain. Consider
the change of variable:

~ x -a(t)
(x,t)EQ H (y,t)EQ, y= () (13) I t .

where Q = (0,1) x (O,T). Let u(x,t) = v(y,t) and introduce the following
operator define in Q ,

Ô2v Ô2v Ô2v ôvLv(y, t) = "'8i2" + a(y, t) "§y2 + b(y, t) "ãt""ãY + c(y, t) 8Y .(14)

We obtain the following equivalent problem in the rectangular domain (0,1) x
(O,T) :

{ Lv(y, t) ;:: g(y, t) \i (y, t) E (0,1) x (0, T),

(III) v(o,t) = v(l,t) = 0, 0 < t < T, (15)
ôvv(y,O) = vo(y), 'ãt""(y,O) = Vl(Y), 0 ~ Y ~ 1,

where
1 1

a(y, t) = 4b(y, t)2 -~a(t) , (16)

b(y,t) = -2 ~, (17)

c(y, t) = -.:.~ ( a" + I" (t)y + i (t)b(y, t) ) , (18)

with a(t) defined in (8) .
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Observation: Since the equation is hyperbolic, the coefficients in the equation
(14) must satisfy the following inequality:

b2(y,t) -4a(y,t) > O,

which is equivalent to the condition (8), a(t) > 0.

3 Existence and Uniqueness

We shall first establish the existence and uniqueness of problem (III) as an
auxiliary theorem and then prove the main result for the original problem (II) .

Let (( , )), 11.11 and ( , ), 1.1 be respectively the scalar product and the norms
in HJ(o, 1) and L2(0, 1), and consider the following hypotheses:

Hl: a,fJ E C2([0,T);1R).

H2: a(y,t) < 0.

The hypothesis (H2) implies that

a(t) -max { la'(t)12; IfJ'(t)12} > 0,
O~t~T

which requires that the velocities of the end points be smaller than the charac-
teristic velocity of the equation. Under these conditions, we have the following
result for problem (III) :

Theorem 2 Under the hypotheses (Hl) and (H2) and given the initial data

Vo E H6(0, 1), Vl E L2(0, 1), 9 E L2([0,T); L2(0, 1)),

there exists T > 0 and a unique weak solution of Problem (III) v: Q -+ 1R,
satisfying the following conditions:

1. v E LOO(0,T;H6(0, 1)),

2. v' E LOO(0,T;L2(0, 1)).

Proof. To prove the theorem, we introduce the approximate solutions. Let T >
O and denote by Vm the subspace spanned by {Ul,U2,...,Um}, where {uv; v =
1, ...m} are the first m base vectors of the space H6 (0, 1) .If Vm (t) E Vm then

it can be represented by
m

vm(t) = I:gvm(t)Uv(Y),
v=l

where gvm is the solution of the system of ordinary differential equations:

{ (LVm,w) = (g,w) 'v'w E Vm,

vm(O)=vom-+vO in H6(0,1), (19)

v~(o) = Vlm -+ Vl in L2(0,1).
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The system (19) has local solution in the interval (O, Tm). To extend the local
solution to the interval (0, T) independent of m the following a priori estimate
is needed.

A Priori Estimate:

Taking w = v:n (t) in the equation (19) we obtain

( II I ) ( ( ) a2vm I ) (b( )av:n I ) ( ( )avm I ) - ( I )Vm,Vm + a y,t ~,Vm + y,t ~,Vm + C y,t ~,Vm -g,vm .

(20)
From the first term of (20) we have

(v~,v:n) = ~~lv:n12. (21)

Integrating the second term of (20) by parts and using the boundary conditions
v:n(l,t) = v:n(o,t) = 0, we obtain

r1 ô2" I 11 aa(y,t) avm I 1 11 ( ) a ( aVm )2d
Jo a(y,t)~vmdy= -O 8Y~vmdy- 2 O a y,t ãt ~ y

= - 11 ~~v' dy- ~ 11 ~

(a(y,t)(~)2 ) dyo ay ay m 2 O 8t ay

~ 11 (~ )( ~ ) 2d .
+2 o at ay y

(22)
By the generalized mean-value theorem, there exists a f, E [0,1] such that

1 a 11 avm 2
---a(y, t)( -) dy

2 8t o ay (23)

1 a ( 11 avm ) 1 a ( )=-2ãt a(f"t) o (~)2 dy=-2ãt a(f"t)llvmI12 .

Substituting (23) in (22) we obtain

11 a2vm I [1 aa(y, t) avm I 1 a ( ( )II 112)o a(y,t)~vmdy=-Jo 8Y~vmdy-2ãt af"t vm

+~ 11 (~ ) (~)2dy.
2 O 8t ay

(24)
From the third term of (20), we have

11 ( ) av:n I 111 b a ( I )2 d 1( I )2
bl1 b y,t Tvmdy= 2 a vm y= 2 vm

O y O y O (25)
-~ [1 ~(v:n)2dy = -~ 11 ~(v:n)2.

2 JO ay 2 o ay

6



Substituting (21), (24) and (25) in (20) we obtain

~~lv:'.(t)12 -~~ ( a(Ç,t)IIVmI12 ) = 11 ~~v:,. dy

-~ 11 ( ~ ) (~)2dy+ ~ 1 1 ~(v:'.)2dy (26)

2 o ôt ây 2 o ây

11 âv 11
-O C(y, t) -i;-V:'. (t)dy + o g(t)v:'. dy,

which after integration in [0, t), with t E [0, Tm), becomes

1 1 1 1
2Iv:'.(t)12 -2a(Ç, t)IIVm(t)112 = 2Iv:'.(0)12 + 2a(Ç, 0)llvm(0)112

+ 1t {11 ~~v:,.dy- ~ 11
(~ ) (~)2dy

o O ây ây 2 o ôt ây

1
11 âb(y, t) ( I )2 11 ( ) âvm I+ 2 o ~ vm dy- o c y,t ayvm(t)dy

+ 11 g(t)v:'. dy} ds.

(27)
Now, consider the terms on the right hand side of (27) .We have

11 ~~v:,. dy :5: C1 (1Ivm(t)112 + Iv:'.(t)12) , (28)

11 ( ~ ) (~ )2 dy :5: c211vm112, (29)

t âb(y, t) ( I )2 I I 12
Jo ~ vm dy :5: C3 Vm , (30)

11
( ) âvm I ( ) 2o C y, t ayvm t dy:5: c411vmll , (31)

11 g(t)v:'. dy :5: ~ ( Igl2 + Iv:'.12) , (32)

where we have used the relations (16), (17), (18) and the hypothesis (H1) to
conclude that a(y,t) is a continuous function in Q. Moreover,

âa (y t ) 2
1-ãji'--1 = =y-21'"Y/lla' + '"Y' yl :5: 2C1,

I~I = 1-2(a' + '"Y'y) 11'"Y/(a' + '"Y'y
) -'"Y (a'l + '"Y1'y)1 < C2

ôt '"Y3 -,
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and in a similar manner for I~I and Ic(y,t)l.

After substitution of (28), (29), (30), (31), (32) in (27), for t < Tm < T, we
obtain

~lv:n(t)12- ~a(f., t)llvm(t)112 S C + C lT (11vm112 + Iv:n12)ds, (33)

where c = !(lv~(0)12 + Ilvm(0)112 + Ig12) is a constant, since by hypothesis
the sequences vm(O) = VOm and v~(o) = V1m are bounded in HÓ(O, 1) and
L2(0, 1) respectively, and 9 E L2(0, T; L2(0, 1)). Moreover, by hypothesis (H2),
a(y, t) < 0 is bounded, hence we can take k = min{ ~, -~a(f., t)} and obtain

Iv:n(t)12 + Iivml12 S K1 + K21T (Iv:n(s)12 + Ilvm(s)112 )ds, (34)

, c C
where R1 = k and K2 = k.

By the use of Gronwall's Lemma in the inequality (34), we obtain the esti-

mate,
Iv:n(t)12 + Ilvm(t)112 S C, 'v't E [0, T], T > 0. (35)

Therefore, there exists a subsequence (V/l)IJEl1V of the sequence (Vm)mEl1V such
that

VIJ -o.* v in LOO(O, Tj HÓ(O, 1»),

(36)v~ -o.* VI in LOO(O, T; L2(0, 1»).

From (19) we have

!!.- (~ ) - (~~ ) - ( ( ) ~ ~ ) !!.-(b( t ) ~ )&t &t ' w ôy ôy , w a y, t ôy , ôy + &t y, ôy , w

-(~~,w) + ( C(y,t)~,w ) = (g,w ), 'v'w E HJ(o,l)

(37)
in the sense of distribution in [0, T].

From (36)2 and by the definition of weak star convergence, it follows that

( v~, w) --t ( v', w) 'v'w E HJ(o, 1)

in the sense of distribution in [0, T]. Therefore, we have

~(v~,W)--t~(VI,W) 'v'wEHJ(O,l). (38)

Similarly, from (36)1 it leads to

(~,w)--t(~,w) 'v'wEHJ(O,l),
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in the sense of distribution in [O, T] and

(âvIJ âw ) (âv âw) 1ay-'ay- -t ay'ay- VwEHo(O,l)

in the sense of distribution in [0, T] .From hypothesis (H1) it follows that

(~~,w)--+(~~,w) VwEHJ(o,l), (39)

( âvIJ âw ) ( âv âw ) 1a(y,t)ay-'ay- --+ a(y,t)ãY'ay- VwEHo(O,l), (40)

~(b(y,t)~,w) --+~(b(Y,t)~,w) VwEHJ(o,l), (41)

(~~,w)--+(~~,w) VwEHJ(o,l), (42)

c(y,t)(~,w)-tc(y,t)(~,w); VwEHJ(o,l), (43)

in the sense of distribution in [0, T]. In the limit Jl ~ 00 and by convergence
of the terms (38) through (43) the approximate solutions vIJ converge to the
solution v in the sense of distribution in [O,T].

Initial Conditions:

Let Ip E C1([0,T]) satisfying 1p(0) = 1 and Ip(T) = 0 and consider w(x,t) =
u(x)Ip'(t). From the convergence (36)1, we have

rT(vIJ'u)lp'dt-t rT(v,u)lp'dt VuEHJ(o,l).
Jo Jo

On the other hand, from (36)2, we obtain

lT (v~, u)lpdt -t lT (v', u)lpdt Vu E HJ(o, 1).

From the last two relations it follows that

rT â rT â

Jo ãt{(VIJ'u)lp}dt--+Jo ãt{(v,u)lp}dt,

which leads to

(vIJ(O), u) -t (v(o), u), Vu E HJ(o, 1).

From (19) we have

(vIJ(O), u) -t (vo, u), Vu E HJ(o, 1).
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Therefore, (v(o), u)) = (vo, u) or v(o) = vo.
For the other initial condition, we define the following function:

tPó(t) = { -j + 1, O ~ t ~ d, (44)

O, d ~ t ~ T.

Since the equation

" ) ( ) ( ( âv~ ) (âvIJ )(v/Ã'w +a y,t ~vIJ,w))+ b(y,t)ay-'w +c(y,t) ay-'w = (g,w),

is valid for alI w E Vm. Then for JL fixed, the equation is valid for alI w E HJ(o, 1)
and hence is valid for w E C8"(0,l). Multiplying the equation by tPó and
integrating, we obtain

ró ró ró âv'

Jn (v~(t),w)tPódt+Jo (a(y,t)(vIJ'w))tpódt+Jo (b(y,t)-t-,w)tPódto o o y (45)

rõ âv rõ
+Jo c(y,t)(a:,w)tPódt=Jo (g(t),w)tPódt.

Since
ó ó â lõ ó

1 (v~(t),W)tPódt=l 'ãt(v~,w)tPódt= (v~,w)tPó o+l (v~,W)}dt

= -(v~(o), w) + ló (v~(t), w)} dt,

by substitution into the equation (45), we obtain

1 ró ró -t
-(v~(0),w)+ ;s'Jo (v~(t),w)dt+Jo a(y,t)«(vIJ'w))(T+ l)dt

l õ âv' -t l õ âv -t

+ o (b(y,t)a:,w)(T+1)dt+ o c(y,t)(a:,w)(T+1)dt

l ó t
= o (g(t), w)(T + l)dt.

Taking the limit JL -+ 00, it gives

1 rõ rõ -t

-(Vl,W)+;s'Jo (v',w)dt+Jo (a(y,t)((v,w))(T+1)dt
l õ âv' -t l õ âv -t

+ o b(y,t)(ay'w)(T+1)dt+ o c(y,t)(ãY,w)(T+1)dt

l õ t
= o (g(t), w)( T + l)dt.

Let d -+ 0 and use the fundamental theorem of calculus, then it follows that
(v'(0),w) = (Vl,W), or v'(o) = Vl.
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Uniqueness of Solution:

Suppose that the problem admits two solutions, v and v, and consider w = v-v.
Then w is a solution of the problem:

{ Ô2w ôw' ôw wl'+a(y,t)-
ô 2 +b(y,t)- ô +c(y,t)- ô =O,

y y y (46)

w(o) = w'(O) = 0.

and we want to show that w = 0 in [0, T).
Consider the function ft' defined by

ft'(t) = { -13 w(r)dr, em 0 < t ~ s,

0, em s ~ t ~ T,

then ft' E LOO(O,T;HJ(o, 1)). Let W1(t) = lt w(r) dr, then we have

ttI(t) = -1.. w(r)dr = lt w(r)dr -1.. w(r)dr = W1(t) -W1(S).

Moreover, ttI'(t) = wi(t) = w(t) and ttI(s) = 0.
Multiplying the equation (46) by ft' and integrating in Q, we obtain

11 11 Ô2W 11 ôw' f1 ôw
o wl'ttldy+ o a(y,t)~ft'dy+ o b(y,t)8Yttldy+Jo c(y,t)ayttldy=O.

(47)
But

~(WI,ttI) = (w", ttI) + (w', w),

and the first term of (47) becomes

11 w"ttldy = ~(WI, ttI) -~~lw(t)12. (48)

Integrating by parts the second term of (47) and using ttI' = w and ttI E
HJ(O, 1), we have

f1 Ô2w f1 ô2tt1'

Jo a(y,t)~ttldy=Jo a(y,t)"ã'Y2tt1dy

=- f1~ttI~-~ f1a(y,t)!!..(~)2dy (49)
Jo ôy ôy 2 Jo ôt ôy

= -f1 ~ttI~ -~!!..(a(f.,t)llttlI12) + ~~llttlI12,
Jo ôy ôy 2ôt 2 ôt

where the generalized mean value theorem has been used and f. E [0,1].
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For the third term of (47), we have

t ôwl t ô ôw 1 f1 ô

Jo b(y,t)7iii1/Idy=Jo b&t"(7fY1/I)dy-2Jo bãYW2dy

f1 ô ôw 1
11 f1 ôb

= Jo b'&t("ã'Y"1/I)dy- 2(b(y,t)(w)2 o -Jo ãYw2dy)

11 ô ôw 1 11 ôb

= b- ( -1/l ) dy+ --w2dy
o ôt ôy 2 o ôy

11 ô ôw 11 ôb ôw 1 11 ôb

= - (b -1/1 ) dy ---1/Idy + --w2 dy
o ôt ôy o ôt ôy 2 o ôy

f1 ô ôw f1 ôb' f1 ôb ô1/l 1 f1 ôb
= J o &t" ( b7fY1/I ) dy + J o ay1/lw dy + J o "ã"i ayW dy + 2 J o ãYw2 dy.

(50)
Finally for the fourth term of ( 47) , integrating by parts, we have

f1 ôw f1 ôc(y t) f1 ô1/l
Jo c(y,t)ay1/Idy=-Jo T1/Iwdy-Jo c(y,t)aywdy. (51)

Substituting (48), (49), (50) and (51) in (47), we obtain

ô I 1 ô 2 1 ô ( )II 112 f1 ô ôw
&t"(w ,1/1) -2&t"lwl -2&t"(a ç,t 1/1 ) + Jo &t"(b(y,t)ay1/l) dy

= -~~111/I112 -f1 ~1/Iwdy- f1 ~~wdy (52)
2 ôt Jo ôy Jo ôt ôy

1 11Ôb(Y,t) ( ) 2d l 1ÔC(Y,t)." d 11 ( ) ô1/l d--
2ô w y+ ô o/W y+ c y,t -ô w y.

o y o y o y

Integrating (52) in 0 $ t $ s and multiplying by -1, we have

~lw(s)12- ~a(ç, 0)llftI(0)112

= f3 { ~~llftlI12 + ~ f1 ~(w)2 dy + f1 ~1/Iw dy (53)
Jo 2 ôt 2 Jo ôy Jo ôy

f1 ôb ôftl f1 ôc(y t) f1 ô1/l }+Jo '&taywdy+Jo T1/Iwdy+Jo c(y,t)ãYwdy dt,

where we have used the conditions w(o) = w'(O) = ftI(s) = 0, and

f3 ô
Jo &t"(wl, ftI)dt = (wl(s), 1/I(s» -(w'(o), 1/1(0)) = 0, (54)

~ 13 ~lw(t)12dt = ~ (lw(s)12 -lw(0)12) = ~lw(s)12, (55)

12



rs ô ( ôw ) ( ôw(s) ) ( ÔW(O) )Jo "&t b(y,t)8Y'f/; = b(y,s)ay'f/;(s) -b(y,o)ay'f/;(O) =O. (56)

Using the generalized mean value theorem for the first term on the right hand
side of (53) we have

~ rs ~11f/;112 dt = ~~ rs IITt1112 dt (57)
2 Jo ôt 2 ôt Jo

where 1] E [0, s].
For the remaining terms on the right hand side of (53) we have

1 rs t ôb rs
2Jo Jo ãY(w)2dydt $ C1JO Iwl2dt, (58)

rs r1 ôb' rs 1
Jo Jo 8Yf/;w dy dt $ Jo c2elwl2 + elf/;12 dt, (59)

rs t ôb ôf/; rs 1
Jo Jo ~8Ywdydt $ Jo c3elwl2 + ellf/;112 dt, (60)

ls 11 ~f/;w dy dt, $ls c4elwl2 + ~1f/;12 dt, (61)

rs r1 ôf/; rs 1
Jo Jo c(y,t)8Ywdy$Jo c5elwI2+ellf/;112dt, (62)

where e, Cl , C2 , C3 , C4 , C5 are positive real numbers. Substituting the above
inequalities in (53) and using the continuous imbedding of the space HJ (0,1) in
L2(0, 1), we obtain

Iw(s)12- (a(f,,0)11f/;(0)112 $ (~ + ~) ls 11f/;112dt+C1s Iwl2 }dt,

(63)
where C and 6 are positive constants. But f/;(t) = Wl(t) -Wl(S), therefore,
f/;(0) = Wl(S) and

11f/;(t)112 = Ilwl(t) -wl(s)112 = 2(llwl(t)112 + Ilwl(S)112) -llwl(t) + wl(s)112

$ 2(llwl(t)112 + Ilwl(S)112).

Consequently, we have

Iw(s)12+c5llwl(S)112$C 1Slw(t)12+llwl(t)112dt, (64)

where

c5 = -a(f"O) -2s(I~1 + ~).
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To prove the uniqueness we must show that ó > O. Indeed, taking

To=- 21minla(y,0)I / ma.xI ~ 1 and ()=~ (65)
y y,t Ut 2ToC

for f positive and sufficiently small, we obtain for s < To that

ó > la(f.,0)1-2Tol ~I-f> 0,

where the hypothesis (H2) has been used. Note that if ~ = 0, then ó > 0

for alI t > 0. Returning to the equation (64), we have

{ToIw(s)12 + Ilwl(S)112 .$: K Jo (lw(t)12 + Ilwl(t)112) dt, (66)

where K = C /t5 > 0. Using the Gronwall's inequality, we conclude that w(t) = 0
for all t < To. This completes the proof of Theorem 2. D

The Main Result for Problem (II):

Now let us restate the previous results for the original problem (II) and prove
the following theorem:

Theorem 3 Let Qt = (a(t), {:J(t)), Qo = (a(O), {:J(O)) and the initial data Uo E

HJ(Qo), Ul E L2(QO), f E L2([0,T);L2(Qt)). Then there exists To > O and
a unique weak solution of problem (II), u : Q -+ JR, satisfying the following
conditions:

1. u E LOO(O,To;HJ(Qt)),

2. u' E LOO(0,To;L2(Qt)).

Proof. If v is a solution of Theorem 2, then consider u(x,t) = v(y,t), where
J: = a + 'YY. We also have g(y, t) = f(J: , t) = f(a + 'YY, t) and vo(y) = u(J:, O) =
uo(a(O)+'Y(O)y), Vl(Y) = u'(J:, 0) = ul(a(O)+'Y(O)y)+(al(O)+'Y'(O)y)uó((a(O)+

'Y(O)y).

To verify that u(J:, t), under the hypotheses of Theorem 2, is a solution of

problem (II), it is sufficient to observe that the mapping: (x,t) -+ (~,t) of

the domain Q into Q = (0, 1) x (0, T) is of class C2, where To is given by (65).
Consequently we have

âU2 1 âv21. -â 2 (J:,t) = 2- â 2 (y,t),
J: 'Y y

14



" ( ) " ( ) b( ) âv' 1b2 ( ) âV2 ( ) âv 2. u :r:,t =v y,t + y,t 8Y+4 y,t ã'Y2 y,t +c(y,t)8Y.

Therefore, the operator Lv(y, t) defined in (14), with y = ~, is transformed
. h "Y mto t e operator

-â2U â2u
Lu(:r:,t) = ~ -a(t)ã;2 = f(:r:,t),

with initial conditions Uo and Ul.
The regularity ofv(y,t) given by Theorem 2 implies that u(:r:,t) is asolution

of problem (II) and the uniqueness of the solution of problem (II) is a direct
consequence of the uniqueness of problem (III) .D
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