Universidade Federal do Rio de Janeiro Departamento de Astronomia

Calibração da Relação [L - σ] para Galáxias HII Locais

Aluno: Vinicius Bordalo Schmidt Marques Orientador: Dr. Eduardo Telles (Observatório Nacional)

Projeto de Fim de Curso para a Obtenção do Título de Bacharel em Astronomia.

Agradecimentos

Agradeço especialmente à minha família e à minha querida companheira Marcela Braga. Agradeço aos meus amigos da banda Direitos Autorais, Otto, Herbert, Rodrigo, Vinicius da Rosa e Wagner Ceulin, aos meus amigos da turma de 1997 e agregados, Wagner, Eduardo Seperuelo, Leda, Beatriz, Juliana, Tatiana e Carolina, Ricardo, Eduardo Duarte, Gil, Bruno, Wailã e Luis Antônio e a todos que fizeram cursos comigo durante a graduação . Agradeço a compreensão da Flávia e da Cecília pelo uso da sala e do computador. Agradeço ao meu orientador Eduardo Telles pela grande contribuição em meu aprendizado profissional e ao Henri pelas dicas na redação do trabalho. Agradeço também ao Sir Isaac Newton, Albert Einstein, Boltzmann, Planck, Bohr, Heisenberg e muitos outros pela construção do conhecimento físico que ao longo desse curso tive oportunidade de apreciar.

Resumo

Podemos classificar as galáxias HII como uma subamostra de galáxias anãs, atravessando um período de formação intensa de estrelas (fenômeno "starburst"). Estrelas de alta massa embebidas em grande conteúdo de gás, dão origem a um espectro óptico dominado por linhas nebulares de emissão, sobrepostas a um contínuo azul fraco. Seus espectros ópticos são muito parecidos aos de regiões HII gigantes, como 30 Doradus localizado na Grande Nuvem de Magalhães. Um tópico importante no estudo desses objetos, é a validade das relações entre luminosidade (L), tamanho (R), largura das linhas de emissão (σ) e abundância de elementos pesados. Essas relações empíricas indicam que $[L \propto \sigma^4]$ e $[R \propto \sigma^2]$ (Terlevich & Melnick 1981). A similaridade dessas relações com as encontradas para sistemas estelares ligados gravitacionalmente, como galáxias elípticas, sugere que as galáxias HII e regiões HII são também sistemas gravitacionalmente ligados, nos quais as larguras de linhas representam a dispersão de velocidades supersônica do gás num potencial gravitacional do complexo gás-estrelas. Em trabalho recente, Telles, Muños-Tuñón & Tenorio-Tagle (2001), mostraram que: (i) observações com alta resolução espacial e espectral revelam estruturas intrincadas em galáxias HII. (ii) galáxias HII quando resolvidas apresentam várias regiões de emissão com variedades de forma, luminosidade e largura de linha. (iii) as propriedades intrísecas (luminosidade, dispersão de velocidade) de uma galáxia são dominadas pela região central (core). O objetivo central desse trabalho é calibrar a relação $[L(H\alpha) - \sigma]$ para uma amostra de 81 galáxias HII locais (z < 0,08), com larguras de linhas medidas de espectros com alta resolução (R=48000) e analisar preliminarmente os erros observacionais. Uma calibração precisa dessa relação para galáxias HII locais pode ser de grande importância se usada como indicador de distância de galáxias a alto redshift, uma vez que galáxias HII são facilmente detectadas a grande distâncias (Melnick, Terlevich & Terlevich, 2000).

Abstract

We can classify HII galaxies as a subsample of dwarf galaxies undergoing intense star formation ("starburst" phenomenon). Massive stars surrounded by abundant content of gas originate an optical spectrum dominated by nebular emission lines, superposed to a weak blue continuum. Their optical spectra are indistinguishable from giant HII regions as 30 Doradus located in the Large Magellanic Cloud. One important topic of study about these galaxies is the validity of the relations between luminosity (L), size (R), line-emission widths (σ) and heavy elements abundance. These empirical relations indicate that $[L \propto \sigma^4]$ and $[R \propto \sigma^2]$ (Terlevich & Melnick 1981). The similarity of these relations with those found for gravitationally bound stellar systems like elliptical galaxies, suggests that HII galaxies and giant HII regions are also gravitationally bound systems in which the observed emission-line widths represent the supersonic velocity dispersion of the gas in the gravitational potential of the gas-stars complex. In recent work Telles, Muños-Tuñón & Tenorio-Tagle (2001) found that: (i) enhanced spectral and spatial resolution seems to unveil an intricate structure in HII galaxies. (HII galaxies are very *blobby*). (ii) HII galaxies when resolved present several emitting knots with a variety of shapes, luminosity and line widths. (iii) the intrinsic properties (luminosity, velocity dispersion) of a galaxy are dominated by the central (core) component. The central aim of this work is to calibrate the relation $[L(H\alpha) - \sigma]$ for a sample of 81 local HII galaxies (z < 0.08), with line widths mesured from high resolution spectra (R=48000) and make a primary analysis of the observational erros. A fine calibration of these relations for local HII galaxies may be of great importance if used as a distance indicator of galaxies at large redshift, since the HII galaxies are easy to find at great distances (Melnick, Terlevich & Terlevich, 2000).

Conteúdo

1	Inti	rodução	9
	1.1	Galáxias HII	9
	1.2	Relações Paramétricas como Indicadores de Distância 1	1
2	Met	todologia 1	7
	2.1	Seleção da Amostra	7
	2.2	Observações	8
	2.3	Redução dos Dados	3
		2.3.1 Coudé	3
		2.3.2 FEROS	5
	2.4	Velocidades Radiais e Distâncias	6
	2.5	Luminosidade H α	6
	2.6	Perfis das Linhas de Emissão	8
	2.7	Tabelas de Valores)
	2.8	Análise dos Erros	5
		2.8.1 Fluxos	5
		2.8.2 Dispersão de Velocidades	7
3	Res	ultados e Discussão 39)
	3.1	A Relação $[L(H\alpha) - \sigma]$)
	3.2	Perspectivas Futuras	2
Re	eferêi	ncias 42	2

4

- 10 02011 11
 - and the second se

Sector received.

Lista de Figuras

1.1	Espectros de três galáxias HII e da região HII gigante 30 Do- radus (figura original do trabalho de Melnick <i>et al.</i> , 1988).	10
1.2	Imagens de quatro galáxias HII tipo I que se encontram nesse	
	trabalho. Apresentam morfologia irregular, sinais de interação.	12
1.3	Imagens de quatro galáxias HII tipo II que se encontram nesse	
	trabalho, apresentam forma compacta.	13
1.4	a. Gráfico logarítimo da luminosidade B de galáxias HII	
	(triângulos) e Elípticas (círculos) versus larguras de linhas.	
	b. Correlação entre o raio linear e a dispersão de velocidade.	
	As linhas pontilhadas mostram os ajustes lineares (LSQ) e o	
	LSQ inverso para galáxias HII e galáxias elípticas. As linhas	
	tracejadas os ajustes lineares de máxima verossimilhança para	12121
	os dados assumindo erro em X e Y (Telles, 1995)	15
2.1	Distribuição das galáxias HII da nossa amostra em função do	
2.1	redshift. Todas elas apresentam redshifts menores que 0.08	
	correspondendo a v < 24000 $km s^{-1}$.	18
2.2	Espectro calibrado de Mark 710 reduzido dos dados do Coudé.	25
2.3	Espectro echelle (39 ordens) de Tol 0226-390 observado com	
	CCD de 2048 x 4096 <i>pixels</i> , combrindo o intervalo espectral	
	3560-9200Å	27
2.4	Perfis de linhas de emissão para seis galáxias HII cobrindo todo	
	o intervalo de larguras da nossa amostra (espectro FEROS).	
	A figura mostra também os ajustes gaussianos usados para	
	derivar as velocidade dos perfis que são mostradas em cada	
	gráfico. A largura instrumental é comparada ao perfil da linha	
	mais estreita de nossa amostra correspondendo a galáxia UM	
	461	29

2.5	a. Comparação entre os fluxos H α medidos com espectofo- tometrio Coudá a Ballan la Chivana para 12 melánica HIL A	
	linka tracciada representa un aiusta linca sana in ante	
	nnna tracejada representa um ajuste innear para os pontos,	
	$RMS = 0.27$. b. Comparação entre os fluxos H β Boller &	
	Chivens e os publicados por Melnick <i>et al.</i> (1988) para 17	
	galáxias. c. e d. Comparação entre os fluxos H α (38 galáxias)	
	e H β (47 galáxias) Boller & Chivens e SCHG (Terlevich <i>et al.</i> ,	
	1991)	36
2.6	a. Comparação entre os valores de σ obtidos com dados do	
	FEROS e Coudé. b. Comparação entre os valores de σ obti-	
	dos com dados do FEROS e os publicados por Melnick et	
	al. (1988). Os dois triângulos preenchidos representam as	
	galáxias Cam 0840+1044 e Tol 0242-387 citadas no texto. c.	
	Comparação valores de σ obtidos com dados do Coudé e os	
	publicados por Melnick et al. (1988). A linha tracejada indica	
	um ajuste linear dos pontos (LSQ).	38
3.1	Relação [L(H α) - σ] para 81 galáxias HII. Nosso ajuste (linha	
	sólida) é comparado ao de trabalhos da literatura	40
3.2	Os painéis à esquerda mostram o espalhamento usando ape-	
	nas σ como estimador da luminosidade para galáxias elípticas	
	(Dressler et al., 1987) (painel superior) e galáxias HII (painel	
	inferior). Os painéis à direita mostram o espalhamento final	
	usando uma combinação de σ e parâmetro R_{burst} . As linhas	
	pontilhadas representam os ajustes LSQ e LSQ inverso para	
	os pontos (Telles, 1995)	41

Lista de Tabelas

2.1	Lista de observações Coudé	20
2.2	Lista de observações FEROS.	21
2.2	Continua.	22
2.3	Características dos CCDs usados com o Coudé-LNA.	23
2.4	Valores de Z, σ e F(H α) e suas incertezas para galáxias obser-	
	vadas com o Coudé-LNA.	30
2.5	Valores de Z, σ e suas incertezas para galáxias observadas com	
	o FEROS-ESO	31
2.5	Continua	32
2.6	Valores de Z, σ e suas incertezas, $F(H\alpha)$ e $C(H\alpha)$ para cada	
	galáxia presente na relação L(H α) - σ (figura 3.1)	33
2.6	Continua	34
3.1	Relações $[L(H\alpha) - \sigma]$. Todos os ajustes foram feitos pelo método dos mínimos quadrados (LSQ) e transformados para	
	$H_0 = h_0 km s^{-1} Mnc^{-1}$ Luminosidade expressa em era s^{-1}	11

Capítulo 1

Introdução

1.1 Galáxias HII

Na procura por galáxias com linhas de emissão no Observatório Astrofísico de Tonantzintla (México), Haro identificou um objeto peculiar que apresentava linhas de emissão nebulares intensas e nenhum contínuo visível (Haro 1951). Devido a sua forma muito compacta (perfil estelar) e suas propriedades espectrais, Haro classificou provisoriamente esse objeto como nebulosa planetária mas reconheceu a necessidade de mais observações a fim de classifica-lo corretamente. Em 1956 Haro já tinha identificado um bom número desses objetos como "galáxias azuis com emissão nuclear", caracterizados pela forte emissão de radiação ultravioleta de seus núcleos.

Posteriormente Zwicky (Zwicky, 1964;1965) introduziu o termo "galáxias compactas" ao classificar galáxias que eram dificilmente distinguidas de estrelas nas placas do "Palomar Sky Survey". Como alguns objetos tinham perfis estelares, foi apenas através de *redshifts* medidos dos espectros que Zwicky os reconheceu com galáxias. Uma fração desses objetos também apresentavam linhas de emissão intensas.

Hoje a maioria das galáxias HII estudadas são encontradas nas listas de galáxias compactas com linhas de emissão e excesso no ultravioleta, produzidas por Haro (1956), Zwicky (1966), Markarian (1967) e em surveys como University of Michigan Survey (McAlpine & Williams, 1981) e Tololo Survey (Smith, Aguirre & Zemelman, 1976). Porém objetos que hoje chamamos de galáxias HII ou "Blue Compact Galaxies" (BCGs) representam apenas uma

Figura 1.1: Espectros de três galáxias HII e da região HII gigante 30 Doradus (figura original do trabalho de Melnick *et al.*, 1988).

fração dos objetos dessas listas. Os outros objetos são galáxias nucleares ativas, espirais normais com formação estelar nuclear e regiões HII em galáxias espirais próximas. Por opção, nesse texto usarei o termo galáxia HII embora galáxia azul compacta refere-se ao mesmo tipo de objeto. A diferença é devido basicamente ao método de detecção desse tipo de objeto. Galáxias HII foram historicamente encontradas a partir de surveys de prisma objetivo, enquanto que as "Blue Compact Galaxies" foram detectadas por serem compactas e azuis em surveys utilizando placas fotográficas. Ambos nomes são encontrados na literatura. Atualmente podemos classificar as galáxias HII como uma subamostra de galáxias anãs atravessando um período de formação intensa de estrelas (fenômeno "starburst"), dando origem a um espectro óptico dominado por linhas nebulares de emissão sobrepostas a um contínuo azul fraco. Por serem intensas, as linhas de emissão do gás ionizado são facilmente detectadas em "surveys" de prisma objetivo. Seus espectros ópticos são muito parecidos aos de regiões HII gigantes como 30 Doradus localizado na Grande Nuvem de Magalhães (figura 1.1).

Galáxias HII são também caracterizadas por apresentar baixa metalici-

dade (Sarget & Searle, 1970; Searle & Sargent, 1972) e uma taxa alta de formação estelar, alimentada por grande conteúdo de gás. Sargent e Searle levantaram as hipóteses dessas galáxias estarem formando suas primeiras gerações de estrelas ou que a formação estelar ocorre em surtos ("bursts") separados por longo período de quietude ("quiescence") (Searle *et al.*, 1973). Estruturalmente essas galáxias apresentam superaglomerados com milhares de estrelas de alta massa (> $20M_{\odot}$) concentrados em um pequeno volume ($10^1 - 10^2 parsecs$), embebidos em grande conteúdo de gás. 30 Doradus é um exemplo típico desses superaglomerados.

Telles *et al.* (1997) classificaram as galáxias HII dividindo-as em dois grupos:

- **Tipo I** Sistemas irregulares que apresentam isofotas distorcidas nas regiões externas, possivelmente devido a interações . Essas galáxias apresentam também luminosidades e dispersões de velocidades maiores que as do tipo II (figura 1.2).
- **Tipo II** Sistemas regulares e compactos com forma esferoidal (figura 1.3).

Os fenômenos físicos observados em galáxias HII têm implicações profundas em vários tópicos da astrofísica. Em particular, nos processos de formação estelar e como o meio interestelar e a taxa de formação estelar é estruturada nessas galáxias.

Outro tópico importante a ser estudado, é a interpretação das correlações entre tamanho e luminosidade versus larguras de linhas supersônicas para aplicação como indicador de distância de galáxias a alto *redshift*. Essas correlações foram primeiramente encontradas para regiões HII gigantes por Melnick (1979), Terlevich & Melnick (1981), e Melnick *et al.* (1987), e estendidas para galáxias HII por Melnick *et al.*(1988), e Telles & Terlevich (1993).

1.2 Relações Paramétricas como Indicadores de Distância

Já está bem estabelecido que galáxias podem ser descritas fisicamente por um conjunto de parâmetros físicos observados. Além disso *todas* as galáxias ditas normais, de maneira geral, apresentam relações fundamentais entre

Figura 1.2: Imagens de quatro galáxias HII tipo I que se encontram nesse trabalho. Apresentam morfologia irregular, sinais de interação .

1.2. RELAÇÕES PARAMÉTRICAS COMO INDICADORES DE DISTÂNCIA13

Figura 1.3: Imagens de quatro galáxias HII tipo II que se encontram nesse trabalho, apresentam forma compacta.

tamanho, luminosidade, cinemática (σ , V_{max}) e densidade (μ) (e.g. Fish 1964; Faber & Jackson, 1976; Tully & Fisher, 1977; Djorgovski & Davis, 1987; Dressler *et al.*, 1987).

Juntamente com os métodos de determinação de distâncias usando estrelas Cefeidas e Supernovas, essas relações têm sido usadas como método alternativo na determinação de distâncias de galáxias elípticas e espirais, assim como mapear a estrutura do universo local (Lynden-Bell *et al.*, 1988) e inferir o valor da constante de Hubble.

Para galáxias espirais próximas, Tully e Fisher (1977) mostraram a existência de uma correlação entre a velocidade de rotação (parâmetro independente da distância) e magnitude absoluta ou diâmetro e a aplicaram como indicador de distâncias para os aglomerados de Virgo e Ursa Maior e estimaram a constante de Hubble. Hoje essa correlação é bem calibrada em diversas bandas fotométricas (Sakai et al., 2000).

Para galáxias elípticas Faber e Jackson (1976) também verificaram empiricamente a existência de uma relação entre luminosidade e dispersão de velocidades. Essa relação tinha suporte teórico previsto por Fish (1964), onde ele correlacionou a energia potencial gravitacional de uma galáxia elíptica à massa inferida de sua luminosidade. Mais tarde, Dressler *et al.* (1987) e Djorgovski e Davis (1987) verificaram que parte do espalhamento na relação de Faber e Jackson ($L \propto \sigma^4$) era devido a um comportamento bi-paramétrico, incluindo na relação o brilho superficial dentro de um raio efetivo definido. Assim a correlação conhecida como "plano fundamental" das galáxias elípticas, tornou-se uma ferramenta adicional na determinação de distâncias extragalácticas com precisão comparada ao método de Tully-Fisher.

Terlevich e Melnick (1981) analisaram as relações entre luminosidade $H\beta$, tamanho, larguras das linhas de emissão e abundâncias de elementos pesados de uma amostra de 25 regiões HII gigantes e galáxias HII. Eles concluiram que as relações *Luminosidade* $\propto \sigma^4$ e *Tamanho* $\propto \sigma^2$, válidas para sistemas gravitacionalmente ligados como galáxias elípticas, bojos de galáxias espirais e aglomerados globulares, são também válidas para regiões HII gigantes e galáxias HII. A figura 1.4 mostra a similaridade das relações [L - σ] e [R - σ] encontradas para galáxias HII e galáxias elípticas. Nesse caso, a largura das linhas de emissão em galáxias HII, estaria representando a dispersão de velocidades do sistema gás-estrelas, possivelmente dominado pelo potencial gravitacional total.

Posteriormente, grupos independentes (Hippelein, 1986; Roy, Arsenault e Joncas, 1986) confirmaram a validade dessas relações para regiões de formação intensa de estrelas de alta massa com movimentos supersônicos¹. Melnick *et al.* (1988) calibraram a relação [$L(H\beta) - \sigma$] incluindo a razão O/H como um segundo parâmetro para uma amostra de 49 galáxias HII e a utilizaram como indicador de distância extragaláctica.

Esse trabalho tem como objetivo central melhorar a calibração da relação $[L(H\alpha) - \sigma]$ com uma amostra de 81 galáxias HII com observações de boa qualidade e analisar preeliminarmente os erros observacionais envolvidos. Uma análise cuidadosa dos resultados é de extrema importância para verificação da existência de outros parâmetros que possam estar envolvidos na

 $^{{}^{1}\}sigma \geq c_{HII} = (kT_{HII}\mu m^{-1})^{0.5} = 12,85 km s^{-1}$ para $T_{HII} = 10^{4}K$; onde k é a constate de Boltzmann, m é massa do átomo de hidrogênio e μ o peso molecular médio (Smith & Weedman, 1970).

relação . Parâmetros como metalicidade, estado evolutivo e brilho superficial podem ser responsáveis pelo espalhamento da relação [L - σ]. Essa investigação é necessária se queremos utilizar relações paramétricas de galáxias HII como indicador de distância para essas galáxias a alto *redshift*.

Figura 1.4: **a.** Gráfico logarítimo da luminosidade B de galáxias HII (*triângulos*) e Elípticas (*círculos*) versus larguras de linhas. **b.** Correlação entre o raio linear e a dispersão de velocidade. As linhas pontilhadas mostram os ajustes lineares (LSQ) e o LSQ inverso para galáxias HII e galáxias elípticas. As linhas tracejadas os ajustes lineares de máxima verossimilhança para os dados assumindo erro em X e Y (Telles, 1995).

CAPÍTULO 1. INTRODUÇÃO

16

Capítulo 2

Metodologia

Para obtermos a relação $[L(H\alpha) - \sigma]$ devemos observar espectros ópticos de galáxias HII e medir largura de linha e o fluxo H α . Nesse trabalho escolhemos fazer as medidas na linha de H α (λ 6563 Å) da série de Balmer por apresentar uma maior intensidade do que as demais linhas da série. Medimos a largura da linha de H α ajustando uma única gaussiana. Para isso precisamos que o espectro nos forneça uma linha resolvida separada das linhas do dubleto de [NII] ($\lambda\lambda$ 6548, 6583). Galáxias HII apresentam tipicamente larguras no intervalo 20-80 km s⁻¹. Determinamos a luminosidade de H α a partir da distância inferida pela Lei de Hubble ($v = H_0 d$), através da relação $L(H\alpha)$ = $4\pi d^2 F(H\alpha)$.

2.1 Seleção da Amostra

Nossas galáxias foram selecionadas do catálogo espectrofotométrico de galáxias HII (SCHG) (Terlevich *et al.*, 1991), que comtém galáxias descobertas a partir de "surveys" de prisma objetivo, como o da Universidade de Michigan (MacAlpine & Williams, 1981) e Tololo (Smith *et al.*, 1976), além de galáxias das listas de Markarian (1967) e Zwicky (1971). Também incluimos galáxias das listas de Kunth *et al.* (1981), Maza *et al.* (1991) e Surace & Comte (1998). Todas as galáxias possuem *redshifts* (z) menores que 0,08, o que indica que observamos galáxias "próximas" com velocidade de recessão¹ (v) de até 24000 km s⁻¹. Mostro na figura 2.1, a distribuição de

 $^{^{1}}z = v / c$, onde c é a velocidade da luz.

Figura 2.1: Distribuição das galáxias HII da nossa amostra em função do redshift. Todas elas apresentam redshifts menores que 0,08 correspondendo a v < 24000 km s⁻¹.

galáxias HII da nossa amostra em função do redshift².

2.2 Observações

Nossa estratégia inicial foi observar com o telescópio 1,60m do Labotatório Nacional de Astrofísica (LNA - Brasil) usando o espectrógrafo Coudé com a rede de 600 linhas/mm, resultando numa resolução espectral de 0,9 Å (CCD³ 101 e 106) e 0,75 Å (CCD 48) (*FWHM*) em 6500Å. Escolhemos observar a região de 6400 a 6900 Å podendo assim medir a partir da linha de H α (6563 Å) da série de Balmer o fluxo integrado e a largura da linha em emissão. A abertura da fenda foi 1 segundo de arco. Apenas para Tol 1345-420 e MARK 1318 foi usada uma abertura de 1,7". Variamos o tempo de exposição em função dos fluxos consultados do SCHG e para a maioria das galáxias fizemos mais de uma exposição a fim de combinar os espectros finais extraindo raios cósmicos. Aproveitamos cinco missões observacionais

²Galáxias que estão na nossa relação [L(H α) - σ] (tabela 2.6)

³Detector do tipo Charge-Coupled Device

2.2. OBSERVAÇÕES

no período de fevereiro de 1997 a março de 1999. O "seeing" para essas missões foi em média de 1,5 segundo de arco. A tabela 2.1 lista todas as observações feitas com o Coudé nesse período.

A partir dos resultados obtidos no trabalho de Telles *et al.* (2001), adotamos uma nova estratégia para obter medidas de larguras de linhas de um número maior de objetos e com melhor qualidade. Eles mostraram através de espectroscopia *echelle* com fenda longa, para uma amostra de 7 galáxias HII, que embora esses objetos observados em alta resolução espacial apresentam regiões destintas de formação estelar, as propriedades intrínsecas (luminosidade, dispersão de velocidade) são dominadas pela componente central. Sabendo também que muitas das galáxias HII da nossa amostra apresentam morfologia compacta, surgiu a idéia de aproveitarmos o tempo de observação no telescópio ESO (1,52m, Chile) para observarmos com o espectrógrafo de fibras, FEROS (Fiber fed Extended Range Optical Spectrograph), mais galáxias. Essa foi a primeira vez que esse instrumento foi utilizado com esse objetivo.

Com o FEROS pudemos observar cerca de 90 galáxias HII em 4 missões no período entre novembro de 2000 a janeiro de 2002. Para a maioria das galáxias fizemos apenas uma exposição . A fibra foi colocada sempre na região central (mais brilhante) das galáxias. A tabela 2.2 lista todas as observações feitas com o FEROS nesse período. A abertura dada pela fibra é de 2,7 segundos de arco e a resolução em 6500Å é de 0,13Å (*FWHM*).

Telles *et al.* (em preparação) observaram com espectroscopia Boller & Chivens (ESO - 1,52m) um grande número de galáxias HII a fim de criar um novo catálogo espectrofotométrico. Assim observamos com o FEROS galáxias que foram observadas para o catálogo e tiveram fluxos H α medidos. Esses espectros cobrem um intervalo espectral com cerca de 4000 Å no óptico, centrado em 5700Å. A largura da fenda usada foi de 2 segundos de arco. Desses dados obtivemos também os coeficientes de extinção, CH α .

Galáxia	$\alpha(1950)$	$\delta(1950)$	Tempo de Exposição (s)	Número de Exposições	Detector (CCD)	Fenda (")	Data o Observa
Tol 0127-397	01 27 02.4	-39 46 03	1200	-	106	1.0	17/09/1
Tol 0226-390	02 26 10,0	-39 02 39	2400	2	106	1.0	14/09/1
Tol 0440-381	04 40 23,3	-38 06 41	2400	2	106	1.0	17/09/1
Tol 0645-376	06 45 07,0	-37 40 02	1800	1	101	1.0	04/02/1
Tol 0957-278	09 57 06,0	-27 53 00	7200	4	101	1.0	06/02/1
Tol 1004-296 NW	10 04 17,7	-29 41 29	1200	2	101	1,0	03/02/1
Tol 1004-296 SE	10 04 17,7	-29 41 29	600	1	101	1,0	03/02/1
Tol 1345-420	13 45 21,2	-42 06 19	600	1	106	1.7	14/03/1
Tol 1924-416	19 24 28,7	-41 40 39	3600	2	48	1,0	28/07/1
Tol 1937-423	19 37 29,1	-42 22 45	2400	2	106	1.0	16/09/1
Tol 2010-382	20 10 48,6	-38 16 49	5400	ω	48	1.0	29/07/1
Tol 2122-408	21 22 36,9	-40 52 12	4800	4	106	1,0	16/09/1
UM 167	23 33 40,0	01 52 30	3600	2	48	1,0	29/07/1
UM 191	23 54 27,0	-02 21 54	5400	ω	48	1.0	29/07/1
UM 191	23 54 27,0	-02 21 54	2400	2	106	1,0	13/09/1
UM 191	23 54 27,0	-02 21 54	4800	4	106	1,0	14/09/1
UM 304	01 04 20,0	01 40 54	5400	з	48	1,0	28/07/1
UM 307	01 08 56,0	01 03 54	1800	1	48	1,0	29/07/1
UM 391	02 00 54,0	02 20 00	6000	сл	106	1,0	14/09/1
UM 391	02 00 54,0	02 20 00	2400	2	106	1,0	15/09/1
UM 439	11 34 02,9	01 05 38	3000	ω	101	1,0	04/02/1
UM 448	11 39 38,3	00 36 38	4800	4	101	1,0	06/02/1
UM 477	12 05 37,4	03 09 22	2400	ω	101	1,0	03/02/1
UM 499	12 23 09,0	00 50 57	2400	2	101	1,0	04/02/1
UM 499	12 23 09,0	00 50 57	1200	1	101	1.0	05/02/1
MARK 710	09 52 01,2	09 30 00	5400	ω	101	1,0	05/02/1
MARK 1318	12 16 36,5	04 07 57	1800	2	106	1,7	14/03/1
		00 10 20	3600	2	101	1.0	05/09/1

20

CAPÍTULO 2. METODOLOGIA

2.2. OBSERVAÇÕES

Galáxia	$\alpha(1950)$	$\delta(1950)$	Tempo de	Número de	Data da
			Exposição	Exposições	Observação
			(s)		
Tol 0104-388	01 04 43,4	-38 48 00	5400	1	10/01/2002
Tol 0127-397	01 27 02,4	-39 46 03	5400	1	20/11/2000
161 0140-420	01 40 55,0	-42 04 46	5400	2	24/11/2000
161 0226-390	02 26 10,0	-39 02 39	7200	2	20/11/2000
101 0242-387	02 42 38,9	-38 47 17	6300	1	23/07/2001
Tol 0440-381	04 40 23,3	-38 06 41	3600	2	20/11/2000
Tol 0505-387	$05 \ 05 \ 19,1$	-38 42 51	4800	2	23/11/2000
Tol 0510-400	05 10 17,0	-40 03 14	5400	1	09/01/2002
Tol 0528-383	05 28 16,0	-38 20 22	3600	2	20/11/2000
Tol 0559-393	05 59 05,3	-39 19 06	3600	1	23/11/2000
Tol 0610-387	$06\ 10\ 33,6$	-38 45 36	5400	2	24/11/2000
Tol 0633-415	06 33 34,5	-41 31 00	4800	2	22/11/2000
Tol 0645-376	06 45 07,0	-37 40 02	2700	1	20/11/2000
Tol 0957-278	09 57 06,0	-27 53 00	1800	1	28/03/2001
Tol 1025-285	10 25 00,0	-28 32 00	5400	2	29/03/2001
Tol 1147-283	11 47 31,1	-28 23 35	3600	1	28/03/2001
Tol 1223-359	12 23 06,0	-35 56 00	3600	1	28/03/2001
Tol 1345-420	13 45 21,2	-42 06 19	3600	1	30/03/2001
Tol 1400-397	14 00 03,7	-38 48 09	7200	1	23/07/2001
Tol 1937-423	19 37 29,1	-42 22 45	5400	1	21/07/2001
Tol 2019-405	20 19 46,0	-40 30 13	5400	1	21/07/2001
Tol 2041-394	20 41 35,6	-39 24 12	5400	1	22/07/2001
Tol 2122-408	21 22 36,9	-40 52 12	3600	1	21/11/2000
Tol 2138-405	21 38 14,8	-40 32 35	5400	1	23/07/2001
Tol 2146-391	21 46 45,0	-39 08 10	5400	1	21/07/2001
Tol 2240-384	22 40 41,0	-38 27 09	5400	1	22/07/2001
Tol 2240-384	22 40 41,0	-38 27 09	3600	1	23/07/2001
Tol 2326-405	23 26 07,7	-40 32 02	4500	1	23/07/2001
UM 137	01 43 48,0	04 01 12	5400	1	21/07/2001
UM 151	01 55 03,0	02 10 48	3600	1	21/07/2001
UM 191	23 54 27,0	-02 21 54	7200	2	21/11/2000
UM 238	00 22 06,0	01 27 36	3600	1	21/07/2001
UM 304	01 04 20,0	01 40 54	5400	2	23/11/2000
UM 306	01 08 00,0	01 51 30	5400	2	23/11/2000
UM 323	01 24 13,0	00 53 54	5400	2	21/11/2000
UM 382	01 55 35,0	00 20 48	3600	1	22/07/2001
UM 391	02 00 54,0	02 20 00	5400	2	22/11/2000
UM 395	02 04 21,0	01 27 48	5400	2	24/11/2000
UM 396	02 04 50,0	02 43 00	5400	2	22/11/2000
UM 408	02 08 48,0	02 06 36	5400	2	22/11/2000
UM 417	02 16 57,0	-01 12 42	4200	1	22/07/2001
UM 455	11 47 50,0	00 15 01	2700	1	31/03/2001
UM 461	11 48 59,4	-02 05 41	1800	1	31/03/2001
UM 463	11 50 13,8	00 23 27	3600	1	01/04/2001
UM 477	12 05 37,4	03 09 22	3600	1	10/01/2002
UM 483	12 09 41,0	00 21 00	5400	1	22/07/2001
UM 559	13 15 09,8	00 44 14	3600	1	28/03/2001
UM 570	13 21 13,1	-01 17 15	4500	1	22/07/2001
UM 649	14 11 53,7	00 14 10	5400	1	21/07/2001

Tabela 2.2: Lista de observações FEROS.

Galáxia	$\alpha(1950)$	$\delta(1950)$	Tempo de Exposição (s)	Número de Exposições	Data da Observação
Cam 08-28A	08 42 45.1	16 16 44	1800	1	01/04/2001
Cam 0840+1044	08 39 53.2	10 44 02	2700	1	29/03/2001
Cam 0840+1201	08 39 36.4	12 00 49	6000	2	24/11/2000
Cam 1543+0907	15 43 13.7	09 12 48	3600	1	31/03/2001
Fairall 30	10 53 42,0	06 26 16	1800	1	31/03/2001
MARK 36	11 02 01,2	29 24 00	1800	1	31/03/2001
MARK 710	09 52 01,2	09 30 00	1800	1	01/04/2001
MARK 711	09 52 03,0	13 40 00	5400	1	07/01/2002
MARK 1201	07 22 34,5	30 03 11	3600	1	31/03/2001
MARK 1318	12 16 36,5	04 07 57	3600	1	29/03/2001
II ZW 40	05 53 00,6	03 24 00	4200	1	21/11/2000
II ZW 40	05 53 00,6	03 24 00	900	1	28/03/2001
II ZW 70	14 48 55,1	35 46 37	1400	1	28/03/2001
CTS 1003	02 30 44,0	-39 47 24	5400	1	09/01/2002
CTS 1004	03 06 51,0	-40 35 36	5400	1	09/01/2002
CTS 1004	03 06 50,1	-40 35 54	4800	2	23/11/2000
CTS 1005	03 57 22,1	-39 14 51	3600	1	07/01/2002
CTS 1006	04 40 40,7	-45 30 55	3600	1	10/01/2002
CTS 1007	04 44 52,5	-30 14 01	6000	2	22/11/2000
CTS 1008	04 49 45,3	-31 57 50	7200	2	21/11/2000
CTS 1011	10 16 59,1	-21 53 30	2700	1	01/04/2001
CTS 1013	10 45 18,6	-20 41 43	2700	1	28/03/2001
CTS 1016	10 35 07,4	-23 52 49	3600	1	31/03/2001
CTS 1017	10 35 18,2	-25 42 23	5400	1	09/01/2002
CTS 1018	13 23 14,3	-23 22 34	3600	1	31/03/2001
CTS 1019	10 38 39,4	-22 18 42	1800	1	01/04/2001
CTS 1020	10 45 18,6	-20 41 43	2700	1	01/04/2001
CTS 1022	10 46 13,7	-19 10 44	3600	1	29/03/2001
CTS 1028	12 20 43,4	05 06 47	3600	1	01/04/2001
CTS 1029	13 03 23,6	-22 21 19	6300	2	30/03/2001
CTS 1034	14 16 38,8	-27 21 00	5400	2	28/03/2001
CTS 1035	14 54 26,9	-22 11 34	3600	1	30/03/2001
CTS 1035	14 54 26,9	-22 11 34	3600	1	31/03/2001
CTS 1038	19 51 40,6	-33 04 36	4500	1	01/04/2001
POX 186	13 23 10,0	-11 21 03	4500	1	01/04/2001
Marseille 01	13 01 34,0	-22 36 55	3600	1	29/03/2001
Marseille 12	13 03 58,4	-22 11 19	3600	1	31/03/2001
Marseille 13	13 04 10,5	-22 34 23	4500	1	29/03/2001

Tabela 2.2: Continua.

2.3 Redução dos Dados

2.3.1 Coudé

Os espectros do Coudé foram observados com três CCDs diferentes. A tabela 2.3 mostra as características dos três CCDs usados.

CCD	Tamanho Imagem (pixels)	Tamanho Pixel (µm)	Ruído de Leitura (e ⁻ RMS)	Fator de Conversão (e ⁻ /ADU)
48	770 x 1152	22,5 x 22,5	6,6	3,3
101	1024 x 1024	24 x 24	5,5	5,0
106	1024 x 1024	24 x 24	4,1	5,0

Tabela 2.3: Características dos CCDs usados com o Coudé-LNA.

Para esses dados utilizamos o procedimento de redução básica de espectros em CCD (Massey et al., 1992 e Massey, 1997) usando o pacote noao.imred.ccdred e noao.imred.specred do Image Reduction And Analysis Facility (IRAF), desenvolvido pelo National Optical Astronomy Observatories (NOAO). Em cada noite de observação fizemos 10 exposições de bias (integração de tempo zero para leitura do ruído eletrônico do CCD) e 10 de flat field (exposição com o telescópio apontado para uma região do céu durante o crepúsculo ou da cúpula uniformemente iluminada). Nossos *flat fields* foram feitos dentro da cúpula (dome flat). Essas exposições (bias e flat field) são necessárias para corrigir as imagens dos objetos de efeitos intrísecos do detector. Combinamos as imagens bias a fim de obtermos uma imagem média, para isso usamos a tarefa zerocombine. Essa imagem mapeia a estrutura de ruído do detector que devemos subtrair das imagens de objetos. Identificamos nas imagens a região de overscan para remoção do nível de offset. Essa é uma contribuição aditiva nas contagens dos *pixels* devido a corrente elétrica que alimenta o CCD. Definimos a região de interesse da imagem excluindo a região de overscan e as bordas. Nossas exposições de flat field foram de 10 segundos produzindo imagens com contagens suficientemente alta (não saturadas). Combinamos também as 10 imagens flat field pela média rejeitando raios cómicos. Essa imagem é usada para remover as variações multiplicativas de sensibilidade *pixel* a *pixel* do detector. Antes de combinar os *falt fields*, processamos as correções de bias e cortamos as imagens. As tarefas usadas foram *flatcombine* e *ccdproc*. No caso de espectroscopia é necessário fazer a

normalização do *flat field*. Essa normalização tem como objetivo corrigir a contribuição característica da lâmpada de iluminação usada para as imagens de *flat field* ao longo da direção de dispersão. Usando a tarefa *response* do pacote *noao.twodspec.longslit*, ajustamos uma função na direção de dispersão a fim de tirar variações de larga escala. A imagem normalizada foi então a razão entre a imagem de *flat field* e o ajuste. Finalmente para as imagens dos objetos fizemos a correção aditiva, subtraindo a imagem de *bias*, e multiplicativa, dividindo pela imagem de *flat field* normalizada. Usamos a tarefa *ccdproc* para essas correções . Também adicionamos o nível de *offset* e cortamos as bordas de todas as imagens.

Extraímos os espectros utilizando a tarefa apall do pacote noao.imred.spec-Essa tarefa integra as contagens dos pixels ao longo da direção de red. dipersão dentro de uma abertura especificada interativamente. Definimos regiões do céu para subtração da contagem no contínuo. Essas aberturas foram definidas à direita e à esquerda do contínuo. Para estrelas padrão e galáxias centramos a abertura no contínuo e definimos seu tamanho. Permitimos a tarefa recentrar porém não redimencionar a abertura ao longo da direção de dispersão. Para galáxias com contínuo muito baixo, precisamos usar os traços de estrelas como referência. Nossos espectros são resultantes de uma única abertura englobando toda galáxia. Espectros de comparação (lâmpada ThAr) foram extraídos usando os mesmos parâmetros de abertura e traço usados para cada uma das extrações de objetos. Esses espectros de comparação tiveram suas linhas identificadas com a tarefa *identify* e foram as referências para a calibração em dispersão usando a tarefa dispcor. Para calibração em fluxo observamos estrelas padrão ao longo das noites. A tarefa standard integra as contagens dos espectros das estrelas padrão dentro de uma banda e divide pelo tempo de exposição . O resultado dessa rotina é uma lista com as contagens e o fluxo de todas as estrelas observadas. Observamos estrelas padrão encontradas na espectrofotometria de Hamuy et al (1992 e 1994). Ajustamos interativamente função de sensibilidade em função do comprimento de onda de cada noite usando a tarefa sensfunc. A raíz quadrática média (RMS) do ajuste nos forneceu uma estimativa do erro fotométrico em cada noite. A correção por extinção foi feita usando a curva de extinção média para o sítio do LNA.

Os espectros das galáxias foram então corrigidos pela extinção atmosférica, pela curva de sensibilidade e divididos pelo tempo de exposição usando a tarefa *calibrate*. Mostro na figura 2.2, o espectro calibrado da galáxia Mark 710. Após o processo de redução dos dados medimos a largura e o fluxo integrado

Figura 2.2: Espectro calibrado de Mark 710 reduzido dos dados do Coudé.

sob a linha de H α para 23 galáxias HII.

2.3.2 FEROS

Os espectros do FEROS foram observados com um CCD de 2048 x 4096 pixels com tamanho do pixel de $15\mu m \times 15\mu m$. Na figura 2.3 é mostrada a imagem do espectro da galáxia Tol 0226-390 observada com esse instrumento.

Os espectros obtidos com o FEROS foram reduzidos por uma rotina automatizada em MIDAS (*Munich Image Data Analysis System*) preparada por François (1999), membro do time do telescópio 2,2m (ESO), La Silla, Chile. A imagem obtida com o CCD contém o espectro *echelle* do objeto e do céu com 39 ordens. Fizemos imagens de *bias, flat field* e lâmpadas (ThAr) de calibração. A redução básica é feita de forma semelhante a que fizemos para os dados do Coudé. As extrações dos espectros de galáxias e lâmpadas são feitas para as 39 ordens. Os espectros das galáxias são calibrados a partir do espectro identificado da lâmpada de calibração. O espectro final é unidimensional calibrado em comprimento de onda, onde todas as ordens foram unidas resultando em um único espectro cobrindo o intervalo de 3560Å a 9200Å. O mesmo processo de extração é feito para o espectro do céu, porém não subitraímos esse dos espectros das galáxias. Com esses espectros pudemos medir a largura da linha de H α para 90 galáxias HII.

2.4 Velocidades Radiais e Distâncias

Determinamos as velocidades radiais das galáxias a partir do desvio Doppler da linha de H α . Nossas medidas de *redshifts* são precisas na ordem de poucos $km \ s^{-1}$, porém as velocidades radiais devem ser corrigidas de vários efeitos antes que possam ser usadas para determinarmos as distâncias dos objetos e essas correções podem introduzir incertezas de dezenas de km s^{-1} nas velocidades radiais. Fizemos a correção devido ao movimento heliocêntrico da Terra e posteriormente usamos os vetores $l_{apice} = 264,14^{\circ}, b_{apice}$ $= +48,26^{\circ} e \ V_{apice} = 371,0 \ km \ s^{-1}$ (Fixsen *et al.*, 1996), para a correção do movimento do Sol relativo ao Centro Galáctico, ao Grupo Local e ao campo de radiação cósmica de fundo. Após essas correções , inferimos as distâncias para nossas galáxias usando a Lei de Hubble,

$$d = \frac{c.z}{H_0}.$$

Usamos nesse trabalho $H_0 = 65 \ km \ s^{-1} \ Mpc^{-1}$.

2.5 Luminosidade H α

Para determinarmos as luminosidades $H\alpha$ precisamos do fluxo, $F(H\alpha)$, dos coeficientes de extinção, $C(H\alpha)$, e das distâncias. A maioria dos fluxos de $H\alpha$, assim como os coeficientes de extinção foram obtidos do catálogo espectrofotométrico de galáxias HII (Telles *et al.*, em preparação). Fizemos a correção de avermelhamento usando a relação

$$C(H\beta) = \frac{\log \frac{F(H\alpha)}{F(H\beta) \times 2,88}}{0,335}$$

e

$$C(H\alpha) = 0,679 \times C(H\beta)$$

(Whitford, 1958).

Figura 2.3: Espectro echelle (39 ordens) de Tol 0226-390 observado com CCD de 2048 x 4096 *pixels*, combrindo o intervalo espectral 3560-9200Å.

2.6 Perfis das Linhas de Emissão

Nossa medida de largura de linha foi obtida a partir de um único ajuste gaussiano usando a tarefa splot do IRAP. Esse ajuste nos fornece a largura a meia altura da gaussiana em angstrons. Calculamos as dispersões de velocidades resultantes, corrigidas pelo alargamento térmico e instrumental,

$$\sigma_0 = \sigma_{obs}^2 - \sigma_{term}^2 - \sigma_{instr}^2,$$

e pelo redshift,

$$\sigma = \frac{\sigma_0}{1+z},$$

. As incertezas nas medidas foram estimadas a partir de múltiplas observações . A largura instrumental foi obtida de linhas não saturadas (lâmpada de ThAr), correspondendo a 0,13 Å (FWHM) em H α para o FEROS ($\alpha_{instr} = 2,5 \ km \ s^{-1}$) e 0,75 Å e 0,9 Å (FWHM) para o Coudé ($\sigma_{instr} = 14,7 \ km \ s^{-1}$ e $\sigma_{instr} = 17,6 \ km \ s^{-1}$) dependendo do CCD usado. A correção pelo alargamento térmico foi feita assumindo uma temperatura eletrônica constante de $T_e = 10000 \mathrm{K}$ para todos os objetos.

Na figura 2.4 apresento linhas de emissão H α de seis galáxias, cobrindo todo intervalo de larguras da nossa amostra. A largura instrumental (FE-ROS, $\sigma_{instr} = 2.5 \ km \ s^{-1}$) é comparada a largura da linha de H α para a galáxia UM 461. Vemos que mesmo as linhas mais estreitas da nossa amostra estão sedo bem resolvidas. Podemos notar também, que o ajuste de uma única gaussiana para galáxias com linhas mais largas não é tão bom como para galáxias de linhas estreitas. A análise ponto a ponto na relação [L(H α) - σ] é importante para interpretação física da relação , porém ficará como objetivo futuro do trabalho.

Figura 2.4: Perfis de linhas de emissão para seis galáxias HII cobrindo todo o intervalo de larguras da nossa amostra (espectro FEROS). A figura mostra também os ajustes gaussianos usados para derivar as velocidade dos perfis que são mostradas em cada gráfico. A largura instrumental é comparada ao perfil da linha mais estreita de nossa amostra correspondendo a galáxia UM 461.

2.7 Tabelas de Valores

Apresento a seguir as tabelas com os valores de σ resultantes das medidas de largura de linha H α para os dados do Coudé (tabela 2.4) e FEROS (tabela 2.5), assim como os *redshifts* de todas as galáxias. Para o Coudé, apresento também na tabela 2.4, as medidas de fluxo integrado sob a linha de H α e suas incertezas. A tabela 2.6 apresenta os valores de *redshift*, σ , F(H α) e C(H α) para as 81 galáxias presentes no gráfico [L(H α) - σ]. Incluimos também as referências dos catálogos, de onde foram selecionados os objetos, e espectrofotometrias, de onde obtivemos os valores.

Tabela 2.4: Valores de Z, $\sigma \in F(H\alpha)$ e suas incertezas para galáxias observadas com o Coudé-LNA.

Galáxia	Z	$\sigma \atop {km \ s^{-1}}$	$\delta\sigma \ km \ s^{-1}$	$F(H\alpha)$ erg s ⁻¹ cm ⁻²	$\delta F(Hlpha)$ %
Tol 0127-397	0,0173	33,8	0,6	$3,9 \times 10^{-14}$	10
Tol 0226-390	0,0471	72,7	1,8	$4,8 \times 10^{-14}$	10
Tol 0440-381	0,0404	46,7	0,3	1.7×10^{-14}	10
Tol 0645-376	0,0258	25,1	1,1	$5,1 \times 10^{-14}$	20
Tol 0957-278	0,0032	23,2	0,3	$2,4 \times 10^{-13}$	30
Tol 1004-296 NW	0,0037	32,4	0,5	$4,7 \times 10^{-13}$	20
Tol 1004-296 SE	0,0036	28,2	0,4	$7,8 \times 10^{-13}$	20
Tol 1345-420	0,0079	25,7	1,1	$4,0 \times 10^{-14}$	10
Tol 1924-416	0,0095	36,7	0,3	$6,2 \times 10^{-13}$	30
Tol 1937-423	0,0093	36,7	3,1	1.4×10^{-14}	10
Tol 2010-382	0,0203	36,8	1,9	$8,2 \times 10^{-14}$	30
Tol 2122-408	0,0149	26,8	4.9	1.7×10^{-14}	10
UM 167	0,0093	73,9	0,1	1.2×10^{-12}	30
UM 191	0,0241	32,0	1.2	2.8×10^{-14}	10
UM 304	0.0154	87.1	2.5	1.5×10^{-13}	30
UM 307	0,0225	49,1	1,2	$2,2 \times 10^{-13}$	30
UM 391	0,0210	47,0	5,4	$2,6 \times 10^{-14}$	10
UM 439	0,0036	19,9	1,1	$3,3 \times 10^{-14}$	20
UM 448	0,0184	55,5	5,1	$8,5 \times 10^{-13}$	30
UM 477	0,0042	55,5	1,0	$2,8 \times 10^{-13}$	20
UM 499	0,0070	42,2	0,8	$6,7 \times 10^{-13}$	20
MARK 710	0,0049	48,4	0,6	$3,7 \times 10^{-13}$	10
MARK 1318	0,0050	20,7	0,5	6.5×10^{-14}	10
II ZW 40	0,0026	32,8	0,1	1.2×10^{-12}	10

Tabela 2.5: Valores de Z, σ e suas incertezas para galáxias observadas com o FEROS-ESO.

Galáxia	Z	σ	δσ
		$km \ s^{-1}$	$km s^{-1}$
Tol 0104-388	0,0227	48,1	0,5
Tol 0127-397	0,0173	29,2	0,5
Tol 0140-420	0,0219	27,2	1,1
Tol 0226-390	0,0478	80,9	0,1
Tol 0242-387	0,1262	86,5	0,5
Tol 0440-381	0,0406	34,6	0,2
Tol 0505-387	0,0289	22,2	1,1
Tol 0510-400	0,0413	31,4	0,5
Tol 0528-383	0,0117	21,4	0,1
Tol 0559-393	0,0448	47,1	0,5
Tol 0610-387	0,0056	21,9	0,6
Tol 0633-415	0,0163	31,3	0,2
Tol 0645-376	0,0258	30,7	0,5
Tol 0957-278	0,0032	28,1	0,5
Tol 1025-284	0,0308	54,1	2,3
Tol 1147-283	0,0062	20,1	0,5
Tol 1223-359	0,0095	21,0	0,5
Tol 1345-420	0,0082	21,6	0,5
Tol 1400-397	0,0309	34,4	0,5
Tol 1937-423	0,0093	23,0	0,5
Tol 2019-405	0,0148	23,5	0,5
Tol 2041-394	0,0258	29,2	0,5
Tol 2122-408	0,0149	25,7	0,5
Tol 2138-405	0,0578	59,4	0,5
Tol 2146-391	0,0293	26,7	0,5
Tol 2240-384	0,0759	49,2	0,9
Tol 2326-405	0,0550	42,3	0,5
UM 137	0,0061	17,0	0,5
UM 151	0,0162	32,3	0,5
UM 191	0,0241	32,5	0,4
UM 238	0,0143	20,7	0,5
UM 304	0,0156	77,6	0,8
UM 306	0,0164	20,4	0,1
UM 323	0,0062	20,7	0,1
UM 382	0,0121	18,2	0,5
UM 391	0,0211	58,6	1,3
UM 395	0,0225	31,0	0,8
UM 396	0,0209	27,4	0,1
UM 408	0,0117	20,9	0,1
UM 417	0,0086	17,6	0,5
UM 455	0,0129	27,8	0,5
UM 461	0,0034	16,1	0,5
UM 463	0,0045	19,1	0,5
UM 477	0,0044	57,7	0,5
UM 483	0.0077	19.9	0.5

Galáxia	Z	σ	$\delta\sigma$
		$km \ s^{-1}$	$km \ s^{-1}$
UM 559	0,0041	20,0	0,5
UM 570	0,0224	22,9	0,5
UM 649	0,0262	26,4	0,5
Cam 08-28A	0,0529	42,8	0,5
Cam 0840+1044	0,0103	17,6	0,5
Cam 0840+1200	0,0296	35,0	1,3
Cam 1543+0907	0,0378	30,2	0,5
Fairall 30	0,0035	22,1	0,5
MARK 36	0,0021	19,0	0,5
MARK 710	0,0048	51,6	0,5
MARK 711	0,0193	94,0	0,5
MARK 1201	0,0186	46,1	0,5
MARK 1318	0,0052	18,9	0,5
II ZW 40	0,0025	34,5	0,1
II ZW 70	0,0038	25,6	0,5
CTS 1003	0,0170	26,3	0,5
CTS 1004	0,0471	41,3	0,1
CTS 1005	0,0745	46,1	0,5
CTS 1006	0,0206	37,2	0,5
CTS 1007	0,0411	28,9	0,5
CTS 1008	0,0609	46,0	0,2
CTS 1011	0,0120	22,4	0,5
CTS 1013	0,0269	31,9	0,5
CTS 1016	0,0346	39,4	0,5
CTS 1017	0,0356	28,1	0,5
CTS 1018	0,0394	34,9	0,5
CTS 1019	0,0666	46,6	0,5
CTS 1020	0,0126	35,5	0,5
CTS 1022	0,0139	26,0	0,5
CTS 1028	0,0179	27,6	0,5
CTS 1029	0,0362	31,6	3,0
CTS 1034	0,0230	27,6	0,1
CTS 1035	0,0283	28,5	0,5
CTS 1038	0,0498	51,6	0,5
POX 186	0,0040	17,6	0,5
Marseille 01	0,0103	21,4	0,5
Marseille 12	0,0236	31,8	0,5
Marseille 13	0,0144	27,2	0,5

Tabela 2.5: Continua

Galáxia	Z	σ	δσ	$F(H\alpha)$	$C(H\alpha)$	Referências
		$km \ s^{-1}$	$km \ s^{-1}$	$erg \ cm^{-2} \ s^{-1}$		
Tol 0104-388	0,0227	48,1	0,5	$4,77 \times 10^{-14}$	0,15	1,A,C
Tol 0127-397	0,0173	29,2	0,5	$3,87 \times 10^{-14}$	0,35	1,A,B,D
Tol 0140-420	0,0219	27,2	1,1	$1,16 \times 10^{-14}$	0,00	1,A,C
Tol 0226-390	0,0478	80,9	0,1	$1,05 \times 10^{-13}$	0,03	1,A,C
Tol 0440-381	0,0406	34,6	0,2	$5,72 \times 10^{-14}$	0,08	1,A,C
Tol 0505-387	0,0289	22,2	1,1	$1,22 \times 10^{-14}$	0,22	$_{1,A,C}$
Tol 0510-400	0,0413	31,4	0,5	$3,51 \times 10^{-14}$	0,18	1,A,C
Tol 0528-383	0,0117	21,4	0,1	$1,86 \times 10^{-14}$	0,38	1,A,C
Tol 0559-393	0,0448	47,1	0,5	$3,41 \times 10^{-14}$	0,15	1,A,C
Tol 0610-387	0,0056	21,9	0,6	$1,08 \times 10^{-14}$	0,63	1,A,C
Tol 0633-415	0,0163	31,3	0,2	$1,10 \times 10^{-13}$	0,27	1,A,C
Tol 0645-376	0,0258	30,7	0,5	$2,95 \times 10^{-14}$	0,13	1,A,C
Tol 0957-278	0,0032	28,1	0,5	$8,35 \times 10^{-14}$	0,09	1,A,C
Tol 1004-294 NW	0,0037	32,4	0,5	$4,68 \times 10^{-13}$	0,52	1,B,D
Tol 1004-294 SE	0,0036	28,2	0,4	$7,83 \times 10^{-13}$	0,00	1,B,C
Tol 1025-285	0,0308	54,1	2,3	$4,02 \times 10^{-14}$	0,53	1,A,C
Tol 1147-283	0,0062	20,1	0,5	$4,95 \times 10^{-14}$	0,15	1,A,C
Tol 1223-359	0,0095	21,0	0,5	$7,67 \times 10^{-14}$	0,11	1,A,C
Tol 1345-420	0,0082	21,6	0,5	$7,90 \times 10^{-14}$	0,13	1,A,C
Tol 1924-416	0,0095	36,7	0,3	$6,16 \times 10^{-13}$	0,07	1,B,C
Tol 1937-423	0,0093	23,0	0,5	$2,09 \times 10^{-14}$	0,39	1,A,C
Tol 2010-382	0,0203	36,8	1,9	$8,21 \times 10^{-14}$	0,40	1,B,D
Tol 2019-405	0,0148	23,5	0,5	$1,56 \times 10^{-14}$	0,03	1,A,C
Tol 2122-408	0,0149	25,7	0,5	$2,71 \times 10^{-14}$	0,27	1,A,C
Tol 2146-391	0,0293	26,7	0,5	$2,89 \times 10^{-14}$	0,00	1,A,C
Tol 2240-384	0,0759	49,2	0,9	$3,20 \times 10^{-14}$	0,19	1,A,C
UM 137	0,0061	17,0	0,5	$1,43 \times 10^{-15}$	0,46	2,A,C
UM 151	0,0162	32,3	0,5	$2,71 \times 10^{-14}$	0,21	2,A,C
UM 167	0,0093	73.9	0,1	1.18×10^{-12}	0,40	2,B,D
UM 191	0,0241	32,5	0,4	$3,71 \times 10^{-14}$	0,17	2,A,C
UM 238	0.0143	20.7	0.5	2.02×10^{-14}	0.00	2.A.C
UM 304	0.0156	77.6	0.8	1.47×10^{-13}	0.40	2.A.B.D
UM 306	0.0164	20.4	0.1	1.62×10^{-14}	0.01	2.A.C
UM 307	0.0225	49.1	1.2	2.19×10^{-13}	0.18	2.B.C
UM 323	0.0062	20.7	0.1	2.58×10^{-14}	0.00	2.A.C
UM 391	0.0211	58.6	1.3	520×10^{-14}	0.39	2 A C
UM 395	0.0225	31.0	0.8	1.63×10^{-14}	0.31	2, A.C
UM 396	0.0209	27.4	0.1	3.81×10^{-14}	0.00	2.A.C
UM 408	0.0117	20.9	0.1	2.10×10^{-14}	0.00	2 A C
UM 417	0.0086	17.6	0.5	6.14×10^{-15}	0.00	2.A.C
UM 439	0.0036	19.9	1.1	3.27×10^{-14}	0.00	2.B.C
UM 448	0.0184	55.5	5.1	8.46×10^{-13}	0.33	2.B.C
UM 455	0.0129	27.8	0.5	1.95×10^{-14}	0.00	2 A C
UM 461	0.0034	16.1	0.5	1.60×10^{-14}	0.00	2 A C
UM 463	0.0045	19.1	0,5	3.25×10^{-14}	0,00	2 4 C
UM 477	0.0040	577	0,5	2.60×10^{-13}	0,60	2,4,0
OWI 411	0,0044	51,1	0,0	2,00 × 10	0,00	2, A, O

Tabela 2.6: Valores de Z, σ e suas incertezas, $F(H\alpha)$ e $C(H\alpha)$ para cada galáxia presente na relação L(H α) - σ (figura 3.1).

Tabela 2.6: Continua

Galáxia	Z	σ	$\delta\sigma$	$F(H\alpha)$	$C(H\alpha)$	Referências
		$km \ s^{-1}$	$km \ s^{-1}$	$erg \ cm^{-2} \ s^{-1}$		
UM 483	0,0077	19,9	0,5	$4,78 \times 10^{-14}$	0,25	2,A,C
UM 499	0,0070	42,2	0.8	$6,71 \times 10^{-13}$	0.37	2.B.C
UM 559	0,0041	20,0	0,5	1.05×10^{-14}	0.00	2.A.C
UM 570	0,0224	22,9	0,5	$3,14 \times 10^{-14}$	0,00	2,A,C
Cam 08-28A	0,0529	42,8	0,5	$1,47 \times 10^{-13}$	0,18	3.A.C
Cam 0840+1044	0,0103	17,6	0,5	$1,88 \times 10^{-14}$	0,00	3,A,C
Cam 0840+1201	0,0296	35,0	1,3	$6,37 \times 10^{-14}$	0,00	3,A,C
Cam 1543+0907	0,0378	30,2	0,5	$6,13 \times 10^{-14}$	0.08	3.A.C
Fairall 30	0,0035	22,1	0.5	2.95×10^{-13}	0.00	4.A.C
MARK 36	0,0021	19,0	0,5	1.54×10^{-13}	0.05	5.A.C
MARK 710	0,0048	51,6	0,5	$4,47 \times 10^{-13}$	0,34	5,A,C
MARK 711	0,0193	94,0	0,5	1.86×10^{-13}	0.37	5.A.C
MARK 1201	0,0186	46.1	0.5	3.94×10^{-14}	0.35	5.A.C
MARK 1318	0,0052	18,9	0.5	6.08×10^{-14}	0.00	5.A.C
II ZW 40	0,0025	34.5	0.1	4.25×10^{-13}	0.56	6.A.C
CTS 1004	0,0471	41,3	0,1	$3,47 \times 10^{-14}$	0,00	7.A.C
CTS 1005	0,0745	46,1	0,5	$4,41 \times 10^{-14}$	0,13	7.A.C
CTS 1006	0,0206	37,2	0,5	$1,46 \times 10^{-13}$	0,12	7,A,C
CTS 1008	0,0609	46,0	0,2	$5,66 \times 10^{-14}$	0,16	7,A,C
CTS 1011	0,0120	22,4	0,5	$6,34 \times 10^{-14}$	0,25	7,A,C
CTS 1013	0,0269	31,9	0,5	$1,68 \times 10^{-14}$	0,00	7,A,C
CTS 1016	0,0346	39,4	0,5	$1,68 \times 10^{-14}$	0,13	7,A,C
CTS 1017	0,0356	28,1	0,5	$2,25 \times 10^{-14}$	0,18	7,A,C
CTS 1018	0,0394	34,9	0,5	$1,81 \times 10^{-14}$	0,11	7,A,C
CTS 1019	0,0666	46,6	0,5	4.33×10^{-14}	0,16	7,A.C
CTS 1020	0,0126	35,5	0,5	$1,48 \times 10^{-13}$	0,21	7,A,C
CTS 1022	0,0139	26.0	0,5	$2,56 \times 10^{-14}$	0.00	7.A.C
CTS 1028	0,0179	27,6	0,5	$4,50 \times 10^{-14}$	0.00	7.A.C
CTS 1029	0,0362	31,6	3,0	1.86×10^{-14}	0.19	7.A.C
CTS 1034	0,0230	27,6	0,1	1.30×10^{-14}	0,19	7.A.C
CTS 1035	0,0283	28,5	0,5	$1,54 \times 10^{-14}$	0,08	7,A,C
POX 186	0,0040	17,6	0,5	$7,40 \times 10^{-14}$	0,03	8,A,C
Marseille 01	0,0103	21,4	0,5	$1,85 \times 10^{-14}$	0,04	9,A,C
Marseille 12	0,0236	31,8	0,5	$2,19 \times 10^{-14}$	0,32	9,A,C
Marseille 13	0,0144	27,2	0,5	2.01×10^{-14}	0.17	9.A.C

2.8. ANÁLISE DOS ERROS

Referências

Catalogos

- Tololo survey (Smith, Aguirre & Zemelman, 1976).
 Michigan survey (MacAlpine & Williams 1981).
 Cambridge survey (Hazard, 1986).
- 4. Fairall (1980).

- Fairail (1980).
 Markarian, Lipovetskii & Stepanian (1981).
 Zwicky (1971).
 Calán-Tololo survey (Maza et al., 1991).
 Palomar Objective-Prism X Survey (Kunth et al., 1981)
 Marseille Schmidt survey (Surace & Comte, 1998).

Espectrofotometria

A. FEROS (1,52m ESO).

- B. Coudé (1,60m LNA).C. Boller & Chivens (1,52m ESO).
- D. SCHG.

Análise dos Erros 2.8

2.8.1Fluxos

A fim de verificar a consistência das medidas, faço comparações entre os fluxos medidos para uma mesma galáxia em diferentes espectofotometrias. Mostro na figura 2.5a, a comparação entre os fluxos H α medidos de 13 galáxias da espectrofotometria Coudé (LNA) e Boller & Chivens (ESO). Dessa comparação estimamos o erro externo para a fotometria de 10-20% fazendo um ajuste linear dos pontos.

Comparamos também as medidas de fluxo H β (Boller & Chivens) com as do trabalho de Melnick et al. (1988) (figura 2.5b) e notamos uma diferença sistemática. Seus fluxos são em média maiores que os usados nesse trabalho. Esse efeito pode ser devido a algum erro sistemático na calibração de seus dados, uma vez que não notamos o efeito ao comparar com a calibração dos dados do Coudé (figura 2.5a). Algumas de suas medidas foram tiradas do SCHG, assim apresento também uma comparação com medidas de fluxo H α e H β (figura 2.5c e figura 2.5d) comprovando esse efeito.

Figura 2.5: **a.** Comparação entre os fluxos H α medidos com espectofotometria Coudé e Boller & Chivens para 13 galáxias HII. A linha tracejada representa um ajuste linear para os pontos, RMS = 0.27. **b.** Comparação entre os fluxos H β Boller & Chivens e os publicados por Melnick *et al.* (1988) para 17 galáxias. **c.** e **d.** Comparação entre os fluxos H α (38 galáxias) e H β (47 galáxias) Boller & Chivens e SCHG (Terlevich *et al.*, 1991).

2.8. ANÁLISE DOS ERROS

2.8.2 Dispersão de Velocidades

Comparamos na figura 2.6a as dispersões de velocidades resultantes das medidas de galáxias feitas com espectros do FEROS e Coudé. Notamos que a dispersão dos pontos é maior para menores valores de σ , ou seja, linhas mais estreitas. Assim podemos não estar resolvendo bem linhas estreitas ($\sigma \sim 20 \ km \ s^{-1}$) com o Coudé uma vez que a largura instrumental é próxima da medida. A dispersão (RMS) dos pontos para essa comparação é de log $\sigma = 0.07$ ou $\sigma = 1.2 \ km \ s^{-1}$.

Comparamos também os σ publicados por Melnick *et al.* (1988) com os determinados com espectros do Coudé e FEROS. Na figura 2.6b é interessante notar um desvio acentuado de dois pontos. Esses pontos correspondem às galaxias Cam 0840+1044 (σ = 17,6 ± 0,5) km s⁻¹ e Tol 0242-387 (σ = 86,5 \pm 0.5) km s⁻¹. A galáxia Cam 0840+1044 apresenta uma linha bem estreita, correspodendo ao limite inferior de σ da nossa amostra. Não identificamos nenhum problema em seu espectro. Vale ressaltar que a largura instrumental para o trabalho de Melnick et al. (1988) foi de $\sigma_{instr} = 11.5 \ km s^{-1}$ ($\lambda 4861$) enquanto que a desse trabalho utilizando o FEROS é de $\sigma_{instr} = 2.5 \ kms^{-1}$ $(\lambda 6500)$. A galáxia Tol 0242-387 é a de maior redshift de nossa amostra (z = 0,1262) e apresenta sinais de interação. Essas características também foram comentadas por Melnick et al. (1988) devido sua posição no gráfico $[L - \sigma]$. Eles encontraram para essa galáxia um valor de $\sigma = (134 \pm 5,0) \ km \ s^{-1}$. Tol 0242-387 galáxia não se encontra em nossa relação [L - σ] pois não obtivemos medida de fluxo para ela. Um ajuste linear excluindo essas duas galáxias indica um erro $\delta \log \sigma = 0.05$ ou $\delta \sigma = 1.1 \ km \ s^{-1}$. Na comparação dos valores de σ para galáxias comuns nas amostras Coudé e Melnick et al. 1988 (figura 2.6c) a dispersão dos pontos indica $\delta \log \sigma = 0.07$.

Figura 2.6: **a.** Comparação entre os valores de σ obtidos com dados do FEROS e Coudé. **b.** Comparação entre os valores de σ obtidos com dados do FEROS e os publicados por Melnick *et al.* (1988). Os dois triângulos preenchidos representam as galáxias Cam 0840+1044 e Tol 0242-387 citadas no texto. **c.** Comparação valores de σ obtidos com dados do Coudé e os publicados por Melnick *et al.* (1988). A linha tracejada indica um ajuste linear dos pontos (LSQ).

Capítulo 3

Resultados e Discussão

3.1 A Relação [L(H α) - σ]

A figura 3.1 apresenta o gráfico logarítimo de L(H α) versus σ para as 81 galáxias HII encontradas na tabela 2.6. Essa é a maior amostra usada na calibração da relação $[L - \sigma]$ para galáxias HII. A linha sólida representa um ajuste pelos mínimos quadrados utilizando todos os pontos. Os coeficientes do ajuste são apresentados na tabela 3.1 juntamente com os de trabalhos publicados anteriormente. Nosso ajuste é coerente com todos eles, porém é importante notar o desvio mais acentuado do ponto zero determinado por Melnick et al. (1988) (linha pontilhada). A relação deles foi calibrada para uma amostra de 49 galáxias HII. A origem desse desvio foi mostrada na comparação entre os fluxos medidos para as diferentes espectrofotometrias (figura 2.5b). Verificamos que seus fluxos foram superestimados em relação aos desse trabalho. A relação [L - σ] de Telles et al. (2001) (linha de traços longos) foi calibrada para uma amostra de 6 galáxias HII enquanto que Fuentes-Masip et al. (2000) (linha de traços curtos) calibraram para 7 regiões HII gigantes localizadas na galáxia irregular NGC 4449. A semelhança entre a relação encontrada para galáxias HII nesse trabalho, com a conhecida para sistemas virializados ($L \propto \sigma^4$), sugere a hipótese de que os movimentos internos em galáxias HII e regiões HII gigantes, possam também ser suportados pela gravitação. Se assim for, a dispersão de velocidades do gás (nesse trabalho σ) está diretamente associada a massa total do sistema. Do ponto de vista teórico, a virialização pode ser devido ao movimento de estrelas de baixa massa sob o domínio do potencial gravitacional do sistema (Tenorio-Tagle et al., 1993).

Figura 3.1: Relação $[L(H\alpha) - \sigma]$ para 81 galáxias HII. Nosso ajuste (*linha sólida*) é comparado ao de trabalhos da literatura.

Melnick et al (1987;1988) mostraram que a metalicidade (O/H) quando incluida como segundo parâmetro na relação [L - σ] diminui o espalhamento dos pontos no plano. Telles (1995) também encontrou um comportamento biparamétrico para galáxias HII quando incluiu um parâmetro independente da distância associado ao brilho superficial, representado pelo raio do "burst" (R_{burst}) (figura 3.2). A semelhança dessa correlação com a conhecida para galáxias elípticas sugere a existência de um plano fundamental para galáxias HII (Telles & Terlevich, 1993; Telles, 1995). Tabela 3.1: Relações [L(H α) - σ]. Todos os ajustes foram feitos pelo método dos mínimos quadrados (LSQ) e transformados para $H_0 = 65 \ km \ s^{-1} \ Mpc^{-1}$. Luminosidade expressa em erg s^{-1} .

Referência	Equação	RMS
Esse trabalho	$\log L(H\alpha) = (3,78\pm0,29)\log\sigma + (35,00\pm0,44)$	0,451
Telles et al, (2001)	$\log L(H\alpha) = (3,73\pm1,01)\log\sigma + (35,14\pm1,40)$	0,275
Fuentes-Masip et al, (2000)	$\log L(\mathrm{H}\alpha) = (3,80\pm1,20)\log\sigma + (34,90\pm1,70)$	
Melnick et al, (1988)	$\log L(\text{H}\alpha) = (3,92\pm0,47)\log\sigma + (35,55\pm0,67)$	0,426

Figura 3.2: Os painéis à esquerda mostram o espalhamento usando apenas σ como estimador da luminosidade para galáxias elípticas (Dressler *et al.*, 1987) (*painel superior*) e galáxias HII (*painel inferior*). Os painéis à direita mostram o espalhamento final usando uma combinação de σ e parâmetro R_{burst} . As linhas pontilhadas representam os ajustes LSQ e LSQ inverso para os pontos (Telles, 1995).

3.2 Perspectivas Futuras

Uma calibração precisa dessa relação para galáxias HII locais pode ser de grande importância se usada como indicador de distância de galáxias a alto redshift, uma vez que galáxias HII são facilmente detectadas a grande distâncias (Melnick, Terlevich & Terlevich, 2000). Em vista disso, devemos investigar o efeito de um segundo parâmetro na relação [L - σ] como o brilho superficial, O/H, $W(H\beta)$ e um possível efeito evolutivo na razão massa-luminosidade (M/L). Os perfis das linhas de emissão podem também revelar propriedades físicas e estruturais desses objetos como infalling qas, turbulência, outflows, extinção por poeira, rotação, etc. Podemos então definir grupos de galáxias que apresentam caracteríticas físicas bem similares e analisar a relação $[L - \sigma]$ para cada caso. O objetivo é identificar a alto redshift galáxias HII que têm correspondência local e assim aplicar o indicador de distância com segurança. A calibração da relação [L - σ] para linhas de emissão diferentes também é importante para aplicação como indicador de distância a alto redshift. Todos esses pontos serão investigados em detalhe em meu próximo trabalho como tese de mestrado.

Esse projeto final resume o trabalho de três anos de Iniciação Científica com apoio do PIBIC/CNPq e sob orientação do Dr. Eduardo Telles¹.

¹Observatório Nacional

42

REFERENCIAS

Referências

Djorgovski, S., Davies, M., 1987. Astrophys. J., Vol. 313, p. 59

- Dressler, A., Lynden-Bell, D., Burstein, D., Davies, R. L., Faber, S. M., Terlevich, R. J., Wegner, G., 1987. Astrophys. J., Vol. 313, p. 42
- Faber, S. M., Jackson, R. E., 1976. Astrophys. J., Vol. 204, p. 668
- Fairall, A. P., 1980. Mon. Not. R. astr. Soc., Vol. 191, p. 391
- Fish, Robert A., 1964. Astrophys. J., Vol. 139, p. 284
- Fixsen, D. J., Cheng, E. S., Gales, J. M., Mather, J. C., Shafer, R. A., Wright, E. L., 1996. Astrophys. J., Vol. 473, p. 576
- François, P., 1999. "Fiber Extended Range Optical Espectrograph User's Manual"
- Fuentes-Masip, O., Muñoz-Tuñon, C., Castañeda, H. O., Tenorio-Tagle, G., 2000. Astron. J., Vol. 120, p. 752
- Hamuy, Mario, Walker, A. R., Suntzeff, N. B., Gigoux P., Heathcote, S. R., Phillips, M. M., 1992. Publ. astr. Soc. Pacif., Vol. 104, p. 533
- Hamuy, Mario, Walker, A. R., Suntzeff, N. B., Gigoux P., Heathcote, S. R., Phillips, M. M., 1994. Publ. astr. Soc. Pacif., Vol. 106, p. 566
- Haro, G., 1951. Publ. astr. Soc. Pacif., Vol. 63, No. 372, p. 144
- Haro, G., 1956. Bol. Obs. Ton. Tac., 2, , 8
- Hazard, C., 1986. Na "Star Forming Dwarf Galaxies and Related Objects", Eds Kunth, D., Thuan, T. X. & Tran Thanh Van, J., Éditions Frontières, p. 9
- Hippelein, H. H., 1986. Astr. Astrophys., Vol. 160, p. 374
- Kunth, D., Sargent, W. L. W., Kowal, C., 1981. Astron. Astrophys. Suppl. Ser., Vol. 44, p. 229
- Lynden-Bell, D., Faber, S. M., Burstein, D., Davies, R. L., Dressler, A., Terlevich, R. J., Wegner, G., 1988. Astrophys. J., Vol 326, p. 19
- MacAlpine, G. M., Williams, G. A., 1981. Astrophys. J. Suppl. S., Vol. 45, p. 113
- Markarian, B. E., 1967. Afz., Vol. 3, , p. 55
- Massey, P., Valdes, F., Barnes, J., 1992. "A User's Guide to Reducing Slit Spectra with IRAF" http://iraf.noao.edu/iraf-homepage.html
- Massey, P., 1997. "A User's Guide to CCD Reductions with IRAF" http://iraf.noao.edu/irafhomepage.html
- Maza, J., Ruiz, M. T., Gonzalez, L. E., Wischnjewsky, M., Pena, M., 1991. Astron. Astrophys. Suppl. Ser., Vol. 89, p. 389

Melnick J., 1979. Astrophys. J., Vol. 228, p. 112

- Melnick J., Moles M., Terlevich R., Garcia-Pelayo, J. M., 1987. Mon. Not. R. astr. Soc., Vol. 226, 849
- Melnick J., Terlevich R. & Moles M., 1988. Mon. Not. R. astr. Soc., Vol. 235, p. 297

Melnick J., Terlevich R. & Terlevich, E., 2000. Mon. Not. R. astr. Soc., Vol. 311, p. 629 Roy, J.-R., Arsenault, R., Joncas, G., 1986. Astrophys. J., Vol. 300, p. 624

Sakai, S., Mould, J. R., Hughes, S. M. G., Huchra, J. P., Macri, L. M., Kennicutt, R. C.,

Jr., Gibson, B. K., Ferrarese, L., Freedman, W. L., Han, M., Ford, H. C., Graham,

J. A., Illingworth, G. D., Kelson, D. D., Madore, B. F., Sebo, K., Silbermann, N.

A., Stetson, P. B., 2000. Astrophys. J., Vol. 529, p. 698

Sargent, Wallace L. W., Searle, Leonard, 1970. Astrophys. J., Vol. 162, p. L155

Searle, Leonard, Sargent, W. L. W., 1972. Astrophys. J., Vol. 172, p. 25

Searle, Leonard, Sargent, W. L. W., Bagnuolo, W. G., 1973. Astrophys. J., Vol. 179, p. 427

Smith, M. G., Weedman, D. W., 1970. Astrophys. J., Vol. 161, p. 33

Smith, M. G., Aguirre, C., Zemelman, M., 1976. Astrophys. J. Suppl. S., Vol. 32, p. 217

Surace, C., Comte, G., 1998. Astron. Astrophys. Suppl. Ser., Vol. 133, p. 171

Telles E. & Terlevich R., 1993. Astrop. Sp. Sci., Vol. 205, p. 49

Telles, E., 1995. Ph.D. thesis, University of Cambridge, UK

Telles E. & Terlevich R., 1997. Mon. Not. R. astr. Soc., Vol. 286, p. 183

Telles, E., Melnick, J. & Terlevich, R., 1997. Mon. Not. R. astr. Soc., Vol. 288, p. 78

Telles E. & Terlevich R., 1998. Boletin de la Academia Nacional de Ciencias, Cordoba, Argentina

Telles, E., Muñoz-Tuñon, C., Tenorio-Tagle, G., 2001. Astrophys. J., Vol. 548, p. 671

Telles, E., Cuisinier, F. C., Kehrig, C., Huziwara, V., 2003. Em preparação

Tenorio-Tagle, G., Muñoz-Tuñon, C., Cox, Donald P., 1993. Astrophys. J., Vol. 418, p. 767

Terlevich R., Melnick J., 1981. Mon. Not. R. astr. Soc., Vol. 195, p. 839

Terlevich R., Melnick J., Masegosa, J., Moles, M., Copetti, M. V. F., 1991. Astron. Astrophys. Suppl. Ser., Vol. 91, p. 285

Tully, R. B., Fisher, J. R., 1977. Astr. Astrophys., Vol. 54, No. 3p. 661

Whitford, A. E., 1958. Astron. J., Vol. 63, p. 201

Zwicky, F., 1964. Astrophys. J., Vol. 140, p. 1467

Zwicky, F., 1965. Astrophys. J., Vol. 142, p. 1293

Zwicky, F., 1966. Astrophys. J., Vol. 143, p. 192

Zwicky, F., 1971. Catalogue of Selected Compact Galaxies and of Post-Eruptive Galaxies.