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Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos

necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

DETEÇÃO AUTOMÁTICA DE CRIADOUROS DE AEDES AEGYPTI
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Gabriel Matos Araujo
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Todos os anos, milhares de pessoas são afetadas por doenças como dengue, chi-

kungunya, zika e febre amarela. Todas essas doenças são transmitidas pelo Aedes

aegypti, que se reproduz em água limpa e parada, usualmente acumulada em reci-

pientes como pneus, garrafas, caixas d’água etc. O uso de ferramentas inteligentes

pode auxiliar no trabalho dos agentes de fiscalização dos focos deste mosquito, au-

mentando, assim, a eficiência e área de cobertura. Esse trabalho aborda o problema

de detecção automática de focos de mosquitos através do uso de técnicas de visão

computacional e aprendizado de máquina. Nesse contexto, propõe-se um conjunto

de vídeos aéreos, adquiridos através de um veículo aéreo não tripulado. O con-

junto possui diversos desses objetos em múltiplos cenários: diferentes localidades,

altitudes e disposições dos objetos. Os vídeos são devidamente retificados para ame-

nizar distorções da câmera e manualmente anotados quadro-a-quadro, viabilizando

o desenvolvimento de um detector automático de objetos de interesse.

Um detector do tipo Faster Region-based Convolutional Neural Network é trei-

nado com uma pequena base de dados, e é capaz de encontrar possíveis focos de

mosquito de maneira automática. O modelo gerado atinge uma precisão média de

49,31%, o que é promissor, indicando que novos e melhores modelos podem ser

treinados para este fim.

vi



Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Master of Science (M.Sc.)

AUTOMATIC AEDES AEGYPTI BREEDING GROUNDS DETECTION USING

COMPUTER VISION TECHNIQUES

Wesley Lobato Passos

February/2019

Advisors: Eduardo Antônio Barros da Silva

Gabriel Matos Araujo

Department: Electrical Engineering

Every year, thousands of people are infected with diseases such as dengue, chi-

kungunya, zika, and yellow fever. These diseases are transmitted by the Aedes

aegypti, which usually reproduces in containers with accumulated clean water, such

as tires, bottles, water tanks, etc. The use of intelligent tools can be employed to

assist health agents in a search for these objects, providing more efficiency and co-

verage in this process. This work addresses the problem of automatic detection of

such mosquito breeding grounds using computer vision and machine learning techni-

ques. In this context, a new aerial videos dataset is devised including such objects in

different scenarios: distinct backgrounds, altitudes, object displacement, and so on.

The videos are rectified in order to compensate for camera distortions and manually

annotated, frame-by-frame, enabling the development of an automatic detector for

the target objects.

A Faster Region-based Convolutional Neural Network detector is trained, using a

small dataset, and is capable of finding potential mosquito foci. This model achieves

49.31 points of average precision, which is promising, indicating that new and better

models can be trained for this task.
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Chapter 1

Introduction

The Aedes aegypti is the main vector of several diseases caused by the arbovirus

(acronym for arthropod-borne virus), such as dengue, zika, chikungunya and, more

recently in Brazil, urban yellow fever [1, 2]. Zika virus disease can be quite dangerous

for pregnant women due to its correlation with the microcephaly, a congenital fetus

brain malformation [3, 4]. Among these diseases, dengue is the one that causes

the most deaths, with about 390 million people infected per year in the world [5].

Yellow fever also has a high rate of mortality and chikungunya can incapacitate

those infected for long periods.

By considering the high rates of lethality and eradication difficulty, arboviruses

transmitted by Aedes aegypti are one of the leading global health problems. Where-

fore, the World Health Organization (WHO) launched, in 2012, a comprehensive

strategy for dengue control and prevention [6], whose one of the goals is to reduce

disease cases by 25% by 2020. Unfortunately, combat tools are still limited: the

dengue vaccine remains in the improvement phase, and the fumes against mosquitoes

are ineffective [7]. Thus, the current best form of combat is through the control and

elimination of possible mosquito foci proliferation, which acts directly in the pre-

vention of all these diseases. Given that the Aedes aegypti reproduces in clean and

stagnant water, the main mosquito foci are open water bowls, gutters, tires, bottles,

plant pots, and any container that can collect water.

As a result, monitoring and controlling the mosquito without proper technical

support is expensive, time-consuming and therefore inefficient. For that reason, al-

lying the knowledge of an expert with a tool that accelerates the search for potential

mosquito foci and towards a more precise work is extremely important in the current

scenario. Thus, using images and videos captured by an unmanned aerial vehicle

(UAV), better known as a drone, with several sensors and camera may be a rea-

sonable approach. The objective is to identify objects with high potential of being

a mosquito breeding site. This technology has already been used by organizations

to visually inspect difficult-to-reach sites in order to locate such breeding spots. In
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this process, the acquired videos are examined by a specialist, which makes the

procedure time-consuming and tiring, what may lead to failures.

In this sense, a possible solution to increase efficiency is to apply machine learning

techniques to automate the analysis process, helping the specialist in the decision-

making action [8]. After this fast analysis, potential breeding sites can be treated or

removed by a team of agents, as usual. It is known, through a local study [9], that

treating the most productive water container types in a region has a comparable

result as treating them all in the same region. This roughly cuts by half the number

of containers to be treated while keeping similar effectiveness, drastically reducing

the potential for epidemic development. In the case of Nova Iguaçu, a city located in

the state of Rio de Janeiro, the reservoirs listed with high potential were, according

to [10]: water tanks, glass and plastic bottles, buckets, tires, and external drains.

The initial goal then becomes to automatically recognize as many of these objects as

possible in videos or images acquired from a UAV to reduce the amount of images or

videos the agents would need to visually evaluate. In the future, we plan to expand

this work and provide an intelligent decision support tool for agents, generating heat

maps highlighting the places with more risk, thereby increasing the effective area of

action.

1.1 Main contributions of this work

Throughout this work, we describe the problem of automatic detection of potential

mosquito breeding sites using aerial images acquired from a UAV and propose a

complete solution. We construct a video dataset containing objects considered as

potential mosquito breeding sites of the Aedes aegypti in several scenarios. We apply

a methodology to calibrate the camera of our UAV and reduce the lens distortions

that may be expanded for other drone models. We train a state-of-the-art object

detector using a small dataset in order to detect tires, considered big productive

water containers.

1.2 Dissertation organization

In Chapter 2, we do a review on the Aedes aegypti, including biologic aspects, trans-

mitted diseases and sequelae, and preferred ground sites. Also, we point out some

statistics related to the theme and government plans to combat the transmitter.

In Chapter 3, we make a literature review of related themes, in order to see how

several techniques of machine learning can be used to address the problem. We also

present a new dataset containing the main objects considered as potential foci of the

Aedes aegypti in several scenarios. In Chapter 4, since we are interested in detect-
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ing specific objects, we describe the state-of-the-art algorithm employed in order to

accomplish this task. We discuss from classical object detections up to recent deep-

learning-based models, particularly the one employed in this work. The evaluation

method, implementation details, and results for the method used are discussed in

Chapter 5; and we finally conclude at Chapter 6.
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Chapter 2

The Aedes aegypti

In order to fight Aedes aegypti, we must first know it better. In this chapter, we

address many aspects of the mosquito, including its biology, diseases transmitted,

and potential ground sites. Also, we point some indicators and discuss plans and

actions to combat the Aedes aegypti.

2.1 The vector biology

The Aedes aegypti is considered one of the most dangerous mosquito species accord-

ing to public health analysis, considering that it is the major vector of arbovirus

transmission [1]. This mosquito species is well adapted to urban environment and

inhabit mostly domestic and peridomestic environments [11]. The high capacity

of this vector to transmit diseases to humans is mostly due to a set of biological,

ecological, and behavioral characteristics that promote a more direct contact with

humans. One of these characteristics is synanthropic behavior (live near human

dwellings) [11].

The dispersion of Aedes aegypti around the world began around the 16th cen-

tury with the Portuguese maritime routes between Africa and the other continents.

Since then, always due to human transport, the mosquito has invaded many of the

tropical and subtropical regions of the planet, establishing itself in the Americas,

Southeast Asia, Southwest of the United States, islands of the Indian Ocean, and the

north of Australia. In areas outside the latitudes that comprise these regions, there

have been some sporadic occurrences, even though the species shows an apparent

difficulty in establishing a viable population in these places. However, considering

the anticipated global climate change, the Aedes aegypti may be able to expand its

presence beyond customary regions [12]. The proliferation of the vector across the

globe is related to the circulation of goods and people between various countries

and continents. The eggs of this species are particularly resistant and can survive

long journeys and inhospitable environments, besides presenting great adaptability
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to artificial breeding sites [12].

The Aedes aegypti is less than 1 cm long and black with white stripes, as depicted

in Figure 2.1. The adult specimen lives on average 45 days, usually stings in the first

hours of the morning and the late afternoon. Studies by the Oswaldo Cruz Foun-

dation (FIOCRUZ) have shown that the female flies up to 1 km away from its eggs.

Moreover, the Aedes aegypti feeds on plant sap. The females are hematophagous,

that is, they feed on blood as well. As a consequence, when ingesting the blood of

an infected host, it contracts the microorganism responsible for the diseases [14].

The life cycle of Aedes aegypti, like other mosquito species, comprises four phases:

egg, larva, pupa, and adult. The first three phases develop exclusively in the

aquatic environment, while the last phase occurs in the terrestrial/aerial environ-

ment. Therefore, the existence of water and breeding suitable for their retention

are essential for the mosquito development [11]. Aedes aegypti breeding grounds

are mostly small containers, either artificial or natural, in or near dwelling sites,

which allow the storage of water (water tanks, buckets, ornamental fountains, plant

dishes, water canisters for animals, tires, etc). The preference for breeding sites near

or in domestic environments relates to a set of habits that promote close contact

with humans: synanthropic habits; endophilic (resting inside housing/animal facili-

ties); and anthropophilic [11]. Hence, human activity is a determining factor for the

reproduction and dissemination of the Aedes aegypti.

Furthermore, the mosquito deposits the eggs under appropriate – hot and water-

filled – places. Under these conditions, the embryos take from two to three days to

develop and hatch. These embryos may weaken or die if, during this period, the

eggs dry out, but if in the initial stage a perfect development is ensured, the eggs

of the mosquito become resistant to drying and thus survive for periods ranging

from some months to a year [14]. This resistance is one of the major barriers to the

Figure 2.1: The Aedes aegypti. Source: [13]
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Aedes aegypti elimination. The larval period, which is the feeding and growth stage,

depends on temperature, larval density, and availability of food, and in optimal

conditions, does not exceed five days. When in low temperature and lack of food,

this phase can extend for weeks. The pupa is a phase without nutriment from

the embryo to the adult stage (egg, larva, and pupa), which takes on average ten

days. On the first or second day after becoming adults, mosquitoes copulate. After

mating, females begin to feed on blood since it has the necessary proteins for the

development of eggs [14].

The arbovirus can be maintained in the Aedes aegypti populations by transovarial

transmission in which the female vector passes the infectious agent through the eggs

to the next generation [15]. Such transmission is epidemiologically important, as

epidemics of dengue, for example, usually enable quick proliferation. That depends

on the time it takes for the mosquito to become vector after it stings a viremic person.

If mosquitoes already emerge as vectors, i.e., infected and capable of transmitting

the virus, without the need to prick an infected person, the probability of vector-

human-vector transmission increases, as well as the magnitude of the epidemic.

The transovarial transmission also creates the possibility that the Aedes aegypti

eggs, which carry the virus, spread to other geographic regions by being passively

transported [15].

Like other species, Aedes aegypti is also particularly sensitive to climatic con-

ditions. Several studies demonstrate the role that factors such as temperature and

precipitation have on ecology and vector biology [16]. It is verified that the higher the

temperatures, the faster the development of the different phases of the mosquito,

and the higher its longevity and fecundity during the adult phase; at lower tem-

peratures, there is a degraded condition to its development, which may jeopardize

survival. Concerning precipitation, it favors the creation of potential breeding sites

where females lay their eggs and immature forms (larvae and pupa) develop [17].

According to [18], the vector population grows with increasing temperatures. At

32°C the number of mosquito bites is twice as high as at 24°C. Another interest-

ing aspect related to temperature is that the rate of metabolism of the mosquito,

its evolutionary cycle, can be extended up to about 22 days in the cold months.

On the other hand, in the months of high temperatures, its maturation speed in-

creases. Therefore, the ambient temperature is directly proportional to the time

of development of the vector for the adult phase. Nonetheless, temperatures above

40°C decreases the life expectancy of the mosquito [19]. Researches diverge about

the relationship between rainfall and the increase of the presence of vectors in the

environment. Excessive rainfall could lead to the decline of breeding sites due to

flooding, whereas lack of rainfall may lead to the storage of water in domestic reser-

voirs (vases, dishes, canisters, etc.) and in other locals that can be used for vector
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reproduction (barrels, wells, water boxes and etc.). However, in abandoned areas

with poor structural and sanitary development, rainfall incidence is important to

understand the development of breeding sites in fixed deposits (gutters, slabs, glass

shards in walls, and other architectural works), solid waste, and other abandoned

items. For that reason, there are different correlations between precipitation and the

Aedes aegypti proliferation along the geographical spaces, being possible to occur

positive or negative relations [20].

Finally, the understanding of these biological and ecological aspects of the vector

is of great epidemiological importance, since studies of this nature generate infor-

mation about the reproductive, hematophagy dynamics and vectorial competence,

and help to understand the mechanism of arbovirus transmission. This knowledge

can assist in the creation of mechanisms for combating and controlling the Aedes

aegypti .

2.2 Diseases transmitted and sequelae

The Aedes aegypti is a transmitter of some diseases, known as arboviruses. Never-

theless, it is important to note that only infected mosquitoes transmit the disease.

The main diseases are dengue, zika, chikungunya, and yellow fever. Although not

directly relevant to the work developed, this section presents, in a concise way, a

panorama of these diseases, their transmission, and their possible sequels.

2.2.1 Dengue

Dengue is the most rapidly spreading mosquito-borne viral disease in the world.

During the last 50 years, the incidence of dengue has increased 30 times, and the

number of affected countries has been increasing steadily [21]. Today, approximately

3.6 billion people live in more than 100 dengue-endemic countries, and an estimated

284-528 million dengue infections occur annually [22]. It is estimated that 500,000

people with severe dengue require hospitalization each year and about 2.5% of those

affected with, die [23].

Dengue fever is an acute febrile disease caused by the arbovirus (arthropod-

borne virosis) that has the Aedes aegypti as the vector transmission. Dengue virus

has four serotypes (DENV-1, DENV-2, DENV-3, and DENV-4) that are genetically

and antigenically distinguishable. In Brazil, the four types of virus circulate, being

the last one isolated in the State of Roraima since 1991 [24].

This disease can last up to seven days, evolving into spontaneous healing or leav-

ing sequelae. It can manifest itself in dangerous ways, as is the case of hemorrhagic

dengue. In a case of suspected classical dengue fever, the patient is diagnosed with
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acute febrile illness lasting up to seven days accompanied by at least two of the

following symptoms: headache; pain around the eyes, in the body and joint; and

prostration. The hemorrhagic dengue usually arises, most of the time, when the

person is infected more than once by the virus, leading to changes in blood clotting.

Therefore, it causes bleeding especially in the eyes, gums, ears, and nose, as well

as the appearance of blood in the stool, red skin patinas, vomiting, weak and fast

pulse. Classical dengue fever is confirmed by laboratory tests; however, during epi-

demics, confirmation can be performed through clinical-epidemiological criteria. On

the other hand, cases of hemorrhagic dengue need to be confirmed by the laboratory,

as well as by specific criteria [25].

Dengue vectors become infected with the virus by feeding on the blood of indi-

viduals in the viremia stage. This phase begins one day before the fever and lasts

six to eight days after the onset of the disease. In the mosquito, the virus multiplies

in its cycle of evolution, discussed in Section 2.1. This is the extrinsic period, after

maturation of the mosquito in which it becomes a vector, transmitting the virus

through the saliva throughout its lifetime [26].

2.2.2 Zika

Zika is also an arbovirus transmitted by Aedes aegypti, being first identified in Brazil,

April 2015. The zika virus was given the same name as the place of origin: the Zika

forest, in Uganda; identified in sentinel monkeys used to monitor yellow fever, in

1947. The zika virus disease presents a higher risk than other arboviruses, such as

dengue, yellow fever, and chikungunya, due to the development of neurological com-

plications such as encephalitis and Guillain Barré syndrome [3]. One well-known

neurological complication is the microcephaly; a condition in which the baby’s head

is smaller than the average. It usually happens when there are problems in the

uterus that causes the baby’s brain to stop growing properly, which may also oc-

cur after birth. Microcephaly-born children often present developmental difficulties.

Rarely, children with this condition can develop normally. In addition to congenital

microcephaly, many manifestations have been reported among infants up to four

months of age exposed to the zika virus in the uterus. These include head malfor-

mations, involuntary movements, seizures, irritability, and brain stem dysfunction,

with swallowing problems, limb contractures, hearing and vision abnormalities, and

brain abnormalities. Other consequences associated with zika virus infection in the

uterus may involve spontaneous abortions and stillbirths. The spectrum of congen-

ital abnormalities associated with fetal exposure to this virus during gestation is

known as congenital zika virus syndrome [4].

The symptoms of zika are red spots all over the body, red eye, fever, body
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aches and joints of small intensity. In general, the disease progresses benign, and

the symptoms disappear spontaneously after 3 to 7 days. However, joint pain may

persist for about a month. According to the Ministry of Health, all sexes and

age groups are susceptible to the zika virus; however, pregnant women and older

adults are at higher risk of developing the complications aforementioned. These

risks are amplified when the person has some chronic illness, such as hypertension

and diabetes, even if treated [27].

Thus, like dengue, the primary mode of transmission is by the bite of the vector,

but it can also be transmitted through sexual intercourse. According to the Pan

American Health Organization (PAHO), the zika virus can be found in semen, blood,

urine, amniotic fluid, and saliva as well as fluids found in the brain and spinal

cord [27].

The zika’s diagnosis is based on the patient’s new symptoms and history (such

as mosquito bites or trips to areas with virus circulation). Moreover, laboratory

tests may confirm the presence of zika in the blood; however, this diagnosis may not

be as reliable as the virus could react with other viruses such as dengue and yellow

fever [27].

2.2.3 Chikungunya

Chikungunya fever is a viral disease transmitted by the mosquitoes Aedes aegypti

and Aedes albopictus, and its circulation was first identified in Brazil in 2014.

Chikungunya means “those who fold” in Swahili, one of the languages of Tanza-

nia, located in East Africa. That refers to the curved appearance of patients who

were seen in the first documented epidemic there, between 1952 and 1953 [28]. The

main symptoms are rapid onset fever, intense pain in the joints of the feet and

hands, in addition to fingers, ankles, and wrists. There may also be a headache,

muscle aches and red spots on the skin. It is not possible to have chikungunya more

than once. Previously infected, a person becomes immune to lifetime. The symp-

toms begin between two and twelve days after the mosquito bite. The mosquito

gets the CHIKV virus by stinging an infected person during the period the virus is

present in the infected organism. The incubation period of the virus in the human

is 4 to 7 days [28]. The chikungunya can also be transmitted from the pregnant

woman to the fetus, but this only occurs when the mother becomes ill in the last

week of gestation. In this case, the child who is born healthy remains hospitalized

for observation and immediate treatment. This procedure is adopted because if the

disease develops, the child may present severe pictures with neurological and skin

manifestations. Besides, some factors contribute to the enduring complications of

the disease, as advanced age, being a woman and already possess other diseases
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such as diabetes and rheumatoid arthritis. The CHIKV virus can generate lasting

sequelae such as persistent inflammation in the joints, especially the hands and feet.

Although joint pain is the most frequent chronic complication, it is not the only

one. There is a possibility that the virus can trigger neurological problems such as

Guillain Barré syndrome, encephalitis, and other complications [29].

2.2.4 Yellow fever

Yellow fever is an acute febrile infectious disease, caused by a virus transmitted by

mosquito vectors, and has two cycles of transmission: wild (when there is transmis-

sion in rural or forest areas) and urban. There is no direct transmission from person

to person. Yellow fever is epidemiologically important because of its clinical severity

and potential for dissemination in urban areas infested by the Aedes aegypti . Early

symptoms of yellow fever include sudden onset of fever, chills, severe headache, back

pain, general body aches, nausea and vomiting, fatigue and weakness. Most peo-

ple get better after these initial symptoms. However, according to the Ministry of

Health, about 15% have a brief period of hours a day without symptoms and then

develop a more severe form of the disease. In severe cases, the person may develop

a high fever, jaundice (yellowing of the skin and whites of the eyes), bleeding (es-

pecially from the gastrointestinal tract), and eventually multiple organ failure and

shock. About 20% to 50% of people who develop severe illness might die [2].

The vaccine is the primary tool for prevention and control, unlike the diseases

previously analyzed; the Brazilian government offers the vaccine against yellow fever

for the population through the Sistema Único de Saúde (SUS) – the Brazilian public

healthcare. As aforementioned, there are two different epidemiological cycles of

transmission, the wild and the urban. The disease has the same characteristics from

the etiological, clinical, immunological and pathophysiological point of view. In the

wild cycle of yellow fever, nonhuman primates (monkeys) are the main hosts and

amplifiers of the virus. The vectors are mosquitoes with strictly wild habits, with the

genera Haemagogus and Sabethes being the most important in Latin America. In

this cycle, man participates as an accidental host when entering forest areas. In the

urban cycle, man is the only host with epidemiological importance and transmission

occurs from infected urban vectors, the Aedes aegypti [30].

2.3 Potential grounds, reproduction, and indicators

As could be observed, both the persistence and the progression of the arboviruses

are conditioned to the survival and reproduction of their vector in the environment.

Therefore, in the context where there is no vaccine for the diseases presented, with
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exception of yellow fever, the best prevention is to avoid the vector proliferation.

The presence of this mosquito specie is more common in urban areas, and the infes-

tation is more intense in regions with a high population density and low vegetation,

where females have more opportunities for food and have more places to spawn [14].

Another critical factor is the lack of infrastructure of some localities. Without a

regular supply of water, residents need to store it in large containers that do not

receive the necessary care and end up becoming mosquito breeding sites, because

they are not entirely closed. Therefore, efforts to control mosquito proliferation are

indeed related to government measures (providing regular supply of potable water,

specially for poor communities) and population commitment.

Since 2017, the Brazilian Ministry of Health has issued Resolution No. 12, which

makes it obligatory for entomological surveys of the Aedes aegypti infestation by mu-

nicipalities and reporting it. Monitoring the numbers and geographical distribution

of mosquitoes over time helps in making timely decisions about how best to manage

vector populations. Surveillance can be used to identify areas with a mosquito-borne

high-density infestation or periods in which its population has increased [31].

The Aedes aegypti Rapid Index Survey (LIRAa, from Portuguese Levantamento

Rápido de Índices para Aedes aegypti) [32] is a methodology used by the Brazilian

Ministry of Health that allows estimating the number of properties with the presence

of containers with mosquito larvae. In each city, health agents visit at least 8,100

different homes or other types of properties, chosen respecting some criteria, every

year, in order to inspect and identify breeding sites [33]. One agent is provided

for every 800 to 1,000 propeties and each agent is expected to visit from 20 to 25

properties in a usual day of work (8h).

In the case of finding larvae or pupae, the agents collect them for laboratory

analysis. According to the National Guidelines for Prevention and Control of Dengue

Epidemics (2009) [33], the parameters for classification of municipalities regarding

the predial infestation index (IIP), the ratio of the number of properties where larvae

were found to the total of properties visited, are: (i) satisfactory if less than 1%; (ii)

alert if between 1% and 3.99%; and (iii) risk if above 3.99%. The results obtained by

this methodology allow the managers to evaluate vector control activities, besides

indicating the most used deposits by Aedes aegypti.

The LIRAa classifies the deposits considered as potential breeding sites for the

Aedes aegypti in five groups, in order to inform their epidemiological importance,

facilitating the targeting of vector control and surveillance actions, as shown in

Table 2.1. The state of Rio de Janeiro epidemiological report of 2018 shows that

type A2, B, C, and D2 deposits account for 84.7% of the 5,608 breeding sites found

in the whole territory. From all 92 municipalities in Rio de Janeiro, 91 (98.9%)

performed the LiRAa. From these, 45 (49.5%) are classified as satisfactory, 43
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Table 2.1: The classification of potential breeding sites for the Aedes aegypti, ac-
cording to LIRAa.

Code Description

A1 Water tank connected to the grid (high tanks)
A2 Deposits at ground level (barrel, tub, drum, tank, well)
B Mobile containers (vases/jars, plates, drippings, drinking fountains, etc)
C Fixed deposits (tanks, gutters, slabs, etc)
D1 Tires and other rolling materials
D2 Garbage (plastic containers, bottles, cans, scraps)
E Natural deposits (bromeliads, bark, tree holes)

(47.3%) in the alert, and 3 (3.3%) in risk [34].

At the national level, 5,358 municipalities, 96.2% of the total, performed some

transmitter monitoring. The Brazilian Ministry of Health indicates a reduction in

the three diseases transmitted by the Aedes aegypti between January and October

2018, compared to the same period in 2017; however, some states show a significant

increase in cases of dengue, zika, and chikungunya. In 2018, 241,664 cases of dengue

were reported over the country, there was a small increase compared to the previous

year (232,372). Fortunately, the number of deaths reduced from 176 to 142. Besides,

there was a reduction of 54% concerning the previous year in the notification of cases

of chikungunya, from 184,344 to 84,294 in 2018. The number of deaths followed this

drop, reducing from 191 to 35, a significant fall of 81.6%. Concerning to zika, there

was also a reduction in the number of cases, from 17,025 to 8,024 [35] and four

deaths were reported.

Regarding costs, the resources for health surveillance actions, which include com-

bating Aedes aegypti, have grown in recent years, from R$ 924.1 million in 2010 to

R$ 1.94 billion in 2017 [36]. Dengue epidemics place a heavy burden on health ser-

vices and countries’ economies. Despite a few studies on this subject, a recent work

conducted in eight countries in the Americas and Asia, including Brazil, has shown

that the cost of dengue epidemics in these countries was about US$ 1.8 billion, in-

cluding only outpatient and hospital expenses, disregarding the costs of surveillance

activities, vector control, and population mobilization [33].

The difficulty of mosquito control in Brazil is the non-uniformity of compliance

with the guidelines of the dengue control program, zika and chikungunya in all

municipalities, as well as the inability of epidemiological and entomological surveil-

lance to eliminate all possible existing outbreaks (breeding sites) in all regions of all

Brazilian cities.
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2.4 Plans and actions to combat the vector

Dengue, zika, and chikungunya are vector-borne diseases, and due to the lack of

vaccines and specific antiviral drugs, up to now, the prevention of these diseases are

the control, elimination or eradication of the vector. The interventions aimed at

vectorial control have been based on three main sets of mechanisms:

• Mechanical: consists of the adoption of practices capable of eliminating the

vector and the breeding sites or reduce the contact of the mosquito with hu-

mans. Environmental management in current national control programs has

generally been limited to the destruction of potential breeding sites in the

domiciles and peridomiciles environments, without intervening in other ele-

ments of the urban infrastructure (garbage collection, water supply, etc.) and

the way of the population lives [37].

• Biological: based on the use of predators or pathogens with the potential to

reduce the vector population. Promising attempts have been made to use

biological methods of larval control [37].

• Chemical: consists of the use of chemicals to kill larval or adult forms of the

vector. Larvae are eliminated in their habitat (accumulated water) by the use

of larvicides, while winged forms are eliminated by spraying the environment

with pyrethroid or organophosphorus insecticides at “ultra-low volume” [37].

It is a type of control which the use must be done safely and rationally, com-

plementing the actions of surveillance and environmental management. The

irresponsible use may cause selecting vectors resistant to the products and

environmental impacts [38].

An alarming fact is that in 2016, 3.31 million cases of dengue were registered on

the planet and reported to the WHO, almost half of them in Brazil. This number

was the highest in recent history. Taking into account that it does not include data

from Africa, where the infrastructure to monitor the incidence of the disease is more

precarious, the global number would be even higher. Therefore, the data show the

potential need for a multi-scalar Aedes aegypti control strategy, both locally and

globally. In order to combat the mosquito, the WHO presented a comprehensive

strategy of vectorial control in 2004 [39]; it is a way of integrated management, in

which Brazil is a member. The WHO strategy builds on the basic concept of inte-

grated vector management with a renewed focus on improving governance capacity

at the national and subnational levels. There is an emphasis on strengthening infras-

tructures and systems (e.g. sustainable development, access to potable water, ade-

quate solid waste and excreta management), particularly for vulnerable areas [6]. As
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pointed by the WHO, for a sustainable impact on vector control, greater intersectoral

and interdisciplinary action is needed, linking efforts in environmental management,

health education, and reorienting relevant government programs around proactive

strategies to control new and emerging threats [6]. Therefore, critical attention is

adapting to local contexts; these information along with the global strategies make

effective and sustainable the vector control.

Although several countries in the Americas have been considered “free” of the

Aedes aegypti in the recent past, the discussion about the difficulties or even the im-

possibility of eradicating a biological species from a large geographical area remains

alive. In 2001, the Brazilian government began to consider vector control instead

of the eradication goal, with the implementation of the Dengue Control Actions

Intensification Plan (PIACD), prioritizing actions in municipalities with the higher

transmission of dengue. In 2002, the Brazilian National Plan for Dengue Control

(PNCD) was developed due to the increased risk of epidemics, the occurrence of

severe dengue cases and the reintroduction and rapid dissemination of serotype 3 in

the country [40]. The PNCD also seeks to incorporate lessons from national and in-

ternational dengue control experiences, emphasizing the need for change in previous

models, i.e., it is a reflection of the new global approach incorporated in WHO.

Furthermore, with the support of the Brazilian Ministry of Health and the

states, the municipal health secretariats began to manage and implement PNCD

actions. These actions involved ten main components: epidemiological surveillance,

vector control, patient care, integration with basic care, environmental sanitation

actions, integrated actions of health education, communication and social mobi-

lization, training of human resources, legislation, political and social support, and

monitoring and evaluation of PNCD [40]. Thus, the program was no longer exclu-

sively directed at combating the vector and suggested adaptations consistent with

local specificities, including the possibility of elaborating sub-regional plans.

In Brazil, the community, health and endemics combat agents, in partnership

with the population, are responsible for promoting the control of the vector, whose

actions are focused on detecting, destroying or properly allocating natural or arti-

ficial water reservoirs that may serve as a deposit for mosquitoes’ eggs. Another

complementary strategy advocated by the Brazilian Ministry of Health is the pro-

motion of educational actions during the home visit by the community agents, with

the objective of guaranteeing the sustainability of the elimination of the breeding

sites, in an attempt to break the chain of transmission of the diseases [33].

Thereby, new technologies have been developed as alternatives to the control of

the mosquito, using different mechanisms of actions, such as social measures, careful

monitoring of infestation, dispersion of insecticides, new chemical and biological con-

trol agents and genetic procedures for control of the mosquito populations, including
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combinations of techniques. The adoption of vector control strategies combinations

requires continuous evaluation of effectiveness [37], considering the possible syner-

gistic effects between compatible strategies and spatial heterogeneity, based on an

assessment of risk areas. Therefore, mapping techniques are also presented as a

promising strategy, developed to evaluate and identify areas of increased risk for

arbovirus transmission in certain territories using local spatial statistics. By linking

spatial data with entomological surveillance data (characteristics, presence, infesta-

tion rates, and efficacy evaluation of control methods), epidemiological surveillance,

laboratory network, and sanitation, specific vector control actions are directed to

priority areas.

2.5 Conclusions

The Aedes aegypti is one of the primary biological vector responsible for transmitting

a wide range of arboviruses. These infections are on the rise and extending to new

geographical areas. As previously discussed, these viruses are causing a tremendous

negative impact on the health of the Brazilian and global population. Thus, con-

trolling the vector mosquitoes is critical for preventing these diseases. The control

methods should be considered according to the regional context including chemical,

biological and environmental means. Furthermore, the governmental effort should

be intensified to come up with and stimulate more innovative ways of controlling and

surveillance of the mosquito. In this work we propose a methodology to help in the

combat of the Aedes aegypti by locating locals with potential mosquitoes breeding

sites.
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Chapter 3

Vision Meets Unmanned Vehicles

In this chapter, we briefly review some works related to our problem, with focus

on those ones that detect mosquito breeding sites directly. Particularly, we also

talk about those directly interested in detecting mosquito breeding sites. Lastly, we

describe in details our new dataset.

3.1 Related works

In this section, we provide a brief review of related works. We first discuss techniques

for detecting stagnant water which is the perfect environment for Aedes aegypti

reproduction. Moreover, we highlight works that directly perform mosquito breeding

grounds detection.

3.1.1 Stagnant water detection

Image-based water detection systems can be useful for many applications [41–47].

In our problem specifically, this approach could also be applied since Aedes aegypti

reproduces in stagnant water.

The method in [41] uses a water detection system to assist in the navigation

of autonomous off-road vehicles. The system is based on several types of features,

including texture and others using the HSV (hue, saturation and value) color space.

It also uses a pair of cameras to separate regions of the image that are candidates

to be as reflective as water (regions whose depth is estimated as greater than the

depth of the neighborhood). It also presents a fusion rule to combine these features

and segment the region of interest containing water.

In [42] one finds a methodology to asses the performance of water detectors used

in images from unmanned vehicles. Two types of evaluations are presented: one

that considers the intersection between the region of the detector outputs and the

ground truth, and another one that assess the georeferencing accuracy. The authors
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in [43] observed that, to detect water bodies, the reflections of the sky are more

useful in images whose objects are distant from the camera while colors have more

discriminative power in the shorter range.

The authors of [44] propose a shape descriptor in images which is invariant to

scale, rotation, affine transformations, mirroring and non-rigid distortions such as

ripple effects. This descriptor is quantitatively and qualitatively compared with

other methods, achieving better results.

The work on [45] performs water detection based on sky reflection and has been

developed to be applied to unmanned land vehicles. In that work, it is considered

that water bodies act as flat mirrors for large incidence angles so that the proposed

method seeks to geometrically locate the pixels of the sky that are reflected in a

water body candidate. Based on the color similarity and the local characteristics

of the terrain, it is decided whether the candidate is water or not, given that it is

below the horizon line. Tests performed in open rural areas with distances greater

than 7 meters obtained 100% true positives and a maximum of 0.58% false positives

for different climatic conditions.

Another way to detect water in videos is through the dynamic texture segmen-

tation [46]. In that work, the proposed technique removes the static background

image and even dynamic objects present in the scene. To do so, an entropy measure

computed through optical flow in the course of several frames to obtain the water

signature is used. In order to detect regions without motion, an image segmentation

method based on the propagation of labels is applied. The technique was validated

in 12 videos with static and moving camera obtaining 95% of true positives and 10%

of false positives.

A new water-reflection recognition technique is presented in [47]. First, they

construct a new feature space using moments invariant to motion distortion in low-

and high-frequency curvelet space. In this new space of characteristics, they apply

the algorithms to minimize the cost of reflection in low frequencies together with

discrimination of curvelets coefficients in high frequencies. By doing so, they classify

the water reflection and detect the reflection axis in the images with a hit rate

ranging from 80% to 95%.

3.1.2 Mosquito breeding grounds

Regarding mosquito breeding grounds detection we point out references [48–50].

In [48] a system receives geotagged images generated by the population. Then,

the image quality is evaluated in order to reject images that contain high levels of

distortions or artifacts. Next, each image is converted into a feature vector using

the bag of visual words model through the scale-invariant feature transform (SIFT)
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descriptor. Afterwards, a support vector machine (SVM) classifier is trained to

identify whether the images contain potential mosquitoes breeding sites (stagnant

water, open tyres or containers, bushes, etc) or not (running water, manicured lawns,

tyres attached to vehicles, etc). Finally, the system outputs a heat map where the

regions with the highest risk of having mosquitoes habitats are indicated.

The authors of [49] use a trained SVM classifier to detect water puddles in images

obtained from videos that can have stagnant water, acquired by a quadcopter. The

work in [50] use thermal and gray level images to detect stagnant water. From each

image, they compute a 128-bit vector using speeded-up robust features (SURF)

descriptor. This vector is then reduced to a 64-bit vector using principal component

analysis (PCA). The computed vectors are used to train an ensemble of naive Bayes

classifiers to identify potential mosquitoes breeding grounds.

In this work, we propose a methodology for mosquitoes breeding grounds detec-

tion that applies machine learning techniques using videos acquired by an Unmanned

Aerial Vehicle (UAV), also known as a drone. To our knowledge, there is not a big

public dataset to train a model for this task. However, the dataset proposed in [8]

is interesting but with some drawbacks, which we describe in Section 3.2. They

train a Random Forest classifier using features (H channel from HSV color space

for detecting tires and histograms from S and V channels from the same space for

detecting stagnant water) extracted from the images. Taking [8] as inspiration, we

propose to design and acquire a new dataset, described in Section 3.3.

3.2 The CEFET dataset

The authors of [8] use the commercial UAV DJI Phantom Vision 2 Plus to capture

several videos containing tires, puddles and some other objects with water, like

water tanks and pails at different simulated environmental situations. This UAV

model has 20 minutes of flight autonomy and is equipped with a camera capable of

recording videos up to 1080×720 pixels resolution at 60 Hz. They chose to record

the videos using 1080p at 30 frames per second (fps).

This UAV camera model presents high distortions, specially the radial one. In

order to mitigate this problem, they reduced the field of view (FoV) to 85 degrees.

By doing so, the flight time increases since the drone would take more time to cover

a region.

All the videos, with about 15 s duration, were recorded with the camera at down-

ward position with the drone following a specified route at approximately constant

5 m altitude. The speed is set to be 7 km/h. They point out that the parameters

may vary over the course due environmental interference such as wind.

The drone telemetry measurements (e.g. position, velocity and altitude) are
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signals obtained from the .csv file in order to associate each video frame to its

respective telemetry measurement.

The dataset has the following technical specifications:

• We automatically predefine a flight plan using the Litchi [51] software.

This plane performs a serpentine-like sweep over the entire terrain area au-

tonomously.

• We turn off the camera auto adjustment and set all the parameters manually,

keeping the focus fixed at infinity and setting the video scan to 3840 p at

50 frames per second (fps). This step is important because we want to keep

all camera parameters constant in order to perform camera calibration.

• Before starting a flight, we record a calibration video using a calibration pat-

tern, as described in Section 3.3.1.

• The altitude is approximately constant in each video. Currently, the dataset

has videos acquired at different altitudes, e.g. 10, 25, 40 m, all of them pre-

defined in the flight plan through Litchi. Small variations in altitude (±0.5m,

according to the manufacturer [52]) caused by the limited accuracy of teleme-

try, wind, etc are within acceptable ranges.

• Speed approximately constant of 15 km/h is preset via Litchi. This parameters

can suffer small variations caused by wind, for example. However, our drone

has a 10m/s maximum wind speed resistance [52].

• The dataset includes different types of terrains. Currently, it contains high

and low grass, asphalt, wasteland and buildings, as depicted in Figure 3.2.

• The videos have about 15 objects manually inserted objects, randomly ar-

ranged on the recording area, including tires, bottles, and other objects that

can accumulate water such as buckets and plastic pools. The videos also have

objects that originally were part of the recorded scenes such as water tanks.

We show examples of these objects in Figure 3.3.

• Afterward, we compensate the videos’ distortions, as described in Section 3.3.1

and manually annotate them using the Zframer software, according to Sec-

tion 3.5.

The generated dataset contains several sequences of aerial videos containing tires,

water puddles, water reservoirs and several other objects filled with water. Currently,

the videos were recorded at the Technology Center of UFRJ, campus Ilha do Fundão,

and at the CEFET/RJ campus Nova Iguaçu.
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from an image if calibration is well performed. Through camera calibration one

may find the intrinsic camera parameters, such as focal length and principal point.

Many calibration techniques have been developed [53, 54], even for photometry

applications [55, 56].

In this work, we apply camera calibration for minimizing the distortions caused

by the camera lens, mainly the radial distortions. We have chosen the method

proposed in [57] due to its simplicity and low cost. This technique consists in

extracting the key points (corners) from an image containing a calibration pattern,

usually a chessboard; estimating the camera parameters; estimating the distortion

coefficients; and applying the correction.

Keypoints detection

Harris [58] and SIFT [59] are classical detectors of image key points. However, in this

work, we use the method implemented by the OpenCV’s findChessboardCorners

function [60], for being more robust in cluttered images containing smoothing arti-

facts. Initially proposed by Vladimir Vezhnevets [61], this method consists of first

converting the image to a binary image based on an adaptive threshold, segmenting

the white and black squares of the calibration pattern. Then the borders of black

squares are found and these contours are approximated to quadrilaterals, whose

corners are selected and grouped in, according to the calibration object.

In this work, we record calibration videos showing the calibration pattern which

has a 10 × 7 checkerboard pattern. Key points detection is performed at every 20

frames of the video. Before performing detection, we filter the image with a Gaussian

filter of size 7× 7 pixels, 0 mean and standard deviation 1.4 in both directions. We

lower the image resolution by 40% to reduce detection time.

Camera model

Having detected the key points in the calibration pattern, one may estimate the

camera projection matrix from the coordinates of these points in the real world

and the image. Therefore, we consider that a camera maps a world point M′ =

[X, Y, Z, 1]T to an image point m′ = [u, v, 1]T through a projective transformation

of the form [62]

sm′ = A[R | t]M′, (3.1)

where s is an arbitrary scale factor, R and t the rotation matrix and translation

vector, respectively, (extrinsic parameters) that relates the world coordinate system

to the camera coordinate system. The matrix A is the calibration camera matrix

22



(intrinsic parameters), defined as

A =







α γ u0

0 β v0

0 0 1






, (3.2)

where [u0, v0]
T denotes the principal point coordinates, α and β the scale factors

of u and v image axis, respectively, and γ is the skewness of the two image axis.

The intrinsic parameters does not depend on the image viewed. As a result, once

computed, they may be used for all images since the focal length is fixed (same zoom

level).

Distortion compensation

Conventional cameras usually have significant lens distortion, specifically radial dis-

tortion. In order to minimize such distortions, we apply Zhang’s algorithm [63] as

follows. Let (u, v) be the ideal (nonobservable distortion-free) pixel image coordi-

nates and (ŭ, v̆) the corresponding coordinates at observed (distorted) image. The

ideal points are projections of calibration pattern points according to the model

given by Equation (3.1). Likewise, (x, y) and (x̆, y̆) are, respectively, the ideal and

real normalized image coordinates. Hence, the radial distortion may be modeled

as [63]:






x̆ = x+ x(k1r
2 + k2r

4)

y̆ = y + y(k1r
2 + k2r

4)
, (3.3)

where k1 and k2 are radial distortions coefficients and r2 = (x2 + y2). Higher order

distortion models do not present significant improvements and may lead to numerical

instability [63]. The center of the radial distortion is located at the principal point.

From ŭ = αx̆+ γy̆ + u0 and v̆ = βy̆ + v0, assuming γ = 0, we may write







ŭ = u+ (u− u0)(k1r
2 + k2r

4)

v̆ = v + (v − v0)(k1r
2 + k2r

4)
. (3.4)

Zhang’s algorithm [57] first makes a coarse estimation of the camera extrinsic and

intrinsic parameters and refine them through maximum likelihood estimation. Given

n calibration pattern images, considering we have m points in this pattern, and the

image points are corrupted by independent and identically distributed (i.i.d.) noise,

the maximum likelihood estimation may be obtained by minimizing the following

function [63]
m
∑

i=1

n
∑

j=1

‖xij − x̆(A, k1, k2,Ri, ti,Xj)‖
2, (3.5)
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3.4 Generating rectified videos

We apply rectification frame by frame i.e., we need to extract all video frames and

apply the rectification transform in each one. To verify how compression compro-

mises the frames quality, we made a brief study that we describe in the sequel.

First, we extract all frames from the original, not rectified videos. We save them

as new videos using the same codec (X264) of the original videos, through imageio

python library [64] (a FFMPEG wrapper). FFMPEG is a software that can save, convert

and create video and audio streams in various formats [65]. Lastly, we compare the

videos both objectively and subjectively.

We choose the constant rate factor (CRF) mode that varies from 0 to 51 (using

8 bits), where 0 is lossless and 51 is the worst quality possible. A lower value leads

to higher quality, and a subjectively sane range tends to be 17–28 [65]. By using

this mode we want to keep the best quality without caring much about the final file

size. In this brief experiment, we use a “quality” scale [64] in which the conversion

to CRF is done as follows:

CRF = 51

(

1−
quality
10

)

. (3.6)

We evaluate the quality varying from 0 to 10 with unity step, according to Table 3.1.

Table 3.1: Quality indexes evaluated and respective CRF values [65].

Quality 0 1 2 3 4 5 6 7 8 9 10

CRF 51 45.9 40.8 35.7 30.6 25.5 20.4 15.3 10.2 5.1 0

To evaluate our results quantitatively, we use the peak signal-to-noise ratio

(PSNR), defined as

PSNR = 10 log10

(

2B − 1

MSE

)

, (3.7)

where, B is the number of bits used to represent a pixel (in our case, B = 8) and

MSE is the mean squared error between original frame I and compressed frame K

of same size m× n, defined as,

MSE =
1

mn

m
∑

i=1

n
∑

j=1

(

I(i, j)−K(i, j)

)2

. (3.8)

Good-quality compressed images present typical values of PSNR between 30 and 50

dB, provided the bit depth is 8 bits, where higher is better [66].

For each video and each quality level, we compare the frame by frame PSNR
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extracted from original and compressed video and we take their mean. We run this

experiment for 4 videos; Video 1 is calibration video and the other 3 are videos

recorded on grass area (we choose these last 3 since grass is a texture that is hard to

compress). We show the average PSNR values along with the final video compressed

size in Figure 3.5. Note that as we increase quality, the file size increases exponen-

tially, but, as video encoders are essentially lossy, the PSNRs reach a saturation

level [65].

Video 1 (140.6MB) Video 2 (1.8GB) Video 3 (1.8GB) Video 4 (1.8GB)
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Figure 3.5: Video compression and file size comparison between original and frames
after compression. The leftmost bin represents quality= 0 and rightmost quality=
10.

We also visually evaluate the videos generated. As shown in Figure 3.6, at zero

quality the image is seriously damaged, as expected. We chose the quality parameter

that gives the best balance between quality and file size. The quantitative and

qualitative results have shown the quality was not significantly compromised when

we use quality factor around 5 (CRF = 25.5). Therefore, we use this factor when

storing the new videos with the rectified frames.
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Figure 3.6: Compression quality comparison. From up to down: frame from original
video, quality = 0, and quality = 5.
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3.5 Database annotation

Our dataset is under manual annotation process and is being performed using the

Zframer software2, developed at the Signals, Multimedia, and Telecommunications

(SMT) Laboratory of Coppe/UFRJ. After rectified, the acquired video sequences

are labeled frame by frame with Zframer, as depicted in Figure 3.7. The students

from signal processing laboratory at CEFET/RJ Campus Nova Iguaçu has helped

us in this labeling process. Using the Zframer one may annotate, in each frame of

the videos, the objects that have been determined as potential mosquitoes breeding

grounds (e.g. tires, water reservoirs, bottles). Moreover, the software allows inter-

polation between annotations of selected frames, so that it is not necessary that all

frames where the object appears are annotated. The software output is a text file

containing, in each line, the annotation format (in our case, rectangles), and the

frame number along with the pixel coordinates of the of the upper-left and bottom-

right corners of the bounding box of each annotated object, as shown in Figure 3.8.

Figure 3.7: A video frame annotation using Zframer.

3.6 Conclusions

In this chapter, we discussed works that are direct and indirectly related to our

problem. We have seen that many of them are concerned about helping develop

intelligent systems. In particular, we have gone through those that are of interest

2http://www.smt.ufrj.br/~tvdigital/Software/zframer
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frame number bounding boxes coord.

object’s tag

annotation format

Figure 3.8: Example of a text file generated by the annotation process.

to detecting mosquitoes foci. However, since none of them provided a consolidated

dataset available, we proposed a new one, and described its construction.
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Chapter 4

Object Detection with Deep Learning

In this chapter, we discuss object detectors and make a brief comparison among

them. Then, we go deeper into the method used to detect the mosquito breeding

sites: the region-based convolutional neural network (RCNN), particularly the Faster

R-CNN. By the end of this chapter we hope the reader to have insights in object

detection methods and understand how the region-based detectors work and how

they evolved over time.

4.1 Introduction

Applications such as face recognition [67–69], self-driving cars [70], smart video

surveillance [71], among others, have been attracting lots of attention of the com-

puter vision (CV) community. These and other applications require systems that

are capable of recognizing, classifying and localizing objects in image or videos.

Image classification, object localization, and object detection are fundamental

and challenging problems in CV. In image classification, an algorithm assigns one

(or more) label(s) (from a fixed predefined set of categories or classes) to an input

image. Image classification has a wide variety of practical applications such as face

recognition or even cancer diagnostic. In object localization, we not only want to

know what object is in the image but also where it appears on it. An algorithm

assigns a class to the “main” object (one image may contain multiple objects) as well

as indicates the position of the object in the image by, as an example, drawing a

bounding box around it. At last, object detection is the process of finding multiple

instances of objects in images or videos instead of the “main” one only. One may

interpret an object detector as a function f : I → {k, p, b} i.e., an image I receives

labels k from a set of predefined class labels, confidence scores p and bounding

boxes b. The bounding box b = {x, y, w, h} corresponds to a detection at a position

(x, y), width w and height h. Typically, object detectors use features and learning

algorithms to detect object instances.
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4.1.1 Classical object detection

Classical object detectors use sliding windows to densely extract patches from the

input image. These patches are warped to a fixed length (since many classifiers take

fixed-size images only) and features are computed using, for example, scale-invariant

feature transform (SIFT) [59] or histogram of oriented gradients (HOG) [72]. The

classification, using methods like support vector machines (SVMs) [73], is performed

in the feature space. This approach is (i) computationally expensive because fea-

tures are computed for every image crop (and these crops highly overlap); and (ii)

inaccurate, since sliding windows may not match the object size due to uncontrolled

changes in scale, requiring multiple resolution windows.

4.1.2 Deep learning for object detection

State-of-the-art object detectors [74–76] are deep-learning-based [77]. They employ

a type of deep neural network specially developed for CV applications: convolu-

tional neural networks, also known as ConvNets or CNNs [78]. The success of deep

learning models is due to: (i) the availability of a large amount of data [79, 80]; (ii)

the increase in the available computing power, brought particularly by the devel-

opment of powerful graphics processing units (GPUs) (along with GPU-accelerated

libraries); (iii) the development of several powerful optimization methods (e.g. back-

propagation; weight initialization; stochastic optimization; regularization; and new

activation functions).

The deep-learning-based object detectors may be divided into two groups: single-

shot (or one-stage) and region-based (or two-stage) detectors.

Region-based object detectors

Region-based or two-stage detector, as the name suggests, performs the detection

in two steps. First, it generates a sparse set of region proposals in the image where

the objects are supposed to be. The second stage classifies each proposal into one

of the foreground classes or background and, in case it outputs an object label, it

refines its position. The region-based convolutional neural network (R-CNN) [81]

steered object detection to a new era: by employing ConvNets in the second stage,

it achieved significant gains in accuracy. R-CNN evolved over time in terms of

speed and accuracy [76, 82]. In Faster R-CNN [76] a ConvNet generates the region

proposals, thus turning the whole system into a single convolutional network. Other

works extend this framework [83, 84].
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Single-shot object detectors

The single-shot detectors focus on speed rather than accuracy, aiming to predict

both class and bounding box simultaneously. The single-shot detectors are inspired

by the sliding-window paradigm. They split the images into a grid of cells so that

we have sparse regions. For each cell, it makes bounding boxes guesses of different

scales and aspect ratios. Different from traditional sliding-window detectors, it

further refines the bounding box prediction instead of simply using the window

position. OverFeat [74] was one of the first single-shot detectors followed for most

recent YOLO [75] and SSD [85].

Object Detectors Comparison

Comparing object detectors is not an easy task, since we are not always capable of

saying which one is the best model. Two aspects must be taken into consideration

when choosing a model: accuracy and speed. Many attributes may impact the

performance, to point some:

• feature extractors;

• input image resolution;

• hyper-parameters such as batch size, input image resize, learning rate, and

weight decay.

In [86], a detailed comparison among single-shot and region based detectors is

done. Single-shot detectors are faster than region-based detectors but they cannot

beat region-based detectors in accuracy. Nevertheless, if we reduce the number of

proposals in Faster R-CNN, for example, we are able to match the speed of SSD

without harming its accuracy significantly.

Since speed is not the main concern of our application, we choose Faster R-CNN

as our object detector as it achieves most accurate results [86].

4.2 Region-based Convolutional Network (R-CNN)

Before explaining the Faster R-CNN, we shall see its older, rougher around the edges

grandfather: the region-based convolutional network (R-CNN) [81] , followed by the

middle child, the Fast R-CNN and then finally the Faster R-CNN.

The R-CNN [81] consists of three parts: (i) a region proposal method that gen-

erates class-agnostic regions of interest (RoIs). These regions form the set of can-

didates available to detection. They are warped into a fixed size and then fed into

the next module, individually; (ii) a CNN that extract features from each RoI; (iii)
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4.2.2 Feature extraction

The features are extracted by forwarding each proposal through a convolutional

network. Each proposal is warped to fit the ConvNet’s input size, regardless of its

size or aspect ratio. Prior to warping, the region is enlarged a bit to include pixels

of image context in the warped region [88].

4.2.3 Object classifier and box regression

The region proposals that have an Intersection over Union (IoU – for a more detailed

description refer to Section 5.1) with the ground truth smaller than 0.3 are defined

as negative samples. Once we have the features and the training sample label, we

train a linear SVM per class. After the SVM stage, a class-specific regressor is used

to predict a new bounding box for detection [88].

4.2.4 R-CNN drawbacks

Although R-CNN achieved satisfactory results in object detection tasks [81], its

authors point some drawbacks in a later work [82]:

• Training is a multi-stage pipeline: first, perform a fine-tuning on a CNN using

the RoIs generated by the region proposal method. Then, for each class, fit

an SVM. At last, it learns the bounding box regressors.

Figure 4.2: Selective search example. The first row are the combined regions, the
blue and green boxes in the second row are the possible RoI and detected objects,
respectively. Source: [87].

34



• Training is expensive both in space and time: although selective search re-

duces the number of RoIs to be analyzed, it stills needed a high number of

them to achieve good performance (∼ 2, 000 for each image). From each RoI

in each image, R-CNN extracts the features that are written to disk. The

author reports that this process has taken 2.5 GPU-days (Nvidia K40 GPU

overclocked to 875 MHz) [82], with VGG-16 [89], for 5,000 images of a specific

image set.

• Slow object detection: at test-phase, R-CNN extracts features from each RoI

for each image test. For each test image, with VGG-16 [89], detection took

about 47s on a GPU. This is slow because there are no shared computations

during the ConvNet’s forward pass.

4.3 Fast R-CNN

In a later work [82], Fast R-CNN authors, solved of some R-CNN’s [81] drawbacks

in order to build a faster algorithm. Differently from the original work, in which we

feed the ConvNet with every single region proposal, the whole image is fed into a

ConvNet to produce a single convolutional feature map. Fast R-CNN still uses an

external region proposal method (e.g. selective search [87]) to generate the proposals.

Thus, the input of Fast R-CNN is an image and a set of proposals [82].

The RoIs are the rectangular regions of the feature map bounded by the propos-

als, each defined by a four-tuple (x, y, w, h) specifying its top-left corner (x, y) and

its width and height (w, h) [82]. These RoIs along with the feature maps, extracted

from the entire image, form the patches used for object detection. The patches are

warped to a fixed-length feature vector, by the using RoI pooling layer [82] (Sec-

tion 4.3.1), so that they may be fed into a sequence of FC layers. The FC layers

branch into two sibling output layers:

1. classification layer: a softmax layer that estimate the class probability of the

RoI over K object classes plus a “background” class.

2. localization (regression) layer: outputs a set of 4 real values for each one of

the K object classes. These values encode a refined bounding box position,

i.e., an offset for the initial proposal.

By extracting the features over the whole image, instead of repeating the fea-

ture extraction for each proposal every time, Fast R-CNN reduces the cost time

significantly, trains 9× faster than R-CNN (with VGG-16), and takes ∼ 0.3s to run

detection (not considering object proposal time) vs. 47s of R-CNN [82]. Another

improvement in Fast R-CNN is that one may train the entire network (ConvNet,
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and softmax and regression layers) end-to-end with the multi-task loss (classification

and localization losses, Section 4.3.2), which improves the detection accuracy [82].

Figure 4.3 illustrates the Fast R-CNN flow.

Figure 4.3: Fast R-CNN. Source: [82].

4.3.1 RoI pooling layer

Fast R-CNN uses FC layers for classification and bounding box regression tasks [82].

These layers require an input of predefined size. Since the RoIs generated by region

proposal method are variable in size, we warp them into a small spatial fixed extent

of H × W by applying RoI pooling, where H and W are hyper-parameters and

independent of the RoIs [82]. The RoI pooling layer is a specific case of [90] where

there is only one pyramid level [82].

The RoI pooling layer works as follows: it first divides a given RoI of size h×w

into an H×W grid of sub-windows of approximate size h/H×w/W . Then, applies

pooling (e.g. max pooling [77]) to the values of each sub-window, corresponding to

the output grid cell. As in standard pooling layers, RoI pooling is applied for every

channel in feature map. We illustrate this procedure in Figure 4.4, where we have

initially a feature map of size 8 × 8, and a RoI with h = 5 and w = 7. In this

illustration, we apply RoI pooling to obtain a warped feature map of predefined size

with H = 2 and W = 2.

4.3.2 Multi-task loss

The Fast R-CNN outputs, per RoI, a discrete probability distribution p̂ =

(p̂0, . . . , p̂K), over K + 1 categories (K object categories +1 for background) and

the bounding box regression offset kt̂ = (k t̂x,
k t̂y,

k t̂w,
k t̂h) ∀ k ∈ K. The offset kt

is parameterized relative to the region proposals and represents a scale-invariant

translation and log-space height/width shift relative to an object proposal. We

follow the parametrization given in the set of Equations (4.6). We come back to

this parametrization scheme later when we talk about RPN and anchor boxes, in

Section 4.4.1.
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Figure 4.4: RoI pooling layer. Top left: feature maps; top right: RoI (blue) overlap
with feature map; bottom left: split RoI into input dimension; bottom right: warped
RoI obtained after applying max pooling in each section.

We label each training RoI with a ground truth class u and a bounding box

regression target v. We train both classification (cls) and regression (reg) layers

using the multi-task loss given by

L(p̂, u,u t̂,v) = Lcls(p̂, u) + λ[u ≥ 1]Lreg(
ut̂− v) (4.1)

where, Lcls(p̂, u) = − log p̂u is the negative log-likelihood loss for true class u and

Lreg(
ut̂−v) is the regression loss between the predicted tuple ut̂ = (ut̂x,

u t̂y,
u t̂w,

u t̂h)

and the bounding box regression target v = (vx, vy, vw, vh), for class u. The Iverson

bracket indicator function allows the regression loss to be activated only for class

objects (background class is labeled as u = 0). It evaluates to 1 when u ≥ 1 and

0, otherwise. This is done since there are no ground truth for the background RoIs.

Fast R-CNN uses the smoothℓ1 loss for bounding box regression,

Lreg(
ut− v) =

∑

i∈{x,y,w,h}

smoothℓ1(uti − vi), (4.2)

where the smoothℓ1(z) function is defined as

smoothℓ1(z) =







0.5z2, if |z| < 1

|z| − 0.5, otherwise.
(4.3)
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The smoothℓ1 is more robust to outliers than the ℓ2−loss used in R-CNN [81], which

requires a careful learning rate tuning in order to prevent exploding gradients in

case of unbounded regression targets [82]. Actually, one may interpret smoothℓ1 as a

combination of ℓ1− and ℓ2−loss. When the absolute value of the argument is high (in

this case |z| ≥ 1), it behaves like a linear function (ℓ1−loss), and when the absolute

value of the argument is close to zero (value of |z| < 1), it behaves like a quadratic

function (ℓ2−loss), as shown in Figure 4.5. Therefore, it is possible to take advantage

of both losses, steady gradients for large values of errors and less oscillation during

updates when the error is small. All regression targets vi ∀ i ∈ {x, y, w, h} are

normalized to have zero mean and unit variance. The λ parameter balances the two

loss terms, and is usually set to 1 [82].
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(a) plot of ℓ1, ℓ2, and smoothℓ1.
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Figure 4.5: Comparison between ℓ1, ℓ2, and smoothℓ1 losses.

4.3.3 Training and testing Fast R-CNN

One may train the Fast R-CNN using back-propagation and stochastic gradient de-

scent (SGD) [78]. Each mini-batch is hierarchically sampled, by first sampling N

images and then S/N RoIs from each image, where S is the total number of RoI

samples. This sampling scheme reduces the computation, since RoIs from the same

image share computations during forward and backward passes [82]. For training

Fast R-CNN, we sample up to 1:3 ratio of positive to negative samples, as the back-

ground is more common than the foreground in an image. The positive samples are

the proposals that have an IoU (for a more detailed description refer to Section 5.1)

overlap of at least 0.5 with a ground truth box. These are the foreground examples

i.e., u ≥ 1. The negative samples i.e., background samples (u = 0) are the proposals

with a maximum IoU overlap in the range [0.1, 0.5) with all ground truth boxes. The

FC layers for classification and regression are initialized by drawing the weights from
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a Gaussian distribution N (µ, σ) with mean µ = 0 and standard deviation σ = 0.01

and σ = 0.001, respectively.

At the test phase, Fast R-CNN takes an image and a set of S pre-computed

proposals as input. For each testing proposal s, Fast R-CNN outputs a posterior

discrete probability distribution p̂ of the K classes. It also outputs a set of predicted

bounding boxes offsets relative to s. For each detection, we assign a confidence

score for each class k by using the estimated probability p̂k. Finally, we apply

non-maximum suppression (NMS) independently for each class in order to eliminate

multiple detections for the same instance of class [81].

4.4 Faster R-CNN

Both R-CNN and Fast R-CNN use an external method to generate the proposals [81,

82]. The region proposal methods generally run on CPU and are time-consuming,

affecting the network performance [76]. This stage is, up to now, the bottleneck of

the region-based detectors.

The Faster R-CNN [76] presents a new mechanism that eliminates the need for

an external region proposal method: the region proposal network (RPN), which is

a convolutional network that learns the regions derived from the feature maps.

The Faster R-CNN works akin to Fast R-CNN. First, the image is fed into a

ConvNet that outputs the convolutional feature maps. Based on these maps, the

RPN then predicts the proposals, which are warped by the RoI pooling layer and

then delivered to the FC layers that classify the RoIs and refine them by predicting an

offset for the bounding boxes. Hence, Faster R-CNN comprises two modules: RPN,

to generate the proposals, and Fast R-CNN detector, as shown in the Figure 4.6.

4.4.1 The region proposal network

The RPN works by sliding n × n convolutional filters over the feature map from

the last feature extractor convolutional layer to generate the class-agnostic region

proposals. The hyper-parameter n (typically, n = 3) must be chosen by taking

the effective receptive field (the region of the input image that a neuron – the

filter at a given position – oversees) into consideration [76]. So, each n × n spatial

location is mapped to a lower dimension. The resulting features are fed into two

parallel FC layers – a box-regression layer (reg) and a box-classification layer (cls).

These last layers may be implemented with 1×1 convolutional layers [76], as shown

in Figure 4.7. Thus, RPN is a fully convolutional network (FCN) [91] so, it is

translation invariant up to the network’s total stride [76].

At each n × n sliding filters position, RPN predicts β region proposals. Hence,
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Anchors

As mentioned, at each position of feature map, RPN predicts β proposals. Figure 4.8

illustrates β = 3 proposals for a specific location in the feature map. The proposals

are parameterized relative to prior reference boxes which are called anchors. The

anchors are centered at each spatial location of the output feature map, and each

anchor is associated with a scale and aspect ratio. Therefore, for a feature map of

size W × H we end with WHβ anchors in total. The original implementation of

Faster R-CNN uses three scales and three aspect ratios, yielding β = 9 anchors at

each position [76]. Faster R-CNN predicts offsets δx, δy that are relative to those

(a) 8× 8 feature map and 3× 3 filter. (b) RPN proposals for a specific location.

Figure 4.8: RPN proposals for a specific location in the output feature map.

anchors. We illustrate the anchors positions, scales and aspect ratios, and offsets, in

Figure 4.9. We represent the anchors at only 3 different spatial locations (that is for

illustration purposes; however, anchors exist for every single position in the feature

map). In Figure 4.9b, we show the anchors at different scales and aspect ratios

for a specific spatial position; where the 3 different colors are different scales (e.g.

322, 642, 1282 pixels) and for each color, we have 3 aspect ratios (e.g. 1:1, 1:2, 2:1).

Lastly, in Figure 4.9c, we illustrate the prediction and anchor offset. Figure 4.10

shows the RPN at a single position along with the β anchors boxes.

Loss function

The RPN outputs object class-agnostic region proposals. It assigns a binary label

to each anchor: positive for anchors bounding an object, and negative otherwise.

We define as positive the anchors that have (i) the highest IoU; or (ii) an IoU of, at

least, 0.7 with the ground truth annotation. We keep the first condition to ensure

that we have positive examples in case the first one fails. One should notice that

a single ground truth box may assign positive labels to multiple anchors [76]. The

negative anchors are those with IoU ratio lower than 0.3 with all ground truth

boxes [76]. Anchors outside these conditions do not influence the training phase.
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(a) Anchors at specific locations.

(b) Anchors at different scales and aspect
ratios for a specific location.

Prediction

Anchor

δx
δy

(c) Prediction offset.

Figure 4.9: Anchor boxes at specific locations, different scales and aspect ratios for
a specific location, and prediction offset.

Convolutional feature map

β anchor boxes4β coord.2β scores

reg layercls layer

intermediate layer

n× n filters

Figure 4.10: Region proposal network (RPN).

Given these definitions, we aim to minimize the loss function L({p̂i}, {t̂i}), defined in

Equation (4.4) w.r.t. the outputs {p̂i} and {t̂i} of the cls and reg layers, respectively,

following the multi-task loss in Fast R-CNN (section 4.3.2) [76],

L({p̂i}, {t̂i}) =
1

Ncls

∑

i

Lcls(p̂i, p
∗
i ) + λ

1

Nreg

∑

i

p∗iLreg (̂ti, t
∗
i ), (4.4)

where i is the index of an anchor in a mini-batch; p̂i the predicted probability of

anchor i being an object; p∗i the ground truth label which is 1 for positive anchors,
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and 0 for negative anchors; t̂i and t∗i the vectors representing the 4 parameterized

coordinates of the predicted bounding box, and the ground-truth box associated

with a positive anchor, respectively; Lcls the classification log loss over two classes

(foreground×background); and Lreg (̂ti, t
∗
i ) = smoothℓ1(̂ti − t∗i ) is the regression

loss, being smoothℓ1(·) similar to the robust loss function seen in Section 4.3.2

(Equation (4.2)), except for the inclusion of the parameter γ that controls where

the function change from quadratic to linear. Hence, we redefine smoothℓ1(z).

smoothℓ1(z) =







0.5
γ
z2, if |z| < γ

|z| − 0.5γ, otherwise.
(4.5)

As γ → 0 the smoothℓ1(z) approaches to ℓ1−loss. The reason for doing this is

because unlike in Fast R-CNN, in Faster R-CNN the RPN bounding box regression

targets vi are not normalized by their variance since the statistics of the targets

are constantly changing throughout learning. By including this γ parameter one

may better approximate smoothℓ1 to ℓ1−loss (robust to outliers) and maintain the

ℓ2−loss properties for small error values, as shown in Figure 4.11. Although not

reported in Faster R-CNN paper [76], the implementation uses γ = 1

9
.
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(a) plot of ℓ1, ℓ2, and smooth–ℓ1 (for two dif-
ferent values of γ).
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Figure 4.11: Comparison between ℓ1, ℓ2, and smooth–ℓ1 (for two different values of
γ) losses.

One may notice that the regression loss Lreg is activated only for positive anchors

since p∗i = 1 for positive anchors and p∗i = 0 otherwise. The respective loss terms

are normalized by the mini-batch size Ncls and the number of anchor locations Nreg

and weighted by a balancing term λ so that cls and reg terms have roughly equal
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contributions. For instance, Faster R-CNN uses Ncls = 256, Nreg ∼ 2, 400, and

λ = 10 [76]. On the other hand, they experimentally show that this normalization

is not crucial and the results are insensitive to a wide range of values for λ [76].

For bounding box regression, Faster R-CNN adopts the four coordinates param-

eterizations, presented in the set of Equations (4.6) [76],

t̂X =
(x̂− xα)

wα

,

t̂W = log

(

ŵ

wα

)

,

t∗X =
(x∗ − xα)

wα

,

t∗W = log

(

w∗

wα

)

,

t̂Y =
(ŷ − yα)

hα

,

t̂H = log

(

ĥ

hα

)

,

t∗Y =
(y∗ − yα)

hα

,

t∗H = log

(

h∗

hα

)

,

(4.6)

where x and y denote the box’s center coordinates, and w and h its width and

height. We differ the predicted, anchor, and ground truth boxes’ specifications, using

variables x̂, xα, and x∗ (likewise for y, w, and h), respectively. One may interpret this

as bounding box regression from an anchor box to an adjacent ground truth box [76].

Other RoI-based methods [82] performs bounding box regression on features pooled

from arbitrarily sized RoIs and the regression weights are shared by all region sizes.

However, in this approach, the features used for regression has the same spatial size

(n × n) as the feature maps. RPN learns a set of β bounding box regressors and

each one is responsible for a scale and aspect ratio. These β regressors do not share

weights. Thus, the design of anchors allows predicting boxes of various sizes, even

though the features are of a fixed size/scale [76].

Training the RPN

We train the RPN end-to-end with back-propagation and SGD [78]. Due to the

slow convergence of SGD, one can use the momentum method [92] to accelerate the

learning process, and weight decay [77] as a regularization method. Following [82],

each mini-batch of size Ncls comes from the same image that contains positive and

negative anchors. One should notice that we may have many more negative than

positive samples, as background boxes are more common than foreground in an

image. This fact may cause a bias towards negative samples. Therefore, we randomly

sample Ncls anchors (usually Ncls = 256 [76]) with a ratio up to 1:1 of positive to

negative. One should pad the batch with negative samples to fill up the mini-

batch. As a common practice, all shared convolutional layers are initialized to

ImageNet pre-trained weights for classification [79, 80]. The FC layers used for

classification and regression are randomly initialized by drawing the weights from a
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normal distribution N (µ, σ) with mean µ = 0 and standard deviation σ = 0.01 and

σ = 0.001, respectively [76].

4.5 Mask R-CNN

Mask R-CNN [84] is a framework for object instance segmentation. It is built on

top of Faster R-CNN [76] by adding a third branch in parallel to the regression and

classification layers of Fast R-CNN [82]. Recapitulating, the Faster R-CNN extracts

the images features by forwarding an image through a ConvNet. Next, it predicts

the RoIs on the feature space by using RPN. Then, we warp the proposals to a fixed

dimension by applying RoI pooling. Lastly, we feed these features into FC layers to

make classification and bounding box regression. Mask R-CNN adds a third branch

to Faster R-CNN which outputs the object mask [84], as shown in Figure 4.12. The

mask of an object is its pixel-wise segmentation in an image. Instance segmentation

is outside the scope of this work. However, we mention it since instance segmentation

requires finner spatial layout of an object [84]. The RoI pooling in Faster R-CNN

causes misalignments between the RoI and features. Hence, Mask R-CNN proposes

RoIAlign that addresses these misalignments.

image ConvNet

RPN

RoIAlign FC layers

cls

reg

mask2× conv.

RoIs

Features

Mask

Faster R-CNN

Figure 4.12: Mask R-CNN flow.

4.5.1 RoIAlign

RoI pooling warps the features inside a region proposal to a fixed size. It quan-

tizes the RoI to the discrete granularity of the feature map. Likewise, it performs

quantization when dividing the RoI into cells. The cell boundaries of the target

feature map are forced to realign with the boundary of the feature map so that
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the cells might not be of the same size (revisit Figure 4.4). These quantizations

result in misalignments between the RoI and features which harms object masks

predictions [84].

Mask R-CNN substitutes RoI pooling by RoIAlign to avoid these misalignments.

RoIAlign does not perform quantization but makes every target cell to have the same

size, properly aligning the features with the input. For instance, it divides a given

RoI of size h×w into an H×W grid of sub-windows of exactly size h/H×w/W . It

applies bilinear interpolation to compute the values in feature map at the cells [84],

as shown in Figure 4.13. Then, it aggregates the results using max or average

pool [77]. RoIAlign significantly improves the accuracy on both segmentation and

localization tasks if compared to RoI pooling [84], so we use RoIAlign instead of RoI

pooling.

h
H

w
W

bilinear interpolation

Figure 4.13: RoIAlign: we represent the feature map with dashed lines and small
points. The RoI (2× 2 cells) is represented with solid lines and 9 sampling points in
each cell, that are computed by bilinear interpolation from the nearby grid points
on the feature map.

4.6 Conclusions

In this chapter we detailed the method used for detection of potential mosquitoes

breeding grounds: the Faster R-CNN. We have chosen this algorithm since it gives

good accuracy results if compared to other object detectors. We also discuss how

it evolved over the years pointing out the main contributions. For example, how

RoIAlign outperforms RoIPooling.
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Chapter 5

Results and Discussions

In this chapter, we discuss the experimental procedures adopted. First, we go

through how we assess the performance of object detection. After that, we dis-

cuss the implementation details, including network architectures, as well as training

and inference hyper-parameters set. Finally, we examine the obtained results both

numerically and visually.

5.1 Evaluation

Assessing the performance of object detectors is a complex task since the models

must be evaluated for both image classification (whether an object is on the im-

age) and localization (where the object appears on the image, i.e., bounding box

regression).

Moreover, typical datasets have many classes with significantly nonuniform prior

distribution over classes. Thus, a simple accuracy-based metric is not appropriate

as it will introduce biases.

Another aspect to be taken into consideration is the risk of misclassification.

Missing this information a priori leads to the necessity of introducing a “confidence

score” or “model score” associated with each bounding box prediction. This allows

to evaluate the model at different levels of confidence, i.e., to regulate the trade-off

between different types of classification error.

With these needs in mind, the mean Average Precision (mAP) [93] metric was

introduced and it is widely used to evaluate models in object detection and seg-

mentation online challenges. Before talking about the mAP, it is reasonable to

understand the precision and recall concepts of a classifier and then discuss about

Average Precision (AP) [93]. Before all of that, we need to consider the Intersection

over Union (IoU) concept applied in object localization evaluation.
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i.e., how accurate the predictions are. The closer to 1.0 the precision score is, the

more probable the detector output is correct.

The recall R, also referred to as sensitivity, measures the ratio of true positive

detections to the total of objects in the dataset,

R =
TP

TP + FN
=

TP

all ground truths
, (5.3)

i.e., how well it retrieves the objects in the dataset. The closer to 1.0 the recall score

is, the more probable it is that the objects in the dataset are detected.

It is worth mentioning that there is an inverse relationship between these metrics

as they inversely depend on the IoU threshold previously set.

5.1.3 (Mean) Average Precision for object detection

The procedure to compute the AP follows. For a given class, we rank all predictions

by the model score, from highest to lowest. Then, we compute what the precision

and recall would be for that output to be a considered as positive by the model. This

is equivalent to varying the model score threshold that determines what is counted

as a model-predicted positive detection of the class. Then, for calculating the AP

score, we take the precision average across all recall values, as follows:

AP =
1

card(R)

∑

R∈R

Pinterp(R), (5.4)

where, R is the set of recalls from 0 to 1 with step size Rs; card(R) is cardinality

of the set R, and; Pinterp is defined as

Pinterp(R) = max
R̃≥R

P (R̃), (5.5)

where P (R̃) is the measured precision at recall R̃. We execute this interpolation in

order to smooth the oscillations caused by small variations in the precision compu-

tations. One may view the AP as the area under the curve (AUC) of the precision-

recall graph. We approximate this computation by interpolating the precision at

each recall level by R taking the maximum precision measured for a method for

which the corresponding recall exceeds R, as shown in Equation (5.5).

In [93], the authors vary the recall from 0 to 1, with step size Rs = 0.1, so that

card(R) = 11. In this work, following [84], we employ step size Rs = 0.01, so that

card(R) = 101. By lowering Rs, we aim to better approximate the AUC of the

precision-recall graph.

One may notice that to obtain a high score, a method must have high precision
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at all recall levels – this penalizes methods which retrieve only a subset of examples

with high precision (e.g. an object in a certain position) [93]. Also, remember that

the IoU has a direct impact on AP since it determines if a detection is a TP or FP.

This computation is exemplified next. Consider a dataset with 5 instances of

a given class. We first rank all the model’s predictions for that class according

to the predicted confidence level (from the highest to the lowest), irrespective of

correctness. Table 5.1 shows an example of hypothetical predictions for those 5

instances ranked by their confidence level. The column “Correct?” shows if the

Table 5.1: Example of ranked hypothetical detections.

Rank Confidence Correct? Precision Recall

1 0.99 True 1.00 0.2
2 0.95 True 1.00 0.4
3 0.82 False 0.67 0.4
4 0.81 False 0.50 0.4
5 0.79 True 0.60 0.6
6 0.78 False 0.50 0.6
7 0.74 True 0.57 0.8
8 0.73 False 0.50 0.8
9 0.63 False 0.44 0.8
10 0.62 True 0.50 1.0

detection match the ground truth for an IoU equal or higher than a threshold of,

say 50% [93]. Let us consider the row with rank #3. The precision for that row is

the proportion of TP, P = 2/3 = 0.67; and the recall is the ratio of TP to total of

examples, R = 2/5 = 0.4. We can notice that the recall still increases as we include

more predictions (lower the confidence model threshold), but the precision goes up

and down. The Figure 5.2 shows the precision-recall curve, obtained by computing

P and R for all rows.

Again, one may view AP as the AUC of the precision-recall curve. Remember

that we approximate the computation by first smoothing the precision oscillations

according to Equation (5.5), which is better understandable in Figure 5.3, where

we give an example of computing Pinterp(0.7). The Figure 5.4 presents the curve of

Pinterp computed across all recall values. Finally, we may compute the AP of our

example, using Equation (5.4). Since we varied the recall from 0 to 1 with Rs = 0.1,
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Figure 5.2: Precision-recall curve.

Rank Confidence Correct? Precision Recall

1 0.99 True 1.00 0.2
...

...
...

...
...

6 0.78 False 0.50 0.6

7 0.74 True 0.57 0.8

8 0.73 False 0.50 0.8

9 0.63 False 0.44 0.8

10 0.62 True 0.50 1.0

R = 0.7

Figure 5.3: Example of computing Pinterp. In this case, Pinterp(0.7) = 0.57.

card(R) = 11.

AP =
1

11

(

Pinterp(0.0) + Pinterp(0.1) + ...+ Pinterp(1.0)

)

=

=
1

11

(

1.00 + 1.00 + 1.00 + 1.00 + 1.00 + 0.60 + 0.60 + 0.57 + 0.57 + 0.50 + 0.50

)

=

= 0.7582.
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Figure 5.4: Precision-recall curve with Pinterp.
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So far, we have defined the AP and seen the impact of the IoU threshold in its

computation. We may now calculate the mAP by computing the AP for all the M

classes in the dataset and taking the average over them and/or IoU thresholds, as

follows:

mAP =
1

M

∑

m∈M

APm, (5.6)

where APm is the Average Precision computed at each class and/or IoU threshold

m. Depending on the competition this procedure of computing the mAP may differ.

In the next section we discuss two famous online object detections competitions.

5.1.4 Online challenges

The PASCAL Visual Object Classes (VOC) is a dataset for object detection [93]. In

this challenge, a prediction is considered a TP if IoU ≥ 0.5. In the case of multiple

detections of the same object, it counts the first one as a positive and others as neg-

atives. So, it is the responsibility of the competitor to deal with multiple detections

for the same object. The mAP in PASCAL VOC is calculated by computing the

AP as discussed previously, considering IoU ≥ 0.5, and averaging over all 20 object

categories in the dataset.

Latest works [84], tend to report results for the Microsoft Common Objects in

Context (MSCOCO) dataset [95] only. There are 12 metrics to assess the perfor-

mance of an object detector on MSCOCO. Nevertheless, we only focus on the 6

metrics based on AP. The primary challenge metric for this competition averages

AP for IoU from 0.5 to 0.95 with a step size of 0.05 (AP at [0.5 : 0.05 : 0.95]).

By averaging over the higher IoU thresholds instead of only considering one more

tolerant threshold, say IoU ≥ 0.5, tends to reward detectors with better localiza-

tion. Other two MSCOCO challenge metrics consider only a single IoU threshold,

one IoU ≥ 0.5 (just like in PASCAL VOC) and another one IoU ≥ 0.75. For the

MSCOCO challenge, the AP is averaged over all 80 object categories to compute

mAP.

In MSCOCO dataset 41% of objects are considered small (area < 322 pixels),

34% medium (322 < area < 962), and 24% large object (area > 962) [95]. The object

size affects the model accuracy substantially [93]. In [84, 93], it is possible to observe

the performance of the methods increasing as object size increases. The MSCOCO

challenge presents three metrics which considers objects size: mAPS, mAPM, mAPL,

in order to evaluate the detections for small, medium and large objects areas. For

those metrics, detections of objects with an area outside of a determined threshold

are unconsidered. The area is computed as the number of pixels of the ground truth

bounding box.
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From now on, unless otherwise noted, the (m)AP is averaged over the multiple

IoU values [0.50 : 0.05 : 0.95], for simplicity. We summarize the MSCOCO metrics

based on AP in Table 5.2.

Table 5.2: Summary of MSCOCO metrics based on AP.

Metric Description

mAP mAP at IoU at 0.5 : 0.05 : 0.95
mAP50 mAP at IoU ≥ 0.50
mAP75 mAP at IoU ≥ 0.75

mAPS mAP for small objects (area < 322)
mAPM mAP for medium objects (322 < area < 962)
mAPL mAP for large objects (area > 962)

5.2 Implementation details

Next, we discuss about the implementation details including network architectures

and hyper-parameters used on training and test phases. We use the mask R-CNN

benchmark implementation available under MIT-license [96]. It is worth mentioning

that we do not tune any hyper-parameter since we do not have a validation set. All

of them were chosen based on [84], and taking into account the characteristics of

the dataset used in our experiments.

The experiments were performed in a machine equipped with 4 GTX 1080 GPUs,

64GB DDR4 2133MHz of RAM, IntelTM Core i7 6850-K 3.6 GHz processor, and

Ubuntu 16.04 as the operational system.

5.2.1 Dataset

Since the MBG dataset described in Section 3.3 is still being labeled, we use the

publicly available CEFET dataset1 to train and evaluate our models. Again, the

train-test split of this dataset is included in the annotation files. In the CEFET

dataset, each video is cut into several parts. Two parts of the same video, for

example, appear one in the training set and the other in the test set. As we are

using an approach based on isolated images instead of video, this split may facilitate

the task of our detector since in two takes of the same video we have the same

background and objects placed at the same place. Therefore, in this work, we

adopted a train-test split based on the videos i.e., all the parts of a video are either

in train or test set. Having split the videos, we extract images every 30 frames.

1
from: https://drive.google.com/open?id=1tDOVdb_vALUnD_cY3lQf0ggoiM1F63Jl.
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In total, there are 419 images, containing 374 tires, for training and 144 images,

containing 449 tires, for test.

Although we do not have the ground truth bounding boxes for the MBG dataset

yet, we run the videos through our trained models and visually analyze some of the

obtained results.

5.2.2 Network architectures

We instantiate Faster R-CNN with different network architectures. We define the

Faster R-CNN as composed of two parts: (i) the network backbone: the convolu-

tional network architecture (e.g. VGG [89], ResNet [97]) responsible for the feature

extraction task over images; and (ii) the network head: responsible for image clas-

sification and bounding box regression tasks [84].

We use the network depth (number of stacked layers) nomenclature to denote the

backbone architecture. We perform experiments by using ResNet [97] with depth of

50 and 101. Following the original implementation of Faster R-CNN with ResNets,

we extract features from the final convolutional layer of 4th stage, which we call

C4. This is widely used in the literature [86, 97, 98]. We denote this backbone by

R-< 50, 101 >-C4. The network head follows the architectures presented in Faster

R-CNN [76].

5.2.3 Training and inference

During training the positive samples are the RoIs that has an IoU ≥ 0.5 with the

ground truth and all other RoIs are considered as negative samples, as in [82]. We

adopt image-centric training [82]. We resize the images, so that the shorter edge

is not greater than 800 pixels resolution, while keeping the aspect ratio [84]. Our

mini-batch has 4 images (we train on 2 GPUs, 2 images per GPU). From each image,

we sample N = 64 RoIs with 1:3 ratio of positive to negatives [76, 82]. We train our

models for 18k iterations, with learning rate of 0.005 which is decreased by 10 at

the 12k and 16k iterations. We use weight decay of 0.0001 and momentum of 0.9.

We use RPN anchors at 5 scales (32, 64, 128, 256, and 512) and 3 aspect ratios

(1:2, 1:1, and 2:1) with respect to the resized images input [99].

We set number of proposals of RPN ouput to 600. These boxes highly overlap.

In order to reduce the redundancy caused by these overlaps, we use an IoU threshold

for NMS at 0.7 and keep only the top-50 ranked proposals, based on cls score (see

Section 4.4.1), for Fast R-CNN train [76].

We perform batch inference using 2 GPUs and 4 images per batch. We set

the number of proposals as 300, run predictions on those, and suppress ambiguous

detections by applying NMS [100] at IoU=0.5.
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5.3 Results

In this section, we analyze our results both quantitatively and qualitatively. For the

first one, we plot the precision-recall curve for results obtained from the test set.

Also, we summarize these curves into single numbers as discussed in Section 5.1.

Moreover, we make a visual analysis of our results by looking at the detection

outputs from our models.

5.3.1 Quantitative results

It took about 2 h to train the models with R-50-C4 backbone while the models with

R-101-C4 took about 3.5 h. For inference, the models with R-50-C4 backbone took

about 90 ms per image against 140 ms for R-101-C4.

The Table 5.3 shows the result for the CEFET dataset. We report the mAP

(averaged over multiple IoUs), mAP50, mAP75, mAPM, mAPL metrics, summarized

in Table 5.2. We can notice an improvement of almost 5 points in mAP by only

adopting a random horizontal flip, with probability of 50%, as data augmentation

strategy in R-50-C4 backbone. Except mentioned otherwise, we keep this data

augmentation method for the other experiments.

We also observe that Faster R-CNN with R-101-C4 backbone obtained the best

result. This is due to deeper networks being better feature extractors. While deeper

networks are more prone to overfitting due to the larger number of parameters, we

did not observe any overfitting in our training.

We also evaluate the impact of object size in the results. As expected, we notice

better results for large objects than for medium objects. Since we have no objects

with area < 322 in the CEFET dataset, mAPS does not apply.

Moreover, we plot the precision-recall curve for the trained model with R-101-C4

backbone (Figure 5.5) at IoU varying from 0.5 to 0.95 with 0.05 step. As expected,

the higher the IoU threshold is, the worse the results are. That happens because

as we increase the IoU threshold we only accept more accurate detections as TP,

as a consequence, the precision and recall drops drastically. We can observe that

Table 5.3: Main results for CEFET dataset.

backbone mAP mAP50 mAP75 mAPM mAPL

train
Faster R-CNN (no aug.) R-50-C4 89.86 90.19 90.19 86.15 92.16
Faster R-CNN R-50-C4 89.11 89.84 89.84 87.32 90.34
Faster R-CNN R-101-C4 88.95 89.48 89.48 87.52 91.02

test
Faster R-CNN (no aug.) R-50-C4 43.81 62.25 53.64 34.46 59.56
Faster R-CNN R-50-C4 47.38 64.16 57.70 38.42 61.85
Faster R-CNN R-101-C4 49.31 66.68 62.61 39.46 65.21
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we still can achieve satisfactory results at IoU up to 0.75 from which we achieve

precision higher than 0.9 for all models. Unfortunately, all models do not achieve

high precisions for high recalls. By analyzing the Equation (5.3), this result may be

due to high rate of FN in our results.

We show Figures 5.6 and 5.7 for better analyzing the models at single IoU thresh-

olds. As can be notice, R-101-C4 keeps higher precisions for higher recalls if com-

pared to models with R-50-C4 backbone.
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Figure 5.5: Precision-recall curve for R-101-C4 at various IoUs.
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Figure 5.6: Precision-recall curve at IoU = 0.50.
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Figure 5.7: Precision-recall curve at IoU = 0.75.
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5.3.2 Visual analysis

In this section, we discuss some visual results by analyzing the detections in the

images. We try to associate the visualization with the numerical results obtained

in the previous section. To do so, we plot the ground truth bounding boxes in blue

and overlay the models detection in red, along with the label and confidence scores.

As mentioned, the recall is low for all models, which may be due to high rate

of FN in our results. By looking at an example in Figure 5.8, one may notice that

there are many hard-to-detect tires in the dataset, even for humans. In this image

none of the models were capable to detect any tire.

Figure 5.8: Hard example.

Another interesting fact can be observed in Figure 5.9 where the same tire (the

rightmost one) was not detected by the R-50-C4 model without data augmentation;

detected with a low confidence score (0.28) by the model with R-50-C4, using data

augmentation; and detected with a high confidence score (1.00) by the model with

R-101-C4, also using data augmentation. All models found the leftmost tire with

the same confidence score and none of them found the tire at the top. Following

this, we can observe a similar case in Figure 5.10, where both models with R-50-C4

were not capable of finding the tire, while the model with R-101-C4 detected it with

a high confidence score (0.97).

In Figure 5.11, we observe some case of false positives. For the same image,

only the model with R-50-C4 backbone and data augmentation outputs the correct

detections. The other two models output one FP each. The R-50-C4 (no aug.)

wrongly outputs a tire with low confidence score (0.05) between two true tires;

while the R-101-C4 predicted the yellow garbage bin as a tire with high confidence

score (1.00).
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(a) R-50-C4 (no aug.).

(b) R-50-C4.

(c) R-101-C4.

Figure 5.9: Detection improvement over the models (cropped images).

(a) R-50-C4 (no aug.). (b) R-50-C4.

(c) R-101-C4.

Figure 5.10: Another detection improvement over the models (cropped images).

In Figure 5.12, all models could find almost all tires except for the one with

high level of occlusion (the very middle one, under all tires). That tire is hard to
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be found even for humans. Besides, the dataset does not have many occlusions

examples, which makes detection of such cases even harder.

In Figure 5.13 all models detect, with a high confidence score (1.00), a tire that

had not been annotated in the dataset. Although is has been correctly detect, it

was counted as a FP.

Even tough our models were trained using a small dataset, they were capable

to detect tires in the MBG dataset, as depicted in Figure 5.14. However, they also

detected a lot of false positives, as shown in Figure 5.15.

5.4 Conclusions

In this chapter we apply deep-learning based models to detect potential mosquito

breeding sites, particularly tires. We have seen that deeper models achieved bet-

ter results. Some further adjustments in the model can improve even more them.

Nevertheless, the obtained results have shown promising and that resulting mod-

els trained with CEFET dataset may be useful in detecting potential mosquitoes

breeding sites.
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(a) R-50-C4 (no aug.).

(b) R-50-C4.

(c) R-101-C4.

Figure 5.11: Some false positives cases.
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(a) R-50-C4 (no aug.).

(b) R-50-C4.

(c) R-101-C4.

Figure 5.12: High occlusion example.
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Figure 5.13: Wrong false positive.

Figure 5.14: Tires from the MBG dataset detected by the models trained using
CEFET dataset (cropped images).
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Figure 5.15: Example of objects in the MBG dataset missclassified as tires by the
models trained using CEFET dataset (cropped images).
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Chapter 6

Conclusions and Future Works

In this work, we started by studying the Aedes aegypti, including its biological

aspects, the transmitted diseases, and ground sites. We noticed that even though

the number of cases of dengue, zika and chikungunya has dropped last year, it is still

high. Hence, we proposed a system to automatically detect potential Aedes aegypti

breeding grounds in order to help health agents to combat its reproduction.

We described the problem of automatic detection of mosquito foci by using com-

puter vision methods. This included a literature review of similar works that use

machine learning techniques for this purpose. By the end of this study, we noticed

the need for creating a new dataset to train models capable of automatically detect-

ing mosquito sites. Therefore, a new dataset is proposed. In order to collect these

data, we used a UAV, to acquire videos with several containers that accumulate

clean water in various settings, covering a wide geographic area. Before record-

ing, the camera parameters were manually adjusted, and a calibration procedure

was performed. After acquired and rectified, the videos are manually annotated

with the Zframer software, allowing to train and test different algorithms for the

application of interest.

We then review some object detection algorithms present in the literature. From

the classical ones that use sliding windows; up to the most recent ones, which em-

ploys deep learning. We performed some experiments using one of the state-of-the-

art algorithms for object detection trained with a small dataset. The Faster R-CNN

trained with CEFET dataset presented the best result of mAP = 66.68, at IoU =

0.50. The results are considered as promising, indicating that we can employ this

methodology to help the government and other institutions in the combat of the

Aedes aegypti .

As future work, we first intend to expand our dataset by recording new videos

at other locations, including more realistic areas, and annotating the maximum

possible number of potential mosquito sites. Also, we would like to employ the

trained models in real scenarios and analyze their performance. Moreover, we intend
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to employ shallower feature extractors such as ResNet-18 and ResNet-34. We also

intend to exploit and compare other detectors and techniques.

Furthermore, in the future would like to create a final product that can be used

as a decision-making support for organizations dedicated to the combat of the Aedes

aegypti. Our aim is to employ the system for flying over areas and generate heat

maps highlighting the places with more risk. We can do so by allying the image

detections with the drone telemetry data.
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