

Relatório Técnico

Núcleo de Computação Eletrônica A Generalization of the Helly Property Applied to the Cliques of a Graph

M. C. Dourado F. Protti J. L. Szwarcfiter

NCE - 01/02

Universidade Federal do Rio de Janeiro

A Generalization of the Helly Property Applied to the Cliques of a Graph

Mitre C. Dourado* Fábio Protti[†] Jayme L. Szwarcfiter[‡]

Abstract

Let $p \ge 1$ and $q \ge 0$ be integers. A family S of sets is (p,q)-intersecting when every subfamily $S' \subseteq S$ formed by p or less members has total intersection of cardinality at least q. A family \mathscr{F} of sets is (p,q)-Helly when every (p,q)-intersecting subfamily $\mathscr{F}' \subseteq \mathscr{F}$ has total intersection of cardinality at least q. A graph G is a (p,q)-clique-Helly graph when its family of cliques (maximal complete sets) is (p,q)-Helly. According to this terminology, the usual Helly property and the clique-Helly graphs correspond to the case p=2, q=1.

In this work we present characterizations for (p,q)-Helly families of sets and (p,q)clique-Helly graphs. For fixed p,q, those characterizations lead to polynomial-time

^{*}Universidade Federal do Rio de Janeiro, COPPE, Caixa Postal 68511, 21945-970, Rio de Janeiro, RJ, Brasil. Partially supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq, Brasil. E-mail: mitre@cos.ufrj.br

[†]Universidade Federal do Rio de Janeiro, NCE, Caixa Postal 2324, 20001-970, Rio de Janeiro, RJ, Brasil. Partially supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq, and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro - FAPERJ, Brasil. E-mail: fabiop@nce.ufrj.br

[‡]Universidade Federal do Rio de Janeiro, Instituto de Matemática, NCE and COPPE, Caixa Postal 2324, 20001-970, Rio de Janeiro, RJ, Brasil. Partially supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq, and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro - FAPERJ, Brasil. E-mail: jayme@nce.ufrj.br

recognition algorithms. When p or q is not fixed, it is shown that the recognition of (p,q)-clique-Helly graphs is NP-hard.

We also extend further the notions presented, by defining the (p,q,r)-Helly property (which holds when every (p,q)-intersecting subfamily $\mathscr{F}'\subseteq\mathscr{F}$ has total intersection of cardinality at least r) and giving a way of recognizing (p,q,r)-Helly families in terms of the (p,q)-Helly property.

Keywords: Clique-Helly Graphs, Helly Property, Intersecting Sets

1 Introduction

A well known result by Helly published in 1923 [4, 11] states that if there are given n convex subsets of a d-dimensional euclidean space with n > d and if each family formed by d + 1 of the subsets has a point in common, then there exists a common point of the n subsets.

This result inspired the definition of the "Helly property" for families of sets in general, a concept that has been extensively studied in many contexts (see e.g. [7]). We say that a family \mathscr{F} of sets has the Helly property (or is Helly) when every subfamily $\mathscr{F}' \subseteq \mathscr{F}$ of pairwise intersecting sets has non-empty total intersection.

When the family of cliques of a graph G satisfies the Helly property, we say that G is a *clique-Helly* graph (cfr. [9]). Clique-Helly graphs were characterized via the notion of *extended triangles* [8, 15]. An extended triangle of a graph G is an induced subgraph of G formed by a triangle T together with the vertices which form a triangle with at least one edge of T.

Theorem 1 [8, 15] G is a clique-Helly graph if and only if every of its extended triangles contains a universal vertex.

The above characterization leads to a straightforward recognition algorithm

for clique-Helly graphs with time complexity O((|V(G)| + t(G))|E(G)|), where t(G) is the number of triangles of G.

We may think of a more general "p-Helly property", which holds when every $\mathscr{F}' \subseteq \mathscr{F}$ of p-wise intersecting sets has non-empty total intersection. Thus, the original result of Helly may be restated by simply saying that any family of convex subsets of a d-dimensional euclidean space is (d+1)-Helly.

The p-Helly property has been studied in the context of hypergraphs [2, 3]. In fact, this concept is equivalent to the Helly number. A family \mathscr{F} of sets has Helly number p if, for all $\mathscr{F}' \subseteq \mathscr{F}$, $\bigcap_{S \in \mathscr{F}'} S = \emptyset$ implies that there exist p sets $S_1, S_2, \ldots, S_p \in \mathscr{F}'$ such that $S_1 \cap S_2 \cap \ldots \cap S_p = \emptyset$. For instance, any family of paths of a tree has Helly number 2 (see [1], p. 399). It is clear that a family of sets is p-Helly if and only if it has Helly number p. In [12], the Helly number is defined as the minimum p for which \mathscr{F} is p-Helly, and it is shown that the Helly number of the m-convex sets of any connected graph G equals the clique number of G. In [10], a stronger notion is introduced: \mathscr{F} is said to have $strong\ Helly\ number\ p$ if, for all $\mathscr{F}' \subseteq \mathscr{F}$, there exist p sets $S_1, S_2, \ldots, S_p \in \mathscr{F}'$ such that $S_1 \cap S_2 \cap \ldots \cap S_p = \bigcap_{S \in \mathscr{F}'} S$. In the same work, it has been shown that the family of cliques of an EPT graph (the edge intersection graph of a family of paths in a tree) has strong Helly number 4.

In this work we propose a new direction in which the p-Helly property can be generalized, by requiring that the subfamilies $\mathscr{F}' \subseteq \mathscr{F}$ satisfy the following property:

"if every group of p members of \mathscr{F}' have q elements in common, then \mathscr{F}' has total intersection of cardinality at least q."

This leads naturally to the formal definition of the (p,q)-Helly property, as we shall see in Section 2, where we give a characterization for (p,q)-Helly families of sets. For fixed integers p and q, this characterization leads to a recognition algorithm whose time complexity is polynomial on the size of the family. Still in Section 2, we consider a slightly generalized form of this property, called the (p,q,r)-Helly property. A family $\mathscr F$ is said to be (p,q,r)-Helly when, for every $\mathscr F'\subseteq \mathscr F$, if every group of p members of $\mathscr F'$ have q

elements in common, then \mathscr{F}' has total intersection of cardinality at least r. We describe a characterization of (p,q,r)-Helly families in terms of the (p,q)-Helly property.

In Section 3, we study the (p,q)-Helly property applied to the case of the family of cliques of a graph. We say that a graph G is (p,q)-clique-Helly when its family of cliques is (p,q)-Helly. We show some examples and properties of (p,q)-clique-Helly graphs and give a characterization for them by means of the (p+1)-expansions of the intersection graph of the complete sets with size q. The definition of p-expansion is a generalization of the definition of extended triangle.

Since the number of cliques of a graph G may be exponential on the size of G [13], the recognition algorithm for (p,q)-Helly families of sets cited in Section 2 cannot be applied in general to the cliques of G in order to obtain a polynomial method for deciding whether G is (p,q)-clique-Helly, in the case where p and q are fixed. However, the characterization of (p,q)-clique-Helly graphs given in Section 3 does lead to a polynomial recognition algorithm for fixed p and q, as we remark in Section 4. We also show in Section 4 that, when p or q is not fixed, recognizing (p,q)-clique-Helly graphs is NP-hard.

Finally, in Section 5 we propose some questions concerning the (p,q,r)-Helly property.

In what follows, we give some definitions and notation. Let G be a graph. A vertex $w \in V(G)$ is a universal vertex when w is adjacent to every other vertex of G. If $S \subseteq V(G)$, then we denote by G[S] the subgraph of G induced by G. A subgraph G is a spanning subgraph of G when G when G is a maximal complete is a subset of pairwise adjacent vertices. A clique is a maximal complete.

If S is a set, then |S| denotes the cardinality of S.

The universe Univ(\mathscr{F}) of a family \mathscr{F} of sets is defined as the union of its members: Univ(\mathscr{F}) = $\bigcup_{S \in \mathscr{F}} S$. The total intersection Int(\mathscr{F}) of a family \mathscr{F} of sets is defined as Int(\mathscr{F}) = $\bigcap_{S \in \mathscr{F}} S$. A core of a family \mathscr{F} of sets is any

subset contained in $Int(\mathcal{F})$.

We say that S is a q-set when |S| = q, a q^- -set when $|S| \le q$, and a q^+ -set when $|S| \ge q$. This notation will also be applied to other terms used throughout this work: families, cores, completes and cliques.

2 The Generalized Helly Property

In this section, we first define the (p,q)-Helly property for families of sets in general. This definiton is a generalization of the usual Helly property, which corresponds to the case p=2, q=1. We also provide a characterization for a family to be (p,q)-Helly. As we shall see, for fixed p and q, this characterization leads to a recognition algorithm whose time complexity is polynomial on the size of the family.

Next, we extend further these notion by defining the (p, q, r)-Helly property, and we study a way of recognizing (p, q, r)-Helly families in terms of the (p, q)-Helly property.

(p,q)-Helly families of sets

Definition 2 Let $p \ge 1$ and $q \ge 0$ be integers, and let \mathscr{F} be a family of sets. We say that \mathscr{F} is (p,q)-intersecting when every p^- -subfamily $\mathscr{F}' \subseteq \mathscr{F}$ has a q^+ -core.

The following proposition lists some immediate consequences of the above definition:

Proposition 3

- (i) For all $p \ge 1$ and \mathscr{F} , \mathscr{F} is (p, 0)-intersecting.
- (ii) For all p > 1, if \mathscr{F} is (p,q)-intersecting then \mathscr{F} is (p-1,q)-intersecting.
- (iii) For all q > 0, if \mathscr{F} is (p,q)-intersecting then \mathscr{F} is (p,q-1)-intersecting.

We remark that, for itens (ii) and (iii) above, the converse is not true in general.

Definition 4 Let $p \ge 1$ and $q \ge 0$ be integers, and let \mathscr{F} be a family of sets. We say that \mathscr{F} satisfies the (p,q)-Helly property when every (p,q)-intersecting subfamily $\mathscr{F}' \subseteq \mathscr{F}$ has a q^+ -core. In this case, we also say that \mathscr{F} is (p,q)-Helly.

The next proposition is also easy to proof:

Proposition 5

- (i) For all $p \ge 1$ and \mathscr{F} , \mathscr{F} is (p, 0)-Helly.
- (ii) For all p > 1, if \mathscr{F} is (p-1,q)-Helly then \mathscr{F} is (p,q)-Helly.
- (iii) For all q > 0, if \mathscr{F} is (p, q 1)-Helly then \mathscr{F} is (p, q)-Helly. \Box

The following lemma will be useful for the characterization of (p,q)-Helly families of sets.

Lemma 6 Let $p \ge 1$ and $q \ge 0$ be integers, Q a (p+1)-family of q-subsets of U, and \mathscr{F} a p^- -family of sets over U such that every member of \mathscr{F} contains at least p members of Q. Then \mathscr{F} has a q^+ -core.

Proof. Consider the bipartite graph $G = (\mathcal{Q} \cup \mathcal{F}, E)$ where there exists an edge (Q, S) in E, for $Q \in \mathcal{Q}$ and $S \in \mathcal{F}$, if and only if S contains Q. Since every $S \in \mathcal{F}$ contains at least p members of Q, we have $p|\mathcal{F}| \leq |E|$.

Assume by contradiction that \mathscr{F} does not have a q^+ -core. This means that there is no q-subset Q of U such that every $S \in \mathscr{F}$ contains Q. In particular, no $Q \in \mathcal{Q}$ can be contained in all the members of \mathscr{F} . This means that every $Q \in \mathcal{Q}$ is contained in at most $|\mathscr{F}| - 1$ members of \mathscr{F} . Then $|E| \leq (p+1)(|\mathscr{F}|-1)$.

By combining the two inequalities obtained above, we have $|\mathcal{F}| \ge p+1$, a contradiction. Therefore, the lemma holds. \Box

The case q = 1 in the above lemma has been proved in the context of hypergraphs [2].

Since any family of q^+ -sets is (1,q)-intersecting, it is easy to see that a family $\mathscr F$ is (1,q)-Helly if and only if the subfamily formed by the q^+ -sets of $\mathscr F$ has a q^+ -core.

Now let us deal with the case p > 1. The following theorem presents a characterization for (p,q)-Helly families of sets in such a case:

Theorem 7 Let p > 1 and $q \ge 0$ be integers, and let \mathscr{F} be a family of sets. Then \mathscr{F} is (p,q)-Helly if and only if for every (p+1)-family \mathscr{Q} of q-subsets of $Univ(\mathscr{F})$, the subfamily \mathscr{F}' formed by the members of \mathscr{F} that contain at least p members of \mathscr{Q} has a q^+ -core.

Proof.

 (\Rightarrow) Suppose that \mathscr{F} is (p,q)-Helly and there exists a (p+1)-family \mathscr{Q} of q-subsets of Univ(\mathscr{F}) such that the subfamily \mathscr{F}' formed by the members of \mathscr{F} that contain at least p members of \mathscr{Q} does not have a q^+ -core.

Consider a p^- -subfamily $\mathscr{F}'' \subseteq \mathscr{F}'$. By Lemma 6, \mathscr{F}'' has a q^+ -core. Therefore, \mathscr{F}' is (p,q)-intersecting. Since \mathscr{F} is (p,q)-Helly, we conclude that \mathscr{F}' has a q^+ -core. This is a contradiction. Hence, the necessity holds.

(\Leftarrow) Assume by contradiction that \mathscr{F} is not (p,q)-Helly. Let $\mathscr{F}' = \{S_1,\ldots,S_k\}$ be a minimal (p,q)-intersecting subfamily of \mathscr{F} which does not have a q^+ -core. Clearly, k>p.

By the minimality of \mathscr{F}' , the subfamily $\mathscr{F}' \setminus S_i$ has a q-core Q_i , for $i = 1, \ldots, k$. It is clear that $Q_i \not\subseteq S_i$.

Let $\mathcal{Q}=\{Q_1,\ldots,Q_{p+1}\}$. Let $\mathscr{F}''\subseteq\mathscr{F}$ formed by the members of \mathscr{F} that contain at least p members of \mathcal{Q} . Since k>p>1, every member of \mathscr{F}' contains at least p members of \mathcal{Q} . Consequently, $\mathscr{F}'\subseteq\mathscr{F}''$. By hypothesis, \mathscr{F}'' has a q^+ -core. Therefore, \mathscr{F}' has a q^+ -core. This is a contradiction. Hence, the sufficiency holds. \square

By setting q = 1, we obtain as a corollary of the above theorem the characterization of k-Helly hypergraphs described in [3].

If $|\operatorname{Univ}(\mathscr{F})| = n$, then the number of (p+1)-families of q-subsets of $\operatorname{Univ}(\mathscr{F})$ is $O(n^{q(p+1)})$. Hence, for fixed integers p > 1 and q > 0, Theorem 7 implies that deciding whether \mathscr{F} is (p,q)-Helly can be done in polynomial time on the size of \mathscr{F} .

2.2 (p,q,r)-Helly families of sets

Definition 8 Let $p \ge 1$, $q \ge 0$, $r \ge 0$ be integers, and let \mathscr{F} be a family of sets. We say that \mathscr{F} satisfies the (p,q,r)-Helly property when every (p,q)-intersecting subfamily $\mathscr{F}' \subseteq \mathscr{F}$ has an r^+ -core. In this case, we also say that \mathscr{F} is (p,q,r)-Helly.

The above definition has some direct consequences, listed below without

proof:

Proposition 9

- (i) For all $p \ge 1$ and $q \ge 0$, \mathscr{F} is (p,q)-Helly if and only if \mathscr{F} is (p,q,q)-Helly.
- (ii) For all $p \ge 1$, $q \ge 0$ and \mathscr{F} , \mathscr{F} is (p, q, 0)-Helly.
- (iii) For all p > 1, if \mathscr{F} is (p-1,q,r)-Helly then \mathscr{F} is (p,q,r)-Helly.
- (iv) For all q > 0, if \mathscr{F} is (p, q 1, r)-Helly then \mathscr{F} is (p, q, r)-Helly.
- (v) For all r > 0, if \mathscr{F} is (p,q,r)-Helly then \mathscr{F} is (p,q,r-1)-Helly.
- (vi) For all $q, r \geq 0$, \mathscr{F} is (1, q, r)-Helly if and only if the subfamily formed by the q^+ -sets of \mathscr{F} has an r^+ -core.

We describe now a characterization of (p, q, r)-Helly families of sets in terms of the (p, q)-Helly property.

Let $p \geq 1$ and $q \geq r \geq 0$ be integers, and let \mathscr{F} be a family of sets. Denote by $X = \{X_1, \ldots, X_{|X|}\}$ the collection of the (p, r)-intersecting subfamilies of \mathscr{F} which are not (p, q)-intersecting. Let $I = \{1, 2, \ldots, |X|\}$. For each $F_j \in \mathscr{F}$, denote $I(F_j) = \{i \in I \mid F_j \in X_i\}$. For $i, k \in I$, represent by R_i an r-set formed by chosen elements that satisfy $R_i \cap R_k = \emptyset$ for $i \neq k$ and $R_i \cap \operatorname{Univ}(\mathscr{F}) = \emptyset$. The augmentation of \mathscr{F} relative to (q, r) is a family \mathscr{A} of sets, obtained from \mathscr{F} , as follows. For each $\mathscr{F}_j \in \mathscr{F}$, the corresponding member of \mathscr{A} is $A_j = \mathscr{F}_j \cup (\bigcup_{i \in I(F_i)} R_i)$.

Theorem 10 Let $p \ge 1$ and $q \ge r \ge 0$ be integers. A family \mathscr{F} of sets is (p,q,r)-Helly if and only if the augmentation of \mathscr{F} relative to (q,r) is (p,r)-Helly.

Proof. Let \mathscr{F} be a (p,q,r)-Helly family of sets. Denote by \mathscr{A} its augmentation relative to (q,r). We show that \mathscr{A} is (p,r)-Helly. Let \mathscr{A}' be a (p,r)-intersecting subfamily of \mathscr{A} . Denote by \mathscr{F}' the subfamily of \mathscr{F} formed by the members of \mathscr{F} corresponding to those of \mathscr{A}' . We know that \mathscr{F}' must be

(p,r)-intersecting as well. If \mathscr{F}' is (p,q)-intersecting, then $\operatorname{Int}(\mathscr{F}') = \operatorname{Int}(\mathscr{A}')$. Because \mathscr{F} is (p,q,r)-Helly we conclude that \mathscr{A}' has an r^+ -core. On the other hand, it follows from the definition of \mathscr{A} that if \mathscr{F}' is not (p,q)-intersecting then $\operatorname{Int}(\mathscr{A}')$ contains an r-set R_i . Consequently, \mathscr{A} is indeed (p,r)-Helly.

Conversely, by hypothesis the augmentation \mathscr{A} of \mathscr{F} relative to (q,r) is (p,r)-Helly. Let \mathscr{F}' be a (p,q)-intersecting subfamily of \mathscr{F} . Denote by \mathscr{A}' the subfamily of \mathscr{A} whose sets correspond to those of \mathscr{F}' . It follows that \mathscr{A}' is also (p,q)-intersecting, hence (p,r)-intersecting. Because \mathscr{F}' is (p,q)-intersecting, it also follows that $\operatorname{Int}(\mathscr{F}') = \operatorname{Int}(\mathscr{A}')$. Since \mathscr{A} is (p,r)-Helly, we conclude that \mathscr{F}' has an r^+ -core. Consequently, \mathscr{F} is (p,q,r)-Helly.

(p,q)-clique-Helly Graphs

3.1 Definition and Examples

We start this section by applying the concepts of the previous section to the family of cliques of a graph:

Definition 11 Let $p \ge 1$ and $q \ge 0$ be integers, and let G be a graph. We say that G is a (p,q)-clique-Helly graph when its family of cliques is (p,q)-Helly.

In the remainder of this work, we will assume that $p \geq 2$ and $q \geq 1$, unless differently mentioned.

It is clear that (p-1,q)-clique-Helly graphs form a subclass of (p,q)-clique-Helly graphs. The example below shows other relations between classes of (p,q)-clique-Helly graphs:

Example 12 Define the graph $G_{p,q}$ in the following way: $V(G_{p,q})$ is formed by a (q-1)-complete Q, a p-complete $Z = \{z_1, \ldots, z_p\}$, and a p-independent

set $W = \{w_1, \ldots, w_p\}$. Moreover, there exist the edges (z_i, w_j) , for $i \neq j$, and the edges (q, x), for $q \in Q$ and $x \in Z \cup W$. Figure 1 depicts a scheme of the graph $G_{p,q}$, where a dashed line between z_i and w_i means $(z_i, w_i) \notin E(G_{p,q})$.

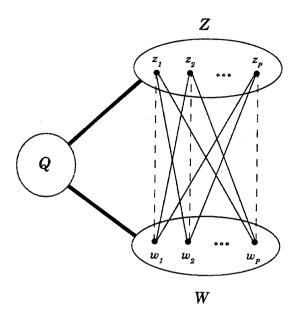


Figure 1: The graph $G_{p,q}$.

The family of cliques of the graph $G_{p,q}$ contains exactly p+1 members, each one of size p+q-1: $Q \cup \{z_1,\ldots,z_p\}$ and $Q \cup (Z\setminus\{z_i\}) \cup \{w_i\}$, for $1 \leq i \leq p$.

Observe that $G_{p,q}$ is (p,q)-clique-Helly, but it is not (p-1,q)-clique-Helly. Therefore, $G_{p,q}$ is (t,q)-clique-Helly for $t \geq p$, and it is not (t,q)-clique-Helly for t < p.

Moreover, $G_{p+1,q}$ is not (p,q)-clique-Helly, but it is (p,t)-clique-Helly for any $t \neq q$. Consequently, for distinct q and t, (p,q)-clique-Helly graphs and (p,t)-clique-Helly graphs are incomparable classes. \square

It is possible to give a first characterization for (p, q)-clique-Helly graphs, as a direct consequence of Theorem 7:

Observation 13 A graph G is (p,q)-clique-Helly if and only if for each clique C of G and for every (p+1)-family Q of q-completes contained in C, the subfamily of cliques of G that contain at least p members of Q has a q^+ -core.

However, the "characterization" above does not lead in general to a polynomial-time recognition algorithm for (p,q)-clique-Helly graphs, since the number of cliques of G may be exponential on the size of G. We will present in the next subsection a more useful characterization for (p,q)-clique-Helly graphs.

Define a graph G to be K_r -free when the size of the maximum clique of G is at most r-1. An interesting fact derived from Definition 11 is that every $K_{(p+q)}$ -free graph is (p_1,q_1) -clique-Helly for $p_1 \geq p$ and $q_1 \geq q$. In order to prove this fact, we need first the following lemma:

Lemma 14 Let Q be a (p+1)-family of q-completes of a graph G. If every member of Q is contained in a same $(p+q-1)^-$ -complete of G, then the cliques of G that contain at least p members of Q have a q^+ -core.

Proof. Let \mathcal{Q} be a (p+1)-family of q-completes contained in a $(p+q-1)^{-1}$ -complete C, and let \mathscr{F} be the subfamily of cliques of G that contain at least p members of \mathcal{Q} . Observe that if a vertex x of C belongs to two members of \mathcal{Q} , then x belongs to all the cliques of \mathscr{F} . We will show that there exist at least q vertices in C belonging simultaneously to at least two members of \mathcal{Q} , which proves the lemma.

Suppose the contrary. Thus at most q-1 vertices of C belong simultaneously to more than one member of \mathcal{Q} . Assume initially that |C|=p+q-1. Then at least p+q-1-(q-1)=p vertices of C have the property of belonging to exactly one member of \mathcal{Q} . Let X be the set formed by such vertices, where $|X|=p+r, 0\leq r\leq q-1$. Observe that every member of \mathcal{Q} must contain at least r+1 vertices belonging to X. This implies $|X|\geq (p+1)(r+1)=p+r+pr+1>pr$, a contradiction.

If C contains strictly less than p+q-1 vertices, the same argument above can be used. \Box

We remark that the above lemma holds not only for the family of cliques of a graph, but also for families of sets in general.

Theorem 15 Let G be a $K_{(p+q)}$ -free graph. Then G is (p_1, q_1) -clique-Helly for all $p_1 \geq p$ and $q_1 \geq q$.

Proof. Let $p_1 \geq p$ and $q_1 \geq q$. By Observation 13, we have to prove that for every $(p_1 + 1)$ -family Q of q_1 -completes contained in a same clique of G, the subfamily \mathscr{F} of cliques of G that contain at least p_1 members of Q must have a q_1^+ -core.

Since G is $K_{(p_1+q_1)}$ -free, it follows that every member of $\mathcal Q$ is contained in a same $(p_1+q_1-1)^-$ -complete of G. By Lemma 14, $\mathscr F$ has a q_1^+ -core, as desired. \square

3.2 Characterizing (p,q)-clique-Helly Graphs

In order to give an useful characterization for (p, q)-clique-Helly graphs, we need some further definitions and lemmas, presented in the sequel.

Definition 16 [15] Let \mathscr{F} be a subfamily of cliques of G. The clique subgraph induced by \mathscr{F} in G, denoted by $G[\mathscr{F}]_c$, is the subgraph of G formed exactly by the vertices and edges belonging to the cliques of \mathscr{F} .

Definition 17 Let G be a graph, and let C be a p-complete of G. The p-expansion relative to C is the subgraph of G induced by the vertices w such that w is adjacent to at least p-1 vertices of C.

We remark that the p-expansion for p=2 has been used for characterizing clique-Helly graphs [8, 15]. It is clear that constructing a p-expansion relative to a given p-complete C can be done in polynomial time, for a fixed p.

Lemma 18 Let G be a graph, C a p-complete of it, H the p-expansion of G relative to C, and \mathscr{C} the subfamily of cliques of G that contain at least p-1 vertices of C. Then $G[\mathscr{C}]_c$ is a spanning subgraph of H.

Proof. We have to show that $V(G[\mathscr{C}]_c) = V(H)$. Let $v \in V(H)$. Then v is adjacent to at least p-1 vertices of C. Hence, v together with those p-1 vertices form a p-complete, which is contained in a clique that contains at least p-1 vertices of C. Therefore, $v \in V(G[\mathscr{C}]_c)$. Now, consider $v \in V(G[\mathscr{C}]_c)$. Then v belongs to some clique containing p-1 vertices of C. That is, v is adjacent to at least p-1 vertices of C, and hence $v \in V(H)$. Consequently, $V(G[\mathscr{C}]_c) = V(H)$. Furthermore, both H and $G[\mathscr{C}]_c$ are subgraphs of G, but H is induced. Thus $E(G[\mathscr{C}]_c) \subseteq E(H)$. \square

Definition 19 Let G be a graph. The graph $\Phi_q(G)$ is defined in the following way: the vertices of $\Phi_q(G)$ correspond to the q-completes of G, two vertices being adjacent in $\Phi_q(G)$ if the corresponding q-completes in G are contained in a common clique.

Observe that $\Phi_q(G)$ can be constructed in polynomial time, for a fixed q. We also remark that Φ_q is precisely the operator $\Phi_{q,2q}$, studied in [14]. An interesting property of Φ_q is that it preserves the subfamily of cliques of G containing at least q vertices:

Lemma 20 (Clique Preservation Property) Let G be a graph. Then there exists a bijection between the subfamily of q^+ -cliques of G and the family of cliques of $\Phi_q(G)$.

Proof. Let C be a q^+ -clique of G, and let c = |C|. Consider all the q-completes of G contained in V(C). These sets clearly correspond to a $\binom{c}{q}$ -complete C' of $\Phi_q(G)$. Assume that C' is not maximal. Then there exists $x \in V(\Phi_q(G)), x \notin V(C')$, such that x is adjacent to all the vertices of C'. But x corresponds to a q-complete Q of G such that for every q-complete $Q_1 \subseteq V(C)$, both Q and Q_1 are contained in a same q^+ -clique of G. This implies that every vertex v of Q is adjacent to every vertex $v \neq v$ of C. Since $x \notin V(C')$, Q must necessarily contain at least one vertex not belonging to C. In other words, C is not maximal, a contradiction. Hence, C' is a clique of $\Phi_q(G)$.

Conversely, let C' be a clique of $\Phi_q(G)$ and $\mathscr F$ be the family of q-completes of G corresponding to the vertices of C'. Since any two vertices of C' are adjacent, any two completes of $\mathscr F$ are contained in a same q^+ -clique of G. Hence, the union of the q-completes of $\mathscr F$ is a q^+ -complete C of G.

Suppose by contradiction that C is not maximal. Thus, there exists a vertex $u \notin C$ which is adjacent to all the vertices of C. Consider $v_1, v_2, ..., v_{q-1} \in C$. It is clear that $Q = \{u, v_1, v_2, ..., v_{q-1}\}$ is a q-complete of G, and for every Q_1 in \mathscr{F} , both Q and Q_1 are contained in a same q^+ -clique of G. Since $u \notin C$, $Q \notin \mathscr{F}$, and this means that Q corresponds to a vertex $x \in V(\Phi_q(G))$ such that $x \notin C'$ and x is adjacent to all the vertices of C'. This implies that C' is not maximal, a contradiction. \square

The graph $\Phi_2(G)$ is the *edge clique graph* of G, introduced in [5], where the validity of the Clique Preservation Property was shown to that case.

The following definition is possible due to the Clique Preservation Property:

Definition 21 Let G be a graph. If C is a q^+ -clique of G, denote by $\Phi_q(C)$ the clique that corresponds to C in $\Phi_q(G)$. If C' is a clique of $\Phi_q(G)$, denote by $\Phi_q^{-1}(C')$ the q^+ -clique that corresponds to C' in G. If $\mathscr F$ is a subfamily of q^+ -cliques of G, define $\Phi_q(\mathscr F) = \{\Phi_q(C) \mid C \in \mathscr F\}$. If $\mathscr C$ is a subfamily of cliques of $\Phi_q(G)$, define $\Phi_q^{-1}(\mathscr C) = \{\Phi_q^{-1}(C) \mid C \in \mathscr C\}$.

Lemma 22 Let G be a graph, \mathscr{F} a subfamily of q^+ -cliques of it, $\mathscr{C} = \Phi_q(\mathscr{F})$, and $H = \Phi_q(G)$. Then $H[\mathscr{C}]_c$ contains a universal vertex if and only if $G[\mathscr{F}]_c$ contains q universal vertices.

Proof. If $H[\mathscr{C}]_c$ contains a universal vertex x, then every clique of \mathscr{F} contains the q-complete of G that corresponds to x, that is, $G[\mathscr{F}]_c$ contains q universal vertices. Conversely, if $G[\mathscr{F}]_c$ contains q universal vertices forming a q-complete Q of G, then every clique of \mathscr{C} contains the vertex of H that corresponds to Q, that is, $H[\mathscr{C}]_c$ contains a universal vertex. \square

Lemma 23 Let C be a (p+1)-complete of a graph G, and let $\mathscr C$ be a p^- -subfamily of cliques of G such that every clique of $\mathscr C$ contains at least p vertices of G. Then $\mathscr C$ has a 1^+ -core.

Proof. This lemma is an easy consequence of Lemma 6, by setting q=1, $U=V(G),\ \mathcal{Q}=\{\{w\}\mid w\in V(C)\},\ \mathrm{and}\ \mathscr{F}=\mathscr{C}.$

Now we are able to present a characterization for (p,q)-clique-Helly graphs. The cases p=1 and p>1 will be dealt with separately, as in Section 2.

Theorem 24 Let G be a graph, and let W be the union of the q^+ -cliques of G. Then G is a (1,q)-clique-Helly graph if and only if G[W] contains q universal vertices.

Proof.

 (\Rightarrow) Assume that G is a (1,q)-clique-Helly graph. Consider the subfamily $\mathscr F$ of the cliques of G formed by the q^+ -cliques only.

If $w \in W$, then w clearly belongs to a q^+ -clique of G. This implies that $w \in V(G[\mathscr{F}]_c)$. On the other hand, if $w' \in V(G[\mathscr{F}]_c)$, then w' belongs to a

 q^+ -clique of G, and therefore $w' \in W$. This shows that $G[\mathscr{F}]_c$ is a spanning subgraph of G[W].

Since \mathscr{F} is (1,q)-intersecting by hypothesis, it has a q^+ -core. This means that $G[\mathscr{F}]_c$ contains (at least) q universal vertices. Hence, G[W] contains q universal vertices.

(\Leftarrow) Assume that G[W] contains q universal vertices forming a q-complete Q. Let $\mathscr{F} = \{C_1, \ldots, C_k\}$ be a (1,q)-intersecting subfamily of cliques of G. Then $|C_i| \geq q$, that is, every $w \in C_i$ is contained in a q-complete of G, for $i=1,\ldots,k$. This implies that every C_i is an induced subgraph of G[W]. Therefore, every $u \in Q$ is adjacent to all the vertices of $C_i \setminus \{u\}$. By the maximality of C_i , it contains all the vertices $u \in Q$, for $i=1,\ldots,k$. Hence, \mathscr{F} has a q^+ -core, as required. \square

Theorem 25 Let p > 1 be an integer. A graph G is a (p,q)-clique-Helly graph if and only if every (p+1)-expansion of $\Phi_q(G)$ contains a universal vertex.

Proof.

(\Rightarrow) Suppose that G is a (p,q)-clique-Helly graph and there exists a (p+1)-expansion T, relative to a (p+1)-complete C of $\Phi_q(G)$, such that T contains no universal vertex.

Let $\mathscr C$ be the subfamily of cliques of $H=\Phi_q(G)$ that contain at least p vertices of C. Let $\mathscr F=\Phi_q^{-1}(\mathscr C)$. Consider a p^- -subfamily $\mathscr F'\subseteq\mathscr F$. Let $\mathscr C'=\Phi_q(\mathscr F')$. By Lemma 23, $\mathscr C'$ has a 1+-core. That is, $H[\mathscr C']_c$ contains a universal vertex. This implies, by Lemma 22, that $G[\mathscr F']_c$ contains q universal vertices. Thus, $\mathscr F'$ has a q^+ -core, that is, $\mathscr F$ is (p,q)-intersecting. Since G is (p,q)-clique-Helly, we conclude that $\mathscr F$ has a q^+ -core and $G[\mathscr F]_c$ contains q universal vertices. By using Lemma 22 again, $H[\mathscr C]_c$ contains a universal vertex. Moreover, by Lemma 18, $H[\mathscr C]_c$ is a spanning subgraph of T. However, T contains no universal vertex. This is a contradiction. Therefore, every (p+1)-expansion of $H=\Phi_q(G)$ contains a universal vertex.

 (\Leftarrow) Assume by contradiction that G is not (p,q)-clique-Helly. Let $\mathscr{F} = \{C_1,\ldots,C_k\}$ be a minimal (p,q)-intersecting subfamily of cliques of G which does not have a q-core. Clearly, k > p.

By the minimality of \mathscr{F} , the subfamily $\mathscr{F}\backslash C_i$ has a q^+ -core Q_i , for $i=1,\ldots,k$. It is clear that $Q_i \not\subseteq C_i$. Moreover, every two distinct Q_i,Q_j are contained in a same clique, since $k\geq 3$. Hence the sets Q_1,Q_2,\ldots,Q_{p+1} correspond to a (p+1)-complete C in $\Phi_q(G)$.

Let $\mathscr C$ be the subfamily of cliques of $H=\Phi_q(G)$ that contain at least p vertices of C. Let $\mathscr C'=\Phi_q(\mathscr F)=\{\Phi_q(C_1),\ldots,\Phi_q(C_k)\}$. Since every $C_i\in\mathscr F$ contains at least p sets from Q_1,Q_2,\ldots,Q_{p+1} , it is clear that the clique $\Phi_q(C_i)$ of H contains at least p vertices of C. Therefore, $\Phi_q(C_i)\in\mathscr C$, for $i=1,\ldots,k$.

Let T be the (p+1)-expansion of H relative to C. By Lemma 18, $H[\mathscr{C}]_c$ is a spanning subgraph of T. Therefore, $V(Q)\subseteq V(T)$, for every $Q\in\mathscr{C}$. In particular, $V(\Phi_q(C_i))\subseteq V(T)$, for $i=1,\ldots,k$. By hypothesis, T contains a universal vertex x. Then x is adjacent to all the vertices of $\Phi_q(C_i)\setminus\{x\}$, for $i=1,\ldots,k$. This implies that $\Phi_q(C_i)$ contains x, otherwise $\Phi_q(C_i)$ would not be maximal. Thus, \mathscr{C}' has a 1⁺-core and $H[\mathscr{C}']_c$ contains a universal vertex. By Lemma 22, $G[\mathscr{F}]_c$ contains q universal vertices, that is, \mathscr{F} has a q^+ -core. This contradicts the assumption for \mathscr{F} . Hence, G is a (p,q)-clique-Helly graph. \square

4 Complexity Aspects

Let p and q be fixed positive integers. If p=1, testing whether the union of the q^+ -cliques of G contains q universal vertices (Theorem 24) can be easily done in polynomial time. If p>1, testing the existence of a universal vertex in every (p+1)-expansion of $\Phi_q(G)$ (Theorem 25) can also be done in polynomial time, since the number of such (p+1)-expansions is $O(|V(G)|^{q(p+1)})$. Thus:

Corollary 26 For fixed positive integers p, q, there exists a polynomial time algorithm for recognizing (p,q)-clique-Helly graphs. \Box

Now we will show that when p or q is not fixed, the problem of deciding whether a given graph G is (p,q)-clique-Helly is NP-hard. We first recall the following NP-complete problems [6]:

SATISFIABILITY: Given a boolean expression $\mathscr E$ in the conjunctive normal form, is there a truth assignment for $\mathscr E$?

CLIQUE: Given a graph G and a positive integer k, is there a k^+ -clique in G?

The NP-hardness of CLIQUE can be proved by a transformation from SAT-ISFIABILITY (see [6]): given a boolean expression $\mathscr E$ with m clauses in the conjunctive normal form, construct the graph $\mathscr G(\mathscr E)$ by defining a vertex for each occurrence of a literal in $\mathscr E$, and by creating an edge between two vertices if and only if the corresponding literals lie in distinct clauses and one is not the negation of the other. Moreover, set k=m. The following fact is easy to prove:

Fact 27 The boolean expression $\mathscr E$ with m clauses in the conjunctive normal form is satisfiable if and only the graph $\mathscr G(\mathscr E)$ contains an m-clique.

Let us first show the NP-hardness proof when p is fixed and q is variable:

Theorem 28 Let p be a fixed positive integer. Given a graph G and a positive integer q, the problem of deciding whether G is (p,q)-clique-Helly is NP-hard.

Proof. Transformation from CLIQUE. Given a graph G and a positive integer k, construct the graph G' by adding 2p + 2 new vertices forming a

(p+1)-complete $Z = \{z_1, z_2, \ldots, z_{p+1}\}$ and a (p+1)-independent set $W = \{w_1, w_2, \ldots, w_{p+1}\}$. Add the edges (z_i, w_j) , for $i \neq j$, and the edges (v, u), for $v \in V(G)$ and $u \in Z \cup W$. The construction of G' is finished. Figure 2 shows the construction, where non-edges between Z and W are represented by dashed lines linking z_i to w_i .

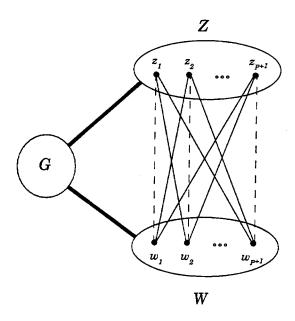


Figure 2: The graph G' for Theorem 28.

Define q = k + 1. We will show that G contains a (q - 1)-clique if and only if G' is not (p,q)-clique-Helly. Assume first that G contains a (q - 1)-clique G. Consider the following p + 1 cliques of G':

$$C \cup \{w_j\} \cup (Z \setminus \{z_j\}), \text{ for } 1 \leq j \leq p+1.$$

These cliques are (p,q)-intersecting, but do not have a q^+ -core. Therefore, G' is not (p,q)-clique-Helly.

Conversely, assume that the cliques of G have size at most q-2. Since $G'[Z \cup W]$ is $K_{(p+2)}$ -free, its cliques have size at most (q-2)+(p+1)=

q+p-1, that is, G' is $K_{(p+q)}$ -free. By Lemma 15, G' is (p,q)-clique-Helly, as desired.

Now we prove the NP-hardness in the case where q is fixed and p is variable:

Theorem 29 Let q be a fixed positive integer. Given a graph G and a positive integer p, the problem of deciding whether G is (p,q)-clique-Helly is NP-hard.

Proof. Transformation from SATISFIABILITY. Given a boolean expression $\mathscr{E} = (\mathscr{E}_1, \dots, \mathscr{E}_m)$ in the conjunctive normal form, let us construct a graph G'.

First, construct the graph $\mathscr{G}(\mathscr{E})$ described above in the transformation from SATISFIABILITY to CLIQUE. Define \mathscr{V}_i as the subset of vertices of $V(\mathscr{G}(\mathscr{E}))$ corresponding to ocurrences of literals in clause \mathscr{E}_i , $1 \leq i \leq m$.

Next, add m new vertices, one for each \mathscr{E}_i , forming an m-independent set $W = \{w_1, w_2, ..., w_m\}$. For i = 1, ..., m, add the edges (w_i, v) where $v \in V(\mathscr{G}(\mathscr{E}))$ and $v \notin \mathscr{V}_i$.

Finally, add q-1 new vertices forming a (q-1)-complete $Z=\{z_1,...,z_{q-1}\}$, and add the edges (z,v), for $z\in Z$ and $v\in W\cup \mathscr{G}(\mathscr{E})$. The construction of G' is finished. Clearly, every vertex of Z is universal in G', and every clique of G' contains these q-1 vertices. Figure 3 shows a scheme of the construction, where the dashed lines mean that w_i is not adjacent to the vertices of \mathscr{V}_i , for $1\leq i\leq m$.

Set p=m-1. We will show that $\mathscr E$ is satisfiable if and only if G' is not (p,q)-clique-Helly. Assume first that $\mathscr E$ is satisfiable. By Fact 27, $\mathscr G(\mathscr E)$ contains a (p+1)-clique $C=\{v_1,v_2,...,v_{p+1}\}$, where $v_j\in\mathscr V_j$. By the construction of G', it contains the (p+q)-cliques

$$C_i = (C \setminus \{v_i\}) \cup \{z_i\} \cup Z$$
, for $1 \le j \le p+1$.

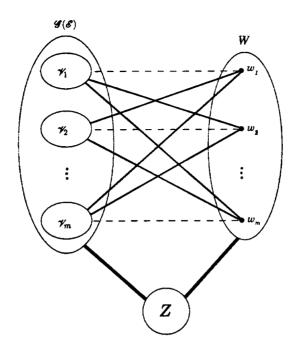


Figure 3: The graph G' for Theorem 29.

These p+1 cliques are (p,q)-intersecting, but do not have a q^+ -core. Thus, G' is not (p,q)-clique-Helly.

Conversely, assume that $\mathscr E$ is not satisfiable. In this case, by Fact 27, $\mathscr G(\mathscr E)$ is $K_{(p+1)}$ -free. Thus, every clique of G' contains exactly a vertex of W, since for any p^- -subset $S\subseteq V(\mathscr G(\mathscr E))$, there exists at least one vertex of W adjacent to all the vertices of S.

Let Q be a (p+1)-family of q-completes contained in a same clique of G', and let $\mathscr F$ be the subfamily of cliques of G' that contain at least p members of Q. By Observation 13, we need to prove that $\mathscr F$ has a q^+ -core. (Recall that $\mathscr F$ has the (q-1)-core Z.)

If Univ(Q) is contained in a $(p+q-1)^-$ -complete of G', Lemma 14 guarantees that \mathscr{F} has a q^+ -core, and nothing remains to prove. Hence, let us assume that Univ(Q) is a $(p+q)^+$ -complete of G'.

Since $\mathscr{G}(\mathscr{E})$ is $K_{(p+1)}$ -free, a maximum clique C of G' is of size at most (q-1)+1+p=p+q. Therefore, $\mathrm{Univ}(\mathcal{Q})$ is in fact a (p+q)-clique of G'.

Write $C = \operatorname{Univ}(\mathcal{Q})$. Then C is of the form $C = Z \cup \{w_k\} \cup P$, where $k \in \{1, \ldots, p+1\}$ and P is a p-complete contained in $V(\mathcal{G}(\mathcal{E}))$. It is clear that the ocurrences of literals corresponding to the vertices of P lie in distinct clauses of \mathcal{E} . This means that there is exactly one vertex $v \in P \cap \mathcal{V}_j$, for every $j \in \{1, \ldots, p+1\} \setminus \{k\}$. Thus, write $P = \{v_1, \ldots, v_{k-1}, v_{k+1}, \ldots, v_{p+1}\}$, where $v_j \in \mathcal{V}_j$ for $j \in \{1, \ldots, p+1\} \setminus \{k\}$.

Let $v \in \{w_k\} \cup P$. If v belongs simultaneously to two members of \mathcal{Q} , then v belongs to all the members of \mathcal{F} . In other words, $Z \cup \{v\}$ is a q-core of \mathcal{F} , as desired. Therefore, it only remains to analyze the case in which

$$Q = \{ Z \cup \{v_i\} \mid 1 \le j \le p+1, j \ne k \} \cup \{ Z \cup \{w_k\} \}.$$

In this case, let us show that w_k belongs to every member of \mathscr{F} . Suppose that some $C' \in \mathscr{F}$ does not contain w_k . Recall that C' contains a vertex $w_j, j \neq k$. Moreover, v_j is not adjacent to w_j . This implies that C' cannot contain the member of \mathcal{Q} which v_j belongs to. Since C' does not contain w_k , C' can neither contain the member of \mathcal{Q} which w_k belongs to. A contradiction arises, since C' should contain p members of \mathcal{Q} . Thus, w_k indeed belongs to every member of \mathscr{F} , and $Z \cup \{w_k\}$ is a q-core of \mathscr{F} , as desired. \square

From Theorems 28 and 29, we conclude:

Corollary 30 The recognition of (p,q)-clique-Helly graphs, for p or q variable, is NP-hard. \Box

5 Some Questions

It remains open the question of deciding whether there exists a recognition algorithm for (p, q, r)-families of sets which is polynomial on the size of the input family, for fixed integers p, q and r.

Define a graph to be (p, q, r)-clique-Helly if its family of cliques is (p, q, r)-Helly. Another interesting question is to obtain a characterization for (p, q, r)-clique-Helly graphs that might possibly lead to a polynomial time recognition algorithm on the size of the input graph, for fixed p, q and r.

References

- [1] C. Berge. Graphs and Hypergraphs. North-Holland, Amsterdam, 1973.
- [2] C. Berge. Hypergraphs. Elsevier Science Publishers B. V., Amsterdam, 1989.
- [3] C. Berge and P. Duchet. A generalization of Gilmore's theorem. *Recent Advances in Graph Theory* (M. Fiedler, ed.), Acad. Praha, Prague 1975, 49-55.
- [4] P. L. Butzer, R. J. Nessel, and E. L. Stark. Eduard Helly (1884-1943): In memoriam. Resultate der Mathematik 7 (1984).
- [5] G. Chartrand, S. F. Kapoor, T. A. McKee, and F. Saba. Edge-clique graphs. *Graphs and Combinatorics* 7 (1991) 253-264.
- [6] S. A. Cook. The complexity of theorem-proving procedures. Proc. 3rd Ann. ACM Symp. on Theory of Computing (1971), New York, 151-158.
- [7] L. Danzer, B. Grünbaum, and V. L. Klee. Helly's theorem and its relatives. *Proc. Symp. on Pure Math AMS* Vol.7 (1963) 101–180.
- [8] F. F. Dragan. Centers of Graphs and the Helly Property (in Russian). Doctoral Thesis, Moldava State University, Chisinău, 1989.

- [9] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York, 1980.
- [10] M. C. Golumbic and R. E. Jamison. The edge intersection graphs of paths in a tree. J. Comb. Theory. Series B 38 (1985) 8-22.
- [11] E. Helly. Ueber Mengen konvexer Koerper mit gemeinschaftlichen Punkter, Jahresber. *Math.-Verein.* 32 (1923) 175–176.
- [12] R. E. Jamison and R. Nowakowski. A Helly theorem for convexity in graphs. *Discrete Mathematics* 51 (1984) 35-39.
- [13] J. W. Moon and L. Moser. On cliques in graphs. *Israel J. Math.* 3 (1965) 23–28.
- [14] E. Prisner. *Graph Dynamics*. Pitman Research Notes in Mathematics 338, Longman, London (1995).
- [15] J. L. Szwarcfiter. Recognizing clique-Helly graphs. Ars Combinatoria 45 (1997) 29–32.