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“So the problem is not so much

to see what nobody has yet seen,

as to think what nobody has yet

thought concerning that which

everybody sees.”

(Arthur Schopenhauer)
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MODELAGEM E SIMULAÇÃO ESTOCÁSTICA DA VIBRAÇÃO ACOPLADA

AXIAL-TORCIONAL DE UMA COLUNA DE PERFURAÇÃO

Daniel de Moraes Lobo

Março/2019

Orientadores: Thiago Gamboa Ritto

Daniel Alves Castello

Programa: Engenharia Mecânica

Esta dissertação investiga a vibração axial-torcional acoplada de uma coluna de

perfuração na presença de incertezas litológicas. Este trabalho tem três objetivos

principais: (i) realizar uma investigação numérica determińıstica através de um mod-

elo acoplado axial-torsional cont́ınuo, considerando as não-linearidades geométricas

e a interação broca-rocha; (ii) propor um novo modelo estocástico para descrever

incertezas na interação bit-rock usando as equações diferenciais estocásticas de Itô

e; (iii) analisar a influência dos principais parâmetros na resposta estocástica com-

parando as estat́ısticas obtidas a partir dos resultados. O modelo cont́ınuo é dis-

cretizado por meio do método dos elementos finitos, considerando as não-linearidades

geométricas e um modelo de interação broca-rocha que é qualitativamente validado

com resultados experimentais. Os resultados determińısticos mostraram que as não

linearidades geométricas não afetaram a resposta e, portanto, são ignoradas nas

análises subsequentes. O modelo é reduzido usando a base modal e os resultados

são analisados. Em seguida, um modelo estocástico é constrúıdo para descrever a

heterogeneidade litológica. Este modelo considera dois processos estocásticos: pro-

cesso de Ornstein-Uhlenbeck e um novo processo acoplado. O novo processo é capaz

de descrever melhor a f́ısica quando ocorre stick-slip severo. As estat́ısticas da re-

sposta mostram que a heterogeneidade na formação rochosa induz vibrações mais

severas na broca. Além disso, as diferenças entre os processos são pequenas quando

a broca não trava, mas o novo processo resulta em vibrações mais severas quando

há peŕıodos de travamento da broca.
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This dissertation investigates the coupled axial-torsional vibration of drill-strings

in the presence of lithology uncertainties. This work has three main objectives:

(i) to perform a deterministic numerical investigation through a continuous axial-

torsional coupled model, considering the geometric nonlinearities and the bit-rock

interaction; (ii) to propose a novel stochastic model to describe uncertainties on bit-

rock interaction by using Itô stochastic differential equations, and; (iii) to analyze the

influence of the main parameters on stochastic response by comparing the statistics

obtained from the results. The continuous model is discretized by means of the finite

element method, considering the geometric nonlinearities and a bit-rock interaction

model that is qualitatively validated with experimental results. The deterministic

results showed that the geometric nonlinearities did not affect the response and, thus,

are ignored in the subsequent analyses. The model is reduced using the modal basis

and the results are analyzed. Then, a stochastic model is constructed to describe

lithology heterogeneity. This model considers two stochastic processes: Ornstein-

Uhlenbeck process and a novel coupled process. The novel process is capable of

describing better the physics when severe stick-slip happens. The statistics of the

response show that the heterogeneity on rock formation induces severer vibrations

at the bit. Also, the differences between the processes are small when bit does not

stick, but the novel process causes worse vibrations when bit sticks.
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Chapter 1

Introduction

1.1 Motivation

Vibrations are unavoidable in operations such as drilling because of the nature of

the external forces acting on the drill-string, especially the one generated by the

cutting action of the drill-bit that has many uncertainties. The new scenario faced

by drilling companies worsen the vibrations experienced by drill-strings due to its

longer length, harder formations, bore-hole instabilities and so on. The vibrations

and shocks steal energy from the drilling operation, reducing the amount of available

energy used to drill the rock and thus reducing the efficiency. The worst problem

related to vibrations is the failure of downhole equipment.

Downhole failures of the drill-string can result in a complete separation of the

drill-string or the bottom hole assembly (BHA). In extreme cases, the recovery of the

remaining equipment is not possible through an operation commonly called fishing.

When it occurs, it is necessary to drill a hole parallel to the section occupied by the

abandoned drill-string. This operation is called sidetrack and can take from 2 to 12

days to complete and typically costs on the order of one million dollars (data from

2007, according to [1]). The cost of detecting and avoiding the final separation is

dramatically lower. The detection can be done analyzing subtle changes in pressure

and flow rate, for example [1].

Due to modeling uncertainties and variations in environmental factors, like lithol-

ogy, it is a good idea to consider the interactions of the drill-string with the borehole

within a stochastic framework. The consideration of such uncertainties can give rise

to more realistic operation ranges with risk evaluation. Therefore, stochastic analy-

sis of drill-string vibration can play an important role in achieving a more efficient

and safer operation.
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1.2 Dissertation objective and organization

The objectives of this work are: (i) to perform a deterministic numerical investi-

gation through a continuous axial-torsional coupled model which is discretized by

means of the finite element method that considers the bit-rock interaction and geo-

metric nonlinearities. This investigation includes the determination of the influence

of geometric nonlinearities on response, the study of vibration modes, the analysis

of deterministic response for a set of parameters and the parametric analysis to

evaluate the influence of the main parameters on system’s response; (ii) to propose

a novel stochastic model to describe uncertainties on bit-rock interaction by using

Itô stochastic differential equations, and; (iii) to analyze the influence of the main

parameters on stochastic response by comparing the statistics obtained from the

results.

In Chapter 1, a brief introduction about drilling operation is presented. In Chap-

ter 2, the most relevant works in literature are reviewed under three points of view:

1 - Drill-string modeling, control and data analysis; 2 - Bit-rock interaction mod-

els and; 3 - Uncertainty quantification in drill-string vibration. In Chapter 3, the

deterministic investigation is presented, including the mathematical model devel-

opment, hypothesis made and the deterministic results which include the vibration

modes and drill-string response. Chapter 4 is about the stochastic investigation. In

this chapter, two stochastic processes are proposed and the stochastic formulation

is presented. The stochastic results are also presented, including the stochastic pro-

cesses generation, the stochastic response of drill-string and a parametric analysis.

Chapter 5 concludes this work and discuss some possible future works.

In Appendix A, a validation of the bit-rock interaction model considered in

this work is performed based on experimental results. In Appendix B, the subject

of stochastic differential equations is discussed. In Appendix C, the differential

equations governing the first and seconds moments of linear stochastic differential

equations is derived. In Appendix D, the numerical procedure used to solve the

stochastic system of equations is explained.

1.3 Overview of a drilling rig

The production of oil and gas out of fossil fuel reservoirs demands a rotary machine

called drilling rig which is used to create holes in earth subsurface. The term rig

refers to the complex set of equipment used to penetrate the surface. A common

drilling rig is shown in Fig.1.1 and it is made of the following main systems: Drill-

string; Hoisting system; Top rotary system; and Drilling mud. Furthermore, the

drilling rig involves equipment pertaining to additional functions, such as power
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generators and blow-out preventer (BOP).

Figure 1.1: A schematic view of a drilling rig. Reproduced from LEINE and VAN
CAMPEN [2].

Drill-strings of more than 9 km are used today to reach ultra-deep wells. Such

systems are slender with a diameter-to-length ratio much less than a human hair.

The majority of drill-string is made of slender tubes called drill-pipes, responsible for

transmitting the rotational motion from the top to the hole bottom and for conduct-

ing the drilling mud to the bit. The lower part of the drill-string is called Bottom

Hole Assembly (BHA) and comprises of: drill collars which are heavy pipes responsi-

ble for applying the Weight-on-bit (WOB); a Drill-bit that is the rock-cutting tool in

charge of drilling the rock formation; stabilizers designed to minimize lateral motion

during drilling; heavyweight drill pipe (HWDP) used to provide a flexible transition

between drill collars and drill-pipe in order to reduce fatigue failures; and a variety

of equipments used to many purposes like measurement (MWD tools), deviation

control, shocking subs, among others.

The hoisting system is responsible for controlling the hook load. This force acts

on the top of drill-string in order to hang the drill-string weight. This way, the

majority of drill-string is held in tension, while the remainder is intentionally placed

in compression to provide the necessary weight-on-bit to drill the rock. Horizontal

drilling requires a different approach where the entire horizontal portion of the drill-

string is put in compression.

The energy to drive the drill-bit is generated by the top rotary system that is

mostly an electrical motor. This system can be of two types: a rotary table or a top
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drive.

A substance called drilling mud is injected at the top of drill-string and it is

conducted to the bit. After it achieves the bottom of drill-string, it returns through

the annulus between the drill-string and the borehole wall. The mud usually consists

of water or oil with viscosifiers and weight materials. This mud is used to cool down

and lubricate the bit and also to provide the pressure in the borehole to assure its

stability, among other functionalities.

1.4 Drilling operation

The drilling process is steered by three major things:

� Hook Load: axial force reaction at the top of drill-string;

� Rotary Speed: rotational speed provided by the top rotary system; and

� Flow Rate: the volume of pumped drilling mud per time.

Observations are also important to indicate the drilling progress and its states.

These observations are interpreted by drilling engineers in order to take important

decisions. The three common observations are:

� Rate of Penetration (ROP): the axial speed of the top of drill-string gives a

measurement of the rate rock is penetrated.

� Torque at the Top Rotary System: the current consumed by the electric motor

used in the top rotary system gives a direct measure of the torque applied to

the drill-string, in the case of a DC motor; and

� Pressure drop: the pressure drop in flowline from the pumps to the top of

drill-string.

Some typical values for the parameters in drilling operations can be useful to

understand drilling dynamics. The weight-on-bit generally ranges from 0 to 250 kN.

At the surface, the hook load can achieve 3000 kN. Torque on bit can range from

0.5 to 10 kNm while the torque applied to drill-string at the surface can achieve 70

kNm due to borehole interactions. Rotational speeds range from 50 to 200 rpm and

rates of penetration vary from 1 to 50 m/h. [1]
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1.5 Vibrations in drill-strings

Vibrations are usually considered detrimental to the drilling process, except for

some specific cases where vibration is desired, like percussive drilling for example.

Vibrations often induce premature wear and damages to drill-string. It can also

increase the chances of fatigue failures. The vibration can be induced by interactions

with the environment or be self-induced. Many other problems can result from

vibrations. It can interfere or even damage MWD tools, induce wellbore instabilities

reducing direction control and reduce the ROP because of energy losses due to

vibration and due to the friction along drill-string.

Drill-string vibrations are commonly classified according to the direction they

occur. Three main types of vibration are identified, as depicted in Fig. 1.2: axial,

lateral and torsional. A brief definition is given for each of them:

� Axial vibration: Drill-string moves along its axis of rotation. The critical

situation is called bit-bounce and it occurs when bit impacts the formation

and gets loose at high speed. Typical frequencies are 1–10 Hz [1].

� Lateral vibration: Drill-string moves laterally to its rotation axis in the annular

gap. The critical situation is called whirl and it occurs when the center of

rotation moves laterally as it rotates. The whirl can be forward (section rotates

around borehole in the same direction drill-string rotates around its own axis),

backward (section rotates around borehole in the opposite direction drill-string

rotates around its own axis) or chaotic (section impacts borehole wall in a

chaotic manner). Typical Frequencies are 0.5 to tens of Hz [1].

� Torsional vibration: Drill-string rotates irregularly downhole while it rotates at

an almost constant speed on the surface. The most harmful torsional vibration

is called stick-slip. In this mode, the bit becomes stuck in rock formation while

the top rotary system continues to rotate. When the energy stored in drill-

string becomes high enough, drill-bit is released and achieves high speeds,

reaching even 10 times top rotary speed. Typical frequencies are 0.05–0.5 Hz

[1].

In general, the three modes explained above occur simultaneously while drilling.

It occurs because of the coupling between them through the interactions with bore-

hole and the geometric coupling. Despite this, a fully coupled model with all bound-

ary conditions usually results in high computational costs and lack of clarity about

parameters influence.

In order to reduce the presence of harmful vibration during drilling, the concept

of an optimum zone is used to define BHA components and drilling parameters. This
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Figure 1.2: Drill-string vibration modes.

concept consists of a map that indicates where vibration is more likely to occur. In

this map, the central zone is called the optimum zone because vibrations are unlikely

to occur inside it. An example of an optimum zone is given in Fig.1.3.

Figure 1.3: An example of optimum zone. [3]

1.5.1 Axial vibration

Axial vibrations can be detrimental or beneficial to drilling operation depending on

how they affect WOB and thus ROP. They are beneficial when using percussive

drilling, for example. When it is detrimental, they exhibit large amplitudes due to

resonance, the bit lifts off from the formation and drilling process becomes erratic,
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and thus reducing ROP. MWD tools are capable of detecting a wide and frequent

WOB fluctuation. In extreme cases, WOB rapidly vanishes periodically. It usually

means that bit lost contact with the formation and this phenomenon is called bit-

bounce.

Two primary causes of axial vibration were identified in the literature. The first

is due to the irregularities on formation surface caused by the indentation pattern

caused by tricone bits. The second is related to the frequency tuning of mud pressure

with the axial frequencies. Bit-bounce is a harmful vibration and can result in low

ROP, downhole equipment failure and even well damage.

1.5.2 Torsional vibration

Drill-string torsional vibration remained undetected for a long time. It has been

suggested that the large inertia of rotary table caused this, as it attenuates torsional

vibrations traveling upward. However, large amplitude variations were observed in

applied torque. Today, downhole measurements clearly show that the bit does not

have a steady rotational motion despite the constant speed applied by the top rotary

system. Actually, the drill-bit angular motion experiences large fluctuation in time.

This difference between the motion of drill-bit and the top of drill-string is due to

the large torsional flexibility of the structure.

Several factors can make drill-bit to stop, like a sudden WOB increase or environ-

mental causes as a tight hole, significant drag, severe dog-legs and key-seatings. As

drill-bit gets stuck, drill-string continues to rotate and stores torsional energy. When

the available torque reaches a level that bit can no longer resist, the bit comes loose

and rotates at a very high speed that can reach ten times the rotary table speed.

When bit rotates, it releases the energy that was trapped in drill-string and the

rotational speed decreases. Then, drill-bit sticks again and the cycle repeats. This

phenomenon is called stick-slip and happens during as much as 50% of drilling time

[4].

Although the term stick-slip is formally used to describe only the situation in

which bit stops completely, this term is also used by the industry to refer to all the

severe torsional vibrations that occur during drilling operations, even when bit does

not stops completely. This industry jargon is going to be used in this dissertation.

The stick-slip cause is usually attributed to the relationship of torque on bit

(TOB) with drill-bit rotational speed. It is usually taken within modeling perspec-

tives by mean of dry-friction models because of the similarity between the behavior

of the two phenomena. It has been also suggested that stick-slip only occurs when

drill-string is longer than a critical length and that the severity of stick-slip increases

with the length. It makes sense because drill-string becomes more flexible. Many
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works on this area [2, 4–6] also stated that stick-slip disappears above a critical

speed.

This type of vibration is very harmful to drilling operation as it can decrease the

ROP by 25% [7]. Other problems can also be originated from this kind of vibration

[8]: drill-pipe fatigue problems; drill-string components failure; wellbore instability

and; bit damage.

Several remedies were proposed in the last years to suppress stick-slip vibrations.

These include increase drill-string stiffness, increase rotational speed, decrease WOB,

increase BHA inertia, and reduce the difference between static and dynamic friction

coefficients [6]. MWD tools are now capable of giving real-time information about

downhole status, although it is still not possible to transmit real-time measurement

data. The information about downhole status permits the control of rotational

behavior of drilling assembly by varying WOB and rotational speed, modifying mud

properties and changing the drill-bit or BHA composition [7]. A different approach

was also suggested regarding the control of the torque oscillations in the top rotary

system. This method claimed to damp torsional waves traveling up drill-string in

order to suppress stick-slip oscillations [9].

1.5.3 Lateral vibration

Lateral vibrations are also called as transverse, bending, or flexural vibrations. They

are widely recognized as a major cause of drill-string and BHA failures. Despite this,

lateral vibration of drill-strings remained unknown for a long time because most of

this vibration does not travel to the surface. It is due to the stabilizers that suppress

most of the lateral motion where they are placed. Thus, lateral vibrations rapidly

attenuate while propagating towards the surface. Therefore, it is very difficult to

detect it only by surface measurements. Advances in MWD tools helped to identify

this kind of vibration and its impact on equipment failures. Despite the damaging

nature of this vibration, it can be beneficial in directional drilling in order to control

the direction of drill-bit and increase ROP [7].

The major causes of lateral vibrations are the contact and friction at

borehole/drill-string and bit/formation interaction, imbalance, eccentricity and ini-

tial curvature in drill collar section. Consequences of this kind of vibration are

reduced ROP and early failure of downhole equipment. Also, it contributes to drill-

collar wear and connection failures. Furthermore, it can initiate severe and repeated

contacts with borehole wall resulting in surface abrasion of drilling equipment, de-

terioration of the well condition and damaging borehole wall. Finally, it can affect

drilling direction and initiate other modes of vibration (axial and torsional).

During drilling, most of BHA operates in compression, which facilitates buckling
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and whirling to occur. An important subset of lateral vibration is the BHA whirl.

Whirl is the condition when the center of rotation of a drill-collar section is not

located in the center of rotation of drill-string that is typically on the center of

the hole. BHA whirl is illustratively shown in Fig. 1.4 and it can be classified into

forward, backward or chaotic.

Figure 1.4: BHA whirl. Red dot represents stationary point on pipe section to
describe its rotation. Dashed circle represents the whirling motion. Adopted from
[10].

Forward whirl occurs when drill-collar section rotates around borehole in the

same direction as drill-string is rotated by the top rotary system. In this regime,

the same side of drill-collar may be in constant contact with the borehole wall, re-

sulting in flat-spots on collar joints. Forward whirl may develop in common drilling

operations and it is usually caused by out-of-balance mass but unlikely to occur if

eccentricity is less than stabilizer clearance [11]. Furthermore, depending on down-

hole conditions and drilling parameters, forward synchronous whirl can evolve to

backward whirl [7].

The whirl is classified as backward if the drill-collars rotates around borehole

in the opposite direction as drill-string is rotated by the top rotary system. It can

be originated from the friction between stabilizers and borehole wall. Backward

whirl can achieve rates much higher than rotary speed, resulting in fatigue life

shortening. It occurs because backward whirl induces fluctuating bending moments

with periodically change of sign and high amplitudes.

Extreme cases of non-synchronous whirl are called chaotic whirl. In this case,

the motion is irregular and depends strongly on initial conditions. This motion is
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induced by nonlinear fluid forces, stabilizer clearance and borehole wall interactions

[7]. In the presence of chaotic whirl, drill-collar sections may impact the borehole

wall many times. Thus, it can severely damage downhole equipment.
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Chapter 2

Literature review

A literature review of the most important contributions for this research is presented

in this chapter. The first topic is about the dynamical model of the drill-string and

the control strategies proposed to reduce vibrations. A very important subject con-

cerning drill-string modeling is the bit-rock interaction. Because of this, a dedicated

section in the literature review is dedicated to this part of the model. Next, the un-

certainty quantification in drill-string vibrations is discussed because of the random

nature of external forces, especially those related to the interaction with the well-

bore. At last, the experimental studies regarding drill-string vibrations are outlined

and discussed.

2.1 Drill-string modeling and control

The vibration of drill-strings was first addressed in 1960 when BAILEY and FINNIE

[12] performed the first modal analysis of a continuous system with longitudinal and

torsional vibrations. The authors presented an analytical study and calculated the

natural frequencies using a graphical method. The numerical results were compared

to experimental data obtained in 1960 by FINNIE and BAILEY [13].

Eight years later, in 1968, DAREING and LIVESAY [14] proposed a model to

calculate longitudinal and angular vibrations that is very similar to [12]. The main

difference of the adopted model is the inclusion of a linear viscous damping along

the drill-string. The solution was compared to field data and the model appeared

to predict reasonably well the vibration of drill-strings under those conditions. For

validation, only the frequency response was compared.

In 1982, BELOKOBYL and PROKOPOV [15] introduced an analytical analysis

of the torsional vibration of drill-strings. The authors proposed a 1-DOF model

considering a concentrated inertia in the lower segment and a linear torsional spring

between the rotary table and the inertia. The bit-rock interaction was included as
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a drag torque and the torsional vibration was analyzed as a friction-induced self-

excited vibration.

In 1986, HALSEY et al. [16] presented an analytical method for calculating

the torsional natural frequencies in a drill-string. The drill-string was modeled as

a continuous system like in [14] but the friction torque along the drill-string was

modeled as a constant torque plus a viscous torque. The bit-rock interaction was

neglected assuming that it has no influence on the natural frequencies. The authors

compared the frequencies calculated with the ones obtained experimentally in a

1000m deep, nearly vertical well. A correction factor in the wavenumber was used to

incorporate the drillpipe joints effect into the calculation. The calculated frequencies

were in good agreement with the experimental data. The natural frequencies were

practically not affected by rotation rate, weight-on-bit and damping effects.

In 1987, DAWSON et al. [6] used a 1-DOF model with a linear behavior in the

slip phase in friction model. They analyzed experimental data obtained in a direc-

tional deep well and have observed fluctuations in the torque at the driving system in

the presence of stick-slip. The data also suggested an increase in magnitude and fre-

quency of the vibration when the rotational speed is higher. The authors concluded

that stick-slip oscillations disappear above a certain critical rotary speed. They also

proposed a reduction in the static friction as a solution for this phenomenon.

One year later (1988), KYLLINGSTAD and HALSEY [17] used the same model

as DAWSON et al. [6] but neglecting the viscous effect on TOB. The analytical

solution was formulated for stick-slip motion. The authors claimed that the model

describes a nonlinear self-excitation of the lowest torsional mode and that the fre-

quency of stick-slip oscillation is a bit lower than the natural pendulum frequency.

Also, the time during stick and the frequency of stick-slip are dependent on the

rotary rate. The model was validated against experimental data and they claimed

that controlling the rotary speed in a way that dampens torsional oscillations can

be a solution for stick-slip vibration.

In the same year, HALSEY et al. [9] presented the first control system to mitigate

stick-slip oscillation, called torque feedback. The system was designed to keep the

rotary speed and the torque as constant as possible. This way, it can prevent the

rotary system from being an effective reflector of torsional waves and then reduce

or prevent stick-slip oscillations. The disadvantage of this system is the additional

sensors required. Field experiments on a full-scale research drilling rig showed that

torque feedback was effective for those conditions it was tested for.

LIN and WANG [18] published two papers in 1990 and 1991 about the stick-slip

phenomenon. The authors also considered a 1-DOF torsional pendulum model as

other authors had mentioned before. They were one of the first to solve the problem

numerically in the time domain and to calibrate some constants using field data.

12



They concluded, among other things, that the amplitude of stick-slip oscillation

amplifies as the rotary speed increases but vanishes when the rotary speed reaches

a critical value.

Regarding the lateral motion, JANSEN [11] was the first to investigate drill-

string vibrations using non-linear rotor dynamics in 1991. The proposed model

considered a section of whirling drill collars with 2 DOF and took into account the

influence of drilling mud, stabilizers clearance and friction. The author considered

this model quite simple to give a quantitative description of drill collar dynamics

but the qualitative analysis was considered very helpful. The main conclusions were:

Fluid damping and stabilizer friction reduce the whirl amplitude; Fluid added mass

and stabilizer clearance reduces critical speed at which whirl amplitude is maximum,

and; instabilities can result from stabilizer clearance.

In 1992, BRETT [19] proposed a model similar to [6, 16, 17]. The differences

are that the dynamics of the rotary table is explicitly taken into account and it

allows an arbitrary relationship for the boundary condition at the bit. The solution

is presented in the time domain and no analytical closed form is presented. Three

important conclusions were presented by the author about torsional vibration: (1)

it can occur in shallow vertical holes where the friction is low; (2) it is more common

with PDC bit than with three-cone bits; and (3) it is more severe in hard rocks, at

higher WOB, lower rotary speed and duller bits.

In 1995, JANSEN and VAN DEN STEEN [20] used the same concept of HALSEY

et al. [9] of active damping stick-slip vibration with a feedback control in the drive

system. This new proposal uses only electrical variables in the feedback control

and does not need any expensive sensors. The model adopted is a simple torsional

pendulum with 2 DOF. This control resulted in a less velocity threshold value at

which stick-slip disappears.

YIGIT and CHRISTOFOROU [21] investigated the transverse vibration induced

by axial motion of drill-strings in 1996. The drill-string was modeled as a non-

rotating slender beam with a simply-supported lower part. The model also consid-

ers nonlinear coupling terms and intermittent contact between drills-string and the

wellbore wall. Only the lower part of the drill-string was considered to have trans-

verse and axial vibration because it is under compression. The upper part is under

tension and only axial vibration was considered. It was shown that the fully coupled

equations resulted in lower critical axial loads. When the axial load becomes larger

than the critical value, multiple impacts with wellbore wall are detected and the

response becomes chaotic.

In 1997, the same authors extended the model for a rotating drill-string and

they also considered a parametric excitation due to bit-rock interaction and an

unbalanced mass. In addition, a non-linear damping was included and contact with
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wellbore wall now considers the friction. Due to the non-linearities of the model, the

dynamic response becomes non-periodic and suggests a chaotic behavior. Torsional

vibrations were neglected.

TUCKER and WANG [23] proposed an integrated model for drill-string dy-

namics in 1999. The model is based on a Cosserat rod model and considers six

independent DOF: three for the location of the centroid and three related to the

dynamical state to be expressed in terms of flexural, torsional and shear strain,

together with dilation and stretch. The model also includes constitutive relations

that can describe the modes of vibration that are associated with the motion of

drill-string in straight and curved boreholes. The BHA and rotary tables are mod-

eled as mass points with rotary inertia. The objective of this article is to discuss

the stability of axisymmetric drill-string configuration in a vertical borehole under

coupled torsional, axial and lateral vibrations as well as extreme conditions of whirl.

In 1999, TUCKER and WANG [24] designed a torque feedback control as an

alternative to soft-torque using the model proposed in [9]. The two control methods

were compared and the proposed mechanism eliminated many of the volatilities

suffered by soft torque.

In 2000, CHALLAMEL [25] studied the stability of a drill-string using the direct

method of Liapounov through discrete models. At first, only the torsional motion is

considered in a 1-DOF model. Next, torsional and axial motions are coupled through

bit-rock interaction and the author concludes that stick-slip can be described ade-

quately by considering a quasi-static axial evolution instead of studying the coupled

vibration.

In 2002, LEINE and VAN CAMPEN [2] attributed stick-slip and lateral whirl

vibration to the fluid forces of the drilling mud. The model considered three degrees

of freedom: two for the lateral vibration and one for torsional. The coupling takes

place through the fluid force and contact with the borehole. Bifurcation diagrams

were calculated and analyzed. A hysteresis effect was seen in the transition between

stick-slip and lateral whirl for changes in the rotational speeds.

In 2003, TUCKER and WANG [26] extended the work done in 1999 and proposed

a rectification torque control on the bit. The authors presented a table comparing

different control strategies and apparently the bit torsional rectification presented

the best results.

In the same year, CHRISTOFOROU and YIGIT [27] proposed a fully coupled

model to describe drill-string dynamics. The coupling was done by bit/rock and

drill-string/borehole interactions as well as by geometric and dynamic nonlinearities.

The authors also proposed a feedback control to try to control stick-slip resulting

in lower critical rotational speeds. This was considered important because high

rotational speeds resulted in severe lateral vibration.
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In 2004, NAVARRO-LÓPEZ et al. [8] presented a new control strategy to sup-

press stick-slip vibration. The proposed model is discrete and has 2 torsional DOFS,

one for BHA and one for the top drive. Two methods of control are proposed: (i)

control the weight-on-bit; and (ii) introduce a shock sub in the BHA. The main

disadvantage of these methods is the necessity of real-time downhole measurements

which is very difficult due to data transfer speed and harmful environment.

Also in 2004, RICHARD et al. [28] proposed a discrete model with axial and

torsional DOF and a new bit-rock interaction model using the concepts developed

by DETOURNAY and DEFOURNY [29]. The coupling between torsional and axial

modes was done through the bit-rock interaction.

In 2005, KHULIEF and AL-NASER [30] contributed with a finite element model

for the full dynamics of drill-string. The drill-string was discretized into finite shaft

element with 12 degrees of freedom each. The model considered the gyroscopic effect,

torsional/bending inertia coupling and the effect of the gravitational force field. A

modal transformation was also used to build a reduced model. The interactions of

the drill-string with the borehole were not considered and important dynamic effects

were neglected.

In the next year, YIGIT and CHRISTOFOROU [31] simplified the model pro-

posed in [27] to consider only torsional and axial vibration. The model includes the

mutual dependence of torsional and axial motion through the bit-rock interaction

law. The objective was to study the interaction between stick-slip and bit-bounce

under varying operating conditions. The results suggested that the rotary control is

not enough to suppress vibration. Therefore, a control of the hook load is suggested

to control axial motion as well.

In 2007, KHULIEF et al. [32] included axial-bending coupling and bit-rock in-

teraction in the formulation presented in 2005. The coupling between axial and

torsional motions was also included in bit-rock interaction through the dependence

of TOB on the WOB. In this analysis, it was assumed that bit never loses contact

with the formation.

Also in this year, ZAMANIAN et al. [33] included the damping due to drilling

mud, active damping system (as the one proposed by [20]) and moment of inertia

of rotary table in the model proposed by RICHARD et al. [28]. It was concluded

that changes in the parameters introduced can affect the stability of the bit. Also,

stick-slip vibrations can be avoided by the appropriate selection of those parameters.

In the same year, SAMPAIO et al. [34] proposed a finite element model to study

the coupling of axial and torsional vibrations. The model took into account the

geometrical non-linearities in the finite element formulation. A comparison between

linear and non-linear models was performed and showed considerable differences in

quantitative and qualitative manners. Otherwise, these differences appeared only
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after a certain number of periods of stick-slip.

In 2009, GERMAY et al. [35] extended the study started in [28, 36] to include

multiple modes rather than 2 degrees of freedom. The authors based the formula-

tion on a continuum representation and discretized the problem with finite element

method. The angular velocity was considered constant at the top as in [28, 36]. The

conclusions were very similar to the ones in [28, 36] but more modes were captured

using this approach.

RITTO et al. [37] proposed, in the same year, a non-linear model using Tim-

oshenko beam theory. The equations of motions were discretized by means of the

finite element method. The model also included bit-rock interaction, fluid-structure

interaction and impacts with the borehole wall.

In 2013, LIU et al. [38] proposed a new model that takes into account torsional,

lateral and axial motion on an 8-DOF discrete model. The model also considers dry

friction, loss of contact and collisions. The time and frequency responses were as-

sessed and a bifurcation diagram was drawn to identify chaotic and periodic regimes.

In 2014, KAMEL and YIGIT [39] extended the work done in [31] by including

the hoisting system which control the axial velocity and WOB.

In 2016, HONG et al. [40] proposed the utilization of Kalman estimator to predict

downhole conditions based on surface measurements. The objective was to facilitate

the usage of active control systems used to prevent severe vibrations that are based

on downhole conditions. A lumped parameter model considering torsional motion

along the drill-string and lateral motion at drill collars was proposed.

2.2 Bit-rock interaction model

This section is devoted to discussing the bit-rock interaction models. The graphs

shown below are obtained directly from the articles mentioned. The equations were

rewritten in order to standardize the notation used in this work.

The first time bit-rock interaction was included in the drill-string model was

in 1982 by BELOKOBYL and PROKOPOV [15]. They included a drag torque at

the concentrated inertia on the bottom of drill-string. The friction was considered

as a nonlinear function of the angular velocity of the drill bit as in Eq. 2.1, where

tbit represents the torque-on-bit (TOB), θ̇bit is bit angular speed and M0, ε and

k are constants. The problem was formulated based on the well-known problem

of vibrations of a load held by a spring on an endless tape moving at a constant

velocity.

tbit(θ̇bit) = M0[1 + (ε− 1)e−kθ̇bit ] (2.1)
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In 1987, DAWSON et al. [6] also modeled the bit-rock interaction as friction

torque. They attributed stick-slip oscillations to the friction effects at the bit, more

precisely because of the difference between static and dynamic friction coefficients.

The slip phase of friction was modeled using a linear function of the bit rotational

speed. One year later, KYLLINGSTAD and HALSEY [17] modeled bit-rock interac-

tion using coulomb friction without the decaying behavior with bit rotational speed.

The law proposed in [17] was formulated as a system of equations as in Eq.2.2 where

τC and ∆τ are constants.

tbit(θ̇bit)

< τC + ∆τ, if θ̇bit = 0

= τC , if θ̇bit > 0
(2.2)

LIN and WANG [5] proposed another dry friction model to describe bit-rock

interaction. The authors pointed out that dry friction model should meet two char-

acteristics: (i) The static friction coefficient is greater than the kinetic friction coeffi-

cient, and; (ii) The friction gradually tends to a constant value as the relative speed

of two contacting bodies increases. For the authors best knowledge there was not

an accurate model that could fit these characteristics and describe bit-rock inter-

action effectively. Therefore, the authors proposed a continuous exponential law to

describe bit-rock interaction.The formulation is presented in Fig.2.1 and in Eq. 2.3

where f1, f2, γ and ε are constants.

tbit(θ̇bit) = f2 + (f1 − f2) exp(−γθ̇bit)ε (2.3)

Figure 2.1: Bit-rock interaction model proposed by LIN and WANG [5], where f(φ̇)
actually represents tbit(θ̇bit).

BRETT [19] investigate the torsional vibration using experimental data obtained

on laboratory, on a full-scale research rig and on the field with PDC bit. It was

concluded that PDC bits have the inherent characteristic of reduction of torque

with increased rotary speed. It was also concluded that the interaction is affected

by WOB, lithology and bit condition (sharp or dull). This behavior can be seen

in Fig. 2.2. This work shows that this characteristic can excite severe torsional
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vibration, even though the rotation is smooth when the bit is off bottom. The

model’s prediction was in good agreement to field data in terms of magnitude and

frequency with the bit-rock interaction law observed in the tests.

Figure 2.2: Experimental data for bit-rock interaction obtained by BRETT [19]

In 1992, DETOURNAY and DEFOURNY [29] performed a study on the me-

chanics of cutting mechanism of PDC bits. They proposed to decompose the TOB

(tbit = Tc + Tf ) and WOB (Wob = Wc + Wf ) in two terms: cutting (Tc and Wc)

and friction (Tf and Wf ). The cutting components were modeled depending on the

depth-of-cut as in Eqs. 2.4, 2.5 and 2.6. And a linear constraint (Eq. 2.7) was pro-

posed between TOB and WOB in the frictional term. The authors tested the model

against experimental data through an E-S diagram, where E represents the specific

energy (E = 2tbit/a
2δc) and S represents the drilling strength (S = Wob/aδc). It

was concluded that the model was in good agreement with experimental data be-

cause data points cluster along a line in the E-S diagram, as shown in Fig. 2.3.

The parameter u̇bit is the ROP, rb is the bit radius, ε is a constant called intrinsic

specific energy, γ is a constant related to the bit, µ is the friction coefficient at the

wearflat/rock contact and ξ is the ratio of S over E when there is no friction.

δc = 2π
u̇bit

θ̇bit
(2.4)

Tc =
1

2
εδcr

2
b (2.5)

Wc = ζεδcr
2
b (2.6)

Tf =
1

2
γµrbWf (2.7)

In 1994, PAVONE and DESPLANS [41] performed high sampling rate downhole

measurements that are fully synchronized to all other signals. The measured data

suggested that stick-slip occurs because of the relation between the torque at the

bit and rotary speed. This relationship shows that torque decreases when the ro-
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Figure 2.3: Experimental data in E-S diagram presented by DETOURNAY and
DEFOURNY [29]

tary speed increases and remains constant when rotary speed decreases, as seen in

Fig. 2.4. The author claims that is possible to simulate drill-string dynamics with a

simple model if actual friction laws are used at the bit level and along the drill-string.

Based on the experimental results, PAVONE and DESPLANS [41] proposed Eq. 2.8

for the interaction law, where φ̇0 is a constant. They also suggested a solution for

stick-slip: to use a downhole tool to create a positive slope that can counteract the

negative slope of the bit-rock interaction.

tbit = 23.6(Wob)
1.1(θ̇bit)

−0.3

[
1− e

θ̇bit
φ̇0

]
(2.8)

Figure 2.4: Instantaneous torque at the bit presented by PAVONE and DESPLANS
[41]

In 1999, TUCKER and WANG [23] used a four parameter expression to simulate

a Coulomb friction at the bit. The expression was based on the velocity-weakening

effect as well as observed before on the field and as the other developed models.

Figure 2.5 shows the profile of the frictional torque for a typical field operation
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using Eq. 2.9 where A, B, a and b are constants.

tbit(θ̇bit) = ABθ̇bit(ab
2 + b2 +B2θ̇2

bit)/(b
2 +B2θ̇2

bit)

√
1 +B2θ̇2

bit (2.9)

Figure 2.5: Bit-rock interaction proposed by TUCKER and WANG [23]

In 2000, CHALLAMEL [25] based the bit-rock interaction formulation on the

work developed by DETOURNAY and DEFOURNY [29]. The TOB was then cal-

culated considering only the cutting mechanism described in [29] and reproduced

in Eq. 2.10. The depth-of-cut, as expressed in Eq. 2.4, explodes when bit velocity

tends to zero, which is not true. Due to this effect, a correction is proposed and

TOB is then calculated with a linear dependence on ROP and an exponential de-

pendence on bit velocity as in Eq. 2.11. To complete bit-rock interaction model,

WOB is computed accordingly to Eq.2.12 as a linear function of TOB as can be

deduced from [29] if only cutting forces are considered. In eqs. 2.10, 2.11 and 2.12,

the variables ε, ζ, α and µ are constants.

tbit = πεr2
b

u̇bit

θ̇bit
(2.10)

tbit =

ζu̇bite−αθ̇bit , if θ̇bit > 0

−ζu̇bit, if θ̇bit < 0
(2.11)

Wob = µtbit (2.12)

In 2003, TUCKER and WANG [26] proposed a relation for axial-torsional cou-

pling on the bit that depends on the bit rotary speed, Torque-on-Bit, Weight-on-Bit,

Depth-of-Cut and Rate of Penetration. These relations were based on the correla-

tions found in drilling measurements under stable drilling conditions and they are

shown in Eqs. 2.13, 2.14 and 2.15. It also has the same variables used in the formu-

lation proposed by [29] based on rock mechanics. The TOB and WOB are functions
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of DOC plus a constant as in [29]. In order to regularize the DOC calculation, a reg-

ularization function (Eq. 2.16) is proposed and multiplies the right side of Eqs. 2.13,

2.14 and 2.15. The behavior of the torque at the drill-bit as a function of its rotary

speed in RPM for three different constant values of WOB in kN is displayed in

Fig. 2.6. The variables ai and ε in eqs. 2.13, 2.14, 2.15 and 2.16 are constants.

u̇bit = −a1 + a2Wob + a3θ̇bit (2.13)

tbit = a4δc + a5 (2.14)

δc =
u̇bit

θ̇bit
(2.15)

F (Ω) =
θ̇bit√
θ̇2
bit + ε2

(2.16)

Figure 2.6: Bit-rock interaction model proposed by TUCKER and WANG [26]

In the same year, CHRISTOFOROU and YIGIT [27] proposed a bit-rock inter-

action law that considers a stiffness (kc) at the bottom and calculate WOB as a

function of the difference between bit axial position (x) and the formation surface

(s) that is modeled as an harmonic function that varies on bit angular position and

according to the bit’s number of blades. This hypothesis is linked to roller-cone bits

due to the lobe pattern this bit causes on rock formation [42]. In this model, WOB

has an influence on TOB but torsional vibration has no effect on axial vibration.

The TOB is expressed in terms of ROP, DOC, bit radius, a friction coefficient (µ)

and a velocity-weakening function (f(θ̇bit)). ROP is calculated as a function of the

applied WOB and the average bit speed (ωd). The DOC is already regularized in this

model by the velocity-weakening function. The formulation is shown in Eqs. 2.17,

2.18, 2.19, 2.20 and 2.21. The variables that have not been mentioned are constants.
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Wob =

kc(x− s) if x > s,

0 if x < s,
(2.17)

tbit = F (x, θbit)[µf(θ̇bit) + ζ
√
rhδc] (2.18)

δc =
2πu̇bit
ωd

(2.19)

u̇bit = c1F0

√
ωd + c2 (2.20)

f(θ̇bit) = tanh(θ̇bit) +
α1θ̇bit

(1 + α2θ̇2
bit)

(2.21)

In 2004, NAVARRO-LÓPEZ et al. [8] considered two bit-rock interaction laws.

They were both non-regularized dry friction torques which decays with bit velocity.

The difference relies on the consideration of a WOB as constant or as an harmonic

function that varies with time. The interaction law is shown in Fig.2.7 and in

Eq. 2.22 where Teb is the torque for equilibrium, Dv is constant and defines the zero

velocity band, θ̇bit is bit speed, Tsb is the maximum static friction torque, Tcb is the

kinetic friction torque and γb is a constant.

tbit =


Teb , ˙θbit < Dv and |Teb| < Tsb

Tsbsign(Teb) , ˙θbit < Dv and |Teb| > Tsb

Tcb + (Tsb − Tcb)e−γb
˙θbitsign( ˙θbit) , ˙θbit > Dv

(2.22)

Figure 2.7: Bit-rock interaction proposed by NAVARRO-LÓPEZ et al. [8]

In 2004, RICHARD et al. [28] presented a coupling between torsional and axial

modes done through the bit-rock interaction and using the concepts developed in

[29]. The bit-rock interaction was modeled by joining the cutting and friction forces

as in Eqs. 2.5, 2.6 and 2.7. The cutting forces are modeled in terms of the depth of

cut that depend on the bit position (ubit) at a previous time, thus introducing delay
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differential equation in the system as in Eq. 2.23. This previous time (t − tn) is

calculated in order to respect Eq. 2.24 and corresponds to the instant in which the

blade was in the same angular position as the previous blade at the current time.

Later on, in 2007, RICHARD et al. [36] investigated a little further the effects of

this model in drill-string dynamics with a linear stability analysis and linking the

model to E-S diagrams and experimental observations. In 2009, GERMAY et al.

[35] presented the relation between TOB and bit speed for one stick-slip cycle as

reproduced in Fig. 2.8.

δc = ubit(t)− ubit(t− tn) (2.23)

θbit(t)− θbit(t− tn) = 2π/n (2.24)

Figure 2.8: Relation between TOB and bit angular velocity obtained by GERMAY
et al. [35]

In 2006, YIGIT and CHRISTOFOROU [31] proposed a modification on the bit-

rock interaction law presented in [27]. It was included a linear term in the velocity-

weakening function on the bit-rock interaction law. This way, the term µf(θ̇bit)

becomes µ(θ̇bit) as in Eq. 2.25 . Although this modeling is associated to roller cone

bits, the authors used parameters for typical PDC bit drilling on hard formations

in the simulations.

µ(θ̇bit) = µ0

(
tanh(θ̇bit) +

α1θ̇bit

(1 + α2θ̇
2γ
bit)

+ νθ̇bit

)
(2.25)

In 2007, KHULIEF et al. [32] assumed that WOB (W) fluctuates around a mean

value (W0) with a frequency related to DOC and ROP. After some manipulations,

it is stated that WOB actually fluctuates according to the angular position of the

bit (θbit) and it can be calculated as in Eq. 2.26. The torque on the bit was modeled

as a friction torque and it was a function of WOB, a coefficient of friction (µ) and

the continuous function proposed in [27] and reproduced in Eq. 2.21.
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Wob =W0 + kfδc(1− sin(θbit)) (2.26)

tbit = µWobf(θ̇bit) (2.27)

In 2013, LIU et al. [38] used a bit-rock interaction law based on the formulation

proposed by [35] but the authors included a velocity-weakening effect on the friction

part of both TOB and WOB. This effect was included by multiplying the original

formula by the function reproduced in Eq. 2.28, where ε, f0, f1 and α are constants.

Z(θ̇bit) =
2

π
arctan(εθ̇bit)

(
f1 − f0

1 + α|θ̇bit|
+ f0

)
(2.28)

In 2014, KAMEL and YIGIT [39] proposed a modification of the bit-rock inter-

action model presented in [36] to account for phases I and II of the cutting model

proposed by [43]. The authors also used a Heaviside function (Eq. 2.31) in the fric-

tion part of WOB to avoid the singularity. Another Heaviside function (Eq. 2.32)

was included in frictional TOB to account for negative velocities. The new frictional

TOB and WOB are reproduced in Eqs. 2.29 and 2.30. The variable δ∗c is a critical

DOC where the transition between phases occurs, l is the wearflat length and the

other variables are constants obtained experimentally.

Wf =


0 if δc 6 0,

kcδc if δc < δ∗c ,

rbσlf(u̇bit) if δc > δ∗c ,

(2.29)

Tf = γ(Wf )
rb
2
µf(θ̇bit) (2.30)

f(u̇bit) =
1

1 + ea1u̇bit+b1
(2.31)

f(θ̇) = tanh(a2θ̇bit + b2) (2.32)

In 2016, HONG et al. [40] presented a new bit-rock interaction law based on

the experimental data presented in [2] and the observation made by [41] that the

relation between TOB and bit speed presents a hysteresis effect. A hysteretic dry

friction formulation was used with velocity-weakening effect as shown in Fig. 2.9.

When the velocity is increasing, the model is the same used in [27] and the function

f+(θ̇bit) was already reproduced in Eq. 2.21 as f(θ̇bit). When it decreases, a new

function is proposed (Eq. 2.35) and a much lower friction torque is reached when bit

sticks. Accordingly to Eq. 2.33, when bit is stuck, the torque is calculated in order

to maintain the equilibrium at the bit (Td).
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tbit =

Td if |θ̇bit| < Dv and Tf > |Td|,

Tf else
(2.33)

Tf =

Wobrbf+(θ̇bit) if sign(θ̇bitθ̈bit) > 0,

Wobrbf−(θ̇bit, θ̈bit)sign(θ̇bit) if sign(θ̇bitθ̈bit) < 0,
(2.34)

f−(θ̇bit, θ̈bit) = 0.97−
f + ∆f 1

1+| θ̇bit
ν
|
− f2

f2(1 + ( θ̇bit−τ θ̈bit
ν

)2)
(2.35)

Figure 2.9: Bit-rock interaction law proposed by HONG et al. [40]

In 2017, QIU et al. [44] modeled a drill-string using the finite element method

and the bit-rock interaction was based on the model developed by RICHARD et al.

[28]. They proposed a modification on the formulation of DOC: it is calculated

in terms of the axial displacement at each time step rather than using the delay

approach as proposed in [28].

Also in this year, RITTO et al. [45] proposed a different function for the bit-

rock interaction (Fig. 2.10) based on field measurements acquired at 50 Hz. The

bit-rock interaction law consisted of three bit speed regions, according to Eq. 2.36.

A linear function was used to fit bit-rock interaction in the first two regions and a

cubic function for the last region. The authors used a lumped parameter model to

describe drill-string torsional dynamics and the results presented a good agreement

with field measurements. A stability map was calculated using the fitted model

and it could predict the severity of the field measurements. It was concluded that

a simple torsional lumped parameter model can tackle the problem of torsional

stability.
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tbit =


rb(a0 + a1θ̇bit)1.36 for θ̇bit ∈ [0.0, 3.5]

rb(a2 + a3θ̇bit)1.36 for θ̇bit ∈ [3.5, 8.0]

rb(a4 + a5θ̇bit + a6θ̇
2
bit + a7θ̇

3
bit)1.36 for θ̇bit ∈ [8.0, 240]

(2.36)

Figure 2.10: Bit-rock interaction law and stability map proposed by RITTO et al.
[45]. The second figure represents the stability map: the colored gradient is stick-
slip severity; y-axis is the WOB; and x-axis is the speed on surface. The red dot
represents the unstable measured data and the black dot is stable one.

In 2018, REAL et al. [46] proposed a novel hysteretic bit-rock interaction model

for the torsional dynamics of drill-strings. The authors present some experimental

data that indicates that the TOB depends not only on bit speed, but also on bit

acceleration. The bit-rock interaction model is reproduced in Eq. 2.37, in which

b0 to b5 are positive constants, sign(x) = x
|x| and H(θ̇bit, θ̈bit) is hysteretic function

defined in Eq. 2.38, in which β1 and β2 are positive constants. Figure 2.11 shows

the proposed bit-rock interaction model against experimental data of one stick-slip

cycle.

tbit = b0

(
tanh(b1 θ̇bit) +

b2|θ̇bit|b4 sign(θ̇bit)

1 + b3 |θ̇bit|b5
(1 +H(θ̇bit, θ̈bit))

)
, (2.37)

H(θ̇bit, θ̈bit) = β1 tanh(β2θ̈bit)sign(θ̇bit) (2.38)
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Figure 2.11: Hysteretic bit-rock interaction model and experimental data for one
stick-slip cycle. Adopted from [46].

2.3 Uncertainty quantification in drill-string vi-

bration

The first probability approach dates back to 1958, when BOGDANOFF and GOLD-

BERG [47] considered random forces acting at the bit. The model considered axial

and torsional vibrations. The authors assumed that random forces acted at the

bit and discussed the advantage of this approach over a deterministic analysis. In

1961, the same authors published the continuation of this investigation. In this new

approach, the forces acting at the sides of the pipes were also considered random.

The objective was to investigate the stresses in BHA and discuss the advantages of

statistical analysis.

DAREING and LIVESAY [14] analyzed experimental data in 1968 and concluded

that the acceleration on the bit was random and that it was probably caused by

bit teeth impacting a rock of random hardness. This observation increased the

perception of the role of randomness in the drill-string dynamics.

In 1997, KOTSONIS and SPANOS [49] studied the random lateral vibration of

drill-strings taking into account the fluid damping, wall contact, eccentric collars

and initial curvature of the collar. The difference from other models relies on the

consideration of dynamic WOB that is time variant with zero mean and described

by a stationary random process. The chaotic and random whirling are then assessed.

In 2002, SPANOS et al. [50] proposed a stochastic approach to study lateral

vibrations of a drill-string considering the lateral excitation of the BHA as uncertain.

A finite element model was used accounting for the string-wall interaction and the

standard deviation of the lateral motion of drill-bit has been calculated.

In 2009, RITTO et al. [37] studied the random vibration of a drill-string. Uncer-

tainties were included in the bit-rock interaction using the non-parametric method
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introduced by SOIZE [51]. This method consists of the usage of random matrices

inside the finite element formulation. It was shown that uncertainties considerably

affect the system response.

In 2010, RITTO et al. [52] introduced a robust optimization of drilling parame-

ters with the objective to maximize the mean ROP respecting the integrity limits.

The optimization was said to be robust because the model considers uncertainties

on the bit-rock interaction. The model considered axial and torsional motion and

the drill-string was discretized through finite element method.

In 2013, QIU and YANG [53] studied the random vibration of a drill-string

using the Euler-Bernoulli beam theory together with the finite element method to

describe drill-string dynamics. The model was axial-torsional and lateral-torsional

coupled. The bit-rock interaction law was modeled as in [31]. The randomness was

included by adding a Gaussian white noise in the excitation part of the equations.

The stochastic results were analyzed through the mean and standard deviation of

bit speed.

In 2014, PERCY [54] studied the vibration of drill-string considering the tor-

sional and lateral dynamics. The model is constructed based on Euler-Bernoulli

beam theory and the finite element method is applied to obtain the numerical so-

lution. At first, the results from the deterministic model are investigated and the

influence of different parameters is assessed. After, the author modeled some geomet-

ric parameters as random variables and analyzed the influence of such uncertainties

on vibration modes. Finally, one parameter of bit-rock interaction is also modeled

as a random variable and the stochastic dynamical response is analyzed through

statistics of the stick-slip severity.

In 2017, QIU et al. [44] investigated the random vibration of drill-strings by

considering a random excitation in the bit-rock interaction. The excitation was

treated as a Gaussian white noise. A statistical linearization was applied in order to

use the Newmark algorithm to solve the dynamic system. The results were compared

to Monte Carlo simulations and the statistics of the results were assessed.

Also in 2017, LOBO et al. [55] presented a stochastic analysis of the torsional

dynamics of a drill-string when there is a transition between two rock layers. A

simple model with 1 DOF was used. The transition was modeled with 3 different

functions and the parameters of the transition were considered uncertain. They

concluded that different shapes of transition imply in different dynamic responses.

These differences are clearer in stochastic response.

In the same year, REAL et al. [56] proposed a new strategy for modeling un-

certainties in the substructures and interfaces of dynamical systems. This strategy

is based on the Craig-Bampton method and on the nonparametric probabilistic ap-

proach proposed by SOIZE [51]. The main contribution relies on the possibility of
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introducing uncertainties on inner and interface degrees of freedom separately. The

authors applied this strategy to the torsional dynamics of drill-strings. The deter-

ministic model is constructed by means of the finite element method. The mass,

damping and stiffness matrices are then modeled as stochastic matrices and the pro-

posed strategy is compared to another two classical strategies. For the same level

of uncertainties, all the strategies presented results very similar, indicating that the

proposed strategy is consistent. Finally, an investigation is carried out to determine

the effect of each uncertainty on the dynamical response.

In 2018, NOGUEIRA and RITTO [57] investigated the stochastic torsional sta-

bility of a drill-string. The authors used a mathematical model based on classical

torsion theory discretized by means of the finite element model. The variables con-

sidered random were the mud density, the friction constant of bit-rock interaction,

the confined compressive strength of the rock and the damping ratios. The dis-

tribution used to describe each variable is derived by using the maximum entropy

principle. Finally, Monte Carlo simulations are carried out to construct a stochastic

stability map. The influence of each random variable is assessed.

In 2019, DO [58] considered the parameters of bit-rock interaction as Lévy pro-

cesses. This process is decomposed into three components: a constant drift, a

Brownian motion and a pure jump process. The main idea relies on the modeling

of the uncertainties in bit-rock interaction plus the jump effect when the rock is

cracked during an operation. The crack of the rock will cause the force and moment

acting on the bit to change abruptly. A Lyapunov-type theorem is developed to

study well-posedness, stability in moment, and almost sure stability of nonlinear

stochastic differential equations. Finally, a robust and an adaptive controllers are

designed using this theorem and the backstepping method.

2.4 Experimental investigation of drill-string vi-

bration

One of the first experimental investigations of drill-string dynamics available in

literature dates back to 1960 and was performed by FINNIE and BAILEY [13].

They developed an equipment to measure axial force, torque and axial and rotational

motions at the top of a drill string. In [13], they described the equipment developed.

The natural frequencies measured during the operation were much different from

those predicted in [12]. According to the authors, the most interesting phenomenon

was the interaction between torsional and axial motions. It was clear that surface

measurements were not enough to understand the dynamic behavior of the drill-

string. Moreover, in 1994, DYKSTRA et al. [59] verified that the amplitude of
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vibrations at the bit rapidly diminished with the distance from the bit which confirms

the need for downhole data.

DEILY et al. [60] developed in 1968 a self-contained tool to measure forces and

motions during the actual drilling process. It was the first time that forces were

measured downhole. The tool recorded eight signals on a magnetic tape in offline

mode: axial, torsional and bending loads; axial, angular and lateral accelerations;

and internal and annular pressure. The authors noted weight variations in excess

of 3.5 times the mean value due to bit bounce. In normal drilling, the weight

variations were about 25 to 50 percent of the mean value. The torque variations were

generally less than weight variations but a coupling between these two variables was

found. This work provided evidence of the differences between surface and downhole

vibration modes.

CUNNINGHAM [61] presented a paper with some additional discussions on the

measurements acquired using the equipment described by DEILY et al. [60]. The

author noted stick-slip vibration for the first time, where the RPM reached values

from 0 to 96 rpm. He also noted large losses of rotary power along the drill-string.

The author identified two sources of axial fluctuations: rotation of the drill-string

with bottom disturbances that can cause a vibration with frequency three times the

rotational speed with a three-cutter bit; and the pulsation of mud pump pressure

fluctuations.

In 1991, DUFEYTE and HENNEUSE [4] published an article where they inves-

tigated 3500 hours of field data obtained between 1988 and 1990. They observed

stick-slip oscillation in roughly 50% of the time. In these situations, maximum

downhole rotational speed could reach 10 times the speed at the surface. The data

showed how destructive this phenomenon is and its consequences. At the surface,

this phenomenon was characterized by variations in torque (as observed by DAW-

SON et al. [6]). These variations are linked to the length of the drill pipes and the

rotational speed. The authors also analyzed the effect of several parameters on the

dynamics. The lithology appeared to have the most influence on the development

of stick-slip oscillations. As a solution for stick-slip, the authors suggest to increase

the rotational speed and reduce WOB as a first aid, but a permanent solution would

be to control the drive (as suggested by other authors) and to use lubrication.

In 1992, DETOURNAY and DEFOURNY [29] investigated the drilling response

of PDC bits. The authors studied the relations between weight-on-bit (WOB),

torque on bit (TOB), bit rotational speed and rate of penetration. The bit-rock

interaction forces are decomposed into cutting and frictional components. The cut-

ting component is proportional to the depth-of-cut and the frictional components

of TOB and WOB are linearly related. Two quantities are proposed to study the

relations under investigation: specific energy and drilling strength. Experimental
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data shows that the data points cluster along a line in the diagram constructed by

these two quantities.

In 1994, DYKSTRA et al. [59] performed laboratory and field tests to investigate

the dynamics of a drill bit and a drill-string. The field test suggested that bit whirl

was not detectable at the surface and the stabilizers played an important role in

diminishing vibration magnitude. The vibration generated by PDC bits were much

worse than by roller cone bits. Otherwise, it was concluded that anti-whirl PDC

bits vibrate with amplitudes around an order of magnitude less than conventional

PDC bits. Based on the experiments, other operational guidelines and drill-string

configurations were suggested in order to reduce downhole vibration.

In 2003, MELAKHESSOU et al. [62] studied the nonlinear interaction between

drill-string and wellbore wall through numerical and experimental approaches. The

experimental rig is designed to represent the portion of BHA which is under compres-

sion. The rig is composed of an electrical motor that is connected to a torquemeter

and a rod. In the middle of the rod, a disc is attached to represent tool-joint. This

disc is inside a cylinder that represents the wellbore wall. At the end of the rod, a

break is placed in order to provide torque. The lateral displacements were measured

by two optoelectronic cameras. The test-rig was capable of reproducing forward and

backward whirl. The backward whirl was obtained only by increasing the friction

between the disc and the cylinder by adding rubber to cylinder inner surface.

In 2008, RAYMOND et al. [63] designed a test-rig to investigate drill-string axial

vibrations and find the best operational parameters that eliminate this vibration.

The experimental actually drills a rock sample in the laboratory.

In 2009, KHULIEF and AL-SULAIMAN [64] presented an experimental test-rig

capable of simulating the drill-string vibration for a variety of excitation mechanisms:

stick-slip, well-borehole contact and drilling fluid interaction. The setup consists of

a variable speed motor, a stainless steel vertical shaft, a Plexiglas pipe as a wellbore

with fluid inside, a magnetic brake to simulate stick-slip and a shaker used to excite

drill-string axially. The constructed test-rig was successfully used to tune model

parameters.

In 2010, FRANCA [65] presented a new model for the drilling response of roller-

cone bits (RC bits). The author inspired himself on the work of DETOURNAY

and DEFOURNY [29]. In order to validate the model, the author performed a

series of laboratory tests with an in-house designed drilling rig. The upper assembly

is composed by a geared brushless motor and a linear actuator which together can

provide a precise rate of penetration from 0.01 mm/s to 100 mm/s. The bit assembly

is composed by a roller-cone bit, a shaft and sophisticated anvil. In this test-rig, the

rock sample is driven at a constant speed while the bit and shaft are stationary.

In 2012, ESMAEILI et al. [66] constructed a fully automated laboratory scale
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drilling rig called the CDC miniRig. The experimental setup actually drills rock

samples and consists of a steel frame, drawwork, top drive, weights, measurement

sensors, drill-string, drill bit and a control unit. Several experimental runs were

carried out and the influence of each parameter was assessed.

In 2013, VLAJIC et al. [67] studied the torsional vibration of a rotor enclosed

within a stator subjected to dry friction. The experimental results showed forward

and backward whirl, as well as impacting motions. The experimental results are

compared to simulations of a finite dimensional model and it was concluded that the

numerical simulations are found to capture the phenomena observed in experiments.

In 2015, KAPITANIAK et al. [68] presents a novel experimental rig capable of

reproducing all major types of drill-string vibrations, such as stick-slip oscillations,

whirling, drill bit bounce and helical buckling. The experimental rig uses commercial

drill-bits and rock samples. Furthermore, a low-dimensional model is developed and

calibrated based on a torsional pendulum. In addition, a more sophisticated model

is also constructed by means of the finite element method. The experimental and

numerical results demonstrate the predictive capabilities of the mechanical models

proposed.

In 2015, CAYRES et al. [69] proposed a test-rig to simulate the torsional vi-

bration of drill-strings. This test-rig is composed by a slender shaft in horizontal

position and two breaking discs: one simulates the bit-rock interaction and the other

simulates the contact with the wellbore wall.

In 2017, WIERCIGROCH et al. [70] reviewed the development and the analysis

of the axial-torsional coupled 2-DOF model which assumes a state-dependent delay

and a viscous damping. The authors used the experimental data obtained in test-rig

described by [68] to analyze this model and propose a new one that considers a non-

uniform distribution of blades which is intended to avoid unrealistic regenerative

types of instabilities.

In 2017, LIU et al. [71] developed a small-scale drilling rig to drive a parametric

study of the stick-slip phenomenon. The parametric study involved two flexible

shafts with different mechanical properties. The results showed that varying some

of the mechanical properties could drive the nature of the stick-slip oscillations.

In 2018, KAPITANIAK et al. [72] investigated forward and backward whirls on

the very same test-rig proposed in [68]. The experimental results showed the co-

existence of both whirling motions and characterized the parameter space in which

different whirls can be observed.

In 2018, REAL et al. [73] developed a novel low-cost test-rig capable of repro-

ducing drill-string torsional vibration, including stick-slip. The test-rig is mainly

composed by a DC motor, a flexible shaft, an inertial disk and a masonry bit. At

the bottom, a concrete test-body is lifted by an electrical jack in order to simu-
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late the drilling procedure. The experimental results obtained are in agreement

with experimental studies found in the literature. This is the test-rig in which the

Appendix A is based on.
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Chapter 3

Deterministic numerical

investigation

3.1 Base model

The drill-string model is represented in Fig. 3.1. It is composed of two main parts:

Drill-pipes and BHA. Each part has different characteristics and a node is placed

in the transition between them in the problem formulation. At the top, a constant

speed is imposed by the rotary table and an axial force (Hook Load) is applied to

sustain part of the drill-string weight. At the bottom, the forces due to bit-rock

interaction are added. Each part of this model will be explained in the following.
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Figure 3.1: Schematic view of the system.

The equations of motion for the system are derived through Hamilton’s principle.

It states that the development in time for a mechanical system is such that the

integral of the difference between the kinetic and the potential energy is stationary,
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i.e. the variation is zero. The extended Hamilton’s principle accounts for non-

conservative forces and can be written as:

δΠ =

∫ t2

t1

(δU − δT − δW )dt = 0, (3.1)

where U is the potential strain energy, T is the kinetic energy and W is the work done

by the nonconservative forces and the forces not accounted in the potential energy.

At this point, only the internal forces and gravity are going to be considered in the

following formulation. The boundary conditions and external forces are included

at the end of the formulation, after the finite element discretization. The kinetic

energy is written as:

T =
1

2

∫ L

0

(ρAu̇2 + ρIpθ̇
2
x)dx, (3.2)

where u is the axial displacement, θx is the angular displacement, x is the position

along drill-string, ρ is the mass density, A is the cross sectional area, Ip is the cross

sectional polar moment of inertia, L is the length of drill-string. The variation of

kinetic energy is expressed by:

δT = −
∫ L

0

(ρAüδu+ ρIpθ̈xδθx)dx. (3.3)

The work done by gravity force is accounted for in W calculation as:

W =

∫ L

0

ρgAudx, (3.4)

where g is the gravity acceleration. The variation of Eq. 3.4 is given as:

δW =

∫ L

0

ρgAδudx. (3.5)

The last term of Hamilton’s Principle formulation is the strain energy that is

written as:

U =
1

2

∫
V

εT [S]dV, (3.6)

where V is the volume, ε is the Green-Lagrange strain tensor in Voigt notation, [S] is

the second Piola-Kirchoff stress tensor in Voigt notation. To calculate the potential

strain energy, the Green-Lagrangian strain tensor is used and it is expressed as a

function of the displacements by:

E =
1

2

[(
dp

dxref

)
+

(
dp

dxref

)T
+

(
dp

dxref

)T (
dp

dxref

)]
, (3.7)
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where p is the displacement field vector. It depends on the point reference coordi-

nates xref = (x, y, z), where x is in the axial direction and y and z are perpendicular

to the axial direction, and on the coordinates after deformation, called x. The

displacements due to torsion and traction are illustrated in Fig. 3.2 and they are

written as:

p =

uxuy
uz

 = x− xref =

 u

y cos(θx)− z sin(θx)− y
y sin(θx) + z cos(θx)− z

 (3.8)

Figure 3.2: Displacement Field. Adapted from [52].

The components of the Green-Lagrangian strain tensor are calculated and only

the non-zero terms are considered. Finite strains are considered. The strain tensor

non-zero components are given as:

εxx = ux,x +
1

2
(u2

x,x + u2
y,x + u2

z,x) (3.9)

εxy =
1

2
(uy,x + ux,y + ux,xux,y + uy,xuy,y + uz,xuz,y) (3.10)

εxz =
1

2
(uz,x + ux,z + ux,xux,z + uy,xuy,z + uz,xuz,z) (3.11)

Considering the constitutive equation S = [C]ε and substituting it into Eq. 3.6,

the variation of potential strain energy can be calculated as:

δU =

∫
V

δ εT [C] ε dV =

∫
V

δεT

E 0 0

0 G 0

0 0 G

 ε dV, (3.12)

where ε =
[
εxx 2εxy 2εxz

]T
. The Eqs. 3.9, 3.10 and 3.11 are substituted inside

Eq. 3.12 and it can now be expressed by a sum of two terms: linear (δUL) and

non-linear (δUNL):
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δUL =

∫ L

0

[δu′(EAu′) + δθ′(GI0θ
′)] dx, (3.13)

δUNL =

∫ L

0

δu′
[
EA

2
(3u′2 + u′3) +

EI0

2
(θ′2 + u′θ′2)

]
dx+

∫ L

0

δθ′
[
EI0

2
(2u′ + u′2)θ′ +

EI02

2
θ′3
]
dx,

(3.14)

where I0 is the moment of inertia, and; I02 is a generalized cross-sectional constant

defined by I02 =
∫
A

(y2 + z2)2 dA.The equation of motion is discretized by mean

of the finite element method (FEM). One element is illustrated in Fig. 3.3, where

ξ = x/le is the transformed coordinate and le is the length of the element. The

elementary displacement vector is given by ue =
[
u1 θ1 u2 θ2

]T
, where ui and θi

are the axial and torsional displacements in node i, respectively.

Figure 3.3: Element.

The displacement field for this element is a function of the time and space.

This displacement and its derivative in space (d/dξ) are calculated according to the

following equations:

u = nu(ξ)ue(t), θ = nθ(ξ)ue(t), (3.15)

u′ =
1

le
n′uue(t), θ′ =

1

le
n′θue(t), (3.16)

where nu =
[
1− ξ 0 ξ 0

]
, nθ =

[
0 1− ξ 0 ξ

]
, n′u =

[
−1 0 1 0

]
and

n′θ =
[
0 −1 0 1

]
. Substituting the expressions above in the variational formula-

tion, one gets:

δT e = δuTe [M e]üe,

δU e
L = δuTe [Ke

e ]ue,

δU e
NL = δuTe [Ke

g ]ue,

δW e = δuTe f
e
g,

(3.17)

where [M e] is the mass matrix, Ke
e is the linear stiffness matrix, Ke

g is the nonlinear
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stiffness matrix and f eg is the gravity force vector. After some manipulations, those

matrices and vector result in:

[M e] =

∫ 1

0

(ρAlen
T
unu + ρI0len

T
θ nθ)dξ, (3.18)

[Ke
e ] =

∫ 1

0

(
EA

le
n
′T
u n

′
u +

GI0

le
n
′T
θ n

′
θ)dξ, (3.19)

[Ke
g ] =

∫ 1

0

EA

2le
(3n

′T
u n

′
uu
′ + n

′T
u n

′
uu
′2)dξ

∫ 1

0

EI0

2le
(n
′T
u n

′
θθ
′ + n

′T
u n

′
θu
′θ′)dξ

∫ 1

0

EI0

2le
(2n

′T
θ n

′
θu
′ + n

′T
θ n

′
uu
′θ′)dξ

∫ 1

0

EI02

2le
(n
′T
θ n

′
θθ
′2)dξ

, (3.20)

f eg =

∫ 1

0

ρgAlen
T
udξ. (3.21)

After calculating the integrals above, the mass and stiffness matrices and the

force vector are obtained and shown in Eqs. 3.22, 3.23, 3.24 and 3.25. The nonlinear

stiffness matrix remains in function of the space derivative of displacements that

need to be calculated for every step of time in numerical integration.

[M e] =
ρle
6


2A 0 A 0

0 2I0 0 I0

A 0 2A 0

0 I0 0 2I0

 (3.22)

[Ke
e ] =

1

le


EA 0 −EA 0

0 GI0 0 −GI0

−EA 0 EA 0

0 −GI0 0 GI0

 (3.23)
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[Ke
g ] =

EA

2le
(3u′ + u

′2)


1 0 −1 0

0 0 0 0

−1 0 1 0

0 0 0 0

+
EI0

2le


0 θ′ 0 −θ′

θ′ u′ −θ′ −u′

0 −θ′ 0 θ′

−θ′ −u′ θ′ u′



+
EI0

2le


0 θ′u′ 0 −θ′u′

θ′u′ 0 −θ′u′ 0

0 −θ′u′ 0 θ′u′

−θ′u′ 0 θ′u′ 0

+
EI02

2le


0 0 0 0

0 θ′ 0 −θ′

0 0 0 0

0 −θ′ 0 θ′


(3.24)

f eg =
ρgAle

2

[
1 0 1 0

]T
(3.25)

After assembling the elementary matrices and vector into the global ones, the

external forces are included in the formulation and the equation of motion is finally

expressed in Eq. 3.26.

[M ]ü(t) +
(
[Ke] + [Kg(u(t))]

)
u(t) = fg + ff + fT (u̇bit(t), θ̇bit(t)), (3.26)

where ff =
[
0 · · · 0 −W̄ob 0

]T
represents the axial force at the

bit in which W̄ob is the desired weight-on-bit; and fT (u̇bit(t), θ̇bit(t)) =[
0 · · · 0 −fbit(u̇bit(t), θ̇bit(t)) −tbit(u̇bit(t), θ̇bit(t))

]T
represents the force and

torque at the bit due to bit-rock interaction in which tbit(u̇bit(t), θ̇bit(t)) is the torque

and fbit(u̇bit(t), θ̇bit(t)) is the axial force variation around the desired value for WOB.

Note that the axial force and torque on the bit depends on the axial speed of the bit

u̇bit(t) and on the rotational speed of the bit θ̇bit(t), which are obtained by extracting

the two last terms of u̇(t). The total weight-on-bit is called Wob = fbit + W̄ob.

3.2 Initial prestressed configuration

In order to simplify the problem, the change of variables u(t) = ud(t)+us is used to

evaluate the dynamics (ud(t)) around an initial prestressed configuration (us). To

calculate the equilibrium point, the angular motion is fixed at the top and the axial

motion is fixed at the bit. This boundary condition is chosen based on the situation

when the top motor is locked (i.e. drill-string is not rotating) and drill-string is

in touch with bottom-hole in a way that the desired weight-on-bit is achieved and

drill-bit cannot move downward. To implement this boundary condition, the second

and (2n-1)th lines and columns are removed from all matrices and vectors, where
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n is the number of nodes. The equilibrium point is static, thus all derivatives in

time vanishes and the bit-rock interaction model is not considered. The nonlinear

stiffness matrix is also ignored because the drill-string is not under torsion and

[Kg(u(t))] is neglectable. The point is then calculated in Eq. 3.27 considering the

desired weight-on-bit and the gravity force.

us = [Ke]
−1(fg + ff ). (3.27)

After the computation of us, the fixed DOFs need to be reinserted into the vector

by adding zero elements in the 2nd and (2n-1)th positions. Then, the equation of

motion can be expressed in terms of the new variables defined above and the full

matrices (i.e. without boundary conditions):

[M ]üd(t) + ([Ke] + [Kg(us +ud(t))])ud(t) = fT (u̇bit(t), θ̇bit(t))− [Kg(us +ud(t))]us.

(3.28)

A proportional damping matrix is included in the equations and it is calculated

as [D] = α[M ] + β[Ke]. The complete equation of motion can then be written as:

[M ]üd(t)+[D]u̇d(t)+([Ke]+[Kg(us+ud(t))])ud(t) = fT (u̇bit(t), θ̇bit(t))−[Kg(us+ud(t))]us.

(3.29)

3.3 Bit-rock interaction model

The next step is to define the bit-rock interaction model. The model chosen for

this work is the one proposed by TUCKER and WANG [26]. This model is chosen

because it considers the coupling between torsional and axial dynamics and it is a

continuous regularized model, which is good for the computational cost. In addition,

this model was calibrated using experimental data by TUCKER and WANG [26].

This model takes into account the coupling between axial and torsional vibrations.

Based on drilling measurements under stable drilling conditions, the correlation

between the main variables is defined as:

u̇bit(t) = −a1 + a2(Wob(u̇bit(t), θ̇bit(t))) + a3θ̇bit(t), (3.30)

tbit(u̇bit(t), θ̇bit(t)) = a4
u̇bit(t)

θ̇bit(t)
+ a5. (3.31)

The ratio u̇bit(t)/ ˙θbit(t) represents the depth-of-cut and the coefficients are set as:

a1 = 3.429 · 10−3 m s−1; a2 = 5.672 · 10−8 m N−1 s−1; a3 = 1.374 · 10−4 m rad−1;
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a4 = 9.537 · 106 N rad; a5 = 1.475 · 103 N m.

It is noticed that tbit(u̇bit(t), θ̇bit(t)) goes to infinite if the bit have zero rotational

speed. Thus, it is necessary to regularize the calculation of the torque and axial

speed at the bit in order to make it go to zero when rotational speed approaches

zero. To do this, the following regularization function is defined:

Z(θ̇bit(t)) =
θ̇bit(t)√
θ̇2
bit(t) + ε2

, (3.32)

where ε is the regularization parameter set as ε = 2 rad/s. The torque and axial

force at the bit can then be finally isolated and calculated according to:

fbit(u̇bit(t), θ̇bit(t)) =
u̇bit(t)

a2Z2(θ̇bit(t))
− a3θ̇bit(t)

a2Z(θ̇bit(t))
+
a1

a2

− W̄ob (3.33)

tbit(u̇bit(t), θ̇bit(t)) = a4Z
2(θ̇bit(t))

u̇bit(t)

θ̇bit(t)
+ a5Z(θ̇bit(t)) (3.34)

Fixing the WOB on 100 kN, i.e. Wob = W̄ob = 100 kN, we can construct the

classical TOBxθ̇bit curve for bit-rock interaction (Fig. 3.4).
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Figure 3.4: Bit-rock interaction model. Wob = W̄ob = 100 kN.

In Appendix A, the bit-rock interaction model was experimentally investigated

using a test-rig. The limitations and qualities of this model are discussed and it

is concluded that this model can represent the drill-string dynamics. However, the

main interest of this work is to analyze the deterministic and stochastic dynamics

of a real-scale drill-string. Therefore, the calibration proposed by TUCKER and

WANG [26] is going to be used, although it does not induce strong hysteric effects

or large fluctuations on WOB.
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3.4 Boundary conditions

For the simulation of the drilling operation, the boundary condition of a constant

speed of Ω at the top is used. This decision is motivated by the fact that most

of the drilling rigs use a PID control at the top in order to maintain the rotational

speed constant at any costs. This control is very effective for maintaining a constant

speed. Some other rigs use different types of control, like Torque-Feedback control

[9].

The same strategy used to insert the boundary condition at the calculation of

the equilibrium point is used again but with a small change. At first, the 2nd line

is removed from all the matrices and vectors. After, the 2nd column of each matrix

in the left side goes to the right side of the equation multiplying by the respective

derivative of top angular DOF. The mass matrix does not appear on the right side

because the speed at the top is constant and thus the acceleration is zero. Finally,

the equation becomes:

[M̄ ]¨̄u(t) + [D̄] ˙̄u(t) + ([K̄e] + [K̄g(us + ud(t))])ū(t) = f̄T (u̇bit(t), θ̇bit(t))− . . .

. . . [K̄gl(us + ud(t))]us − d2Ω− (ke2 + kg2(us + ud(t)))Ωt, (3.35)

where ū(t) is the displacement vector ud(t) without the second line; [M̄ ], [D̄], [K̄e]

and [K̄g] are the mass, damping, linear stiffness, and nonlinear stiffness matrices

without the 2nd line and column, f̄T (u̇bit(t), θ̇bit(t)) is the bit-rock interaction force

without the 2nd line, [K̄gl(us + ud(t))] is the nonlinear stiffness matrix without

only the 2nd line, and d2, ke2 and kg2(us +ud(t)) are vectors composed by the 2nd

column of damping, linear stiffness, and nonlinear stiffness matrices already without

the 2nd line.

3.5 Reduced-order model

The development of the reduced-order model ignores the nonlinear stiffness matrix

because it is concluded in Section 3.6.1 that it does not influence the drill-string

dynamics for the model and operational conditions considered in this work. Thus,

the nonlinear terms of stiffness matrix in Eq. 3.35 are ignored and the equation of

motion becomes:

[M̄ ]¨̄u+ [D̄] ˙̄u+ [K̄e]ū = f̄T (u̇bit, θ̇bit)− d2Ω− ke2Ωt, (3.36)

The reduction of the model improves the computational costs and, thus, makes

stochastic calculations quite faster. The reduction consists in the usage of a more

efficient base for the variables of the system. A very common base is the normal
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modes of the system and this is the approach adopted in this work.

The first step is to choose the base of normal modes. The first modes to be

considered are the rigid modes because drill-string is rotating at a constant speed

at the top and it has no boundary condition restraining the axial movement. After

the calculation of the rigid modes, the number of flexible modes is specified for axial

and torsional vibration separately. It is important to point out that the torsional

and axial vibration modes are uncoupled here because the nonlinear stiffness matrix

was neglected and thus the coupling in the stiffness matrix does not exist.

To calculate the torsional rigid mode, the full equation of motion described in

eq. 3.28 is used. The torsional rigid mode needs to be calculated before imposing

the boundary condition of constant speed at the top. The rigid mode for torsional

motion is only necessary because the velocity at the top is a constant different from

zero. Otherwise, the torsional rigid mode would appear always multiplied by zero.

To obtain the normal modes, the following eigenvalue problem is solved:

(−[M ]ω2 + [Ke])φ = 0 (3.37)

The rigid torsional mode (φrt) is identified by testing the two calculated modes

with eigenvalue zero. A zero eigenvalue means that the mode is rigid. The torsional

rigid mode is the one in which the second row is different from zero because this

row corresponds to the torsional dynamics and the modes are uncoupled.

After the computation of the torsional rigid mode, the boundary condition of

constant rotational speed at the top is implemented and the second line is removed

from all matrices and vectors, including the eigenvector related to rigid torsional

mode (φrt). Now, the rest of normal modes are calculated and the new eigenvalue

problem need to be solved:

(−[M̄ ]ω2 + [K̄e])φ = 0 (3.38)

There is still one mode with zero natural frequency related to the axial rigid

mode. This mode is identified and called by φra. The rest of the modes are flexible

and they are sorted in ascending order of natural frequency. Each mode is then

classified as torsional or axial according to the following criteria: if the first element

of the eigenvector is zero, the mode is torsional, otherwise, it is axial. After, nAM

axial modes and nTM torsional modes are selected to reduce the model. The modes

are then assembled into the modal matrix in eq. 3.39 in which φ
(i)
f to φ

(nTM )
f are the

nTM flexible torsional modes and φ
(nTM+1)
f to φ

(nTM+nAM )
f are the nAM flexible axial

modes.
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[Φ] =
[
φrt φra φ

(1)
f . . . φ

(nTM )
f φ

(nTM+1)
f . . . φ

(nTM+nAM )
f

]
(3.39)

The change of variable ū = [Φ]q is implemented in order to reduce the model.

The new variable is substituted in eq. 3.36 and the whole equation is pre-multiplied

by [Φ]T . The new equation of motion is written as:

[Φ]T [M̄ ][Φ]q̈+[Φ]T [D̄][Φ]q̇+[Φ]T [K̄e][Φ]q = [Φ]T f̄T (u̇bit, θ̇bit)− [Φ]Td2Ω− [Φ]Tke2Ωt.

(3.40)

The reduced mass matrix is defined by [m] = [Φ]T [M̄ ][Φ], the reduced damping

is [d] = [Φ]T [D̄][Φ] and the reduced stiffness is [ke] = [Φ]T [K̄e][Φ]. On the right side

of equation, the new reduced vectors are fTr(u̇bit, θ̇bit) = [Φ]T f̄T (u̇bit, θ̇bit), d2r =

[Φ]Td2 and ke2r = [Φ]Tke2.

The damping ratios can be calculated from the damping matrix [D̄]. The damp-

ing ratios can only be calculated for the flexible modes and they are defined by:

ξi =
φ

(i)T
f [D̄]φ

(i)
f

2ωi
, (3.41)

where ωi is the natural frequency for flexible mode i. The new reduced equation

of motion is finally defined by:

[m]q̈ + [d]q̈ + [ke]q = fTr(u̇bit, θ̇bit)− d2rΩ− ke2rΩt. (3.42)

3.6 Numerical Results

The results in this section were obtained for the properties described in Tab. 3.1.

The gravity acceleration is 9.81 m/s2. As the bit-rock interaction model proposed

by TUCKER and WANG [26] was based on an operation with W̄ob = 100kN and

Ω = 100RPM , the values for top rotational speed (Ω) and desired weight-on-bit

(W̄ob) must be close to these values in order to use the same calibrated interaction

model. The proportional damping coefficients are α = 0.1 and β = 0.00008. The

equations of motion were solved using ”ode23t” solver in MATLAB. The initial value

for rotational speed is set as Ω for the hole drill-string and the axial speed equal to

15 m/h for the hole drill-string as well. The deterministic simulation took less than

7 seconds.
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Table 3.1: Drill-string properties.

Property Drill-pipes BHA

Length (m) 2250 250

Outside Diameter (mm) 114.3 165.1

Inside Diameter (mm) 97.18 57.15

Young Modulus (GPa) 210 210

Mass Density (kg/m3) 7850 7850

Poisson’s ratio 0.29 0.29

The drill-pipes and BHA are discretized separately using the finite element

method and a node is placed at the exact location of transition between drill-pipes

and BHA to simplify the discretization. The convergence for the number of elements

is achieved for 48 elements in total: 32 for the drill-pipes and 16 for BHA. The con-

vergence analysis considers the relative error in the 20th mode natural frequency

calculation. This error is calculated in relation to the previous discretization step.

An error on the order of 0.5% was achieved for 48 elements as shown in Fig. 3.5.
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Figure 3.5: Convergence of the 20th natural frequency.

The aim of this study is to analyze stick-slip vibrations, which is a low-frequency

vibration. The convergence in 20th vibration mode is enough to assure the conver-

gence of the most important phenomena for this work.

3.6.1 Evaluation of nonlinear stiffness influence

The consideration of nonlinearities in the stiffness matrix is motivated by the works

[34, 52]. In [34], some changes in drill-string dynamics were noticed after the con-

sideration of nonlinear stiffness matrix. This section is devoted to evaluating the

influence of such nonlinearities in the drill-string dynamical model used in this work.
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The simulations of this section consider a rotary table rotational speed of 95.5 RPM

(10 rad/s).

The first simulations analyzed in this section considered the full model (i.e. with-

out modal reduction) described in Section 3.1, called model 1. The equation of

motion was solved for two cases: the first one considers the nonlinear matrix Kg (as

in eq. 3.35) and is called nonlinear; in the second case, the matrix Kg is set to zero

(as in eq. 3.36) and this case is called linear.

The results for both linear and nonlinear cases did not show relevant changes

in dynamic response for the model chosen above. Figure 3.6 shows the results for

both linear and nonlinear cases and the difference between the two responses is only

noticed after zooming in. The only difference noticed is a very small phase shift.

Thus, the nonlinear stiffness matrix can be ignored in this case.
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Figure 3.6: Results for model 1 with Ω = 95.5 RPM and W̄ob = 100 kN. (a) Rota-
tional speed at the bit; (b) Axial speed at the bit.

In [34], a different model was used for bit-rock interaction. In order to study

what caused the high difference between linear and nonlinear responses in [34], the

same bit-rock interaction model proposed in [34] was implemented as model 2. The

model do not consider changes in axial force at the bit, i.e. fbit = 0, and the torque

on bit is modeled by:

tbit = µW̄obf(θbit)

[
tanh(θ̇) +

α1θ̇bit

1 + α2θ̇2
bit

]
, (3.43)

where µ is a factor depending on the drill cutter characteristics, α1 and α2 are

constants and f(θbit) = 1
1
(1 + cos(θbit)) is a harmonic function. The values used for

the parameters above were the same as in the article: µ = 0.04; α1 = α2 = 1. At

first, the W̄ob was set in 100 kN (different from [34]). The other variables assume the

same value as in the simulation of fig. 3.6. In this model, the boundary condition is
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also different because the axial displacement at the bit is locked. The initial value

for rotational speed is equal to Ω and for axial speed is equal to zero.

In fig. 3.7, it can also be noticed that there are no big differences between linear

and nonlinear models for this interaction model with W̄ob = 100 kN. The main

difference concerns the axial displacement at the top of drill-string. As bit-rock

interaction do not consider the coupling between axial and rotational movements,

the only coupling in this model is due to nonlinear stiffness matrix, thus there is

only axial movement for the nonlinear case. Even so, the axial movement is very

small and the rotational speed is not affected.
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Figure 3.7: Results for model 2 with Ω = 95.5 RPM and W̄ob = 100 kN. (a) Rota-
tional speed at the bit; (b) Axial displacement at the bit.

In order to reproduce the same results of [34], the W̄ob was increased to 255 kN.

In fig. 3.8a, a higher difference is noticed after some seconds of simulation and, at

a first look, it seems that nonlinear stiffness matrix makes difference for a higher

W̄ob. The results obtained here are different from the ones obtained in [34]. This

difference seems to be related to numerical issues faced during simulations for this

case.
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Figure 3.8: Results for model 2 with Ω = 95.5 RPM and W̄ob = 100 kN. (a) Rota-
tional speed at the bit; (b) Axial displacement at the bit.

The bit-rock interaction described in section 3.1 was also simulated considering

W̄ob = 255 kN, but the difference between linear and nonlinear models remained

very small and, thus, they are not presented here.

Some attempts to linearize the nonlinear stiffness matrix can be found in litera-

ture and, although it was shown that only small and negligible differences are noticed

in the case analyzed, the possibility of linearization around an equilibrium configura-

tion was assessed. In fig. 3.9, the axial and angular deformations are plotted against

simulation time and each curve corresponds to one element in drill-string. Here, it is

not important to identify which line corresponds to each element, but it is important

to analyze the overall behavior of both deformations along the time for the whole

structure. The graph shows that the linearization is possible for axial deformation

because the variations are small around the equilibrium configuration. Otherwise,

for the case of angular deformation, the linearization is not recommended due to

the high amplitude of variation. For both graphs, the curves with higher magnitude

refer to the elements of drill-pipes.
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(a) (b)

Figure 3.9: Deformation per element through the time. Each line correponds to one
element. (a) Axial deformation; (b) Angular deformation. Ω = 95.5 RPM, W̄ob =
100 kN.

After all these analyses, it is concluded that the nonlinear stiffness matrix has

negligible influence in the drill-string dynamical model used in this work. Because of

this, the nonlinear stiffness matrix will not be considered in the following sections.

Thus, the equation of motion resumes to eq. 3.36.

3.6.2 Modal analysis

The vibration modes are calculated according to eq. 3.38 in order to build a reduced-

order model. The reduction of the problem saves a lot of processing time. For 100

seconds of simulation, the calculation lasts about 1563 seconds (30 minutes) without

the reduction, while it lasts only 25 seconds with the reduction. The model reduction

was performed using torsional and axial rigid modes plus 4 axial flexible modes and

7 torsional flexible modes. The number of modes considered are enough to cover all

the modes below 4.35 Hz. Figure 3.10 shows the comparison of time response for

the bit rotational speed using the complete and reduced-order models. It is noticed

that the reduced-order model can represent very well drill-string response despite

some vibrations in high frequency. The interest of this study is on low-frequency

vibration such as stick-slip. Therefore, the reduced-order model is enough to analyze

drill-string dynamics.
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Figure 3.10: Comparison between complete and reduced-order models for the rota-
tional speed at the bit. W̄ob = 100 kN, Ω = 95.5 RPM.

The vibration modes that result from eq.3.38 are classified into axial or torsional

according to the criteria explained in section 3.5. The rigid modes have zero natural

frequency and the mode shape is constant along the drill-string length. Because

of this, they are not shown here and only the flexible modes are analyzed. The

vibration modes are numbered in ascending order of natural frequency. In table 3.2,

the natural frequencies are presented in ascending order and the shapes of the modes

are presented below in Figs.3.11, 3.12, 3.13, 3.14, 3.15 and 3.16. Only the flexible

modes used in model reduction are shown in those figures and in table 3.2.

Table 3.2: Natural frequencies for drill-string vibration modes used in model reduc-
tion.

Mode Type Natural Frequency (Hz)

1 Torsional 0.20

2 Torsional 0.78

3 Axial 0.78

4 Torsional 1.46

5 Axial 1.81

6 Torsional 2.17

7 Torsional 2.89

8 Axial 2.93

9 Torsional 3.61

10 Axial 4.06

11 Torsional 4.34

50



-0.5 0 0.5 1

u [m]

-2500

-2000

-1500

-1000

-500

0
-x

 [m
]

Freq. 0.77934Hz

(a)

-1 -0.5 0 0.5 1

u [m]

-2500

-2000

-1500

-1000

-500

0

-x
 [m

]

Freq. 1.8139Hz

(b)

Figure 3.11: Axial vibration modes. (a) 4th mode and (b) 6th mode.
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Figure 3.12: Axial vibration modes. (a) 9th mode and (b) 11th mode.
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Figure 3.13: Torsional vibration modes. (a) 2nd mode and (b) 3rd mode.
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Figure 3.14: Torsional vibration modes. (a) 5th mode and (b) 7th mode.
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Figure 3.15: Torsional vibration modes. (a) 8th mode and (b) 10th mode.
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Figure 3.16: Torsional vibration modes. 12th mode.

The first natural frequencies of drill-string are low. It confirms the high flexibility

of the structure due to its length. In addition, the analysis of the shape of the
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vibration modes suggests that most of the displacement occurs in drill-pipes for

the first modes (low frequency). It occurs because the drill-pipes section is much

more flexible than BHA section for both axial and torsional vibrations. Therefore,

drill-pipes contribute more to low-frequency modes.

With the increase of the natural frequency, the influence of BHA in the shape of

vibration modes increases. Figure 3.17 shows one torsional and one axial vibration

mode with a higher natural frequency. To calculate these natural frequencies, the

drill-string was discretized in 192 elements in order to achieve convergence in such

high frequencies. The bigger displacement in BHA section is remarkable. Despite

this, there are some modes around the ones shown in Fig. 3.17 that BHA still has a

small amplitude when compared to drill-pipes.
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Figure 3.17: Vibration modes. (a) 33th mode (torsional - 12.75Hz) and (b) 29th
mode (axial - 11.15Hz).

The modal analysis points out that there is another interesting and important

phenomenon in drill-string that can happen in higher frequencies depending on

drilling conditions (e.g. HFTO [74]), but the phenomenon of stick-slip, that is

going to be studied in this work, is a low-frequency phenomenon and only the

low-frequency modes are necessary to describe the dynamics of drill-string in such

conditions.

3.6.3 Dynamical response

In this section, the results from deterministic simulation are analyzed. The values

of Ω and W̄ob used in this section are chosen in order to reproduce an operation

without and with stick-slip. All the plots discussed in this section, consider positive

the downward axial movement.

As mentioned in the introduction, only the lowest part of drill-string is operated

under compression while the rest of drill-string is under traction. Figure 3.18 shows
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the axial deformation along drill-string length for two values of W̄ob. It can be noticed

that only the last few meters are under compression. This figure was plotted for

the equilibrium configuration calculated in eq. 3.27, but this plot changes very little

during simulation time as noticed in Fig. 3.9a. The inclination of the curve is due

to the weight of drill-string and the gap between the two lines is exactly at the

transition between drill-pipes and BHA. This gap refers to the difference between

the stiffness of the two structures.
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Figure 3.18: Axial deformation du/dx along drill-string length at each position x.
(a) W̄ob = 100 kN; (b) W̄ob = 65 kN.

For Ω = 95.5 RPM and W̄ob = 65 kN, Fig. 3.19 shows the axial and rotational

speed of the bit. The first seconds are considered as the transient regime and, after

that, the bit reaches the steady state. The rotational speed tends to the speed

imposed in the rotary table and the bit advances at a constant axial speed.
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Figure 3.19: (a) Axial speed at the bit; (b) Rotational speed at the top and at the
bit. W̄ob = 65 kN, Ω = 95.5 RPM.

The difference between the angular position of the top and the bit (∆θ) tends
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to a constant value, as shown in Fig. 3.20a. This constant value is related to the

constant torque applied by bit-rock interaction during steady state (Fig. 3.20b).
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Figure 3.20: (a) Angular relative displacement of the bit with the top angular posi-
tion as reference. (b) Torque-On-Bit (TOB). W̄ob = 65 kN, Ω = 95.5 RPM.

In Fig. 3.21, the Fast Fourier Transform (FFT) of bit rotational speed and bit

axial speed are shown. The amplitude of the FFT is scaled to be in Power/Frequency.

The highest magnitude occurs around the frequency of 0.19 Hz which is very close

to the first natural frequency of the system. Other peaks also appear at multiples

of this frequency due to the nonlinearity caused by bit-rock interaction. The peaks

occur at the same frequency for either bit rotational and axial speeds, although

the first natural frequency is different for each dynamics. It occurs also due to the

nonlinearities introduced by bit-rock interaction. The nonlinear interaction forces

couple the two dynamics and make the peaks to appear at the same frequency.
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Figure 3.21: Fast Fourier Transform (fft) of (a) Bit rotational speed and (b) Bit
axial speed. W̄ob = 65 kN, Ω = 95.5 RPM.
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With the increase of W̄ob from 65 kN to 100 kN, the stick-slip phenomenon starts

to happen. In Fig. 3.22, the axial and rotational speeds are plotted against the time,

respectively. Figure 3.22b shows the constant speed applied at the top of drill-string

and the speed at the bit indicates the occurrence of stick-slip. This phenomenon

is identified when bit achieves zero rotational speed and then is released, reaching

values that can be as high as 5 times the speed at the top of drill-string, for example.

A limitation of the bit-rock interaction model used is that bit does not achieve zero

velocity due to the regularization, but it is not a problem in the analysis done in

this work.

At the bit, the axial speed follows up rotational speed behavior as shown in

Fig. 3.22a. It occurs because when the bit is stuck, it does not move in any direction

considered (rotational nor axial) and a high rotational speed implicates in a faster

material removal speed resulting in a higher axial speed. It can also be noticed

that axial speed is always positive at the bit thus there is not bit-bounce vibration

because the bit never loses contact with borehole bottom.
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Figure 3.22: (a) Axial speed at the bit; (b) Rotational speed at the top and at the
bit. W̄ob = 100 kN, Ω = 95.5 RPM.

The phenomenon called stick-slip can be explained a little better with Fig. 3.23

which plots the bit angular speed by time and the torque related to the top-rotary

system and bit-rock interaction by time. The torque applied by the rotary table

indicates how much energy is stored inside drill-string in the form of torsional de-

formation. Stick-slip vibration is characterized by the sticking of the bit, indicated

by vertical line 1, in which the bit is stick while the top of drill-string continues to

rotate and accumulating energy in form of torsional deformation and thus torque.

Actually, one can observe that drill-string starts to accumulate torque before the

bit sticks because the bit speed is already less than top speed, increasing the tor-

sional deformation. When this accumulated torque is higher than the resistance to

movement (due to bit-rock interaction and other dissipative forces) as indicated by
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vertical line 2, the bit is released and the accumulated energy is released in form

of rotational movement, achieving high speeds. After a big relief of torsional de-

formation, the torque accumulated in drill-string becomes to a level less than the

necessary to make the drilling and the bit starts to decrease its speed until it sticks

again, as indicated by vertical line 3.
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Figure 3.23: Rotational speed at the bit and torque applied by top rotary system
compared to the torque on bit due to bit-rock interaction.

The behavior noticed in the bit speed can be translated into axial and rotational

displacements, as in Fig. 3.24. The first figure shows that the bit is actually moving

downward and drilling the rock, increasing the depth of the hole. The fluctuations

on axial speed also appear in axial displacement as well, but the bit never moves in

the opposite direction, indicating that bit-bounce is not happening. The second plot

shows the linear increase of angular position at the top due to the constant speed

imposed. At the bit, the angular position fluctuates due to stick-slip vibration and

tries to catch up the angular position at the top.

57



0 10 20 30 40 50

time [s]

0

25

50

75

100

125

150
di

sp
la

ce
m

en
t u

 [m
m

]
Bit

(a)

0 10 20 30 40 50

time [s]

0

0.5

1

1.5

2

2.5

3

ro
ta

tio
n 

[d
eg

re
es

]

104

Top
Bit

(b)

Figure 3.24: (a) Axial displacement of the bit; (b) Torsional displacement at the
top and the bit. W̄ob = 100 kN, Ω = 95.5 RPM.

The difference in angular position between the top and the bit (∆θ) is shown

in Fig. 3.25. The initial difference is zero due to the initial condition that imposes

rotational position zero along drill-string. The fluctuation refers to the behavior

noticed in Fig. 3.24b and elucidates the storage of energy in drill-string during

stick-slip cycles.
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Figure 3.25: Angular relative displacement of the bit with the top angular position
as reference. W̄ob = 100 kN, Ω = 95.5 RPM.

Another way to analyze stick-slip cycles is by using the phase portrait that plots

the rotational speed against angular relative displacement (∆θ). The phase portrait

of the stick-slip cycles analyzed is plotted in Fig. 3.26. When the bit sticks, the

relative displacement starts to increase while the bit has zero speed (or low speed in

this case, because of the model limitation). After, the bit is released and the speed

significantly increases very fast and thus the relative displacement starts to decrease

until the energy is not capable of winning cutting resistance anymore. Therefore,

the speed decreases and the bit sticks again. This cycle then repeats according to
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Fig. 3.26 in the clockwise direction.
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Figure 3.26: Phase Portrait at the bit. W̄ob = 100 kN, Ω = 95.5 RPM.

Figure 3.27 shows the phase portrait plotted for one stick-slip cycle in several

positions at drill-string length. At the top of drill-string, the phase portrait col-

lapses to a dot, because the rotational speed is fixed at a constant value and it is the

reference point to calculate angular relative displacement and thus the angular rel-

ative displacement is zero. Along the drill-string, it is possible to see that torsional

oscillation attenuates in terms of the speed and angular relative displacement. The

higher fluctuations in speed happen at the bottom of the drill-string.
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Figure 3.27: Phase Portrait along drill-string length. W̄ob = 100 kN, Ω = 95.5 RPM.

Although the torsional vibrations can be undetectable at the surface in terms

of the torsional deformation or rotational speed, the fluctuations in the torque ap-

plied by top rotary system indicate the occurrence of stick-slip through the high

oscillations depicted in Fig. 3.28.
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Figure 3.28: Torque applied at the top by the top rotary system (rotary table or
top drive). W̄ob = 100 kN, Ω = 95.5 RPM.

Figure 3.29 shows the bit rotational speed in the top plot to help the analysis of

the other plots. The second plot is about the depth-of-cut (DOC) and it is calculated

by the classical definition presented in eq. 2.15. The cutting phenomenon is well

represented by this graph because when the bit is stuck, DOC is almost constant and

it is in its maximum value, generating the maximum resistance to drilling. When the

torque accumulated in drill-string finally wins this resistance, the DOC decreases

immediately because of the block of rock in the front of the cutters brakes. After

DOC decreases, the bit starts to penetrate the rock again, increasing DOC until it

reaches its maximum value again and the cycle repeats.

This behavior is also noticed in the graph that presents the torque on bit (tbit).

When the bit sticks, the torque starts to increase in order to match the torque

accumulated in drill-string and to maintain the bit stopped. When this torque

achieves the maximum torque that represents the maximum rock resistance, the

rock breaks and the torque from bit-rock interaction decreases. The bit then starts

to penetrate the rock again and the torque from bit-rock interaction increases until

bit sticks again and the cycle repeats.

The last plot is about the modulus of axial force at the bit. It can be seen that

there are fluctuations around the desired weight-on-bit (W̄ob). The maximum values

for axial force happen when the bit sticks because the axial movement is stopped

suddenly.
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Figure 3.29: Drill-string dynamics and interaction forces. From the12 top to the
bottom, respectively: Rotational speed at the bit (Bit Speed); Depth-of-Cut (DOC);
Torque on bit (tbit) and; Axial force on bit (fbit). W̄ob = 100 kN, Ω = 95.5 RPM.

Another very common plot is presented in Fig. 3.30. The torque on bit (tbit) is

plotted against bit rotational speed and this graph is known as bit-rock interaction

graph because inspirited many of the bit-rock interaction models developed in the

literature. The same hypothesis from other models are observed here: the torque

decays with bit rotational speed and torque has a maximum value that is reached

when bit sticks. The difference is that maximum torque is not located at zero speed

because of the regularization of the bit-rock interaction model. The other difference

is that axial movement includes a variation of the torque for the same bit rotational

speed.
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Figure 3.30: Bit-rock interaction. W̄ob = 100 kN, Ω = 95.5 RPM.

At last, the Fast Fourier Transform (FFT) of bit rotational speed and bit axial

speed are shown in Fig. 3.31. The amplitude is scaled to be in Power/Frequency.

The first peak occurs around the frequency of 0.17 Hz which is smaller than the

frequency observed in Fig. 3.21. As stick-slip becomes more severe, the frequency

tends to decrease because the stick phase lasts longer and thus the period of stick-

slip increases. Many more peaks also appear at multiples of this frequency due to

the nonlinearity caused by bit-rock interaction. The peaks also occur at the same

frequency for either bit rotational and axial speed due to the coupling in bit-rock

interaction.
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Figure 3.31: Fast Fourier Transform (fft) of (a) Bit rotational speed and (b) Bit
axial speed. W̄ob = 100 kN, Ω = 95.5 RPM.

3.6.4 Parametric analysis

The aim of this section relies on the evaluation of the impact of changes in the

system’s parameters on system dynamics. Some of the main challenges regarding

62



drilling operation simulation are related to the following topics: (i) definition of

operational parameters that optimize the drilling efficiency; (ii) Modeling of the

interactions between drill-string and environment (e.g. Bit-rock interaction), and;

(iii) Modeling of the damping effects along drill-string (e.g. structural damping

and damping due to drilling fluid). Therefore, a parametric analysis was performed

regarding the variables related to these three topics.

As discussed in section 1.4, the main parameters controlled in drilling operation

are: Hook Load (which is directly related to W̄ob); Rotary table speed (Ω), and;

Drilling fluid flow rate. In a parametric analysis, the influence of W̄ob and Ω on

system dynamics is often assessed through stability maps using the concept of Stick-

Slip Severity (Sss) defined as:

Sss =
max(θ̇bit(t))−min(θ̇bit(t))

2 Ω
· 100% (3.44)

where min(θ̇bit(t)) and max(θ̇bit(t)) are calculated for steady-state regime. Fig-

ure 3.32 shows the stability map for the drill-string considered in this chapter. The

color gradient represents the Stick-Slip Severity and the stick-slip is considered se-

vere in this work if Sss > 50%. Since the only source of excitement is the bit-rock

interaction and there are no uncertainties, the rotational speed at the bit tends to

rotary table rotational speed for the cases without stick-slip, and thus Sss ≈ 0.

Therefore, the stability map changes the Sss abruptly in the transition between op-

eration without vibration and with severe stick-slip. The classical behavior in which

stick-slip gets worse for higher W̄ob and lower Ω is also noticed.
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Figure 3.32: Stability map for stick-slip severity. (a) 2D; (b) 3D.

Note that the shape of the stability map presented in Fig. 3.32 is a bit different

from what is commonly found in the literature. Although the rotary table speed

interferes on the severity of stick-slip, the transition between stick-slip and no stick-
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slip is almost flat, i.e. an increase of Ω does not interfere much on the occurrence

or not of stick-slip. In literature, it is usual to Ω have a bigger influence on the

occurrence of stick-lip. An investigation of the proposed model showed that the

damping matrix is capable of increasing the effect of Ω. Figure 3.33 shows a stability

map when the proportional coefficients of damping matrix, α and β, are increased,

respectively, from 0.1 and 0.00008 to 0.4 and 0.008.
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Figure 3.33: Stability map for stick-slip severity. α = 0.4 and β = 0.008. (a) 2D;
(b) 3D.

The impact on the transition region is notable. An increase of Ω is now much

more relevant in the transition region and it can determine whether the operation

will present stick-slip or not. Another important observation is that the severity of

stick-slip decreased overall. In Fig. 3.32, the maximum Sss is above 200%, while in

Fig. 3.33 the maximum is near 150%. Figure 3.34 illustrates better the difference

on stick-slip severity due to damping coefficients. Picking a W̄ob and Ω such that

stick-slip happens in both cases, we can see that bit achieves higher speeds in the

case with lower damping coefficients, while the bit vibrates with lower amplitudes

in the case with higher damping coefficients.
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Figure 3.34: Rotational speed at the bit for Ω = 95.5 RPM and W̄ob = 110 kN. (a)
α = 0.1 and β = 0.00008; (b) α = 0.4 and β = 0.008

The next parametric analysis presented is related to bit-rock interaction model.

It is important to verify how changes in model’s parameters impact the shape of bit-

rock interaction curve and also the consequences in drill-string dynamics. At first,

the bit-rock interaction model (Eq. 3.33 and 3.34) is rewritten in order to allow the

variation of each component of bit-rock interaction:

fbit = b1 +
b2u̇bit

Z(θ̇bit)2
− b3θ̇bit

Z(θ̇bit)
− W̄ob (3.45)

tbit =
u̇bitb4Z(θ̇bit)

2

θ̇bit
+ b5Z(θ̇bit) (3.46)

where b1 = a1/a2, b2 = 1/a2, b3 = a3/a2, b4 = a4 and b5 = a5. Next, a variation

of 20% is applied to each parameter in order to evaluate the influence on bit-rock

interaction shape. Figures 3.35 to 3.37 show how the shape of bit-rock interaction

curve changes for a constant WOB of Wob = W̄ob = 100 kN.

It is intuitive to think that the curves with higher torques would produce more

severe stick-slip vibrations. However, this is not entirely true. Previous studies

[6, 7, 75] already stated that the difference between the maximum torque and the

torque at high speeds is crucial to determine the occurrence and severity of stick-

slip vibration in drill-strings. The decrease of the parameter b4 shown in Fig. 3.36b

reduces the torque amplitude and also reduce the difference between the maximum

and high-speed torques. Thus, a decrease of b4 is expected to reduce the severity

of stick-slip. Otherwise, a decrease on b3 (Fig. 3.36a) reduces the torque amplitude

but slightly increase the difference between the maximum and high-speed torques.

In this case, the stick-slip becomes more severe. This behavior is illustrated in

Fig. 3.38.

In Figs. 3.39 and 3.40, some parameters are varied at the same time by the
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Figure 3.35: Parametric analysis of bit-rock interaction (W = W̄ob = 100 kN).
Varying (a) b1; (b) b2.
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Figure 3.36: Parametric analysis of bit-rock interaction (W = W̄ob = 100 kN).
Varying (a) b3; (b) b4.
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Figure 3.37: Parametric analysis of bit-rock interaction (W = W̄ob = 100 kN).
Varying b5.
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Figure 3.38: Bit rotational speed for W̄ob = 100 kN and Ω = 95.5 RPM. Varying (a)
b3 and (b) b4.

same factor. It is concluded that if b2 and b4 are varied by the same factor, the

shape of bit-rock interaction does not change. Also, the variation of b1 and b5

affects much more the torque on lower speeds than in higher speeds. In Fig. 3.40,

the increase of b3 and b4 makes the curve achieve higher values and increase the

difference between maximum TOB and high-speed TOB. Otherwise, an increase on

b2, b3 and b4 decreases the difference between maximum TOB and high speed TOB.
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Figure 3.39: Parametric analysis of bit-rock interaction (W = W̄ob = 100 kN).
Varying together (a) b1 and b5; (b) b2 and b4.

Figure 3.41 show the bit rotational speed at the bit when b2, b3 and b4 are

increased. It is concluded that, although a decrease in these parameters results in

a decrease in TOB, the bigger difference between max. TOB and high-speed TOB

makes the stick-slip worse.
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Figure 3.40: Parametric analysis of bit-rock interaction (W = W̄ob = 100 kN).
Varying together (a) b3 and b4; (b) b2, b3 and b4.
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Figure 3.41: Bit rotational speed for W̄ob = 100 kN and Ω = 95.5 RPM. Varying (a)
b3 and (b) b4.
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Chapter 4

Stochastic numerical investigation

As discussed in Sec. 2.3, since 1958, a variety of authors have proposed different prob-

abilistic approaches to study the random vibration of drill-strings. In the majority,

the interaction of drill-string with the well was identified to be the main source of

uncertainties in drilling operations. Besides, these uncertainties are commonly taken

into account in the bit-rock interaction model [37, 53, 55] and associated with the

random strength of the rock being cut [14, 55].

Figure 4.1 shows measurements of rock unconfined compressive strength (UCS)

by well depth. In Fig. 4.1a, HARELAND and NYGÅRD [76] presents the data from

an Italian onshore field [77] for cutting strength obtained by mechanical tests and for

a novel approach using ROP. Taking only the cutting strength, which is obtained by

mechanical tests, it is clear that UCS presents a high variation along well depth. In

Fig. 4.1b, ZAUSA et al. [77] presents more data from this same field. It is observed

that UCS fluctuates around a mean value during specific depth intervals. Due to

this, the stochastic model proposed in this chapter to describe these fluctuations

will assume a constant mean over time because the bit is drilling the same rock but

with random strength.

69



(a)

(b)

Figure 4.1: Rock Strength by the depth of well. (a) Adopted from [76]; (b) Adopted
from [77].

In 1992, DETOURNAY and DEFOURNY [29] associated the UCS to the intrin-

sic specific energy ε. This intrinsic specific energy is interpreted as the amount of

energy required to cut a unit volume of rock. Thus, it is directly associated with

the cutting components of bit-rock interaction. Figure 4.2 shows the correlation be-

tween UCS (q) and ε. The dispersion of these variables is associated with stochastic

events linked to the failure of rock [29].

(a)

(b)

Figure 4.2: Correlation between unconfined compressive strength q and specific
energy ε. (a) Adopted from [29]; (b) Adopted from [78].
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Figure 4.3 shows the intrinsic specific energy calculated during one scratch test.

Figure 4.3a depicts a high-frequency content that is associated with stochastic events

linked to failure at the scale of the grains or below [29]. In Fig. 4.3b, another test is

presented and a moving average is applied with a window of 1.0 cm. The resultant

low-frequency content is then associated with heterogeneities or weak zones along

the core specimen [79].

(a)

(b)

Figure 4.3: Measurements of intrinsic specific energy during a scratch test. (a)
Adopted from [29]; (b) Adopted from [79].

In summary, uncertainties related to the specific energy were observed in both

laboratory and field tests, corroborating to the motivation of the inclusion of such

uncertainties in bit-rock interaction through the cutting components.

4.1 Stochastic model for bit-rock interaction

As discussed in the last section, the uncertainties related to rock strength are as-

sociated to the cutting components of bit-rock interaction. Thus, it is necessary to

define the cutting component of the bit-rock interaction depicted in Eqs. 3.33 and

3.34, which is [80]:

Tc = −a4Z(θ̇bit)
2 u̇bit

θ̇bit
, (4.1)

where Tc is the cutting component of TOB. In the bit-rock interaction model adopted

in this work, there is not a component clearly associated with the cutting process.

Since the variation of the axial force is small, the uncertainty in the cutting compo-

nent of WOB is ignored.

The parameter a4 is then modeled by a stochastic process {A4(t), t ∈ R} with
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values in R+. The stochastic process A4(t) = {A4(t), t ∈ R} is constructed accord-

ing to the following properties:

i For all t, A4(t) > 0.

ii As the idea is to simulate the variation of rock strength within the same rock,

the stochastic process A4(t) is assumed to be a first-order stationary process

(constant first moment over time) which is not Gaussian because the support is

[0,∞).

iii The second moment of A4(t) is finite for all t (E{A2
4(t)} < ∞) and the first

moment is known E{A4(t)} = a4m, which is independent of time. E is the linear

operator known as mathematical expectation.

The non-Gaussian stochastic processA4(t) can be constructed using the method-

ology presented in [81–83]. Thus, for all t ∈ R, the stochastic processA4(t) is written

as:

A4(t) = a4m (ha +H(t))2 (4.2)

where ha is defined as a constant such that

E{(ha +H(t))2} = 1, E{(ha +H(t))4} <∞. (4.3)

Actually, the conditions defined in Eq. 4.3 guarantee the conditions E{A2
4(t)} <

∞ and E{A4(t)} = a4m. In addition, notice that the way A4(t) is constructed

(Eq. 4.2) guarantees that A4(t) is always positive if a4m is also positive.

The next step is to define the stochastic process H(t) to generate A4(t). Two

different stochastic processes are proposed: Ornstein–Uhlenbeck Process [84] (O-U

Process) and a novel Coupled Process (CP Process). The theory used to simulate

these stochastic processes is briefly introduced in Appendix B.

4.1.1 Ornstein–Uhlenbeck process

The Ornstein–Uhlenbeck Process (Y (t)) can be used to represent a second-order

stationary Gaussian process {P (t), t ∈ R}, which is centered, mean-square contin-

uous, stationary and ergodic. The power spectral density (PSD) of such a process

can then be defined as [82]:

SP (ω) =
1

2π

b2
2

ω2 + b2
1

, (4.4)

where ω is a frequency in rad/s, b1 and b2 are positive constants and SP (ω) is the

PSD in (rad/s)−1.
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Figure 4.4 shows the PSD of process P (t) considering several values for b1 and

b2. In Fig.4.4a, the SP (ω) is plotted against frequency in Hz and in Fig. 4.4b, the

PSD is normalized by its maximum value max{SP} = 1
2π

b22
b21

in order to allow the

parametric analysis in terms of the decreasing in amplitude with frequency.

Cases 1 and 4 have different amplitudes, but the relative decrease of amplitude

with frequency is the same, as in cases 2 and 3. It is observed that a change on b2

affects only the variance, but not the attenuation over frequencies. This phenomenon

occurs because of the definition of SP (ω), in which b2
2 multiplies the whole equation.

Otherwise, the parameter b1 affects directly the attenuation over frequencies. The

variance of P (t) is defined as

σ2
P =

∫ ∞
−∞

b2
2

2π (ω2 + b2
1)
dω =

b2
2

2b1

. (4.5)

It is noticed that, as b2 affects the amplitude of SP (t), it will also affect the variance

of P (t). In addition, a change on b1 also affects the variance, besides the attenuation.

Furthermore, the change on b1 affects more the amplitude near frequency zero and

it does not affect much higher frequencies.
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Figure 4.4: Power Spectral Density of process P (t) for several values of b1 and b2.
(a) Without normalization; (b) With normalization. Case 1: b1 = 1.0, b2 = 0.05;
Case 2: b1 = 0.5, b2 = 0.0125; Case 3: b1 = 0.5, b2 = 0.05; Case 4: b1 = 1.0, b2 = 0.1.

The stochastic process P (t) can be interpreted as a linear filtering of the centered

Gaussian white noise N∞ whose PSD is given by

SN∞ =
1

2π
, (4.6)

with a linear filter defined by the frequency response function

h(ω) =
b2

i ω + b1

. (4.7)

73



Thus, the PSD of the filtered signal can be calculated as

SP (ω) = |h(ω)|2 SN∞ . (4.8)

Therefore, the Ornstein–Uhlenbeck Process ({Y (t), t ∈ R}) can be used to construct

the process P (t) through a linear Itô stochastic differential equation (SDE) known

as Langevin’s equation (or Ornstein–Uhlenbeck equation) [84], whose solution is

asymptotically stationary. The original application of this equation in physics was

as a model for the velocity of a Brownian particle in a fluid. In this work, it is used

only to generate a process with the characteristics defined before. This equation

works as a linear filter and is defined as:

dY (t) = −b1Y (t) dt+ b2 dW , (4.9)

where W (t) is a Wiener process (for more details, see Appendix B). The initial

condition for Eq. 4.9 is Y (0) = 0 a.s. (almost surely). The analytical solution of

Eq. 4.9 is then given by

Y (t) = b2

∫ t

0

e−b1(t−s)dW . (4.10)

with the first and second moments given by

E[Y (t)] = 0, E[Y 2(t)] =
b2

2

2b1

(1− e−2b1 t), (4.11)

respectively. The asymptotically stationarity property is noticed in the second mo-

ment, which tends to the constant value E[Y 2(t)] =
b22
2b1

, when t is large enough

(t > τ).

Next, it is possible to rewrite Eq. 4.2 to consider the O-U process as:

A4(t) = a4m (hOU + Y (t))2 (4.12)

where hOU is the deterministic function ha for the O-U process. To find the function

hOU , the first condition defined in Eq. 4.3 must be satisfied, thus:

E[h2
OU ] + 2E[hOU Y (t)] + E[Y 2(t)] = 1 , (4.13)

which can be solved by using the moments calculated in Eq. 4.11. This yields:

h2
OU = 1− b2

2

2b1

. (4.14)

Considering that h2
OU and b1 are always positive, Eq. 4.13 yields to the following

constraints ([82]):
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b1 > 0 and 0 < b2 <
√

2b1. (4.15)

Finally, it is concluded that the statistics of the process Y (t) generated by

Langevin’s equation are equivalent to the ones of process P (t) if τ is chosen large

enough to let Y (t) achieve stationarity.

4.1.2 Coupled process

The second stochastic process is a novel stochastic process that is proposed in this

work. It was assumed that a4 is the stochastic process A4(t) because the rock UCS

changes while drill-bit drills the rock. However, let’s consider the case when drill-

string presents torsional oscillations in which drill-bit achieves almost zero speed.

The stochastic process Y (t) generated by the linear SDE defined in Eq. 4.9 will

ignore this situation and continues to vary, although the bit is almost not moving.

In order to circumvent this problem, a novel Coupled stochastic process (CP process)

is proposed.

The proposed process is called coupled because it depends on the drill-string

dynamical response. Two hypotheses served as a basis for the construction of this

process:

(i) CP process is the same as the O-U process if drill-bit rotates at the same speed

as the top rotary system, and;

(ii) When the bit rotational speed decreases, the frequency and amplitude of vari-

ation of CP process also decreases until CP process remains almost constant

over time.

As a first attempt, the right side of Eq.4.9 is multiplied by the bit rotational

speed and the constants b1 and b2 becomes, respectively, ν1 = b1
Ω

and ν2 = b2
Ω

. The

SDE would be:

dG(t) = −ν1Θ̇bit(t)G(t) dt+ ν2Θ̇bit(t) dW , (4.16)

where W is a Wiener process and Θ̇bit(t) is the bit rotational speed, which becomes

a stochastic process due to the stochastic bit-rock interaction. The stochastic system

of equations will be explained in details in Sec. 4.2. Although this formulation seems

very reasonable, the second moment ends up depending on the bit rotational speed,

which is not physically true because the uncertainty level on lithology are not related

to the bit rotational speed. Thus, a modification of Eq. 4.16 is proposed and the

CP stochastic process G(t) is then constructed by the SDE:
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dG(t) = −ν1Θ̇
2

bit(t)G(t) dt+ ν2Θ̇bit(t) dW . (4.17)

where ν1 = b1
Ω2 and ν2 = b2

Ω
. The initial value for Eq. 4.17 is G(0) = 0 a.s.. Note

that Eq. 4.17 is a nonlinear stochastic differential equation, which does not have an

analytical solution. Furthermore, there are no explicit formulae for calculating the

moments. Thus, in order to simplify the problem and calculate the moments, the

rotational speed at the bit is considered as the deterministic result obtained from

Eq. 3.42, i.e. Θ̇bit(t) = θ̇bit(t). Therefore, Eq. 4.17 becomes a scalar linear equation

and the theory presented in Appendix C can be applied to calculate the moments.

The first moment m(t) = E{G(t)} can be obtained by solving the following differ-

ential equation:

dm

dt
= −ν1θ̇

2
bit(t)m(t), m(0) = G(0) = 0, (4.18)

with solution m = 0, thus E{G(t)} = 0. It assures the property (ii) that says

that H(t) must be a first-order stationary stochastic process. The second moment

p(t) = E{G2(t)} is described by the differential equation:

dp

dt
= −2ν1θ̇

2
bit(t) p(t) + (ν2θ̇bit(t))

2, p(0) = G2(0) = 0, (4.19)

which solution can be written as p(t) = ph(t)+pp(t), where ph(t) is the homogeneous

solution (Eq. 4.20) and pp(t) is the particular solution (Eq. 4.21).

ph(t) = c1 e
∫ t
0 −2ν1θ̇2bit(t)dt, (4.20)

pp(t) =
ν2

2

2 ν1

, (4.21)

where c1 is a constant. Since ν1 is defined as a positive constant and the term

2ν1θ̇
2
bit(t) is always positive, the solution ph(t) goes to zero after a large enough time

(t > τ) and the second moment then becomes

E{G2(t)} =
ν2

2

2 ν1

, (4.22)

which allows the calculation of ha in Eq. 4.2 for the CP process. The Eq. 4.2 can

be rewritten to consider the CP process as:

A4(t) = a4m (hCP +G(t))2 (4.23)

where hCP is the deterministic function ha for the CP process. This function is

calculated such that the first condition defined in Eq. 4.3 is satisfied:
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E[h2
CP ] + 2E[hCP G(t)] + E[G2(t)] = 1→ h2

CP = 1− ν2
2

2ν1

. (4.24)

Considering that h2
CP and ν1 are always positive, Eq. 4.24 yields to the following

constraints which are very similar to Eq. 4.15:

ν1 > 0 and 0 < ν2 <
√

2ν1. (4.25)

It is important to point out that, although the simplification Θ̇bit(t) = θ̇bit(t)

is applied here, the calculated properties are validated for the fully coupled case in

Sec. 4.3.2. Notice that, if the simplification Θ̇bit(t) = θ̇bit(t) was used in Eq. 4.16, the

homogeneous and particular solution of Eq. 4.19 would not be trivial to calculate.

In order to simplify and demonstrate the dependence of the second moment on

drill-string dynamics, let’s consider a case in which there is no vibration and the bit

rotates at a constant speed Θ̇bit = cs, where cs is a positive constant. Considering

that the acceleration of the bit is zero, the particular solution of Eq. 4.19 would be:

pp2 =
csν

2
2

2ν1

. (4.26)

which depends on the bit rotational speed. Furthermore, the homogeneous solu-

tion would be ph(t) = c1 e
∫ t
0 −2ν1Θ̇bit(t)dt, which is unstable for negative values of bit

rotational speeds.

4.2 Stochastic system of equations

As the parameter a4 is modeled by a stochastic process {A4(t), t ∈ R}, the bit-

rock interaction f̄T and the displacement vector ū defined in Eq. 3.36 also become

stochastic processes denoted by F̄ T and Ū , respectively. The stochastic dynamics

equation is then described by:

[M̄ ] ¨̄U(t) + [D̄] ˙̄U(t) + [K̄e]Ū(t) = F̄ T (Θ̇bit(t), U̇ bit(t))− d2Ω− ke2Ωt, (4.27)

where F̄ T (Θ̇bit(t), U̇ bit(t)) =
[
0 · · · 0 F bit(Θ̇bit(t), U̇ bit(t)) T bit(Θ̇bit(t), U̇ bit(t))

]T
represents now the stochastic forces at the bit due to bit-rock interaction in which

T bit(Θ̇bit(t), U̇ bit(t)) and F bit(Θ̇bit(t), U̇ bit(t)) are the stochastic processes described

in Eqs. 4.28 and 4.29. They describe the torque and axial force variation around

the desired value for WOB, respectively.
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T bit(Θ̇bit(t), U̇ bit(t)) = −A4(t)Z2(Θ̇bit(t))
U̇ bit(t)

Θ̇bit(t)
− a5Z(Θ̇bit(t)), (4.28)

F bit(Θ̇bit(t), U̇ bit(t)) = − U̇ bit(t)

a2Z
2(Θ̇bit(t))

+
a3Θ̇bit(t)

a2Z(Θ̇bit(t))
− a1

a2

− W̄ob, (4.29)

where A4(t) is the stochastic process defined in Eq. 4.2; Θbit(t) and U̇ bit(t) are the

stochastic rotational and axial speeds at the bit, respectively, and; Z(Θ̇bit(t)) is the

regularization function defined in Eq. 3.32 that also becomes a stochastic process

due to Θ̇bit(t).

Equation 4.27 can also be reduced in the same way it was presented in Sec.3.5.

The reduced stochastic equation of motion becomes:

[m]Q̈(t) + [d]Q̇(t) + [ke]Q(t) = F Tr(Θ̇bit(t), U̇ bit(t))− d2rΩ− ke2rΩt, (4.30)

where [m] = [Φ]T [M̄ ][Φ]; [d] = [Φ]T [D̄][Φ]; [ke] = [Φ]T [K̄e][Φ]; F Tr =

[Φ]T F̄ T (Θ̇bit(t), U̇ bit(t)); d2r = [Φ]Td2, and; ke2r = [Φ]Tke2. Thus, the stochas-

tic system of equations to be solved in numerical procedure is defined as:



dX1(t) = X2(t) dt

dX2(t) = [m]−1
[
−[d]X2(t)− [ke]X1(t) + F Tr(Θ̇bit(t), U̇ bit(t))(X1(t),X3(t))

−d2rΩ− ke2rΩt
]
dt

dX3(t) = F (X, t) dt+B(X, t) dW

,

(4.31)

whereX(t) = [X1(t) X2(t) X3(t)] = [U (t) U̇(t) H(t)] is the state space variable;

F (X(t), t) and B(X(t), t) are the drift and diffusion coefficients of the stochastic

differential equation used to generate X3(t) = H(t) = {H(t), t ∈ R} (note that

H(t) can be either Y (t) (Eq. 4.9) or G(t) (Eq. 4.17), depending on the stochastic

process chosen).

4.3 Stochastic numerical results

The stochastic numerical results are going to be analyzed in three parts. At first,

the generation of the stochastic process A4(t) through Y (t) or G(t) is discussed.

Next, the stochastic response of drill-string is analyzed for both stochastic pro-

cesses considering two operational conditions: one with stick-slip oscillations in the
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deterministic case and one without stick-slip. At last, a parametric analysis is per-

formed in order to evaluate the influence of a set of parameters in the stochastic

response. The stochastic model was simulated using a Modified Euler’s scheme,

which is strongly consistent [85]. This method is explained in Appendix D.

4.3.1 Stochastic process generation

Before introducing the stochastic process A4(t) in drill-string dynamics, we must

understand the characteristics of such process. Therefore, this section will discuss

the two stochastic processes proposed in this work.

Ornstein–Uhlenbeck process

The parameters used in the simulation of O-U process are: a4m = 9.537 · 106 N rad,

b1 = 1.0 and b2 = 0.05. We begin with a convergence study of the simulated stochas-

tic process. For this purpose, 120 seconds are simulated and the second moment

E{Y 2(τe)} is calculated at τe = 120 seconds. Figure 4.5a shows the convergence of

the second moment for the number of simulations. It seems that 200 simulations

are enough to achieve convergence in this case. Figure 4.5b shows the convergence

of the second moment for the step time size ∆t used in the numerical procedure.

Although the convergence is achieved for ∆t < 10−1, a step time of 5x10−4 is used

because of the convergence of the drill-string dynamical response.
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Figure 4.5: Convergence of the second moment of Y (t): (a) over the number of sim-
ulations and step time size ∆t, and; (b) over time step size ∆t for 1000 simulations.

Figure 4.6 confirms the convergence of stochastic process A4(t) for either time

step and number of simulations. Note that the curves are closer to each other (i.e.

∆t changes less the second moment) and stabilize with fewer simulations (around

100 instead of 200), suggesting that process A4(t) converges faster than Y (t).
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Figure 4.6: Convergence of the second moment of A4(t) = a4m(hOU + Y (t))2 over
the number of simulations and step time size ∆t.

It was mentioned in Sec. 4.1.1 that process Y (t) is asymptotically stationary, i.e.

it tends to a stationary process. This statement was made because of the second

moment E{Y 2(t)}, which has an exponential term that tends to zero with time and

makes the second moment to become constant. This behavior is demonstrated in

Fig. 4.7a, which plots the second moment calculated over 1000 simulations at each

time. It shows that the stochastic process Y (t) becomes stationary after around

2 seconds. Figure 4.7b shows one simulation of Y (t) used to calculate the second

moment. It is observed that Y (t) varies around zero and its variation seems to be

higher amplitudes in low frequencies.
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Figure 4.7: (a) Second moment of Y (t) over time; (b) One realization of stochastic
process Y (t).

A probabilistic envelope of three standard deviations around the mean of process

A4(t) is plotted in Fig. 4.8a. The mean fluctuates around a4m = 9.537 ·106, which is

expected because E{(hOU + Y (t))2} = 1. The three standard deviation envelope is

about 40% of the mean value a4m, which is acceptable given the variations observed
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in experimental data showed in Figs. 4.3, 4.2 and 4.1. The transient of the envelope is

related to the time necessary to achieve stationarity. Figure 4.8b shows 5 realizations

of process A4(t) and a lower variation is observed in the first seconds due to the

initial condition that imposesA4(0) = a4mh
2
OU because Y (0) = 0. This low variation

is related to the asymptotically stationarity property.
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Figure 4.8: (a) Probabilistic envelope of A4(t) = a4m(hOU + Y (t))2 for three times
the standard variation σA4 around mean µA4. (b) Five realizations of the process
A4(t) = a4m(hOU + Y (t))2

Next, the Power Spectral Density (PSD) is calculated from the simulated stochas-

tic process and it is compared to the analytical PSD depicted in Eq. 4.4. Figure 4.9

shows the average of the PSDs calculated over 1000 simulations and the analyti-

cal PSD. It is concluded that both PSDs fits very well, which indicates that the

stochastic process Y (t) was generated successfully in terms of the PSD.
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Figure 4.9: Power Spectral Density of process Y (t) for simulated data and analytical
solution.

In order to verify the generation of A4(t), the PSD is also evaluated against

the analytical result. In order to allow the comparison between the PSDs, they
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are normalized by its maximum value. Figure 4.10 shows that the average of PSDs

calculated over simulated data fits well the analytical result which indicates that the

process A4(t) is being constructed correctly.
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Figure 4.10: Normalized Power Spectral Density of process A4(t) = a4m(hOU +
Y (t))2 for simulated data and analytical solution.

Coupled process

The Coupled process (CP process) is simulated in this section. The parameters used

in simulation are: a4m = 9.537 · 106 N rad, ν1 = 0.01 s2/rad2 and ν2 = 0.005 s/rad.

These values were considered in order to allow the comparison with O-U process

(note that b1 = ν1 · 102 and b2 = ν2 · 10 for a constant bit speed θ̇bit = 95.5 RPM

= 10 rad/s.).

In order to analyze the CP process without the influence of drill-string dynamics,

the process G(t) is simulated without the full coupling with drill-string dynamics

at first. For this purpose, the bit rotational speed considered in Eq. 4.17 is set as

the deterministic results shown in Fig. 3.22b. In order to wait for process G(t)

to stabilize its second moment before simulation actually begins, 15 seconds are

simulated considering a constant bit speed θ̇bit = 95.5 RPM. After these 15 seconds,

the simulation restarts using the end of these 15 seconds as the initial condition and

the simulation starts to consider the bit speed variations of Fig. 3.22b. Because of

the way ν1 and ν2 are defined, the results for the first 15 seconds are the same as in

Figs. 4.8 and 4.7.

The same way as in the O-U process, the convergence is analyzed in the case

of the CP process. Therefore, 120 seconds are simulated and the second moment

E{G2(τe)} is calculated at τe = 120 seconds. Figure 4.11a shows the convergence

of the second moment for the number of simulations. It seems that 400 simulations

are enough to achieve convergence in this case. Figure 4.11b shows the convergence

of the second moment for the step time size ∆t used in the numerical procedure.
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Although the convergence is achieved for ∆t < 10−2, a step time of 5x10−4 is used

because of the convergence of drill-string dynamical response.
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Figure 4.11: Convergence of the second moment of G(t): (a) over the number
of simulations and step time size ∆t, and; (b) over time step size ∆t for 1000
simulations.

Figure 4.12 confirms the convergence of stochastic process A4(t) = a4m(hCP +

G(t))2 for either time step and number of simulations. Note that the curves are

closer to each other but it does not stabilize with fewer simulations, as in O-U

process.
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Figure 4.12: Convergence of the second moment of A4(t) = a4m(hCP +G(t))2 over
the number of simulations and step time size ∆t.

In CP process, the conclusions for both G(t) and A4(t) processes are the same.

Because of this, only the graph of A4(t) is presented. Figure 4.13 shows a prob-

abilistic envelope of three standard deviations around the mean of process A4(t).

The mean fluctuates around a4m = 9.537 · 106, which is also expected because

E{(hCP + G(t))2} = 1. The three standard deviation envelope have almost the

same amplitude as in Fig. 4.8a, which permits the comparison between the two
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stochastic processes. It is observed a change on the envelope between the phases in

which the bit is rotating or almost locked. Also, the envelope fluctuates more during

the time bit is rotating. This change on envelope shapes elucidates the homogeneous

solution of the second moment (Eq. 4.20). It can also be seen that the changes due

to the homogeneous solution are much smaller than in particular solution, which

confirms the hypothesis made in Sec. 4.1.2. The green boxes highlight the time

intervals in which the bit is almost locked. It is observed that the stochastic process

tends to be constant during this time, as expected. The process A4(t) does not

become strictly constant because of the limitation of the bit-rock interaction model

which cannot cause the bit to completely stick, i.e. to achieve zero speed.
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Figure 4.13: Top graph: rotational speed at the bit used as input for the generation
of stochastic process G(t); Bottom graph: 3 realizations and the probabilistic enve-
lope of A4(t) = a4m(hCP +G(t))2 for three times the standard variation σA4 around
the mean µA4. The time intervals in which bit is almost stopped are highlighted by
green rectangles.

Since the CP process is not considered wide-sense stationary, it is not possible

to calculate its Power Spectral Density. Instead, in Fig. 4.14a, the Fast Fourier

Transform (FFT) of process G(t) is calculated and scaled to make amplitude be

in dB/Hz. The FFT is calculated for two distinct time intervals: in one of them,

the bit is almost stationary (stick phase) and in the other, the bit is rotating (slip

phase). The difference between the spectra is remarkable. In the slip phase, the

spectrum presents a smaller attenuation while in stick phase, almost all the energy is

concentrated near zero frequency, i.e. the process is almost constant. This behavior

can also be noticed in Fig. 4.14b which plots the spectrogram of process A4(t) =
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a4m(hCP + G(t))2. It is possible to identify the time intervals in which the bit is

rotating or almost locked. When the bit is almost locked, the bands are in blue and

denote that amplitude is concentrated at frequencies near zero. Otherwise, when

the bands are closer to yellow, they have the amplitude distributed over a larger

frequency band, which indicates that bit is rotating.
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Figure 4.14: (a) Fast Fourier Transform (fft) of process G(t) for when bit is almost
stationary (stick phase) and when bit is rotating (slip phase).; (b) Spectrogram of
process A4(t) = a4m(hCP +G(t))2 for simulated data.

4.3.2 Stochastic system response

In this section, the drill-string dynamics is simulated in the presence of the stochastic

processes proposed. The parameters used in the simulations are: a4m = 9.537 · 106

N rad, b1 = 1.0, b2 = 0.05, ν1 = 0.01 s2/rad2 and ν2 = 0.005 s/rad. The parameters

related to drill-string are the same as in Sec. 3.6. The deterministic model is simu-

lated for 250 seconds and the end of the deterministic solution is used as the initial

condition of stochastic simulation. The stochastic model is then simulated for more

250 seconds. The solution is obtained by using the solver ”ode23t” in MATLAB,

for deterministic case, and the stochastic results are obtained by a Modified Euler’s

scheme. The deterministic solution used as the initial condition for stochastic simu-

lation is shown in Fig. 4.15 in terms of bit rotational speed for two values of WOB.

For W̄ob = 100 kN, the deterministic result presents a severe vibration at the bit.

Otherwise, for W̄ob = 68 kN, the bit presents no vibration in steady state.
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Figure 4.15: Deterministic rotational speed at the bit used as initial condition for
stochastic simulation. (a) Ω = 95.5 RPM and W̄ob = 100 kN; (b) Ω = 95.5 RPM
and W̄ob = 68 kN

At first, an investigation is performed in order to evaluate if the model reduction

is still working on the stochastic case. Also, the time step ∆t of numerical procedure

is verified. After the simulation of the deterministic model for 250 seconds, the

stochastic model is simulated for more 250 seconds. Figure 4.16 shows the bit

rotational speed from 260 to 270 seconds for both proposed stochastic processes.

This figure compares the results obtained by the complete model and by the reduced-

order model with two time step sizes. It is observed that frequency and amplitude

of stick-slip are the same for complete and reduced model, but there is a phase

between them. In the case where the complete model is used, it is used in both

deterministic and stochastic cases. The same is also true for the reduced model. In

deterministic case, a little phase is observed between complete and reduced model.

This phase continues to exist in stochastic case, because of the initial condition, and

it can increase due to uncertainties. In the complete model, it is possible to detect a

higher amplitude of vibration during the stick-slip cycle, but this higher frequency

phenomenon does not seem to affect the overall response. In reduced mode, it is also

concluded that the time step did not change system response. Thus, the reduced

model is going to be used in the following simulations with ∆t = 5 · 10−4.
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Figure 4.16: Convergence of stochastic drill-string dynamical response. Ω = 95.5
RPM and W̄ob = 100 kN. (a) O-U process, and; (b) CP process.

The convergence of the number of simulations (ns) is also evaluated in terms of

the mean square convergence. For this purpose, the function conv(ns) is proposed:

conv(ns) =
1

ns

ns∑
i=0

∫ 500

250

Θ̇
2

bit(t) dt , (4.32)

Figure 4.17 shows that convergence is reached for 400 simulations. However, 1000

simulations are going to be used when possible. This way, the statistics obtained

through the stochastic response become smoother and it permits a better visualiza-

tion of the results.
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Figure 4.17: Convergence of stochastic drill-string dynamical response for the num-
ber of simulations. Ω = 95.5 RPM and W̄ob = 100 kN. (a) O-U process, and; (b)
CP process.
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In Sec. 4.3.1, the CP process is generated considering the bit rotational speed

in Fig. 3.22b, but rotational speed is not influenced by stochastic process. Now,

the fully coupled system is simulated and the hypotheses are tested again. Fig-

ure 4.18 shows one realization of stochastic process A4(t) = a4m(hCP +G(t))2 and

its probabilistic envelope for the fully coupled system. It is observed that the mean

continues to be constant and equal to a4m and the envelope has constant width,

which indicates an almost constant second moment.
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Figure 4.18: Validation of CP Process properties with fully coupled system. One
realization and the probabilistic envelope of A4(t) = a4m(hCP + G(t))2 for three
times the standard deviation σA4 around mean µA4. Ω = 95.5 RPM and W̄ob = 100
kN.

From now on, the results are going to be presented considering that the uncer-

tainties are modeled by the CP process. In some cases, the results considering the

O-U process are also presented for comparison purposes. At first, the case in which

stick-slip occurs in the deterministic model is going be analyzed (Ω = 95.5 RPM

and W̄ob = 100 kN). Some stochastic simulations resulted in negative axial speeds

at the bit, indicating bit-bounce phenomenon. However, a deeper investigation as-

sociated these results to numerical issues. Thus, these simulations are aborted and

they are not considered in the statistics presented. Figure 4.19 shows that, in 1000

simulations, it occurred 4 times (0.4%) for O-U process and 8 times (0.8%) for CP

process.
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Figure 4.19: Simulations in which the bit achieves negative axial speeds. (a) O-U
process, and; (b) CP process.

Figure 4.20 shows the bit rotational and axial speeds for one simulation. Al-

though in the deterministic case the bit vibrates with a constant amplitude, the

stochastic results present an amplitude that varies within time. The amplitudes of

vibration can achieve higher values, increasing the severity of vibration.
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Figure 4.20: One simulation of the stochastic response at the bit with uncertainties
modeled by CP Process. (a) Rotational Speed, and; (b) Axial Speed. Ω = 95.5
RPM and W̄ob = 100 kN.

The average and the probabilistic envelope of 95% of bit rotational speed are

calculated for both stochastic processes over 1000 simulations and shown in Fig. 4.21.

In both cases, the probabilistic envelope seems to follow the average at the beginning,

and both of them follow the deterministic result. However, after some seconds, the

envelope of each cycle starts to sum up until it becomes a great shaded area. This
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behavior occurs because the initial condition forces the envelope to be well behaved

at the beginning, with a low influence of the uncertainties in stick-slip frequency.

After some time, these uncertainties sum up and the cycles start to happen at

different times, which causes the envelope to be no more related to the deterministic

results and to the average. With time, the average of bit rotational and axial speeds

tend to a constant value, which, in rotational case, is very close to surface speed. It

also occurs because of the variation in stick-slip frequency. The same phenomenon

observed in bit rotational speed is observed in bit axial speed.

(a) (b)

Figure 4.21: Probabilistic envelope of 95% for the rotational speed at the bit. (a)
O-U Process; (b) CP Process. Ω = 95.5 RPM and W̄ob = 100 kN.

In order to check if the average really goes to a constant value, the stochastic

model is simulated for more time (1500 seconds). Figure 4.22 confirms that average

goes to a constant value for CP process. The behavior is the same for the O-U

process.
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(a) (b)

Figure 4.22: Probabilistic envelope of 95% for 1500 seconds of stochastic results with
uncertainties modeled by CP Process. (a) Rotational speed, and; (b) Axial speed.
Ω = 95.5 RPM and W̄ob = 100 kN.

Figure 4.23 presents a zoom on one simulation of the stochastic model with

uncertainties modeled by the O-U process and CP process. The difference between

the two processes is observed in this graph. In the O-U process, the uncertainties are

equally present during all the time, when the bit is almost stuck (blue rectangles)

or when it is rotating (red circles). Otherwise, in the CP process, the uncertainties

are more relevant when the bit is actually drilling the rock (highlighted by the red

circles). Also, the CP process can result in higher variations during stick-slip because

the bit achieves rotational speeds much higher than the speed at the top (remember

that the parameters used in process simulation are such that they have the same

uncertainty level when the bit is rotating at the same speed as in the top rotary

system). The graphs in Fig. 4.23 illustrate this very well because, in the CP process,

the uncertainties are higher than in the O-U process when the bit is rotating.
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Figure 4.23: One simulation of the TOB by the stochastic model with uncertainties
modeled by (a) O-U process and (b) CP process. Ω = 95.5 RPM and W̄ob = 100
kN.

The bit-rock interaction graph (TOB vs bit rotational speed) is shown in Fig. 4.24

for the stochastic case. Figure 4.24a shows one simulation of stochastic model and

the deterministic result. The variations around deterministic result are noticeable

and the graph seems to approximate better reality than the deterministic model. In

Fig. 4.24b, the probabilistic envelope is calculated using a moving average approach.

It is observed that the average calculated over 1000 simulations lies very close to

the deterministic result. Also, the envelope width is higher near the peak and

it decreases as bit speeds up. Besides, at low speeds, the envelope is very tight.

This behavior is what we expect to obtain according to the parametric analysis

performed in Sec. 3.6.4, which presented this behavior in the bit-rock interaction

graph for variations in a4.

92



0 50 100 150 200 250 300
Bit Speed [RPM]

0

1

2

3

4

5

6

7

T
O

B
 [k

N
.m

]
Stochastic
Deterministic

(a)

0 50 100 150 200 250 300
Bit Speed [RPM]

0

1

2

3

4

5

6

7

T
O

B
 [k

N
.m

]

Average
95% Envelope
Deterministic

(b)

Figure 4.24: Stochastic bit-rock interaction graph with uncertainties modeled by
CP Process. (a) One simulation of 250 seconds, and; (b) Probabilistic envelope of
95%. Ω = 95.5 RPM and W̄ob = 100 kN.

In order to make an analysis in the frequency domain, a Fast Fourier Transform

(FFT) is calculated over the 1000 stochastic simulations. The average FFTs of bit

rotational and axial speeds are presented in Fig. 4.25 together with their probabilistic

envelope and the deterministic FFTs obtained in Sec. 3.6. The uncertainties on the

frequency of the first peak seem to be small and it explains why probabilistic envelope

takes a lot of time to become a wide band. It is also noticed that the amplitude of

the first peak in the deterministic case is lower than the amplitudes related to the

average and to the upper limit of the envelope in stochastic case. It indicates that

vibration is worse in stochastic case.

(a) (b)

Figure 4.25: Fast Fourier Transform (fft) of stochastic response with uncertainties
modeled by CP process. (a) Bit rotational speed, and; (b) Bit axial speed. Ω = 95.5
RPM and W̄ob = 100 kN.
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By decreasing the W̄ob to 68 kN, it is possible to obtain a deterministic result

without vibration in steady state. However, when uncertainties are introduced, the

drill-string starts to vibrate. For this value of W̄ob, no simulations presented negative

axial speeds at the bit. Figure 4.26 shows one stochastic simulation of bit rotational

and axial speed when uncertainties are modeled by CP Process. It is noticed that the

amplitude of vibration is small near the beginning because of the initial condition.

Nevertheless, the amplitude can increase with time and induce severe vibration at

the bit. The probabilistic envelope calculated over 1000 simulations and shown

in Fig. 4.27 illustrates pretty well this behavior. Although the average maintains

itself near initial condition, the envelope increase with time until reaching a certain

amplitude. The same behavior is observed for the cases in which uncertainties are

modeled by O-U process, because the difference between the two processes relies

mainly on the phases in which bit experiences a high vibration amplitude, such

as in stick-slip situations. For this reason, only the results for the CP process are

displayed.
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Figure 4.26: One simulation of the stochastic response at the bit with uncertainties
modeled by CP Process. (a) Rotational Speed, and; (b) Axial Speed. Ω = 95.5
RPM and W̄ob = 68 kN.
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(a) (b)

Figure 4.27: Probabilistic envelope of 95% stochastic response with the uncertainties
modeled by CP Process. (a) Bit rotational speed, and; (b) Bit axial speed. Ω = 95.5
RPM and W̄ob = 68 kN.

The TOB is also analyzed in this case. Figure 4.28 shows that TOB assumes

values near a region in bit-rock interaction graph. The usual shape of bit-rock

interaction is not recovered in this situation and the results are qualitatively similar

to the experimental data available in [45].
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Figure 4.28: Stochastic bit-rock interaction graph with uncertainties modeled by
CP Process. (a) One simulation of 250 seconds, and; (b) Probabilistic envelope of
95%. Ω = 95.5 RPM and W̄ob = 68 kN.

In the frequency domain, the FFT is calculated for the deterministic result (in-

cluding transient regime) and for the stochastic result. Figure 4.29 compares the two

results. Both responses present peaks at the same frequencies, but the amplitudes

are different. It is important to highlight that the deterministic curve is different
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from zero only because of the transient regime. Otherwise, the amplitudes of the

stochastic curve would be much bigger. However, even considering the transient

regime, it is noticed that the magnitude associated with the first peak can reach

values in the stochastic case that can be higher than in the deterministic case. It

indicates that vibration is more severe when the uncertainties are considered.

Figure 4.29: Fast Fourier Transform (fft) of stochastic bit rotational speed with
uncertainties modeled by CP process. Ω = 95.5 RPM and W̄ob = 68 kN.

Figure 4.30 summarizes the effects of the uncertainties on the severity of vibration

using the stick-slip severity factor calculated by Eq. 3.44. The empirical cumulative

distribution function (cdf) is calculated based on 1000 stochastic simulations and

plotted for the two values of W̄ob considered in this section, as well as for the two

stochastic processes proposed in this work. The results presented in Fig. 4.30b

corroborates that the results are very similar for CP and O-U processes when a

small W̄ob is considered. Otherwise, Fig. 4.30a shows that the vibration is more

severe when the CP process is applied. The mean of SSS is 125.4% for CP process

and 123.5% for O-U process, and the coefficient of variation is 2.85% for CP process

and 2.47% for O-U process.

It is also observed that, for both W̄ob values, the mean of SSS do not coincide

with the deterministic SSS of ≈ 112% for W̄ob = 100 kN and ≈ 0% for W̄ob = 68

kN, which are represented by vertical lines in Fig. 4.30. Actually, all the stochas-

tic results presented values higher than the deterministic result. It occurs because

the stochastic process can assume different values during the simulation, which can

worsen or not the stick-slip oscillations during the same simulation. If the uncer-

tainties were modeled by random variables with the mean as the deterministic value,

instead of a stochastic process, the CDF would be much closer to the deterministic

result because A4(t) would assume values around deterministic value and remain

constant over time. Furthermore, the shape of CDF is closely related to the total
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time used to calculate SSS because if a very large time is used, the stochastic pro-

cess would behave in almost all possible ways during this time, generating no big

differences between the SSS calculated over different simulations.
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Figure 4.30: Empirical Cumulative Density Function of stick-slip severity factor.
Ω = 95.5 RPM. (a) W̄ob = 100 kN and; (b) W̄ob = 68 kN.

4.3.3 Parametric analysis

A parametric analysis is performed in order to evaluate the influence of some pa-

rameter on the statistics of stochastic response. The first parameter analyzed is

the applied W̄ob. Figure 4.31a shows the probabilistic envelope of stick-slip severity

factor (SSS) compared to the deterministic case for values of W̄ob that range from

60 to 110 kN. The probabilistic envelope was calculated over 450 simulations. The

uncertainties are modeled by O-U and CP processes. It is noticed that, for low W̄ob,

the deterministic case returns SSS values very close to zero, while stochastic case

returns values much higher. Also, the width of the envelope seems to be smaller

from 73 to 87 kN. Besides, the statistical envelope is always higher than the deter-

ministic curve, which indicates that uncertainties worsen the vibration experienced

at the bit. Comparing the O-U process with the CP process, it is noticed that the

CP process generate higher values of SSS and the difference is bigger for higher W̄ob.

Figure 4.31b plots the standard deviation of stochastic SSS against the W̄ob. It

is observed that the standard deviation increases from 60 to around 69 kN, where

the deterministic case starts to present stick-slip vibrations. It indicates that the

influence of uncertainties on stick-slip severity increases in low W̄ob until it reaches

the deterministic boundary between operation with and without stick-slip. In the

stick-slip zone of the deterministic stability map, the standard deviation of the

stochastic case seems to be small from 73 to around 87 kN. From 87 to 110 kN,
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the standard deviation increases but it is still much smaller than in the range from

60 to 69 kN. The difference between the two stochastic processes can be noticed

again. CP process generates a bigger standard deviation, but this difference is

more notable at higher W̄ob. This behavior can be explained because drill-string

is usually experiencing worse vibrations at high W̄ob. Thus, the difference between

the formulations of the two processes gets more evidence, generating more different

results.
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Figure 4.31: (a) Stick-slip severity factor (SSS) for Ω = 95.5 RPM according to
the applied W̄ob. (b) Standard deviation of the stick-slip severity according to the
applied W̄ob.

As in deterministic parametric analysis, the damping is increased through the

parameters α and β in proportional damping matrix. These parameter are increased

from α = 0.1 and β = 0.00008 to α = 0.4 and β = 0.008. As in deterministic case,

the response in frequency domain is calculated by taking the fft of the results.

Figure 4.32a shows the fft of bit rotational speed for W̄ob = 68 kN and it is very

different from the one presented in Fig. 4.29 because, with a higher damping, only

the first peak is evident. For a higher W̄ob, Fig. 4.32b shows that only the first 3

peaks are evident in stochastic case.
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(a) (b)

Figure 4.32: Fast Fourier Transform (fft) of bit rotational speed for a bigger damping.
Ω = 95.5 RPM, α = 0.4 and β = 0.008. (a) W̄ob = 82 kN, and; (b) W̄ob = 110 kN.

The empirical cumulative distribution function (CDF) of the SSS is then eval-

uated using Fig. 4.33. It is important to mention that, as in Fig. 4.32, the W̄ob is

different for the two damping cases. For the lower damping, the W̄obs were main-

tained in 68 and 100 kN, while for the higher damping, the W̄obs are 88 and 110 kN.

It is done because, as discussed in Sec. 3.6.4, the damping changes the stability map.

Thus, the values of W̄ob are reset in order to give a response qualitatively similar.

Figure 4.33a shows the CDF for the case with higher W̄ob. It is noticed that the

difference between CP and O-U processes increased for the higher damping. Also,

the mean SSS decreased. Despite this, the coefficient of variation increased from

2.47 to 3.47% for O-U process and from 2.85 to 3.89% for CP process. Figure 4.33b

shows the CDF for the lower values of W̄ob. In this case, the difference between the

processes decreases. The coefficient of variation also increased from 17.50 to 20.56%

for O-U process and from 17.65 to 20.73% for CP process.
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Figure 4.33: Empirical cumulative distribution function (CDF) of the stick-slip
severity factor (SSS) for Ω = 95.5 RPM. Case 1 (C1): W̄ob = 100 kN, α = 0.1
and β = 0.00008; Case 2 (C2): W̄ob = 110 kN, α = 0.4 and β = 0.008; Case 3 (C3):
W̄ob = 68 kN, α = 0.1 and β = 0.00008; Case 4 (C4): W̄ob = 88 kN, α = 0.4 and
β = 0.008.

Another investigation performed is related to the parameters of the stochastic

process. Three cases are considered and the probabilistic envelopes of the bit-rock

interaction graphs are shown in Fig. 4.34 for the three combinations of parameters

and two values of W̄ob. The PSDs of the three cases considered are plotted in

Fig. 4.4 for O-U process. It is observed that case C3 presented the larger variation

on bit-rock interaction for both values of W̄ob. Also, the probabilistic envelope of

case C3 is plotted for a larger range of bit rotational speed, which indicates that bit

experienced worse vibrations.
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Figure 4.34: Probabilistic envelope of TOB against the bit rotational speed for
Ω = 95.5 RPM when the uncertainties are modeled by CP process. Case 1 (C1):
ν1 = 0.01, ν2 = 0.005; Case 2 (C2): ν1 = 0.005, ν2 = 0.005; Case 3 (C3): ν1 = 0.01,
ν2 = 0.01. (a) W̄ob = 68 kN, and; (b) W̄ob = 100 kN.

Figure 4.35 shows the empirical CDF for the three cases considered above. It

is noticed that, for both W̄ob values, the worst case is case C3 that presents higher

values of SSS. The difference between CP and O-U processes increase from case C1

to case C3, as well as the coefficient of variation. Also, a change on b2 and ν2 seems

to influence much more the stick-slip severity.
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Figure 4.35: Empirical cumulative distribution function (CDF) of stick-slip severity
factor (SSS). Ω = 95.5 RPM. Case 1 (C1): b1 = 1.0, b2 = 0.05, ν1 = 0.01, ν2 = 0.005;
Case 2 (C2): b1 = 0.5, b2 = 0.05, ν1 = 0.005, ν2 = 0.005; Case 3 (C3): b1 = 1.0,
b2 = 0.1, ν1 = 0.01, ν2 = 0.01. (a) W̄ob = 68 kN, and; (b) W̄ob = 100 kN
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Chapter 5

Conclusions

In this work, the axial-torsional coupled dynamics of a drill-string was analyzed

in the presence of uncertainties in bit-rock interaction. The drill-string was mod-

eled using extended Hamilton’s principle considering geometric nonlinearities. The

equations of motions were discretized by the finite element method and the bit-rock

interaction model was included. The bit-rock interaction model was validated with

experimental data for a laboratory-scale drill-string in order to evaluate its predic-

tion capability. For the numerical investigations, typical geometric parameter values

of a real-scale drill-string were used.

At first, the deterministic model is assessed and it is concluded the geometric

nonlinearities did not affect the response for the model and the range of parameters

considered. The vibration modes were calculated and it was concluded that drill-

pipes are more affected in the first modes (low frequency) and the amplitudes at

BHA starts to be significant only for higher frequency modes. The model was

reduced using the vibration modes and the convergence was assessed. The model

could capture typical responses with and without stick-slip. A parametric analysis

showed that the stability map is very dependent of the damping level.

After the deterministic investigations, a new stochastic bit-rock interaction

model is proposed. This model describes the cutting component of TOB by stochas-

tic processes, which are modeled by using Itô stochastic differential equations. Two

stochastic processes were proposed: Ornstein-Uhlenbeck process and a novel coupled

process. The stochastic system of equations is simulated by using a modified Euler’s

method. The bit-rock interaction graphs of stochastic case are much more similar

to experimental results found in literature. For the lowest WOB, the stochastic

response presents a torsional vibration severity much higher than in deterministic

case. The empirical cumulative distribution is calculated for the stick-slip severity

factor and shows that all the values obtained in stochastic case are higher than the

ones obtained in deterministic case. Also, the difference between the two proposed

stochastic processes is more evident with higher WOB.
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At last, a parametric analysis is performed. It is observed that the standard de-

viation of stick-slip severity factor increases with WOB until it reaches its maximum

value at the deterministic boundary between operation with and without stick-slip.

After this, the standard deviation stays at lower levels. It is also concluded that a

higher damping actually increases the coefficient of variation of stick-slip severity

factor and the difference between the results from the two stochastic processes for

high WOBs. Changes in the diffusion coefficient of the stochastic processes are more

detrimental to stick-slip severity.

As future works, three main additional works are proposed:

� Identification of the parameters used in the stochastic process simulation with

experimental data in order to validate the stochastic model proposed;

� Improve the experimental test-rig constructed at Laboratório de Acústica e

Vibrações (LAVI) in UFRJ - Brazil - in order to include the axial dynamics of

drill-string in a more realistic way. It would be done by fixing the test-body

and letting the ”drill-string” move.

� Use the calibrated bit-rock interaction model proposed by [29] in the dynam-

ical model and consider the cutting components as stochastic variables. This

model would allow this consideration for both WOB and TOB. An exten-

sive research is necessary in order to couple delay differential equation with

stochastic differential equations.
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to Achieve Breakthrough in Drilling Performance”, IADC/SPE Drillng

Conference and Exhibition, , n. IADC/SPE 128767, pp. 1–13, 2010. doi:

10.2118/128767-MS.

[4] DUFEYTE, M.-P., HENNEUSE, H. “Detection and Monitoring of the Slip-

Stick Motion: Field Experiments”, Proceedings of SPE/IADC Drilling

Conference, pp. 429–438, 1991. doi: 10.2523/21945-MS.

[5] LIN, Y.-Q., WANG, Y.-H. “Stick-Slip Vibrations of Drill Strings”, ASME J.

Eng. for Industry, v. 38, n. December 1989, pp. 38–43, 1991.

[6] DAWSON, R., LIN, Y., SPANOS, P. “Drillstring stick–slip oscillations”. In:

Spring Conference of the Society for Experimental Mechanics, Houston,

TX, 1987.

[7] SPANOS, P., CHEVALLIER, A. M., POLITIS, N. P., etãl. “Oil and Gas Well
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Appendix A

Bit-rock interaction model

validation with experimental data

Many experimental investigations of drill-string vibrations have been reported in

the literature. The investigations referring to field measurements approached the

vibrations at the surface [13] and near the drill bit [86–88]. Although field tests give

a good picture of the vibrations in actual operations, they do not necessarily provide

the most appropriate data to corroborate the study of drill-string vibration through

mechanical models. There are many uncontrolled variables during the operation,

especially the ones associated with the environment.

In order to circumvent these difficulties, many laboratory experimental rigs have

been developed to investigate drill-string vibrations. PATIL and TEODORIU [89]

have reviewed some of these test-rigs. Most of the experimental setups consist of a

slender bar driven at the top by an electric motor, and with a heavy disc attached

to the bottom to represent the BHA. The bit-rock interaction is usually emulated

by brakes or shakers close to the disc [62, 64, 69, 90]. In contrast to this strategy,

only a few test-rigs actually drill rock samples using drill-bits [46, 63, 70, 91].

The experimental test-rig used in this study was designed and constructed at the

Laboratório de Acústica e Vibração (UFRJ) in collaboration with the Laboratório

de Dinâmica e Vibrações (PUC-RJ). This test-rig is a low-cost experimental setup

designed based on the work of CAYRES et al. [69] with some improvements. The

main improvement is the fact that it actually drills a test-body. The construction of

the test-rig started at PUC-RJ, where the upper part of the test-rig was constructed.

The upper part goes from the top motor to the bit. The test-rig was then moved

to UFRJ and assembled. The bottom part of the test-rig was then designed and

constructed. Also at UFRJ, the measurement and control systems were designed

and implemented. The experimental setup will be briefly explained in the next

section, but it is explained in details on [73, 92].
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A.1 Experimental set-up

It is desirable to somehow reproduce the complex mechanisms of field drill-string

vibrations into a laboratory test-rig in order to allow the investigation of such mech-

anisms within a more controllable environment. Therefore, an experimental test-rig

has been developed at the Laboratório de Acústica e Vibração (LAVI-COPPE).

This test-rig is capable of reproducing the torsional vibrations of a drill-string and

it is also capable of simulating the coupling between axial and torsional dynamics

through bit-rock interaction. The test-rig is shown in Fig. A.1.
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Drill Bit
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Figure A.1: Experimental test-rig developed and described in [73]. On the left: a
general view of the test-rig; On the right: a close view of the bottom part, including
the measured variables.

The test-rig consists basically of a DC brushless motor at the top that drives a

slender circular bar with 1530 mm length and 5 mm diameter. At the bottom, there

is an inertial disc with 28.4 mm thickness and 138 mm diameter with a mandrel that

holds a drill-bit, which is a common masonry bit. The penetration is simulated by

an electrical jack the lifts a concrete test-body against the drill-bit. The test-body

is held by a support printed in 3D printer, that is connected to a platform which

is assembled to the electrical jack. Due to the lack of test-bodies, the same sample
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was drilled several times as shown in Fig. A.2.

Figure A.2: Concrete test-body after experiment.

In addition, a set of sensors are used to measure the variables of our interest.

The platform is composed of two wood plates with load cells between them to

measure the weight-on-bit (WOB). A cantilever load cell is connected between the

bottom plate of the platform and the electrical jack in order to measure the torque

on bit (TOB). In addition, the rotational displacement of the bit and at the top

are measured by quadrature encoders. The rotational speed of the bit (Bit RPM) is

calculated from the rotational displacement using finite difference method. Attempts

were made to measure the axial displacement of the concrete sample using optical

sensors. However, the measurements were not satisfactory due to the instabilities

of the platform connected to the electrical jack. The measurements are done using

the portable data acquisition platform cDAQ-9174 together with the modules NI-

9223 and NI-9237 from National Instruments. Labview graphical interface is used

to manage the acquisition system and allows real-time response monitoring as well

as data recording.

The masonry bits used in experimental tests have 10 mm and 12 mm of diameter.

The test-body is made of ordinary concrete (30 fck, diameter of 100 mm, 200 mm of

length). The electrical jack is manually controlled by maintaining the input voltage

constant and using a power switch. The average speed of the top motor is maintained

almost constant during the test by an electronic speed control. However, oscillations

of 40% on top speed are often observed and this is a limitation of the test-rig.

In total, 140 data experimental tests were performed (70 for each bit diameter).

The average speed set on top motor ranged from 40 to 140 RPM. The slender bar

and inertial discs are made of steel and they are considered to represent the drill-

pipes and BHA, respectively. For more details about the construction of this test-rig,

please refer to [73, 92].
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A.2 Mechanical model

The mechanical model proposed for the validation of bit-rock interaction is con-

structed by means of a lumped parameter approach considering axial and torsional

dynamics. The geometric coupling between these two dynamics is not considered.

Therefore, the equations are derived separately and the coupling is done by the bit-

rock interaction model. A schematic view of the mathematical model is presented

in Fig. A.3 and the equations of motion are:

I ¨θbit + ctθ̇bit + ktθbit = −tbit + ctΩ + ktΩt , (A.1)

MÜ = H0 −M g −Wob , (A.2)

where θbit is the rotation at the bit; U is the axial displacement of test-body; Ω is

the rotational speed of the top motor, that is supposed to be almost constant; I

is the mass moment of inertia of the drill-string, ct is the torsional damping of the

drill-string, kt is the torsional stiffness of the drill-string, tbit is the Torque On Bit

(TOB), M is the mass of the concrete test-body, H0 is the axial force applied by

electrical jack, Wob is the Weight-On-Bit (WOB) and g is the gravity acceleration.

Note that the properties used in axial dynamics are related to the concrete test-body

because the drill-string does not move axially. The axial movement is done by the

concrete test-body. Furthermore, the axial equation of motion neglects the stiffness

and damping because of the boundary condition, which is free-free. The equations

of motion are in agreement with [36].

(a) (b)

Figure A.3: Schematic view of mechanical model for (a) torsional dynamics and (b)
axial dynamics.

The lack of a control strategy for the electrical jack complicates the modeling of
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the boundary condition associated with this component. Neither the displacement

nor the force are constants, thus it is necessary to propose a function for the force

applied by electrical jack. It is experimentally identified that the force applied by

the electrical jack varies harmonically around a mean value. Thus, the force H0 is

modeled as:

H0 = H̄0(1 + h cos(ωt)) , (A.3)

where H0 varies around H̄0, i.e. the mean value of the applied force; h is a constant

related to the amplitude of the fluctuating part, and; ω is the frequency of variation.

Inspired by the references [32, 93, 94] and by the fact that the force applied by

electrical jack is closely related to the interaction between the bit and the rock, the

use of the following function is proposed:

H0 = H̄0(1 + h cos(nbθbit)) . (A.4)

where nb is the number of cutting blades on the bit (in this case, 2). The TOB (tbit)

and WOB (Wob) are defined by the bit-rock interaction model defined in Sec. 3.3

and reproduced below:

tbit = a4 Z
2(θ̇bit)d(t) + a5 Z(θ̇bit) (A.5)

Wob = − U̇

a2 Z2(θ̇bit)
+

a3

a2 Z(θ̇bit)
θ̇bit −

a1

a2

(A.6)

where the depth-of-cut d(t) is defined as:

d(t) =
U̇(t)

nb θ̇bit(t)
, (A.7)

and the regularization function Z(θ̇bit) is

Z(θ̇bit) =
θ̇bit√
θ̇2
bit + e2

. (A.8)

A.3 Experimental results

In this section, the sample 105 is selected among the 140 tests performed and in-

vestigated. For this sample, the bit diameter is 12 mm and the average rotational

speed of the top motor is 78 RPM. At first, the general behavior of sample 105 is

analyzed for all the 59 seconds. Then, a time interval of 3 seconds is chosen in order

to permit the analysis of stick-slip mechanism and the calibration of the proposed
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mechanical model.

Figure A.4 shows the bit rotational speed, the TOB and WOB for sample 105

during all experiment time. The presence of stick-slip oscillations is noticed during

almost all the time. In certain time intervals, the bit speed goes to zero and keeps

at zero or a longer time. It occurs because the TOB is too high and the top motor

does not have enough torque to overcome this resistance. In these situations, the

top motor stops and the WOB is relieved in order to decrease the torque and allow

the top motor to rotate again.

The manual control applied to the electrical jack is also noticeable by looking

at the WOB curve. This curve is made of small time intervals in which the average

WOB decreases. It occurs due to the lack of a control strategy to WOB. When the

average WOB decreases enough, the electrical switch is turned off and on again in

order to increase the power with the starting current and restore the average applied

WOB.
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Figure A.4: Experimental data for one experimental run of 60 seconds (sample 105)
with an average top rotational speed of 78 RPM and bit diameter of 12 mm. The
red box is related to the 3s time interval taken for analysis.

A time interval of 3 seconds is selected in Fig. A.4 from 37 to 40 seconds in

order to make a detailed analysis of the stick-slip phenomenon. In Fig. A.5, this

time interval is plotted together with six vertical lines that indicate the occurrence

of several interesting phenomena. These lines are chosen the same way as in [88],

where the authors did a deep analysis of stick-slip mechanism using experimental

data from a real-scale drilling rig. The explanation for each point highlighted in

Fig. A.5 is presented as follow:
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1. At this point, the bit is not rotating and the deformation energy accumulated

in drill-string starts to increase as well as the TOB in order to keep the bit

stuck.

2. The bit starts to rotate again and TOB achieves its maximum value, which is

related to the maximum resistance against cutting. WOB is approximately at

the same level.

3. Bit speed is increasing and reaches the average top motor speed. Therefore,

deformation energy decreases, the TOB decreases and WOB is maximum lo-

cally and starts to decrease.

4. Bit achieves its maximum speed, while TOB achieves its minimum value. It

confirms the relation between TOB and bit speed. WOB is also near its

minimum value.

5. After the bit achieves its maximum speed, it starts to slow down. WOB starts

to increase, indicating that DOC is increasing.

6. Bit sticks again and the stick-slip cycle restarts. The TOB increases to near

its maximum value and starts to decrease to a new level, which is related to

the enough torque to maintain bit stopped.

This analysis highlights the coupling between axial and torsional dynamics

through the interaction force at the bit: TOB and WOB.
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Figure A.5: Experimental data from sample 105 for the time interval of 37 to 40
seconds.
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Figure A.6 shows two graphs plotting the interaction forces TOB and WOB

against the bit rotational speed. The red arrows indicate the direction of the curve

during acceleration and deceleration. It is observed that, in both graphs, the path

during acceleration is different from the one when speed is decreasing. This phe-

nomenon was first mentioned in literature in [41] and modeled in [40, 46] for pure

torsional models. In Fig.A.6a, the velocity weakening effect is noticed because TOB

decreases as the bit rotational speed increases. The cycles shown in Fig. A.6b are

far from each other due to change on average WOB provoked by the lack of a control

strategy for the electrical jack.
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Figure A.6: Bit-rock interaction graphs for sample 105 (37 < t < 40). (a) TOB
versus Bit speed (b) WOB versus Bit speed. The red arrows show the path direction
during acceleration and deceleration.

A.4 Numerical results

The mathematical model is solved using the solver ”ode23t” from MATLAB. The

parameters used in the simulations are disposed at Tab. A.1. The parameters were

calculated using the following equations:

I = IBHA +
IDP

3
, (A.9)

kt =
GJDP
LDP

, (A.10)

where the subscript DP denotes the slender bar and BHA is the inertial disk plus the

mandrel; G is the shearing modulus; L is the length, and J is the polar moment of

inertia. The DP and BHA are considered to be made of steel. The value for stiffness

is then adjusted in order to give a natural frequency near to the experimental one (3

Hz [92]). The values for ct, M , h and H̄0 are defined using experimental data. The
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rotational speed at the top motor Ω is set as 82 RPM, i.e. the average rotational

speed during only the 3 seconds under analysis (37 to 40 seconds).

Parameter Value
I 0.0081 kg.m2/s2

ct 0.036 N.m.s
kt 2.77 N.m
M 4.419 kg
g 9.81 m/s2

h 0.17
H̄0 524.42 N
nb 2
Ω 82 RPM

Table A.1: Parameters used in the simulations on experimental investigation.

Before analyzing the 2-DOF model proposed in Sec. A.2, a classical 1-DOF

torsional model is implemented. This model is governed by Eq. A.1 with the torque

from bit-rock interaction modeled by:

tbit = b0Wob

(
tanh(b1θ̇bit) +

b2

1 + b3θ̇2
bit

)
, (A.11)

where Wob is constant and equal to 550 N because only torsional dynamics is con-

sidered. The parameter b0 to b3 are manually calibrated. Figure A.7 shows the bit

rotational speed, TOB and WOB within the time for numerical and experimental

results. It is observed that the amplitude of torsional vibration is very similar. How-

ever, the shapes of the TOB curve are different. In experimental data, the decay of

TOB with speed in higher speeds are much more evident than in lower speeds, but

in numerical results, it is not true. As the model considered is pure torsional, WOB

does not vary within time.

The behavior of TOB is more evident in Fig. A.8a. In lower speeds, the simulated

TOB decays much more than the experimental one. Also, in simulated data, the

TOB decays to almost the same level in high and low speeds. This is a limitation

of the bit-rock interaction model considered. Furthermore, the hysteric cycles ob-

served in experimental results are also not captured by the 1-DOF torsional model.

To capture this phenomenon in pure torsional models, some authors proposed hys-

terical bit-rock interaction laws [40, 46] which are not implemented here because

the objective is to evaluate if this phenomenon occurs because of the axial-torsional

coupling. Figure. A.8b shows the FFT of the bit rotational speed for both numerical

and experimental results. It is observed that the dominant frequency is the same

for both results.

123



37 37.5 38 38.5 39 39.5 40
0

100

200
Exp. Data
Model

37 37.5 38 38.5 39 39.5 40
0

1

2

3

T
O

B
 [N

.m
]

Exp. Data
Model

37 37.5 38 38.5 39 39.5 40

time [s]

400

500

600

700

W
O

B
 [N

]

Exp. Data
Model

Figure A.7: Numerical results for the 1-DOF model compared to experimental data
from 37 to 40 seconds. b0 = 0.0022 m, b1 = 1.5 s/rad, b2 = 1.5 and b3 = 0.01
s2/rad2.
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Figure A.8: (a) TOB versus Bit speed and (b) Fast Fourier Transform (fft) of the
bit rotational speed for the numerical results of the 1-DOF model compared to
experimental data from 37 to 40 seconds. b0 = 0.0022 m, b1 = 1.5 s/rad, b2 = 1.5
and b3 = 0.01 s2/rad2.

To conclude, the 1-DOF model can capture the overall behavior of drill-string

but it is still not capable of describing the details of the dynamics and neither the

fluctuations of WOB. Therefore, the 2-DOF model proposed in Sec. A.2 is simulated

and compared to experimental data in order to investigate the gains with an axial-

torsional model.
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Figure A.9 shows the bit rotational and axial speeds, TOB and WOB for one

calibration of the 2-DOF model. The amplitude of the torsional vibration in terms

of bit rotational speed is also compatible with experimental results. In this case,

it is also possible to obtain the bit axial speed which presents realistic values for

the test-rig but it could not be compared to experimental results because of the

problems with the measurement system. The TOB presented lower variations but

the decrease with bit rotational speed is also the same for high and low speeds. The

fluctuations on WOB are now captured by the model. Furthermore, the variation

of the applied force H0 is found to affect much more the WOB than the forces due

to the bit-rock interaction model.
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Figure A.9: Numerical results for the 2-DOF model compared to experimental data
from 37 to 40 seconds. a1 = 0.0026 m/s, a2 = 5x106 m/s/N, a3 = 2.0610x10−4

m/rad, a4 = 8751.6 N.rad, a5 = 0.0875 N.m, e = 1 rad2/s2.

The frequency of variation of the bit rotational speed is also assessed by the

FFT. Figure A.10 shows that the 2-DOF model also represents pretty well the

experimental bit rotational speed in the frequency domain.
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Figure A.10: Fast Fourier Transform (fft) of the bit rotational speed for the nu-
merical results of the 2-DOF model compared to experimental data from 37 to 40
seconds. a1 = 0.0026 m/s, a2 = 5x106 m/s/N, a3 = 2.0610x10−4 m/rad, a4 = 8751.6
N.rad, a5 = 0.0875 N.m, e = 1 rad2/s2.

The most interesting phenomenon observed in the 2-DOF model results is the

hysteric effect on TOB and WOB versus bit rotational speed. Figure A.11 shows

that, although the amplitudes are not the same, the 2-DOF model can capture the

hysteric effect observed in experimental data, including the direction of acceleration

and deceleration paths (highlighted by red arrows for the model and green arrows

for experimental data).
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Figure A.11: (a) TOB versus Bit speed and (b) WOB versus Bit speed for the
numerical results of the 2-DOF model compared to experimental data from 37 to 40
seconds. a1 = 0.0026 m/s, a2 = 5x106 m/s/N, a3 = 2.0610x10−4 m/rad, a4 = 8751.6
N.rad, a5 = 0.0875 N.m, e = 1 rad2/s2. The arrows show the path direction during
acceleration and deceleration. The green arrows are for the experimental data and
the red ones are for the numerical results.
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A variety of calibrations were tested for the bit-rock interaction. Some of these

combinations resulted in bit-rock interaction curves that were more similar to exper-

imental results, as in Fig. A.12. However, the direction of the paths is the opposite of

the experimental data. This difference can also be observed in Fig. A.13, where the

bit rotational speed continued to be in good agreement (amplitude and frequency)

but the TOB and WOB present results qualitatively different from experimental

data. For example, the maximum WOB occurs when the bit is accelerating for

experimental data, while it occurs when bit achieves its maximum speed for the

numerical result.
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Figure A.12: (a) TOB versus Bit speed and (b) WOB versus Bit speed for the
numerical results of the 2-DOF model compared to experimental data from 37 to
40 seconds. a1 = 0.0011 m/s, a2 = 5x106 m/s/N, a3 = 9.16x10−5 m/rad, a4 = 6732
N.rad, a5 = 0.3471 N.m, e = 1.5 rad2/s2. The arrows show the path direction during
acceleration and deceleration. Green arrow are for experimental data and the red
ones are for numerical results.

127



37 37.5 38 38.5 39 39.5 40
0

100

200
Model
Exp. Data

37 37.5 38 38.5 39 39.5 40
0

2

4
10-3

Model

37 37.5 38 38.5 39 39.5 40
0

1

2

3

T
O

B
 [N

.m
]

Model
Exp. Data

37 37.5 38 38.5 39 39.5 40

time [s]

400

500

600

W
O

B
 [N

] Model
Exp. Data

Figure A.13: Numerical results for the 2-DOF model compared to experimental data
from 37 to 40 seconds. a1 = 0.0011 m/s, a2 = 5x106 m/s/N, a3 = 9.16x10−5 m/rad,
a4 = 6732 N.rad, a5 = 0.3471 N.m, e = 1.5 rad2/s2.

In summary, the 2-DOF model can capture some dynamical effects that the

1-DOF model is not capable of, including: the axial speed of the bit, which is a

direct measure of the efficiency of operation; variations of WOB during drilling,

and; hysteric effects on bit-rock interaction.
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Appendix B

An introduction to stochastic

differential equations (SDE)

This appendix is devoted to a brief introduction of stochastic differential equations.

The subject is discussed assuming that the reader has a fair base on probability

theory. Most of the proofs and theorems are omitted in order to simplify this

introduction. For those who want to study SDE in more details, the books from

OKSENDAL [84] and EVANS [95], which were used as a base for this text, are

recommended. Most of the numerical examples and the codes presented in this

chapter were base on the work developed by HIGHAM [96].

Ordinary differential equations (ODE) are often used to model systems of interest

in many engineering applications. However, the experimentally measured variables

of systems modeled by ODEs do not behave precisely as predicted. If the model

is adequate, the variables seem to behave more or less as expected but they are

often subject to random fluctuations. Depending on the system characteristics,

this random behavior can have a significant influence on the system response as

illustrated by the example presented at the end of this chapter. One way to model

a system using SDE is to allow some randomness in some coefficients of the ODE.

Consider the following example:

EXAMPLE 1: Consider the following simple population growth model taken

from [84]:

dX

dt
= a(t)X(t), (B.1)

where X(t) is the population size and a(t) is the relative growth coefficient. Suppose

now that a(t) is not precisely known and it is influenced by random environmental

effects. Thus, this coefficient can be interpreted as:

a(t) = r(t) + ξ(t), (B.2)
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where r(t) is a deterministic function and ξ(t) is a Gaussian white noise process.

The inclusion of the noise factor in eq. B.1 transforms it into a stochastic differential

equation. Substituting eq.B.2 into B.1 results in the following SDE:

dX

dt
= r(t)X(t) + αX(t)ξ(t), , (B.3)

For the case r(t) = 0 and αX(t) = 1, the solution turns out to be a Brownian

motion (or Wiener process), denoted by W (t). It introduces the idea that white

noise is in fact the time derivative of Brownian motion. Thus,

dW

dt
= ξ(t). (B.4)

Finally, the SDE B.3 can be written in the classical derivative form as:

dX(t) = r(t)X(t)dt+ αX(t)dW. (B.5)

In a more general perspective, a SDE is expressed by:dX(t) = b(X(t))dt+ [B(X(t))]dW (t)

X(0) = x0

, (B.6)

where bold indicates a vector and [B] indicates that B is a matrix. The terms dX

and [B(X)]dW are called stochastic differentials. Taking the integral of Eq. B.6

from 0 to t and considering that
∫ t

0
dX(t) = X(t) − x0, we can write the SDE in

integral form:

X(t) = x0 +

∫ t

0

b(X(s)) ds+

∫ t

0

[B(X(s))] dW (B.7)

where s is a dummy variable (integration variable).

B.1 Brownian Motion

DEFINITION: A Brownian motion (or Wiener process) is a stochastic process

with the following properties:

(i) W (0) = 0, almost surely,

(ii) dW = W (t)−W (s) ∼ N(0, t− s) for all t ≥ s ≥ 0,

(iii) for all times 0 < t1 < t2 < · · · < tn, the random variablesW (t1), W (t2)−W (t1),

. . . , W (tn)−W (tn−1) are independent (”independent increments”).
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Considering the second property and taking s = 0, it gives that W (t) ∼ N(0, t).

It means that E[W (t)] = 0, E[W 2(t)] = t and, thus, the probebility density function

of W (t) is

f(W, t) =
1√
2πt

e−
W2

2t (B.8)

It is also possible to prove that the autocorrelation function for t ≥ s ≥ 0 is

given by

E[W (t)W (s)] = E[{W (s) + (W (t)−W (s))}W (s)]

= E[W 2(s)] + E[(W (t)−W (s))W (s)]

= s+ 0 = s

(B.9)

It can be shown that, for the case where s ≥ t ≥ 0, the autocorrelation becomes

E[W (t)W (s)] = t. Thus, we conclude that E[W (t)W (s)] = min{t, s}
In Fig. B.1a, three sample paths of a Brownian motion (Eq. B.4) are simulated

in MATLAB using the code in Listing B.1 and presented. The simulation of a

Brownian motion is performed by simulating M increments with time step dt using

Monte Carlo and summing them until time t=Mdt.

In Fig. B.1b, the eq. B.10 is simulated and five individual sample paths are

plotted as well as the average of U(t) along 1000 simulations. Actually, eq. B.10

is the solution of a SDE and the average U(t) is expressed as E[U(t)] = exp(9/8t)

and coincides to the deterministic solution this SDE. Further, in this chapter, this

equation will be presented and studied.

U(t) = exp(t+
1

2
W (t)) (B.10)
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Figure B.1: (a) Three sample paths of brownian motion with dt = 0.002s. (b) Five
paths of U(t) and mean value with dt=0.002s.
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Listing B.1: Code to generate Brownian motion

1 %% Brownian path simulation

2

3 T = 1; % Simulation total time

4 N = 500; % Number of time steps

5 dt = T/N; % Time step

6 t = [dt:dt:T]; % Time Vector (t0 is added later)

7

8 dW = sqrt(dt)*randn(3,N); % Brownian motion increments

9 W = cumsum(dW,2); % Construct Brownian motion ...

(cumulative sum)

10

11 figure(1)

12 plot([0:dt:T],[zeros(size(W,1),1),W]) % Include t0 here

13 legend('Path 1','Path 2','Path 3')

14 title('Brownian Motion')

15 xlabel('t')

16 ylabel('W(t)')

17 grid on

18

19 M = 1000; % M paths simultaneously

20 dW = sqrt(dt)*randn(M,N); % Brownian motio increments

21 W = cumsum(dW,2); % Construct Brownian motion

22 U = exp(repmat(t,[M 1]) + 0.5*W); % Evaluate function U

23 % (repmat transforms t into a matrix)

24 Umean = mean(U); % Evaluate mean(U)

25

26 figure(2)

27 plot([0,t],[1,Umean],'b-'), hold on % plot mean ...

over M paths

28 plot([0,t],[ones(5,1),U(1:5,:)],'r--'), hold off % plot 5 ...

individual paths

29 xlabel('t','FontSize',16)

30 ylabel('U(t)','FontSize',16)

31 grid on

32 legend('mean of 1000 paths','5 individual paths')

33

34 averr = norm((Umean - exp(9*t/8)),'inf') % sample error

B.2 Stochastic Integrals

In order to solve stochastic differential equations of the form of eq. B.6, it is neces-

sary to comprehend the concept of stochastic integrals. Taking the general integral

form of a SDE, as represented by eq. B.7, we define as stochastic integral the term
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∫ t
0
[B(X(s))]dW , where [B(X(s))] is a stochastic process. Note that this integral is

not about a deterministic variable, like the time for example, but about a stochastic

process. As the Brownian motion is not differentiable, the interpretation of stochas-

tic integrals is not trivial. One of the first definitions of stochastic integral was

proposed by Paley-Wiener-Zygmund for the 1-D case:

DEFINITION (Paley-Wiener-Zygmund): Suppose a deterministic contin-

uously differentiable function g : [0, T ]→ < with g(0) = g(T ) = 0. We define∫ T

0

g dW = −
∫ T

0

g′W dt (B.11)

where g′ = dg
dt

. Note that, although
∫ T

0
g dW is random, g is a deterministic function.

The formulation above gives rise to the following properties:

(i) E

(∫ T

0

g dW

)
= 0

(ii) E

((∫ T

0

g dW

)2
)

=

∫ T

0

g2 dt

Proof:

(i) E

(∫ T

0

g dW

)
= E

(
−
∫ T

0

g′W dt

)
= −

∫ T

0

g′���
���:0

E(W (t)) dt = 0

(ii) E

((∫ T

0

g dW

)2
)

= E

(∫ T

0

g′(s)W (s) ds

∫ T

0

g′(t)W (t) dt

)
= E

(∫ T

0

∫ T

0

g′(s)W (s)g′(t)W (t) dsdt

)
=

∫ T

0

∫ T

0

g′(s)g′(t)
��

���
���:

min{t, s}
E(W (s)W (t)) dsdt

Separating the integral in ds for s < t and s > t, we get

=

∫ T

0

g′(t)

(∫ t

0

g′(s)s ds+

∫ T

t

g′(s)t ds

)
dt

Integrating by parts with g(0) = g(T ) = 0,

=

∫ T

0

g′(t)

(
tg(t)−

∫ t

0

g(s) ds− tg(t)

)
dt

=

∫ T

0

g′(t)

(
−
∫ t

0

g(s) ds

)
dt

Integrating by parts again with g(0) = g(T ) = 0,

=

∫ T

0

g2(t) dt
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Although this definition is very useful for the cases in which g is deterministic

and satisfies g(0) = g(T ) = 0, it is demanded a definition that covers a wider class

of functions of the type ∫ t

0

B(X, s) dW (B.12)

where B(X, s) is a stochastic process. Actually, the wider definition proposed by

Ito returns to the formulation of Paley-Wiener-Zygmund (Eq. B.11) for the case

considered by them.

B.2.1 Riemann Sums

The Riemann sums can help us to interpret stochastic integrals with random in-

tegrands. The idea relies on understanding this type of integral through Riemann

sums and then (if possible) pass it to limits. Let’s consider the stochastic integral

of a Brownian motion, for example:

R =

∫ T

0

W dW. (B.13)

A partition P in [0,T] is defined as a collection of discrete point, including the

boundaries, such as: P = {0 = t0 < t1 < · · · < tm = T} with a mesh size

|P | = max0≤k≤m−1 |tk+1− tk|. For a fixed 0 ≤ λ ≤ 1 and a partition P, we can define

a point τk lying withing the subinterval [tk, tk+1] for k = 0, 1, 2, . . . ,m− 1 such as:

τk = (1− λ)tk + λtk+1. (B.14)

Finally, we can interpret the integral in eq. B.13 as a Riemann sum with |P | → 0

for a given partition P:

R = R(P, λ) =
m−1∑
k=0

W (τk) [W (tk+1)−W (tk)] . (B.15)

Next, we take the limit when mesh size goes to zero. Then, it is possible to prove

that

lim
|P |→0

R(P, λ) =
W 2(T )

2
+

(
λ− 1

2

)
T, in L2(0, T ). (B.16)

where L2(0, T ) is the space of all real-valued, progressively measurable stochastic

processes G(·) such that E[
∫ T

0
G2dt] < ∞. For details and proof, please refer to

[95]. Note that this result depends on the choice of the intermediate point τk. Two

definitions are often used in the literature: Itô (λ = 0) and Stratonovich (λ = 1
2
):
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∫ T

0

W dW =
W 2(T )

2
− T

2
(Itô integral), (B.17)

∫ T

0

W dW =
W 2(T )

2
(Stratonovich integral). (B.18)

The main advantage of selecting λ = 0 and choosing Itô definition relies on the

calculation of the integrand at point tk within the subinterval [tk, tk+1]. It allows the

definition for a wide class of ”nonanticipating” stochastic processes G(◦) as depicted

in eq. B.19. The idea relies on the fact that, since we do not know what G(◦) will

do in [tk, tk+1], it is better to use the known value of G(tk).∫ T

0

G dW ∼
m−1∑
k=0

G(τk) [W (tk+1)−W (tk)] . (B.19)

In Fig. B.2, the stochastic integral of a Brownian motion defined as the function

F (t) =
∫ t

0
WdW is plotted against time for the definitions proposed by Itô and

Stratonovich using the code in Listing B.2 written in MATLAB. The numerical

results were obtained by solving the Riemann sum with 100 points in time interval

t ∈ [0, 1] and the analytical results follow eq. B.17 and B.18. It is observed that

numerical results tend to the analytical solution. Actually, if the number of points

is increased, the precision of numerical results improves. The differences between

the approach by Itô and Stratonovich can be noticed. According to [95], there is no

evidence on which interpretation is physically correct.
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Figure B.2: Stochastic integrals of W dW following (a) Itô definition and (b)
Stratonovich definition.

Listing B.2: Code to calculate Ito and Stratonovich integral of W dW

135



1 %% Ito and Stratonovich integrals of W dW

2

3 T = 1; % Simulation total time

4 N = 100; % Number of time steps

5 dt = T/N; % Time step

6 t = [dt:dt:T]; % Time Vector (t0 is added later)

7

8 dW = sqrt(dt)*randn(1,N); % Brownian motion increments

9 W = cumsum(dW); % Construct Brownian motion ...

(cumulative sum)

10

11 % Solve stochastic integral by Ito

12 ito = cumsum([0,W(1:end-1)].*dW);

13 % Solve stochastic integral by Stratonovich

14 strat = cumsum((0.5*([0,W(1:end-1)]+W) + ...

0.5*sqrt(dt)*randn(1,N)).*dW);

15

16 figure(3) % Plot Ito stochastic integral

17 plot(t,ito,'b'),hold on % Rieman Sum

18 plot(t,0.5*(W.ˆ2-t),'ro'), hold off % Analytical

19 grid on

20 legend('Rieman sum','Analytical')

21 xlabel('time (s)')

22 ylabel('F(t)')

23 title('Ito integral of W dW')

24

25 figure(4) % Plot Stratonovich stochastic integral

26 plot(t,strat,'b'),hold on % Rieman Sum

27 plot(t,0.5*(W.ˆ2),'ro'), hold off % Analytical

28 grid on

29 legend('Rieman sum','Analytical')

30 xlabel('time (s)')

31 ylabel('F(t)')

32 title('Stratonovich integral of W dW')

33

34 % Error of Rieman sum approximation at the last point

35 itoerr = abs(ito(end) - 0.5*(W(end)ˆ2-T))

36 straterr = abs(strat(end) - 0.5*W(end)ˆ2)

In summary, according to [95], the advantages of each definition of the stochastic

integral are:

� Itô integral
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(i) Simple formulas:

E

(∫ t

0

G dW

)
= 0, E

((∫ t

0

G dW

)2
)

= E

(∫ t

0

G2 dt

)
.

(ii) I(t) =
∫ t

0
G dW is a martingale (see [84, 95]).

� Stratonovich integral

(i) Ordinary chain rule holds.

(ii) Solutions of stochastic differential equations interpreted in the

Stratonovich sense are stable with respect to changes in random terms.

B.2.2 Itô integral

Although both interpretations of stochastic integrals have advantages, the Itô ap-

proach was chosen in the present work because it is valid for a wider class of inte-

grands. Thus, this approach will be discussed in details. The first step is to define

what are nonaticipating stochastic processes in order to clarify the main advantage

of Itô interpretation.

Let W (◦) be a 1-D Brownian motion defined in the probability space (Ω,U , P ).

The σ-algebra W(t) = U(W (s)|0 ≤ s ≤ t) is called the history of Brownian motion

up to time t and W+(t) = U(W (s)−W (t)|s ≥ t) is the future of Brownian motion

beyond time t.

DEFINITION: A family F of σ-algebras ⊆ U is called nonanticipating if:

(i) F(t) ⊇ F(s) for t ≥ s ≥ 0,

(ii) F(t) ⊇ W(t) for t ≥ 0,

(iii) F(t) is independent of W+(t) for t ≥ 0.

F(◦) is sometimes called filtration and it is interpreted as all the information we

have up to time t. A process G(◦) is called nonanticipating if it is F(t)-measurable

for t ≥ 0.

In the sequence, we define stochastic integral according to Itô interpretation. For

this purpose, let’s define what are step processes.

DEFINITION: A stochastic process G(◦) is called step process if there exist a

partition P = {0 = t0 < t1 < · · · < tm = T} such as:

G(t) = Gk, for tk ≤ t < tk+1 (k = 0,1,...,m-1) (B.20)
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Therefore, Gk is F(t)-measurable and G(◦) is nonanticipating. Thus, we can use

Riemann sums to calculate the stochastic integral using Itô:

∫ T

0

G dW =
m−1∑
k=0

Gk(W (tk+1)−W (tk)) (B.21)

LEMMA: If G ∈ L2(0, T ), there exist a sequence of bounded step processes

Gn ∈ L2 such as:

E

(∫ T

0

|G−Gn|2 dt
)
→ 0. (B.22)

This states that we can approximate a stochastic process as a sequence of step

processes. Then, in the limit,∫ T

0

G dW = lim
n→∞

∫ T

0

Gn dW (B.23)

The proof can be checked out in [84, 95]. Therefore, the following properties can

be verified if we use the approximation by step processes:

Properties of Itô stochastic integral

(i)

∫ T

0

(aG+ bH) dW = a

∫ T

0

G dW + b

∫ T

0

H dW

(ii) E

(∫ T

0

G dW

)
= 0

(iii) E

((∫ T

0

G dW

)2
)

= E

(∫ T

0

G2 dt

)

(iv) E

(∫ T

0

G dW

∫ T

0

H dW

)
=

∫ T

0

GH dt

Note that the properties (ii) and (iii) are identical to the ones provided by Paley-

Wiener-Zygmund definition.

Itô’s chain rule

The chain rule in stochastic differentials is different from the deterministic case. In

deterministic case, let’s consider the following differential equation

dx

dt
= F (x, t), (B.24)

and suppose that y(t) = u(x, t), where u : R → R is a deterministic function. The

derivative dy
dt

can be calculated using deterministic chain rule that can be proved by
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writing the increment in function u(x, t) using Taylor theorem as in Eq B.25.

u(x+ ∆x, t+ ∆t)− u(x, t) = ux∆x+ ut∆t+ o(|∆x|2 + |∆t|2) (B.25)

where ∆x = (x(t+dt)−x(t)), ux = ∂u
∂x

and ut = ∂u
∂t

. Taking the limit when ∆t→ 0,

u(x(t+ dt), t+ dt)− u(x, t) = ux
dx

dt
dt+ utdt+ o(dt2) (B.26)

Dividing this equation by dt and taking the limit dt→ 0, the term o(dt2) vanishes

and we get the multivariable chain rule for deterministic case:

dy

dt
= ux

dx

dt
+ ut → dy = uxdx+ utdt. (B.27)

Otherwise, the Itô stochastic differential equations are written as

dX = F (X, t)dt+G(X, t)dW, (B.28)

and the chain rule acquires a new term as it is going to be demonstrated. At first,

it is possible to verify (for proof, refer to [84, 95]) that

m−1∑
k=0

(W (tk+1)−W (tk))
2 → b− a =

m−1∑
k=0

(tk+1 − tk), (B.29)

where t0 = a and tm = b. This leads to the heuristic idea that

dW 2 ≈ dt. (B.30)

Next, we suppose a twice continuously differentiable function U : R → R such

that Y (t) = U(X(t), t). Using again Taylor theorem and keeping all the terms of

order less or equal to ∆t and considering the idea of Eq. B.30, we get:

U(X(t+ ∆t), t+ ∆t)− U(X, t) = Ux∆X + Ut∆t+
1

2
Uxx(∆X)2 + . . . . (B.31)

where Uxx = ∂2U
∂X2 . Note that the term of order (∆X)2 was included in Eq. B.31.

The reason is going to be explained ahead. Now, taking the limit when ∆t→ 0, we

can write ∆t = dt and ∆X = dX, and substitute Eq. B.28 into Eq. B.31 to result

in

∆U = UxdX + Utdt+
1

2
Uxx(Fdt+GdW )2 + . . .

∆U = UxdX + Utdt+
1

2
Uxx(F

2(dt)2 + 2FG(dt)(dW ) +G2(dW )2) + . . .
(B.32)

where ∆U = U(X(t+ dt), t+ dt)−U(X, t), F = F (X, t) and G = G(X, t) are used
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to simplify the notation. Using Eq. B.30 and keeping only the terms of order less

or equal to dt, we get

∆U = UxdX + Utdt+
1

2
UxxG

2dt+ o(dt
3
2 ) (B.33)

Note that the term (∆X)2 maintained in Eq. B.31 gave rise to the term 1
2
UxxG

2dt

which has order dt due to the relation established in Eq. B.30. Dividing Eq. B.33

by dt and taking dt→ 0, the terms of order higher than dt vanishes and we get the

Itô formula (or Itô chain rule):

dU

dt
= Ux

dX

dt
+ Ut +

1

2
UxxG

2 (B.34)

Now, substituting Eq. B.28 into Eq. B.34 and writing in differential form, we get

the Itô chain rule in the classical form

dU =
(
UxF (X, t) + Ut + 1

2
UxxG

2(X, t)
)
dt+ UxG(X, t)dW

(Itô’s chain rule)
(B.35)

The above demonstration of Itô chain rule above omits most of the details. For

the formal proof, please refer to [84].

EXAMPLE 2: Let’s consider the SDE

dX(t) = (α−X(t))dt+ β
√
X(t)dW (t), X(0) = 1, (B.36)

where α and β are positive constants. Taking a function Y (t) = u(X(t)) =
√
X(t)

and applying Itô’s chain rule using Eq. B.35, we get

dY =

(
4α− β2

8Y (t)
− 1

2
Y (t)

)
dt+ 1

2
βdW (B.37)

In Fig.B.3, three plots are presented using the code in ListingB.3 written in

MATLAB. The Direct solution is obtained by solving Eq. B.36 numerically by Euler-

Maruyama method (explained further) and applying the square root to the results.

Itô’s chain rule solution is obtained by solving Eq. B.37 by the same numerical

method. Finally, the deterministic chain rule solution solves Eq. B.37 but ignoring

the Itô’s correction term. Is noticed that Itô’s chain rule solution matches direct

solution very well and deterministic chain rule solution is not capable of describing

the direct solution. Although deterministic chain rule solution approximates the

direct solution in the beginning, the error increases with time.
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Figure B.3: Stochastic chain rule demonstration.

Listing B.3: Code to test Ito’s chain rule

1 %% Test stochastic Chain Rule

2

3 T = 1; % Simulation total time

4 N = 100; % Number of time steps

5 dt = T/N; % Time step

6

7 alpha = 2; beta = 1; % SDE coefficients

8 Xzero = 1; Xzero2 = sqrt(Xzero); % Initial values

9

10 Xem1 = zeros(1,N); Xem2 = zeros(1,N); Xem3 = zeros(1,N);

11 Xtemp1 = Xzero; Xtemp2 = Xzero2; Xtemp3 = Xzero;

12 for j = 1:N

13 Winc = sqrt(dt)*randn; % Brownian increments

14

15 % Direct Solution

16 f1 = (alpha-Xtemp1);

17 g1 = beta*sqrt(abs(Xtemp1));

18 Xtemp1 = Xtemp1 + dt*f1 + g1*Winc;

19 Xem1(j) = Xtemp1;

20

21 % Ito's Chain Rule

22 f2 = (4*alpha-betaˆ2)/(8*Xtemp2) - Xtemp2/2;

23 g2 = beta/2;

24 Xtemp2 = Xtemp2 + dt*f2 + g2*Winc;

25 Xem2(j) = Xtemp2;

26

27 % Deterministic chain rule

28 f3 = (4*alpha)/(8*Xtemp2) - Xtemp2/2;

141



29 g3 = beta/2;

30 Xtemp3 = Xtemp3 + dt*f3 + g3*Winc;

31 Xem3(j) = Xtemp3;

32 end

33

34 figure(5)

35 plot([0:dt:T],[sqrt([Xzero,abs(Xem1)])],'b-',[0:dt:T],...

36 [Xzero,Xem2],'ro--',[0:dt:T],[Xzero,Xem3],'mˆ--')

37 legend('Direct Solution',"Ito's Chain Rule","Deterministic chain ...

rule")

38 xlabel('t')

39 ylabel('V(X)')

40 grid on

41

42 % Norm of the difference btween direct solution and Ito's chain rule

43 Xdiff = norm(sqrt(Xem1) - Xem2,'inf')

Itô’s product rule

As in chain rule, the product rule also has one additional term. To demonstrate

this, we are going to study the deterministic case first. Suppose two deterministic

variables x(t) and y(t). We are interested in determining the derivative or differential

of the product between those two variables, i.e. d(xy)
dt

or d(xy). To do so, let’s

consider the same differential equation presented in Eq. B.24 and suppose a function

u(x) = x2. Applying the deterministic chain rule presented in Eq. B.27 in function

u(x), we get

du = 2xdx. (B.38)

Now, we can rewrite the differential d(xy) as

d(xy) = d

(
1

2
((x+ y)2 − x2 − y2)

)
=

1

2

(
d(x+ y)2 − dx2 − dy2

)
. (B.39)

In the sequence, we apply Eq. B.38 to solve d(x+ y)2:

d(x+y)2 = 2(x+y)d(x+y) = 2(x+y)(dx+dy) = 2(xdx+xdy+ydx+ydy). (B.40)

Applying Eq. B.38 on the other two terms of Eq. B.39 and substituting Eq. B.40

in Eq. B.39, we get

d(xy) =
1

2
(2(xdx+ xdy + ydx+ ydy)− 2xdx− 2ydy) , (B.41)

142



which yields the deterministic product rule described by

d(xy) = xdy + ydx. (B.42)

For the stochastic case, let’s consider the variable X(t) and Y (t) together with

the stochastic differential equations

dZ = Fdt+GdW, (B.43)

where Z = {X, Y }, F = {F1, F2} and G = {G1, G2}. Supposing U(Z) = Z2 and

applying Itô’s chain rule described in Eq. B.37, we get

d(Z2) = 2ZdZ +G2dt. (B.44)

Now, we apply Eq. B.44 in the first term of Eq. B.39. To do so, we consider that

d(X + Y ) = dX + dY = (F1 +F2)dt+ (G1 +G2)dW , where the diffusion coefficient

G becomes G1 +G2. Therefore,

d(X + Y )2 = 2(X + Y )d(X + Y ) + (G1 +G2)2dt. (B.45)

Next, we substitute Eq. B.45 in Eq. B.39 and apply Eq. B.44 in the last two

terms of Eq. B.39 to obtain

d(XY ) =
1

2

(
2(X + Y )d(X + Y ) + (G1 +G2)2dt− (2XdX +G2

1dt)− (2Y dY +G2
2dt)

)
=

1

2
(2(X + Y )d(X + Y ) + 2G1G2dt− 2XdX − 2Y dY )

=
1

2
(���

�
2XdX + 2Y dX + 2XdY +����2Y dY + 2G1G2dt−����2XdX −����2Y dY )

=
1

2
(2Y dX + 2XdY + 2G1G2dt) ,

(B.46)

which yields the Itô’s product rule as described below:

d(XY ) = XdY + Y dX +G1G2dt (Itô’s product rule). (B.47)

EXAMPLE 3: Consider the following SDE for i = 1,2,

dXi = λiXidt+ µiXidW, X(0) = X0 (B.48)

where λi and µi are positive constants. Now, suppose one would like to calculate

the product X1X2 with parameters X0 = 1, λ1 = 2, µ1 = 1, λ2 = 3 and µ2 = 1.5.

Applying Eq. B.47 to obtain the product X1X2, we get:
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d(X1X2) = X2dX1 +X1dX2 +G1G2dt

= X2(λ1X1dt+ µ1X1dW ) +X1(λ2X2dt+ µ2X2dW ) + (µ1µ2)dt

= (λ1 + λ2 + µ1µ2)X1X2dt+ (µ1 + µ2)X1X2dW.

(B.49)

If we substitute X1X2 by X3, Eq. B.49 turns out to be the same type of Eq. B.48

with i = 3, λ3 = λ1 + λ2 + µ1µ2 and µ3 = µ1 + µ2.

In Fig. B.4a, both X1 and X2 are plotted against time. The solutions for X1

and X2 are obtained by analytically solving Eq. B.48 using the technique presented

in section B.3.1, which results in Xi = X0 exp((λi − 1
2
µ2)t + µiW ). In Fig. B.4b,

again three plots are shown: the direct solution, that is obtained by simply mul-

tiplying X1 and X2; the Itô’s product rule solution, which is obtained by solving

Eq. B.49 analytically in the same way as for Eq. B.48 considering Z = X1X2; and

the deterministic product rule solution that ignores the Itô correction term G1G2dt

in Eq. B.47. The difference between the solutions indicates that the use of deter-

ministic product rule is not correct. The results of Fig. B.4 were simulated using

the code in Listing B.4 written in MATLAB.
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Figure B.4: (a) Simulation of X1 (λ1 = 2 ; µ1 = 1) and X2 (λ2 = 3 ; µ2 = 1.5). (b)
Solutions for X1X2

Listing B.4: Code to test Ito’s product rule

1 %% Test Ito Product Rule

2

3 T = 1; % Simulation total time

4 N = 2ˆ8; % Number of time steps

5 dt = T/N; % Time step

6 Xzero = 1; % Initial value
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7

8 dW = sqrt(dt)*randn(1,N); % Brownian motion increments

9 W = cumsum(dW); % Construct Brownian motion ...

(cumulative sum)

10

11 % Approximate X 1

12 lambda1 = 2; mu1 = 1; % SDE coefficients

13 XTrue1 = [Xzero Xzero*exp((lambda1-0.5*mu1ˆ2)*([dt:dt:T])+mu1*W)];

14

15 % Approximate X 2

16 lambda2 = 3; mu2 = 1.5; % SDE coefficients

17 XTrue2 = [Xzero Xzero*exp((lambda2-0.5*mu2ˆ2)*([dt:dt:T])+mu2*W)];

18

19 % Solve X 1*X 2 by Ito chain rule

20 lambda = lambda1 + lambda2 + mu1*mu2; mu = mu1 + mu2; % SDE ...

coefficients

21 XTrue3 = [Xzero Xzero*exp((lambda-0.5*muˆ2)*([dt:dt:T])+mu*W)];

22

23 % Solve X 1*X 2 by deterministic chain rule

24 lambda = lambda1 + lambda2; mu = mu1 + mu2; % SDE coefficients

25 XTrue4 = [Xzero Xzero*exp((lambda-0.5*muˆ2)*([dt:dt:T])+mu*W)];

26

27 figure(6) % Plot X 1 and X 2

28 plot([0:dt:T],XTrue1,'b-',[0:dt:T],XTrue2,'r-')

29 legend('X1','X2')

30 xlabel('t')

31 ylabel('X')

32 grid on

33

34 figure(7) % Plot solutions for X 1*X 2

35 plot([0:dt:T],XTrue1.*XTrue2,'b-',t3,XTrue3,'ro--',t4,XTrue4,'mˆ--')

36 xlabel('t')

37 ylabel('X1*X2')

38 grid on

39 legend('Direct Solution','Ito product rule','Deterministic ...

product rule')

Itô’s integration by parts

The integration by parts of stochastic variables also includes an extra correction

term. Let’s begin with the deterministic case: if we integrate the product rule in

Eq.B.42, we obtain∫ r

s

d(xy) = x(r)y(r)− x(s)y(s) =

∫ r

s

(xdy + ydx). (B.50)

Reordering the equation above, we get the deterministic integration by parts
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described by ∫ r

s

xdy = x(r)y(r)− x(s)y(s)−
∫ r

s

ydx. (B.51)

In the stochastic case, we integrate Itô’s product rule (Eq. B.47) to obtain the

Itô’s integration by parts:

∫ r

s

X2dX1 = X1(r)X2(r)−X1(s)X2(s)−
∫ r

s

X1dX2 −
∫ r

s

G1G2dt

(Itô’s integration by parts)

(B.52)

If G1 or G2 is zero, Eq. B.52 returns to deterministic product rule. Note that

if G2 = 0 and X2(0) = X2(T ) = 0, Paley-Wiener-Zygmund definition described in

Eq. B.11 is recovered.

B.3 Stochastic Differential Equations

Consider a m-dimensional Brownian motion W = [W1(t),W2(t), . . . ,Wm(t)]T and

a n-dimensional random variable X0. Also, for t > 0, consider the functions b :

Rn × [0, T ] → R and B : Rn × [0, T ] → Mn×m. These functions can also be

expressed as

b = (b1, b2, b3, . . . , bn) , [B] =


b11 . . . b1m

...
. . .

...

bn1 . . . bnm

 (B.53)

Therefore, we can define a n-dimensional stochastic process X(t) that is the

solution of the following stochastic differential equation:dX(t) = b(X, t)dt+ [B(X, t)]dW

X(0) = x0

, (B.54)

In case of differential equation in higher orders, the representation in state space

can be used:

X(t) =


Y (t)

Y (1)(t)
...

Y (n−1)(t)

 =


X1(t)

X2(t)
...

Xn(t)

 , (B.55)

where Y (i) is the i-th derivative of Y. This way, the stochastic differential equation
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becomes:

dX(t) =


X2(t)

...

Xn(t)

b(X, t)

 dt+


0
...

0

B(X, t)

 dW (B.56)

Note that the equation above were developed for a higher order stochastic dif-

ferential equation with a 1-D stochastic process Y (t). If a stochastic process with a

higher dimension is considered, it must be included in vector X(t) as usual in state

space representation.

B.3.1 Solutions of SDE

A stochastic differential equation can be solved either numerically or analytically.

Stochastic differential equations do not have as many analytical solutions as deter-

ministic differential equations. The most common analytical and numerical strate-

gies are going to be presented further, but first, we have to establish the following

theorem of existence and uniqueness for stochastic differential equations.

THEOREM: For T > 0, let b : Rn × [0, T ]→ R and B : Rn × [0, T ]→Mn×m

be measurable functions such that

|b(X, t)|+ |[B(X, t)]| ≤ C(1 + |X|), X ∈ Rn, t ∈ [0, T ] (B.57)

for some constant C, (where |[B]| =
√∑

|[B]|2ij and |b| =
√∑

|b|2i ) and

|b(X, t)− b(Y , t)|+ |[B(X, t)]− [B(Y , t)]| ≤ D(X − Y ), X,Y ∈ Rn, t ∈ [0, T ]

(B.58)

for some constant D. Also, let X0 ∈ Rn be a random variable such that E(|X0|2) ≤
∞ and X0 is independent of W+(0). Then the stochastic differential equationdX(t) = b(X, t)dt+ [B(X, t)]dW

X(0) = X0

, (B.59)

has a unique t-continuous solution X(t) with the property that

E

[∫ T

0

|Xt|2dt <∞
]
. (B.60)

For more details, properties and proofs, refer to [84, 95].

Application of Eq. (B.57): In order to illustrate this theorem, consider the

deterministic equation
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dx = x2dt, x0 = 0, (B.61)

in which b(x) = x2. This ODE has the unique solution

x =
1

1− t
, x(0) = 0, 0 ≤ t < 1.

Note that X explodes if t = 1. This equation does not satisfy Eq. B.57 and thus

it is not possible to find a solution X for all t. Therefore, Eq. B.57 assures that the

solution does not tend to ∞ in a finite time.

Application of Eq. (B.58): Now, consider the equation

dx = 3x2/3dt, x(0) = 0. (B.62)

This equation has more than one solution. Then, supposing a a positive constant,

the function

x =

0 for t ≤ a

(t− a)3 for t > a

solves Eq. B.62 for any a > 0. In this case, b = 3x2/3 do not satisfy Eq. B.58.

To prove this, we calculate the left side of Eq. B.58 as

|b(x1, t)− b(x2, t)| = |x2/3
1 − x2/3

2 |

=
|x1/3

1 + x
1/3
2 |

|x2/3
1 + x

1/3
1 x

1/3
2 + x

2/3
2 |
|x1 − x2|,

and set x2 to zero to obtain

|b(x1, t)− b(0, t)| =
1

|x1/3
1 |
|x1|.

It can be noticed that when x1 approaches zero, the coefficient 1

|x1/31 |
goes to ∞

and Eq. B.58 is not valid for a finite constant D near x = 0. As the solution is not

unique, we conclude that Eq. B.58 is related to the uniqueness of solution.

Analytical solutions

One method to obtain the solution of many stochastic differential equations is by

using the Itô Formula. This method consists on eliminating the dependence of X(t)

on the right side of the equation by a change of variables. The next examples will

demonstrate this technique.

EXAMPLE 4: Let us consider again the SDE introduced in Eq. B.5 about

population growth and set r(t) as constant. Rewriting this equation, we can obtain:
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dX = rXdt+ αXdW → dX

X
= rdt+ αdW (B.63)

Integrating the above equation, we obtain∫ t

0

dX

X
= rt+ αW. (B.64)

To solve this equation, we have to solve the remaining integral. To do so, we

choose a function g(t, x) in a smart way in order to remove the dependence on X in

the integrand by using Itô formula (Eq. B.35). Therefore, in this case, the function

g(t,X) = lnX for X > 0 is used to obtain, through Eq. B.35,

d(lnX) =
1

X
dX + 1

2
(− 1

X2
)(αX)2dt =

1

X
dX − 1

2
α2dt. (B.65)

Note that dNt
Nt

can now be written in function of two terms whose integrand

doesn’t depend on X. Now, substituting dNt
Nt

in Eq. B.64 by the result above and

integrating from 0 to t, we obtain

ln
X(t)

X0

= (r − 1
2
α2)t+ αW (t), (B.66)

or

X(t) = X0 exp
(
(r − 1

2
α2)t+ αW (t)

)
, (B.67)

that is the solution. The expected value of this solution can be calculated, but

the difficulty relies on the calculation of E[X0 exp(αW )]. Supposing that X0 and

W are independent, the problem is concentrated on calculating E[eαW ]. To do so,

we used Itô formula again to try to rewrite this expression. Assuming a function

Y = U(Z) = eZ where Z = αW and thus dZ = αdW , we apply Itô formula

(Eq. B.35) to obtain

dY = αeαWdW + 1
2
α2eαWdt, (B.68)

which can be integrated as

Yt = Y0 + α

∫ t

0

eαWdW + 1
2
α2

∫ t

0

eαWdt. (B.69)

Next, we can calculate the expected value of both sides and use the Itô’s property

that E[
∫ t

0
GdW ] = 0 to obtain

E[Yt] = E[Y0] = 1
2
α2E[Yt], E[Y0] = 1. (B.70)

Taking the time derivative of the above equation, it is possible to find that
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E[Yt] = e
1
2
α2t and, therefore, we obtain

E[Nt] = E[N0]ert. (B.71)

EXAMPLE 5: Consider the following SDE that describes the charge Q(t) at

time t at a point in an electric circuit:

LQ′′(t) +RQ′(t) +
1

C
Q(t) = F (t), Q(0) = Q0, Q

′(0) = I0, (B.72)

where L is indutance, R is resistance, C is capacitance and F(t) is the potential

source at time t. Now, consider the potential source is actually a stochastic process

such as F (t) = G(t) + αξ, where G(t) is a deterministic function, α is a positive

constant and ξ is a white noise. Rewriting Eq. B.72 using state space representation

and introducing the vector X t = (X1, X2)T = (QtQ
′
t)
T , we getX ′1 = X2

LX ′2 = −RX2 − 1
C
X1 +Gt + αWt,

(B.73)

or, in matrix notation,

dX t = [A]X tdt+H tdt+KdWt, (B.74)

where

dX t =

[
dX1

dX2

]
, [A] =

[
0 1

− 1
CL
−R
L

]
, H t =

[
0

1
L
Gt

]
, K =

[
0
α
L

]
. (B.75)

Thus, the second order system in Eq. B.72 is represented as a 2-dimensional

stochastic differential equation. Now, let us pre-multiply the Eq. B.74 by exp(−[A]t)

to get

exp(−[A]t)dX t − exp(−[A]t)[A]X tdt = exp(−[A]t) [H tdt+KdWt] . (B.76)

Note that we are taking the exponential out of a matrix here (for details, see [97]).

To solve this, we use again Itô formula (Eq. B.35) in the function u = exp(−[A]t)X t

to obtain

d(exp(−[A]t)X t) = (−[A]) exp(−[A]t)X tdt+ exp(−[A]t)dX t. (B.77)

Substituting Eq. B.77 into Eq. B.76 and integrating from 0 to t, we get

exp(−[A]t)X t −X0 =

∫ t

0

exp(−[A]s)Hsds+

∫ t

0

exp(−[A]s)KdWs. (B.78)
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Finally, using integration by parts in the term
∫ t

0
exp(−[A]t)KdWt, the solution

becomes

X(t) = exp([A]t)

[
X0 + exp(−[A]t)KWt +

∫ t

0

exp(−[A]s) [H(s) + [A]KWs] ds

]
.

(B.79)

Numerical solutions

Only a few SDE can be solved analytically using the techniques discussed in this

work. Thus, numerical methods are demanded in order to approximate these equa-

tions numerically. This way, the solution X(t) is interpreted as the random variable

that arises when the time step goes to zero. The numerical methods consist of

discretizing the time intervals and approximate the continuous solution X(tj) by

the discrete solution Xj. One of the simplest time discrete approximations is the

Euler-Maruyama approximation.

Let us consider the following 1-dimensional SDE in differential form:

dX = F (X, t)dt+G(X, t)dW, X(0) = X0, 0 ≤ t ≤ T. (B.80)

For a given time discretization 0 = t0 < t1 < · · · < tj < · · · < tN = T of time

interval [0, T ], the Euler-Maruyama method (EM) takes the form

Xj = Xj−1 + F (Xj−1, tj−1)∆t+G(Xj−1, tj−1)∆W, j = 1, 2, . . . , N (B.81)

where ∆t = tj − tj−1 is the time increment and ∆W = Wj −Wj−1 is the Brownian

motion increment such that ∆W → N(0, δt). Note that the discretization presented

in Eq. B.81 assumes Ito interpretation because the functions F (X, t) and G(X, t)

are evaluated at tj−1 over the interval [tj−1, tj]. To demonstrate the EM method,

consider the following example.

EXAMPLE 6: Consider the same linear stochastic differential equation used

in example 3:

dX = λXdt+ µXdW, X(0) = X0, (B.82)

which the solution is expressed as X(t) = X0 exp((λ − 1
2
µ2)t + µW ). In Fig. B.5,

the approximated solution by EM method is plotted together with the analytical

solution using the code in Listing B.5 together with the functions in the Listings B.6

and B.7. There was used 258 time increments for the analytical solution and 64

increments for EM approximation. It is noticed that the numerical solution tends

to the solutions obtained by the analytical method.
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Figure B.5: Euler-Maruyama method demonstration.

Listing B.5: Code to simulate of Euler-Maruyama method

1 %% Euler-Maruyama Method

2

3 T = 1; % Simulation total time

4 N = 2ˆ8; % Number of time steps

5 dt = T/N; % Time step

6 Xzero = 1; % Initial value

7 lambda = 2; mu = 1; % SDE coefficients

8

9 dW = sqrt(dt)*randn(1,N); % Brownian motion increments

10 W = cumsum(dW); % Construct Brownian motion ...

(cumulative sum)

11

12 % Analytical Solution

13 XTrue1 = [Xzero Xzero*exp((lambda-0.5*muˆ2)*([dt:dt:T])+mu*W)];

14

15 % Numerical Solution

16 R = 4; Dt = R*dt; % EM steps of size Dt = R*dt

17 dW2 = sum(reshape(dW,R,[]),1); % Rechape Browninan Motion to ...

Dt = R*dt

18 [t1,Xem1] = sde em(@(t,y,dW,dt)em test(t,y,dW,Dt,[lambda mu]),...

19 0:Dt:T,Xzero,dW2); % Solve using Euler-Maruyama

20

21 figure(8)

22 plot([0:dt:T],XTrue1,'b-',[0:Dt:T],Xem1,'r*--')

23 legend('Analytical','EM solution')

24 xlabel('t')

25 ylabel('X')

26 grid on
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27 title('Euler-Maruyama method')

Listing B.6: Function sde em

1 function [t,y] = sde em(fun,t,y0,dW)

2 % Solves stochastic differential equations by using Euler-Maruyama

3 % approximation.

4 % dY = fun(t,y,dW,dt) = F dt + G dW

5

6 y = zeros(length(y0),length(t)); % Preallocate in memory

7

8 y(:,1) = y0; % Initial value

9 for i = 2:length(t)

10 dt = t(i) - t(i-1); % time step

11 y(:,i) = y(:,i-1) + fun(t(i-1),y(:,i-1),dW(:,i-1),dt);

12 end

13

14 y = y';

15 t = t';

Listing B.7: Function em test

1 function dy = em test(t,y,Winc,dt,par)

2 % Function to describe the stochastic differential equation

3 % dY = lambda X dt + mu X dW

4

5 lambda = par(1); mu = par(2); % SDE coefficients

6 dy = dt*lambda*y + mu*y.*Winc;

Next, we need a criterion to judge whether a time discrete approximation is

accurate or not. Basically, there are two types of objects related to the solution of

stochastic differential equations. The first consists of the pathwise approximation

and is related to the strong convergence of numerical methods. The second one

focus on approximating the expectations of functionals of the Ito process, such as its

probability function and moments. This is very relevant because, in many problems,

the functionals cannot be determined explicitly. The second objective is related to

the weak convergence of the method.

The strong convergence (i.e. pathwise approximation) is evaluated by assessing

how EM solution matches the true solution (i.e. analytical solution) by taking the

expected value of the difference between the two solutions. Keeping in mind that

X(tj) is the true solution and Xj is the approximated solution, a method is said to
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converge strongly with order γ > 0 at time T if there exists a constant C such that

E[|XN −X(T )|] ≤ C∆tγ (B.83)

The weak convergence (i.e. approximation of expectations) says how the expec-

tation of approximated method approaches the expectation of the true solution. It

is calculated taking the difference between the two expectations, thus

|E[p(Xj)]− E[p(X(tj))]| ≤ C∆tγ. (B.84)

Taking p as the identity function and calculating the convergence at the end

point T, we get

|E[XN ]− E[X(T )]| ≤ C∆tγ. (B.85)

In Fig. B.6, the strong and weak convergences are plotted in log-log scale for

the SDE considered in example 6 using the codes in Listings B.8 and B.9. For the

strong convergence, 1000 simulations were performed for each time step size. The

expectation was calculated as a sample average and the red line represents a linear

curve with an inclination of −1
2
, showing that the strong order of convergence is

γ = 1
2

for EM method. In the case of weak convergence, 5000 simulations were

performed for each time step size. The expected value for the true solution at time

T can be calculated and it is equal to exp(λT ). The difference on the average value

at time T for EM simulations and the true solution was calculated and the weak

order of convergence is found to be γ = 1, following the inclination of the second

red line.
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Figure B.6: (a) Strong and (b) weak convergence of EM method.
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Listing B.8: Code to test strong convergence of EM method.

1 %% Test Strong convergence of Euler-Maruyama

2

3 T = 1; % Simulation total time

4 N = 2ˆ9; % Number of time steps

5 dt = T/N; % Time step

6 Xzero = 1; % Initial value

7 lambda = 2; mu = 1; % SDE coefficients

8

9 M = 1000; % number of paths sampled

10 dW = sqrt(dt)*randn(M,N); % Brownian motion increments

11 W = cumsum(dW,2); % Construct Brownian motion ...

(cumulative sum)

12

13 % True Solution

14 Xtrue = ...

Xzero*ones(M,1).*exp((lambda-0.5*muˆ2)*ones(M,1)+mu*W(:,end));

15

16 % Numerical Solution

17 Xerr = zeros(M,5); % preallocate memory

18 for p = 1:5

19 R = 2ˆ(p-1); Dt = R*dt; L = N/R; % L Euler steps of size Dt ...

= R*dt

20

21 % Rechape dW to size Dt = R*dt

22 dW2 = zeros(M,N/R);

23 for i = 1:M

24 dW2(i,:) = sum(reshape(dW(i,:),R,[]),1);

25 end

26

27 % Solve using EM

28 [t2,Xtemp] = sde em(@(t,y,dW,dt)em test(t,y,dW,dt,[lambda mu]),...

29 0:Dt:T,Xzero*ones(M,1),dW2);

30 Xerr(:,p) = abs(Xtemp(end,:)' - Xtrue); % Store the error at t ...

= T

31 end

32

33

34 Dtvals = dt*(2.ˆ([0:4]));

35 figure(9)

36 loglog(Dtvals,mean(Xerr),'b*-'), hold on

37 loglog(Dtvals,(Dtvals.ˆ(.5)),'r--'), hold off % reference slope ...

of 1/2

38 xlabel('\Delta t'), ylabel('Sample average of | X(T) - X L |')
39 title('emstrong.m','FontSize',10)

40

41 %%%% Least squares fit of error = C * Dtˆq %%%%
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42 A = [ones(5,1), log(Dtvals)']; rhs = log(mean(Xerr)');

43 sol = A\rhs; q = sol(2)

44 resid = norm(A*sol - rhs)

Listing B.9: Code to test weak convergence of EM method.

1 %% Test Weak convergence of Euler-Maruyama

2

3 T = 1; % Simulation total time

4 Xzero = 1; % Initial value

5 lambda = 2; mu = 0.11; % SDE coefficients

6

7 M = 50000; % number of paths sampled per time step size Dt

8

9 Xem = zeros(5,1); % Preallocate memory

10 for p = 1:5

11 Dt = 2ˆ(p-10); % Time step

12 L = T/Dt; % Number of time steps

13 Winc = sqrt(Dt)*randn(M,L); % Brownian motion increments

14

15 % Solve using EM

16 [t,Xtemp] = sde em(@(t,y,dW,dt)em test(t,y,dW,dt,[lambda mu]),...

17 0:Dt:T,Xzero*ones(M,1),Winc);

18 Xem(p) = mean(Xtemp(end,:)); %Calculate the mean value at t=T

19 end

20

21 % Evaluate the error at t=T

22 % exp(lambda*T) is the deterministic solution

23 Xerr = abs(Xem - exp(lambda*T));

24

25 Dtvals = 2.ˆ([1:5]-10);

26 figure (10)

27 loglog(Dtvals,Xerr,'b*-'), hold on

28 loglog(Dtvals,Dtvals,'r--'), hold off % reference slope of 1

29 xlabel('\Delta t'), ylabel(' | E(X(T)) - Sample average of X L |')
30 title('emweak.m','FontSize',10)

31

32 %%%% Least squares fit of error = C * dtˆq %%%%

33 A = [ones(p,1), log(Dtvals)']; rhs = log(Xerr);

34 sol = A\rhs; q = sol(2)

35 resid = norm(A*sol - rhs)
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B.3.2 Applications of SDE

In the following, several examples of stochastic differential equations are presented.

Here, it is not intended to present the solution procedure but it follows the tech-

nique presented in the subsection about analytical solutions. The objectives of this

subsection are to present several types of stochastic processes that can be generated

by using Itô stochastic differential equations and discuss their characteristics.

EXAMPLE 7: Let m = n = 1 and suppose g is a continuous function. The

only solution of the SDE

dX = gXdW, X(0) = 1

is

X(t) = exp(−1
2

∫ t

0

g2ds+

∫ t

0

gdW ) (B.86)

To prove this, we can set Y (t) = −1
2

∫ t
0
g2ds+

∫ t
0
gdW and take the derivative to

obtain dY = −1
2
g2dt + gdW . Then, we apply the Itô’s chain rule for X = u(Y ) =

exp(Y ) to obtain

dX = u′dY + 1
2
u′′g2dt

= eY (1
2
g2dt+ gdW + 1

2
g2dt)

= gXdW

EXAMPLE 8: The solution of the SDEdB = −B
T−tdt+ dW

B(0) = 0
(0 ≤ t ≤ T ),

is

B(t) = (T − t)
∫ t

0

1

T − s
dW

Note that limt→1− B(t) = 0. The solution B(t) is called Brownian bridge between

times 0 and T. The expected value is zero, with variance t(T−t)
T

and the covariance

of B(s) and B(t) is s(T−t)
T

for s < t. The increments on a Brownian Bridge are not

independent

This stochastic process is often used when there is already a generated Wiener

process path and we want to interpolate between two already generated points. This

way we have to assure that interpolation assumes the values of the already generated

points at the ends. A sample path of a Brownian Bridge is shown in Fig. B.7 for

T = 1.
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Figure B.7: One sample path of a Brownian Bridge.

EXAMPLE 9: It is possible to model viscous friction forces considering uncer-

tainties through the SDE

Ẋ = −bX(t) + σξ(t)

where ξ is a white noise, b > 0 is the friction coefficient and σ is the diffusion

coefficient. This equation can be rewritten asdX = −bXdt+ σdW

X(0) = X0

where X0 can be a random variable independent of Brownian motion. This equation

is called the Langevin’s equation. X(t) is interpreted as the velocity of a Brownian

particle. The solution of this equation is

X(t) = e−btX0 + σ

∫ t

0

e−b(t−s)dW, (t ≥ 0)

It is possible to calculate the first and second moment of X(t). To do this, the

properties of stochastic integrals are used.

E(X(t)) = e−btE(X0)

E(X2(t)) = E

(
e−2btX2

0 + 2σe−btX0

∫ t

0

e−b(t−s)dW + σ2

(∫ t

0

e−b(t−s)dW

)2
)

= e−2btE(X2
0 ) + 2σe−btE(X0)E(

∫ t

0

e−b(t−s)dW ) + σ2

∫ t

0

e−2b(t−s)ds

= e−2btE(X2
0 ) +

σ2

2b
(1− e−2bt)
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From this, we obtain the variance:

V (X(t)) = E(X2(t))− (E(X(t)))2

= e−2btV (X0) +
σ2

2b
(1− e−2bt)

Note that when t → ∞, tha variable X(t) tend to a distribution N(0,σ
2

2b
). It

means that, independent of the initial distribution of X0, the solution of this SDE

goes to zero and variates around this as a result of the balance between disturbing

force (σξ) and damping force (−bX(t)). One sample path of X(t) is shown in Fig. B.8

for b = 2 and σ = 0.4.

0 0.2 0.4 0.6 0.8 1
t

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

X
(t

)

Langevin's Equation

Figure B.8: One sample path of Langevin’s equation.
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Appendix C

Scalar linear stochastic differential

equations

The stochastic differential equations can be classified into two large groups: linear

SDEs and nonlinear SDEs. Furthermore, they are also distinguished between scalar

and vectorial SDEs. This appendix is devoted to discussing a very particular group

of SDEs: scalar linear SDEs. The stochastic processes generated in this work are

classified into this category. A scalar linear SDE can be written as [85]:

dX = (A(t)X(t) + a(t)) dt+
N∑
i=1

(Bi(t)X(t) + bi(t))dWi(t) , (C.1)

where A(t), a(t), Bi(t) and bi(t) ∈ R; Wi(t) ∈ R is a Brownian motion, and; X(0) =

x0. The solution of linear SDEs like Eq. C.1 is well established in literature as [85]:

X(t) = Φ(t)

(
x0 +

∫ t

0

Φ−1(s)

[
a(s)−

N∑
i=1

Bi(s)bi(s)

]
ds+

N∑
i=1

∫ t

0

Φ−1(s)bi(s)dWi(s)

)
,

(C.2)

where Φ(t) is the fundamental matrix defined by

Φ(t) = exp

(∫ t

0

[
A(s)−

N∑
i=1

B2
i (s)

2

]
ds+

N∑
i=1

∫ t

0

Bi(s)dWi(s)

)
, (C.3)

There are sometimes that A(s), a(s), Bi(s) and bi(s) are complicated functions

and the integrals in Eq. C.2 become very difficult to calculate analytically. Thus, the

calculation of the moments from the solution is compromised. In oder to circumvent

this, the expectation m(t) = E[X(t)] and second moment P (t) = E[X2(t)] can be

calculated directly from differential equation. Taking the expectation on both sides

of Eq. C.1 and considering that X(t) and dW (t) are independent, we obtain:
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E[dX(t)] = E

[
(A(t)X(t) + a(t)) dt+

N∑
i=1

(Bi(t)X(t) + bi(t))dWi(t)

]
,

E[dX(t)] = dm(t) = (A(t)E[X(t)] + a(t)) dt

+
N∑
i=1

E[(Bi(t)X(t) + bi(t))]���
���:0

E[dWi(t)] ,

which leads to the following ODE describing the expectation of X(t):

dm(t) = (A(t)m(t) + a(t)) dt. (C.4)

In order to calculate the second moment, we define a new variable Y (t) = X2(t)

and apply Itô’s chain rule (Eq. B.35) to obtain the following SDE:

dY (t) =

[
2X(t)(A(t)X(t) + a(t)) +

N∑
i=1

(Bi(t)X(t) + bi(t))
2

]
dt

+ 2X(t)
N∑
i=1

(Bi(t)X(t) + bi(t))
2 dWi(t) ,

dY (t) =

[
2A(t)X2(t) + 2a(t)X(t) +

N∑
i=1

B2
i (t)X

2(t) + 2Bi(t)bi(t)X(t) + b2
i (t)

]
dt

+ 2X(t)
N∑
i=1

(Bi(t)X(t) + bi(t))
2 dWi(t) .

Taking the expectation on both sides, we obtain:

E[dY (t)] = dP (t) =
[
2A(t)E[X2(t)] + 2a(t)E[X(t)] +

N∑
i=1

B2
i (t)E[X2(t)]

+2Bi(t)bi(t)E[X(t)] + b2
i (t)
]
dt

+ E[2X(t)
N∑
i=1

(Bi(t)X(t) + bi(t))
2]���

���:0
E[dWi(t)] ,

which results in the following ODE to describe the second moment:
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dP (t) =

[
2A(t)P (t) + 2a(t)m(t) +

N∑
i=1

B2
i (t)P (t) + 2Bi(t)bi(t)m(t) + b2

i (t)

]
dt .

(C.5)
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Appendix D

Numerical integration method

The numerical integration method used to solve the stochastic system of differential

equations is based on a generalization of the Heun method, or the modified Euler

method. Consider a stochastic differential equation of the form

dX = f(X, t)dt+ g(X, t)dW , (D.1)

where f(X, t) and g(X, t) are the drift and diffusion coefficients, respectively; and

W is a Brownian motion. A formal generalization of the Heun scheme for ordinary

differential equations to the stochastic differential equations is

Xi+1 = Xi +
1

2
[f(Xi, ti) + f(Xi + f(Xi, ti)∆i + g(Xi, ti)∆Wi, ti)] ∆i

+
1

2
[g(Xi, ti) + g(Xi + f(Xi, ti)∆i + g(Xi, ti)∆Wi, ti)] ∆Wi , (D.2)

where Xi = X(ti) with ti+1 = ti + ∆i; X0 = X(0) is the initial condition, and;

∆Wi is the increment on Brownian motion. Although the formally generalized

Heun method presented in Eq. D.2 seems acceptable, it is only strongly consistent

if g(X, t) = constant [85], i.e. otherwise, the solution does not converge. Thus, a

modification of this method is applied:

Xi+1 = Xi+
1

2
[f(Xi, ti) + f(Xi + f(Xi, ti)∆i + g(Xi, ti)∆Wi, ti)] ∆i+g(Xi, ti)∆Wi ,

(D.3)

which is strongly consistent [85].
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Appendix E

Program structure

The program developed in this work is coded in MATLAB and it consists of more

than 20 files and several thousand lines. In order to present the structure of the pro-

gram in a simplified way, the flowcharts in Figs. E.1, E.2, E.3 and E.4 are presented.

The main program, which calls all the others, is called PRINCIPAL.m (Fig. E.1).

Here, the user specifies the rotational speed at the top (Ω), the WOB (W̄ob), the

simulation time and the number of stochastic simulations (Ns). Then, it calls the

DRILLDYN.m (Fig. E.2) to solve deterministic model (stoch = 0). After this, the

stochastic model is solved (stoch = 1) inside a loop to generate Ns stochastic simu-

lations. Finally, the statistics are calculated and plotted.

Start

Input Ω, WOB, 
time and Ns

X = DRILLDYN 
(stoch = 0, IC =0) 

Calculate SSS

k = 1

1

1

k < NS

Y = DRILLDYN 
(stoch = 1, X(T)) 

Calculate SSS and 
save variables 

k = k + 1

Ns > 0

Calculate statistics
and plot

End

YES

NO

TRUE

FALSE

Figure E.1: Simplified structure of program PRINCIPAL.m.
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In DRILLDYN.m, all the other parameters are inputted, the matrices are calcu-

lated with sub normalmodes.m (Fig E.3) and the equations are solved in sub dyn.m

(Fig E.4). The boundary condition BC 1 fixes the rotation at the top and the axial

movement at the bottom, while BC 2 only imposes a rotational speed at the top.

In stochastic case, the initial condition is set as the deterministic solution at time

t = T (X(T )) for drill-string dynamics and as the end point of the pre-simulation

for the stochastic process generation.

DRILLDYN 
(stoch,IC) 

Input geometry, material, 
α, β, nTM , nAM , g and  

SP properties

M, D, Ke, us =
sub_normalmodes

X = sub_dyn (M, D,
Ke, stoch, IC) 

1

1

Plot ?

Plot Results

Return X 

YES

NO

Figure E.2: Simplified structure of program DRILLDYN.m.

sub_nomalmodes

Initialize Nelem

Calculate M, D, Ke,
fg and ff

Apply BC 1

1

1

2

Calculate us

Calculate natural freq.
and normal modes

Error < 0.7

Return M, D, Ke

YES
NO

Increase Nelem

2

Figure E.3: Simplified structure of program sub normalmodes.m.
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sub_dyn (M, D, Ke,
stoch, IC)

Calculate rigid body
modes

Apply BC 2

Calculate flexible
modes

Reduce?

Calculate reduction
matrix [ɸ]

Calculate [m], [d],
[ke], d2r and k2er

stoch ?

1

1

YES

NO

Set initial condition
as X(0) = 0, V(0) = Ω

X = Solve(ODE system)

Set initial condition as
IC

Generate Brownian
increments

Pre-simulate 15s of SP

X = Solve(SDE system)

sub_dyn (M, D, Ke,
stoch, IC)

FALSE TRUE

Figure E.4: Simplified structure of program sub dyn.m.
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