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Abstract

A mathematical model for the small vibration of an elastic string is
considered. The model takes into account the change of tension due to
the movement of the end points of the string. Under the assumptions that
the velocity of the moving ends be less than the characteristic velocity of
the equation, the global existence and the local uniqueness of the solution
are proved.
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1 Introduction

The mathematical model of D’ ALEMBERT for small vibration of elastic strings
is given by \ )
ou = cza—u, =L (1)
ot? 0z? m
where u(z,1) is the transverse displacement of the string and m is the mass per
unit length. The basic assumption of the model is that the string must be well
stretched so that the tension 7 can be regarded as constant during the vibration.
However, due to the change of length of the string, the tension may have a small
variation during the vibration. A model which takes this into consideration for
the string with fixed ends is proposed later in [2, 5], known as the equation of

KIRCHHOFF-CARRIER:

Pu 1 k[P (ou\?, | %

- —_— — ldz }— =

o2 m{T0+2Lo/; (ax) “}azz 0 )
where 79 is the tension and Lo = 8 — « is the length of the string at rest; « is
the Young’s modulus. The nonlinear term containing the displacement gradient
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has since attracted much attention in mathematical analysis of the model by
various authors [6, 8, 10]. In [9] Medeiros et al further generalized the Kirchhoff-
Carrier model for a linear elastic string with moving ends. In [7] Liu & Rincon
also proposed the model for nonlinear elastic strings in general given by the
following equation:

Tu(z, )= 28 _ (a(t) +b(2) / 7 (‘9“)2dz) Pu_y 3)

a(t) 6_1 622

a(t) < z < B(t), t>0,

where a(t) and B(t) are the positions of the left and the right ends at the instant ¢
respectively; the horizontal length of the string is given by ¥(t) = 8(t)—«a(t) > 0.

The two coefficient functions a(t) and b(¢) depend on the elastic properties
of the string. Let s be the length of the string. We define the mean Lagrangian

strain ¢ as I
e=e(s) = 22, (3)
Lo

where Lg is the length of the string at some reference state. The stress-strain
relation of an elastic string is nonlinear in general and is given by

T = o(e). (5)

For the vibration model, the string is assumed to be under tension and the
elastic modulus is non-negative,

o(e) >0, o'(e) > 0. (6)

From the model proposed in [7], we have the following relations:

aft) = o)), )= 7o' (e(3(0). ™
From (6), it follows that
e >0, @) >0 8)
When the stress-strain relation is linear [9],
r=o(e) =T+ K¢,

where « is the Young’s modulus and 7 is the tension of the string at the reference
state with length Lg, then from (7) we have

o) =2+ %l(_“L:_L". b() = 5 )



Let O = {(z,1) € a(t) < z < B(t), t > 0} be the non-cylindrical domain
with boundary & = U {a(t), ﬂ(t)} x {t} and consider the following problem:
0<t<T
Lu(z,t)=f(z,t) V(=) €Q,
(I) u(z,t) = \é(x,t) €g, (10)
u(z,0) = uo(x), u(:c, 0) = u1(z); «(0) <z < B(0).

3
In [9] the existence and the uniqueness of the local solution of the problem (10)
have been proved under the following hypotheses:

hi: o, 8 € C%([0,T); R),

a(t) < B(t), a’(t) <0,8(t) >0,for0 <t < T,

lo/(t) + ' (t)y] < (mo/2)}/?, for 0<t<T,0<y< 1.
h2: a € W1*°(0, 00), a(t) > mg > 0.

Theorem 1 Let Q; = (a(t),B(t)) and Q = (a(0),5(0)). Then, under the
hypotheses (h1) and (h2), given up € H}(S20) VH?*(Q), uv1 € HF (), f €
CO([0,T); H}(Q)), there ezxists 0 < Ty < T and a unique solution u : Q- R
of the problem (I) satisfying the following conditions:

u € L2(0, To; H3(Q) N H (),
v’ € L%(0, To; H} (),
u" € L*(o, To; L*(S2:))-

Numerical simulations and stability analysis in [7] seem to indicate that it is
unnecessary to restrict the conditions o/(t) < 0 and #’(t) > 0 at the end points
as required by the hypothesis (hl) in order that the length of the string can
only increase.

In this paper, we consider the case in which the change of length due to
transverse displacements is insignificant and consequently the equation is linear
by neglecting the nonlinear term, but the tension is not constant in general
because of the moving ends.

We remark that although we neglect the term with b(t) as coefficient, it is
different from assuming b(¢) = 0. Because, otherwise, it would require a(t) to be
a constant from our formulation. The case with constant tension with moving
boundary, has been considered elsewhere [1, 3, 4].

Moreover, we shall consider initial conditions less restrictive than those re-
quired in Theorem 1 cited from [9]. The main result is given in Theorem 3, in
which we do not require the length of the string be only increasing. However,
we do require that the velocities of the end points, a’(t) and §'(t), be less than
the characteristic velocity of the equation, which seems to be reasonable from
physical intuition. Such a condition has also been assumed in [3, 4] in the case
with constant tension.



2 Formulation of Linear Problem

The equation (3) without the nonlinear term is given by

~ 0y 8%u
We can formulate the following linear problem:
Lu(z,)=f(z,)  V(z,1)€Q,
(ID) u(z,t) =0 \3(”) €S,
u(z, 0) = uo(z), E“(z, 0)=ui(z), a0) <z < B(0).

(12)
where ) and £ has been defined previously and

a(t) < z < B(t), t>0.

The horizontal length of the string is given by v(t) = 8(t) — a(t) > 0.

In order to prove the existence and uniqueness of the solution of problem
(IT) we shall consider an equivalent problem defined in a fixed domain. Consider
the change of variable:

@eQ@ » wt)eQ, y=22 (13)
where Q@ = (0,1) x (0,T). Let u(z,t) = v(y,t) and introduce the following
operator define in @,

0%v 2

0 92 0
Io(w1) = 5z +a(v: 0757 + b0 gz + elu, ) 5 (14)

We obtain the following equivalent problem in the rectangular domain (0,1) x
0,T):

Lu(y,t) = g(y,1) V(y,t) € (0,1) x (0,T),

(I11) v(0,) = v(1,t) =0, %< t<T, (15)

v(y,0) = vo(y), gv(y,O) =uly), 0<y<],

where ] 1
a(y, t) = Zb(y’t)z - Wa(tL (16)
_ oo+ (t)y

by, t) = -2 @ (17
(0 ) = =2 (" + 7y + 7 Ob(w.1)), (18)

with a(t) defined in (8).



Observation: Since the equation is hyperbolic, the coefficients in the equation
(14) must satisfy the following inequality:

b%(y,t) ~ 4a(y,t) > 0,
which is equivalent to the condition (8), a(t) > 0.

3 Existence and Uniqueness

We shall first establish the existence and uniqueness of problem (III) as an
auxiliary theorem and then prove the main result for the original problem (II).

Let ((, ), ]|-]l and (, ), |- | be respectively the scalar product and the norms
in H}(0,1) and L%(0,1), and consider the following hypotheses:

H1: o,8 € C%([0,T); R).
H2: a(y,t) <0.
The hypothesis (H2) implies that

at) — max {le’@) IF'®)1*} > 0,

which requires that the velocities of the end points be smaller than the charac-
teristic velocity of the equation. Under these conditions, we have the following
result for problem (III}):

Theorem 2 Under the hypotheses (H1) and (H2) and given the initial data

v € H}(0,1), v €L*(0,1), geL*([0,T);L?(0,1)),

there erists T > 0 and a unique weak solution of Problem (III) v : @ — R,
satisfying the following conditions:

1. v € L=(0,T; H}(0,1)),

2. v € L*(0,T;L?(0,1)).
Proof. To prove the theorem, we introduce the approximate solutions. Let T >
0 and denote by V;, the subspace spanned by {u;,us,...,um}, where {u,; v =
1,---m} are the first m base vectors of the space H}(0,1). If v (t) € Vi then
it can be represented by

m

vm(t) = D gum(un(y),

v=1

where g, is the solution of the system of ordinary differential equations:
(Lvm,w) = (g, w) Vw € Vm,
Um(0) = vom - vo  In HJ(0,1), (19)
v, (0) =vim = v in L%0,1).



The system (19) has local solution in the interval (0, Tr»). To extend the local
solution to the interval {0, T) independent of m the following a priori estimate
is needed.

A Priori Estimate:

Taking w = v/, (t) in the equation (19) we obtain

!

(st () T o) (o000 G2 )+ (10, 52 1) = (o)
From the first term of (20) we have (20)

(v, 1) = 3 oelolal” (21)

Integrating the second term of (20) by parts and using the boundary conditions
v, (1,t) = v],(0,t) = 0, we obtain

! Ba(y,t) Ov 1! 8 ,0v
! Q_ﬂm ! —f ALY Im o gy o OYm \2
i atw ) Gepndy = [ TR ay— 5 [a g (GR 4

a

_ _ { 9a(y,t) Oum , _l/‘lﬁ( O0vm 2)
- A 3y 3y vmdy 2 0 8t a(yyt) ay) dy

+%‘/01 (8a‘(93:,t))(%v_y,2)2dy_

(22)
By the genera.lized mean-value theorem, there exists a £ € [0,1] such that
10 Ov
—§§ a( t)( 6"1 ) y
(23)

12 (sten [ ) dv=—5 2 (ol Ollm?).

Substituting (23) in {22) we obtain

1 Vm ! da(y,t) Ovem 10 2
/0 (y,t) m 4y By _a—y-vm dy — 55(0(’5#)“"%” )

e

From the third term of (20), we have

1

! Ovy, 1/ 0 12 1 12
[ o052ty =5 [ b5ty = )

118, ., L ob
i __md_
2/05y(v)y 203y()

° (25)



Substituting (21), (24) and (25) in (20) we obtain
14, , 18 _ [ da(y, da(y,t) Svm o
35l OF = 3o () = [ 2@ 2m, g,
1 ! (da(y,t) 8vm 6b(y,t)
- 5 (el )Gz / 288 (0 )2y (26)

1 3‘0 1
- [ w52ty + f 9(t)vhndy,
y
which after integration in [0,¢), with ¢ € [0, T;,), becomes

SO = ZaEDm@IE = S OF + o€, 0lom ()

. /{/"&?ﬂ%m,d ZA(%%J)%%V@

Ob(y o )? _/1 Ovy, ,
+ / d o c(yat)'a—y'vm(t)dy

+ /o g(t)v, dy} ds.

(27)
Now, consider the terms on the right hand side of (27). We have
aa yit avm [

(RS < (o +1G08), (8

' (Ba(y,t)\ ,0m ,, 2
(2 )( )2 dy < ealfoml, (29)
/ i y,t) )2dy < ealvl, |2, (30)

Svn 2
[ et 2t iy < o (s1)

Y

[ sttt < 3 (108 + ), (32)

where we have used the relations (16), (17), (18) and the hypothesis (H1) to
conclude that a(y,t) is a continuous function in Q. Moreover,

da(y,
| (’; -2 Shlla’ + 4 < 26,
Ba(y,t -2(a’ +
2208 22 AT ) e 4 4] < o,



and in a similar manner for | ——- (y, ) | and |e(y, t)].

After substitution of (28), (29) (30), (31), (32)in (27),for t < T < T, we
obtain

1., o 1 2 T 2 g2
S OF = 36 Olm®F <c+& [ (lomll?+ efuds,  (3)
0

where ¢ = 1(|v4,(0)|? + |lvm (0)]|? + |9/) is a constant, since by hypothesis

the sequences v, (0) = vom and v, (0) = vy, are bounded in H}(0,1) and

L?(0,1) respectively, and g € L?(0,T; L?(0,1)). Moreover, by hypothesis (H2),
a(y,t) < 0 is bounded, hence we can take k = min{3, —%a({,t)} and obtain

T
o OF +llmll* < Ky + Ko [ (o @F +[om(@)7)ds, (39
where K; = {- and Ky = —

By the use of Gronwall’s Lemma in the inequality (34), we obtain the esti-
mate,

[P+ lvm@)I><C,  Vte[0,T], T>0. (35)

Therefore, there exists a subsequence (v,).env of the sequence (v )memn such

that
vy =*v in L*®(0,T; H}(0,1)),

v, =*v' in L*®(0,T; L%(0,1)).
From (19) we have

a a v a 9 6 v a 14 a a a v
w(ore) - (525 w) - (005 5) + 7 (o 5w)

(37)

(36)

in the sense of distribution in [0,T].
From (36); and by the definition of weak star convergence, it follows that

('u“,w) —3 (v’,w) Yw e HE(0,1)

in the sense of distribution in [0,T]. Therefore, we have

a d(,
5 (v“,w) — -6—t<v ,w) Ywe H}(0,1). (38)

Similarly, from (36), it leads to
()= () vwennn

8



in the sense of distribution in [0,T] and

v, Ow 0v fw 1
(W,%) — (%’—8?) Yw e Hy(0,1)

in the sense of distribution in [0,T]. From hypothesis (H1) it follows that

da(y,t) Ovu ) (aa(y, da(y,t) Ov ) 1
( B By yw) — 3 8yw Yw e Hy(0,1), (39)

( 3v,‘ dw ( v dw

(t)a a) Ywe H0,1), (40)

-_—,w

5)
(b( t)av“,w) ( y,t)a ,w) Vwe HY0,1), (41)
)—

(ab(y,t) dv (%(y’t) gyw) Vwe H)0,1),  (42)

(G ) S ow)(Ghu)  VeemOY, @y
in the sense of distribution in [0,T]. In the limit 4 — 0o and by convergence

of the terms (38) through (43) the approximate solutions v, converge to the
solution v in the sense of distribution in [0,T].

Initial Conditions:

Let ¢ € CY([0,T]) satisfying ¢(0) = 1 and ©(T) = 0 and consider w(z,t) =
u(z)¢’(t). From the convergence (36),, we have

/0 (v, ) dt —> /0 (v u)'dt  Vue HL0,1).

On the other hand, from (36)., we obtain

T T
[ Gwed— [wpdt wemio.
4] 4]

From the last two relations it follows that

T E] T P
/0 5{(vu,u)w}dt—>/o 3 (v, w)e}dt,
which leads to
(v4(0), u) — (v(0),u),  Vu € H(0,1).
From (19) we have |

(va(0),u) — (vo,u),  Vu € H(0,1).



Therefore, (v(0),u)) = (vo, u) or v(0) = vp.
For the other initial condition, we define the following function:

t

—=+1, 0<t<4,

pet) =4 "5+ - = (44)
0, §<t<T

Since the equation

(%) + 0l (v ) + (b 0) 32, ) + () (32, w) = 6, w),

is valid for all w € Vin. Then for u fixed, the equation is valid for all w € H}(0, 1)
and hence is valid for w € C§°(0,1). Multiplying the equation by ¢s; and
integrating, we obtain

é 5 5 o'
/ (v (t), w)ps dt + [ (a(y,t) (vu, w))s dt + / (b(y,t)aa—“,w)%dt
0 . 0 0 Yy (45)
r') 30# )
+‘/0 c(y,t)(-%,w)gog dt =/(; (g(t), w)ps dt.

Since

s 1" 4 6 7 ' s
[ et = [ St wiesdt= (o, whe

s 1
+/ (v:‘,w)gdt
0

[

1
=-(,0.0)+ [ GL0), 0 d,

by substitution into the equation (45), we obtain

é é
~0LO),u)+ 5 [ w0, w)dr+ |} oty o) (G + Dt

’

¢ v, ~t d dv, —t
+ [ 0w05E w5+ Dd+ [ etmt) (G w4 v

¢ —t
=/0 (9(8), w)(5- + 1)dt.

Taking the limit g — oo, it gives
19 d —t
~onw)+ 3 [ 0w+ [ el ()G + D
0 0
d o' —t é v . —t
+ [ s G oG+ et [ el wGE+
d —t
L= / (g(t),w)(T + 1)dt.
0
Let 6 — 0 and use the fundamental theorem of calculus, then it follows that

(v'(0), w) = (v1, w), or v'(0) = v,.

10



Uniqueness of Solution:

Suppose that the problem admits two solutions, v and %, and consider w = v—#.
Then w is a solution of the problem:

" 8w ow' ow _
w” +a(y, t)?,?‘ + b(y,t)gy‘ +e(y, t)% =0, (46)
w(0) = w'(0) = 0.

and we want to show that w = 0 in [0, T).
Consider the function v defined by

¢(t)—{ - /sw(r)dr, em 0<t<s,
- t
0,

em s<t<T,
- t
then ¢ € L=(0,T; H}(0,1)). Let wy(t) =/ w(r) dr, then we have
0

¥(t) = — /t " w(r)dr = /0 " w(r)dr /0 " w(r)dr = wit) — wi(s).

Moreover, ¥/(t) = w}(t) = w(t) and ¥(s) = 0.
Multiplying the equation (46) by ¥ and integrating in Q, we obtain

o, ! ow _
fo w ¢dy+_/ (y,t)a 5 ¢dy+/ b(y,t) 1/)dy+/ C(y,t)ggwdy—().

(47)
But s
B?(w,’ ¥) = (w”’ ¥) + (w,s w),
and the first term of (47) becomes
1 0
[ wviy= S0 - 2w (48)

Integrating by parts the second term of (47) and using ¢/ = w and ¢ €
H{(0,1), we have

1 62 2 /
/ oy, t) 5 ¢dy / a(y,t) 5y 2 dy
0

_ 5a(y,t) o 1t 0 Y.,
=- [ =20 2/O(t)() (49)

_ ! Ba(y,t) Oy _ _l_g 2, 1 3a(§,t) 2
| e - Sa e o) + 3 2 Dy,

where the generalized mean value theorem has been used and ¢ € [0, 1].

11



For the third term of (47), we have
/ by, 05y = [ 1 o (Gov)dv -3 01 budy
= [ o2 (324)ay~ 3 (st 0007
= [5G [ Gvran
= /01 %(bg—:w)dy— A g%%%wdy+ %/01 g—zwzdy

19 0w ! ob 1 0b 8y o ,
—/(; E(b-a—y‘l/))dy-l-‘/; —a-gwwdy+ A Egy—wdy-i- 5‘/0 a—yw d
(50)

Finally for the fourth term of (47), integrating by parts, we have

1 Sw _ ! de(y, 1) 1 oY
/0 c(y,t)%tpdy_—/; 6—y¢wdy—/0 c(y,t)%wdy. (61)

Substituting (48), (49), (50) and (51) in (47), we obtain

2w =12 - 12 omn + [ 20003 @

--1——6“(5’t)||¢||2— / Bvwiy- [ 2y (52
1
/ab(y’t) /ac(y’t)zﬁ dy+/ (y,t)g—zwdy-

Integrating (52) in 0 < ¢ < s and multiplying by —1, we have

1 1
[0l - 3a(6 O)lIBO)I?
L[ 1 ey, O,
= [{3Ze e+ 5 [ 280 wpays [ Tvear @)

1 b 611) 6c(y,t) oY
; 576 / ——Ywdy +/ c(y, t)=— ywdy}dt

where we have used the conditions w(O) = w'(0) = ¥(s) =0, and

[ 5w 9= @' (0) 9(6) - ((0),(0) =0, 4

%/os %[w(t”zdt = -;-(|w(3)|2 - |w(0)|2) — ‘;'lw(s)|2, (55)

12



[ 5 (6w052.9) = (60,90 552 006)) - (o0, 0 52, w(0) =o. 56

Using the generalized mean value theorem for the first term on the right hand
side of (53) we have

3 | e e ar = 20D [ e 57)

where 7 € [0, 5].
For the remaining terms on the right hand side of (53) we have

: / / V2 dydt < e / |wf? dt, (58)

o s

/ / O wdydt < / cablwl? + 2 dt, (59)
2y A 5

/ / Qﬁéfwd dt < / calul? + Sl dt, (60)
/ / 2 pwdydt,< [ cablul + Fuldt, (61)
o Jo Oy 0 6

s 1 a s 1
[ [ cwtZwdys [ et + 3wl a, (62)
o Jo Y i}

where 6,¢;,¢2,¢3,c4,c5 are positive real numbers. Substituting the above
inequalities in (53) and using the continuous imbedding of the space H3(0,1) in
L%(0,1), we obtain

[0 - (ale 0w < (252 + ) [wipaso [ |w|2}dt

where C and C are positive constants. But ¥(t) = w;(t) — wi(s), therefore,
¥%(0) = wi(s) and

IO = llwi(t) = wr()II* = 2w I + w1 ()I?) = [l (2) + wa(s)]|?
< 2(lwr @O + [lwa (s)I1?)-

Consequently, we have

lw(s)[? + 8llun ()1 < C’/os lw(®)[? + [ (£)]1? at, (64)

=—a(£,0) — 2s(|%l + —S—)

13
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To prove the uniqueness we must show that § > 0. Indeed, taking

1. Ga(y, 1) _ €
T = 5 n;mla(y,o)l/rgl’agtl 51 l and 6= Ve (65)

for ¢ positive and sufficiently small, we obtain for s < Tp that

da(€,n)

6> |a(e, 0)| - 2T 25

—-€>0,

where the hypothesis (H2) has been used. Note that if bals,t) =0,thend >0
for all £ > 0. Returning to the equation (64), we have

To
fw(s) 2 + lJus ()] < K / (@) + e ®)11?) e, (66)

where K = C'/6 > 0. Using the Gronwall’s inequality, we conclude that w(t)=0
for all t < Tp. This completes the proof of Theorem 2. O

The Main Result for Problem (II):

Now let us restate the previous results for the original problem (II) and prove
the following theorem:

Theorem 3 Let Q; = (a(t), B(t)), Qo = (a(0), 8(0)) and the initial data uo €
H}(Q), u1 € L3(Qo), f € L*([0,T);L*(Q)). Then there exists Ty > 0 and
a unique weak solution of problem (II), u : @ — IR, satisfying the following
conditions:

1. u € L*(0,To; H(Q)),
2. u' € L®(0, Ty; L*()).

Proof. If v is a solution of Theorem 2, then consider u(z,t) = v(y,t), where
z = a+vy. We also have g(y,t) = f(z,t) = f(a + vy,t) and vo(y) = u(z,0) =
uo(@(0)+7(0)y), v1(y) = v'(z,0) = u1(a(0)+7(0)y)+ (e’ (0)+7' (0)g)uh ((2(0)+
7(0)y).

To verify that u(z,t), under the hypotheses of Theorem 2, is a solution of
— a’ t) of
the domain @ into Q = (0,1) x (0,7) is of class C2, where T} is given by (65).

Consequently we have

Ou? 1 6v?
1. w(zyt) = ?W(yyt)a

problem (II}, it is sufficient to observe that the mapping: (z,t) — (:z:

14



O 1, g dv
2 (@) =" (5, 0) 8. 1) 5y + 0 05500 + b 0) 5

z—a .
, 1s transformed

‘Therefore, the operator Lv(y, t) defined in (14), with y =

into the operator

~ d?u %u
Lu(z,t) = 25 — a(t) 55 = f(=,1),
with initial conditions ug and u;.
The regularity of v(y,t) given by Theorem 2 implies that u(z, t) is a solution
of problem (II) and the uniqueness of the solution of problem (IT) is a direct
consequence of the uniqueness of problem (III). O
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