

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO CENTRO DE CIÊNCIAS MATEMÁTICAS E DA NATUREZA INSTITUTO DE GEOCIÊNCIAS DEPARTAMENTO DE GEOLOGIA

Julia Medeiros Mascarenhas

O GRUPO ANDRELÂNDIA NA SERRA DO CAMPESTRE *KLIPPE* ITUMIRIM, NEOPROTEROZOICO, SUL DE MINAS GERAIS.

Trabalho Final de Curso

UFRJ Rio de Janeiro 2022

Julia Medeiros Mascarenhas

O GRUPO ANDRELÂNDIA NA SERRA DO CAMPESTRE *KLIPPE* ITUMIRIM, NEOPROTEROZOICO, SUL DE MINAS GERAIS.

Trabalho Final de Curso apresentado ao Programa de Graduação em Geologia, da Universidade Federal do Rio de Janeiro, como parte dos requisitos necessários à obtenção do título de grau em Geologia.

Orientador: André Ribeiro - UFRJ Coorientador: Rudolph Allard Johannes Trouw – UFRJ

UFRJ Rio de Janeiro 2022

FICHA CATALOGRÁFICA

Mascarenhas, Julia Medeiros

O Grupo Andrelândia na Serra do Campestre - *Klippe* **Itumirim, Neoproterozoico, Sul de Minas Gerais.** / Julia Medeiros Mascarenhas – Rio de Janeiro: UFRJ, Instituto de Geociências, 2022.

66p., 76 f.

Trabalho Final de Curso (Geologia) – Universidade Federal do Rio de Janeiro, Instituto de Geociências, Departamento de Geologia, 2022.

Orientador; André Ribeiro, Coorientador; Rudolph Allard Johannes Trouw.

1. Geologia. 2. Geologia Estrutural. 3. Microtectônica. 4. Metamorfismo 5. *Klippe* Carrancas 6.*Klippe* Itumirim

Julia Medeiros Mascarenhas

O GRUPO ANDRELÂNDIA NA SERRA DO CAMPESTRE *KLIPPE* ITUMIRIM, NEOPROTEROZOICO, SUL DE MINAS GERAIS.

Trabalho Final de Curso de Graduação em Geologia da Universidade Federal do Rio de Janeiro, parte dos requisitos necessários à obtenção do título de Geóloga.

Orientador: André Ribeiro - Depto. Geologia/UFRJ Coorientador: Rudolph Allard Johannes Trouw - Depto. Geologia//UFRJ

Dr. André Ribeiro (UFRJ)

Dra. Renata Schmitt (UFRJ)

Dr. José Carlos Sicoli Seoane (UFRJ)

UFRJ Rio de Janeiro 2022

"Caminho perdido na serra, Caminho de pedra onde não vai ninguém... Só sei que hoje tenho em mim Um caminho de pedra No peito também..." - Tom Jobim e Vinicius de Morais

"Tô sorrindo, vou seguindo pela estrada, apaixonado pelo povo do meu país, estou feliz pois apesar do sofrimento vejo um mundo de alegria bem na raiz, alegria muita fé e esperança na aliança de fazer tudo melhor (e será), felicidade o teu nome é união e povo unido é beleza mais maior" - Luiz Gonzaga

Agradecimentos

À UFRJ e ao ensino público de qualidade.

Um agradecimento à empresa Solintec por apoiar a pesquisa, prestando serviços muito solícita e compreensiva mediante a situação das universidades federais que há anos estamos vivendo.

Ao Thauan, companheiro de mapeamento e de muitos outros momentos maravilhosos. Ao Professor Julinho, por me ajudar a decifrar os mais singelos e miúdos minerais nas minhas lâminas, com sua amizade para todas as horas. À Professora Renata, que tanto me incentiva desde caloura e me permitiu o uso do seu microscópio e impressões, agradeço também à equipe do Gondwana! Ao Dani (Mozart), velho amigo e guru do geoprocessamento.

Ao Marquinhos, Solange, Ramon e tantas outras pessoas queridas da cidade de Itumirim que nos acolheram de braços abertos e facilitaram o trabalho de campo de tantas maneiras. Salve Salve Itumirim!

Aos meus orientadores e suas vozes geológicas que ecoam na minha cabeça!

Dedicatória

A UFRJ, é um sonho realizado me formar nessa instituição. Que a educação pública de qualidade seja um direito garantido a todos e que a Geologia seja vista como um conhecimento básico, reconhecida como fundamental para o povo.

Ao Museu Nacional, que nutriu minha curiosidade desde muito menina e onde minha jornada começou. Como eram felizes os dias que minha mãe me permitia faltar aula para ir ao trabalho dela. Aos laboratórios, aracnídeos, as múmias, as conchas, a Luzia, utensílios de povos pré-históricos, o jardim. Em minha memória, seus corredores, janelas, pisos de madeira, cheiros e passagens secretas ainda vivem.

A todos os servidores e terceirizados, profissionais dedicados e que trazem alegria ao dia a dia do Fundão, obrigada por tudo. Gostaria de agradecer especialmente à Tia Marília, Tia Quintillia, Seu Oswaldo (*in memoriam*), Dona Severina, Berenice, Jurema, Daiane, Tiririca, Seu Evaldo (*in memoriam*), Solange, Anadja e Elisabete.

Ao Wanderlei, Edu, Sidnei, Ednaldo, Damião, Manel e Silvinho, que me levaram a lugares que só a Geologia proporciona. Vocês têm um lugar guardado no meu coração e minha eterna admiração. Obrigada pelo compromisso e seriedade perante a nós e a sua profissão, sem vocês nada disso seria possível. Obrigada pelos ensinamentos, pelas risadas (infinitas), pelo carinho e cuidado! Anseio pelos muitos quilômetros que ainda iremos percorrer!

Aos meus queridos professores, ensinamentos sem fim! Obrigada por toda paciência! Desde os meus 17 anos, quando o Casquinha me convenceu a prestar o vestibular, vocês são minhas referências de geólogo, cativando e incentivando na Geologia e na vida. Em certa ordem cronológica: Casquinha, Katia, Cainho, Ciro, Ismar, André, Nepo, Limeira, Julinho, Renata, Cícera, Dayan, Gerson, Rodolfo.

A minha mãe, minha vida, minha referência científica. Quem me ensina/ensinou ética e humildade, nutriu meu corpo e alma, sempre me dando espaço para questionar. Obrigada por toda paciência que você teve que ter pra dialogar com uma fedelha e incentivo que me dá pra ser cientista. Não sei se você tem ideia de quanto eu te admiro.

A minha irmã, que tanto perturbo! O dia mais feliz da minha vida foi o dia em que você nasceu. É um privilégio poder acompanhar você crescendo de perto e ter passado a pandemia juntas. Amo quando você vem no meu quarto me interromper (principalmente quando estou atolada) e quando a gente fica horas falando besteira.

Ao meu pai, que me criou como uma pequena aventureira, me ensinou a andar nas pedras, no mato, no mar. Só não ensinou a voar porque não deu. O ritmo de campo aprendi com você. Seus ensinamentos também me ensinaram o poder da presença e a dar atenção a todas as pessoas.

A minha avó, quem me ensinou o poder das histórias e das palavras. Hoje em dia percebo que me influenciou a me tornar uma grande tagarela. Admiro seu dom de dar aula e sua fome pelo estudo. Obrigada por todo carinho, ouvido e conselhos sábios. Sou, com muito orgulho, sua "aranha de barranco". Desculpa por chegar em casa tão suja e cheia de carrapato dos campos.

Ao meu avô, que sei que estaria orgulhoso de ver a minha vida hoje. Sei que você adoraria ouvir as histórias de campo, ver minhas amostras e as novas tecnologias. Você vive em mim, me ensinou a entender o céu, ser interdisciplinar e sempre repassar o conhecimento aprendido. Obrigada por todo o incentivo na construção da minha personalidade desde pequena, todas as conversas. Sentirei eternamente a sua falta.

Aos meus orientadores pessoais Cadu e Renato, se eu tivesse seguido o que vocês falam eu já estaria em meados do doutorado. Vocês, o Marcelo e meu pai me criaram como geóloga sem nem perceber. Obrigada por todos ensinamentos, conversas, trilhas, velejadas, mergulhos e outras aventuras, me tratando sempre como uma filha.

Aos meus primeiros amigos e irmãos, Daniela e Daniel, estaremos para sempre conectados! A Juliana que entrou mais recentemente na família e que tanto me encoraja e inspira. Aos meus amigos de escola, Tati, Mogli, Veiga, Linda, Dri e Ribas. Nossa vivência na escola moldou meu senso de humor perante a vida.

A família do D.A. Joel Valença. Vocês me deram forças pra enfrentar todo e qualquer tipo de problema. Meus exemplos de amizade, amor, carinho, cuidado e diversão garantida. Só posso agradecer de ter cruzado caminho com vocês no tempo e espaço. Já são tantos anos de amizade! Os primeiros, turma de 2013 do BCMT, Camilinha, Roux, Mozart, Jotinha, Arieta, Luis, quantos momentos, que turma! Minha primeira iniciação científica com a Marina Meloni em 2014. Diversas fases no D.A que me proporcionaram tantos amigos queridos, tanta inspiração! Pedrão, Mariah, Tainá, André, Caio, Bob, Biro, Elisa, Jhone, Dandara, Ian, Poldilho, Adison, Pedrinho, Locatelli, Mogli, Rapha Lopes, Rapha de Negri, Gil, Lorrana, PV, Jambu, Donabe. Meus companheiros de mapeamento, Bibizona, Be, Paulão, Sartori, e Thauan, qualquer perrengue com vocês é diversão. Minhas meninas superpoderosas, Bianca Governo e Lethicia Carlos, não sei o que seria de mim sem vocês. Meus inimigos do fim, graças a vocês a geologia raiz vive e continua na UFRJ!

Um agradecimento especial à cientista cazaque Alexandra Elbakyan, criadora da plataforma Sci-Hub, por proporcionar o acesso à ciência a todos, sendo uma ferramenta utilizada em todos os trabalhos da graduação e pesquisas que moldaram a minha formação de geóloga.

Aos meus orientadores, por toda inspiração. Rodolfo, pela amizade e momentos tão bons conversando de geologia e todas outras coisas do mundo, sempre dando muitas risadas (e excelentes conselhos que sempre estarão comigo!). André, que abriu um mundo de conhecimento para mim, e, além da amizade, sempre me deu autonomia para pensar e, **sobretudo**, praticar. Você bem que me alertou que eu ia ficar doida de pedra...

Acho que já era tarde demais...

Resumo

Mascarenhas, Julia Medeiros. O Grupo Andrelândia na Serra do Campestre. *Klippe* Itumirim, Neoproterozoico, Sul de Minas Gerais. 2022, 70f. Trabalho de Conclusão de Curso (Geologia) – Departamento de Geologia, Instituto de Geociências, Universidade Federal do Rio de Janeiro, Rio de Janeiro.

Formadas durante a orogênese Brasiliana, as Klippen Carrancas e Itumirim são estruturas regionais compostas por unidades metassedimentares neoproterozoicas do Grupo Andrelândia. O mapeamento em escala 1:5.000 da região de Itumirim, Minas Gerais, trouxe novas informações sobre aspectos de geologia estrutural, metamorfismo e estratigrafia da klippe em questão, trazendo novas considerações sobre a geologia regional da área. Foram reconhecidos dois domínios estruturais, compostos por rochas do embasamento paleoproterozoico e argueano e Unidades do Grupo Andrelândia, que foram divididos em sete unidades de mapeamento. O Domínio Autóctone compreende rochas como ortognaisses, xistos e filitos ultramáficos, metagranitóide, biotita xisto (Unidade Santo Antônio) e um filito cinza alterado. Já as rochas do Dominio Alóctone, o quartizito com muscovita esverdeada (Unidade São Tomé das Letras), o cloritóide filito (Unidade Campestre) e o filito sedoso (Unidade Campestre). Neste trabalho são descritas quatro fases de deformação para as rochas da área. A primeira fase de deformação D1 gerou uma clivagem filítica e xistosidade, que foi dobrada em uma crenulação S2, que transpõe a foliação S1, gerando a foliação principal na área (S2) e dobras isoclinais com plano axial paralelo a S2 e com baixo ângulo de caimento para leste e oeste. A terceira fase de deformação D3 é representada por dobras assimétricas e crenulação com eixos caindo para sudoeste. A quarta fase de deformação D4 corresponde a dobras de crenulação que indicam um encurtamento local NW -SE. As fases D1 e D2 são correspondentes a movimentos de transporte tectônico para leste e compressão norte-sul, relacionados a evolução do Orógeno Brasilia, enquanto D3 e D4 correspondem a encurtamentos posteriores, relacionados ao Orógeno Ribeira. As rochas da área foram metamorfizadas em fácies xisto verde superior e anfibolito inferior, e a região é cortada pelas isógradas da granada-in, cianita-in e estaurolita-in. A análise microtectônica possibilitou um estabelecimento de ordem de aparecimento mineral conforme a evolução tectônica descrita, relacionando o crescimento da muscovita, biotita, cloritóide e clorita a D1 e D2, enquanto estaurolita, cianita e granada são interpretadas como contemporâneas a D2. Muscovita pós-D2 indica retrometamorfismo em fácies xisto verde. Considerando e reconhecendo as diferenças entre o padrão estrutural na área mapeada e outras Serras da Klippe Carrancas, assim como a falta de ligação física de estruturas entre as duas áreas, o terreno alóctone em questão é interpretado como uma klippe independente, aqui denominado de Klippe Itumirim.

Abstract

Formed during the Brasiliano Orogeny, the Carrancas and Itumirim Klippen are regional structures composed of neoproterozoic metasedimentary units, the Andrelandia Group. The 1:5.000 scale mapping brought new information about structural geology, metamorphic and stratigraphic aspects, along with new insights about the regional geology of the area. Seven different mapping units are recognized in this work, correspondent to the paleoproterozoic and archean basement rocks and the Andrelandia Group, and two different structural domains are distinguished. The Autochthonous Domain comprises orthogneiss, ultramafic schists and phyllites, metagranitoid, the biotite schist (Santo Antonio Unit) and a gray phyllite; and the allochthonous Units correspond to (Andrelandia's Units): green mica quartzite (Sao Tome das Letras), chloritoid phyllite (Campestre) and silky phyllite (Campestre). This work recognizes four deformation phases. The first phase D1 generated a phyllitic cleavage and schistosity, later deformed by the second phase D2, which transposes the primary foliation (S1), generating the main foliation in the area (S2) and parallel axial surface isoclinal folds, with axes shallowly plunging to the east and west. The third phase (D3) is represented by asymmetric folds and crenulation, with high angle plunges towards southwest. The fourth phase (D4) appears locally and corresponds to a local NW -SE shortening. D1 and D2 are correlated to the *nappe* emplacement with tectonic thrust movements towards east, with a northsouth compression, related to the Brasiliana Orogeny, and D3 and D4 are correspondent to local shortenings, related to Ribeira Orogeny. The rocks where submitted to metamorphism at upper green schist and amphibolite facies conditions, and the mapped area is cross-cut by garnet-in, staurolite-in and kyanite-in isogrades. The microstructural analysis allowed to interpret an order of metamorphic mineral appearance, correlating the growth of muscovite, biotite and chloritoid and chlorite to D1 and D2, while garnet, staurolite, kyanite are interpreted as contemporaneous to D2. Post D2 muscovite growth indicates another metamorphism of greenschist facies. Considering and recognizing the differences in tectonic patterns between the mapped area and other ranges in Carrancas klippe, and also the lack of structural and physical connection between them, the allochthonous domain is interpreted as an independent klippe, denominated here as Itumirim *Klippe*.

Agradecimentos	6
Dedicatória	7
Resumo	9
Abstract	10
Índice de Figuras	13
Índice de Anexos	16
1. Introdução	17
1.1. Localização da área de estudo	18
1.2. Objetivos	20
2. Metodologia	21
2.1. Pesquisa Bibliográfica	21
2.2. Geoprocessamento	21
2.3. Fotointerpretação	21
2.4. Etapas de campo	22
2.4. Etapas de campo2.5. Etapa pós-campo	22 22
2.4. Etapas de campo2.5. Etapa pós-campo3. Geologia Regional	22 22 23
 2.4. Etapas de campo 2.5. Etapa pós-campo 3. Geologia Regional	22 22 23 24
 2.4. Etapas de campo 2.5. Etapa pós-campo 3. Geologia Regional 3.1. Estratigrafia e paleoambientes no Grupo Andrelândia 3.2. Geologia Estrutural 	22 22 23 24 25
 2.4. Etapas de campo 2.5. Etapa pós-campo 3. Geologia Regional 3.1. Estratigrafia e paleoambientes no Grupo Andrelândia 3.2. Geologia Estrutural 3.3. Metamorfismo 	22 22 23 24 25 27
 2.4. Etapas de campo 2.5. Etapa pós-campo 3. Geologia Regional 3.1. Estratigrafia e paleoambientes no Grupo Andrelândia 3.2. Geologia Estrutural 3.3. Metamorfismo 4. Geologia da área estudada 	22 22 23 24 25 27 32
 2.4. Etapas de campo 2.5. Etapa pós-campo 3. Geologia Regional 3.1. Estratigrafia e paleoambientes no Grupo Andrelândia 3.2. Geologia Estrutural 3.3. Metamorfismo 4. Geologia da área estudada 4.1. Embasamento 	22 22 23 24 25 27 32 32
 2.4. Etapas de campo 2.5. Etapa pós-campo 3. Geologia Regional 3.1. Estratigrafia e paleoambientes no Grupo Andrelândia 3.2. Geologia Estrutural 3.3. Metamorfismo 4. Geologia da área estudada 4.1. Embasamento 4.1.1. Ortognaisse 	22 22 23 24 25 27 32 32 32
 2.4. Etapas de campo	22 22 23 24 25 27 32 32 32 33
 2.4. Etapas de campo 2.5. Etapa pós-campo 3. Geologia Regional 3.1. Estratigrafia e paleoambientes no Grupo Andrelândia 3.2. Geologia Estrutural 3.3. Metamorfismo 4. Geologia da área estudada 4.1. Embasamento 4.1.1. Ortognaisse 4.1.2. Filitos e xistos ultramáficos 4.1.3. Metagranitóide 	22 22 23 24 25 27 32 32 32 32 33 33
 2.4. Etapas de campo 2.5. Etapa pós-campo 3. Geologia Regional 3.1. Estratigrafia e paleoambientes no Grupo Andrelândia 3.2. Geologia Estrutural 3.3. Metamorfismo 4. Geologia da área estudada 4.1. Embasamento 4.1.1. Ortognaisse 4.1.2. Filitos e xistos ultramáficos 4.1.3. Metagranitóide Pegmatitos 	22 22 23 24 25 27 32 32 32 33 33 33

Índice

4.2.1. Quartzito com muscovita esverdeada	34
4.2.2. Cloritóide filito com quartzito intercalado	
4.2.3. Filito cinza sedoso	
4.2.4. Filito alterado	
4.2.5. Biotita xisto	
5. Geologia Estrutural	
5.1. Primeira fase de deformação - D1	
5.2. Segunda fase de deformação - D2	41
5.3. Terceira fase de deformação - D3	
5.4. Quarta fase de deformação	
6. Metamorfismo e Microtectônica	
6.1. Metamorfismo	49
6.2. Microtectônica	54
6.2.1. Primeira fase de deformação - D1	54
6.2.2. Segunda fase de deformação - D2	56
6.2.3. Terceira fase de deformação - D3	57
7. Interpretações, contribuição à geologia regional e conclusões	59
9. Referências Bibliográficas	61

Índice de Figuras

Figura 6. O limite entre as zonas de facies xisto-verde (2-amarelo) e anfibolito com cianita (3-cinza) na Klippe Carrancas em mapas metamórficos regionais de a) Trouw et Figura 7. A isógrada da granada na área de estudo (retângulo vermelho). Isógradas metamórficas e interpretação das condições de temperatura e pressão na Klippe Figura 8. O limite entre as zonas de facies xisto-verde (2-amarelo) e anfibolito com cianita (3-cinza) na Klippe Carrancas em mapas metamórficos regionais de a) Trouw et Figura 9. Gnaisse migmatitico com dobras fechadas, com intrusões de diques de aplitos e pegmatitos paralelos ao plano axial das dobras. Ortognaisse do Cinturão Mineiro nas Figura 10. a) O Cloritóide filito, com cloritóide (esverdeado), mica branca e quartzo definindo foliação que está dobrada e redobrada. Fotomicrografia em polarizadores Figura 11. Paisagem da Serra do Campestre com a baixada ao norte (vista para leste). Domínio autóctone: B- embasamento encoberto ou com rochas alteradas; BX e FA-

biotita xisto e filito alterado. Klippe Carrancas com a falha de empurrão na base da Serra:
Q- quartzito, FQ- cloritoide filito e quartzito, FS- filito sedoso na Serra do Sofá
(denominação local de parte da Serra do Campestre)
Figura 12. a) Foliação anastomosada, veios de quartzo (Q), lentes micáceas (M) e
granada (G), orientada de NE - SW; e b) feldspatos de diversos tamanhos, quartzo
recristalizado e lâminas irregulares ricas em micas e clorita, orientada de E-W. Biotita
xisto em fotomicrografias com polarizadores a) paralelos e b) cruzados, de lâminas
escaneadas com o programa Zen Blue
Figura 13. a) Mica branca definindo foliação S1, por sua vez transposta em crenulações
apertadas/isoclinais dando origem à foliação de crenulação S2. A foliação principal S2
foi então deformada em crenulações abertas a isoclinais, localmente gerando clivagem
S3. b) Desenho a mão livre sobre a foto da figura a , com lente de quartzo destacada. Filito
cinza sedoso na Serra do Sofá
Figura 14. a) Lente assimétrica de foliação (S2) indicando movimento destral de topo
para leste. Quartzito micáceo da Unidade A3. b) desenho a mão livre da figura 14a 40
Figura 15. Dobras isoclinais com eixos leste-oeste sub-horizontais e planos axiais de alto
ângulo de mergulho para sul atribuídas as fases D2 ou D1(?). a) Alto da Serra do
Campestre e b) corte de ferrovia no Cânion da Pirambeira. c) desenho a mão livre da
figura b
c) desenho a mão livre da figura b
Figura 16. Estereograma de igual área, com projeção no hemisfério inferior, mostrando
medidas em: a) Polos da Foliação principal S2 e b) lineação de estiramento (L1) 44
Figura 17. Estereograma de igual área, com projeção no hemisfério inferior, mostrando
medidas para a) Polos Plano axial e b) eixo de dobras F2
Figura 18. Lineação de estiramento paralela a eixo de dobra D2 (ou D1?). Flanco de
dobra D3 em quartzito. Corte de ferrovia no Cânion da Pirambeira
Figura 19. Dobras assimétricas em Z (olhando para o sul) típicas da fase de deformação
D3. A dobra deforma a foliação principal S2, que é paralela ao acamamento sedimentar.
Figura 20. Estereogramas de igual área, com projeção no hemisfério inferior, mostrando
medidas para a) Polos de superfícies axiais S3 e b) eixos para dobras F3 46
Figura 21. Crenulação S3 no filito sedoso. Fotomicrografia em polarizadores paralelos.
"ITM-C01"

Figura 22. a) Lentes de filito cinza em quartzito resultadas do rompimento de camada de filito em charneira com espessamento de quartzito. **b**) desenho a mão livre da figura 22a.

Índice de Anexos

Anexo 1	Mapa geológico	67
	Mapa geológico com transparência sob imagem de satélite	68
Anexo 2	Seções geológicas	69
Anexo 3	Mapa de pontos	70
Anexo 4	Planilha com dados de campo	

1. Introdução

Klippen são remanescentes erosionais de *nappes* que, por sua vez, são estruturas alóctones características de orógenos colisionais. As *nappes* são constituídas por sucessões rochosas que foram deslocadas por até centenas de quilômetros ao longo de falhas de empurrão. Nas *nappes* e *klippen*, em geral, as sucessões antigas sobrepõem-se às mais jovens e rochas de grau metamórfico mais elevado às de menor grau.

O sistema de *Nappes* Andrelândia (Trouw *et al.*, 2013) é um conjunto alóctone do Neoproterozoico, relacionado à evolução do extremo sul do Orógeno Brasília Meridional. Este sistema alóctone, exposto no sul de Minas Gerais, inclui sucessões de rochas metassedimentares e metaígneas máficas do Grupo Andrelândia (Neoproterozoico) e rochas do seu embasamento Arqueano/Paleoproterozoico, a maioria ortognaisses. O sistema de *Nappes* Andrelândia foi novamente deformado e metamorfisado durante a evolução do segmento central do Orógeno Ribeira, gerando estruturas e metamorfismo relacionados à interferência ou à sobreposição de eventos dos dois orógenos citados.

A *Klippe* Carrancas é a estrutura alóctone basal do Sistema de *Nappes* Andrelândia e uma das peças-chave para o entendimento da zona de interferência entre a parte sul do Orógeno Brasília Meridional e o segmento central do Orógeno Ribeira. A *Klippe* inclui três unidades de rochas metassedimentares do Grupo Andrelândia: São Tomé das Letras, constituída por quartzitos e xistos com mica esverdeada, Campestre com filitos e xistos cinzentos e quartzitos, e Santo Antônio com plagioclásio-biotita-xisto. As idades máximas de sedimentação, em torno de 1.0 Ga para as duas primeiras unidades e 640-630 Ma para o biotita xisto Santo Antônio, foram obtidas através da datação de grãos de zircão detrítico (Valeriano *et al.*, 2004; Westin *et al.*, 2019; Telles, 2020; Marimon *et al.*, 2020, 2021).

A estrutura da *Klippe* é interpretada como um sinclinal isoclinal com intensa deformação interna (Trouw *et al.*, 1980; Paciullo, 1980; Ribeiro, 1980; Heilbron, 1984). Já outros autores, como Coutinho (2012) e Westin *et al.* (2016, 2019) não reconheceram a estrutura sinclinal e interpretaram a estrutura regional como uma *nappe* de empurrão.

Estão notavelmente expostas estruturas tectônicas de interferência relacionadas a evolução dos dois orógenos (dobras, foliações, lineações) e isógradas metamórficas (granada-, estaurolita-, cianita-, sillimanita-*in*; cloritóide-*out*; *cf*. Heilbron, 1985; Carvalho *et al.*, 2020). Estas isógradas cortam as estruturas tectônicas da própria *Klippe* e, portanto, são consideradas como relacionadas à evolução do Orógeno Ribeira (Trouw *et al.*, 2013; Heilbron *et al.*, 2017; Carvalho *et al.*, 2020). No entanto, trabalhos recentes

nas *nappes* Luminárias e São Tomé das Letras (Fumes *et al.*, 2017, 2021; Telles, 2020; Waterkemper, 2022; Marimon *et al.*, 2022) revelaram a possibilidade da existência de isógradas mais antigas, internas nas *nappes* e talvez relacionadas a evolução do Orógeno Brasília.

Com base no mapeamento geológico detalhado na escala 1:5.000 e análise microtectônica, o presente trabalho mostra novidades tanto na estratigrafia interna como no metamorfismo da *Klippe* Carancas na área da Serra do Campestre em Itumirim. Além disso, discute a possibilidade das sucessões do Grupo Andrelândia, expostas continuamente nas Serras do Farias, Campestre e Estância, constituírem uma estrutura alóctone independente da *Klippe* Carancas.

1.1. Localização da área de estudo

A área está localizada na Serra do Campestre e da Estância (Fig. 1), ao sul da cidade de Itumirim, no sul de Minas Gerais. Saindo da Cidade Universitária, no Rio de Janeiro, o acesso é através da rodovia Washington Luiz (BR-040), rumando oeste na estrada BR-265 em Barbacena (Fig. 2). O ponto de apoio foi a Pousada Esquinão na cidade de Itumirim.

Figura 1. a) Porção Noroeste da *Klippe* Carrancas, no sul de Minas Gerais, com a área mapeada no retângulo vermelho; **b**) enfoque para a Serra do Campestre.

A *Klippe* Carrancas se estende de Lavras a Minduri, compreendendo, de noroeste a sudeste, as serras do Faria, Campestre, Estância, Pombeiro, Galinheiro, Carrancas, Bicas e Chapadas das Perdizes.

Figura 2. Acesso a cidade de Itumirim, saindo do Rio de Janeiro, através da BR 040, rumando a oeste em Barbacena na BR 265. Imagem do Google Earth 2022.

1.2. Objetivos

O trabalho teve como objetivo elaborar um mapa e seções geológicas em escala 1:5.000, junto da caracterização petrográfica, análise metamórfica e microtectônica das unidades geológicas. A finalidade é entender a geologia estrutural e o metamorfismo da área e sua relação com a evolução geológica dos orógenos Brasília e Ribeira no sul de Minas Gerais.

Os mapas, seções geológicas, mapas metamórficos, mapa e planilha de pontos são apresentados nos anexos 1, 2, 3, 4 e 5, respectivamente. Os dados petrográficos aparecem no item 4, os resultados da análise estrutural no item 5, microtectônica e do metamorfismo no item 6. No item 7, é feita uma comparação entre estruturas da área e de outros locais da *klippe*, como a Serra do Pombeiro e de Carrancas. As relações da área com a geologia regional são mostradas no item 8 (discussão e conclusão).

2. Metodologia

A metodologia do trabalho incluiu pesquisa bibliografia, geoprocessamento, etapas de campo, laboratório e escritório, incluindo fotointerpretação. Devido à pandemia do vírus SARS-CoV-2, o trabalho de campo, planejado momentos antes do *lockdown*, foi postergado. Assim, todo o trabalho, cuja base é a geologia de campo, ficou atrasado. Durante o período de isolamento apenas foi foram feitas análises da bibliografia, fotointerpretação e preparação do mapa-base.

2.1. Pesquisa Bibliográfica

Foi feita uma análise da bibliografia existente sobre a área e sobre os temas abordados. Os trabalhos utilizados constam das referências bibliográficas (Item 9).

2.2. Geoprocessamento

No *software* ArcMap 10.5 (ESRI ArcGIS 10.5), foi produzido uma base topográfica, obtida através do Modelo Digital de Elevação SRTM (*Shuttle Radar Topography Mission*) disponibilizado gratuitamente para *download* no *site Alaska Satellite Facility*. A imagem SRTM consiste em uma imagem de radar que contém dados de elevação em seus *pixels*, cada *pixel* original possuindo 30 m de aresta. Para gerar as curvas de nível, foi utilizada a ferramenta no ArcGIS para suavização dos *pixels* do SRTM com a ferramenta "*Focal Statistics*", depois a ferramenta "*Spatial Analyst Tool> Surface> Countour*".

A imagem de satélite LANDSAT foi obtida através do *download* no *software* Terra Incógnita, em alta resolução, no dia 18 de abril de 2020. As imagens e os mapas foram georreferenciados no sistema WGS84, UTM zona 23S.

2.3. Fotointerpretação

A interpretação da imagem de satélite permitiu organizar a logística de campo e preparar um mapa preliminar fotogeológico. Muitas feições, tanto morfológicas como da vegetação, ajudaram a identificar unidades geológicas que posteriormente foram confirmadas no campo. Assim também aconteceu com dobras bem visíveis nas imagens e depois mapeada no campo.

2.4. Etapas de campo

A etapa de campo consistiu na realização de mapeamento geológico tradicional, em escala de 1:5.000, de uma área nas Serras da Estância e do Campestre, pelas vizinhanças do Rio Capivari. Foram utilizados dois mapas base: imagem de satélite e mapa topográfico mencionado no item de geoprocessamento. O mapeamento cobriu uma área de aproximadamente 10 km² resultado de duas campanhas de campo, totalizando 17 dias. A primeira, de 28 de março a 11 de abril de 2022; a segunda, de 12 de junho a 19 de junho de 2022. O material necessário de campo foi utilizado, incluindo martelo, bússola, lupa, caderneta, imã, GPS Garmin Etrex.

Foram estudados 173 pontos e seguidos contatos litológicos no campo. Os pontos foram plotados no mapa com coordenadas no *datum* WGS-84, zona 23K. Na caderneta de campo foram anotadas a descrição detalhada das rochas incluindo assembléia mineralógica, feições petrográficas e estruturais dos pontos. Foram coletadas quatro amostras orientadas para a confecção de lâminas delgadas para análise em microscópio de luz transmitida.

2.5. Etapa pós-campo

Os dados litológicos e estruturais -incluindo atitude de acamamento, foliações, planos axiais de dobras, lineações e atitude de raros planos de falhas- foram digitalizados, formando uma base de dados em uma planilha de Excel. Esta planilha foi utilizada para elaborar o mapa no ArcMap 10.5, incluindo sua legenda. Após a confecção do mapa foram elaboradas as seções geológicas no *software* InkScape.

As descrições petrográficas e análise microtectônica foram feitas em microscópio Zeiss modelo Axioplan II. Estereogramas com dados estruturais foram elaborados no programa Stereonet.

A empresa Solintec escaneou as lâminas no Zeiss AxioScan.Z1, scanner de lâminas delgadas, e disponibilizou o uso do *software* Zen Blue, que permite a visualização das lâminas no computador, incluindo o uso de funções de microscópio como a mudança do ângulo de incidência (giro da platina), cruzamento de polarizadores, *zoom* óptico digital e obtenção de fotos com escala.

Foram descritas cerca de 40 lâminas confeccionadas neste trabalho e do acervo dos orientadores.

3. Geologia Regional

As sucessões da área de estudo localizam-se no extremo sul do Orógeno Brasília meridional, ao sul do Cráton do São Francisco (Fig. 3). O Grupo Andrelândia é composto por uma sucessão metassedimentar com intercalações de rochas metamáficas e metaultramáficas, de idade neoproterozoica. Estas sucessões encaixam granitos anáteticos relacionados a evolução do orógenos Brasília e Ribeira. Paciullo *et al.* (2000) subdividem o Grupo Andrelândia em seis associações de litofácies distintas, agrupadas nas unidades de mapeamento: A1, A2, A3, A4, A5 e A6 (Fig. 4). Estas unidades ocorrem no domínio autóctone e no Sistema de *Nappes* Andrelândia (Fig. 5). O domínio autóctone compreende as unidades do Grupo Andrelândia (Campestre e Santo Antonio), das formações Prados, Barroso, Carandaí e Tiradentes (parte do São João del Rei, Ebert, 1957) do Meso-Neoproterozoico (Ribeiro *et al.*, 2013; Nepomuceno, 2020) e o embasamento Arqueano-Paleoproterozoico representado pelo Cinturão Mineiro (Teixeira *et al.*, 1997). As rochas da área estudada ocorrem na *Klippe* Carrancas e no domínio autóctone subjacente (Fig. 5), em zona metamórfica considerada como de fácies xisto verde (Fig. 6).

Figura 3. Localização aproximada da *Klippe* Carrancas (ponto vermelho) no sistema de *nappes* da parte sul do Orogeno Brasília Meridional, Neoproterozoico. No mapa da

América do Sul a localização do crátons SF- São Francisco, PP-Paranapanema, RP-Rio de La Plata, WA- São Luís e AM-Amazonas. Figura de Trouw *et al.* (2013).

3.1. Estratigrafia e paleoambientes no Grupo Andrelândia

As rochas do Grupo Andrelândia foram agrupadas (Paciullo *et al.*, 2000) em seis unidades de mapeamento denominadas A1, A2, A3, A4, A5 e A6 (Fig. 4). A Unidade A1 é constituída essencialmente de paragnaisses com intercalações de anfibolito e metachert, enquanto na Unidade A2, o paragnaisse contém também intercalações de quartzito micáceo, filitos e xistos metapelíticos. A Unidade A3 é composta por um pacote de quartzito e xisto, em geral com mica verde. A Unidade A4 é representada por uma sucessão de filitos e xistos metapelíticos com intercalações de quartzitos. Os metapelitos podem conter cloritóide ou estaurolita conforme a zona metamórfica onde ocorrem. A Unidade A6 é constituída por paragnaisse/xisto feldspático (plagioclásio arcóseo/wacke) e biotita muscovita xisto (metapelito) com intercalações de quartzito micáceo, anfibolito, granada quartzito (metachert) e rocha calcissilicática e rochas metaultramáficas. A Unidade A5 é composta por plagioclásio biotita xisto.

As Unidades A3 e A4 (quartzitos, metapelitos) são interpretadas como depósitos de plataforma rasa, enquanto as Unidades A1 e A2 e a unidade A6 são consideradas como depósitos de fluxos gravitacionais em ambiente de bacia profunda. As intercalações de rochas máficas (anfibolitos), metachert e rochas calcissilicáticas representam lavas máficas e sedimentos pelágicos oceânicos (Ribeiro et al, 1995; Paciullo et al., 2000). Com base em dados de campo e geocronológicos, Kuster et al. (2020) mostram que os quartzitos micáceos e xistos pelíticos da unidade A6 podem ser equivalentes dos depósitos plataformais e litorâneos das Unidades A3 e A4. Os quartzitos plataformais da área de Carrancas e os quartzitos com intercalações máficas e pelágicas da seção tipo do Grupo Andrelândia em Andrelândia contêm populações de zircão similares e, em ambos, os zircões mais novos fornecem idades em torno de 1.0 Ga (Kuster et al., 2020; Marimon et al., 2020). Marimon et al. (2020) usou dados de campo e geocronológicos para mostrar que o plagioclásio biotita xisto que compõe a Unidade A5 é mais novo, com idade máxima em torno de 650 Ma. Este xisto foi interpretado como depósito de bacia de antepaís relacionada ao Orógeno Brasília e deformado durante a evolução dos orógenos Brasília e Ribeira (Kuster et al., 2020). Os quartzitos, filitos e xistos da área estudada em Itumirim correspondem às unidades A3, A4 e A5, respectivamente.

Figura 4. Associações de litofácies do Grupo Andrelândia (A1-A6) e sua interpretação. Sistema de Ls- mar baixo, Ts- transgressivo, Hs- mar alto. MFs e MxFs- superfícies de inundação marinha e inundação máxima. Traduzido de Kuster *et al.* (2020) baseada em Trouw *et al.* (2011) e Heilbron *et al.* (2017).

3.2. Geologia Estrutural

As unidades pré-cambrianas extremo sul do Orógeno Brasília, no sul de Minas Gerais podem ser reunidas em três domínios tectônicos distintos: um autóctone e dois alóctones (Ribeiro *et al.*, 1990 e Paciullo *et al.* 1980; I, II e III na figura 5). Clivagem de crenulação, redobramentos e lineações dobradas permitiram caracterizar distintas fases de deformação. No domínio autóctone a deformação menos intensa em comparação com os outros domínios. Ocorrem dobras assimétricas que registram movimento tectônico de topo para noroeste que pode ser atribuído à evolução do Orógeno Ribeira. No domínio alóctone II o sentido de movimento tectônico é de topo para leste, evidenciado por "peixes" de foliação e minerais, granada girada e fatias tectônicas que acunham para oeste. A deformação dúctil penetrativa coincidiu com o auge do metamorfismo, preservando localmente milonitos (Trouw *et al.*, 1980). Ocorrem SL tectonitos com lineação de estiramento com caimento suave para oeste, e dobras fechadas a isoclinais com eixos paralelos à lineação de estiramento, ou seja, à direção do movimento topo para leste. No Domínio III ocorrem empurrões para noroeste que foram relacionados à evolução do Orógeno Ribeira. Estas estruturas deformam as estruturas mais antigas do Domínio II e formam as dobras com vergência para noroeste no Domínio I, autóctone. Zonas de cisalhamento subverticais de rumo nordeste-sudoeste cortam as estruturas mais antigas tanto no domínio autóctone como nos domínios alóctones. A área estudada faz parte do Domínio II, onde aflora a *Klippe* Carrancas.

Esta *klippe* corresponde a uma fatia de rochas do Grupo Andrelândia (Unidades A3, A4 e A5) empurrada sobre o domínio autóctone. Indicadores cinemáticos como granada rotacionada, peixes assimétricos de mica e de foliação indicam movimento tectônico de topo para leste e sudeste.

Figura 5. Localização da Klippe Carrancas no Sistema de Nappes Andrelândia. Mapa

tectônico conforme a interpretação de Kuster *et al.* (2020). Domínios tectônicos Iautóctone e II e III- alóctones, conforme Ribeiro *et al.* (1995). Área estudada no retângulo.

3.3. Metamorfismo

O mapa metamórfico regional do sul de Minas Gerais mostra as zonas da biotita, granada, estaurolita + cianita, cianita + silimanita e zonas de fácies granulito (Fig. 6). O mapeamento de isógradas associado à microtectônica apontam a sobreposição parcial de dois metamorfismos (Ribeiro *et al.*, 1995): o primeiro foi vinculado ao Orógeno Brasília e seria de pressão mais elevada que a série Barroviana, caracterizado pela presença de cloritóide, granada, estaurolita e cianita coexistindo com K-feldspato na fácies granulito. Este metamorfismo é considerado como contemporâneo à colocação das *nappes*. O segundo metamorfismo também gerou granada, estaurolita e cianita, porém é caracterizado pela presença de sillimanita substituindo cianita e localmente com cordierita na fácies anfibolito. Este segundo metamorfismo foi relacionado às dobras regionais com vergência para noroeste e nordeste (*eg.* dobras D2 no "cogumelo" de Carrancas) e atribuído à evolução do Orógeno Ribeira.

Na *Klippe* Carrancas foi registado ainda um terceiro metamorfismo com crescimento tardio de clorita, mica branca e cloritóide, associado as dobras abertas de rumo N-S, também tardias (Paciullo, 1983). Nesta *klippe* a disposição das isógradas (Figs. 7 e 8) sugere que o registro mais evidente é do metamorfismo atribuído à evolução do Orógeno Ribeira. O mapa metamórfico original da *Klippe* Carrancas e adjacências foi feito por Heilbron (1985) e posteriormente revisto por Carvalho *et al.* (2020), que atribuíram as isógradas principalmente à evolução do Orógeno Ribeira, apontando a isógrada granada-in na área do presente estudo (Fig. 8).

granulito de média-P (Zona da Sillimanita + K-feldspato - Sil + Kfs)

granulito de média-P (Zona do Ortopiroxênio - Opx)

→ Falha de empurrão (Orógeno Ribeira) Falha transcorrente / Zona de cisalhamento Falha Normal

Figura 7. A isógrada da granada na área de estudo (retângulo vermelho). Isógradas metamórficas e interpretação das condições de temperatura e pressão na Klippe Carrancas, segundo Carvalho et al. (2020).

Trouw et al. (2007) relacionam as granadas rotacionadas, recorrentes na área de estudo, ao Orógeno Brasília, e enfatiza que a superposição não é apenas estrutural, mas também metamórfica. Silva (2010) reconheceu o aparecimento de estaurolita no topo da Serra do Campestre (Filito Sedoso no presente trabalho; Anexo 1) e interpretou sua origem como resultado da quebra do cloritóide. Mostrou a paragênese granada + estaurolita + clorita + muscovita + quartzo \pm cloritóide \pm cianita, definindo condições de fácies anfibolito inferior ou da transição fácies xisto-verde superior para fácies anfibolito inferior (estaurolita-granada-clorita-cloritóide- muscovita-quartzo). Silva (2010) utilizou também a geotermobarometria aliada às pseudosseções para obter resultados de campos de estabilidade no sistema MnKFMASH, resultados estes que mostram regime de pressão alta condizentes com a transição de fácies anfibolito para eclogito.

Figura 8. O limite entre as zonas de facies xisto-verde (2-amarelo) e anfibolito com cianita (3-cinza) na *Klippe* Carrancas em mapas metamórficos regionais de **a**) Trouw *et al.* (2000 e 2011). Retângulo vermelho - área de estudo. **b**) Silva (2010).

4. Geologia da área estudada

Na área estudada ocorrem ortognaisse e filitos/xistos máficos e ultramáficos, intrudidos por metagranitoide e pegmatito, parte do Cinturão Mineiro, que constitui o embasamento Arqueano-Paleoproterozoico na região. Sobre este embasamento ocorrem sucessões neoproterozoicas do Grupo Andrelândia, distribuídas em quatro Unidades: 1quartzitos ricos em mica verde (A3 na figura 4), 2- cloritoide filitos, filitos cinzentos e quartzitos 3- filitos cinzentos sedosos (A4 na figura 4) e, 4- plagioclásio biotita xisto (A5 na figura 4). As Unidades 1 e 2 estão restritas à *Klippe* Carrancas. Filitos cinzentos similares aos da Unidade 3 ocorrem na *klippe* e domínio autóctone e biotita xisto da Unidade 4 no domínio autóctone (Anexo 1).

4.1. Embasamento

Ocorrem ortognaisse, filito e xistos e filitos ultramáficos, metagranitóides e pegmatitos. Estas rochas não têm boa exposição e ocorrem na baixada a norte da Serra do Campestre e nas margens do Rio Capivari e em uma pedreira na cidade Itumirim. As melhores exposições estão fora da área mapeada, exceto os quatro afloramentos que aparecem no Anexo 1.

4.1.1. Ortognaisse

O ortognaisse tem granulação média a grossa, é cinza escuro, com quartzo, plagioclásio, feldspato potássico e biotita. Allanita e epidoto são acessórios. Ocorrem veios claros quartzo-feldspáticos, de espessura de até cerca de 2 cm paralelos à foliação, sendo esta uma xistosidade planar a anastomosada. Este conjunto de gnaisse e veios aparece deformado em dobras isoclinais cortadas por veios félsicos de tipo aplito, por sua vez cortados por pegmatito (Fig. 9). Por fim, zonas de cisalhamento subverticais destrais milimétricas truncam todas as rochas.

Figura 9. Gnaisse migmatitico com dobras fechadas, com intrusões de diques de aplitos e pegmatitos paralelos ao plano axial das dobras. Ortognaisse do Cinturão Mineiro nas margens do Rio Capivari, periferia de Itumirim.

4.1.2. Filitos e xistos ultramáficos

Os filitos e xistos ultramáficos ocorrem intemperizados com cores avermelhadas e quando semi-frescos, são esverdeados. São rochas compostas por variada proporção de clorita, serpentina, talco e localmente com magnetita. A foliação é uma clivagem filítica plana bem definida em níveis sedosos ou uma clivagem anastomosada. Os filitos formam corpos lenticulares com espessuras aparentes de até 50 metros, e se estendem por dezenas de metros ao longo do rumo nordeste-sudoeste.

4.1.3. Metagranitóide

Trata-se de metagranitoíde leucocrático equigranular médio a grosso, com foliação metamórfica pouco desenvolvida. É composto por plagioclásio, K-feldspato quartzo e biotita, com titanita, allanita, epidoto e minerais opacos acessórios. Os afloramentos encontram-se intemperizados gerando saprólitos alaranjados, mas ocorrem fresco na pedreira de Itumirim.

Pegmatitos

São pegmatitos em corpos de espessuras centimétrica até cerca 2 metros, encaixados tanto no ortognaisse como no metagranitóide. São compostos essencialmente por quartzo e K-feldspato, com biotita acessória.

4.2. Grupo Andrelândia

4.2.1. Quartzito com muscovita esverdeada

Este quartzito contém muscovita esverdeada e minerais opacos, entre eles magnetita. Quartzitos e intercalações de filitos e xistos esverdeados definem o acamamento transposto, o que permite sugerir protolitos com espessuras originais milimétricas a decimétricas. O quartzito ocorre na base, no topo e na parte sul da serra e nas seções geológicas apresenta espessuras variadas entre 50 a 60 metros (Anexo 2).

4.2.2. Cloritóide filito com quartzito intercalado

O filito cinza é composto por cloritóide, muscovita, quartzo e minerais opacos definindo a foliação (Fig. 10). Rutilo é um acessório comum e localmente ocorrem porfiroblastos de granada. Os quartzitos ocorrem em bancos de até cerca de 2 metros de espessura. O afloramento-tipo é no corte da Rede Mineira de Viação (Ramal Ribeirão Vermelho) no Cânion da Pirambeira, onde o trilho do trem está ao lado das barrancas do Rio Capivari.

4.2.3. Filito cinza sedoso

Este é um filito cinza sedoso composto essencialmente por mica branca. Minerais opacos e quartzo são acessórios; granada e estaurolita ocorrem como traço. A rocha somente foi vista alterada. Na Serra do Sofá (Fig. 11; Anexo 1) ocorre estaurolita e maior abundância de veios de quartzo em relação às outras localidades. Nos veios localmente ocorre cianita bem desenvolvida (> 5 cm).

Figura 10. a) O Cloritóide filito, com cloritóide (esverdeado), mica branca e quartzo definindo foliação que está dobrada e redobrada. Fotomicrografia em polarizadores paralelos. **b**) Desenho a mão livre da figura 10a.

Figura 11. Paisagem da Serra do Campestre com a baixada ao norte (vista para leste). Domínio autóctone: B- embasamento encoberto ou com rochas alteradas; BX e FAbiotita xisto e filito alterado. *Klippe* Carrancas com a falha de empurrão na base da Serra: Q- quartzito, FQ- cloritoide filito e quartzito, FS- filito sedoso na Serra do Sofá (denominação local de parte da Serra do Campestre).

4.2.4. Filito alterado

No domínio autóctone, na baixada logo ao norte da Serra (Fig. 11 e Anexo 1) ocorrem poucos afloramentos de um filito muito alterado. Mais trabalho de campo em novos afloramentos ajudarão a entender o tipo de rocha, sendo possível sua equivalência com o filito cinza sedoso.

4.2.5. Biotita xisto

O biotita xisto é cinza escuro, tem granulação fina e é composto por biotita, muscovita, quartzo, plagioclásio e clorita. Minerais opacos, K-feldspato são acessórios ou traço. Clorita é mais abundante ao norte e granada ocorre localmente ao sul da Serra do Campestre (Anexo 3A). O variado tamanho dos feldspatos e a abundância de filossilicatos sugerem protólito tipo plagioclásio wacke (Fig. 12a). A foliação é de crenulação transposta e anastomosada em torno de feldspatos, lentes micáceas e veios de quartzo. Estes veios formam lentes milimétricas a centimétricas características do biotita xisto (Fig. 12b).

Figura 12. a) Foliação anastomosada, veios de quartzo (Q), lentes micáceas (M) e granada (G), orientada de NE – SW; e **b**) feldspatos de diversos tamanhos, quartzo recristalizado e lâminas irregulares ricas em micas e clorita, orientada de E-W. Biotita xisto em fotomicrografias com polarizadores a) paralelos e b) cruzados, de lâminas escaneadas com o programa Zen Blue.

5. Geologia Estrutural

As rochas do Grupo Andrelândia registram superposição de três fases de deformação (D1, D2, D3) evidenciadas por uma foliação de crenulação dobrada (Fig. 13). O acamamento (S0) e a antiga foliação (S1) foram transpostos ficando subparalelos a foliação principal S2. O conjunto acamamento e a foliação principal S2 foram então deformados em dobras abertas a fechadas atribuídas à terceira fase de deformação D3. Nos quartzitos ocorre uma lineação de estiramento contida na foliação S2. Granada girada, micas assimétricas e peixes de foliação (Fig. 14) registram transporte tectônico para leste e nordeste durante D2. Além das estruturas atribuídas as fases de deformação D1, D2 e D3, localmente, ocorrem dobras e crenulações abertas atribuídas a uma quarta fase de deformação, D4.

Figura 13. a) Mica branca definindo foliação S1, por sua vez transposta em crenulações apertadas/isoclinais dando origem à foliação de crenulação S2. A foliação principal S2 foi então deformada em crenulações abertas a isoclinais, localmente gerando clivagem S3. b) Desenho a mão livre sobre a foto da figura **a**, com lente de quartzo destacada. Filito cinza sedoso na Serra do Sofá.

Figura 14. a) Lente assimétrica de foliação (S2) indicando movimento destral de topo para leste. Quartzito micáceo da Unidade A3. **b**) desenho a mão livre da figura 14a.

5.1. Primeira fase de deformação - D1

O registro da primeira fase de deformação D1 apenas observada em seções delgadas. Trata-se da clivagem pré-S2 que aparece deformada e transposta em crenulações apertadas a isoclinais que geraram a foliação de crenulação S2 (Fig. 14).

5.2. Segunda fase de deformação - D2

A segunda fase de deformação D2 é bem definida em campo e em seções delgadas. Trata-se de uma clivagem antiga (S1) transposta dobrada, que deu origem à clivagem de crenulação S2, que é a foliação principal na sucessão estudada (Fig. 13). No campo foram observadas localmente em quartzitos dobras antigas (D1 ou D2?) redobradas em dobras da fase D3. Estas dobras antigas, F1 ou F2, são isoclinais com planos axiais de alto mergulho (aproximadamente > 70°) para sul, e localmente sul-sudeste e eixos horizontais ou de baixo caimento (em torno de > 15°) para leste e localmente nordeste (Figs. 15 e 16). Ocorre também uma lineação de estiramento (Fig.17), bem desenvolvida em planos S2 de quartzitos que, localmente, aparece dobrada em charneiras D3 (Fig.18). Assim pode-se atribuir a origem desta lineação a uma fase de deformação anterior a D3, ou seja, as fases D1 ou D2 (ou ambos).

Figura 15. Dobras isoclinais com eixos leste-oeste sub-horizontais e planos axiais de alto ângulo de mergulho para sul atribuídas as fases D2 ou D1(?). **a**) Alto da Serra do Campestre e **b**) corte de ferrovia no Cânion da Pirambeira. **c**) desenho a mão livre da figura **b**.

Figura 16. (continuação) c) desenho a mão livre da figura b.

Figura 17. Estereograma de igual área, com projeção no hemisfério inferior, mostrando medidas em: **a**) Polos da Foliação principal S2 e **b**) lineação de estiramento (L1).

Figura 18. Estereograma de igual área, com projeção no hemisfério inferior, mostrando medidas para **a**) Polos Plano axial e **b**) eixo de dobras F2.

Figura 19. Lineação de estiramento paralela a eixo de dobra D2 (ou D1?). Flanco de dobra D3 em quartzito. Corte de ferrovia no Cânion da Pirambeira.

5.3. Terceira fase de deformação - D3

O registro da fase de deformação D3 são dobras abertas a muito apertadas, de meso a macro escala, a maioria assimétricas com padrão em Z olhando para o sul (Fig. 19). Este padrão é nítido nas imagens de satélite (Anexo 1B). A crenulação D3 é bem marcada em filitos (Fig. 20) e dobras D3 deformam a foliação principal S2. Os planos axiais S3 mergulham de 50° a 85° para sudeste e os eixos têm caimento também íngreme, entre 50° e 70° para sudoeste (Fig. 21).

Figura 20. Dobras assimétricas em Z (olhando para o sul) típicas da fase de deformação D3. A dobra deforma a foliação principal S2, que é paralela ao acamamento sedimentar.

Figura 21. Estereogramas de igual área, com projeção no hemisfério inferior, mostrando medidas para **a**) Polos de superfícies axiais S3 e **b**) eixos para dobras F3.

Figura 22. Crenulação S3 no filito sedoso. Fotomicrografia em polarizadores paralelos. "ITM-C01".

5.4. Quarta fase de deformação

Trata-se de dobras e crenulações (Fig. 14) que somente foram observadas ao longo do cânion da Pirambeira, nos cortes da estrada de ferro que margeia o Rio Capivari. São dobras abertas em quartzitos e crenulações abertas em filitos que se superpõem à foliação principal S2. Os planos axiais mergulham para leste-nordeste (em torno de 80°/30°) e os eixos caem para sudeste (em torno de 100°/20°). Localmente em charneiras com espessamento de quartzito camadas de filito são rompidas gerando lentes de filito em macro e microescala e até aspecto de brecha (Fig. 23).

Figura 23. a) Lentes de filito cinza em quartzito resultadas do rompimento de camada de filito em charneira com espessamento de quartzito. **b**) desenho a mão livre da figura 22a.

6. Metamorfismo e Microtectônica

As análises microtectônica e metamórfica foram feitas em quatro lâminas, duas de biotita xisto do domínio autóctone e duas do filito sedoso da *Klippe*, em corte perpendicular à foliação principal. Além destas, foram descritas cerca de 30 lâminas do cloritóide filito e do biotita xisto, da coleção dos orientadores.

6.1. Metamorfismo

Os filitos da área são rochas derivadas de protólitos pelíticos ricos em ferro e alumínio, composição propícia para originar típicos minerais índices de metamorfismo. No cloritóide filito a associação **cloritóide + muscovita + granada + quartzo** indica fácies xisto verde localmente com cianita indicando pressão relativamente alta. No filito sedoso aparece estaurolita (Fig. 23) e cianita em veios (Fig. 24). Assim, a associação com estaurolita (**cloritóide + muscovita + quartzo + granada + estaurolita**), deve marcar a transição da fácies xisto verde para anfibolito (Fig. 25a). No biotita xisto ocorrem granada e cianita (vide figuras 28b e 29) ao sul da Serra do Campestre, sendo que ao norte não foram observados estes minerais. Portanto é possivel que o biotita xisto registre facies xisto verde, em zona da biotita ao norte e em zona da granada com cianita ao sul da Serra (Fig. 25b). Com estes dados foi possivel marcar as zonas sem- e com-granada no biotita xisto, da granada nos filitos e a transição facies xisto verde-anfibolito (estaurolita-*in*) no filito sedoso e o aparecimento de cianita nos filitos (Figs. 26a e b)

Figura 24. Estaurolita na foliação S2 e dobrada em crenulação D3 (próximo à escala). S2 é definida por mica branca, minerais opacos alterados. Fotomicrografia do filito sedoso em polarizadores paralelos.

Figura 25. Cianita em veio de quartzo no filito sedoso no topo da Serra do Sofá.

Figura 26. Gráficos pressão-temperatura com campos de estabilidade de minerais metamórficos mostrando **a**) cloritóide filito na zona de transição entre as fácies xisto-verde e anfibolito(laranja); e **b**) biotita xisto na fácies xisto verde com granada (bege) em contraste com o biotita xisto sem granada (verde) que ocorre ao norte da Serra do Campestre.

ISOGRADAS METAMÓRFICAS	GRANADA-in	ESTAUROLITA-in	CIANITA-in
FÁCIES METAMÓRFICA LITOLOGIA	XISTO VERDE ZONA DA BIOTITA	XISTO VERDE ZONA DA GRANADA	TRANSICIONAL XISTO VERDE / ANFIBOLITO
		PARAGENESES	
FILITO SEDOSO (UNIDADE CAMPESTRE)	msc + qtz + op + ctd + tur ± chi	msc + qtz + op + ctd + grt + tur ± ky	msc + qtz + op + grt + st + ky tur ± ctd

Figura 27. Mapas das zonas metamórficas nos filitos e no biotita xisto. Mapa **a**) amarelofilitos em fácies xisto verde sem granada, laranja- com granada; verde- com cloritóide e estaurolita marcando transição para fácies anfibolito. Mapa **b**) biotita xisto amarelo- sem granada e verde- com granada e cianita. Linha azul- aparecimento de cianita.

6.2. Microtectônica

A relação entre o crescimento de minerais metamórficos e microestruturas relacionadas às fases de deformação reconhecidas são analisadas a seguir. A figura 13 mostra o registro de três fases de deformação, no trabalho denominadas D1, D2 e D3.

6.2.1. Primeira fase de deformação - D1

Nesta fase foi gerada a clivagem que aparece dobrada e redobrada nos filitos xisto (Fig.13). Esta foliação, denominada S1, é definida principalmente por mica branca nos filitos sedoso e alterado, mica branca e cloritóide no cloritóide filito, e mica branca e biotita no biotita xisto. Minerais opacos também seguem S1. A foliação S1 foi transposta por S2, mas aparece preservada em charneiras de crenulações D2 (Figs. 13 e 27).

Figura 28. Foliação S1 preservada em em lentes micáceas no biotita xisto. Fotomicrografia em polarizadores paralelos – "ITM-BX02".

Figura 29. Granada com inclusões de S2 contornada pela foliação S2, indicando seu crescimento sin-D2 ou cedo-D2, **a**) no cloritóide filito ("M-434") e **b**) desenho a mão livre da figura 29a.

Figura 29 (continuação). c) no biotita xisto. ("ITM-BX02"). Fotomicrografia em polarizadores paralelos.

6.2.2. Segunda fase de deformação - D2

S2 é uma foliação de crenulação resultada da transposição de S1. No cloritoide filito e no biotia xisto ocorre granada girada com inclusões de S2 interpretada como sin-D2 (Fig. 28a e b). A estaurolita segue a foliação S2, não foi observada em charneiras D2 e aparece dobrada em crenulações D3. Portanto deve ser sin-D2, porém não se pode descartar que seja anterior, pré-D2. A cianita aparece ao longo de S2 tanto no biotita xisto (Fig. 29) quanto no cloritoide filito e filito sedoso e pode ser interpretada como sin-D2. Foi ainda observado que muscovita e clorita sobrecrescem à foliação S2 nos filitos e biotia xisto indicando seu crescimento tarde a pós-D2 (Fig. 30).

Figura 30. Cianita paralela à S2 em biotita xisto sugerindo seu crescimento sin-D2. Fotomicrografia em polarizadores paralelos. "ITM-BX02".

6.2.3. Terceira fase de deformação - D3

Esta fase de deformação refletiu em dobras de crenulação na foliação principal S2 (cf. 5.3 e 5.4). Foram observadas localmente muscovita e clorita sobre crenulações D3 indicando serem estes minerais tardi- a pós-D3.

Figura 31. Muscovita tardia em lente micácea com foliação S2 no biotita xisto. Fotomicrografia em polarizadores cruzados. "ITM-BX02".

Fases de deformação	D1			>D1	D2			>D2		>D3		
Minerais	cedo-	sin-	tardi-	<d2< th=""><th>cedo-</th><th>sin-</th><th>tardi-</th><th><d3< th=""><th>cedo-</th><th>sin-</th><th>tardi-</th><th></th></d3<></th></d2<>	cedo-	sin-	tardi-	<d3< th=""><th>cedo-</th><th>sin-</th><th>tardi-</th><th></th></d3<>	cedo-	sin-	tardi-	
Muscovita		-					,				0	
Clorita			_								1	
Cloritóide												
Biotita												
Granada							l.					
Estaurolita					8		-					
Cianita							-					

Figura 32. Tabela relacionando as etapas de crescimento dos minerais metamórficos e as fases de deformação D1, D2 e D3.

7. Interpretações, contribuição à geologia regional e conclusões

Com base no mapeamento geológico detalhado e análise microtectônica foram levantados novos dados, questões e interpretações sobre a estratigrafia, o metamorfismo e a geologia estrutural do Grupo Andrelândia na Serra do Campestre e adjacências.

Estratigrafia

A sequência inferior do Grupo Andrelândia tem sido considerada como uma sucessão de margem passiva com suas unidades registrando épocas de mar baixo, transgressivo e mar alto. Filitos da Unidade A4 que constituem grande parte do domínio autóctone (Fig. 5) representariam o mar alto, que teria alcançado áreas plataformais rasas sobre o embasamento continental. Seriam áreas ao norte de Itumirim e Carrancas, como Lavras e São João del Rei (Ribeiro et al., 1995). O Filito Sedoso e seu provável correlato Filito Alterado (Anexo 1) representariam o mar alto na área mapeada e devem ser equivalentes do filito grafitoso que ocorre no topo da Serra de Carrancas conforme mostra o mapa geológico de Carvalho et al. (2020). A base do Filito Sedoso representa a superfície de inundação marinha MxFs mostrada na Figura 4. O trabalho acrescenta ao estudo estratigráfico da região ao dividir a Unidade Campestre em dois litotipos, nunca antes dividido na *klippe* em questão, com o filito sedoso representando a rocha resultante da deposição em ambiente de mar alto.

Metamorfismo

Nos mapas metamórficos regionais a área estudada é considerada como de fácies xisto verde, zonas da biotita e da granada (Figs. 6 e 7). A isógrada granada-*in* passaria no meio da área (Fig. 8a). Porém, Silva (2010) reconheceu estaurolita na área, incluindo a isógrada estaurolita-*in*. Também observamos a presença de estaurolita e marcamos a isograda estaurolita-in (Fig. 26^a). Entretanto, o mapa e a seção geológica mostrados por Silva (2010; Fig. 26c) diferem dos nossos mapas em relação a disposição das isógradas, como é possível verificar comparando a Figura 8b com as Figuras 26a, 26b e com os Anexos 1 e 2.

Geologia Estrutural

As seções geológicas através das sucessões na Serra do Campestre mostram dobras muito apertadas a isoclinais, com planos axiais íngremes para sul e eixos subhorizontais leste-oeste (Fig. 15a e b). São as dobras mais antigas observadas na área, dobram a superfície de empurrão e são deformadas por dobras D3 e D4 (Anexos 1 e 2). Estas dobras podem ser consideradas como produtos de deformação contínua: desenvolvimento de falha de empurrão contemporânea a geração de dobras isoclinais F1, em seguida deformadas em dobras F2, também isoclinais. A lineação de estiramento subhorizontal leste-oeste é paralela ao eixo das dobras D1+2. Peixes de foliação indicam movimento de topo para leste. Possivelmente, contemporâneo ao desenvolvimento das falhas de empurrão ocorreu uma compressão norte-sul, gerando dobras D1+2.

As falhas de empurrão e dobras (D1+2) foram então deformadas em dobras com planos axiais de mergulho íngreme para sudeste e eixos de baixo caimento para sudoeste. Estas dobras são consideradas produtos de uma terceira fase de deformação D3, que registra uma compressão noroeste-sudeste possivelmente associada a um cisalhamento destral. Uma fase de deformação tardia D4, com planos axiais de baixo mergulho para leste-nordeste e eixos de baixo caimento para sudeste, registra uma compressão vertical.

A área estudada é considerada atualmente como parte da *Klippe* Carrancas. As rochas das áreas de Itumirim e Carrancas têm em comum a lineação de estiramento lesteoeste e indicadores cinemáticos (peixes de foliação e granada girada), que registram transporte de topo para leste-nordeste/sudeste. Porém, o padrão das dobras D1+2 em Itumirim e D1 e D2 em Carrancas são distintos (Fig. 32).

Enquanto dobras D1+2 isoclinais registram compressão norte-sul em Itumirim, as dobras consideradas D1 nas serras de Carrancas e Pombeiro têm planos axiais de baixo mergulho para sudoeste e eixos subhorizontais noroeste-sudeste subparalelos à lineação de estiramento. Já as dobras D2, abertas a muito apertadas, registram vergência para: *i*) noroeste nas Serras do Pombeiro e Carrancas; *ii*) nordeste na confluência das Serras de Carrancas e Bicas ("Cogumelo de Carrancas").

As dobras D3 em cada área (Itumirim e Carrancas) também são distintas: em Itumirim, são dobras abertas a apertadas com planos axiais íngremes para sudeste e eixos de alto caimento para sudoeste, que registram compressão noroeste-sudeste. Já em Carrancas, correspondem a dobras abertas e crenulações com planos axiais subverticais norte-sul e eixos de baixo caimento para norte ou sul, que registram compressão lesteoeste. As dobras consideradas D4 foram observadas somente em Itumirim, localmente.

Considerando a diferença em estilo e atitudes das dobras e sua interpretação em Itumirim e Carrancas e a falta de ligação física entre as unidades e estruturas das duas áreas mencionadas, é provável que as sucessões da área de Itumirim constituam uma *klippe* independente aqui denominada *Klippe* Itumirim.

9. Referências Bibliográficas

ALMEIDA, F.F.M.; HASUI, Y. 1984. O embasamento da Plataforma Sul Americana. In: O Precambriano do Brasil, p. 1-5. Ed. Edgard Blucher, São Paulo, 378p.

ALMEIDA, J.C.H. 1992. Mapeamento geológico da Folha Luminárias-MG (1:50.000), com ênfase na análise estrutural dos metassedimentos do Ciclo Deposicional Andrelândia. Tese de Mestrado, IGEO-UFRJ, Rio de Janeiro, 102p.

ALMEIDA, S. 1992. Petrografia e geoquímica das rochas ultramáficas na região de Liberdade e Carrancas, Minas Gerais. Tese Mestrado, IGEO UFRJ, Rio de Janeiro, 166p.

BARBOSA, N. S., TEIXEIRA, W., ÁVILA, C. A., MONTECINOS, P. M., & BONGIOLO, E. M. (2015). 2.17–2.10 Ga plutonic episodes in the Mineiro belt, São Francisco Craton, Brazil: U-Pb ages, geochemical constraints and tectonics. Precambrian Research, 270, 204–225. doi:10.1016/j.precamres.2015.09.010

CARVALHO, B. R. B. M., 2010. Geologia estrutural, microtectônica e metamorfismo na *Klippe* Carrancas, sul de Minas Gerais. xvi, 55f. Trabalho de Conclusão de Curso (Bacharelado em Geologia) – Departamento de Geologia, Instituto de Geociências, Universidade Federal do Rio de Janeiro, Rio de Janeiro.

CARVALHO, B. R.B.M.; Trouw, R.A.J.; Cintra da Costa, R. V.; Ribeiro, A.; Heilbron, M.; Marimon, R. S. (2020). Microstructural and metamorphic evolution of the Carrancas *Klippe*, interference zone of the Neoproterozoic southern Brasilia and Ribeira orogens, SE Brazil. Journal of South American Earth Sciences, *102744*–. doi:10.1016/j.jsames.2020.102744

COBBOLD & QUINQUIS, 1980. Development of sheath folds in shear regimes. Journal of Structural Geology, V2, N 1/2:

FUMES, R. A.; LUVIZOTTO, G. L. ; MORAES, R. ; FERRAZ, E. R. M. (2017). Petrografia, Química Mineral e Geotermobarometria de Metapelito do Grupo Carrancas na *Nappe* de Luminárias (MG). GEOCIÊNCIAS (SÃO PAULO. ONLINE), v. 36, p. 639-654, 2017.

FUMES, R. A.; LUVIZOTTO, G. L.; MORAES, R.; HEILBRON, M.; VLACH, S. R. F. (2019). Metamorphic modeling and petrochronology of metapelitic rocks from the Luminárias *Nappe*, southern Brasília belt (SE Brazil). Brazilian Journal of Geology, 49(2), –. doi:10.1590/2317-4889201920180114

FUMES, R.A.; GEORGE L. LUVIZOTTO; RENATO MORAES; LARA A. PATTO; (2021). The potential for using metagreywacke to study metamorphism of amphibolite facies conditions: a comparison study within the Luminárias *Nappe*, Southern Brasília Orogen (Southeastern Brazil). Mineralogy and Petrology, (), –. doi:10.1007/s00710-021-00758-8

HATCHER Jr, R. D. & HOOPER, R. J. (1992). Evolution of crystalline thrust sheets in internal parts of mountain chains. In: McCLAY, K.R. ed. Thrust Tectonics. Chapman & Hall,

KUSTER, K., RIBEIRO, A., TROUW, R.A.J., DUSSIN, I., MARIMON, R.S., (2020). The Neoproterozoic Andrelândia group: evolution from an intraplate continental margin to an early collisional basin south of the São Francisco craton, Brazil. J. S. Am. Earth Sci. 102, 102666.

HEILBRON, M., PEDROSA SOARES, A.C.P., CAMPOS NETO, M., SILVA, L.C., TROUW, R., JANASI, V. M., (2004). Província mantiqueira. In: Virgino Mantesso-Neto; Andrea Bartorelli; Celso Dal Ré Carneiro; Benjamin Bley de Brito Neves. (Org.). Geologia do Continente Sul Americano: Evolução da Obra de Fernando Flávio Marques de Almeida, 1a ed., vol. 1. Beca Produções Culturais Ltda, São Paulo, pp. 203–234.

HEILBRON, M., RIBEIRO, A., VALERIANO, C.M., PACIULLO, F.V.P., ALMEIDA, J.C., TROUW, R.A.J., TUPINAMBA, M., EIRADO SILVA, L.G., (2017). The Ribeira belt. In: Heilbron, M., Cordani, U.G., Alkmim, F.F. (Eds.), São Francisco Craton, Eastern Brazil Tectonic Genealogy of a Miniature Continent, Regional Geology Reviews. Springer, Berlin, Heidelberg, pp. 277–302.

HEILBRON, M., DE MORISSON VALERIANO, C., PEIXOTO, C., TUPINAMBÁ, M., NEUBAUER, F., DUSSIN, I., GUILHERME DO EIRADO SILVA, L. (2020). Neoproterozoic magmatic arc systems of the central Ribeira belt, SE-Brazil, in the context of the West-Gondwana pre-collisional history: A review. Journal of South American Earth Sciences, 102710. doi:10.1016/j.jsames.2020.102710

MACIEL, M (1985). Geologia estrutural da Serra de Três Pontas, MG. Dados preliminares. In: SIMP. GEOL. MINAS GERAIS, 2, Belo Horizonte. Anais... Belo Horizonte, SBG-MG, bol.3, p.

MARIMON, R. S.; HAWKESWORTH, C. J. ; DANTAS, E. L. ; TROUW, R.A.J. ; TEIXEIRA, W. ; HACKSPACHER, P. C. ; FETTER, A. ; ÁVILA, C. A. ; VOLANTE, S. ; CORRÊA NETO, A. V. ; BONGIOLO, E. M. ; VINAGRE, R. ; SIMON, M. (2022) . The generation and evolution of the Archean continental crust: The granitoid story in southeastern Brazil. Geoscience Frontiers, v. 13, p. 101402.

MARIMON, R. S.; TROUW, R.A.J. ; DANTAS, E. L. ; RIBEIRO, A. ; SANTOS, P. ; KUSTER, K. ; VINAGRE, R. (2021) . Provenance of passive-margin and syn-collisional units: Implications for the geodynamic evolution of the Southern Brasília Orogen, West Gondwana. SEDIMENTARY GEOLOGY, v. 413, p. 105823.

MARIMON, R.S., TROUW, R.A.J., DANTAS, E.L., RIBEIRO, A., (2020). U-Pb and Lu-Hf isotope systematics on detrital zircon from the southern São Francisco Craton's Neoproterozoic passive margin: tectonic implications. J. S. Am. Earth Sci. 100, 102539.

PACIULLO, F. V. P.; RIBEIRO, A.; ANDREIS, R. R. (1993). Reconstrução de uma Bacia fragmentada: o caso do Ciclo Deposicional Andrelândia. In: SIMP. CRÁTON DO SÃO FRANCISCO, 2, Salvador, 1993. Anais.., Salvador

PACIULLO, F.V.P., 1980. Mapeamento geologico-estrutural da área de Minduri, MG. Instituto de Geociências, Universidade Federal do Rio de Janeiro, Rio de Janeiro, p. 80. Dissertação de Mestrado.

PACIULLO, F.V.P., 1997. A Seqüência Deposicional Andrelândia. Ph.D. thesis, Instituto de Geociências, Universidade Federal do Rio de Janeiro, Rio de Janeiro, p. 248.

PACIULLO, F.V.P., RIBEIRO, A., ANDREIS, R.R., TROUW, R.A.J., (2000). The Andrelandia basin, southern Minas Gerais state, Brazil. Rev. Bras. Geociências 30, 200–202.

PASSCHIER, C.W.; TROUW, R.A.J.; ZWART, H.J.; VISSERS, R. L.M. (1992). Porphyroblast rotation: eppur si muove? Jour. Metamorphic Geology 10, 283-294.

PASSCHIER, C.W. & TROUW, R.A.J. (1996) Microtectonics. SpringerVerlag, Berlin Heidelberg New York

RIBEIRO, A. 1980. Mapeamento geológico-estrutural da área de Itumirim, Minas Gerais. Tese de Mestrado, IGEO-UFRJ, Rio de Janeiro, 57 p. RIBEIRO, A.; PACIULLO, F. V. P.; ANDREIS, R. R.; TROUW, R. A. J.; HEILBRON, M. (1990). Evolução policíclica proterozóica no sul do Cráton do São Francisco: análise da região de São João dei Rei e Andrelândia, MG. In: CONGR. BRAS. GEOL, 36., Natal, 1990. Anais..., SBG.

Ribeiro A.; Andreis R.R.; Trouw R.A.J.; Paciullo F.V.P. & Valença J.G. (1995). Evolução das bacias proterozóicas e o termo-tectonismo brasiliano na margem sul do cráton do São Francisco. Rev. Bras. Geociências, 25 (4): 235-248.

RIBEIRO, A.; AVILA, C.A.; TEIXEIRA, W.; DUSSIN, I. A.; NASCIMENTO, D. (2013). U-Pb LA-ICP-MS detrial zircon ages of the São João del Rei and Carandaí basins: New evidence of intermittent Proterozoic rifting in the São Francisco paleocontinent. Gondwana Research, v. 24.

ROCHA, B.C., MORAES, R., MOLLER, € A., CIOFFI, C.R., (2018). Magmatic inheritance vs. UHT metamorphism: zircon petrochronology of granulites and petrogenesis of charnockitic leucosomes of the Socorro–Guaxupé *nappe*, SE Brazil. Lithos 314,

ROCHA, B.C., MORAES, R., MOLLER, A., CIOFFI, C.R., JERCINOVIC, M.J., (2016). Timing of anatexis and melt crystallization in the Socorro-Guaxupé *Nappe*, SE Brazil: insights from trace element composition of zircon, monazite and garnet coupled to U - Pb geocronology. Lithos 277,

SILVA, M. P., 2010. Modelamento metamórfico de rochas das fácies xisto-verde e anfibolito com o uso de pseudosseções: exemplo das rochas da *klippe* Carrancas, sul de Minas Gerais. 144 pp. Dissertação de Mestrado - Instituto de Geociências, Universidade de São Paulo, São Paulo.

SCHONEVELD, C., 1977. A study of some typical inclusion patterns in strongly paracrystalline rotated garnets. Tectonophysics 39, 453–471.

SILVA, R. R., 1990. Estratigrafia, metamorfismo e geologia estrutural do Grupo Andrelândia em Carvalhos, sul de Minas Gerais. Tese de Mestrado, IGEO-UFRJ, Rio de Janeiro,

TEIXEIRA W., NOCE C.M., QUEMENEUR J.J.G., MARTINS V.T.S. (1997) Sr, Nd and Pb isotopic signatures of intrusive granitoids of the Paleoproterozoic Mineiro

magmatic arc, southern São Francisco Craton, Brazil. In: Int Symp on Granites and Associated Mineralizations, Salvador, Brazil. Extended Abstracts, SBG, pp. 288–289.

TELLES, R. C. M., 2020. Unidade Luminárias: Caracterização petrográfica, geocronologia e isotópica do Quartzito Mica Verde e rochas associadas, na região de Luminárias (MG). 179 f. Dissertação de Mestrado.

TROUW, R. A. J.; RIBEIRO, A.; PACIULLO, F. V. P. (1980). Evolução estrutural e metamórfica de uma área a SE de Lavras, MG. In: CONGR. BRAS. GEOL., 31, Balneário Camboriú, SC, 1980. Anais..., vol.5, Balneário Camboriú, p.

TROUW, R. A. J.; PACIULLO, F. V. P.; CHRISPIM, S. J.; DAYAN, H. (1982). Análise de deformação numa área a SE de Lavras, Minas Gerais. In: CONGR. BRAS. GEOL., 32, Salvador, 1982. Anais..., Salvador, SBG, vol.1, p.

TROUW, R. A. J.; RIBEIRO, A.; PACIULLO, F. V. P. (1983). Geologia estrutural dos Grupos São João dei Rei, Carrancas e Andrelândia, Minas Gerais. Acad. Bras. Ciênc., 55 (1).

TROUW, R. A. J.; HEILBRON, M. ; RIBEIRO, A.; PACIULLO, F. V. P. ; VALERIANO, C. M. ; ALMEIDA, J. C. H. ; TUPINAMBÁ, M. ; ANDREIS, R. R. (2000) . The central segment of the Ribeira Belt. In: Cordani, U.G.; Milani, E.J.; Thomaz Filho, A.; Campos D.A.. (Org.). Tectonic Evolution of South America. Rio de Janeiro: 31 International Geological Congress , v. , p. 287-310.

TROUW, R. A. J.; TAVARES, F. M., ROBYR, M. (2008). Rotated garnets: a mechanism to explain the high frequency of inclusion trail curvature angles around 90° and 180°. Journal of structural geology.

TROUW, R.A.J.; PETERNEL, RODRIGO; RIBEIRO, ANDRE; HEILBRON, MÔNICA; VINAGRE, RODRIGO; DUFFLES, PATRÍCIA; TROUW, CAMILO C.; FONTAINHA, MARCOS; KUSSAMA, HUGO H. (2013). A new interpretation for the interference zone between the southern Brasília belt and the central Ribeira belt, SE Brazil. Journal of South American Earth Sciences, v. 48, p. 43-57,.

VALERIANO, C.M., MACHADO, N., SIMONETTI, A., VALADARES, C.S., SEER, H.J., SIMOES, L.S.A., (2004). U–Pb geochronology of the southern Brasília belt (SE-Brazil): sedimentary provenance, Neoproterozoic orogeny and assembly of West Gondwana. Precambrian Res. 130, .

WESTIN, A., CAMPOS NETO, M.C., CAWOOD, P.A., HAWKESWORTH, C.J., DHUIME, B., DELAVAULT, H., (2019). The Neoproterozoic southern passive margin of the São Francisco Craton: insights on the pre amalgamation of West Gondwana from U Pb and Hf Nd isotopes. Precambrian Res. 320.

WATERKEMPER, J.C., 2022. Geologia e Geocronologia da *Nappe* São Tomé das Letras, Sul de Minas Gerais. Dissertação de mestrado. Universidade Federal do Rio de Janeiro.

MAPA GEOLÓGICO DA KLIPPE ITUMIRIM NA SERRA DO CAMPESTRE - ITUMIRIM, MINAS GERAIS

Monografia de graduação - Anexo 1 - Julia Medeiros Mascarenhas Orientadores: André Ribeiro e Rudolph Trouw. Departamento de Geologia - UFRJ

514000

LEGENDA

MAPA GEOLÓGICO DA KLIPPE ITUMIRIM NA SERRA DO CAMPESTRE - ITUMIRIM, MINAS GERAIS

Monografia de graduação - Anexo 1 - Julia Medeiros Mascarenhas Orientadores: André Ribeiro e Rudolph Trouw. Departamento de Geologia - UFRJ

514000

LEGENDA

Ponto	La	t	Long	Elev	Litotipo	So az	So dip	S1 az	S1 dip	S2 az	S2 dip	IS2 az	IS2 dip	S3 az	S3 dip	IS3 az	IS3 dip	L1 Az l	1 dip
	1	512668	7638432	87	7 Quartzito mica-v	158	62												
	2	512695	7638480	88	6 Quartzito mica-v	155	87	133	61										
		512708	7638467	88	4 Quartzito mica-v	165	67												
	3	513748	7638431	87	9 Quartzito mica-v	170	67												
	4	512804	7638492	89	4 Quartzito mica-v			164	80										
	5	512885	7638590	90	0 Quartzito mica-v	202	45												
	6	512903	7638674	89	8 Quartzito mica-v	143	73												
	7	512861	7638762	89	6 Quartzito mica-v														
	8 gp	s error			filito verde									143	82				
	9	513058	7638905	91	8 Quartzito mica-v	175	60	188	75										
1	LO	513078	7638815	90	3 Quartzito mica-v									150	62				
1	1	513202	7638928	95	5 Quartzito mica-v	218	78												
1	12	513160	7638955	96	1 Filito cinza	280	35												
1	13	513188	7639020	95	3 Quartzito	224	69												
1	L4	513232	7639143	98	8 Filito cinza			210	70			205	5 18	115	60				
1	L5	513560	7639258		Filito cinza	176	56	140	57										
1	16	513751	7639379	102	7 granada-filito									160	45				
1	L7	513780	7639427	103	1 Quartzito mica-v					178	85	104	20)					
1	18	513862	7639464	103	6 Quartzito mica-v	164	44	115	40									94	25
1	19	514506	7639350	110	5 Filito cinza	238	55	185	65										
2	20	514572	7639126	109	1 Filito cinza			164	60					194	35	230	46		
2	21	541738	7638634	105	2 clorita-filito														
2	22	512836	7638602	89	2 Quartzito mica-v	135	79	146	46										
2	23	512848	7638591	89	6 Quartzito mica-v			154	65										
2	24	513066	7638800	90	7 Quartzito mica-v	140	75												
2	25	513071	7638905	91	1 Quartzito mica-v														
2	26	512776	7639113	90	7 Filito cinza	219	53			228	78	320) 18	8 84	50	105	21	245	55
2	27	512791	7639165	91	9 Filito cinza														
2	28	512840	7639159	89	3 Filito cinza	220	58											285	59
2	29	512864	7639167	88	6 granada-filito cin			200	42	215	40	170) 26	84	49	140	39	115	20
3	80	512938	7639179	89	2 filito brechado														
3	31	512945	7639182	88	9 Filito cinza e qua														

32	513049	7639230	890 Filito cinza					200	78			115	50				
33	513092	7639262	887 Filito cinza brech	243	70												
34	519109	7639273	829 Filito cinza					215	50	298	23						
35	513144	7639297	894 Filito cinza					203	52	112	8						
36	513366	7639501	887 Filito cinza	164	66											255	27
37	513485	7639666	897 Filito sedoso	150	68												
38	513502	7639709	879 Filito sedoso	177	75	174	48	184	40	189	25						
39	513550	7639805	879 Quartzito mica-v	215	41	195	46										
40	513705	7639836	905	174	69												
41	513712	7639832	904 Quarztito mica-v	115	50	180	35										
42	513728	7639781	934	160	27												
43	513730	7639767	954 Filito cinza														
44	513775	7639762	959 Quartzito	163	62												
45	513796	7639696	971 granada-filito cin	160	60												
46	513773	7639613	1005 granada-filito cin	152	49												
47 g	ps error		Quartzito mica-v	165	56												
48	513715	7637943	Filito					185	73	107	25	147	69	210	44		
49	513622	7638057	Quartzito mica-v									280	67	210	50		
50	513687	7638164	quartzito mica ve	174	67	160	52									194	68
51	513703	7638150	quartzito mica ve			168	53					186	65	246	35		
52	513758	7638117	quartzito	190	45							182	67	260	26	280	25
53	513958	7638111	Filito sedoso	6	75												
54	512260	7639208	Filito sedoso					142	70	105	14	152	65	215	41	60	10
55	512465	7639368	940 Filito sedoso					158	80	82	15	182	45	238	37		
56	512582	7639413	962 granada-filito sec					2	76	80	25	92	73	170	21		
57	512619	7639460	987 Filito	174	85												
58	512644	7639456	1004 Filito														
59	512698	7639442	990 Quartzito mica-v														
60	512750	7639471	1010 Quartzito mica-v	222	74							248	58	321	33	130	67
61	512737	7639586	1027 Quartzito mica-v	194	45												
62	512716	7639609	1020 Quartzito mica-v	205	64							195	70	248	43	260	45
63	512756	7639528	1029 Filito cinza			125	26										
64	512817	7639523	998 Quartzito mica-v	241	34											242	35

65	512818	7639639	968 Quartzito mica-v	167	31												
66	512841	7639658	957 Filito cinza	165	12												
67	512762	7639711	968 Quartzito mica-v	199	55												
68	512589	7639734	991 Quartzito mica-v	180	45											150	20
69	514506	7637813	918 Quartzito mica-v	180	80												
70	514517	7638129	937 Granada-filito	136	62	333	82										
71	514654	7638221	955 Filito cinza			155	76	150	74	72	23	220	80	205	36		
72	514754	7638269	972 Quartzito mica-v			164	65										
73	514728	7638697	1042 pacote de quartz			139	69					121	75	210	60	132	60
74	514632	7638907	1071 filito			152	49					130	66	220	15	132	60
75	514486	7639117	1110 Quartzito mica-v	226	85	195	45										
76	514470	7639120	1136 Quartzito mica-v	205	45											125	11
77	514404	7639164	1146 Quartzito mica-v									170	68	245	31		
78	514381	7639111	1169 Filito sedoso					138	78	78	24	195	54	305	80		
79	514398	7639262	1162 Filito sedoso	110	25			180	49	125	26	125	55	305	29	78	14
80	514427	7639292	1164 Quartzito mica-v	212	55												
81	514590	7639408	1103 Quartzito mica-v	232	55												
82	514800	7639267	1087 Quartzito mica-v			154	88										
83	514704	7638241	975 Quartzito mica-v									152	67	240	38		
84	511547	7638202	881 Quartzito mica-v	152	68											60	23
85	512404	7638277	873 Quartzito mica-v	180	85											270	8
86	512570	7638326	880 Quartzito mica-v	162	60											105	44
87	512358	7638615	872 Biotita xisto			102	62					125	64	215	16		
88	512361	7638616	Quartzito mica-v	176	65												
89	510819	7639909	Quartzito mica-v	175	60											155	24
90			Quartzito mica-v	180	68												
91	510500	7639903	Filito cinza			155	65							230	25		
92	510545	7639893	Filito cinza	190	51											135	46
93 g	ps error		Filito sedoso			173	68					85	70	120	60		
94 g	ps error		filito intercalado			142	55										
95	510675	7639656	filito intercalado	145	64			138	52	90	24					65	41
96 g	ps error					175	60										
97	511869	7638976	1103 Filito cinza	130	55												
98	511907	7639058	945 Filito cinza	139	66							70	65	200	36		
-------	----------	---------	-----------------------	-----	----	-----	----	-----	----	-----	----	-----	----	-----	----	-----	----
99	512042	7639201	950 Filito sedoso	130	70											226	12
100 g	ps error		Filito sedoso			145	60	163	65	92	21						
101	512149	7639535	934 Quartzito mica-v	169	75											90	28
102	512457	7639645	963 Quartzito mica-v	152	52												
103	512577	7639677	965 Quartzito mica-v														
104	512873	7639167	896 filito cinza			70	74										
105	513505	7639841	883 Quartzito mica-v	192	44											120	35
106	513397	7639828	857 Quartzito mica-v	183	61											98	23
107	513274	7640202	868 Biotita xisto			175	61	164	60	85	23	145	54	236	25		
108	513983	7639812	888 Quartzito mica-v	195	43											93	25
109	514011	7639798	Quartzito mica-v					188	85	90	15						
110	514028	7639791	949 Quartzito mica-v	174	42												
111	514040	7639717	970 Quartzito mica-v	182	48												
112	514049	7639697	1000 filito	153	60									222	50		
113	514325	7639584	1052 Quartzito mica-v	208	54												
114	511479	7639810	1044 Quartzito mica-v	175	60											100	50
115	511615	7639774	1022 Quartzito mica-v	190	60												
116 g	ps error			124	80												
117	511633	7639671	1015	175	65			175	65	80	26						
118 g	ps error																
119	51348	7638228	853 Quartzito mica-v	187	71			155	75	60	18						
120	513372	7638267	899 Quartzito mica-v	195	55							194	67	230	25		
121	513326	7638413	912 Quartzito mica-v	190	36												
122	513350	7638441	918 Quartzito mica-v	201	38											15	40
123	513333	7638485	931 Quartzito mica-v	165	40	160	41	165	40	85	12					102	32
124	513488	7638619	952 Quartzito mica-v	174	60												
125	513610	7638638	969 Quartzito mica-v			145	62					122	60	222	22		
126	513778	7638601	980 filito														
127	514004	7638115	filito					46	76	143	25	194	76	284	20		
128	512716	7638486	900 Quartzito mica-v	145	65			145	65	230	28					62	15
129	513007	7638496	Quartzito mica-v	174	35												
130	512841	7638485	Quartzito mica-v	154	42												

131	512639	7639748	Quartzito mica-v	152	58							118	55	150	59		
132	514076	7641801	metaultramafica			132	18										
133	514064	7641160	metagranitoide			185	70										
134	514099	7641071	filito avermelhado			158	88									260	26
135	514031	7640765	metagranitoide			345	80										
136	513758	7640517	metaultramafica			280	68										
137	513641	7640517	metaultramafica			207	76					165	75	243	64		
138	513659	7640055	filito vermelho			178	44					185	70	255	45		
139	513581	7639862	Quartzito mica-ver	de		175	35					170	71	258	16		
140	513401	7640527				225	85					158	57	100	58		
141	513944	7640743	metaultramafica														
142	511352	7640799	filito talco			188	49					195	64	290	74		
143	512119	7640255	Quartzito e clorit	155	51												
144	512267	7640265	Quartzito milonit	160	25											135	9
145	511968	7640257	Quartzito mica-v	174	29												
146	512044	7640217	filito vermelho			185	85									87	23
147	512244	7640127	Quartzito mica v	178	79											90	9
148	512387	7640073	Quartzito mica v	195	66			172	78	85	21	155	66	216	30	80	26
149	512336	7640013	filito sedoso			178	60										
150	513796	7639692	Quartzito mica v	170	75												
151	513795	7639671	granada-filito			185	65					135	69	190	48		
152	513894	7639629	Quartzito mica-v	159	56												
153	513904	7639620	Quartzito mica-ver	de													
154	513910	7639514	Filito cinza			155	75					147	70	241	28		
155	513876	7639466	Quartzito mica-v	168	54												
156	513712	7639330	filito sedoso														
157	513847	7639316	Filito sedoso com	cianita no	o veio												
158	513918	7639341	Filito sedoso			149	65					85	60	183	64		
159	514082	7639203	Quartzito mica-v	172	51												
160	514134	7639122	Filito sedoso			143	81										
161	512262	7640266	Biotita xisto			138	56										
162	512449	7639848	Quartzito mica-v	171	77			175	65	85	18						
163	512231	7639722	Quartzito mica-v	160	51											149	72

164	512103	7639737	Quartzito mica-v	170	59										
165	512052	7639759	Quartzito mica-v	160	65										
166	511993	7639696	Quartzito mica-v	145	62			143	60	69	20				
167	511726	7639570	Quartzito mica-v	155	55			155	55	61	28				
168	511778	7639529	Quartzito mica-v	169	66										
169	511760	7639501	granada-filito			161	74								
170	511484	7639474	Quartzito	131	66										
171	511326	7639436	Filito cinza			170	82								
172	511058	7639413	Quartzito mica v	158	78			100	82	197	26				
173	511114	7639234	Turmalina?-quar	136	47							55	60	106	50
174	513252	7638583	Quartzito mica-v	172	64										
175	513154	7638495	Quartzito mica-v	182	35										