

INVESTIGAÇÃO DA RELAÇÃO ÍNDICE DE VAZIOS-TENSÃO VERTICAL EFETIVA NA COMPRESSÃO EDOMÉTRICA DE UMA ARGILA MOLE DA ILHA DO FUNDÃO, RJ

Marco Antonio Grigoletto Conte

Dissertação de Mestrado apresentada ao Programa de Pós-graduação em Engenharia Civil, COPPE, da Universidade Federal do Rio de Janeiro, como parte dos requisitos necessários à obtenção do título de Mestre em Engenharia Civil.

Orientador: Ian Schumann Marques Martins

Rio de Janeiro Outubro de 2019

INVESTIGAÇÃO DA RELAÇÃO ÍNDICE DE VAZIOS-TENSÃO VERTICAL EFETIVA NA COMPRESSÃO EDOMÉTRICA DE UMA ARGILA MOLE DA ILHA DO FUNDÃO, RJ

Marco Antonio Grigoletto Conte

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA (COPPE) DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE MESTRE EM CIÊNCIAS EM ENGENHARIA CIVIL.

Examinada por:

Prof. Ian Schumann Marques Martins, D.Sc.

Prof. Fernando Artur Brasil Danziger, D.Sc.

Prof. Luiz Antonio Bressani, Ph.D.

Prof^a. Maria Esther Soares Marques, D.Sc.

Prof. Vitor Nascimento Aguiar, D.Sc.

RIO DE JANEIRO, RJ - BRASIL OUTUBRO DE 2019 Conte, Marco Antonio Grigoletto

Investigação da relação índice de vazios-tensão vertical efetiva na compressão edométrica de uma argila mole da Ilha do Fundão, RJ/ Marco Antonio Grigoletto Conte. – Rio de Janeiro: UFRJ/COPPE, 2019.

XIII, 238 p.: il.; 29,7 cm.

Orientador: Ian Schumann Marques Martins

Dissertação (mestrado) – UFRJ/ COPPE/ Programa

de Engenharia Civil, 2019.

Referências Bibliográficas: p. 181-189.

 Compressão Edométrica. 2. Solos Moles. 3.
 Adensamento Secundário. 4. Viscosidade. 5. Reologia dos Solos. I. Martins, Ian Schumann Marques. II.
 Universidade Federal do Rio de Janeiro, COPPE,
 Programa de Engenharia Civil. III. Título.

Aos meus pais, Neiva e Nilton, e à Maria Laura, com amor.

AGRADECIMENTOS

Agradeço aos meus pais, Neiva e Nilton, e ao meu irmão, Felipe, pelo amor e apoio conferidos ao longo dessa empreitada chamada "vida".

Agradeço à minha companheira de lutas, aventuras e sonhos, Maria Laura, pelo amor, amizade e compreensão constantes, e que desde o princípio me incentivou para que o tão almejado mestrado na COPPE/UFRJ se concretizasse. Esta conquista é nossa! Estendo minha gratidão aos de Souza Delapieve pela afetividade e acolhimento de sempre.

Ao professor Ian, meu sincero agradecimento pela dedicação e carinho empenhados neste trabalho. Mais do que um orientador, ganhei um amigo por quem nutro grande admiração profissional e pessoal, e cuja dedicação ao ensino e à pesquisa são exemplares.

Agradeço a todos e todas que fazem ou já fizeram parte do Grupo de Reologia dos Solos da COPPE/UFRJ, o qual é conduzido com brilhantismo intelectual pelo professor Ian. Com a indelével contribuição de cada um, vocês permitiram que eu desse continuidade à construção, por meio de um pequeno fragmento, do grande mosaico intitulado "Solos & Viscosidade".

Agradeço ao Gustavo S. Domingos pelo auxílio essencial em todas as etapas deste trabalho, principalmente em relação às inúmeras leituras realizadas nos equipamentos quando eu não pude estar presente. Agradeço ao Vitor N. Aguiar pela paciência e forma didática com que me ajudou a interpretar alguns dos resultados obtidos.

Agradeço aos professores Fernando A. B. Danziger e Graziella M. F. Jannuzzi, bem como a toda equipe do Laboratório de Ensaios de Campo e Instrumentação Professor Marcio Miranda Soares, pelo cuidado e zelo na etapa de amostragem, e por terem cedido a amostra para a realização dos ensaios desta pesquisa. Também agradeço aos corpos técnico e administrativo do Laboratório de Geotecnia e do Programa de Engenharia Civil da COPPE/UFRJ, em especial ao Luis Carlos Oliveira, pelos ensaios de caracterização.

Pelo empenho, dedicação e lições valiosas durante o meu percurso de mestrado, agradeço a todos os professores do Programa de Engenharia Civil da COPPE/UFRJ, especialmente Ian S. M. Martins, Willy A. Lacerda, Anna Laura L. S. Nunes, Marcio S. S. Almeida, Fernando A. B. Danziger, Graziella M. F. Jannuzzi, Francisco R. Lopes, Maurício Ehrlich, Leonardo B. Becker, Francisco T. S. Aragão, André S. Avelar, Ana L. C. Netto, Laura M. G. Motta, Claudio F. Mahler e Franciane C. Peters.

Agradeço ao professor Luiz A. Bressani, por ter me dado a oportunidade de conhecer a Geotecnia, ter sido parceiro em diversos trabalhos, ter me ensinado tanto e ter me apoiado na vinda à COPPE/UFRJ. Agradeço também à UFRGS e a todos os seus demais professores, em especial Washington P. Nuñez, Adriano V. D. Bica, Wai Y. Y. Gehling, Fernando Schnaid, André C. Zingano e Nilo C. Consoli, todos fundamentais no meu amadurecimento e no meu percurso acadêmico.

Agradeço ao então mestrando e doutorando, hoje professor Marcelo Heidemann, pela inspiração e lições constantes durante a minha iniciação científica. Agradeço ainda ao Lageotec/UFRGS e equipe, principalmente Jair F. F. Silva, pelo conhecimento transmitido no meu processo de aprendizagem.

Agradeço aos meus amigos e colegas de mestrado por toda a parceria e amizade durante esse período. Em especial, Mirella D. Santos, Cauê A. B. Rosa, Patrícia M. Lopes, Rhamira D. G. Pascual, Rodrigo T. Schlosser, Larissa M. Barros, Luiz A. Florêncio, Karine Coutinho, Felipe V. A. S. Cruz, Juliana F. Santos, André V. Abreu, Roberto Mazzarone, Eduardo C. Saliba, Victor L. Silveira, Thiago D. Gisbert, André F. Rosa, Mateus L. Leite, Douglas A. Neves, Ana Elza D. Rosa, Lúcio Flávio R. Carvalho, Thaiane S. Rebêlo, Kristian D. T. Bautista e Lucas S. Vieira.

Agradeço à minha prima Marceli dalla Palma pela preocupação e atenção durante essa etapa importante que vivi no Rio de Janeiro.

Um muito obrigado à Rhamira D. G. Pascual e ao Rodrigo C. Frazão pela recepção, acolhimento e compreensão neste período final de mestrado.

Agradeço aos membros desta banca examinadora, professora Maria E. S. Marques e professores Fernando A. B. Danziger, Luiz A. Bressani e Vitor N. Aguiar, por terem

gentilmente aceitado o convite para compô-la e terem contribuído com sugestões e críticas valiosas.

Agradeço à CAPES e à FAPERJ pelo apoio financeiro na realização deste trabalho. Nunca é demais agradecer à sociedade brasileira, que permitiu que eu sempre trilhasse meu caminho no ensino público, gratuito, laico e de qualidade. Em um país sulcado na injustiça e tão desigual como o nosso, o ensino superior é uma das poucas e limitadas formas de inclusão social, e por esta razão e também por ser um direito de todos e todas, vou sempre lutar para que se torne cada vez mais popular, autônomo e democrático.

Este trabalho não seria possível sem a ajuda de um grande número de pessoas. A todos e todas que contribuíram e não foram citados, peço escusas e deixo meus agradecimentos sinceros.

[...] toda ciência seria supérflua se houvesse coincidência imediata entre a aparência e a essência das coisas [...] Karl Marx, "O Capital" [Livro III]

[...] o inacabamento do ser ou a sua inconclusão é próprio da experiência vital. Onde há vida, há inacabamento. Paulo Freire, "Pedagogia da Autonomia" Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

INVESTIGAÇÃO DA RELAÇÃO ÍNDICE DE VAZIOS-TENSÃO VERTICAL EFETIVA NA COMPRESSÃO EDOMÉTRICA DE UMA ARGILA MOLE DA ILHA DO FUNDÃO, RJ

Marco Antonio Grigoletto Conte

Outubro/2019

Orientador: Ian Schumann Marques Martins

Programa: Engenharia Civil

O Grupo de Reologia dos Solos da COPPE/UFRJ tem desenvolvido um modelo de comportamento para solos plásticos que abarca os casos em que o princípio das tensões efetivas de Terzaghi (1936) não pode ser aplicado satisfatoriamente: adensamento secundário, relaxação de tensões e fluência. Até o momento, sabe-se que a viscosidade é um dos elementos que governam esses processos. Este trabalho investiga se a relação índice de vazios-tensão vertical efetiva proposta por Martins (1983) possui conexão com a parcela de tensão vertical efetiva viscosa. Para tal, ensaios de compressão edométrica de longa duração, com adensamento secundário sob diferentes valores de *OCR*, foram realizados em uma amostra natural extraída do depósito de argila mole da Ilha do Fundão, RJ. Na curva de final de secundário (*EOS*) aplicou-se a formulação de Martins (1983) e os resultados indicaram que ela não está explicitamente associada à viscosidade, mas à estrutura do solo.

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the requirements for the degree of Master of Science (M.Sc.)

INVESTIGATION OF THE VOID RATIO-VERTICAL EFFECTIVE STRESS RELATIONSHIP IN THE ONE-DIMENSIONAL COMPRESSION OF A SOFT CLAY FROM ILHA DO FUNDÃO, RJ

Marco Antonio Grigoletto Conte

October/2019

Advisor: Ian Schumann Marques Martins

Department: Civil Engineering

The Soil Rheology Group of COPPE/UFRJ has been developing a model for plastic soils behavior. This model embraces the cases that are not properly covered by Terzaghi's (1936) principle of effective stress: secondary compression, stress relaxation and creep. It is known that viscosity is one of the key factors to those processes. This work investigates whether the void ratio-vertical effective stress relationship proposed by Martins (1983) has any connection with the viscous part of vertical effective stress. For this purpose, long-term oedometer tests with secondary compression under different values of *OCR* were performed on a natural sample extracted from the soft clay deposit of Ilha do Fundão, RJ. Martins' (1983) expression was then applied to the end of secondary line (*EOS*), showing that it is not explicitly linked to viscosity, but to soil structure.

1. INTRODUÇÃO1			
1.1	CONSIDERAÇÕES INICIAIS1		
1.2	OBJETIVOS		
1.3	ORGANIZAÇÃO		
2. REVISÃO BIBLIOGRÁFICA5			
2.1	PRINCÍPIO DAS TENSÕES EFETIVAS5		
	2.1.1 Introdução		
	2.1.2 O princípio das tensões efetivas de Terzaghi (1936)6		
	2.1.3 Corolários de Atkinson e Bransby (1978)7		
2.2	O ADENSAMENTO UNIDIMENSIONAL8		
	2.2.1 Introdução		
	2.2.2 Teoria do adensamento unidimensional de Terzaghi e Frölich (1936)10		
	2.2.3 O ensaio de compressão edométrica19		
2.3	O ADENSAMENTO SECUNDÁRIO28		
	2.3.1 Introdução		
	2.3.2 Mecanismos propostos para o adensamento secundário		
	2.3.3 Fatores que influenciam o adensamento secundário41		
	2.3.4 Abordagem do Grupo de Reologia dos Solos da COPPE/UFRJ55		
2.4	PREVISÃO DA COMPRESSÃO PRIMÁRIA VIRGEM65		
	2.4.1 Introdução		
	2.4.2 A relação $e \ x \ \sigma'_v$ de Martins (1983)		
3. DO PARÂMETRO C ₀ : HIPÓTESES E IMPLICAÇÕES70			
3.1	INTRODUÇÃO70		

SUMÁRIO

3.2	SOBRE A INDEFINIÇÃO DE C_0 E SUA CONEXÃO COM A
	viscosidade
3.3	SOBRE A INDEFINIÇÃO DE C_0 E SUA CONEXÃO COM A
	ESTRUTURA73
4. MA	FERIAL E MÉTODOS83
4.1	LOCALIZAÇÃO DA ÁREA83
4.2	GEOLOGIA REGIONAL85
4.3	CARACTERIZAÇÃO GEOTÉCNICA88
	4.3.1 Perfil estratigráfico do terreno
	4.3.2 Amostragem90
	4.3.3 Propriedades físicas
4.4	ENSAIOS DE COMPRESSÃO EDOMÉTRICA92
	4.4.1 Equipamentos92
	4.4.2 Preparação dos ensaios e moldagem dos corpos de prova93
	4.4.3 Execução dos ensaios de adensamento97
4.5	APLICAÇÃO DA EXPRESSÃO DE MARTINS (1983) REVISITADA99
4.6	LIMITE DE LIQUIDEZ FÍSICO, ÍNDICE DE VAZIOS MÁXIMO E $C_0^* \dots 101$
5. RES	ULTADOS E DISCUSSÕES103
5.1	RESULTADOS103
	5.1.1 Propriedades físicas
	5.1.2 Ensaios de compressão edométrica104
	5.1.3 Expressão de Martins (1983) revisitada
	5.1.4 Limite de liquidez físico, índice de vazios máximo e C_0^* 140
5.2	DISCUSSÕES142
	5.2.1 Propriedades geotécnicas
	5.2.2 Qualidade das amostras151

	5.2.3 Curvas de compressão de igual $\dot{\varepsilon}_v$ e adensamento secundário	152		
	5.2.4 Tensão vertical efetiva viscosa	157		
	5.2.5 Curvas de previsão do domínio virgem	167		
	5.2.6 Do parâmetro C_0	169		
6. CON	NSIDERAÇÕES FINAIS	177		
6.1	CONCLUSÕES	177		
6.2	SUGESTÕES PARA TRABALHOS FUTUROS	179		
REFERÊNCIAS BIBLIOGRÁFICAS181				
ANEXO A – Planta Baixa de Locação das Sondagens190				
ANEXO B – Boletim da Sondagem e do Ensaio SPT Realizados na Vertical de Amostragem (2018)192				
ANEXO C – Boletins das Sondagens e dos Ensaios SPT Realizados				
	na Área da TechnipFMC (2010)	195		

1 INTRODUÇÃO

1.1 CONSIDERAÇÕES INICIAIS

Modelos descritivos do comportamento tensão-deformação dos materiais são instrumentos de grande valia para a engenharia, com um sem-número de aplicações que abarcam desde o estudo de fenômenos naturais até a previsão de desempenho de uma viga de concreto armado. No caso dos solos, pelo fato de serem materiais heterogêneos, anisotrópicos e trifásicos, esta tarefa representa, em particular, um verdadeiro desafio. O modelo Cam-Clay, formalizado por Schofield e Wroth (1968), foi uma das primeiras respostas satisfatórias fornecidas ao comportamento das argilas, por exemplo.

Nesse sentido, Martins (1983) apresentou uma relação pioneira entre índice de vazios e tensão vertical efetiva, de natureza analítica, com a finalidade de estimar a curva de compressão unidimensional no domínio virgem. Desde então, os resultados produzidos pela formulação de Martins tem se revelado animadores nas argilas moles, tendo em vista que suas estimativas mostram-se muito fidedignas quando confrontadas com dados experimentais.

No tocante à teoria do adensamento unidimensional de Terzaghi e Frölich (1936), que foi a primeira tentativa de descrição tensão-deformação-tempo do fenômeno do adensamento, sabe-se que ela não comporta o fenômeno do adensamento secundário. Um dos motivos é, na opinião do Grupo de Reologia dos Solos da COPPE/UFRJ, por desconsiderar a viscosidade, elemento cujos efeitos são muito acentuados nos solos moles de alta plasticidade.

Em face disso, desde a década de 1980 o Grupo de Reologia dos Solos da COPPE/UFRJ tem investigado o fenômeno do adensamento secundário, e mais recentemente também a fluência e a relaxação de tensões. O objetivo é desenvolver um modelo que abarque todos esses fenômenos de maneira universal e não apenas particular. Dos resultados obtidos até aqui, a viscosidade aparece como elemento chave não só no tratamento matemático, mas também nas explicações mais básicas sobre o mecanismo físico envolvido e as relações de causa e efeito desses fenômenos.

O modelo reológico produzido pelo referido grupo, até o momento, não possui nenhuma ligação explícita com a formulação de Martins (1983). Assim, buscando o caráter mais geral possível, esta dissertação propõe-se a investigar se há alguma relação entre a expressão desenvolvida por Martins, mais notadamente seu parâmetro C_0 , e a parcela viscosa da tensão vertical efetiva. Tal possibilidade surgiu em razão de Louvise (2015) ter sugerido, ao aplicar a formulação de Martins em algumas argilas moles, que para que a mesma fosse plenamente satisfeita, C_0 deveria resultar positiva. Outro caminho alternativo que este estudo traz à baila, e que parece ser mais factível, é a possibilidade do mesmo parâmetro C_0 estar associado à estrutura do solo.

Para levar esse estudo adiante, empregou-se uma amostra extraída do depósito sedimentar de argila mole da Ilha do Fundão, RJ, de origem flúvio-marinha, idade recente (Holoceno) e com 15 m de espessura. Assim, além de contribuir para a evolução das ideias desenvolvidas pelo Grupo de Reologia dos Solos da COPPE/UFRJ, este estudo também se soma a outras investigações geotécnicas realizadas em argilas da costa brasileira, e que vem sendo conduzidas há várias décadas por diversos pesquisadores (*e.g.* Aragão, 1975; Coutinho, 1976; Lins; Lacerda, 1980; Coutinho; Lacerda, 1987; Feijó, 1991; Soares, 1997; Almeida; Marques, 2003; Aguiar, 2008; Andrade, 2009; Baroni, 2010; Jannuzzi *et al.*, 2015; Póvoa *et al.*, 2018).

1.2 OBJETIVOS

O objetivo geral desta dissertação é investigar se existe relação entre o parâmetro C_0 da formulação de Martins (1983) e a estrutura e/ou a parcela de tensão vertical efetiva viscosa (σ'_{η}) da argila da Ilha do Fundão, RJ, segundo as premissas do Grupo de Reologia dos Solos da COPPE/UFRJ.

Para a sua consecução foram levados a cabo os seguintes objetivos específicos:

i) realizar a caracterização geotécnica da argila da Ilha do Fundão, RJ;

ii) realizar ensaios de compressão edométrica com acompanhamento do adensamento secundário e obter a linha de final de secundário (*EOS*);

iii) aplicar a formulação de Martins (1983) sobre a linha de EOS;

iv) obter os parâmetros C_0 C_0^* , este último derivado do limite de liquidez físico (w_L^*) e do índice de vazios máximo ($e_{máx}$);

v) comparar os resultados produzidos pela formulação de Martins (1983) empregando $C_0 \in C_0^*$.

1.3 ESTRUTURA DO TRABALHO

Um panorama da estrutura desta dissertação é exposto a seguir, por meio da descrição, em linhas gerais, dos seis capítulos que a compõem.

No presente capítulo apresenta-se o tema principal de pesquisa, procura-se mostrar a sua importância em face do contexto no qual se insere e justifica-se a sua realização. Também se apresentam os objetivos almejados e a organização do trabalho.

No capítulo 2 apresenta-se uma revisão bibliográfica da literatura existente sobre o tema de pesquisa, baseando-se em quatro eixos teóricos. O primeiro deles é o princípio das tensões efetivas de Terzaghi (1936) e uma breve discussão sobre o seu significado, interpretação e validade. O segundo aborda tanto a teoria do adensamento unidimensional clássica, a qual é uma tentativa de descrição do fenômeno do adensamento nos solos moles, como o ensaio de compressão edométrica, que é uma tentativa de reprodução do fenômeno em laboratório. O terceiro discorre sobre o fenômeno do adensamento secundário, os diferentes mecanismos físicos elaborados para explicá-lo, os principais fatores que o influenciam e um histórico com os principais avanços do Grupo de Reologia dos Solos da COPPE/UFRJ. Por fim, o quarto eixo versa sobre a relação $e x \sigma_v'$ desenvolvida por Martins (1983) para previsão do domínio virgem na compressão unidimensional.

No capítulo 3 são detalhadas e discutidas as hipóteses aventadas nesta pesquisa, bem como as implicações daí derivadas. Estas hipóteses determinaram em grande medida os rumos tomados nesta dissertação.

No capítulo 4 apresentam-se, em um primeiro momento, informações acerca da Ilha do Fundão, RJ, tais como ambiente geológico regional e estratigrafia do terreno. Na sequência, apresentam-se os materiais e os métodos empregados na amostragem e no programa experimental de laboratório, bem como a finalidade almejada com eles.

No capítulo 5 exibem-se e examinam-se todos os resultados obtidos nesta pesquisa. Com base neles, trava-se uma discussão a respeito da validação ou refutação das hipóteses.

No capítulo 6, por fim, apresenta-se um apanhado das principais conclusões e apontamse caminhos para dirimir as dúvidas e os pontos que não puderam ser elucidados neste trabalho.

2 REVISÃO BIBLIOGRÁFICA

Este capítulo abarca quatro tópicos e nele constrói-se o arcabouço teórico sobre o qual esta dissertação se apoia. Inicialmente aborda-se o princípio das tensões efetivas de Terzaghi (1936) e a teoria do adensamento unidimensional de Terzaghi e Frölich (1936). Em seguida, examina-se o fenômeno do adensamento secundário, cuja complexidade ainda não foi inteiramente compreendida, a despeito dos muitos esforços que tem sido, historicamente, envidados neste sentido. Discute-se a respeito dos fatores que o influenciam, dos mecanismos que o controlam e de algumas abordagens que o descrevem, com enfoque na abordagem unificadora desenvolvida pelo Grupo de Reologia dos Solos da COPPE/UFRJ, na qual este trabalho se ampara. Um dos seus méritos é que ela abrange, além do adensamento secundário, outros fenômenos usualmente tratados de maneira compartimentada na Mecânica dos Solos, como a relaxação de tensões e o *creep*. Por fim, trata-se da previsão do domínio virgem dos solos na compressão unidimensional, baseando-se na formulação de Martins (1983).

2.1 PRINCÍPIO DAS TENSÕES EFETIVAS

2.1.1 Introdução

O princípio das tensões efetivas, quando enunciado em língua inglesa por Terzaghi (1936), foi um verdadeiro marco para a então incipiente Mecânica dos Solos. Desde aquele momento, permanece como um dos seus pilares, não obstante a complexidade e sofisticação crescentes de modelos preditivos geotécnicos e programas computacionais. Em virtude do impacto que causou, aliado à sua simplicidade e aplicação satisfatória na maior parte das situações, a comunidade geotécnica mantém seu status de grande baluarte de uma maneira quase irrevogável.

Dentro de um sistema explicativo, um princípio é uma proposição afirmativa que não pode ser demonstrada, mas que é aceita como verdadeira porque se mostra adequada quando empregada na descrição de um sem-número de fenômenos. No entanto, seguindo a linha do princípio da falseabilidade de Popper (1974, p. 41-44), o princípio das tensões efetivas poderia ser refutado quando aplicado aos fenômenos do adensamento secundário, da relaxação de tensões e do *creep*.

2.1.2 O princípio das tensões efetivas de Terzaghi (1936)

Atkinson e Bransby (1978) expressam o princípio das tensões efetivas em duas partes, embora o próprio Terzaghi não tenha, ao menos de maneira explícita, feito tal segmentação. O que vem a seguir é uma transcrição livre, que se encontra em Atkinson e Bransby (1978, p. 20-21), do princípio das tensões efetivas de Terzaghi concebido para solos saturados:

Primeira Parte - Definição de Tensão Efetiva

As tensões em qualquer ponto de uma massa de solo podem ser computadas a partir das tensões principais totais σ_1 , $\sigma_2 e \sigma_3$ que atuam neste ponto. Se os vazios do solo estiverem preenchidos com água sob uma pressão u, as tensões principais consistem de duas parcelas. Uma parcela de valor u que age na água e na parte sólida, em todas as direções e com igual magnitude. Essa parcela é chamada de pressão neutra (ou poropressão). As diferenças $\sigma'_1 = \sigma_1 - u$, $\sigma'_2 = \sigma_2 - u$ e $\sigma'_3 = \sigma_3 - u$ atuam exclusivamente no esqueleto sólido¹ do solo. Estas parcelas das tensões principais totais são denominadas tensões principais efetivas.

Traduzindo em termos matemáticos o que foi dito, chega-se à equação fundamental do princípio das tensões efetivas e que é válida para todos os planos, além dos principais:

$$\sigma' = \sigma - u \tag{2.1}$$

Segunda Parte - Importância das Tensões Efetivas:

Todos os efeitos mensuráveis oriundos da variação de tensões, tais como compressão, distorção e variação na resistência ao cisalhamento, são devidos exclusivamente às variações das tensões efetivas.

¹ Optou-se por empregar o termo "esqueleto sólido", em lugar de "grãos", porque este último dá ensejo ao conceito de tensão intergranular que, por sua vez, está associado aos contatos singulares que ocorrem grão a grão.

Dito de outra forma, se houver variação na resistência ao cisalhamento, de volume e/ou distorção, é porque certamente houve variação no estado de tensões efetivas. A recíproca desta segunda parte também tem sido interpretada como verdadeira pela Mecânica dos Solos clássica, *i.e.*, se houver variação no estado de tensões efetivas, é porque certamente houve variação de volume e/ou distorção.

2.1.3 Corolários de Atkinson e Bransby (1978)

Atkinson e Bransby (1978, p. 21-25) afirmaram que o princípio das tensões efetivas pode ser ilusoriamente simples, e enunciaram três corolários, a saber:

 i) o comportamento de dois solos, em termos de engenharia, com a mesma estrutura e mineralogia será o mesmo se eles estiverem sob o mesmo estado de tensões efetivas;

ii) se um solo é carregado ou descarregado sem qualquer variação de volume e sem qualquer distorção, não haverá variação no seu estado de tensões efetivas;

iii) um solo sofrerá expansão (e perderá resistência) ou sofrerá compressão (e ganhará resistência) se a poropressão isoladamente for aumentada ou reduzida.

Contudo, Martins (1992, p. 8-13) lançou um contraexemplo para cada corolário demonstrando que estes são falsos.

No primeiro contraexemplo ele afirma que dois solos, ainda que possuam a mesma estrutura e mineralogia e estejam sob o mesmo estado de tensões efetivas, apresentarão comportamentos distintos se cisalhados sob velocidades distintas. Para ilustrar tal fato, Martins (1992) utiliza resultados de ensaios convencionais de compressão triaxial nãodrenada realizados por Lacerda² (1976).

No segundo contraexemplo, Martins (1992) recorre a ensaios não-drenados de relaxação de tensões realizados por Lacerda³ (1976). Nesse tipo de ensaio o corpo de prova é cisalhado com velocidade de deformação controlada. Antes de atingir a ruptura, desliga-

² LACERDA, W. A. **Stress-relaxation and creep effects on soil deformation**. 1976. Ph.D. Dissertation, University of Berkeley, California, 1976.

³ ibidem.

se a prensa triaxial e observa-se o comportamento do corpo de prova, durante a chamada "fase de relaxação". Tendo em vista que o ensaio é não-drenado e o corpo de prova saturado, não há variação de volume; como a prensa, nesta fase, está desligada, não há deformação axial e, portanto, não há distorção. Entretanto, verifica-se que ocorre variação no estado de tensões efetivas.

No terceiro contraexemplo, Martins (1992) parte dos resultados de Lima (1993), que realizou ensaios de compressão edométrica unidimensional especiais com monitoramento de poropressão. Ao final do adensamento primário a drenagem era fechada, logo, não havia possibilidade de ocorrer variação de volume e/ou distorção. Entretanto, observou-se um aumento na poropressão. Portanto, é possível haver variação no estado de tensões efetivas sem que ocorra variação de volume e/ou distorção.

Destes contraexemplos, depreende-se que, de fato, "o princípio das tensões efetivas pode ser ilusoriamente simples" e levar a posições equivocadas. Em consonância com Aguiar (2014, p. 8), o autor desta dissertação acredita que a segunda parte do princípio das tensões efetivas e a sua recíproca não apresentam caráter universal. Nas palavras de Martins (1992, p. 13), deve-se acrescentar "o efeito da velocidade ou o efeito do tempo, que são, por assim dizer, duas faces de uma mesma moeda".

2.2 O ADENSAMENTO UNIDIMENSIONAL

2.2.1 Introdução

Quem primeiro compreendeu a importância do fenômeno do adensamento foi Terzaghi, na década de 1920, ao tomar amostras de argila provenientes do "Chifre de Ouro", na Turquia, e analisar o comportamento delas sob a ação de uma sobrecarga externa e do tempo (TERZAGHI, 1941, p. 49). Foi nesse contexto que se materializou o então rudimentar ensaio de compressão edométrica e que o princípio das tensões efetivas veio à tona.

O adensamento pode ser entendido como o processo de compressão do solo, ao longo do tempo, ocasionado pela expulsão de água resultante da transferência gradual do

excesso de poropressão, gerado por um carregamento, para as tensões efetivas (MARTINS⁴, 2017). Em outras palavras, o adensamento corresponde ao recalque mediante a saída de água dos vazios do solo ao longo do tempo. Além disso, falar em adensamento unidimensional significa dizer que a massa de solo está impedida de se deformar lateralmente e, portanto, a única possibilidade de deformação é na direção vertical.

Terzaghi e Frölich (1936) criaram uma analogia entre o processo de adensamento e a compressão de uma mola que facilita a apreensão do fenômeno. Pode-se projetar um experimento em que uma mola esteja inserida dentro de um pistão sem atrito, saturado de água e com um pequeno orifício no topo (figura 2.1). A mola equivale ao esqueleto sólido do solo saturado, e o orifício representa a permeabilidade do solo.

Em um primeiro momento o orifício está fechado por meio de uma válvula (figura 2.1a), e mesmo quando se aplica, no caso do exemplo, um carregamento equivalente a 200 N, nenhuma deformação (δ) é observada e a mola permanece com o seu comprimento inicial (h_0). Isso ocorre porque a água suporta integralmente a carga externa, uma vez que a sua compressibilidade é desprezível em face da compressibilidade da mola. No exato instante (t_0) em que a válvula é aberta (figura 2.1b), permite-se que a água seja expulsa, mas nenhuma deformação da mola é ainda observada pois a velocidade do fluxo d'água não é infinita. Nos instantes seguintes (figuras 2.1c, 2.1d e 2.1e), a água é expulsa cada vez mais lentamente à medida que a carga que está suportando vai sendo transferida para a mola que, por sua vez, apresenta deformações crescentes. Esse mecanismo se perpetua até que a carga de 200 N, inicialmente suportada pela água, tenha sido integralmente transferida à mola (figura 2.1f).

Os fatores que controlam a velocidade desse processo são a rigidez da mola (compressibilidade do solo) e a dimensão do orifício (permeabilidade do solo). Se uma mola mais compressível for utilizada, uma deformação maior também será imposta, portanto, maior quantidade de água deverá ser expulsa e maior tempo será requerido. Se um orifício maior for utilizado, menor será o tempo requerido para a ocorrência e finalização do processo.

⁴ MARTINS, I. S. M. **Notas de aula de adensamento**. Rio de Janeiro: documento não publicado, 2017.

Vale ressaltar, contudo, que a analogia não deve ser encarada com rigor, embora seja didática. Em uma mola de Hooke a relação entre força e deslocamento (F = k.x) é linear e as tensões se distribuem igualmente ao longo de seu comprimento, ao passo que em uma massa de solo estas duas condições não são satisfeitas. Segundo Taylor (1948, p. 224), essa analogia também seria válida para o mecanismo de expansão, ou seja, o caso reverso em que a carga é reduzida.

Figura 2.1 – Analogia mecânica entre um sistema pistão-mola e o processo de adensamento unidimensional (fonte: Martins⁵, 2017 adaptada de Taylor, 1948)

2.2.2 Teoria do adensamento unidimensional de Terzaghi e Frölich (1936)

Terzaghi e Frölich (1936) desenvolveram a primeira teoria para o fenômeno do adensamento em perspectiva unidimensional, a qual frequentemente é chamada de "teoria clássica do adensamento". Essa teoria está baseada em algumas hipóteses simplificadoras e descreve como se estabelece a transferência de sobrecarga imposta à

⁵ MARTINS, I. S. M. Notas de aula de adensamento. Rio de Janeiro: documento não publicado, 2017.

água (excesso de poropressão) para o esqueleto sólido do solo ao longo da profundidade e do tempo.

Após a teoria de Terzaghi e Frölich (1936), outras mais sofisticadas foram desenvolvidas. Taylor e Merchant (1940) e Taylor (1942) perceberam a importância do adensamento secundário e da viscosidade estrutural, Biot (1941) levou em consideração o aspecto tridimensional do fenômeno real que se observa em campo e Davis e Raymond (1965) enfocaram o caráter não-linear da relação que se estabelece entre índice de vazios e tensão vertical efetiva. Reconhecidas as suas limitações, a teoria clássica do adensamento é o ponto de partida e o "cavalo-de-batalha" da maior parte dos projetos de engenharia desenvolvidos sobre solos moles, da mesma forma que continua sendo estudada e empregada nos cursos e nos centros de pesquisa de geotecnia.

2.2.2.1 Hipóteses

A teoria clássica do adensamento baseia-se em nove hipóteses, as quais serão elencadas e discutidas a seguir. Algumas podem ser mais ou menos realistas, a depender das circunstâncias, ao passo que outras podem ser usadas sem restrições.

i) o solo está saturado

Essa é uma hipótese plenamente factível, tendo em vista que os solos de maior interesse no tocante ao fenômeno do adensamento são predominantemente as ditas "argilas moles", cujo processo de formação, em geral, se dá em planícies de inundação com velocidade de deposição muito baixa (ambientes lênticos).

ii) a compressão é unidimensional (vertical)

Essa hipótese é rigorosamente satisfeita quando se trata de um ensaio de compressão edométrica. Na verdade, ela passa a ser uma condição de contorno imposta ao fenômeno em função da rigidez do anel que impede deformações laterais. No caso em que o processo de adensamento se dá no campo, essa hipótese só é atendida quando o carregamento é uniforme e se estende sobre uma ampla área cujas dimensões em planta sejam muito maiores que a espessura da camada.

iii) o fluxo d'água é unidimensional

Valem os mesmos comentários feitos à hipótese anterior.

iv) o solo é homogêneo

Essa é uma hipótese aceitável, mas que pode afastar-se da realidade tão maior for a espessura da camada de solo adensável, tendo em vista que especialmente a variação no índice de vazios tornar-se-á mais acentuada e, em decorrência, outras tantas propriedades (*e.g.* compressibilidade).

v) as partículas sólidas e a água são incompressíveis

Essa hipótese é realista e pode ser demonstrada tomando o raciocínio apresentado por Andrade (2009, p. 15). A título de exemplo, a compressibilidade do quartzo é de 4.5 x 10^{-7} kPa⁻¹, a compressibilidade da água é de 1.5 x 10^{-8} kPa⁻¹ e a compressibilidade da argila de Santos é da ordem de 7.1 x 10^{-4} kPa⁻¹. Ou seja, os grãos e a água apresentam compressibilidade mensurável, mas que se torna desprezível em face da compressibilidade do solo com seu arranjo espacial de partículas.

vi) as deformações são admitidas infinitesimais

Embora essa hipótese não esteja listada explicitamente em Taylor (1948), está implícita na dedução da equação diferencial do adensamento unidimensional, quando se admite que a variável *z*, que indica a posição do elemento na camada de solo mole, não varia com o tempo, o que é uma aproximação. Isso equivale a dizer que a espessura da camada adensável é constante. Portanto, essa hipótese comete dois equívocos: considera a distância de drenagem constante quando ela é, na verdade, variável, e desconsidera a mudança de posição do referencial inicial (topo da camada). Em virtude disso, a teoria clássica só deveria ser usada quando os recalques fossem inferiores a 10% da espessura da camada, para que não se incorra em erros apreciáveis (MARTINS; ABREU, 2002).

vii) o fluxo d'água é governado pela Lei de Darcy

A validade dessa hipótese deve ser estudada do ponto de vista do gradiente hidráulico, uma vez que para que a Lei de Darcy possa ser aplicada, o fluxo deve, dentre outras condições, ser laminar. Segundo Martins⁶ (1985 *apud* Andrade, 2009, p. 15-16), no início de um carregamento e em uma posição próxima às fronteiras drenantes, o gradiente hidráulico é tal que a velocidade ultrapassa o número de Reynolds, de modo que se estabelece um fluxo turbulento. No entanto, segundo o mesmo autor, para as razões incrementais de carregamento adotadas em ensaios usuais de compressão edométrica, no mínimo 95% do processo de adensamento ocorre com gradientes

⁶ MARTINS, I. S. M. **Relatório de pesquisa**. Rio de Janeiro: documento não publicado, 1985.

hidráulicos que se situam dentro do domínio de validade da Lei de Darcy. Portanto, essa é uma hipótese aceitável.

viii) as propriedades do solo se mantêm inalteradas durante o processo de adensamento

Essa hipótese se afasta da realidade, pois parâmetros como o coeficiente de permeabilidade (k) e o coeficiente de compressibilidade (a_v) são dependentes do índice de vazios (e), o qual varia durante o processo de adensamento. No entanto, segundo Taylor (1948, p. 226), esses parâmetros se alteram de tal modo que seus efeitos se "compensam" e o coeficiente de adensamento (c_v) pode ser tomado como aproximadamente constante. Portanto, essa hipótese introduz erros pouco significativos.

ix) há uma relação linear entre a variação do índice de vazios e a variação da tensão vertical efetiva

Essa hipótese conduz a uma limitação da validade da teoria de Terzaghi e Frölich (1936). Isso porque a relação $e \ x \ \sigma'_{\nu}$ não pode ser representada por um segmento de reta, tampouco o índice de vazios é função apenas da tensão vertical efetiva⁷. É essa mesma hipótese que inclusive sustenta a analogia mecânica da mola.

2.2.2.2 Grau de adensamento e coeficiente de compressibilidade

A mecânica do adensamento parte da premissa de que para cada índice de vazios existe uma tensão vertical efetiva máxima que pode ser suportada pelo esqueleto de solo, e que essa relação é representada graficamente por um segmento de reta (figura 2.2). Assim, é possível quantificar a evolução do fenômeno por meio do chamado grau de adensamento (U), a partir dos índices de vazios inicial (e_0), corrente (e) e final (e_f) em um dado ponto da massa de solo:

$$U = \frac{e_0 - e}{e_0 - e_f}$$
(2.2)

Ademais, sendo a relação $\Delta e \ x \ \Delta \sigma'_{v}$ admitida linear, ela permite duas definições alternativas para o grau de adensamento: i) em termos das tensões efetivas inicial (σ'_{v0}), corrente (σ'_{v}) e final (σ'_{vf}), ou então ii) dos excessos de poropressão inicial (u_0) e corrente (u), conforme a expressão 2.3.

⁷ Na seção que trata do fenômeno do adensamento secundário, será visto que o índice de vazios também é função da velocidade de deformação volumétrica específica ($\dot{\varepsilon}_v$) e da temperatura.

$$U = \frac{\sigma'_v - \sigma'_{v0}}{\sigma'_{vf} - \sigma'_{v0}} = 1 - \frac{u}{u_0}$$
(2.3)

A derivada da função $e \ x \ \sigma'_{\nu}$, por definição, é o coeficiente de compressibilidade (a_{ν}) :

$$a_{\nu} = -\frac{\Delta e}{\Delta \sigma_{\nu}'} \tag{2.4}$$

Figura 2.2 – Relação linear idealizada no diagrama $e \ x \ \sigma'_v$

2.2.2.3 Equação diferencial do adensamento unidimensional e sua solução

O objetivo da teoria do adensamento unidimensional é descrever o comportamento de uma camada de solo mole adensável quando submetida a uma sobrecarga externa. Para que essa tarefa seja atingida a contento, a teoria deve relacionar deformação, variação do índice de vazios, variação da tensão efetiva e variação da poropressão de um elemento de solo em quaisquer tempo e posição.

Seja a figura 2.3, que exibe de maneira esquemática uma camada de solo mole submetida ao processo de adensamento unidimensional. Tomando um elemento tridimensional de solo, analisando a sua variação de volume e o fluxo d'água que por ele perpassa, bem como fazendo uso das nove hipóteses aventadas anteriormente, Terzaghi e Frölich (1936) desenvolveram uma equação diferencial do adensamento unidimensional⁸ (expressão 2.5).

Figura 2.3 – Representação esquemática de uma camada de solo mole submetida ao processo de adensamento unidimensional (fonte: Martins⁹, 2017)

$$\frac{k(1+e)}{a_{\nu}\gamma_{w}}\frac{\partial^{2}u}{\partial z^{2}} = \frac{\partial u}{\partial t}$$
(2.5)

onde:

- u: excesso de poropressão de um elemento de solo na profundidade z e no tempo t;
- z: variável espacial (profundidade);
- t: tempo;
- *k*: coeficiente de permeabilidade do solo;
- e: índice de vazios;
- a_{v} : coeficiente de compressibilidade;
- γ_w : peso específico da água.

⁸ Para a demonstração completa dessa passagem, ver Taylor (1948, p. 227-229).

⁹ MARTINS, I. S. M. Notas de aula de adensamento. Rio de Janeiro: documento não publicado, 2017.

Tendo em mente a constância de algumas das propriedades do solo, vide hipótese viii, um novo parâmetro, que possui interpretação física e facilita a resolução da expressão 2.5, pode ser definido. Trata-se do coeficiente de adensamento vertical:

$$c_{\nu} = \frac{k(1+e)}{a_{\nu} \gamma_{w}} \tag{2.6}$$

O c_v é um parâmetro que reflete as características do solo e pode ser encarado como um indicativo da velocidade em que se dá o processo de adensamento. A equação diferencial do adensamento unidimensional, portanto, fica:

$$c_{v}\frac{\partial^{2}u}{\partial z^{2}} = \frac{\partial u}{\partial t}$$
(2.7)

Para resolvê-la, além de adotar c_v como constante, devem ser estabelecidas condições de contorno em termos da função de excesso de poropressão u(z,t) e o seu valor inicial, já que a profundidade (z) e o tempo (t) são as variáveis independentes:

a)
$$u(0,t) = 0$$

b) $u(2H,t) = 0$
c) $u(z,0) = u_0$

Por meio do método de separação de variáveis, chega-se na solução¹⁰:

$$u(z,t) = \sum_{m=0}^{\infty} \frac{4u_0}{(2m+1)\pi} \sin\frac{(2m+1)\pi z}{2H} e^{-\frac{(2m+1)^2 \pi^2 c_v t}{4H^2}}$$
(2.8)

Adotando $M = \frac{(2m+1)\pi}{2}$ e definindo o fator tempo adimensional (*T*) como $T = \frac{c_v t}{H^2}$, a expressão 2.8 é escrita de maneira alternativa como:

$$u(z,t) = \sum_{m=0}^{\infty} \frac{2u_0}{M} \sin \frac{Mz}{H} e^{-M^2 T}$$
(2.9)

Finalmente, a solução pode ser visualizada graficamente (figura 2.4). As diferentes isócronas (curvas de igual tempo ou fator tempo) indicam a distribuição do excesso de poropressão ao longo da camada adensável. Ou seja, é uma forma de quantificação do

¹⁰ Para a demonstração completa dessa passagem, ver Taylor (1948, p. 229-234).

fenômeno em uma dada profundidade e decorrido um tempo determinado. Nota-se que quanto mais próximo de uma fronteira drenante um elemento se situa, tanto mais rapidamente se dissipa o excesso de poropressão. Ainda, no caso de drenagem dupla, os excessos de poropressão são simétricos em relação ao plano horizontal que passa pelo centro da camada. Neste plano $\frac{\partial u}{\partial z} = 0$, portanto, não há fluxo no centro da camada desde que haja drenagem dupla.

Figura 2.4 – Isócronas no diagrama *excessos de poropressão normalizados* $\binom{u}{u_0} x posição relativa \binom{z}{H}$ (fonte: Martins¹¹, 2017)

Para além da descrição do fenômeno em uma posição discricionária, é importante saber o comportamento global da camada, *i.e.*, o recalque e o grau de adensamento médios. Num dado tempo *t* o recalque da camada é calculado por:

¹¹ MARTINS, I. S. M. Notas de aula de adensamento. Rio de Janeiro: documento não publicado, 2017.

$$r(t) = \int_0^{2H} \varepsilon_z \, dz = \int_0^{2H} \frac{e_0 - e(z, t)}{1 + e_0} \, dz \tag{2.10}$$

Já o recalque final da camada, num tempo infinito, é dado por:

$$r = \int_{0}^{2H} \frac{e_0 - e_f}{1 + e_0} dz \tag{2.11}$$

Dividindo-se o recalque em um tempo qualquer pelo recalque total, tem-se o grau de adensamento médio (\overline{U}):

$$\overline{U} = \frac{r(t)}{r} \tag{2.12}$$

Desenvolvendo-se essa equação, o grau de adensamento médio em função do fator tempo resulta em:

$$\overline{U}(T) = 1 - \sum_{m=0}^{\infty} \frac{2}{M^2} e^{-M^2 T}$$
(2.13)

Como a expressão 2.13 envolve uma série, quando se deseja trabalhar com o grau de adensamento médio é mais conveniente utilizar a sua representação gráfica, apresentada na figura 2.5, ou então uma tabela de valores. Outra possibilidade é a utilização de duas expressões empíricas, desenvolvidas por Taylor (1948), que se ajustam muito bem à equação acima:

se
$$\overline{U} \le 60\%, T = \frac{\pi}{4}\overline{U}^2$$
 (2.14)

se
$$\overline{U} > 60\%, T = -0.933 \log(1 - \overline{U}) - 0.085$$
 (2.15)

É importante ressaltar que as expressões 2.13, 2.14 e 2.15 são válidas apenas para o caso em que o excesso de poropressão inicial (u_0) é constante ao longo da camada¹².

¹² Para ver soluções com configurações distintas de distribuição de poropressão ao longo da camada, basta dirigir-se a Taylor (1948, p. 236-238).

Figura 2.5 – Diagrama grau de adensamento médio $(\overline{U}) x$ fator tempo (T)

2.2.3 O ensaio de compressão edométrica

Uma tentativa de simulação em laboratório do fenômeno do adensamento observado em campo – fruto, por exemplo, da construção de um aterro ou da deposição de uma sobrecarga natural qualquer – pode ser feita através do ensaio de compressão edométrica, também conhecido como ensaio de adensamento. Idealizado por Terzaghi, ele permite observar as deformações que se desenvolvem sobre uma pequena amostra de solo, ao longo do tempo, quando uma carga externa é aplicada.

No ensaio, um corpo de prova cilíndrico que pode ser tanto natural, como produzido artificialmente em laboratório sob condições controladas, é moldado em um anel metálico com paredes laterais rígidas e submerso em uma célula com água. Na base e no topo do corpo de prova são instaladas duas pedras porosas com permeabilidade muito superior à do próprio solo, similares a "colchões" drenantes de areia (figura 2.6). A sobrecarga é aplicada via braço de alavanca sobre um cabeçote esférico, de modo que somente esforço vertical seja produzido e nenhum momento seja gerado.

Figura 2.6 – Vista em corte do ensaio de adensamento edométrico (fonte: Martins¹³, 2017)

Essas condições fazem com que, após a aplicação do carregamento, apenas deformações verticais (ε_v) sejam observadas. Como a deformação lateral (ε_h) é nula, diz-se que a compressão é unidimensional. Além disso, o fluxo d'água é admitido ser exclusivamente vertical.

Imediatamente após a aplicação de um incremento de carga ($\Delta \sigma$), há um acréscimo de pressão na água intersticial do solo (excesso de poropressão) de igual valor, impondo um fluxo de água em direção às pedras porosas e causando deformações no corpo de prova. Leituras do tempo e das respectivas deformações são feitas manualmente em um extensômetro instalado no topo da célula ou então de maneira automatizada através de um sistema de aquisição de dados.

A cada estágio de carregamento é gerada uma curva leitura extensômetro (L) x tempo (t) em escala natural, logarítmica ou em termos de raiz quadrada, com vistas à obtenção do coeficiente de adensamento vertical (c_v). De posse dos dados do conjunto de todos os carregamentos, é possível gerar uma curva índice de vazios (e) x tensão vertical efetiva (σ'_v) em escala semi-logarítmica, o que permitirá o cálculo de uma série de parâmetros fundamentais e que fazem parte da interpretação do ensaio.

¹³ MARTINS, I. S. M. Notas de aula de adensamento. Rio de Janeiro: documento não publicado, 2017.

2.2.3.1 Parâmetros de compressibilidade

Além do coeficiente de compressibilidade (a_v) , já apresentado anteriormente, outros parâmetros podem ser definidos a partir do ensaio de compressão edométrica, partindo da premissa de que os domínios normalmente adensado e sobreadensado¹⁴ do diagrama $e \ x \ \sigma'_v$ (*log*) se aproximam de uma reta. São eles:

i) índice de compressão (C_C), definido no domínio de compressão virgem:

$$C_{\mathcal{C}} = -\frac{\Delta e}{\Delta \log \sigma_{\nu}'} \tag{2.16}$$

ii) índice de recompressão (C_r), definido no domínio de recompressão:

$$C_r = -\frac{\Delta e}{\Delta \log \sigma_{\nu}'} \tag{2.17}$$

iii) índice de descompressão (C_S), definido no domínio de descarregamento:

$$C_S = -\frac{\Delta e}{\Delta \log \sigma_\nu'} \tag{2.18}$$

iv) tensão de sobreadensamento (σ'_{vm}), máxima tensão vertical efetiva já experimentada pelo solo ao longo de sua história geológica, obtida via métodos de Pacheco Silva (1970) e/ou Casagrande (1936)

v) razão de sobreadensamento (*OCR*), relação entre a tensão de sobreadensamento e a tensão vertical efetiva corrente do corpo de prova:

$$OCR = \frac{\sigma'_{vm}}{\sigma'_{v}} \tag{2.19}$$

A figura 2.7 ilustra esses parâmetros. A partir do *OCR*, é possível definir o significado de duas expressões. Diz-se que um solo está "normalmente adensado" quando a sua tensão vertical efetiva atual é a maior tensão vertical efetiva a que ele já esteve submetido (OCR = 1). Diz-se que um solo está "sobreadensado" quando a sua tensão vertical efetiva atual é inferior à máxima tensão vertical efetiva a que ele já esteve submetido (OCR = 1).

A tensão de sobreadensamento também pode ser associada a uma mudança na compressibilidade do solo. Ela permite dividir a curva de compressão edométrica em

¹⁴ Esses termos serão definidos a seguir.

dois domínios: o normalmente adensado, em que as deformações são, *grosso modo*, plásticas, e o sobradensado, em que, *grosso modo*, as deformações são elásticas.

Figura 2.7 – Definição de parâmetros fundamentais a partir da curva $e \ x \ \sigma'_v \ (log)$

Para a determinação do índice de vazios, e consequentemente do diagrama $e \ x \ \sigma'_v \ (log)$, é imperativo que se tenha conhecimento da densidade relativa dos grãos (G). Na impossibilidade da sua obtenção imediata, uma alternativa é o traçado da curva $\varepsilon_v \ x \ \sigma'_v \ (log)$, exibida na figura 2.8.

Figura 2.8 – Definição de parâmetros fundamentais a partir da curva alternativa $\varepsilon_v x \sigma'_v (log)$

Esse tipo de diagrama também é apropriado para a comparação entre curvas de compressão distintas, pois é plotado em termos de valores relativos (ε_v) ao invés de valores absolutos (e). Novos parâmetros de compressibilidade podem ser definidos, de maneira similar aos da curva $e \propto \sigma'_v$ (log), havendo correlação entre eles:

vi) razão de compressão (CR), definida no domínio de compressão virgem:

$$CR = \frac{\Delta \varepsilon_{\nu}}{\Delta \log \sigma_{\nu}'} = \frac{C_C}{1 + e_0}$$
(2.20)

vii) razão de recompressão (RR), definida no domínio de recompressão:

$$RR = \frac{\Delta \varepsilon_v}{\Delta \log \sigma'_v} = \frac{C_r}{1 + e_0}$$
(2.21)

viii) razão de descompressão (*SR*), definida no domínio de descarregamento:

$$SR = \frac{\Delta \varepsilon_{\nu}}{\Delta \log \sigma_{\nu}'} = \frac{C_S}{1 + e_0}$$
(2.22)

Nas expressões acima, e_0 corresponde ao índice de vazios inicial do corpo de prova. Para fins de comparação, o traçado de curvas normalizadas do tipo $e'_{e_0} x \sigma'_v (log)$ também é uma possibilidade.

Outro parâmetro essencial que pode ser obtido via ensaio de compressão edométrica, e cujo significado já foi debatido anteriormente, é o coeficiente de adensamento vertical (c_v) . Sua definição é oriunda da teoria do adensamento de Terzaghi e Frölich (1936), mas é um parâmetro intrínseco à curva fundamental *leitura extensômetro (L) x tempo (t)*. A partir desta curva, existem dois métodos disponíveis para obtê-lo¹⁵:

a) método de Casagrande: utilizando-se o tempo em escala logarítmica, o que realça o trecho de adensamento primário, c_v é determinado por meio do tempo correspondente a 50 % do recalque, sabendo-se que para tal é necessária a determinação do tempo associado a 100 % do mesmo;

b) método de Taylor: utilizando-se as abscissas em termos da raiz quadrada do tempo, o que realça o trecho inicial parabólico da curva, c_v é determinado por meio do tempo correspondente a 90% do recalque.

¹⁵ Para ver os procedimentos detalhados de cálculo de c_v , consultar Taylor (1948, p. 238-242).
2.2.3.2 Características esperadas da curva $e \ x \ \sigma'_{v} \ (log)$

Algumas características típicas podem ser apontadas, segundo Ladd (1973, p. 18-19), na curva de compressão edométrica de uma argila de plasticidade e sensibilidade moderadas. Vale ressaltar, contudo, que as argilas moles holocênicas da costa brasileira possuem, em geral, plasticidade muito superior às europeias e norte-americanas, de modo que o comportamento descrito pelo referido autor nem sempre mostra-se adequado ao contexto brasileiro. Essas características, algumas das quais exibidas na figura 2.9, são as seguintes:

a) o índice de compressão (C_C) é geralmente constante para tensões verticais efetivas que excedam em 5 a 10 kPa a tensão de sobreadensamento (equivale a dizer que o trecho virgem é retilíneo nesta faixa);

b) o formato de um ciclo de descarregamento-recarregamento que parte de um ponto sobre o trecho de compressão virgem e retorna ao domínio da compressão virgem independe do valor da tensão vertical efetiva máxima atingida no carregamento virgem, dependendo exclusivamente do *OCR* gerado no descarregamento;

c) o índice de recompressão (C_r) aumenta com o aumento da amplitude do ciclo de descarregamento-recarregamento que parte de um ponto sobre o trecho de compressão virgem e retorna ao domínio de compressão virgem (quanto maior for o *OCR* gerado no ciclo de descarregamento-recarregamento maior será o valor de C_r);

d) a declividade da curva de descarregamento (C_S) aumenta com o aumento do *OCR* gerado com o descarregamento. Entretanto, C_s é independente da posição do ponto sobre o trecho virgem de onde parte o descarregamento;

e) em um ciclo de descarregamento-recarregamento que parte de um ponto sobre o trecho de compressão virgem e para o qual tenha sido gerado um OCR = 5, os valores de C_r e C_s são aproximadamente iguais;

f) para um descarregamento que parte de um ponto sobre o trecho de compressão virgem o valor de C_S varia de $\frac{1}{5}a \frac{1}{10}$ de C_C .

Figura 2.9 – Características típicas presentes no diagrama $e \ x \ \sigma'_{v} \ (log)$ de uma argila de plasticidade e sensibilidade moderadas (fonte: adaptada de Ladd, 1973)

2.2.3.3 Amolgamento

O amolgamento é a destruição parcial ou total da estrutura do solo. Entende-se estrutura, conforme Mitchell e Soga (2005, p. 110) e Collins e McGown (1974), não apenas como a configuração geométrica dos grãos e dos vazios do solo – nesse caso o termo apropriado seria *fabric* –, mas como a combinação entre arranjo espacial, composição mineralógica e forças interparticulares. No entanto, quando a estrutura é destruída pelo processo de amolgamento, a mineralogia permanece incólume, mostrando que esta concepção teórica, que é a mais aceita pela comunidade científica, ainda necessita de uma formalização mais precisa.

No caso das argilas moles saturadas, o amolgamento é um processo não-drenado, portanto, sem variação de volume. A amostragem impõe distorções que, a depender da tecnologia utilizada, podem ser minimizadas, mas jamais eliminadas, sendo inerentes ao processo. São três as formas de distorção (LADD; DEGROOT, 2003, p. 6-10):

a) distorção por extensão em função do alívio da tensão vertical total pela abertura do furo para amostragem;

b) distorção dos elementos do solo amostrado junto à parede interna do amostrador durante a sua cravação;

c) distorção dos elementos do solo junto à parede interna do amostrador durante a extração da amostra.

No Brasil, apesar da existência da NBR 9820 (ABNT, 1997), que regulamenta o tema, de modo geral a falta de rigor na amostragem produz resultados finais de qualidade duvidosa. Somam-se a isso problemas no acondicionamento, manuseio e transporte do material amostrado, e não raro a imperícia de laboratoristas na moldagem do corpo de prova.

Ladd e DeGroot (2003, p. 6-10) propõem uma série de medidas com vistas a mitigar os problemas de amolgamento. Uma que é plena e facilmente factível diz respeito aos procedimentos de moldagem do corpo de prova em laboratório: cortar o tubo amostrador em segmentos e, no lugar de extrudar o solo, removê-lo com o auxílio de um fio de aço.

De acordo com Ladd (1973, p. 22-23), o amolgamento traz consequências negativas aos resultados de ensaios de adensamento edométrico. Sobre a curva $e \ x \ \sigma'_v \ (log)$ podem ser observados os seguintes efeitos, conforme figura 2.10:

a) para a mesma tensão vertical efetiva o índice de vazios é tanto menor quanto menor for a qualidade da amostra;

b) a região que demarca a tensão de sobreadensamento se torna menos acentuada, tornando mais difícil a sua determinação;

c) redução do valor da tensão de sobreadensamento;

d) aumento da compressibilidade no trecho sobreadensado;

e) diminuição da compressibilidade no trecho normalmente adensado.

Há ainda um sexto efeito, levantado por Martins e Lacerda (1994, p. 159). Segundo eles, o amolgamento também causa a eliminação da concavidade da curva no trecho virgem, dando origem ao que se costuma chamar na Mecânica dos Solos de "reta virgem". Assim, os autores respondem de maneira positiva a uma questão muito pertinente: "foram as primeiras 'retas virgens' da Mecânica dos Solos 'vítimas' de amolgamento provocado por amostragens rudimentares?".

Figura 2.10 – Efeitos do amolgamento sobre a curva de compressão edométrica (fonte: Martins e Lacerda, 1994 adaptada de Coutinho, 1976)

Uma maneira objetiva de avaliar a qualidade da amostra foi primeiramente proposta por Lunne *et al.* (1997), e faz uso da razão $\Delta e/e_0$, em que Δe é a diferença entre o índice de vazios inicial do corpo de prova (e_0) e o índice de vazios associado à tensão vertical efetiva atuante *in situ*. Partindo dessa razão, a qualidade da amostra pode ser classificada em diferentes categorias, conforme o quadro 2.1.

Coutinho (2007) modificou a classificação de Lunne *et al.* (1997) aumentando a sua tolerância (quadro 2.2). Andrade (2009), por sua vez, observou que os limites entre as categorias de ambas as classificações não são coincidentes. Ele resolveu o impasse adicionando duas novas categorias e unificando as duas propostas (quadro 2.3).

OCD	$\Delta e/e_0$					
ULK	Muito boa a excelente	Boa a regular	Pobre	Muito pobre		
1-2	< 0,04	0,04 - 0,07	0,07 - 0,14	> 0,14		
2-4	< 0,03	0,03 - 0,05	0,05 - 0,10	> 0,10		

Quadro 2.1 – Proposta de Lunne *et al.* (1997) para a classificação da qualidade da amostra (fonte: adaptado de Lunne *et al.*, 1997)

Quadro 2.2 – Proposta de Coutinho (2007) para a classificação da qualidade da amostra (fonte: adaptado de Coutinho, 2007)

OCR	$\Delta e/e_0$					
	Muito boa a excelente	Boa a regular	Pobre	Muito pobre		
1-2,5	< 0,05	0,05 - 0,08	0,08 - 0,14	> 0,14		

Quadro 2.3 – Proposta de Andrade (2009) para a classificação da qualidade da amostra (fonte: adaptado de Andrade, 2009)

OCR	$\Delta e/e_0$						
	Muito boa a excelente	Muito boa a boa	Boa a regular	Regular a pobre	Pobre	Muito pobre	
1-2,5	< 0,05	0,05 - 0,065	0,065 - 0,08	0,08 - 0,11	0,11-0,14	> 0,14	

2.3 ADENSAMENTO SECUNDÁRIO

2.3.1 Introdução

Buisman (1936) foi um dos primeiros autores a chamar atenção ao fenômeno do adensamento secundário, enfatizando que os efeitos do mesmo não podem ser negligenciados tanto do ponto de vista teórico quanto prático. Mas o que vem a ser o adensamento secundário?

De acordo com Ladd (1973, p. 2), pode ser definido como o processo em que um elemento de solo apresenta redução de volume mesmo após a dissipação da quase totalidade do excesso de poropressão gerado por um carregamento. Em outras palavras, a concepção tradicional é de que o adensamento secundário é o recalque que ocorre ao longo do tempo sob um estado de tensão vertical efetiva constante.

Aceitando, por ora, a definição de Ladd (1973), o adensamento secundário pode ser melhor visualizado ao comparar-se a relação $\overline{U} \times T$ (*log*) predita pela teoria clássica do

adensamento com a experimental, obtida a partir de ensaios de compressão edométrica (figura 2.11). O que se verifica é que a curva experimental se assemelha geometricamente à teórica até a vizinhança do tempo de "final" de adensamento primário, para depois mergulhar e gerar a chamada "cauda do secundário". Ou seja, no decorrer do tempo a divergência entre as duas curvas aumenta, evidenciando a compressão secundária. Isso ocorre porque a teoria clássica não comporta o adensamento secundário; para ela, as deformações que ocorrem são fruto apenas do intercâmbio que se estabelece *pari passu* entre tensão efetiva e excesso de poropressão gerado pelo carregamento.

Figura 2.11 – Comparação entre as curvas experimental e teórica da relação $\overline{U} \times T$

Visto sob esse prisma, fica claro que o adensamento secundário viola o princípio das tensões efetivas, uma vez que este não tolera deformação volumétrica e/ou distorção sob um estado de tensões efetivas constante. De alguma forma o índice de vazios, reflexo parcial da estrutura, e o estado de tensões efetivas atuante, são dependentes do tempo. Assim, alguns modelos e concepções que tentam descrever o fenômeno do adensamento secundário qualitativamente e quantitativamente, têm buscado superar essa contradição, em alguns casos propondo até mesmo a modificação do princípio das tensões efetivas; outros, contudo, preferem ignorá-la.

O que se faz nesta seção é discutir o adensamento secundário, que em um primeiro momento será tratado do ponto de vista dos mecanismos que o controlam. Em seguida, serão enfocados os principais fatores que o influenciam e, por fim, receberá destaque a abordagem desenvolvida pelo Grupo de Reologia dos Solos da COPPE/UFRJ, à luz da qual serão interpretados os resultados deste trabalho.

2.3.2 Mecanismos propostos para o adensamento secundário

Existem quatro grupos de mecanismos teorizados para explicar o adensamento secundário das argilas. Além das três classes sugeridas por Barden (1969, p. 2), incluise a de Ladd (1973, p. 58-59), que surgiu em momento posterior. A validade de um mecanismo pode ser avaliada de acordo com a resposta que fornece quando confrontado com evidências experimentais. Em alguns casos, contudo, modelos reológicos similares podem ser gerados por mecanismos distintos, de sorte que uma análise microscópica torna-se imprescindível para determinar qual seria o mais realista.

2.3.2.1 Viscosidade estrutural

Essa corrente foi a primeira a propor para o adensamento secundário um mecanismo distinto do primário. Seus fundamentos estão bem delineados nos trabalhos de Taylor e Merchant (1940), Terzaghi (1941) e Taylor (1942; 1948). A abordagem mais recente desenvolvida pelo Grupo de Reologia dos Solos da COPPE/UFRJ se ancora em grande medida nessa linha de pensamento.

Para compreender por que o adensamento secundário estaria associado à viscosidade estrutural, o modelo idealizado por Terzaghi (1941), exibido na figura 2.12, é basilar. Segundo ele, cada grão de solo é envolvido por uma camada de água adsorvida. Exatamente na interface entre os dois elementos, as propriedades da água adsorvida são semelhantes às da água em estado sólido. À medida que há um afastamento da superfície do grão, a viscosidade e a densidade da água adsorvida diminuem, e a partir de certa distância "d" suas propriedades passam a ser similares às da água em estado líquido. Desse modo, o autor identificou três condições possíveis de existência da água intersticial: água adsorvida sólida, água adsorvida líquida (muito viscosa) e água livre.

Figura 2.12 – Idealização de Terzaghi (1941) para os grãos de solo e sua relação com a água intersticial (fonte: Martins, 1992, p. 35 adaptada de Terzaghi, 1941, p. 54)

Essa distância "d", a partir da qual a água adsorvida muito viscosa passa a se comportar como água livre, depende das propriedades físico-químicas das partículas de solo e da água. A título de exemplo, quando se acrescenta sódio a um solo composto por bentonita, seu índice de plasticidade (*IP*) aumenta e seu filme viscoso torna-se muito mais espesso. Já nas areias, em contraposição ao que se verifica nos solos argilosos, o filme viscoso, se houver, deve ser ínfimo.

Desse modelo, depreende-se que existem dois tipos de contato entre as partículas de solo: i) sólido, que é aquele em que o contato entre dois grãos se materializa via água adsorvida sólida; ii) viscoso, que é aquele em que o contato se estabelece via água adsorvida muito viscosa. Segundo Terzaghi (1941), ambos os tipos de contato são capazes de transmitir tensão efetiva, sendo este o nó górdio que sustenta as teorias desenvolvidas a partir desta concepção e que buscam explicar o adensamento secundário.

Sob essa ótica, tendo em vista que parte da tensão efetiva atuante é sustentada pelo filme viscoso, deformações volumétricas devem ocorrer segundo uma certa velocidade variável e decrescente, até que as partículas de solo estabeleçam contatos somente do tipo sólido. Um dos fatores que influenciam esse movimento é, indubitavelmente, a quantidade de água adsorvida muito viscosa existente na massa de solo.

Enquanto o adensamento primário se processa, parte da tensão é suportada pela água intersticial livre, e parte pelos dois tipos de contato existentes, sólido e viscoso. Nesse

caso, o ganho de tensão efetiva se dá exclusivamente às expensas do excesso de poropressão. Quando este último torna-se praticamente nulo, passaria então a se manifestar de forma praticamente exclusiva o adensamento secundário. Conforme o movimento intergranular de origem viscosa se processa, o número de contatos viscosos diminui, de sorte que a tensão efetiva sólida cresce às expensas da tensão efetiva viscosa e uma redução de volume é observada. Esse processo perdurará, em teoria, até que os únicos contatos existentes na matriz de solo sejam do tipo sólido.

Cabe destacar que, de acordo com esta linha de pensamento, esse mecanismo não ocorre somente após o fim do adensamento primário, mas ao longo de todo o processo de adensamento. Além disso, alguns contatos do tipo sólido irão se estabelecer em um tempo muito inferior que outros, visto que os grãos não são equidistantes uns dos outros e estão submetidos a forças intergranulares diferentes.

O mecanismo proposto por Terzaghi (1941) também é considerado adequado por Taylor (1948, p. 219), embora este utilize uma nomenclatura distinta. O fenômeno associado ao adensamento primário Taylor (1948) denomina de "retardo hidrodinâmico", e o fenômeno associado ao adensamento secundário de "retardo plástico".

Taylor (1948, p. 243-247) quebrou paradigmas ao perceber que a curva de compressão edométrica poderia ser plotada em termos de pontos de igual velocidade de deformação volumétrica específica ($\dot{\varepsilon}_v$), pois deste parâmetro e do índice de vazios dependeria a tensão efetiva¹⁶. Esta concepção diferente frontalmente daquela de Terzaghi e Frölich (1936), a qual considera a relação entre tensão efetiva e índice de vazios unívoca, conforme a nona hipótese da teoria clássica do adensamento unidimensional.

Taylor (1948) toma o trecho \overline{AD} (figura 2.13) de um recorte da "reta virgem" convencional, plotada a partir dos índices de vazios obtidos decorridas 24 h da aplicação do carregamento, e afirma que se um incremento de carga com tempo levemente superior a 24 h fosse utilizado, então os índices de vazios obtidos seriam ligeiramente menores, de sorte que uma "reta virgem" ligeiramente transladada para baixo poderia ser traçada, mas essencialmente paralela à primeira. Contudo, se um tempo de adensamento significativamente maior fosse permitido em laboratório, por exemplo dez

¹⁶ A rigor, Taylor não trabalhou com $\dot{\varepsilon}_v = \frac{d\varepsilon}{dt}$, mas com a derivada do índice de vazios em relação ao tempo, a saber, $\dot{e} = \frac{de}{dt}$.

anos, então a reta obtida seria aquela correspondente ao segmento \overline{BE} . E se ainda mais tempo fosse permitido, provavelmente pouquíssima deformação volumétrica adicional seria observada. Assim, Taylor (1948) se permite chamar este último segmento de "curva edométrica na condição estática", pois a velocidade de deformação volumétrica específica seria praticamente nula.

Nos estágios iniciais do adensamento primário, em que $\dot{\varepsilon}_v$ é mais elevada, a tensão efetiva seria dada pelo ponto *C*. Taylor (1948) argumenta que poderíamos ter um ponto *D* com mesmo índice de vazios, mas sob tensão efetiva e velocidade de deformação volumétrica específica menores que no ponto *C*. E levando este raciocínio ao extremo, poderíamos ter um ponto *E* com mesmo índice de vazios, mas $\dot{\varepsilon}_v$ aproximadamente nula e tensão efetiva ainda menor.

Figura 2.13 – Curvas "estática" e "plástica" na concepção de Taylor (fonte: adaptada de Taylor, 1948, p. 245)

O que Taylor (1948) quer enfatizar é que a tensão efetiva pode ser dividida em duas parcelas: a parcela "estática", onde a transmissão de tensões se dá via interface sólida, e a parcela "plástica", onde a transmissão de tensões se dá via interface viscosa. À medida que $\dot{\varepsilon}_v$ decresce, o mesmo sucede a esta última parcela, até que ambas atinjam valor nulo. A "parcela plástica" também pode ser encarada como a tensão necessária para superar a resistência plástica à compressão.

Assim, segundo Taylor (1948), a parcela estática é função apenas do índice de vazios, e a parcela plástica é função principalmente de $\dot{\varepsilon}_{v}$. Com a divisão da tensão efetiva em duas parcelas, a primeira parte do princípio das tensões efetivas, no ensaio edométrico, foi assim reescrita por tal autor:

$$\sigma = \sigma'_s(e) + \sigma'_p(\dot{\varepsilon}_v) + u \tag{2.23}$$

onde σ'_s representa a parcela da tensão efetiva estática e σ'_p representa a parcela da tensão efetiva plástica. Hodiernamente σ'_s poderia ser chamada de parcela de tensão efetiva sólida, e σ'_p de parcela de tensão efetiva viscosa. Esta equação foi fundamental para que, posteriormente, Martins (1992) desenvolvesse o princípio das tensões efetivas expandido e o Grupo de Reologia dos Solos da COPPE/UFRJ avançasse sobre o entendimento deste tema.

Também é sabido (Leroueil *et al.*, 1985) que o paralelismo entre as curvas plástica de 24 h e estática, sugerido por Taylor (1948), não corresponde exatamente à realidade, já que a curva de 24 h não deriva necessariamente de pontos com igual $\dot{\varepsilon}_v$. Entretanto, é uma aproximação bastante razoável, além de outrora ter sido um avanço importante.

2.3.2.2 Teoria dos processos cinéticos

Esse mecanismo considera que o adensamento secundário não depende de propriedades viscosas da água adsorvida, mas da quebra sequencial de ligações da estrutura do solo, que é modelada tal qual um "castelo de cartas". A premissa é de que qualquer deformação do solo envolve movimentações de partículas em microescala e se processa segundo uma velocidade que depende da estrutura e do estado de tensões.

Esse conceito é desenvolvido por Mitchell (1964) com base na teoria dos processos cinéticos de Glasstone¹⁷ *et al.* (1941), a qual postula que uma energia de ativação é necessária para a retirada de uma partícula da sua posição de equilíbrio. Essa energia de ativação requerida pode ser fornecida tanto por uma fonte externa como pela energia térmica do material. A velocidade de deformação seria controlada pela frequência com que as partículas acumulam energia suficiente para movimentaram-se entre sucessivas posições de equilíbrio.

¹⁷ GLASSTONE, S.; LAIDLER, K.; EYRING, H. **The theory of rate processes**. McGraw-Hill Book Co.: New York, N. Y. 1941.

Kavazanjian e Mitchell (1984) aplicaram esse conceito em argilas para tentar explicar como se comporta o coeficiente de empuxo (K_0) durante o adensamento secundário. Vale lembrar que este ainda é um tópico que precisa ser elucidado, haja vista as divergências existentes. Há pouco mais de três décadas, Schmertmann (1983, p. 120) propôs a seguinte questão: "o coeficiente de empuxo em compressão unidimensional de uma argila normalmente adensada, tal qual no ensaio edométrico, aumenta, diminui ou permanece constante durante o adensamento secundário?" Dos 32 geotécnicos que responderam a questão, aproximadamente 50% disseram que aumenta, 28% que permanece constante, 12,5% que diminui e outros 9,5% não souberam opinar. Schmertmann (1983) conclui dizendo que em face dos avanços em modelos constitutivos e outros campos da geotecnia, talvez devêssemos olhar com mais atenção ao estado-da-arte e a questões fundamentais de comportamento dos solos.

Kavazanjian e Mitchell (1984), utilizando principalmente evidências experimentais de Lacerda¹⁸ (1976) e a equação de Singh e Mitchell¹⁹ (1968), afirmaram que o estado de adensamento hidrostático²⁰ ($K_0 = 1$) representa o mínimo estado de energia possível para o solo, devido à ausência de tensão desviadora global. Enquanto houver tensão desviadora, as ligações entre as partículas serão desfeitas paulatinamente e o solo tenderá a distorcer, por conta do desequilíbrio de energia gerado. Ao longo do tempo, então, deverá ocorrer uma redução do desequilíbrio de energia e da tensão desviadora global. De acordo com essa linha de raciocínio não deveria haver adensamento secundário sob estado hidrostático de tensões, e no entanto ele ocorre.

Do ponto de vista do ensaio edométrico, como a tensão vertical efetiva (σ'_v) é constante durante o adensamento secundário, quem deve variar é a tensão horizontal efetiva (σ'_h), para que haja uma redução na tensão desviadora global. Dessa forma, o coeficiente de empuxo no repouso de argilas normalmente adensadas e levemente sobreadensadas ($K_0 < 1$) deve crescer ao longo do tempo para atingir um estado hidrostático de tensões

¹⁸ LACERDA, W. A. **Stress-relaxation and creep effects on soil deformation**. 1976. PhD Dissertation, University of Berkeley, California, USA, 1976.

¹⁹ SINGH, A.; MITCHELL, J. K. General stress-strain-time function for soils. Journal of the Soil Mechanics and Foundations Division, vol. 94, n. 1, p. 21-46, 1968.

²⁰ No texto original os autores utilizam de maneira imprópria, assim como a maioria esmagadora da comunidade científica, o termo "adensamento isotrópico". Vale lembrar que isotropia é uma qualificação dada aos materiais que mantêm, independentemente da direção considerada, as mesmas características. O termo "adensamento hidrostático" é mais adequado e será utilizado doravante.

 $(K_0 = 1)$. De maneira análoga, o coeficiente de empuxo no repouso de argilas sobreadensadas $(K_0 > 1)$ deve diminuir com o tempo para atingir tal estado.

Lacerda e Martins (1985) complementam a argumentação acima dizendo que, de um ponto de vista mecânico, as ligações entre partículas não são capazes de sustentar forças cisalhantes por longos períodos de tempo. Como consequência, as tensões cisalhantes tendem a desaparecer, *i.e.*, a tensão desviadora ($\sigma'_v - \sigma'_h$) tende a aproximar-se de zero, o que também pode ser encarado como o fenômeno de relaxação de tensões. Portanto, seria razoável concluir que o mesmo cesse tão logo K_0 atinja a unidade. Os autores fazem um adendo e dizem que se a tensão horizontal efetiva, e *ipso facto* K_0 , decrescessem ao longo do tempo, isso seria um absurdo, pois não poderia haver um afastamento da condição de equilíbrio ao mesmo tempo em que o índice de vazios do solo está reduzindo. Por fim, eles lembram que como o fenômeno está intimamente ligado às tensões cisalhantes, deveria também se manifestar, ainda que em menor intensidade, no adensamento primário.

Seguindo essa linha, mas indo além, Martins e Lacerda (1985) desenvolvem uma teoria para o adensamento unidimensional que considera o adensamento secundário. Eles partem da hipótese de que há relaxação da tensão desviadora com o tempo, sendo que a sua taxa é inversamente proporcional ao seu valor instantâneo. Assim, num tempo infinito, tanto a relaxação de tensões como as deformações volumétricas cessariam. Eles ainda acrescentam um terceiro eixo (K_0) à figura idealizada por Bjerrum²¹ (1972) para ilustrar o fenômeno do adensamento secundário (figura 2.14).

Se esse mecanismo proposto para o adensamento secundário realmente for válido, então o princípio das tensões efetivas não é violado. Como há um aumento da tensão horizontal efetiva durante o processo de adensamento secundário, então a tensão efetiva octaédrica, dada por $\sigma'_{oct} = \frac{2\sigma'_h + \sigma'_v}{3}$, também aumenta e o estado de tensões efetiva se altera, estando de acordo com a deformação volumétrica, a distorção e o ganho de resistência ao cisalhamento observados. Por outro lado, o mecanismo não prevê o adensamento secundário sob condições hidrostáticas, embora ele ocorra. Este é, portanto, o seu Calcanhar de Aquiles.

²¹ Bjerrum, L. **Embankments on soft ground**. In: ASCE Spec. Conference on Performance of Earth and Earth Supported Structures. **Anais**...West Laffayette, Purdue University: 1972, v. 2, p. 1-54.

Figura 2.14 – Espaço tridimensional que relaciona o índice de vazios (*e*), a tensão vertical efetiva (σ'_v) e o coeficiente de empuxo no repouso (K_0) com o tempo (fonte: Martins e Lacerda, 1985, p. 568)

2.3.2.3 Microporos

Esse mecanismo considera a existência de dois níveis de estrutura e se ampara nos trabalhos de De Jong e Verruijt (1965), Zeevaert (1967) e De Jong (1968). Segundo essa abordagem, a microestrutura de uma argila é formada por pacotes compressíveis (microporos) entrelaçados por um sistema de canais e macroporos.

Neste mecanismo, o primeiro estágio corresponde ao fluxo de água e à dissipação do excesso de poropressão nos macroporos, de maneira semelhante ao adensamento primário tratado pela teoria clássica. Porém, como a tensão efetiva também é gradualmente transferida à microestrutura, à medida que a água presente nesta começa a fluir na direção dos macroporos, ocorre o adensamento secundário.

Os autores ainda afirmam que é impossível estabelecer leis que governem o processo de adensamento da microestrutura, uma vez que as condições de drenagem são desconhecidas. Além disso, dada a morosidade do processo, sugerem que ele será não-linear.

Com o intuito de verificar a validade deste mecanismo, Wang e Xu (2007) realizaram ensaios de adensamento em amostras de caulinita preparadas em laboratório. Estas amostras foram produzidas de tal maneira que formassem tipos de poro e de estrutura distintos. À luz dos resultados destes ensaios, seus autores concluíram, contudo, que o mecanismo de adensamento secundário baseado em microporos não condiz com a realidade.

2.3.2.4 Adensamento primário

Ladd (1973, p. 58) afirma que "não existe razão alguma para acreditar que os mecanismos responsáveis pelo adensamento secundário sejam necessariamente distintos daqueles responsáveis pelo adensamento primário". Como mecanismos de deformação volumétrica dos solos saturados, ele cita os seguintes:

a) deformações de natureza elástica nas partículas;

b) alterações no espaçamento interparticular via alterações na camada dupla e na película de água adsorvida;

c) alterações na orientação das partículas;

d) quebra de partículas (de acordo com Lee e Seed (1967), importante em solos arenosos sob elevadas tensões efetivas, mas insignificante em solos argilosos).

Segundo Ladd (1973), no adensamento primário há um grande rearranjo e deslizamentos de partículas, e a velocidade com que ele se processa é controlada pela saída de água dos poros. Ainda que o excesso de poropressão remanescente seja ínfimo após o "fim" do adensamento primário, a estrutura do solo continuará se reagrupando na busca de um estado mais estável, com uma taxa de deformação volumétrica que cai à medida que o tempo cresce. Ele sugere, ainda, que esse processo poderia obedecer a uma lei exponencial, mas sem justificá-la. Esse mecanismo também seria capaz de explicar por que a velocidade de adensamento secundário é diretamente proporcional à compressibilidade: quanto mais compressível é o solo, maior é o número de partículas instáveis.

Com o objetivo de desenvolver um modelo que pudesse ser facilmente implementado à prática de engenharia, Ladd (1973) partiu da premissa de que o adensamento secundário se inicia somente após o fim do adensamento primário. O referido autor foi além e

adotou mais uma premissa, a saber, que a relação entre recalque e tempo, em escala logarítmica, é constante. Como justificativa, ele afirmou que esta é uma aproximação muito realista, tendo em vista que a maioria das argilas se comporta assim ao longo de um ou dois ciclos logarítmicos de tempo. Entretanto, essa observação se restringe a ensaios de laboratório, e não de campo.

Essas premissas não são pioneiras e têm como origem os trabalhos de Buisman (1936) e Gray (1936), os primeiros autores a sugerirem uma divisão do fenômeno do adensamento em primário e secundário²². Dessa forma, Ladd (1973) deu ensejo à utilização do coeficiente de adensamento secundário (C_{α}), que pode ser visto como um indicador da velocidade de adensamento secundário. Em termos de índice de vazios ele é assim definido:

$$C_{\alpha e} = -\frac{\Delta e}{\log_{10} \Delta t} \tag{2.24}$$

Definição similar aplica-se ao diagrama semi-logarítmico $\varepsilon_v x t$:

$$C_{\alpha\varepsilon} = -\frac{\Delta\varepsilon_{\nu}}{\log_{10}\Delta t} \tag{2.25}$$

A figura 2.15 ilustra C_{α} graficamente. Além disso, há entre as duas expressões acima uma correlação:

$$C_{\alpha\varepsilon} = -\frac{C_{\alpha e}}{1+e_0} \tag{2.26}$$

²² Buisman (1936) primeiro observou que o diagrama de adensamento (*recalque x tempo*) podia ser bem definido por dois segmentos de reta: o primeiro aproximadamente vertical, sucedido por outro inclinado. Numa tentativa de quantificação, dividiu o fenômeno do adensamento em duas partes: a primeira reta seria o "adensamento direto", hoje conhecido como primário, e a segunda reta corresponderia ao "adensamento secular", hoje conhecido como secundário.

Figura 2.15 – Definição do coeficiente de adensamento secundário (C_{α})

Para simplificar ainda mais a sua abordagem, Ladd (1973) adotou outras quatro premissas, supostamente válidas desde que a razão incremental de carga tenha magnitude tal que cause adensamento primário²³:

a) C_{α} é independente do tempo, *i.e.*, constante durante o tempo de interesse;

b) C_{α} é independente da espessura da camada de solo;

c) C_{α} é independente da razão incremental de carga;

d) C_{α} é independente da tensão de adensamento para argilas normalmente adensadas com índice de compressão (C_{c}) constante.

Essa abordagem está sujeita a várias críticas, pois estabelece o adensamento secundário a partir de uma perspectiva essencialmente pragmática, com relações de causa e efeito que geram algumas antinomias. As três mais patentes são apontadas por Martins²⁴ (2017):

a) como pode o adensamento secundário não ter um final, atingir índice de vazios negativo e a abordagem ignorar tamanha aberração física?

²³ Ladd (1973) provavelmente quis dizer que a razão incremental de carga deve ter magnitude tal que leve o solo ao domínio francamente virgem, *i.e.*, onde o adensamento primário é muito preponderante em relação ao secundário.

²⁴ MARTINS, I. S. M. Algumas considerações sobre o adensamento secundário. Palestra conferida na COPPE/UFRJ. Rio de Janeiro, 2017.

b) tendo em vista que os mecanismos que comandam o adensamento primário e secundário são supostamente idênticos, como pode o adensamento secundário se dar sob tensão vertical efetiva constante se no adensamento primário, segundo a nona hipótese de Terzaghi e Frölich (1936), o índice de vazios é função exclusiva da tensão vertical efetiva?

c) a abordagem não explica por que uma redução na razão incremental de carga e/ou uma alteração na temperatura, aumentam a divergência entre as curvas teórica clássica e experimental.

2.3.3 Fatores que influenciam o adensamento secundário

O adensamento secundário, em termos de magnitude, velocidade de ocorrência e duração, é controlado por diversos fatores. Sobre alguns existe um grau de compreensão maior, ao passo que em relação a outros há grande dissenso. A seguir, serão apresentados e discutidos os fatores de maior relevância para o fenômeno.

2.3.3.1 Tempo

Mesri e Godlewski (1977) afirmam que C_{α} pode crescer, manter-se constante ou decrescer com o tempo. Além disso, postulam que existe uma relação única entre $C_{\alpha} = -\frac{\partial e}{\partial \log t}$ e $C_{C} = -\frac{\partial e}{\partial \log \sigma_{\nu}'}$ que permanece constante e válida para quaisquer tempo, tensão efetiva e índice de vazios durante o adensamento secundário; em outras palavras, $C_{\alpha}/C_{C} = cte$.

Baseados em uma análise empírica, os autores acreditam que os mecanismos que regem os adensamentos primário e secundário são idênticos, tal qual preconizado por Ladd (1973). Mesri e Castro (1987, p. 243) afirmam que, à luz do conceito de C_{α}/C_{c} , "o adensamento secundário está tão bem compreendido quanto qualquer outro fenômeno importante da Mecânica dos Solos".

Martins e Lacerda (1989), no entanto, discordam do postulado de Mesri e Godlewski (1977). Eles afirmam que a relação C_{α}/C_{C} não é constante, e que assim foi predita porque os dados dos autores são derivados de ensaios com período de observação muito limitado, inferior a um ano. Na opinião de Martins e Lacerda (1989), C_{α} deve diminuir paulatinamente ao longo do tempo e tender a zero, *i.e.*, existe um tempo limite, "grande", porém finito, em que as deformações no solo devem cessar. Se assim não o

fosse, então em algum momento o solo poderia atingir índice de vazios nulo ou negativo, o que é um absurdo do ponto de vista físico. Essa crítica é grave e já foi apontada anteriormente quando se discutiu a abordagem de Ladd (1973). Uma vez que Mesri e Godlewski (1977) e Mesri e Castro (1987) seguem essa vertente, a mesma falha naturalmente recai, agora, sobre eles.

Para tornar a argumentação de Martins e Lacerda (1989) ainda mais sólida, Martins²⁵ (1990 apud Andrade, 2009, p. 42-44) apresenta ensaios de compressão edométrica especiais em que os corpos de prova estiveram sob adensamento secundário por um período superior a dois anos. Como previsto, à medida que as deformações nos corpos de prova reduziram, C_{α} tendeu a zero, conforme figura 2.16²⁶.

Figura 2.16 - Observação do comportamento de ensaios de compressão edométrica com razões incrementais de carregamento distintas (fonte: Martins²⁷, 1990 apud Andrade, 2009, p. 43)

2.3.3.2 Índice de compressão

De acordo com Ladd (1973, p. 57), o coeficiente de compressão secundária em termos de deformação específica ($C_{\alpha\varepsilon}$), dentro da faixa normalmente adensada, permanece

²⁵ MARTINS, I. S. M. **Relatório de pesquisa**. Rio de Janeiro: documento não publicado, 1990.

²⁶ A dupla onda observada no diagrama da figura 2.16 é somente um efeito da escala semi-logarítmica. Se plotada em escala aritmética, a mesma curva indica estabilização das deformações a longo prazo (existência de um patamar horizontal).

constante ou diminui levemente se a razão de compressão (*CR*) permanece constante. Para os solos exibindo uma queda acentuada em *CR* de acordo com o aumento de tensão efetiva, então $C_{\alpha\varepsilon}$ também diminui²⁸. Mesri e Godlewski (1977) seguem o mesmo raciocínio. Considerando o postulado que enunciaram no que tange à constância da relação C_{α}/C_{c} , então C_{α} deve ser, *ipso facto*, diretamente proporcional a C_{c} .

2.3.3.3 Razão incremental de carregamento e tempo de atuação

Casagrande (1936) foi um dos primeiros pesquisadores interessados nos possíveis efeitos da razão incremental de carregamento $(\Delta \sigma_v / \sigma'_v)$ e do seu tempo de atuação no ensaio de compressão edométrica. Para a realização de um ensaio, ele recomenda que cada incremento de carga seja igual ao dobro do incremento aplicado no estágio anterior, de modo que a razão incremental seja sempre unitária. Além disso, sugere que os incrementos devam atuar por igual período de tempo. Vale lembrar que esses procedimentos são os mesmos adotados hodiernamente em ensaios edométricos convencionais.

Marsal²⁹ et al. (1950 apud Leonards e Girault, 1961) perceberam que diferenças na razão incremental de carregamento podiam gerar curvas de adensamento ($\varepsilon_v x t$) com padrões distintos, as quais foram chamadas de tipos I, II e III. Leonards e Girault (1961) adotaram essa mesma nomenclatura e investigaram o problema de maneira mais detalhada.

Ao adotarem razões incrementais de carregamento distintas e monitorarem a poropressão (figura 2.17), Leonards e Girault (1961) fizeram algumas observações importantes. Começaram por perceber que quando a relação $\Delta \sigma_v / \sigma'_v$ é unitária, ou então suficientemente grande, a curva experimental se aproxima de maneira muito satisfatória da curva teórica clássica (curva do tipo I). Além disso, o coeficiente de adensamento (c_v) que se obtém via curva $\varepsilon_v x t$ é essencialmente idêntico ao obtido via curva u x t. Porém, quando a razão incremental de carregamento é pequena, nota-se que as curvas dos tipos II e III divergem significativamente da predição teórica clássica. Além disso, a

²⁸ Ver adiante a figura 2.22, na discussão acerca da influência da história de tensões sobre o adensamento secundário.

²⁹ MARSAL, R. J.; SANDOVAL, R.; HIRIART, F. Curvas "deformacion-tiempo" en las arcillas del Valle del Mexico. **Ingeneria Civil**, ano II, n. V, Colegio de Ingenieros Civiles de Mexico, Mexico City, 1950.

figura 2.17 sugere que $\Delta \sigma_v / \sigma'_v$ afeta o adensamento na sua totalidade, *i.e.*, o amálgama do primário com o secundário.

Leonards e Altschaeffl (1964), contudo, demonstram que C_{α} é independente da razão incremental de carregamento e da tensão efetiva final. Na verdade, como se esclarecerá adiante, é o formato da curva $\varepsilon_v x t$ que é afetado por esses fatores. Mesri e Godlewski (1977) compartilham parcialmente dessa opinião. Eles também consideram que C_{α} não é função da relação $\Delta \sigma_v / \sigma'_v$, por outro lado, afirmam que deve ser fortemente dependente da tensão vertical efetiva final, como decorrência do conceito $C_{\alpha}/C_c = cte$, no caso em que C_c decresce com σ'_v .

Figura 2.17 – Efeito de $\Delta \sigma_v / \sigma'_v$ sobre o formato das curvas de adensamento em amostras indeformadas de uma argila da Cidade do México (fonte: Leonards e Girault, 1961)

Dito isso, para que se possa compreender por que os adensamentos primário e secundário são afetados de maneiras distintas pela razão incremental de carregamento, faz-se necessário abordar a tensão de *quasi*-sobreadensamento (σ'_q). Esse termo foi cunhado de maneira pioneira por Leonards e Altschaeffl (1964), após verificarem que o adensamento secundário funciona como um mecanismo que confere um aparente sobreadensamento ao solo sem que este, contudo, jamais tenha sido submetido a uma tensão vertical efetiva superior à corrente. Daí a ideia de "falso sobreadensamento". Bjerrum (1967) identificou o mesmo mecanismo nas argilas norueguesas, mas usou uma nomenclatura diferente, a saber, tensão crítica. Ao fenômeno ele chamou de

"envelhecimento das argilas", ou *aging*, pois reconheceu que o mesmo estava associado ao tempo e ao adensamento secundário.

Trilhando o mesmo caminho de Leonards e Altschaeffl (1964) e Bjerrum (1967), é possível esquematizar a figura 2.18, que parte da premissa de que há paralelismo aproximado entre curvas edométricas com tempos de atuação de carregamento distintos. Tomando a curva denominada de *EOP* (*end of primary*), associada ao final do adensamento primário, à medida que o corpo de prova é mantido sob adensamento secundário, sua deformação, traduzida pela redução de índice de vazios (Δe), cresce com o tempo. Vale lembrar que esse processo se estabelece, segundo Taylor (1948), com $\dot{\varepsilon}_v$ decrescendo paulatinamente.

Bjerrum (1967) afirma que em virtude desse mecanismo o corpo de prova também ganha uma reserva de resistência, uma vez que sua condição se torna cada vez mais estável. Portanto, se esse corpo de prova sofrer um novo carregamento, o seu comportamento dependerá do tempo em que esteve submetido anteriormente à ação do adensamento secundário, já que a sua tensão de *quasi*-sobreadensamento deve variar.

Figura 2.18 – Tensão de *quasi*-sobradensamento (fonte: adaptada de Martins³⁰, 2005)

³⁰ MARTINS, I. S. M. **Algumas considerações sobre o adensamento secundário**. Palestra conferida no Clube de Engenharia do Rio de janeiro. Rio de Janeiro, 2005.

Para além disso, ao se analisar a figura 2.19, demonstra-se que o formato da curva dependerá também da proporção entre as magnitudes do incremento de carga ($\Delta \sigma_v$) e do trecho *quasi*-sobreadensado ($\sigma'_q - \sigma'_v$). Quando o corpo de prova é carregado com uma relação baixa, por exemplo 33%, o mecanismo de adensamento primário cessa rapidamente, de modo que o adensamento secundário ganha maior importância relativa e o formato da curva de adensamento se afasta do modelo predito pela teoria clássica de adensamento. Por outro lado, quando essa relação é alta, por exemplo 100%, o adensamento primário passa a se tornar preponderante sobre o secundário, fazendo com que a teoria de adensamento clássica seja válida.

Portanto, é do balanço entre a razão incremental de carregamento e o tempo de atuação do adensamento secundário no estágio anterior que se estabelecerá o formato da curva – considerando a temperatura constante. A partir da relação $\frac{\Delta \sigma_v}{\sigma'_q - \sigma'_v}$ percebe-se com clareza a influência da tensão de *quasi*-sobreadensamento e, *ipso facto*, do tempo e do acréscimo de carga sobre o desenvolvimento dos mecanismos primário e secundário de adensamento. Embora a razão incremental de carregamento esteja implícita nessa relação, também é possível observar seu efeito sobre as curvas de adensamento de maneira isolada, conforme a figura 2.20.

Figura 2.19 – Influência da relação $\frac{\Delta \sigma_v}{\sigma'_q - \sigma'_v}$ no formato da curva de adensamento $\varepsilon_v x t$ (fonte: adaptada de Bjerrum, 1967, p. 97)

Figura 2.20 – Influência de $\Delta\sigma/\sigma'_v$ no formato da curva de adensamento $\varepsilon_v x t$ (fonte: adaptada de Martins³¹, 2005)

2.3.3.4 História de tensões

Ladd (1973) identificou um padrão de comportamento do coeficiente de adensamento secundário em relação à história de tensões. A figura 2.22 apresenta um apanhado feito por Martins (1983) em que, além da compilação de Ladd (1973), também estão presentes três argilas orgânicas brasileiras e um solo grego.

Ladd (1973, p. 57) percebeu que C_{α} é muito pequeno na faixa de tensões menor que a metade da tensão de sobreadensamento. Entretanto, como pontuou Martins (1983, p. 169), esse padrão não é tão pronunciado no caso dos solos brasileiros. Da metade de σ'_{vm} doravante, todos os solos passam a apresentar um rápido crescimento no valor de C_{α} , atingindo o seu pico em cerca de 1,5 a 3 vezes o valor de σ'_{vm} . Exceção é feita ao solo grego, que alcança o seu máximo valor de C_{α} em uma tensão cerca de 5 vezes superior a σ'_{vm} .

A partir dos dois primeiros solos do quadro apresentado na figura 2.22, Ladd (1973) afirmou que C_{α} , dentro da faixa normalmente adensada, permanece constante ou diminui levemente se a razão de compressão (*CR*) permanece constante. Por outro lado,

³¹ MARTINS, I. S. M. **Algumas considerações sobre o adensamento secundário**. Palestra conferida no Clube de Engenharia do Rio de janeiro. Rio de Janeiro, 2005.

 C_{α} apresenta maior redução nos solos em que *CR* diminui de maneira pronunciada à medida que cresce a tensão vertical efetiva.

A discussão travada nos parágrafos acima também se aplica à figura 2.21, que conta com dados oriundos da argila de Sarapuí em duas profundidades distintas, compilados por Feijó (1991).

Figura 2.21 – Influência da história de tensões sobre C_{α} – compilação "a" (fonte: Feijó, 1991, p. 48)

Figura 2.22 – Influência da história de tensões sobre C_{α} – compilação "b" (fonte: Martins, 1983, p. 170)

2.3.3.5 Sobrecarga temporária

O emprego de sobrecarga temporária é uma técnica muito utilizada na construção de aterros convencionais sobre solos moles. Seus dois objetivos principais são acelerar³² a ocorrência do recalque primário e compensar o recalque secundário, de modo a minimizar os recalques em longo prazo, *i.e.*, após a construção da obra (ALMEIDA; MARQUES, 2014, p. 120).

Johnson (1970) realizou ensaios edométricos em que, sob o mesmo estágio de carregamento, procedeu à remoção de diferentes parcelas de sobrecarga dos corpos de prova, em um tempo superior (t_{rc}) ao fim do adensamento primário (t_p) . Tal autor percebeu o surgimento de dois efeitos: em primeiro lugar, uma eventual expansão e/ou nenhuma deformação observadas por algum tempo após a remoção de parte da sobrecarga, e em segundo lugar, uma diminuição da velocidade na retomada do adensamento secundário.

Johnson (1970) também notou que a magnitude da sobrecarga removida exercia influência nos resultados. Concluiu que quanto maior o seu valor, maior o tempo decorrido para o ressurgimento de compressão secundária, e que, por outro lado, o coeficiente de adensamento secundário é inversamente proporcional à magnitude da sobrecarga removida. Os resultados de Johnson (1970) estão esquematizados na figura 2.23, embora a fase de expansão não tenha sido representada.

Outros estudos importantes sobre o tema são os de Vieira (1988) e Feijó (1991), que demonstraram que a expansão eventualmente observada após a remoção da sobrecarga, como afirmou Johnson (1970), é na verdade dependente do *OCR* gerado pelo descarregamento. A esse respeito, se discorrerá adiante quando for abordada a linha de trabalho desenvolvida pelo Grupo de Reologia dos Solos da COPPE/UFRJ.

 $^{^{32}}$ A rigor, o termo "acelerar" não é o mais apropriado, pois o emprego de sobrecarga temporária, em contraposição ao que se verifica com o uso de drenos verticais, não altera a distância de drenagem, tampouco aumenta o c_v do material, parâmetro que controla a velocidade do processo de adensamento. Em verdade, a técnica de sobrecarga temporária é um artifício que induz um recalque final superior em comparação àquele oriundo apenas da sobrecarga permanente, fazendo com que o grau de adensamento desejável decorrente desta última seja atingido em tempo inferior.

Figura 2.23 – Influência de sobrecarga temporária no adensamento secundário (fonte: Martins, 1983, p. 172 adaptada de Johnson, 1970)

2.3.3.6 Amolgamento

Os efeitos do amolgamento, bastante nítidos quando expostos sobre a curva de compressão edométrica, são bem conhecidos e já foram mencionados na seção 2.2. Além disso, tendo em mente o que se discutiu até aqui sobre a influência de C_c no comportamento de C_{α} , é possível afirmar que o amolgamento se manifesta de duas formas distintas sobre o adensamento secundário:

a) como no trecho de recompressão o amolgamento causa um aumento na compressibilidade, então C_{α} deve aumentar;

b) como no trecho de compressão virgem, por outro lado, o amolgamento causa uma redução na compressibilidade, então C_{α} deve decrescer.

Ladd (1973, p. 63), aparentemente, foi o primeiro a perceber esses efeitos. Ademais, ele também afirmou que amostras reconstituídas apresentam menor valor de C_{α} que amostras de solos distintos indeformadas com a mesma compressibilidade. Possivelmente isso se deve ao fato de que, na condição amolgada, o solo encontra-se mais próximo da curva de final de secundário – objeto que será definido adiante.

2.3.3.7 Altura de drenagem

Um importante estudo, acerca da influência da espessura da camada que adensa, foi efetuado por Berre e Iversen (1972). Os autores realizaram ensaios edométricos em uma argila que exibia adensamento secundário muito pronunciado, utilizando corpos de prova com diferentes alturas, *i.e.*, diferentes comprimentos de drenagem.

Concluíram que, tanto mais próximo da fronteira drenante se encontra um elemento de solo, tanto mais rápido se dá o seu adensamento "primário", portanto, por mais tempo ele pode permanecer sob tensão vertical efetiva supostamente constante, o que significa uma maior tensão de *quasi*-sobreadensamento (σ'_q). O esquema da figura 2.18, nos moldes daquilo que acreditava Bjerrum (1967), auxilia nessa análise.

Esses resultados também estão em consonância com o modelo de comportamento desenvolvido por Leroueil *et al.* (1985), que considera a posição da curva de compressão dependente da velocidade de deformação volumétrica específica, e enxerga o adensamento secundário como uma expressão do efeito de $\dot{\varepsilon}_v$. O comprimento de drenagem está umbilicalmente associado às distintas $\dot{\varepsilon}_v$ que se desenvolvem nos corpos de prova. Aqueles com maior comprimento de drenagem possuem menor $\dot{\varepsilon}_v$ e menor tensão de sobreadensamento, estando posicionados, no diagrama *e* x σ'_v , à esquerda dos corpos de prova com menor comprimento de drenagem, ou seja, com maior $\dot{\varepsilon}_v$.

2.3.3.8 Tensões cisalhantes

A literatura existente apresenta divergências quanto ao efeito das tensões cisalhantes sobre o fenômeno do adensamento secundário. Sabe-se que se um solo for adensado sob condições hidrostáticas, onde as tensões cisalhantes atuantes são nulas, apresentará um coeficiente de adensamento secundário similar àquele obtido em condições edométricas, onde as tensões cisalhantes não são desprezíveis (suponha, a título de exemplo, uma argila normalmente adensada com um valor típico de $K_0 = 0.5$). Por outro lado, Ladd (1973, p. 64) aponta, baseado em ensaios triaxiais de *creep*, que quando as tensões cisalhantes atuantes se aproximam da ruptura, C_{α} aumenta nitidamente. Destas afirmações, a conclusão que parece emergir é que as tensões cisalhantes têm participação no adensamento secundário, mas não são o seu principal fator de influência. Ladd e Preston³³ (1965 *apud* Feijó, 1991, p. 52), de maneira mais precisa, afirmam que C_{α} será pouco afetado nos estados de tensão com simetria axial em que as tensões cisalhantes forem inferiores àquelas decorrentes da condição edométrica.

De encontro a essas conclusões, Kavazanjian e Mitchell (1984) e Lacerda e Martins (1985), à luz da teoria dos processos cinéticos, conforme discussão da seção anterior, creditam o fenômeno do adensamento secundário à existência de tensões cisalhantes e ao processo de relaxação de tensões. Segundo eles, o adensamento secundário deve cessar tão logo as tensões cisalhantes se dissipem e a condição $K_0 = 1$ seja atingida. No entanto, como se viu, essa teoria não prevê o adensamento secundário sob condições hidrostáticas e, ainda assim, ele se manifesta.

2.3.3.9 Temperatura

Buisman (1936), Gray (1936) e Casagrande (1936) foram os primeiros autores a atentarem aos efeitos de temperatura sobre o adensamento secundário. Após realizar ensaios edométricos com duração aproximada de 500 dias, Buisman (1936) concluiu que temperaturas mais elevadas causam uma maior inclinação na reta – de maior C_{α} – correspondente ao "adensamento secular", *i.e.*, aceleram o adensamento secundário. Gray (1936) chegou à mesma conclusão ao realizar ensaios com temperaturas na faixa de 10 a 22°C. Casagrande (1936), por fim, sugeriu que a amostra de solo deveria ser mantida a uma temperatura constante e similar àquela medida *in-situ*, pois temperaturas mais elevadas deslocariam a curva de compressão edométrica para a esquerda e causariam uma queda na tensão de sobreadensamento estimada. Todos os autores, contudo, não forneceram maiores informações acerca dos materiais e métodos utilizados em suas pesquisas, e afirmaram, de maneira unânime, que maiores investigações seriam necessárias.

Nas décadas seguintes vieram alguns estudos mais robustos, que não só ratificaram as ideias expostas em meados de 1930, como também ajudaram a elucidar qual o papel da temperatura no comportamento dos solos argilosos em termos de adensamento. Paaswell (1967) associou à redução da viscosidade da água o aumento da velocidade de

³³ LADD, C. C.; PRESTON, W. B. **Research in Earth Physics, Phase Report No. 6**: on the secondary compression of satured clays. Department of Civil Engineering MIT, Research Report R65-69, Soils Publication, n. 181, 1965.

adensamento secundário observado com o aumento de temperatura, diferentemente do mecanismo físico atrelado à viscosidade estrutural. Em termos de adensamento primário, ao realizarem ensaios de adensamento hidrostático, Campanella e Mitchell (1968) reportaram que o aumento de temperatura mantém o índice de compressão (C_c) inalterado e, tal qual predito por Casagrande (1936), desloca a curva de compressão para baixo e/ou esquerda.

Marques, Leroueil e Almeida (2004), por meio da realização de ensaios *CRS* (*constant rate strain*), de compressão edométrica e de compressão triaxial, empregando a argila de St.-Roche-de-l'Achigan e uma ampla faixa de temperaturas (10 a 50°C), demostraram que há redução na tensão de sobreadensamento, na resistência ao cisalhamento e maiores deformações associadas a um aumento de temperatura (figuras 2.24a e 2.24c). A figura 2.24b mostra que quando há aquecimento do solo, ocorre um "salto" da curva edométrica de 10°C para a curva de 50°C, e de maneira recíproca quando há resfriamento.

Além disso, os resultados também se mostraram compatíveis, em termos de velocidade de deformação volumétrica específica, com o preconizado pelo modelo de Leroueil *et al.* (1985). Marques, Leroueil e Almeida (2004) reportam, ainda, que sob altas temperaturas (50°C) e grandes deformações na faixa normalmente adensada, as curvas com $\dot{\varepsilon}_v$ distintas passam a convergir (figura 2.24d), indicando um possível efeito de microestrutura. Em relação ao domínio sobreadensado, não há uma clara dependência com a variação de temperatura.

Resultados similares foram encontrados por Andrade (2009), porém interpretando-os à luz da abordagem do Grupo de Reologia dos Solos da COPPE/UFRJ. Esse trabalho será retomado na próxima seção, que apresenta a evolução das ideias desenvolvidas por tal grupo.

Figura 2.24 – Efeitos da alteração de temperatura sobre o comportamento de uma argila de St.-Roche-del'Achigan, Québec (fonte: adaptada de Marques, Leroueil e Almeida, 2004)

2.3.4 Abordagem do Grupo de Reologia dos Solos da COPPE/UFRJ

Na COPPE, as investigações sobre o mecanismo que rege o fenômeno do adensamento secundário tiveram seu início com a publicação do trabalho de Martins e Lacerda (1985). A partir daí criou-se uma linha de estudos sobre o comportamento reológico das argilas saturadas. Em um primeiro momento, acreditava-se na teoria dos processos cinéticos como mecanismo explicativo do adensamento secundário; posteriormente, por meio de alguns trabalhos de cunho teórico-experimental desenvolvidos pelo referido

grupo, avançou-se na compreensão do problema e o enfoque passou a ser o mecanismo da viscosidade estrutural associada e/ou atribuída à influência da água adsorvida. Na medida em que esta dissertação reivindica essa tradição, parte do percurso, ainda que *en passant*, é exposto a seguir com alguns dos seus resultados mais significativos.

Vieira (1988) e Feijó (1991) realizaram ensaios de compressão edométrica na argila de Sarapuí (RJ) e observaram o seu comportamento após serem gerados descarregamentos com diferentes razões de sobreadensamento. Ambos os trabalhos demonstraram que a expansão eventualmente observada após a remoção da sobrecarga, como afirmou Johnson (1970) sem maior formalismo, é na verdade dependente do *OCR* gerado pelo descarregamento. A figura 2.25a deixa claro, inclusive, que em se tratando de um *OCR* elevado, essa expansão pode ser primária e secundária. A figura 2.25b torna tudo ainda mais didático, ao exibir de maneira conjunta os diferentes comportamentos observados: compressão, expansão ou nenhuma deformação.

Destes ensaios, nota-se que: i) com $1 \le OCR \le 2$, as amostras voltam a sofrer compressão secundária após expansão primária; ii) com $8 \le OCR \le 12$, as amostras sofrem expansão secundária após expansão primária; iii) com $2 \le OCR \le 6$ não ocorre nem compressão e nem expansão secundárias após a expansão primária – ao menos dentro do período de monitoramento.

Os ensaios não contaram com a medida do coeficiente de empuxo no repouso, mas como o ângulo de atrito (φ') da argila de Sarapuí era conhecido, ele pode ser avaliado pela expressão de Mayne e Kulhawy (1982):

$$K_0 = (1 - \sin\varphi') OCR^{\sin\varphi'}$$
(2.27)

A partir do comentário iii $(2 \le OCR \le 6)$, Feijó (1991) esboçou a existência de uma região simétrica nos planos $e x \sigma'_v (log)$ e p'x q' onde o equilíbrio é indiferente, correspondente a $0.8 \le K_0 \le 1.2$, e que está ilustrada na figura 2.26. A linha de $OCR \cong 2$, tendo como referência a linha de fim do primário (*EOP*), representa a linha de fim do adensamento secundário (*end of secondary – EOS*), ao menos para a Argila de Sarapuí, onde $\dot{\varepsilon}_v = 0$.

Segundo Feijó (1991), os corpos de prova que estão situados fora da região de equilíbrio indiferente tendem a marchar, após a expansão primária, na direção das curvas limite

por compressão ou expansão secundárias. Quanto mais afastado o solo está das curvas limitantes da zona de equilíbrio indiferente, maior a velocidade de retomada na compressão ou expansão secundárias. Além disso, à medida que a curva de compressão aproxima-se da referida região, $\dot{\varepsilon}_v$ diminui progressivamente e torna-se nula quando as curvas limite são alcançadas.

Figura 2.25 – Influência do *OCR* gerado no descarregamento sobre o comportamento do corpo de prova (fonte: (a) Vieira, 1988, p. 122; (b) Feijó, 1991, p. 108)

Figura 2.26 – Zona de equilíbrio indiferente nos planos $p'x q' e e x \sigma'_v (log)$, respectivamente (fonte: (a) Feijó, 1991, p. 128; (b) Feijó e Martins, 1993)

Por outro lado, o mecanismo proposto por Martins e Lacerda (1985), em consonância com a teoria dos processos cinéticos, afirmava ser $K_0 = 1$ o ponto de equilíbrio e convergência tanto da expansão quanto da compressão secundárias. Mas se, como sugerem os dados experimentais, ao fim do adensamento secundário $K_0 \neq 1$, então no término do processo o solo deve encontrar-se num estado de tensões efetivas onde há tensões cisalhantes e a velocidade de deformação é nula. Martins (1992) debruçou-se sobre o tema e, na esteira do preconizado pelos principais autores que atrelam o adensamento secundário à viscosidade estrutural, formulou os fundamentos do "princípio das tensões efetivas expandido". Nesse modelo, conforme a equação 2.28, as tensões cisalhantes (τ) são compostas por duas parcelas: i) uma de atrito, dependente apenas da tensão efetiva dos contatos sólidos entre partículas (σ'_s) e do ângulo de atrito mobilizado (φ_{mob}); ii) outra de origem viscosa, dependente da resistência viscosa despertada pela deformação da água adsorvida viscosa, que varia segundo o índice de vazios ($\eta(e)$) e a velocidade de distorção ($d\gamma/dt$).

$$\tau = \sigma'_s \tan \varphi_{mob} + \eta(e) \frac{d\gamma}{dt}$$
(2.28)

Mas, diferentemente de Terzaghi (1941), Martins (1992) hipotetizou que a resistência viscosa da água adsorvida influenciava apenas as tensões cisalhantes. É válido rememorar que a equação 2.1, a qual traduz matematicamente a primeira parte do princípio das tensões efetivas, trata apenas das tensões normais.

No modelo de Martins (1992), o adensamento secundário estaria associado à relaxação de tensões cisalhantes de origem viscosa na condição drenada. Ao final do fenômeno, as tensões cisalhantes remanescentes seriam sustentadas apenas pelo atrito. Além disso, o Círculo de Mohr foi reinterpretado por Martins (1992) como sendo uma composição das chamadas Elipses de Taylor (viscosidade) e de Coulomb (atrito).

O modelo também explica o fato da velocidade de distorção ser nula na zona de equilíbrio indiferente, que corresponde ao fim do adensamento secundário. Como a parcela de atrito é suficiente para suportar a tensão desviadora, então não há necessidade de mobilização da parcela viscosa e, *ipso facto*, de distorção no solo.

Lima (1993) encontrou uma maneira de avaliar a validade do mecanismo proposto por Martins (1992). Se ele fosse verdadeiro, significaria que no decorrer do processo de adensamento secundário haveria relaxação da tensão desviadora. Então, se a drenagem de um ensaio de compressão edométrica fosse impedida após o "fim" do adensamento primário, deveria ocorrer aumento na poropressão. Ao realizar esse procedimento, similar a um ensaio de relaxação de tensões na condição não-drenada, aconteceu exatamente o que havia sido previsto (figura 2.27).

Figura 2.27 – Comportamento da poropressão no estágio de 100 kPa para 800 kPa em um ensaio edométrico (fonte: adaptada de Lima, 1993, p. 83)

Garcia (1996) realizou ensaios de relaxação de tensões drenada, na prensa de compressão edométrica, com uma técnica bastante inovadora. O braço da prensa foi bloqueado com uma célula de carga, após o "final" do adensamento primário, de modo que o corpo de prova não sofresse deformação volumétrica. A rigor, como essa célula de carga não possui rigidez infinita, deformações muito pequenas ainda foram registradas. Ao mesmo tempo, foi possível monitorar a transferência de carga da prensa para o anel.

Utilizando essa técnica, ensaios foram realizados com uma argila do Senac da Barra da Tijuca (RJ). No mesmo ensaio, o corpo de prova também era submetido à ação do adensamento secundário durante tempo prolongado. As curvas de compressão edométrica (figura 2.28) indicam que, a partir do bloqueio do braço da prensa, se estabelece uma marcha aproximadamente horizontal, já que a relaxação não é pura, mas imperfeita, ao passo que no adensamento secundário ocorre uma marcha vertical. Em ambos os casos, as velocidades de deformação volumétrica específica decrescem paulatinamente (em taxas muito distintas) e os caminhos rumam da curva de final de adensamento primário (*EOP*) para a curva de final de adensamento secundário (*EOS*), onde $\dot{\varepsilon}_v = 0$.

Ademais, nota-se que a curva de *EOS* é aproximadamente paralela à curva de *EOP* com $OCR \cong 2$. Vale lembrar que esse valor foi aproximadamente o mesmo encontrado para a Argila de Sarapuí. Do ponto de vista da evolução de recalques com o tempo, a curva de final de secundário mostra-se muito útil, pois além de permitir uma estimativa da magnitude do adensamento secundário final – algo que o postulado $\frac{C_{\alpha}}{c_c} = cte$ não permite –, é possível avaliar a importância relativa do secundário em face do primário e a viabilidade da aplicação da teoria clássica de adensamento unidimensional.

Figura 2.28 – Curvas $\varepsilon_v x \sigma'_v$ obtidas a partir de ensaios mistos de compressão edométrica, relaxação de tensões drenada e adensamento secundário (fonte: (a) adaptada de Garcia, 1996, p. 90; (b) ibidem, p. 111)

Até esse momento, o adensamento secundário ainda era entendido como um fenômeno associado à relaxação das tensões desviadoras e à variação de K_0 . Portanto, de acordo com o mecanismo até então concebido, ele não deveria ocorrer em ensaios de adensamento hidrostático. No entanto, Thomasi (2000) realizou ensaios desse tipo em uma câmara triaxial e verificou que o fenômeno do adensamento secundário se

manifestava. No início, aventou-se a hipótese de que ele poderia ser fruto, na verdade, da difusão de água pela membrana de látex. Santos (2006), contudo, repetiu tais ensaios empregando óleo de silicone como fluido confinante e o fenômeno repetiu-se. Chama-se atenção ao fato de que em todos os ensaios utilizou-se a técnica conhecida como *"free ends"*, em que membranas de látex com silicone são instaladas na base e no topo do corpo de prova, com o objetivo de, se não eliminar completamente, ao menos reduzir em grande medida as tensões cisalhantes induzidas pelas condições de contorno.

Isso fez com que Thomasi (2000) e Santos (2006) investigassem a existência de uma parcela viscosa na tensão normal efetiva (σ'), como imaginado por Terzaghi (1941). Vale lembrar que Martins (1992) havia proposto, no seu princípio das tensões efetivas expandido, uma parcela viscosa unicamente na tensão cisalhante.

Conforme discussão anterior, a parcela viscosa de resistência (σ'_{η}) é dependente do índice de vazios e só é mobilizada se houver alguma velocidade de deformação. Neste caso, como se trata de adensamento hidrostático, não é a velocidade de distorção, mas de deformação volumétrica específica. Quanto à parcela sólida (σ'_s), admite-se que ela seja dependente apenas do índice de vazios. Dentro dessa concepção, pode-se reescrever o princípio das tensões efetivas de Terzaghi como:

$$\sigma = \sigma'_{s}(e) + \sigma'_{\eta}(e, \dot{\varepsilon}_{v}) + u \tag{2.29}$$

Esta equação é inspirada, em grande medida, naquela proposta por Taylor (1948), a expressão 2.23. Em um ensaio de adensamento hidrostático, após o "final" do primário a poropressão é nula, e portanto a tensão total e a efetiva são constantes. À medida que ocorre adensamento secundário, o número de contatos do tipo filme sólido aumenta e o número de contatos do tipo filme viscoso diminuem, acarretando uma redução em $\dot{\varepsilon}_{v}$. Ou seja, deve haver aumento da tensão efetiva sólida (σ'_{s}) às expensas de redução da tensão efetiva viscosa (σ'_{n}).

Se, durante o adensamento secundário, a drenagem for fechada, então $\dot{\varepsilon}_{v} = 0$ e e = cte. Tendo em mente a equação 2.29, decorre que $\sigma'_{\eta} = 0$ e $\sigma'_{s} = cte$. Mas para que a equação permaneça válida, o valor de tensão correspondente à parcela viscosa não pode ser simplesmente suprimido; ele deve assumir outra forma, *i.e.*, ser transferido gradualmente ao longo do tempo para a única parcela remanescente possível, a poropressão.

Ao fechar a válvula de drenagem durante o adensamento secundário, Thomasi (2000) e Santos (2006) confirmaram esse mecanismo (figura 2.29). É nítido que quanto maior a velocidade de deformação volumétrica específica no momento do fechamento da drenagem, maior é a parcela viscosa a ser transferida para a poropressão. Esses resultados também foram confirmados por Aguiar (2014) na argila de Sarapuí II e Aguiar³⁴ (2017) na argila de Onsøy. Sob esta ótica, as deformações observadas durante o fenômeno do adensamento secundário não ocorrem devido à relaxação de tensões e à variação de K_0 , mas devido ao crescimento da parcela sólida da tensão efetiva.

Figura 2.29 – Monitoramento da poropressão após fechamento da drenagem em ensaios de adensamento hidrostático (fonte: Thomasi, 2000, p. 107)

Aguiar (2008) defende que, em ensaios de compressão edométrica, o critério de carregamento baseado na velocidade de deformação volumétrica específica é mais coerente do que os critérios em que o carregamento é aplicado ao "final" do primário ou decorridas 24 h do início do estágio. O autor mostrou que, utilizando-se $\dot{\varepsilon}_v = 10^{-6}s^{-1}$ como critério, é possível realizar em cerca de três a quatro dias um ensaio completo com

³⁴ AGUIAR, V. N. Relatório de pesquisa do NGI. Oslo: documento não publicado, 2017.

 $\Delta \sigma_v / \sigma'_v = 1$ e tensão vertical máxima de 800 kPa. O valor de $\dot{\varepsilon}_v = 10^{-6} s^{-1}$ foi escolhido, com base em Leroueil *et al.* (1985) e a partir da experiência do Grupo de Reologia da COPPE/UFRJ, pois corresponde à primeira potência inteira de 10 após o "fim" do adensamento primário³⁵, considerando corpos de prova com distância de drenagem aproximadamente igual a 1 cm.

O referido autor também mostrou uma forma de quantificar a transferência de tensão vertical efetiva da parcela viscosa (σ'_{vv}) para a parcela sólida (σ'_{vs}) durante o adensamento secundário em um ensaio de compressão edométrica. Seja a figura 2.30, em que o ponto A pertence à curva de $\dot{\varepsilon}_v = 10^{-6}s^{-1}$, e o ponto B a uma curva com velocidade qualquer após o início do secundário. Então, durante a marcha vertical que ocorre ao longo desse processo, a tensão vertical efetiva viscosa transmutada em tensão vertical efetiva sólida pode ser estimada através da equação 2.30.

Figura 2.30 – Análise do adensamento secundário no ensaio de compressão edométrica segundo o modelo de comportamento da COPPE (fonte: Aguiar, 2008, p. 162)

$$\Delta\sigma'_{\nu\nu B} = \sigma'_{\nu} \left(10^{\frac{e_A - e_B}{C_C}} - 1 \right) \tag{2.30}$$

Andrade (2009) foi capaz de demonstrar, à luz da abordagem da COPPE, o efeito comportamental causado pela variação de temperatura (faixa de 20 a 35°C) tanto no adensamento secundário, como na relaxação de tensões drenada imperfeita.

³⁵ "Fim" do adensamento primário calculado via métodos de Taylor ou Casagrande.

Empregando a argila do canal do Porto de Santos, todas as vezes em que durante o adensamento secundário houve elevação de temperatura, ocorreu também um acréscimo de $\dot{\varepsilon}_v$. Em consonância, no ensaio de relaxação de tensões imperfeita o aumento da temperatura produziu um aumento da velocidade de alívio de tensão vertical efetiva. Isso ocorrere porque, ao aumentar-se a temperatura, a viscosidade da água adsorvida diminuiria. Por fim, Andrade (2009) mostrou que o efeito da temperatura é o de deslocar a curva $e x \sigma'_v$ para baixo e para a esquerda, tal qual reportado por outros autores, conforme discussão na seção anterior.

Finalmente, vale destacar os avanços alcançados por Aguiar (2014). Primeiramente, o autor sugeriu que, enquanto no adensamento hidrostático a parcela viscosa da tensão normal efetiva (σ'_{η}) é de compressão, na expansão hidrostática tal parcela seria de tração. Em segundo lugar, o autor conseguiu obter a "curva de compressibilidade hidrostática básica" da argila de Sarapuí II, na qual $\dot{\varepsilon}_v = 0$ (final do adensamento secundário) e $\sigma'_{\eta} = 0$, e onde a tensão normal efetiva (σ') é composta apenas da sua parcela sólida (σ'_s). Assim, haveria uma relação biunívoca entre σ'_s e o índice de vazios de amostras normalmente adensadas.

2.4 PREVISÃO DA COMPRESSÃO PRIMÁRIA VIRGEM

2.4.1 Introdução

Martins (1983) formulou uma relação pioneira entre índice de vazios (*e*) e tensão vertical efetiva (σ'_{v}). Um dos objetivos a que esta dissertação se propõe é investigar se existe uma conexão entre esse modelo e a parcela de resistência viscosa dos solos, nas bases defendidas pelo Grupo de Reologia dos Solos da COPPE/UFRJ.

O modelo proposto por Martins (1983) consiste em uma expressão matemática para a curva de compressão unidimensional no domínio virgem, com o mérito de ser construída de maneira totalmente analítica. Além do mais, essa abordagem permitiria, segundo o autor, uma interpretação física dos parâmetros envolvidos. O desenvolvimento teórico que será aqui exposto é o que consta em Martins e Lacerda

(1994), que introduziram pequenas variações naquele originalmente apresentado por Martins (1983), tornando-o mais simples.

2.4.2 A relação *e x* σ'_{v} de Martins (1983)

O modelo principiou do seguinte desafio: encontrar uma relação entre tensão vertical efetiva (σ'_{ν}) e índice de vazios (*e*). Sabendo-se que existe dependência entre estas duas grandezas e a deformação específica volumétrica (ε_{ν}), então é pertinente escrever:

$$\frac{d\sigma'_{\nu}}{de} = \frac{d\sigma'_{\nu}}{d\varepsilon_{\nu}} \frac{d\varepsilon_{\nu}}{de}$$
(2.31)

Por definição, o módulo edométrico (E_{oed}) é expresso como:

$$E_{oed} = \frac{d\sigma'_{\nu}}{d\varepsilon_{\nu}}$$
(2.32)

Esse é exatamente um dos termos da equação 2.31. Quanto à acepção do termo $\frac{d\varepsilon_v}{de}$, exige-se uma análise mais detalhada. Consideremos um ensaio de compressão edométrica, cujo corpo de prova possui os seguintes índices volumétricos:

 V_0 : volume inicial no tempo t_0 ; V_1 : volume vigente no tempo t_1 ; V_{v0} : volume de vazios inicial no tempo t_0 ; V_{v1} : volume de vazios vigente no tempo t_1 ; V_s : volume de sólidos (constante).

Da definição de ε_v :

$$\varepsilon_{\nu} = -\frac{(V_1 - V_0)}{V_0} \tag{2.33}$$

onde o sinal negativo indica, por convenção, que uma compressão sofrida pelo corpo de prova é considerada como positiva. Sabendo-se que o solo é um material trifásico, podese explorar a equação 2.33 e reescrevê-la como:

$$\varepsilon_{v} = -\frac{(V_{v1} + V_{s}) - (V_{v0} + V_{s})}{(V_{v0} + V_{s})}$$

$$\varepsilon_{v} = -\frac{(V_{v1} - V_{v0})}{(V_{v0} + V_{s})} = -\frac{\left(\frac{V_{v1}}{V_{s}} - \frac{V_{v0}}{V_{s}}\right)}{\left(\frac{V_{v0}}{V_{s}} + \frac{V_{s}}{V_{s}}\right)}$$

$$\varepsilon_{v} = -\frac{(e_{1} - e_{0})}{1 + e_{0}}$$
(2.34)

onde $e_1 e e_0$ indicam os índices de vazios vigentes nos tempos $t_1 e t_0$, respectivamente. Observando-se a variação de deformação volumétrica ($\Delta \varepsilon_v$) sofrida pelo corpo de prova em um intervalo de tempo qualquer, por exemplo entre os tempos $t_2 e t_1$, podemos escrever:

$$\Delta \varepsilon_{\nu} = -\frac{(e_2 - e_0)}{1 + e_0} - \left[-\frac{(e_1 - e_0)}{1 + e_0} \right]$$
$$\Delta \varepsilon_{\nu} = -\frac{(e_2 - e_1)}{1 + e_0} = -\frac{\Delta e}{1 + e_0}$$
(2.35)

onde e_2 indica o índice de vazios vigente no tempo t_2 . Traduzindo a equação 2.35 em termos infinitesimais e generalizando, temos:

$$\frac{d\varepsilon_v}{de} = -\frac{1}{1+e} \tag{2.36}$$

Portanto, a expressão 2.31 torna-se:

$$\frac{d\sigma'_v}{de} = -\mathcal{E}_{oed} \frac{1}{(1+e)} \tag{2.37}$$

O módulo edométrico, contudo, é dependente do índice de vazios e torna-se imperativo expressá-lo como uma função de tal variável. Com esse objetivo, Martins (1983) elucubrou algumas hipóteses. Incialmente, é plausível imaginar que o módulo edométrico seja função da relação entre volume de sólidos (V_s) e volume total (V), *i.e.*:

$$E_{oed} = f\left(\frac{V_s}{V}\right) \tag{2.38}$$

Pode-se conduzir essa expressão a dois extremos opostos e analisar o que ocorrerá:

a) na condição em que o volume de sólidos for nulo, o módulo edométrico também o será;

b) na condição em que $V_s/V \cong 1$, então o índice de vazios será muitíssimo pequeno e o módulo edométrico corresponderá, na verdade, ao módulo edométrico da composição dos minerais constituintes do solo (E_s).

A rigor, as duas condições descritas não contemplam aquilo que chamamos de "solo": na primeira delas, evidentemente, devido à ausência de matéria bariônica; já na segunda, tratar-se-ia de um sólido contínuo.

Também é de se esperar que o módulo edométrico e a relação V_s/V cresçam concomitantemente. Isso significa dizer que a função buscada deve ser monótona crescente, *i.e.*, $\frac{d(E_{oed})}{d(V_s/V)} > 0$. Por inspeção, uma função que cumpre estes requisitos é a seguinte:

$$E_{oed} = \left(\frac{V_s}{V}\right)^{\Omega} E_s \tag{2.39}$$

onde Ω é uma constante adimensional. Mas como $\frac{V_s}{V} = \frac{1}{1+e}$, então a expressão 2.39 torna-se:

$$E_{oed} = \left(\frac{1}{1+e}\right)^{\Omega} E_s \tag{2.40}$$

A partir das expressões 2.37 e 2.40, a expressão 2.31 pode ser reescrita como:

$$\frac{d\sigma'_v}{de} = -\left(\frac{1}{1+e}\right)^{\Omega} E_s \frac{1}{(1+e)}$$
$$\frac{d\sigma'_v}{de} = -\frac{1}{(1+e)^{\Omega+1}} E_s$$
(2.41)

Agora parte-se, finalmente, para a busca da sua solução. Integrando-se a expressão 2.41, com E_s e Ω como constantes, resulta em:

$$\sigma'_{\nu} = -\frac{1}{(1+e)^{\Omega}} \frac{E_s}{\Omega} + C_0$$
(2.42)

onde C_0 é uma constante de integração. Sabendo-se que o volume específico (v) é igual a 1 + e, e coadunando-se as constantes E_s e Ω e o sinal de negativo em uma nova constante (ψ), então vem à luz a expressão de Martins (1983):

$$\sigma'_{\nu} = \frac{\psi}{\nu^{\Omega}} + C_0 \tag{2.43}$$

A constante Ω é adimensional, enquanto que as constantes $\psi \in C_0$ possuem dimensão [*Força*/Á*rea*]. Além disso, os parâmetros $\Omega \in \psi$ refletiriam a compressibilidade do solo. Quanto à interpretação de C_0 , esta é uma questão que será discutida no decorrer deste trabalho, pois é um dos seus pontos nevrálgicos.

3 DO PARÂMETRO C₀: HIPÓTESES E IMPLICAÇÕES

3.1 INTRODUÇÃO

No capítulo anterior, na seção em que se tratou da previsão da compressão primária virgem dos solos, apresentou-se a relação desenvolvida por Martins (1983). Sobre os três parâmetros da equação 2.43, afirmou-se que ψ e Ω estariam, segundo o autor do modelo, associados à compressibilidade do material, mas nada foi dito sobre a constante de integração C_0 . A esse respeito, no decorrer da evolução do modelo de comportamento dos solos plásticos do Grupo de Reologia dos Solos da COPPE/UFRJ, que ainda está em desenvolvimento, algumas conjecturas foram elaboradas.

Neste capítulo são discutidas essas hipóteses, que acabaram por guiar esta dissertação, e as implicações daí derivadas. Alguns dos supostos desdobramentos que podem ser investigados, neste momento, são as possibilidades da relação de C_0 com a estrutura do solo e com a parcela viscosa da tensão vertical efetiva.

3.2 SOBRE A INDEFINIÇÃO DE C_0 E SUA CONEXÃO COM A VISCOSIDADE

Inicialmente, Martins (1983) assumiu, de maneira arbitrária, valor nulo para a constante de integração C_0 , resultando na equação (3.1):

$$\sigma'_{\nu} = \frac{\psi}{\nu^{\Omega}} \tag{3.1}$$

Martins e Lacerda (1994), posteriormente, compararam alguns resultados de ensaios *CRS*, realizados em argilas moles brasileiras, com as previsões de comportamento obtidas através das expressões 2.43 ($C_0 \neq 0$) e 3.1 ($C_0 = 0$). Concluíram que a constante poderia, de fato, ser desprezada, pois além da qualidade excepcional das previsões, a formulação de Martins (1983) tornava-se mais simples, já que ficava com um parâmetro a menos.

Tendo em mente a expressão 3.1, Martins³⁶ observou que, sendo $\psi \in \Omega$ constantes físicas positivas, então na situação limite em que a tensão vertical efetiva for aproximadamente zero (*e.g.* superfície de um terreno), o índice de vazios tenderá ao infinito: $\lim_{e\to\infty} \sigma'_{\nu} = 0$. Contudo, se o índice de vazios fosse infinito, não haveria solo, indicando que há uma incongruência física em arbitrar $C_0 = 0$.

Deve-se, portanto, descartar a expressão 3.1 e reestudar a expressão 2.43, que considera $C_0 \neq 0$. Partindo-se novamente da situação limite em que $\sigma'_{\nu} = 0$, escreve-se:

$$0 = \frac{\psi}{(1+e)^{\Omega}} + C_0 \tag{3.2}$$

Para que essa igualdade seja satisfeita, os dois termos devem ter sinais opostos para que possam se anular. Como o termo $\frac{\psi}{(1+e)^{\Omega}}$ só pode assumir valores positivos, isso acarreta na inversão do sinal que acompanha C_0 :

$$0 = \frac{\psi}{(1+e)^{\Omega}} - C_0$$
 (3.3)

Vale lembrar que por ser uma constante de integração, do ponto de vista algébrico o seu sinal é irrelevante. Após essa alteração, a expressão original de Martins (1983), agora modificada, pode ser reescrita como:

$$\sigma'_{\nu} = \frac{\psi}{(1+e)^{\Omega}} - C_0 \tag{3.4}$$

Louvise (2015) aplicou essa mesma expressão no intuito de prever o domínio virgem de amostras naturais oriundas do Canal do Porto de Santos, de Sarapuí II e do Cluster Naval de Suape (Recife). O modelo foi capaz de descrever com excelência o comportamento de todos os solos. Na figura 3.1 a curva de um dos ensaios de compressão edométrica pode ser comparada com a resposta fornecida pelo modelo.

³⁶ Informação verbal colhida junto ao prof. Ian Schumann Marques Martins, orientador deste trabalho, em novembro de 2017, quando ele então teorizava a respeito do objeto que aqui se estuda.

Figura 3.1 – Comparação entre o modelo de Martins (1983) revisitado, aplicado por Louvise (2015) na argila do Canal do Porto de Santos, com o ensaio de adensamento efetuado por Aguiar (2008) (fonte: Louvise, 2015, p. 71)

Da discussão travada acima, criou-se a expectativa de que C_0 resultasse positiva, para que na situação em que $\sigma'_v = 0$ a equação 3.4 fosse satisfeita. Contudo, excetuando-se um único caso em que a constante resultou aproximadamente nula, em todos os demais foram obtidos valores negativos de C_0 .

O autor desta dissertação aventa uma hipótese explicativa: o resultado inesperado parece ter ocorrido porque a expressão 3.4 foi aplicada à curva de compressão edométrica convencional, onde os pares de pontos $e \ x \ \sigma'_{\nu}$ correspondem ao fim dos estágios de 24 h de adensamento ($\dot{\varepsilon}_{\nu} \neq 0$). A formulação de Martins (1983), no entanto, nada fala sobre velocidade de deformação volumétrica específica. Ela foi desenvolvida a partir de uma relação inicial entre índice de vazios, tensão vertical efetiva e deformação volumétrica. Assim, supostamente, a formulação assumiria de maneira implícita uma condição estática ($\dot{\varepsilon}_{\nu} = 0$).

Portanto, para que C_0 satisfaça plenamente à equação 3.4, esta deveria, em tese, ser aplicada à linha de final de adensamento secundário $(EOS)^{37}$, onde, de acordo com o

³⁷ Importante esclarecer que a ideia da curva de *EOS* só veio a aparecer muitos anos depois da formulação de Martins (1983) ter sido criada, como parte do desenvolvimento do modelo de comportamento do Grupo de Reologia dos Solos da COPPE/UFRJ.

modelo de comportamento de solos plásticos do Grupo de Reologia dos Solos da COPPE/UFRJ, a transmissão de tensão efetiva se dá apenas via parcela sólida e $\dot{\varepsilon}_v = 0$. Essa é uma hipótese que será testada nesta dissertação. Se confirmada, então a diferença entre C_0 da curva convencional e C_0 da linha de final de secundário, hipoteticamente positivo, corresponderia à parcela viscosa da tensão vertical efetiva que está presente na curva de compressão edométrica convencional (figura 3.2).

Figura 3.2 – Ilustração da hipótese que versa sobre a aplicação da formulação de Martins (1983) revisitada à linha de *EOS*

3.3 SOBRE A INDEFINIÇÃO DE C_0 E SUA CONEXÃO COM A ESTRUTURA

Aplicando logaritmo decimal e suas propriedades à expressão 3.1, Martins (1983) chegou a outra relação inédita:

$$\log(\sigma'_{\nu}) = \log(\psi) - \Omega \log(\nu) \tag{3.5}$$

Uma vez que $\psi \in \Omega$ são constantes, então essa expressão corresponde a uma reta no plano $\sigma'_{\nu}(log) \times \nu(log)$, cujos coeficientes angular e linear são, respectivamente, $-\Omega \in log(\psi)$. Esse resultado é muito importante porque corrobora com fundamentação matemática a observação empírica de Butterfield (1979), baseada em ensaios de adensamento realizados por Taylor (1948). Butterfield (1979) foi o primeiro autor a dizer que a representação retilínea da relação $e \times \sigma'_{\nu}(log)$ no trecho normalmente adensado – que dá ensejo à chamada "reta virgem" – é tão somente uma aproximação pragmática.

Segundo ele, essa representação retilínea só ocorre de maneira aproximada quando se utiliza um diagrama bilogarítmico, por exemplo $\sigma'_v(log) x v(log)$, mas não ocorre na curva convencional semi-logarítmica. Tal característica salta aos olhos na figura 3.3, em que as curvas de compressão de dois solos são plotadas com escalas distintas (monologarítmica e bilogarítmica). Uma análise matemática da equação 3.5 mostra que essa representação retilínea é rigorosamente correta apenas quando C_0 for nula.

Figura 3.3 – Curvas de compressão de dois ensaios edométricos, efetuados por Taylor (1948), plotadas em escalas distintas: (a) Boston Blue Clay (b) Chicago Clay (fonte: adaptada de Butterfield, 1979, p. 473)

Na verdade, a inexistência de concavidade no trecho virgem do diagrama $e \ x \ \sigma'_v \ (log)$ pode ocorrer, mas isso significa que a amostra está possivelmente amolgada, conforme discussão da seção 2.2. Uma vez que o processo de amolgamento está associado à degradação da estrutura do solo, então é provável que haja relação entre esta e a estrutura do solo. O que se verá doravante é uma série de hipóteses de trabalho que discutem essa possibilidade e mostram como a formulação de Martins (1983) ainda tem muito a ser explorada.

Na esteira do que foi discutido na última seção e tendo em mente a expressão 3.5, devese atentar ao fato de que caso σ'_v seja zero, o índice de vazios assumirá um valor limite máximo. Um índice de vazios superior ao máximo não é possível porque, se assim o fosse, não haveria mais contato entre as partículas de solo, portanto, o material seria sinônimo de uma suspensão ou de partículas sólidas em sedimentação num meio fluido. Desse modo, C_0 valeria:

$$C_0 = \frac{\psi}{(1 + e_{max})^\Omega} \tag{3.6}$$

e a expressão 3.4 poderia ser reescrita como:

$$\sigma'_{v} = \frac{\psi}{(1+e)^{\Omega}} - \frac{\psi}{(1+e_{máx})^{\Omega}}$$
(3.7)

Dando continuidade à sua elucubração, Martins³⁸ argumentou que para uma argila mole saturada, quando $\sigma'_v = 0$, sua resistência ao cisalhamento, à luz do critério de Mohr-Coulomb, é nula. Isso ocorre porque este tipo de material não apresenta coesão verdadeira. Em tal situação a argila encontra-se no limiar dos estados sólido-plástico e líquido, ou seja, com teor de umidade equivalente ao seu limite de liquidez (w_L), conforme definição de Atterberg³⁹ (1911 *apud* Haigh *et al.*, 2013).

Seja a expressão:

$$e S = G w \tag{3.8}$$

³⁸ Informação verbal colhida junto ao prof. Ian Schumann Marques Martins, orientador deste trabalho, em novembro de 2017, quando ele então teorizava a respeito do objeto que aqui se estuda.

³⁹ ATTERBERG, A. Die Plastizitat der Tone. Int. Mitt. Bodenkd., n. 1, p. 10-43, 1911.

onde S representa o grau de saturação e w a umidade do solo. Admitindo-se que $S \cong 100\%$, hipótese aceitável para as argilas moles saturadas, e que $w = w_L$ quando $\sigma'_v = 0$, então a tarefa de calcular $e_{máx}$ torna-se factível:

$$e_{m\acute{a}x} = G w_L \tag{3.9}$$

O limite de liquidez pode ser determinado via método de *fall cone* (Hansbo, 1957), mais utilizado na Europa, e via método de Casagrande, ainda bastante popular na América do Norte e no Brasil (Haigh *et al.*, 2013). Considerando-se este último, emerge uma indagação: é possível utilizá-lo sem restrições? Segundo Pinto (2006, p. 25), define-se limite de liquidez associado ao método de Casagrande, como "o teor de umidade do solo com o qual uma ranhura nele feita requer 25 golpes para se fechar numa concha" [do aparelho de Casagrande⁴⁰].

Logo, a resposta a nossa pergunta só pode ser negativa, pois se o solo resiste a 25 golpes efetuados por meio da queda da concha do aparelho de Casagrande, isso significa que ele ainda possui resistência ao cisalhamento. Em teoria, o limite de liquidez verdadeiro seria aquele correspondente a zero golpe, condição inexequível, à primeira vista, em virtude da natureza do ensaio.

Uma alternativa seria abrir uma ranhura no solo, no aparelho de Casagrande, e verificar se, dentro de um intervalo de tempo padronizado, ela se fecha. Sucessivas tentativas seriam feitas com diferentes teores de umidade, e por meio de uma curva *tempo (log) x umidade*, o limite de liquidez poderia ser determinado.

Outra via de escape é definir o limite de liquidez físico (w_L^*) como o teor de umidade do solo com o qual uma ranhura nele feita requer 1 golpe para se fechar na concha do aparelho de Casagrande. Contudo, o ensaio impõe limitações que tornam também a empreitada de se atingir apenas 1 golpe praticamente impossível de ser realizada. Mas resta ainda um artifício para a obtenção de w_L^* : prolongar a reta de ajuste do gráfico *número de golpes (log) x umidade* até que ela atinja a umidade correspondente a 1 golpe, conforme ilustra a figura 3.4.

⁴⁰ Para examinar em detalhes o ensaio de determinação do limite de liquidez, a NBR 6459 (ABNT, 2016) deve ser consultada.

Figura 3.4 – Determinação dos limites de liquidez convencional (w_L) e físico (w_L^*) , neste último caso via extrapolação linear (fonte: Louvise, 2015, p. 44)

Louvise (2015), com o objetivo de reconstrução da curva de compressão edométrica de amostras muito amolgadas, lançou mão deste procedimento empregando três argilas distintas. Obteve valores de w_L^* da ordem de 25% a 50% superiores aos valores convencionais de w_L .

Valendo-se do conceito de w_L^* , conclui-se a elucubração reescrevendo-se as expressões 3.9 e 3.7, respectivamente, como:

$$e_{m\acute{a}x} = G \ w_L^* \tag{3.10}$$

$$\sigma'_{v} = \frac{\psi}{(1+e)^{\Omega}} - \frac{\psi}{(1+G w_{L}^{*})^{\Omega}}$$
(3.11)

Até aqui foram feitas poucas objeções no tocante ao conceito de índice de vazios máximo $(e_{máx})$ de um solo e seu vínculo com o conceito de limite de liquidez físico (w_L^*) , para que o desenvolvimento das hipóteses pudesse ser levado adiante. O raciocínio foi apresentado de maneira intuitiva, mas este é um tema complexo e suas conclusões certamente não são tão triviais quanto, em um primeiro momento, se supõe que sejam, como se verá nos próximos parágrafos.

Em primeiro lugar, Sills e Elder (1986) afirmam que para a construção de modelos analíticos é importante que enfoques distintos sejam aplicados, embora não facilmente

seus limites possam ser identificados. No quadro 3.1 apresenta-se um esquema da transição que ocorre em termos de aspecto e de abordagem a ser adotada ao longo do processo de transformação de uma suspensão diluída de sedimentos em solo.

Quadro 3.1 – Mudanças de abordagem de acordo com a concentração de sedimentos (fonte: adaptado de Sills e Elder, 1986)

AUMENTO DA CONCENTRAÇÃO				
Caracterização pela aparência	Suspensão diluída	Suspensão concentrada	Solo mole em processo de adensamento	Solo consolidado
Abordagem	Mecânica dos Fluidos clássica	Mecânica dos Fluidos não-Newtoniana pseudo-plástica	Mecânica do Contínuo / Mecânica dos Solos	

Uma das formas de identificar o momento em que os sedimentos adquirem aspecto e comportamento de solo é através do parâmetro tensão efetiva. Quando a poropressão e a tensão total possuem praticamente o mesmo valor, isso significa que os sedimentos são completamente suportados pela água. Mas à medida que alguma interação física e/ou eletromecânica passa a ocorrer entre as partículas, criando uma estrutura incipiente que é capaz de suportar parte do peso das mesmas, então a poropressão se torna menor que a tensão total.

Seria natural pensarmos que esse momento está associado a uma concentração particular de sedimentos de um dado material, *i.e.*, a um determinado valor de γ_{sat} considerando-se *G* constante. A esse respeito, Alves (1992), ao estudar os processos de sedimentação e adensamento em uma lama de rejeitos brasileira, afirma que:

Durante a ocorrência conjunta dos processos de sedimentação e adensamento, é muito discutida na literatura a possibilidade de detectar-se o índice de vazios limite entre estes dois processos. Até o momento, isto não foi conseguido de maneira satisfatória, devido à falta de equipamento capaz de fazê-lo. Até então tem sido tomado como referência um valor médio [...].

Após, a autora conclui que o índice de vazios abaixo do qual não ocorre qualquer processo de sedimentação, mas apenas adensamento, é um parâmetro característico de cada material. Alves (1992) também se refere a ele como "índice de vazios de formação do solo". Os resultados apresentados por Been e Sills (1981), entretanto, sugerem que existe uma zona de transição – e não um ponto de mudança abrupta – em que um

conjunto de flocos em suspensão se torna paulatinamente naquilo que chamamos de solo.

Been e Sills (1981) estudaram os processos de sedimentação e adensamento que ocorrem quando um material, com consistência de "lama", é lançado em uma coluna preenchida por água. Uma abordagem única que englobasse todas as fases seria muito difícil e complexa para ser construída, assim, a preocupação dos autores é com a fase de transição entre a suspensão concentrada e o solo mole em processo de adensamento.

Essa suspensão era composta por um silte uniformemente graduado com 30% de argila, originário do estuário de Combwich, Inglaterra. A assim chamada "coluna de sedimentação" contou com dispositivos de medida de poropressão, tensão total, deslocamento vertical (recalque) e densidade (figura 3.5a). No caso desta última propriedade, empregou-se uma técnica não destrutiva que faz uso de raios-X, e que foi primeiramente reportada por Been⁴¹ (1981).

Nesse estudo, os processos de sedimentação e adensamento são causados pelo peso próprio do material. No primeiro caso as deformações são "grandes", enquanto no segundo a magnitude delas é consideravelmente menor, podendo ser estudado de acordo com a teoria clássica do adensamento unidimensional.

A relação entre índice de vazios e tensão efetiva (figura 3.5b) obtida com os experimentos mostra que existem duas regiões distintas: quando $\sigma'_v < 0.15$ kPa o índice de vazios varia enormemente, numa faixa que vai de cerca de 4 a cerca de 12 – comportamento que normalmente está associado a *creep* ou fluxo viscoso. Por outro lado, quando $\sigma'_v \ge 0.15$ kPa a compressibilidade do solo diminui e a relação entre índice de vazios e tensão efetiva é melhor definida. De toda sorte, os perfis de densidade obtidos ao longo da coluna de sedimentação – e consequentemente de índice de vazios – mostram que não existe um único *e* correspondente à tensão vertical efetiva nula (ou muito próxima de zero).

⁴¹ BEEN, K. **Non-destructive soil bulk density measurements using X-ray attenuation**. Geotechnical Testing Journal v. 4, n. 4, p. 169-176, 1981.

Figura 3.5 – (a) Esquema de coluna de sedimentação com 2 m de altura (b) Relação $e \ x \ \sigma'_{\nu}$ obtida em diversos ensaios com diferentes concentrações iniciais do material lançado na coluna de sedimentação (fonte: adaptada de Been e Sills, 1981)

Através de experimentos similares aos realizados por Been e Sills (1981), Sills e Elder (1986) mostraram que a transição de uma suspensão de sedimentos para um "esqueleto" de solo em adensamento também é função do tempo e da história do sistema. Esta última, por sua vez, inclui fatores como taxa de sedimentação, concentração inicial e velocidade de lançamento do material na coluna. Embora estes autores não tenham testado a influência dos argilominerais que constituem o material lançado na coluna, muito possivelmente este deve ser mais um dos fatores que controlam o processo.

Neste momento, cabe introduzir os conceitos de linha de compressão por sedimentação (*SCL*) e linha de compressão intrínseca (*ICL*), desenvolvidos por Burland (1990). O referido autor definiu, a partir de dados de amostras indeformadas (w, e, σ'_v) extraídas em depósitos naturais de argila em diversas profundidades, a linha de compressão por sedimentação (*SCL*). Já a linha de compressão intrínseca (*ICL*) foi pensada por Burland (1990) a partir de ensaios de adensamento realizados em amostras reconstituídas de argila com umidade igual ou até 50% superior ao limite de liquidez convencional. Para

plotar essas curvas, o autor utilizou um índice normalizado (I_v) referente à faixa de tensões e aos índices de vazios associados.

Da figura 3.6, verifica-se que a *SCL* e a *ICL* são aproximadamente paralelas na faixa de 10 a 1000 kPa, e que para um mesmo valor de σ'_{ν} a *ICL* encontra-se abaixo da *SCL*. Ou seja, as argilas naturais suportam uma sobrecarga maior que as argilas reconstituídas dado um mesmo índice de vazios. Essa diferença de comportamento mecânico ocorre em virtude da preservação da estrutura na argila natural. Observando-se a figura 3.6b, nota-se que uma vez ultrapassada a tensão de sobreadensamento, à medida que a estrutura da argila se degrada sua curva de compressão edométrica começa a convergir para a *ICL*.

Neste ponto, é pertinente fazer duas distinções. A faixa de transição identificada por Been e Sills (1981), que trata do índice de vazios ligado à gênese do solo, está possivelmente associada à *SCL* – de maneira aproximada, pois nos depósitos naturais de argila existe o efeito de *aging*, inexistente nas simulações de sedimentação em laboratório –, funcionando como uma espécie de limite superior (*upper boundary*). Por outro lado, exercendo o papel de limite inferior (*lower boundary*), o $e_{máx}$ obtido via expressão 3.10 está hipoteticamente associado à *ICL*, tendo em vista que para a realização do ensaio de limite de liquidez a estrutura do solo é completamente destruída. Essa ideia é reforçada pelo fato de que para o traçado da *ICL*, Burland utilizou amostras reconstituídas com teor de umidade igual ou até 50% superior ao limite de liquidez, o que converge com os valores de w_L^* encontrados por Louvise (2015). Chama-se atenção ao fato de que esta relação entre $e_{máx}$ e *ICL* seria supostamente válida apenas na condição $\sigma'_{\nu} = 0$, em virtude das hipóteses dedutivas.

Figura 3.6 – (a) *ICL* e *SCL*, esta última obtida a partir do ajuste de dados oriundos de diversas argilas normalmente adensadas (b) ensaios de compressão edométrica em amostras reconstituídas e indeformadas da argila de Bothkennar (fonte: Burland, 1990)

4 MATERIAL E MÉTODOS

Para tentar responder às questões propostas nesta dissertação, empregou-se um solo argiloso muito plástico da costa brasileira, característica que acentua os efeitos de adensamento secundário e de viscosidade. Neste capítulo apresentam-se o ambiente geológico regional e um perfil estratigráfico representativo da área em questão. Também descrevem-se os equipamentos e os procedimentos adotados na etapa de amostragem do material bem como no programa experimental de laboratório, que além da caracterização geotécnica contou com ensaios de compressão edométrica convencionais e especiais, e com um ensaio para avaliação do limite de liquidez físico (w_L^*) . Por fim, apresentam-se o roteiro de cálculo das curvas de compressão edométricas em termos de igual velocidade de deformação volumétrica específica ($\dot{\varepsilon}_v$) e das curvas de previsão de domínio virgem segundo a formulação de Martins (1983) revisitada.

4.1 LOCALIZAÇÃO DA ÁREA

O solo coletado é oriundo da Ilha do Fundão, situada na Baía de Guanabara ao lado da Ilha do Governador, e pertencente à cidade do Rio de Janeiro (figura 4.1). É lá que se localiza a Cidade Universitária da UFRJ e o seu Parque Tecnológico, área que abriga a sede da empresa TechnipFMC (figura 4.2).

Segundo Gomes e Lopes⁴² (2018) há evidências de carregamento das estacas de fundação do edifício da TechnipFMC por atrito negativo. Como exemplo, citam-se os recalques e fissuras observados no prédio, em decorrência das deformações sofridas pelo solo mole. Por esta razão, extraiu-se uma (1) amostra de solo no local – coordenadas S. 7469940.63; E. 683115.31; Z. 23 K – com o intuito de determinar suas propriedades geotécnicas de interesse à avaliação do problema, dando ensejo à utilização deste material na presente dissertação.

⁴² GOMES, R. M.; LOPES, F. R. Aspectos Geotécnicos das Fundações do Edifício Administrativo da TechnipFMC. Rio de Janeiro: documento não publicado, 2018.

Figura 4.1 – Localização da Ilha do Fundão, cidade do Rio de Janeiro (fonte: adaptada de Google Maps, 2019)

Figura 4.2 - Localização da TechnipFMC na Ilha do Fundão (fonte: adaptada de Google Earth Pro, 2019)

4.2 GEOLOGIA REGIONAL

Uma das formas de urbanização da cidade do Rio de Janeiro, desde tempos pretéritos (século XVI) até o presente, tem sido através do progressivo aterramento de praias, brejos, lagoas e mangues, localizados principalmente no mar interior da Baía de Guanabara. A Ilha do Fundão não foge desse processo, já que é produto de um depósito antropogênico (aterro) feito entre os anos de 1948 e 1953, que abarcou oito ilhas situadas em frente ao antigo Saco de Inhaúma, entre as pontas do Caju e do Galeão (VALERIANO; SILVA, 2012).

A origem dessas ilhas remonta ao Período Quaternário da Era Cenozóica, em que as flutuações do nível do mar e as alterações paleoclimáticas foram as principais causas da formação das planícies litorâneas brasileiras, segundo Martin *et al.* (1997). No Quaternário, a margem continental sul brasileira teve seu desenvolvimento marcado por uma série de fenômenos de magnitude planetária, dentre os quais se destacam alterações na tectônica global e no clima, bem como variações do nível do mar em virtude das mudanças na distribuição das massas de gelo e de água sobre a superfície terrestre (SILVA; CUNHA, 2001).

Na região costeira do Estado do Rio de Janeiro há diversos sistemas de deposição de origem continental e transicional-marinho que repousam sobre as unidades terciárias da Bacia de Campos. O desenvolvimento desses depósitos sedimentares quaternários foi, em grande parte, guiado pelas direções estruturais do embasamento, que exerceram controle sobre a formação de baías e sobre a disposição dos remanescentes rochosos que passaram a receber sedimentos provenientes de cotas mais elevadas e fizeram com que a planície costeira evoluísse para leste (SILVA; CUNHA, 2001).

De acordo com Silva *et al.* (2001), na carta geológica mais recente disponibilizada pela Companhia de Pesquisas e Recursos Minerais (CPRM), a Ilha do Fundão – a rigor, as ilhas que a formaram – tem origem no Holoceno, faixa cronológica pertencente ao Quaternário que abrange os últimos 10 mil anos. De maneira geral, ao longo dessa época teriam ocorrido depósitos flúvio-lagunares, praiais-marinhos e lagunares associados às diferentes fases do nível relativo do mar. Contudo, há controvérsia em relação ao tema. Alguns autores (*e.g.* Suguio e Cruz, 1982; Martin *et al.*, 1987; Massad *et al.*, 1996) defendem que nos últimos 7 mil anos a margem continental sul brasileira e, portanto, o litoral fluminense, passou por pequenas transgressões e regressões. A elevação máxima, de 4.8 m, teria ocorrido há cerca de 5.1 mil anos. A presença de diversos terraços, em diferentes cotas, feições morfológicas pretéritas que hoje se observam em meio à área ocupada por depósitos flúvio-lagunares e também ao longo da atual costa lagunar e indicadores biológicos seriam algumas das evidências desse processo.

Outros autores (*e.g.* Milne *et al.*, 2005; Angulo *et al.*, 2006), diferentemente, acreditam que no Holoceno não ocorreram várias fases regressivas e transgressivas do nível do mar. Segundo eles, houve uma fase transgressiva até cerca de 7 mil anos e, a partir de então, uma fase regressiva que se estabeleceu regularmente.

Danziger *et al.* (2019), além de caracterizarem o depósito de argila mole de Sarapuí II, próximo à cidade do Rio de Janeiro, realizaram datação por radio carbono ao longo da sua profundidade e forneceram evidências que vão ao encontro desta corrente de pensamento. Uma delas é a taxa de deposição linear que se verifica ao longo dos últimos 7 mil anos na porção superior do depósito, da ordem de 0.9 mm/ano (figura 4.3). Portanto, a sua formação teria se dado na fase regressiva regular. Tendo em vista que a argila mole da Ilha do Fundão apresenta características muito similares às de Sarapuí II, como se verá adiante, além de proximidade geográfica, é provável que as formações de ambas as argilas tenham se dado em condições semelhantes.

De qualquer modo, segundo Villwock e Tomazelli (1995), essas transformações podem ser controladas, em essência, por quatro mecanismos principais, que influenciam não somente na velocidade em que transcorrem os processos evolutivos, mas também na natureza textural e composicional dos sedimentos que se acumulam nos diversos ambientes deposicionais. São eles:

a) as variações do nível de base regional, incluindo o lençol freático, que acompanha as flutuações holocênicas do nível relativo do mar;

b) o progressivo avanço da vegetação marginal dos corpos aquosos;

c) o aporte de sedimentos clásticos trazidos pelos cursos fluviais;

d) a migração das dunas eólicas livres que avançam pelo flanco leste destes ambientes.

Quanto aos sedimentos acumulados nessas transformações, formam tipicamente um pacote composto por intercalações de areias, argilas, biodetritos carbonáticos e turfas, produzidos nos diversos ambientes deposicionais que ainda hoje estão atuantes na área. As areias tem origem marinha ou eólica, podendo conter grandes quantidades de conchas e exibindo cristas praiais paralelas e pouco espaçadas. As marinhas são constituídas por grãos quartzosos esbranquiçados, finos a médios, bem selecionados, apresentando estratificação plano-paralela com mergulho suave em direção ao mar. Já o pacote eólico é constituído por areias com características semelhantes, mas de granulometria mais fina. Quanto aos sedimentos sílticos e argilosos, podem ser ricos em matéria orgânica e, frequentemente, conter grande quantidade de conchas de moluscos de ambientes lagunares (MARTIN *et al.*, 1997).

Figura 4.3 – Idade do depósito de Sarapuí II, próximo à cidade do Rio de Janeiro (fonte: DANZIGER *et al.*, 2019)

4.3 CARACTERIZAÇÃO GEOTÉCNICA

4.3.1 Perfil estratigráfico do terreno

O anexo A apresenta a planta baixa de locação de todas as sondagens realizadas no terreno que abriga as instalações da TechnipFMC. Uma sondagem a percussão (Anexo B) foi realizada em janeiro de 2018, em duas etapas e na mesma vertical em que se efetuou a amostragem. Inicialmente, os trabalhos ocorreram até a profundidade de 10.8 m, indicando camada de aterro de 10.5 m de espessura. Na sequência ocorreu a operação de amostragem, que se deu na profundidade de 10.8 m, na camada de argila mole. Após essa paralisação, a sondagem prosseguiu normalmente.

Outros 18 boletins (Anexo C), datados de 2010, estavam disponíveis para consulta. Estas sondagens à percussão haviam sido então utilizadas no projeto das fundações dos edifícios da referida empresa. De posse dos anexos A, B e C, foi possível estimar um perfil estratigráfico típico representativo da área, o qual é apresentado na figura 4.4.

Figura 4.4 - Perfil estratigráfico médio do terreno

A camada de aterro, com espessura média de 6 m, foi executada em diversas etapas ao longo do tempo, por isso é bastante heterogênea. Inicialmente, entre os anos de 1948 e 1953, quando da criação da Ilha do Fundão. Em seguida, na década de 1970 para a construção da Ponte Rio-Niterói, tendo servido como canteiro de obras. Em 2000 aumentou-se a sua espessura para a criação do Parque Tecnológico da UFRJ, e finalmente em 2010 acrescentou-se uma camada complementar para regularização do terreno, com vistas à construção da sede da TechnipFMC. Seu N_{SPT} é crescente e atinge valores da ordem 30. Na profundidade aproximada de 2.0 m encontra-se o nível d'água.

A turfa tem consistência média e compõe camada variável de cerca de 4.0 m, com N_{SPT} tipicamente inferior a 10. No que tange à vertical de amostragem, a sondagem realizada (Anexo B), curiosamente, aponta apenas a existência de uma camada de aterro de 10.5 m de espessura. No entanto, as sondagens mais próximas (SP-06, SP-08, SP-09 e SP-18, constantes no anexo C) indicam a ocorrência de turfa tanto por análise tátil-visual do material amostrado, como pelo decréscimo abrupto do N_{SPT} . A explicação mais plausível é que o procedimento de perfuração, que se deu por meio de trépano com lavagem, tenha afetado o material coletado, gerando algum tipo de confusão na sua descrição e induzindo o sondador a classificá-lo como aterro. Detalhe não menos importante é o fato de que esta sondagem foi realizada oito anos após a campanha inicial, e portanto com uma equipe possivelmente distinta.

A camada de argila tem espessura média de 15.0 m e apresenta consistência mole, cor cinza e conchas esbranquiçadas visíveis a olho nu. Seu N_{SPT} varia em sua grande maioria de 0 a 3 golpes, encontrando-se raros valores de 5 golpes próximos à fronteira drenante inferior. O pacote de areia é compacto com espessura de 3.0 m. Por fim, a camada de silte é fruto da intemperização da rocha mãe e, portanto, corresponde a um solo residual. Possui espessura média de 4.5 m e valores de N_{SPT} tipicamente crescentes e superiores a 30.

Este perfil estratigráfico é característico dos ambientes de deposição sedimentar flúviomarinhos recentes (últimos 10 mil anos). Como elementos marcantes, tem um pacote de argila sedimentar de espessura considerável intercalado por camadas de materiais distintos também de origem sedimentar.

4.3.2 Amostragem

A operação de amostragem teve o intuito de obter material indeformado no pacote de argila mole que, ao que tudo indica, está em processo de adensamento, devido à colocação de aterros a partir dos anos 2000, e controla os recalques observados. Esta operação foi coordenada pelo professor Fernando A. B. Danziger e realizada pela equipe do Laboratório de Ensaios de Campo e Instrumentação Professor Marcio Miranda Soares, da COPPE/UFRJ.

Os procedimentos adotados estiveram em consonância com a NBR 9820 (ABNT, 1997), que versa sobre a coleta de amostras indeformadas em solos de baixa consistência em furos de sondagem, e com as orientações de Ladd e DeGroot (2003, p. 6-10). A única exceção diz respeito à folga interna (*clearance*), cujo emprego é recomendado com vistas à redução do atrito entre a amostra e a parede interna do amostrador, durante o processo de cravação. Contudo, de acordo com Jannuzzi (2013) e Baligh *et al.* (1987), há evidências de que a folga interna também causa maior amolgamento na amostra, e por esta razão ela não foi utilizada no amostrador empregado neste trabalho.

O tubo amostrador empregado foi fabricado em latão, com diâmetro externo de 101.6 mm, espessura de parede de 1.6 mm e comprimento útil de cerca de 630 mm (figura 4.5a). Uma cabeça dotada de válvula de esfera foi utilizada para auxiliar o processo de retirada da amostra.

Uma máquina de cravação da marca Pagani (figura 4.5b), com capacidade de 150 kN (15tf) e peso de 13 kN, capaz de manter velocidade de cravação constante, foi empregada para cravar estaticamente o tubo amostrador. Hastes de 1 m de comprimento e 36 mm de diâmetro foram utilizadas para conduzir o tubo amostrador à profundidade de amostragem.

No dia 3 de janeiro de 2018, pela manhã, o tubo amostrador foi descido no interior do revestimento de PVC de 200 mm (8") de diâmetro até a profundidade de 10.8 m, cerca de 30 cm abaixo da suposta camada de turfa. O tubo de revestimento foi instalado com um rigoroso controle de verticalidade. O amostrador foi cravado 630 mm – seu comprimento útil – com velocidade de 20 mm/s. O processo foi concluído em torno do meio-dia.

No dia seguinte, 4 de janeiro, após aguardar-se cerca de 24 horas para que houvesse acréscimo de resistência do solo junto à parede do amostrador, ocorreu a retirada do mesmo. A aparência era de uma amostra de boa qualidade, a qual foi devidamente acondicionada, lacrada com parafina e conduzida à câmara úmida dos Laboratórios de Geotecnia Professor Jacques de Medina da COPPE/UFRJ.

Figura 4.5 – (a) Tubo Shelby empregado na amostragem (b) Máquina de cravação instalada e posicionada sobre o tubo de revestimento (fonte: Danziger⁴³ *et al.*, 2018)

4.3.3 Propriedades físicas

A caracterização física foi realizada com o solo restante da moldagem dos corpos de prova empregados nos ensaios de compressão edométrica. A parte mais superficial dos 10 cm iniciais da extremidade inferior do tubo amostrador foi descartada. Esse procedimento é prática comum, tendo em vista a possibilidade de contaminação e

⁴³ DANZIGER, F. A. B.; JANUZZI, G. M. F.; PINHEIRO, A. V. S. Determinação das poro-pressões de equilíbrio e retirada de amostras indeformadas. Rio de Janeiro: documento não publicado, 2018.

notadamente o amolgamento mais pronunciado. Na realização dos ensaios para determinação das propriedades físicas, observou-se o prescrito pelas seguintes normas técnicas:

a) NBR 6457 (ABNT, 2016) – teor de umidade;
b) NBR 6508 (ABNT, 1984) – densidade relativa dos grãos;
c) NBR 7181 (ABNT, 2016) – curva de distribuição granulométrica;
d) NBR 6459 (ABNT, 2016) – limite de liquidez;
e) NBR 7180 (ABNT, 2016) – limite de plasticidade;
f) NBR 13600 (ABNT, 1996) – teor de matéria orgânica.

4.4 ENSAIOS DE COMPRESSÃO EDOMÉTRICA

No capítulo 3, por razões já discutidas, aventou-se a hipótese de que a formulação de Martins (1983) revisitada, se aplicada à curva de final de adensamento secundário (*EOS*), poderia satisfazer a equação 3.4. Para testá-la, portanto, é necessário que se disponha de tal curva.

Com este objetivo em mente, um programa de ensaios especiais de compressão edométrica foi levado a cabo. Eles foram realizados no Laboratório de Reologia, que é associado aos Laboratórios de Geotecnia Professor Jacques de Medina da COPPE/UFRJ. Os equipamentos empregados e os procedimentos adotados são descritos nesta seção.

4.4.1 Equipamentos

Cabe destacar, inicialmente, que o Laboratório de Reologia é constituído de um espaço onde paredes, piso e teto são revestidos por camadas de isopor e madeira, para que eventuais trocas de calor com o meio externo sejam minimizadas. Esse controle rigoroso é importante, uma vez que o fenômeno do adensamento secundário é influenciado pela temperatura. Assim, os ensaios foram realizados com temperatura constante de 20°C (\pm 1°C), e para isso o laboratório está equipado com três aparelhos de ar condicionado que funcionam durante 24 h em sistema de rodízio. As temperaturas máxima e mínima, bem como qualquer variação, foram registradas diariamente através de um termômetro de máxima e mínima.

Quanto aos ensaios de adensamento, foram realizados empregando-se quatro prensas do tipo Bishop com relação de braço 1:10, produzidas pela empresa Ronald Top Ltda (figura 4.6). As leituras das deformações verticais dos corpos de provas foram efetuadas por meio de extensômetros analógicos de sensibilidade de 0.01 mm/div, e os tempos de leitura mensurados por cronômetros digitais Casio. Nas células de adensamento foram instaladas duas pedras porosas (drenagem dupla).

Figura 4.6 - Prensas de adensamento do Laboratório de Reologia (fonte: elaborada pelo autor)

4.4.2 Preparação dos ensaios e moldagem dos corpos de prova

A moldagem de todos os corpos de prova seguiu as recomendações constantes em Ladd e DeGroot (2003), com o intuito de reduzir os efeitos de amolgamento. Até o momento da sua realização, o tubo amostrador permaneceu em posição vertical dentro de uma caixa de madeira mantida dentro da câmara úmida do Laboratório de Geotecnia da COPPE/UFRJ. Inicialmente, todas as células de adensamento das prensas foram limpas com água destilada, e suas borrachas de vedação untadas com graxa teflonada. Já as pedras porosas foram fervidas em água destilada para evitar qualquer obstrução ao fluxo de água durante a realização do ensaio. Os corpos de prova foram moldados em anéis de aço inox de 2 cm de altura e aproximadamente 7 cm de diâmetro (área da seção transversal de 40 cm²). O processo de moldagem é ilustrado nas figuras 4.7 e 4.8 e descrito a seguir:

i) em bancada fixa, posicionar horizontalmente o tubo amostrador sobre "berço" com rodas de apoio, de modo a facilitar o giro do tubo;

ii) retirar o lacre externo da extremidade biselada do amostrador e proteger com membrana plástica de PVC para evitar perda de umidade;

iii) serrar segmento do tubo com os primeiros 10 cm da amostra, utilizando inicialmente a serra para seccionar o latão e finalmente um fio de aço para terminar o seccionamento do solo;

iv) descartar a parte mais superficial do solo e utilizar o restante para os ensaios de caracterização;

v) repetindo a técnica do item iii, serrar segmento do tubo com 4 cm de amostra para a moldagem de cada corpo de prova;

vi) desconectado o segmento, introduzir no solo um fio de aço, com auxílio de uma agulha, e deslizá-lo ao longo de toda a interface solo-parede do tubo;

vii) untar anel de açoi nox (2 cm de altura e 7 cm de diâmetro), de peso conhecido, com graxa teflonada para reduzir o atrito durante a cravação do mesmo e durante o ensaio;

viii) posicionar o segmento verticalmente e cravar de maneira *quasi*-estática o anel de aço inox, com auxílio de dispositivo cravador – especial atenção deve ser tomada quanto ao sentido da cravação, de modo que não haja reversão de tensões cisalhantes na interface solo-parede do anel;

ix) após a cravação, passar o fio metálico novamente na interface amostratubo e extrudar a amostra com auxílio de êmbolo;

x) esculpir o corpo de prova com fio de corte metálico, regularizando as superfícies inferior e superior e removendo o material em excesso;

xi) utilizar o material restante da moldagem para determinação da umidade natural;

xii) determinar o peso do corpo de prova e do anel, posicionando-os na célula de adensamento.

Figura 4.7 – (a) Posicionamento do tubo amostrador na bancada e retirada de lacre externo (b) Corte de um segmento de tubo (c) Introdução da agulha com fio de aço (d) Anel metálico sendo untado com graxa teflonada (e) Cravação do anel de aço inox na amostra com auxílio de dispositivo cravador (f) Reintrodução do fio de aço na amostra

Figura 4.8 – (a) Extrusão da amostra com auxílio de êmbolo (b) Regularização do corpo de prova e tomada do material restante para determinação de umidade (c) Moldagem do corpo de prova finalizada
(d) Posicionamento do corpo de prova sobre pedra porosa na célula de adensamento (e) Centralizador e cabeçote da célula de adensamento (f) Instalação e ajuste da célula na prensa de adensamento

4.4.3 Execução dos ensaios de adensamento

Considerações gerais sobre os propósitos de um ensaio de adensamento e os mecanismos de ocorrência do fenômeno foram feitas na seção 2.2. Nesta dissertação, os ensaios de adensamento foram realizados em duas etapas. A primeira delas consistiu em dois ensaios piloto convencionais, ao passo que na segunda realizaram-se quatro ensaios especiais de longa duração.

Os ensaios piloto convencionais (corpos de prova 1 e 2) tiveram como objetivo revelar o comportamento do material sob compressão unidimensional, e deste modo, auxiliar no planejamento dos ensaios especiais de adensamento. Uma vez instaladas as células de adensamento nas prensas e zerados os extensômetros, inundavam-se as mesmas e aplicava-se uma carga de 3.13 kPa. Essa pequena tensão inicial, mantida até o dia seguinte, quando então de fato se iniciavam os carregamentos sequenciais, tinha o objetivo de ajustar o corpo de prova à célula de adensamento.

No dia posterior à aplicação dessa carga inicial, carregamentos com duração de 24 h eram aplicados de forma a obter estágios em que as tensões formassem a seguinte sequência: 6.25 kPa - 12.5 kPa - 25 kPa - 50 kPa - 75 kPa - 100 kPa - 150 kPa - 200 kPa - 400 kPa - 800 kPa. O incremento usual, segundo a razão constante $\Delta \sigma / \sigma'_v = 1$, não foi seguido porque se buscava uma maior definição na plotagem da curva de compressão edométrica e, portanto, uma determinação mais acurada de σ'_{vm} , ainda que esse procedimento trouxesse maior dificuldade no cálculo de c_v . Ao final, descarregamentos foram realizados obedecendo à sequência 800 kPa - 400 kPa - 200 kPa. Os dois corpos de prova foram submetidos a procedimentos idênticos.

Além da curva de compressão edométrica tradicional – plotada em função dos índices de vazios correspondentes ao final de cada estágio de 24 h – também se determinaram curvas de compressão edométrica de igual velocidade de deformação volumétrica específica ($\dot{\varepsilon}_{v}$). A seguinte expressão foi utilizada no cálculo de $\dot{\varepsilon}_{v}$:

$$\dot{\varepsilon}_{v} = \frac{\Delta H / H}{\Delta t} \tag{4.1}$$

onde:

 ΔH : variação da altura do corpo de prova entre duas leituras do extensômetro consecutivas;

H: altura do corpo de prova correspondente à primeira dessas leituras;

 Δt : intervalo de tempo decorrido entre as duas leituras.

Tendo em vista que estes não são ensaios com velocidade de deformação volumétrica específica controlada, como o *CRS*, as velocidades calculadas não correspondem, de maneira geral, a potências inteiras de 10. Assim, é necessário fazer uma interpolação entre duas leituras do extensômetro para obtê-las.

Quanto à segunda etapa, ensaios de longa duração – cerca de 10 meses – foram efetuados em quatro corpos de prova. Cada ensaio consistiu em gerar um $OCR \ge 1$ em três tensões distintas: 200 kPa, 400 kPa e 800 kPa. Após cada um dos descarregamentos, o comportamento do corpo de prova era monitorado por aproximadamente três meses. Em cada ensaio foi utilizado um valor de OCR distinto dos demais, com o objetivo de localizar a curva de final de secundário com maior acurácia. Baseando-se na experiência do Grupo de Reologia dos Solos da COPPE/UFRJ, optou-se pelos seguintes valores de OCR: 1.0, 1.5, 2.0 e 2.5.

O corpo de prova 3, após a ultrapassagem da tensão de sobreadensamento, ficou sempre submetido a um OCR = 1. Foi carregado sequencialmente até $\sigma'_v = 200 \ kPa$ e mantido sob adensamento secundário por cerca de 3 meses. Após, foi carregado até 400 kPa e mantido nessa condição por igual período de tempo. Finalmente, foi levado a 800 kPa, sendo observado novamente durante 3 meses.

O corpo de prova 4 (OCR = 2.5) foi carregado até $\sigma'_v = 500 \, kPa$, descarregado até $\sigma'_v = 200 \, kPa$ e mantido sob adensamento secundário por cerca de 3 meses. Após, foi carregado até 1000 kPa, descarregado até 400 kPa e mantido nessa condição por igual período de tempo. Finalmente, foi levado a 2000 kPa, descarregado até 800 kPa e observado novamente durante 3 meses. Nos demais corpos de prova (5 e 6) o procedimento foi repetido de maneira análoga, excetuando-se o *OCR* gerado em cada um deles, 1.5 e 2.0, respectivamente.

As três tensões verticas efetivas a que os corpos de prova estiveram submetidos durante 3 meses sob adensamento secundário (200 kPa, 400 kPa e 800 kPa), foram escolhidas de modo a gerar três pares ordenados ($e \ x \ \sigma'_{v}$) independentes, característica importante para que a formulação de Martins (1983) revisitada pudesse ser aplicada, como se verá adiante.

Além dos seis corpos de prova preparados para os ensaios de adensamento, também se determinou a umidade natural do solo em outras três profundidades para um detalhamento maior do perfil de amostragem (ver tabela 5.2 no próximo capítulo). A tabela 4.1 sumariza os ensaios de adensamento realizados e as sequências de carregamentos e descarregamentos empregadas em cada um deles.

СР	<i>z</i> (m)	Tipo do Ensaio	OCR	Sequência de Carregamento e Descarregamento (kPa)	
1	11.38	Convencional	-	3.13 - 6.25 - 12.5 - 25 - 50 - 75 - 100 - 150 - 200 - 400 - 800 400 - 200	
2	11.34	Convencional	-	3.13 - 6.25 - 12.5 - 25 - 50 - 75 - 100 - 150 - 200 - 400 - 800 400 - 200	
3	11.30	Longa duração	1.0	3.13 - 6.25 - 12.5 - 25 - 50 - 100 - 150 - 200 (3 meses) - 400 (3 meses) - 800 (3 meses)	
4	11.26	Longa duração	2.5	3.13 - 6.25 - 12.5 - 25 - 50 - 100 - 150 - 200 - 500 - 200 (3 meses) - 500 - 1000 - 400 (3 meses) - 1000 - 2000 - 800 (3 meses)	
5	11.22	Longa duração	1.5	3.13 - 6.25 - 12.5 - 25 - 50 - 100 - 150 - 200 - 300 - 200 (3 meses) - 300 - 600 - 400 (3 meses) - 600 - 1200 - 800 (3 meses)	
6	11.18	Longa duração	2.0	3.13 - 6.25 - 12.5 - 25 - 50 - 100 - 150 - 200 - 400 - 200 (3 meses) - 400 - 800 - 400 (3 meses) - 800 - 1600 - 800 (3 meses)	

Tabela 4.1 – Sequências de carregamento e descarregamento aplicadas nos ensaios de compressão edométrica

Nota 1: CP – corpo de prova; z – profundidade.

Nota 2: o valor entre parênteses ao lado dos estágios de carga ou descarga indica o tempo de monitoramento sob adensamento secundário

4.5 APLICAÇÃO DA EXPRESSÃO DE MARTINS (1983) REVISITADA

Uma vez plotadas as curvas de compressão edométricas, sejam as convencionais (24 h), sejam as de igual $\dot{\varepsilon}_v$, o modelo de Martins (1983) revisitado foi aplicado a cada uma delas. Isso porque, em decorrência da hipótese levantada no capítulo anterior, se C_0 está de fato associado à viscosidade, então uma vez fixados os parâmetros $\psi \in \Omega$, a variação de C_0 também poderia expressar alguma variação da viscosidade nas diferentes curvas de $\dot{\varepsilon}_v$. Para tal, foram determinados, em cada um dos ensaios, os parâmetros ψ , $\Omega \in C_0$ da equação 3.4. Isso é possível construindo-se um sistema de três equações e três incógnitas. A figura 4.9 ajuda a ilustrar o procedimento. Os pontos A, B e C correspondem a três estágios de carregamento no trecho virgem cujos valores de tensão vertical efetiva são, respectivamente, σ'_{vA} , $\sigma'_{vB} \in \sigma'_{vC}$, e cujos valores de índice de vazios são, respectivamente, e_A , $e_B \in e_C$.

Figura 4.9 – Ilustração da escolha de três pares ordenados ($e; \sigma'_v$) distintos na curva de compressão edométrica

Aplicando-se a expressão 3.4 aos três pontos, escreve-se:

$$\sigma_{\nu A}' = \frac{\psi}{(\nu_A)^{\Omega}} - C_0 \tag{4.2}$$

$$\sigma_B' = \frac{\psi}{(v_B)^{\Omega}} - C_0 \tag{4.3}$$

$$\sigma_C' = \frac{\psi}{(v_C)^{\Omega}} - C_0 \tag{4.4}$$

Para resolver o sistema de equações, uma possibilidade é iniciar isolando C_0 na equação 4.2:

$$C_0 = \frac{\psi}{(\nu_A)^{\Omega}} - \sigma'_A \tag{4.5}$$

Substituindo-se C_0 na expressão 4.3, fica:

$$\psi = \frac{(\sigma_B' - \sigma_A')(v_A v_B)^{\Omega}}{v_A^{\ \Omega} - v_B^{\ \Omega}}$$
(4.6)

Por sua vez, substituindo-se ψ na expressão 4.4 e realizando alguma manipulação algébrica, escreve-se:

$$\frac{(\sigma_C' - \sigma_A')}{(\sigma_B' - \sigma_A')} \left(\frac{\nu_A}{\nu_B}\right)^{\Omega} = \left(\frac{\nu_A}{\nu_C}\right)^{\Omega} + \frac{(\sigma_C' - \sigma_A')}{(\sigma_B' - \sigma_A')} - 1$$
(4.7)

Na resolução do sistema, a expressão 4.7 foi a primeira a ser utilizada e forneceu o valor de Ω . Na sequência, empregou-se a expressão 4.6 para cálculo de ψ e, por fim, a expressão 4.5 para determinação de C_0 .

4.6 LIMITE DE LIQUIDEZ FÍSICO, ÍNDICE DE VAZIOS E C_0^*

O significado teórico do limite de liquidez físico (w_L^*) foi debatido no capítulo 3. Como se viu, o caminho tomado por Louvise (2015) para a sua determinação foi extrapolar linearmente a reta convencional do gráfico *número de golpes (log) x w* até o limite máximo de um (1) golpe, já que a escala é logarítmica.

No presente trabalho, adotou-se um caminho similar a Louvise (2015), mas com uma modificação importante: o ensaio foi realizado até que se conseguisse fechar a ranhura na concha do aparelho de Casagrande com o menor número de golpes possível. Sabe-se, contudo, que segundo a NBR 6459 (ABNT, 2016) o número mínimo de golpes sugerido para fechamento da ranhura é de 15. Um número menor de golpes não é recomendado porque, com teor de umidade mais elevado ocorre maior dispersão nos resultados. Ainda assim, adotou-se esse método como uma hipótese de trabalho.

Conhecido w_L^* foi possível calcular o índice de vazios máximo $(e_{máx})$ através da expressão 3.10, e consequentemente C_0 , por meio da expressão 3.6. O objetivo almejado com esse procedimento é o de comparar o valor de C_0 assim obtido com aquele

determinado via aplicação do modelo de Martins (1983), e avaliar se a referida constante possui alguma ligação com a estrutura do solo. Para diferenciá-los um do outro, o valor de C_0 derivado do índice de vazios máximo será chamado, doravante, de C_0^* , em alusão a w_L^* .

5 RESULTADOS E DISCUSSÕES

Este capítulo é dividido em duas partes. Na primeira delas são apresentados os resultados dos ensaios levados a cabo com os objetivos de encontrar a linha de final de secundário (*EOS*), o limite de liquidez físico (w_L^*) e o índice de vazios máximo ($e_{máx}$), o que permite testar as hipóteses elaboradas no capítulo 3. Também são exibidos os resultados dos demais ensaios destinados a atingir outros objetivos específicos deste trabalho, como por exemplo, a caracterização física do solo.

Na segunda parte examinam-se os resultados e, em face deles, a validade das hipóteses que haviam sido aventadas. Cabe destacar que as discussões e os resultados não são apresentados concomitantemente porque, antes de se analisar as particularidades de qualquer ensaio, faz-se necessário ter uma visão global, *i.e.*, uma visão totalizante dos objetos.

5.1 RESULTADOS

Os resultados compreendem, em primeiro lugar, as propriedades físicas da argila da Ilha do Fundão. Em segundo lugar, no que tange aos ensaios de adensamento, as curvas de compressão convencionais (24 h) e as curvas de compressão de igual velocidade de deformação volumétrica específica ($\dot{\varepsilon}_v$), além dos seus respectivos parâmetros de compressibilidade. Em terceiro lugar, os resultados obtidos através da aplicação da formulação de Martins (1983) revisitada. Por fim, os resultados de limite de liquidez físico, índice de vazios máximo e C_0^* .

5.1.1 Propriedades físicas

A curva de distribuição granulométrica é exibida na figura 5.1 e as propriedades físicas sumarizadas na tabela 5.1. A atividade da fração argilosa foi determinada segundo Skempton (1953).

Figura 5.1 - Curva de distribuição granulométrica da amostra de solo

Tabela 5.1 – Propriedades físicas da amostra de solo

G	w _L (%)	$w_P(\%)$	IP (%)	FA (%)	A	TMO (%)
2.558	154	53	101	73	1.38	3.8

Nota: G – densidade relativa dos grãos; w_L – limite de liquidez; w_P – limite de plasticidade; IP – índice de plasticidade; FA – fração argilosa; A – atividade da fração argilosa; TMO – teor de matéria orgânica.

5.1.2 Ensaios de compressão edométrica

Antes de dar início à apresentação dos resultados dos ensaios de compressão edométrica, ressalta-se que eles estão associados à temperatura de 20°C, empregada na realização dos mesmos. Primeiramente, apresenta-se a tabela 5.2 com os índices físicos dos seis corpos de prova que foram submetidos aos ensaios de adensamento convencionais e especiais (longa duração). A tabela 5.3 exibe os parâmetros de compressibilidade (C_c , C_r , C_s , CR e σ'_{vm}) determinados a partir das curvas de 24 h. Como os domínios normalmente adensado e sobreadensado não são retilíneos, a figura 5.2 esclarece o método utilizado para o cálculo de C_c , C_r e C_s . Após, exibem-se as figuras 5.3 a 5.32, que retratam cada um destes ensaios por meio de curvas de compressão ($e \ x \ \sigma'_v$) e de coeficiente de adensamento ($c_v \ x \ \sigma'_v$). As curvas de deformação ao longo do tempo ($\varepsilon_v \ x \ t$) são apresentadas somente nos estágios especiais em que houve aplicação de carregamento seguida de descarregamento com observação a longo prazo (3 meses), com a indicação das $\dot{\varepsilon}_v$ utilizadas no traçado das curvas de compressão. Em função da sobreposição que ocorre entre as curvas de compressão de 24 h e de igual $\dot{\varepsilon}_v$, julgou-se conveniente apresentar aquelas de maneira isolada em um primeiro momento, e apenas posteriormente compilar o conjunto de curvas de um mesmo ensaio.

Para fins de comparação e de análise, foram geradas as curvas 5.33 a 5.35, que apresentam de maneira simultânea as curvas de compressão dos seis ensaios nos formatos monologarítmico (tradicional), bilogarítmico (com o volume específico no lugar do índice de vazios) e normalizado. Com os mesmos propósitos, são apresentadas as curvas 5.36 e 5.37, que aglutinam os resultados de coeficiente de adensamento. Por fim, a variação do índice de vazios ao longo do tempo ($\Delta e x t$) nos estágios de descarregamento de longa duração recebe ênfase nas figuras 5.38 a 5.40.

СР	z (m)	w (%)	e_0	S (%)	γ_n (kN/m ³)	$\gamma_d (kN/m^3)$
1	11.38	110	2.78	100	14.0	6.6
2	11.34	98	2.46	100	14.3	7.2
3	11.30	92	2.30	100	14.6	7.6
4	11.26	84	2.09	100	14.9	8.1
5	11.22	81	2.04	100	14.9	8.3
6	11.18	77	1.93	100	15.2	8.6
-	11.14	76	-	-	-	-
-	11.09	75	-	-	-	-
-	11.05	76	-	-	-	-

Tabela 5.2 – Índices físicos dos corpos de prova⁴⁴ submetidos à compressão edométrica, moldados a partir da mesma amostra

Nota: CP – corpo de prova; Z – profundidade; w – teor de umidade; e_0 – índice de vazios inicial; S – grau de saturação; γ_n – peso específico natural; γ_d – peso específico aparente seco.

⁴⁴ Embora nenhum corpo de prova tenha sido moldado na porção superior do tubo amostrador, vale lembrar que foram realizadas medidas adicionais de teor de umidade em três profundidades distintas apenas para um detalhamento maior do perfil de amostragem, já que havia essa possibilidade.

Figura 5.2 – Método para determinação de C_C , C_r e C_S

Tabela 5.3 – Parâmetros de compressibilidade dos ensaios	de compressão	edométrica a partir	das curvas
de 24 h			

СР	z (m)	Cc	C _r	Cs	$CR = \frac{C_C}{1+e_0}$	σ'_{vm} (kPa)	
CI						Casagrande	Pacheco Silva
1	11.38	1.95	0.18	0.21	0.52	90	85
2	11.34	1.55	0.14	0.16	0.45	97	93
3	11.30	1.47	0.13	-	0.45	98	94
4	11.26	1.42	0.09	0.13	0.46	100	98
5	11.22	1.55	0.08	0.08	0.51	106	104
6	11.18	1.37	0.08	0.10	0.47	106	104

Figura 5.4 – Curvas de coeficiente de adensamento ($c_v \ x \ \sigma'_v$) – CP1

Figura 5.5 – Curvas de compressão ($e \ x \ \sigma'_v$) – CP1

Figura 5.7 – Curvas de coeficiente de adensamento $(c_v \ x \ \sigma'_v)$ – CP2

Figura 5.8 – Curvas de compressão ($e \ x \ \sigma'_{v}$) – CP2

Figura 5.9 – Curva de compressão ($e \ x \ \sigma'_v$) – CP3

Figura 5.10 – Curvas de coeficiente de adensamento ($c_v \propto \sigma'_v$) – CP3

Figura 5.11 – Curvas de compressão ($e \ x \ \sigma'_{v}$) – CP3

Figura 5.12 – Curva $\varepsilon_v x t$ do CP3: carregamento de 150 para 200 kPa com monitoramento de 3 meses sob OCR = 1.0

Figura 5.13 – Curva $\varepsilon_v x t$ do CP3: carregamento de 200 para 400 kPa com monitoramento de 3 meses sob OCR = 1.0

Figura 5.14 – Curva $\varepsilon_v x t$ do CP3: carregamento de 400 para 800 kPa com monitoramento de 3 meses sob OCR = 1.0

Figura 5.15 – Curva de compressão ($e \ x \ \sigma'_v$) – CP4

Figura 5.16 – Curvas de coeficiente de adensamento ($c_v \propto \sigma'_v$) – CP4

Figura 5.17 – Curvas de compressão ($e \ x \ \sigma'_{v}$) – CP4

Figura 5.18 – Curva $\varepsilon_v x t$ do CP4: carregamento de 200 para 500 kPa, seguido de descarregamento de 500 para 200 kPa, com monitoramento de 3 meses sob OCR = 2.5

Figura 5.19 – Curva $\varepsilon_v x t$ do CP4: carregamento de 500 para 1000 kPa, seguido de descarregamento de 1000 para 400 kPa com monitoramento de 3 meses sob *OCR* = 2.5

Figura 5.20 – Curva $\varepsilon_v x t$ do CP4: carregamento de 1000 para 2000 kPa, seguido de descarregamento de 2000 para 800 kPa com monitoramento de 3 meses sob OCR = 2.5

Figura 5.21 – Curva de compressão ($e \ x \ \sigma'_v$) – CP5

Figura 5.22 – Curvas de coeficiente de adensamento ($c_v \propto \sigma'_v$) – CP5

Figura 5.23 – Curvas de compressão ($e \ x \ \sigma'_{v}$) – CP5

Figura 5.24 – Curva $\varepsilon_v x t$ do CP5: carregamento de 200 para 300 kPa, seguido de descarregamento de 300 para 200 kPa, com monitoramento de 3 meses sob OCR = 1.5

Figura 5.25 – Curva $\varepsilon_v x t$ do CP5: carregamento de 300 para 600 kPa, seguido de descarregamento de 600 para 400 kPa, com monitoramento de 3 meses sob OCR = 1.5

Figura 5.26 – Curva $\varepsilon_v x t$ do CP5: carregamento de 600 para 1200 kPa, seguido de descarregamento de 1200 para 800 kPa, com monitoramento de 3 meses sob OCR = 1.5

Figura 5.27 – Curva de compressão (e x σ'_{v}) – CP6

Figura 5.28 – Curvas de coeficiente de adensamento ($c_v \ x \ \sigma'_v$) – CP6

Figura 5.29 – Curvas de compressão ($e \ x \ \sigma'_v$) – CP6

Figura 5.30 – Curva $\varepsilon_v x t$ do CP6: carregamento de 200 para 400 kPa, seguido de descarregamento de 400 para 200 kPa, com monitoramento de 3 meses sob OCR = 2.0

Figura 5.31 – Curva $\varepsilon_v x t$ do CP6: carregamento de 400 para 800 kPa, seguido de descarregamento de 800 para 400 kPa, com monitoramento de 3 meses sob OCR = 2.0

Figura 5.32 – Curva $\varepsilon_v x t$ do CP6: carregamento de 800 para 1600 kPa, seguido de descarregamento de 1600 para 800 kPa, com monitoramento de 3 meses sob OCR = 2.0

Figura 5.33 – Curvas de compressão ($e \ x \ \sigma'_v$) dos seis ensaios

Figura 5.34 – Curvas de compressão ($v \ x \ \sigma'_v$) dos seis ensaios em escala bilogarítmica, utilizando-se o volume específico

Figura 5.35 – Curvas de compressão normalizadas $(e/e_0 \ x \ \sigma'_{\nu})$ dos seis ensaios

Figura 5.36 – Curvas de coeficiente de adensamento ($c_v \ x \ \sigma'_v$) via método de Casagrande dos seis ensaios

Figura 5.37 – Curvas de coeficiente de adensamento ($c_v \ x \ \sigma'_v$) via método de Taylor dos seis ensaios

Figura 5.38 – Variação do índice de vazios com o tempo ($\Delta e \ x \ t$) sob adensamento secundário durante 3 meses – estágio de 200 kPa

Figura 5.39 – Variação do índice de vazios com o tempo ($\Delta e \ x \ t$) sob adensamento secundário durante 3 meses – estágio de 400 kPa

Figura 5.40 – Variação do índice de vazios com o tempo ($\Delta e \ x \ t$) sob adensamento secundário durante 3 meses – estágio de 800 kPa

5.1.3 Expressão de Martins (1983) revisitada

Sobre as curvas de compressão de 24 h e de igual $\dot{\varepsilon}_v$ dos seis ensaios de adensamento, aplicou-se o modelo de Martins (1983) revisitado, que tem como base a expressão 3.4, conforme o roteiro apresentado no capítulo 4. Os parâmetros resultantes (Ω , $\psi \in C_0$) são exibidos na tabela 5.4.

A partir destes, foi possível plotar as suas respectivas estimativas de domínio virgem da curva de compressão. Elas são apresentadas nas figuras 5.41 a 5.46, em conjunto com a curva de referência de 24 h associada a cada ensaio de adensamento realizado.

СР	Curva	Ω	ψ (kPa) x 10 ⁴	C ₀ (kPa)
	24 h	5.63	8.14	-56.4
1	$\dot{\varepsilon}_v = 10^{-6} s^{-1}$	5.61	8.75	-58.9
	$\dot{\varepsilon}_v = 10^{-7} s^{-1}$	5.72	9.20	-57.5
	24 h	5.38	5.40	-34.0
2	$\dot{\varepsilon}_v = 10^{-6} s^{-1}$	5.36	5.79	-34.4
	$\dot{\varepsilon}_v = 10^{-7} s^{-1}$	5.23	4.99	-25.7
	24 h	5.84	6.32	-39.6
	$\dot{\varepsilon}_v = 10^{-6} s^{-1}$	5.75	6.50	-37.3
3	$\dot{\varepsilon}_v = 10^{-7} s^{-1}$	6.03	7.22	-51.1
	$\dot{\varepsilon}_v = 10^{-8} s^{-1}$	6.04	6.69	-45.6
_	$\dot{\varepsilon}_v = 10^{-9} s^{-1}$	5.58	4.59	-13.1
	24 h	5.52	3.91	-33.7
4	$\dot{\varepsilon}_v = 10^{-6} s^{-1}$	5.51	4.26	-32.5
4	$\dot{\varepsilon}_v = 10^{-7} s^{-1}$	5.54	4.01	-36.6
_	$\dot{\varepsilon}_v = 10^{-11} s^{-1}$	5.95	2.29	-30.9
	24 h	6.12	5.55	-56.1
5	$\dot{\varepsilon}_v = 10^{-6} s^{-1}$	6.20	6.38	-58.7
5	$\dot{\varepsilon}_v = 10^{-7} s^{-1}$	6.29	6.36	-62.5
_	$\dot{\varepsilon}_v = 10^{-10} s^{-1}$	6.47	4.70	-58.8
	24 h	5.99	4.54	-46.6
6	$\dot{\varepsilon}_v = 10^{-6} s^{-1}$	5.93	4.80	-42.7
U	$\dot{\varepsilon}_v = 10^{-7} s^{-1}$	6.01	4.67	-48.0
	$\dot{\varepsilon}_v = 10^{-11} s^{-1}$	6.79	3.78	-58.6

Tabela 5.4 – Parâmetros do modelo de Martins (1983) revisitado

Figura 5.41 – Modelo de Martins revisitado (MM) aplicado às curvas de compressão ($e \ x \ \sigma'_v$) – CP1

Figura 5.42 – Modelo de Martins revisitado (MM) aplicado às curvas de compressão ($e \ x \ \sigma'_v$) – CP2

Figura 5.43 – Modelo de Martins revisitado (MM) aplicado às curvas de compressão ($e \ x \ \sigma'_v$) – CP3

Figura 5.44 – Modelo de Martins revisitado (MM) aplicado às curvas de compressão ($e \ x \ \sigma'_v$) – CP4

Figura 5.45 – Modelo de Martins revisitado (MM) aplicado às curvas de compressão ($e \ x \ \sigma'_v$) – CP5

Figura 5.46 – Modelo de Martins revisitado (MM) aplicado às curvas de compressão ($e \ x \ \sigma'_v$) – CP6

5.1.4 Limite de liquidez físico, índice de vazios máximo e C_0^*

O ensaio de limite de liquidez foi realizado com o objetivo de, em primeiro lugar, obter o limite de liquidez convencional (w_L), e de, em segundo lugar, obter o limite de liquidez físico (w_L^*). O w_L , correspondente a 25 golpes para fechamento da ranhura no aparelho de Casagrande, resultou igual a 154%, segundo consta na seção inicial deste capítulo, que versou sobre as propriedades físicas do solo.

Quanto à determinação de w_L^* , durante o ensaio buscou-se o menor número possível de golpes para fechamento da ranhura, atingindo-se um mínimo de dois. A figura 5.46 apresenta os resultados fazendo referência aos pontos com número de golpes maior e menor que 15, tendo em vista que este é o limite mínimo prescrito pela NBR 6459 (ABNT, 2016).

A faixa de pontos com número de golpes superior a 15 foi utilizada na determinação de w_L , e dela produziu-se um ajuste linear. A faixa de pontos com número de golpes menor que 15 também produziu um ajuste linear, mas com intercepto e coeficiente angular claramente distintos da primeira. Além do ajuste bilinear, a figura 5.47 apresenta um ajuste exponencial. Ambos permitiram extrapolações até o número de golpes unitário que resultaram, de maneira aproximada, no mesmo valor de w_L^* : 173 %.

Sabendo-se que $w_L^* = 173$ % e G = 2.558, calculou-se o índice de vazios máximo por meio da expressão 3.10, resultando em $e_{máx} = 4.4$. Posto isso, foi possível calcular C_0^* por meio da expressão 3.6, tomando-se os mesmos valores de ψ e Ω que foram apresentados na tabela 5.4. Os resultados são exibidos na tabela 5.5.

Figura 5.47 – Ajustes aplicados ao diagrama N° golpes x umidade para determinação de w_L^*

СР	Curva	Ω	ψ (kPa) x 10 ⁴	C_0^* (kPa)
	24 h	5.63	8.14	6.2
1	$\dot{\varepsilon}_{v} = 10^{-6} s^{-1}$	5.61	8.75	6.9
	$\dot{\varepsilon}_{v} = 10^{-7} s^{-1}$	5.72	9.20	6.0
	24 h	5.38	5.40	6.1
2	$\dot{\varepsilon}_{v} = 10^{-6} s^{-1}$	5.36	5.79	6.9
	$\dot{\varepsilon}_v = 10^{-7} s^{-1}$	5.23	4.99	7.4
	24 h	5.84	6.32	3.4
	$\dot{\varepsilon}_v = 10^{-6} s^{-1}$	5.75	6.50	4.0
3	$\dot{\varepsilon}_v = 10^{-7} s^{-1}$	6.03	7.22	2.8
	$\dot{\varepsilon}_v = 10^{-8} s^{-1}$	6.04	6.69	2.5
	$\dot{\varepsilon}_v = 10^{-9} s^{-1}$	5.58	4.59	3.8
	24 h	5.52	3.91	3.6
4	$\dot{\varepsilon}_v = 10^{-6} s^{-1}$	5.51	4.26	4.0
4	$\dot{\varepsilon}_v = 10^{-7} s^{-1}$	5.54	4.01	3.5
	$\dot{\varepsilon}_v = 10^{-11} s^{-1}$	5.95	2.29	1.00
	24 h	6.12	5.55	1.8
5	$\dot{\varepsilon}_v = 10^{-6} s^{-1}$	6.20	6.38	1.9
5	$\dot{\varepsilon}_v = 10^{-7} s^{-1}$	6.29	6.36	1.6
	$\dot{\varepsilon}_v = 10^{-10} s^{-1}$	6.47	4.70	0.9
	24 h	5.99	4.54	1.9
6	$\dot{\varepsilon}_{v} = 10^{-6} s^{-1}$	5.93	4.80	2.2
U	$\dot{\varepsilon}_{v} = 10^{-7} s^{-1}$	6.01	4.67	1.9
	$\dot{\varepsilon}_v = 10^{-11} s^{-1}$	6.79	3.78	0.4

Tabela 5.5 – Valores de C_0^*

5.2 DISCUSSÕES

5.2.1 Propriedades geotécnicas

Da curva de distribuição granulométrica (figura 5.1), observa-se que a amostra apresenta 73 % de fração argilosa, 23 % de silte e um percentual mínimo de areia fina (4 %). Assim, de acordo com o sistema unificado de classificação de solos (USCS), regido pela D 2487 (ASTM, 2000), este solo pode ser classificado como uma argila de alta plasticidade (*CH*). E visto que sua atividade é igual a 1.38, acaba por enquadrar-se no grupo das argilas ativas.

A umidade natural (*w*) variou de 75 % a 110 %, enquanto que o índice de vazios inicial (e_0) variou de 1.93 a 2.78. Na figura 5.48, que apresenta um perfil destas e das demais propriedades-índice do solo ao longo da vertical de amostragem (o próprio Shelby), observa-se que ambas apresentam crescimento com o aumento da profundidade (*z*). Por outro lado, o peso específico natural (γ_n) variou de 14 a 15.2 kN/m³, exibindo tendência inversa e consistente com as variações de e_0 e *w*.

No tocante aos parâmetros de compressibilidade, encontrou-se um valor médio de tensão de sobreadensamento de 98 kPa. Os valores calculados pelo método de Casagrande resultaram ligeiramente superiores aos valores calculados pelo método de Pacheco Silva. Este último, como é sabido, tem a vantagem de ser independente do operador, de modo que seus resultados não estão sujeitos a critérios pessoais.

Ainda analisando-se a figura 5.48, nota-se que o índice de compressão (C_C) apresenta crescimento com o aumento da profundidade, de forma coerente com a variação de e_0 e w. Os outros parâmetros (C_S , C_r e CR) são aproximadamente constantes, embora, a rigor, o mesmo padrão de variação também seja observado, mas de maneira menos acentuada. De toda sorte, os valores de CR apresentam menor dispersão e, por esta razão, deveriam ser considerados como mais representativos da compressibilidade do material, conforme preconizam Martins *et al.* (2006). Por fim, os valores elevados de C_C e CR sugerem a presença do argilomineral montmorilonita na composição do solo.

Sabe-se que C_c é tanto maior quanto maior for o valor de *w*. Se os pares C_c e *w* deste trabalho forem inseridos na carta de Silva (2013), conforme figura 5.49, nota-se que eles adequam-se de maneira satisfatória à proposta do referido autor, pois se situam dentro da região que contém 90% do banco de dados original, delimitada pelas retas de ajuste superior e inferior. Silva (2013) definiu a relação entre C_c e *w* a partir de amostras indeformadas de argila de alta qualidade, e justificou matematicamente a razão pela qual o coeficiente linear da equação de ajuste deve ser diferente de zero. Almeida *et al.* (2008) também possuem uma proposta desse gênero, embora deva ser encarada com cautela, pois parte do pressuposto de que o coeficiente linear é nulo, algo impossível do ponto de vista analítico (SILVA, 2013).

A figura 5.33, que exibe as curvas de compressão dos seis ensaios concomitantemente, é reflexo do processo de adensamento ainda em curso que se verifica no depósito de

argila da Ilha do Fundão. O fato delas estarem plotadas como se estivessem, *grosso modo*, transladas verticalmente umas em relação às outras, é consequência direta do fenômeno observado em campo. Em 2000 adicionou-se uma camada significativa de aterro na área para construção do Parque Tecnológico, bem como em 2010 e 2012, sendo estas duas correspondentes ao aterro de regularização do terreno e ao edifício da TechnipFMC, respectivamente. Desde então, fissuras e recalques importantes têm sido observados na estrutura do referido edifício.

Viu-se que a umidade e o índice de vazios crescem significativamente com o aumento da profundidade. Numa distância vertical de 20 cm, entre o índice de vazios correspondente à profundidade 11.18 m ($e_0 = 1.93$) e aquele correspondente à profundidade 11.38 m ($e_0 = 2.78$), no bico do amostrador, há uma diferença de cerca de 44%. Ora, isso é exatamente o oposto do que se espera em perfis *e x z e w x z* onde não há adensamento. Ademais, *w* parece estabilizar no terço inicial da amostra e a tensão de sobreadensamento diminui com o aumento da profundidade. Esses resultados podem ser interpretados à luz da teoria do adensamento unidimensional de Terzaghi e Frölich (1936), significando que o processo de adensamento está mais avançado próximo à fronteira drenante superior, no topo do tubo amostrador. Portanto, a camada de turfa, material tipicamente muito compressível, provavelmente apresenta permeabilidade superior à da argila.

Apesar do processo de adensamento ainda em curso, as curvas de compressão são muito similares quando normalizadas pelo índice de vazios inicial de cada corpo de prova, conforme figura 5.35. Fica evidente a maior compressibilidade do CP1, denotada não só graficamente, mas expressa também pelos seus índices mais elevados de compressão, descarregamento e recompressão.

O coeficiente de adensamento vertical foi determinado pelos métodos de Casagrande e Taylor. Por meio das figuras 5.36 e 5.37, fica claro que o comportamento é bem definido por dois patamares horizontais: um na região sobreadensada, em que σ'_v é menor que aproximadamente 100 kPa, e outro na região normalmente adensada, em que σ'_v atinge valores superiores a este. Na região sobreadensada, c_v assume valores médios médios de 8.7 x 10⁻⁴ cm²/s, conforme Casagrande, e 14.1 x 10⁻⁴ cm²/s, conforme Taylor. Na região normalmente adensada, c_v tem uma queda acentuada e assume valores médios de 1.0 x 10⁻⁴ cm²/s, de acordo com Casagrande, e 1.4 x 10⁻⁴ cm²/s, segundo Taylor. O método de Taylor produz valores de c_v superiores ao método de Casagrande em virtude da utilização do tempo relativo a 90% (t₉₀) do processo de adensamento primário no seu roteiro de cálculo, o que reduz o efeito do adensamento secundário na curva de adensamento e, consequentemente, nos resultados obtidos.

Verifica-se que o valor de c_v no estágio de 200 kPa é inferior ao patamar horizontal normalmente adensado, fruto do efeito da razão incremental de carregamento $(\Delta \sigma_v / \Delta \sigma'_v)$. Como no estágio de 150 kPa para 200 kPa o valor de $\Delta \sigma_v / \Delta \sigma'_v$ é igual a 0.33, permite-se que o adensamento secundário se manifeste com maior intensidade, refletindo em valores de c_v inferiores à realidade.

Quanto à distinção de comportamento nos tramos normalmente adensado e sobreadensado, ela ocorre porque σ'_{vm} demarca uma alteração na compressibilidade do solo (*yielding*). No modelo Cam-Clay, este é um ponto a partir do qual há escoamento do material. Ainda assim, essa mudança não é exatamente abrupta, como apontou Butterfield (1979) na discussão sobre a inter-relação entre o coeficiente de compressibilidade volumétrica (m_v), a tensão efetiva e a tensão de sobreadensamento.

A tabela 5.6 apresenta uma compilação das propriedades geotécnicas da amostra, nos casos oportunos empregando valores médios. Já as tabela 5.7 e 5.8 são apropriadas para se comparar as propriedades de algumas argilas da costa brasileira e do estado do Rio de Janeiro, respectivamente, com as da argila da Ilha do Fundão. De maneira geral, observa-se que todas as propriedades desta argila, sendo ela sedimentar holocênica e de origem flúvio-marinha, estão compreendidas dentro da faixa típica de valores característicos observados em outros solos de origem similar.

N _{SPT}	0-3		
G	2.558		
<i>w_L</i> (%)	154		
<i>w</i> _{<i>P</i>} (%)	53		
<i>IP</i> (%)	101		
FA (%)	73		
A	1.38		
<i>TMO</i> (%)	3.8		
Classificação USCS	СН		
w (%)	85		
<i>e</i> ₀	2.27		
S (%)	100		
$\gamma_n (kN/m^3)$	14.7		
$\gamma_d (kN/m^3)$	7.7		
C _C	1.55		
C _r	0.12		
Cs	0.14		
$CR = \frac{C_C}{1 + e_0}$	0.48		
σ'_{vm} (kPa)	98		
- (2/) 10-4	1.2 (NA)		
$c_v (cm^2/s) \ge 10^{-1}$	11.4 (SA)		

Tabela 5.6 – Propriedades geotécnicas médias da argila da Ilha do Fundão, RJ

Figura 5.48 – Propriedades geotécnicas da argila da Ilha do Fundão (RJ) em perfil vertical

Figura 5.49 – Inserção dos pares C_c e w obtidos para a argila da Ilha do Fundão na carta elaborada por Silva (2013) (fonte: adaptada de Silva, 2013, p. 160)

Locais	Ilha do Fundão (RJ)	Canal do Porto de Santos (SP)	Aeroporto Hercílio Luz, Florianópolis (SC)	Ceasa, Porto Alegre (RS)	Porto de Rio Grande (RS)	Recife (PE)	Porto de Sergipe (SE)
Referências	Este trabalho	Andrade (2009); Aguiar (2008)	Espíndola (2011)	Soares (1997)	Lacerda; Almeida (1995)	Lacerda; Almeida (1995)	Lacerda; Almeida (1995)
Propriedades do solo							
Espessura de argila (m)	15	9		9	40	19	7
W (%)	85	82 - 102	75 – 93	50 - 135	45 - 85	40 - 100	40 - 60
W_L (%)	154	96 – 117	38 - 37	40 - 135	40 - 90	50 - 120	50 - 90
<i>IP</i> (%)	101	67 – 81	20 - 54	45 - 90	20 - 60	15 - 66	20 - 70
FA (%)	73	44 - 59	12 – 19	36 - 72	34 - 96	40 - 70	65
$\gamma_n (kN/m^3)$	14.7	14.2 - 15.7	14 – 15	13.6 - 15.5	15 - 17.8	15.1 - 16.4	16
<i>TMO</i> (%)	3.8	4 - 5.8	2.8 - 6.2	0.4 - 5.0		3 - 10	
<i>e</i> ₀	2.27	1.9 - 2.6	2 - 2.4	2.2 - 3.3			
CR	0.48	0.45 - 0.68	0.03 - 0.04	0.28 - 0.55	0.31 - 0.38	0.45	0.31 - 0.43
C_r/C_c	0.08	0.06 - 0.32					
$c_v (\text{cm}^2/\text{s}) \ge 10^{-4}$	1.2 - 11.4	1 - 100	0.1 - 0.9	0.1 - 69.1			

Tabela 5.7 - Características geotécnicas de alguns depósitos de argilas moles marinhas brasileiras (fonte: adaptada de Almeida; Marques, 2014)

Locais	Ilha do Fundão (RJ)	Sarapuí	Sarapuí II	Costa Norte da Baía de Guanabara	Juturnaíba	Caju	Uruguaiana	Botafogo	Santa Cruz (Zona 1)
Referências	Este trabalho	Almeida; Marques (2003)	Jannuzzi <i>et al.</i> (2015)	Aragão (1975)	Coutinho; Lacerda (1987)	Lira (1988); Cunha; Lacerda (1988)	Vilela (1976)	Lins; Lacerda (1980)	Aragão (1975)
Propriedades do solo									
Espessura de argila (m)	15	12	6.5 – 10	8.5	7	12	9	6	15
W (%)	85	143 ± 21.7	60	113	154 ± 95.6	88	54.8 ± 19.5	35	112
W_L (%)	154	120 ± 18	105 - 210	122	132 ± 44	107	71 ± 30	38	60
<i>IP</i> (%)	101	73 ± 16	60 - 170	81	64 ± 22	67	40 ± 22	11	32
FA (%)	73	70	60	35	60.7 ± 12.74		39.4 ± 10.11	28	
$\gamma_n (kN/m^3)$	14.7	13.1 ± 0.49	12.7 – 14.8	13.2	12.5 ± 1.87	14.81	16.1 ± 1.39	17.0	13.2
<i>TMO</i> (%)	3.8		5 - 18		19 ± 10.63		2.56 ± 1.04		
<i>e</i> ₀	2.27	3.71 ± 0.57	2.4 - 4.8	2.91	3.74 ± 1.98	2.38	1.42 ± 0.36	1.1	3.09
CR	0.48	0.41 ± 0.07	0.51 - 0.60	0.26 ± 0.15	0.31 ± 0.12	0.267	0.31 ± 0.15	0.16	0.32
C_r/C_c	0.08	0.15 ± 0.02		0.16 ± 0.04	0.07 ± 0.06	0.21		0.19	0.10
$c_v (\text{cm}^2/\text{s}) \ge 10^{-4}$	1.2 - 11.4	9		0.4	1 - 10			30	

Tabela 5.8 - Características geotécnicas de alguns depósitos de argilas moles do estado do Rio de Janeiro (fonte: adaptada de Futai et al., 2001)

5.2.2 Qualidade das amostras

Na figura 5.33 nota-se que o domínio virgem de todas as curvas de compressão é côncavo quando plotadas na escala tradicional (monologarítmica), o que atesta preliminarmente a boa qualidade da amostragem, conforme discussão de Martins e Lacerda (1994). Curvas com aspecto similar já foram encontradas por um sem-número de autores que estudaram depósitos sedimentares não só da costa brasileira, como também de outros locais (vide figura 3.6 da argila de Bothkennar).

Quando as curvas de compressão são plotadas em escala bilogarítmica (figura 5.34), as concavidades dos domínios virgem e até mesmo sobreadensado são claramente suavizadas, quase ao ponto de haver uma "retificação". Isso está plenamente de acordo com as evidências empíricas encontradas por Butterfield (1979). Segundo ele, trabalhar com os parâmetros \not{a}_c , \not{a}_r e \not{a}_s – provenientes da curva de compressão $v(ln) x \sigma'_v(ln)$ e análogos aos parâmetros de compressibilidade convencionais – é mais coerente, já que nesta condição eles representam de maneira mais fidedigna a curva de compressão correspondente.

A demonstração analítica de Martins (1983), expressa pela equação 3.5, também é de grande valia nessa discussão. Como se viu, mesmo utilizando-se escala bilogarítmica a concavidade das curvas de compressão não é completamente eliminada. Não poderia ser de outra maneira, já que o parâmetro C_0 resultou diferente de zero em todas as curvas de compressão nas quais a formulação de Martins (1983) revisitada foi aplicada. Ou seja, se houvesse uma supressão completa da concavidade, então do ponto de vista matemático $C_0 = 0$, obrigatoriamente.

As avaliações de qualidade da amostragem são apresentadas na tabela 5.9. Verifica-se que a qualidade dos corpos de prova 4, 5 e 6 é, em geral, superior a dos corpos de prova 1, 2 e 3. Isso é decorrente do balanço entre os efeitos principais gerados pelo amolgamento durante a operação de amostragem, conforme Ladd e DeGroot (2003). Salienta-se que as variações de e_0 , $w \in \gamma_n$ observadas na figura 5.48 não podem ser atribuídas ao processo de amolgamento porque ele é não-drenado, portanto, sem variação de volume.

No cálculo de $\Delta e/e_0$ considerou-se a tensão vertical efetiva *in-situ* de cada corpo de prova como igual à sua tensão de sobreadensamento em laboratório, já que o depósito em questão ainda encontra-se em processo de adensamento (OCR = 1.0). Esse procedimento produz valores de $\Delta e/e_0$ maiores do que a realidade, pois o fenômeno no campo se estabelece com velocidade muito inferior à de laboratório e, segundo Leroueil *et al.* (1985), a tensão de sobreadensamento diminui com a redução de $\dot{\varepsilon}_v$. Portanto, a qualidade real das amostras é igual ou superior ao que consta na tabela 5.9.

	Z (m)	Qualidade							
СР		Lunne et al. (1997)	Coutinho (2007)	Andrade (2009)	$\frac{\Delta e}{e_0}$				
1	11.38	Boa a regular	Boa a regular	Muito boa a boa	0.061				
2	11.34	Boa a regular	Boa a regular	Muito boa a boa	0.053				
3	11.30	Boa a regular	Boa a regular	Muito boa a boa	0.065				
4	11.26	Boa a regular	Boa a regular	Muito boa a boa	0.053				
5	11.22	Boa a regular	Boa a regular	Muito boa a boa	0.054				
6	11.18	Boa a regular	Muito boa a excelente	Muito boa a excelente	0.047				

Tabela 5.9 - Qualidade dos corpos de prova

5.2.3 Curvas de compressão de igual $\dot{\varepsilon}_v$ e adensamento secundário

Como indicado nos resultados, as curvas de igual velocidade de deformação volumétrica específica $(\dot{\varepsilon}_v)$ correspondentes a $10^{-6}s^{-1}$ e $10^{-7}s^{-1}$, foram traçadas para os ensaios convencionais e especiais, levando-se em conta todos os estágios de carregamento. Em primeiro lugar, cabe destacar o paralelismo aproximado entre as duas curvas que se verifica em cada um dos ensaios. Em segundo lugar, nota-se que a curva de $\dot{\varepsilon}_v = 10^{-7}s^{-1}$ por vezes se confunde com a curva de 24 h, indicando que tal velocidade é atingida sistematicamente com um intervalo de tempo próximo de 24 h, mas não necessariamente igual (para distâncias de drenagem da ordem de 1 cm).

Vale lembrar que nos ensaios especiais os corpos de prova foram submetidos a quatro valores de *OCR* distintos (1.0, 1.5, 2.0 e 2.5), com o intuito principal de localizar a curva de final de secundário com maior acurácia (*EOS*). Os valores de *OCR* maiores que 1.0 foram alcançados por meio de descarregamentos apropriados, ao passo que para atingir OCR = 1.0 bastou ultrapassar a tensão de sobreadensamento, cujo valor médio é de 98 kPa. Estes descarregamentos foram gerados de modo que as tensões efetivas

finais fossem, em cada estágio, iguais a 200 kPa, 400 kPa e 800 kPa. Em cada um destes três estágios de carga, os corpos de prova foram mantidos sob adensamento secundário durante 3 meses, totalizando um período de quase 10 meses de observações considerando os estágios intermediários de carga e recarga. O que se verá a seguir é que o *OCR* influencia de maneira marcante o comportamento de todos os corpos de prova, gerando padrões muito característicos. Um resumo dos resultados e dos procedimentos está apresentado na tabela 5.10.

O corpo de prova 3 (CP3), que foi submetido a adensamento secundário com OCR = 1.0, apresentou apenas deformações de compressão nos estágios de longa duração. Nas figuras 5.12, 5.13 e 5.14, o que se verifica é que tanto na compressão primária, como na secundária, $\dot{\varepsilon}_v$ decresceu paulatinamente. No entanto, isso não significa que uma mesma potência inteira de $\dot{\varepsilon}_v$ tenha sido alcançada em intervalos de tempo iguais em cada um dos três níveis de tensão efetiva. A título de exemplo, o valor de $\dot{\varepsilon}_v = 10^{-9}s^{-1}$ foi alcançado com cerca de 89 dias no estágio de 200 kPa, mas no estágio de 400 kPa foi alcançado com 67 dias e no de 800 kPa, com 85 dias. Como a redução de $\dot{\varepsilon}_v$ se deu de maneira gradual, em função do *OCR* unitário, nos três estágios especiais de adensamento secundário foi possível o traçado de curvas consecutivas de igual $\dot{\varepsilon}_v$: $10^{-6}s^{-1}$, $10^{-7}s^{-1}$, $10^{-8}s^{-1}$ e $10^{-9}s^{-1}$.

Nos demais ensaios especiais, cujos valores de *OCR* foram superiores a 1.0, nota-se que antes do descarregamento $\dot{\varepsilon}_v$ também decresceu gradualmente e por isso foi possível a plotagem de curvas de $\dot{\varepsilon}_v = 10^{-6}s^{-1}$ e $10^{-7}s^{-1}$, tal qual nos ensaios convencionais. Após o descarregamento, em todos eles houve uma expansão primária cuja $\dot{\varepsilon}_v$ decresceu paulatinamente ao longo do tempo, até que as deformações cessassem.

Após a expansão primária, o corpo de prova 5 (CP5), que foi submetido a adensamento secundário com OCR = 1.5, tornou a comprimir – *i.e.*, apresentou compressão secundária – com $\dot{\varepsilon}_v$ da ordem de $10^{-10}s^{-1}$, e por isso curvas com $\dot{\varepsilon}_v = 10^{-8}s^{-1}$ e $10^{-9}s^{-1}$ não puderam ser calculadas. Quanto aos corpos de prova 4 e 6 (CP4 e CP6), submetidos a valores de OCR iguais a 2.5 e 2.0, respectivamente, após a expansão primária eles tornaram a comprimir com uma velocidade ainda mais baixa que o CP5, da ordem de $10^{-11}s^{-1}$. A compressão secundária destes dois corpos de prova também levou mais tempo para se manifestar do que no CP5.

Essas particularidades saltam aos olhos analisando-se as figuras 5.38, 5.39 e 5.40, que apresentam a variação de índice de vazios ao longo do tempo nos estágios de longa duração dos quatro ensaios especiais de maneira conjunta. Nos corpos de prova 4, 5 e 6, verifica-se que a magnitude da expansão primária é proporcional ao *OCR* gerado e que a velocidade de entrada na compressão secundária é inversamente proporcional a ele. Essas características estão dentro do esperado, tendo em vista os trabalhos precedentes de Johnson (1970), Vieira (1988) e Feijó (1991).

Nesse sentido, cabe destacar que os corpos de prova 3 e 5 encontram-se dentro da zona de compressão secundária proposta por Feijó (1991). Já os corpos de prova 4 e 6 possuem uma $\dot{\varepsilon}_v$ de entrada na compressão secundária tão baixa ($\dot{\varepsilon}_v = 10^{-11}s^{-1}$) que o comportamento poderia ser associado, de maneira aproximada, à zona de equilíbrio indiferente, em que $\dot{\varepsilon}_v = 0$. Além disso, a despeito dos seus *OCR* serem distintos, os comportamentos destes dois corpos de prova são essencialmente idênticos, excetuandose a magnitude da expansão primária.

Isso leva à hipótese de que, nos corpos de prova 4 e 6, $\dot{\varepsilon}_v$ seja de fato nula, e as ínfimas deformações observadas possam ser atribuídas não ao solo, mas à célula de adensamento e à prensa. A calibração do equipamento a longo prazo, com corpo de prova de aço, tem de ser realizada para dirimir essa dúvida, mas o autor desta dissertação só percebeu esse possível fenômeno após a execução dos ensaios. Portanto, essa é uma sugestão para futuras pesquisas.

De toda sorte, o que pode ser dito é que a linha de final de secundário da argila da Ilha do Fundão está associada a um valor de *OCR* muito próximo dos que foram gerados nestes dois ensaios. Para efeitos práticos, neste trabalho será considerada como linha de final de secundário aquela correspondente ao *OCR* de 2.0. Estes resultados são similares aos encontrados para as argilas de Sarapuí e do Senac (Barra da Tijuca, RJ), por Feijó (1991) e Garcia (1996), respectivamente, cujas linhas de *EOS* também correspondem a um *OCR* \cong 2.0.

Nos estágios de carregamento onde foram empregadas razões incrementais de carregamento $(\Delta \sigma_v / \sigma'_v)$ menores que 1.0, observou-se a influencia de $\Delta \sigma_v / \sigma'_v$ na forma da curva de adensamento, correspondendo a um formato algo intermediário entre os tipos II e III identificados por Leonards e Girault (1961). Estes são os casos, a título de

exemplo, dos estágios de 150 para 200 kPa do CP3 (figura 5.12), com $\Delta \sigma_v / \sigma'_v = 0.33$, e de 200 para 300 kPa do CP5 (figura 5.24), com $\Delta \sigma_v / \sigma'_v = 0.5$. Nas curvas de adensamento em que $\Delta \sigma_v / \sigma'_v \ge 1.0$, observa-se inequivocamente o formato do tipo I, caso do estágio de 200 para 500 kPa do CP4 (figura 5.18), por exemplo.

Além do paralelismo aproximado existente entre as curvas de compressão edométrica associadas às $\dot{\varepsilon}_v$ de $10^{-6}s^{-1}$ e $10^{-7}s^{-1}$ em todos os ensaios, convencionais e especiais, verifica-se que há também paralelismo aproximado entre estas e as demais curvas de compressão para $\dot{\varepsilon}_v$ de $10^{-8}s^{-1}$, $10^{-9}s^{-1}$, $10^{-10}s^{-1}$ e $10^{-11}s^{-1}$. Portanto, a tensão de sobreadensamento diminui com a redução de $\dot{\varepsilon}_v$. Isso significa que os resultados aqui encontrados enquadram-se dentro das abordagens de Bjerrum (1973), Leroueil *et al.* (1985) e do próprio Grupo de Reologia dos Solos da COPPE/UFRJ.

СР	Descarregamento (kPa)	Tensão Estágio (kPa)	OCR gerado	Tempo observação (dias)	Tempo reaparecimento secundário (dias)	$\dot{\varepsilon}_{v}$ reaparecimeto secundário (s ⁻¹)	έ _ν fim secundário (s ⁻¹)
3	_	200	1.0	91	_	—	1.1 x 10 ⁻⁹
4	500 - 200	200	2.5	91	55	1.8 x 10 ⁻¹¹	1.0 x 10 ⁻¹¹
5	300 - 200	200	1.5	91	5	7.2 x 10 ⁻¹⁰	$1.0 \ge 10^{-10}$
6	400 - 200	200	2.0	91	29	5.5 x 10 ⁻¹¹	5.3 x 10 ⁻¹¹
3	_	400	1.0	114	_	_	6.0 x 10 ⁻¹⁰
4	1000 - 400	400	2.5	110	37	6.9 x 10 ⁻¹¹	5.0 x 10 ⁻¹¹
5	600 - 400	400	1.5	110	4	3.0 x 10 ⁻¹⁰	7.3 x 10 ⁻¹¹
6	800 - 400	400	2.0	110	16	6.5 x 10 ⁻¹¹	2.0 x 10 ⁻¹¹
3	_	800	1.0	93	_	_	9.3 x 10 ⁻¹⁰
4	2000 - 800	800	2.5	91	35	3.9 x 10 ⁻¹¹	1.7 x 10 ⁻¹¹
5	1200 - 800	800	1.5	91	4	3.0 x 10 ⁻¹⁰	1.7 x 10 ⁻¹⁰
6	1600 - 800	800	2.0	91	17	6.4 x 10 ⁻¹¹	2.0 x 10 ⁻¹¹

Tabela 5.10 - Resumo dos ensaios de adensamento secundário

5.2.4 Tensão vertical efetiva viscosa

Em um ensaio de compressão edométrica sabe-se que, após o "fim" do adensamento primário, a poropressão é nula. Tendo em mente a abordagem do Grupo de Reologia dos Solos da COPPE/UFRJ, à medida que ocorre adensamento secundário, o número de contatos do tipo sólido aumenta e o número de contatos do tipo viscoso diminui, acarretando redução de $\dot{\varepsilon}_{v}$. Isso corresponde exatamente ao que foi observado nos ensaios desta dissertação.

Seja a equação 2.29, apresentada novamente:

$$\sigma = \sigma'_{s}(e) + \sigma'_{\eta}(e, \dot{e}_{v}) + u \tag{5.1}$$

Derivando-a em relação ao tempo, resulta:

$$\frac{d\sigma}{dt} = \frac{d\sigma'_s}{dt} + \frac{d\sigma'_\eta}{dt} + \frac{du}{dt}$$
(5.2)

No adensamento secundário, como a tensão vertical é constante e a variação de poropressão é nula, tem-se que:

$$\frac{d\sigma'_s}{dt} = -\frac{d\sigma'_\eta}{dt} \tag{5.3}$$

Portanto, no adensamento secundário há aumento da parcela de tensão efetiva sólida (σ'_s) às expensas de redução da parcela de tensão efetiva viscosa (σ'_η) . Para calcular o decaimento desta última ao longo do tempo, expresso pela equação 5.4, basta saber o seu valor inicial $(\sigma'_{\eta 0})$ e o valor de tensão efetiva viscosa transferida para a tensão efetiva sólida $(\Delta \sigma'_n)$.

$$\sigma'_{\eta} = \sigma'_{\eta 0} - \Delta \sigma'_{\eta} \tag{5.4}$$

Na explanação acerca da evolução da abordagem do Grupo de Reologia dos Solos da COPPE/UFRJ, viu-se que Aguiar (2008) encontrou uma forma de quantificar a transferência de tensão viscosa. Ao longo da marcha vertical do adensamento secundário na curva de compressão, uma estimativa pode ser feita através da equação 2.30, reapresentada logo abaixo (expressão 5.5). Para que ela seja mais realista, o valor

de C_c a ser empregado deve ser representativo do estágio de tensão associado ao adensamento secundário.

$$\Delta \sigma'_{\eta} = \sigma'_{\nu} \left(10^{\frac{\Delta e}{C_c}} - 1 \right) \tag{5.5}$$

Assim, a tarefa resume-se a calcular o valor inicial da parcela de tensão efetiva viscosa. Ora, $\sigma'_{\eta 0}$ nada mais é que a distância horizontal entre a curva de final de secundário e a curva de 24 h – ou uma curva de igual $\dot{\varepsilon}_{v}$ ou de EOP – em um dado estágio de tensão, com um *OCR* associado. Para expressar $\sigma'_{\eta 0}$ em função do *OCR* gerado no descarregamento, considere-se em primeiro lugar a figura 5.50.

Figura 5.50 – Esquema para a dedução da tensão vertical efetiva viscosa inicial no adensamento secundário $(\sigma'_{\eta 0})$

Sabe-se que:

$$\frac{\sigma'_{\nu}}{\sigma'_{A}} = OCR \tag{5.6}$$

$$z = \log \sigma_{\nu}' - \log \sigma_A' \tag{5.7}$$

$$x = \log \sigma'_B - \log \sigma'_A \tag{5.8}$$

Por semelhança de triângulos:

$$C_r \frac{y}{x} = C_c \frac{y}{z}$$

$$C_r z = C_c x$$
(5.9)

Assim:

$$C_r(\log\sigma'_{\nu} - \log\sigma'_A) = C_c(\log\sigma'_B - \log\sigma'_A)$$

$$C_r(\log \frac{\sigma'_{\nu}}{\sigma'_{A}}) = C_c(\log \frac{\sigma'_{B}}{\sigma'_{A}})$$
(5.10)

Mas como $\frac{\sigma'_{\nu}}{\sigma'_{A}} = OCR$, então:

$$C_{r}(logOCR) = C_{c} \left[log \left(\frac{\sigma'_{B}}{\sigma'_{v}} OCR \right) \right]$$

$$\frac{C_{r}}{C_{c}}(logOCR) = \left[log \left(\frac{\sigma'_{B}}{\sigma'_{v}} OCR \right) \right]$$
(5.11)

Logo:

$$\frac{\sigma_B'}{\sigma_v'} OCR = 10^{\left[\frac{C_r}{C_c}(logOCR)\right]}$$
$$\sigma_B' = \frac{\sigma_v'}{OCR} \ 10^{\left[\frac{C_r}{C_c}(logOCR)\right]}$$
(5.12)

Como $\sigma'_{\eta 0} = \sigma'_{v} - \sigma'_{B}$, então:

$$\sigma_{\eta 0}' = \sigma_{v}' - \frac{\sigma_{v}'}{OCR} \ 10^{\left[\frac{C_{r}}{C_{c}}(logOCR)\right]}$$

$$\sigma_{\eta 0}' = \sigma_{v}' \left\{ 1 - \frac{10}{OCR} \frac{\left[\frac{C_{r}}{C_{c}}(logOCR)\right]}{OCR} \right\}$$
(5.13)

Uma vez calculada $\sigma'_{\eta 0}$, é possível agora calcular σ'_{η} a partir da expressão 5.4:

$$\sigma_{\eta}' = \sigma_{\nu}' \left\{ 1 - \frac{10}{OCR} \left[\frac{C_r}{C_c} (logOCR) \right] \right\} - \sigma_{\nu}' \left(10^{\frac{\Delta e}{C_c}} - 1 \right)$$
(5.14)

Para a argila da Ilha do Fundão, estudada neste trabalho, viu-se que a sua linha de final de secundário está associada a um *OCR* de 2.0 em relação à curva de 24 h. Como foram plotadas curvas de igual $\dot{\varepsilon}_v$ e deseja-se acompanhar o processo de decaimento de σ'_{η} a partir da primeira delas, neste caso a de $\dot{\varepsilon}_v = 10^{-6}s^{-1}$, então o *OCR* deve ser corrigido. Em relação a essa curva ($\dot{\varepsilon}_v = 10^{-6}s^{-1}$), a linha de *EOS* possui um *OCR* = 2.2.

Posto isso, foram traçadas curvas de transferência da tensão vertical efetiva viscosa $(\Delta \sigma'_{\eta})$ para a tensão vertical efetiva sólida e da tensão vertical efetiva viscosa (σ'_{η}) ao longo do tempo, bem como de acordo com a velocidade de deformação volumétrica específica. Optou-se pelos estágios de longa duração do CP3 (*OCR* = 1.0), já que nestes não houve descarregamento e o secundário pode desenvolver-se plenamente ao longo de 3 meses de observação, gerando curvas sequenciais de igual $\dot{\varepsilon}_v$. A curva de $\dot{\varepsilon}_v = 10^{-6}s^{-1}$ foi tomada como ponto de partida do adensamento secundário porque corresponde à primeira potência inteira de 10 após o "fim" do adensamento primário. Os resultados são exibidos nas figuras 5.51 a 5.56.

Em primeiro lugar, nota-se que as curvas de $\Delta \sigma'_{\eta}$ e σ'_{η} , em função do tempo e de $\dot{\varepsilon}_{v}$, apresentam comportamento espelhado, já que o crescimento de uma parcela está conectado ao decaimento da outra. É digno de nota que, nos três estágios de tensão em que se permitiu a ocorrência de adensamento secundário, a tensão vertical efetiva viscosa inicial ($\sigma'_{\eta 0}$) corresponde, no início do processo, a mais de 50% da tensão vertical efetiva. Ademais, nota-se que nos três estágios de carregamento cerca de 2/3 do processo de transferência da tensão vertical efetiva viscosa para tensão vertical efetiva sólida, ocorre entre as curvas de $\dot{\varepsilon}_v = 10^{-6}s^{-1}$, $10^{-7}s^{-1}$ e $10^{-8}s^{-1}$, antes dos 15 mil minutos de duração de secundário. Dito de outra forma, aproximadamente 1/3 de $\Delta\sigma'_{\eta}$ é transferida entre as curvas de $\dot{\varepsilon}_v = 10^{-8}s^{-1}$ e $10^{-9}s^{-1}$, nos cerca de mais de 120 mil minutos restantes de ensaio. Ou seja, há uma clara redução da taxa de transferência à medida que $\dot{\varepsilon}_v$ diminui. Segundo a abordagem do Grupo de Reologia dos Solos da COPPE/UFRJ, esse processo só será findado quando $\dot{\varepsilon}_v = 0$.

As curvas $\Delta \sigma'_{\eta} x t$, $\sigma'_{\eta} x t$, $\Delta \sigma'_{\eta} x \dot{\varepsilon}_{v}$ e $\sigma'_{\eta} x \dot{\varepsilon}_{v}$ também podem ser normalizadas pela tensão vertical efetiva correspondente ao seu estágio de adensamento secundário. Os resultados são exibidos nas figuras 5.57 a 5.60. Nota-se que, uma vez normalizadas, todas as curvas se comportam de maneira muito semelhante, sugerindo a existência de funções únicas de descrição dos seus comportamentos. Isso corrobora o paralelismo existente entre as curvas de compressão de igual $\dot{\varepsilon}_{v}$.

Figura 5.51 – Tensão vertical efetiva viscosa (σ'_{η}) e tensão vertical efetiva viscosa transferida ($\Delta \sigma'_{\eta}$) ao longo do tempo durante o adensamento secundário do CP3: estágio de 200 kPa

Figura 5.52 – Tensão vertical efetiva viscosa (σ'_{η}) e tensão vertical efetiva viscosa transferida ($\Delta \sigma'_{\eta}$) de acordo com $\dot{\varepsilon}_{v}$ durante o adensamento secundário do CP3: estágio de 200 kPa

Figura 5.53 – Tensão vertical efetiva viscosa (σ'_{η}) e tensão vertical efetiva viscosa transferida ($\Delta \sigma'_{\eta}$) ao longo do tempo durante o adensamento secundário do CP3: estágio de 400 kPa

Figura 5.54 – Tensão vertical efetiva viscosa (σ'_{η}) e tensão vertical efetiva viscosa transferida ($\Delta \sigma'_{\eta}$) de acordo com $\dot{\varepsilon}_{v}$ durante o adensamento secundário do CP3: estágio de 400 kPa

Figura 5.55 – Tensão vertical efetiva viscosa (σ'_{η}) e tensão vertical efetiva viscosa transferida ($\Delta \sigma'_{\eta}$) ao longo do tempo durante o adensamento secundário do CP3: estágio de 800 kPa

Figura 5.56 – Tensão vertical efetiva viscosa (σ'_{η}) e tensão vertical efetiva viscosa transferida ($\Delta \sigma'_{\eta}$) de acordo com $\dot{\varepsilon}_{v}$ durante o adensamento secundário do CP3: estágio de 800 kPa

Figura 5.57 – Tensão vertical efetiva viscosa transferida ao longo do tempo normalizada por σ'_v $(\Delta \sigma'_\eta / \sigma'_v \ x \ t)$

Figura 5.58 – Tensão vertical efetiva viscosa transferida de acordo com $\dot{\varepsilon}_v$ normalizada por σ'_v $(\Delta \sigma'_{\eta} / \sigma'_v \ x \ \dot{\varepsilon}_v)$

Figura 5.59 – Tensão vertical efetiva viscosa ao longo do tempo normalizada por $\sigma'_v (\sigma'_\eta / \sigma'_v x t)$

Figura 5.60 – Tensão vertical efetiva viscosa de acordo com $\dot{\varepsilon}_v$ normalizada por σ'_v ($\sigma'_\eta/\sigma'_v x \dot{\varepsilon}_v$)

5.2.5 Curvas de previsão do domínio virgem

A tabela 5.4 e as figuras 5.41 a 5.46 exibem, respectivamente, os parâmetros obtidos da expressão de Martins (1983) revisitada e as estimativas de domínio virgem das curvas de compressão de 24 h e de igual $\dot{\varepsilon}_v$. Em primeiro lugar, nota-se que há uma fidedignidade muito grande das curvas produzidas pelo modelo em relação às curvas originárias. A concavidade característica destas é perfeitamente reproduzida por aquelas.

Diferentemente de Martins e Lacerda (1994), que encontraram valores de C_0 muito próximos de zero ao aplicarem a formulação de Martins em ensaios *CRS*, aqui a constante de integração não pode ser desprezada. Assim como Louvise (2015), todos os valores de C_0 encontrados resultaram negativos, inclusive na linha de final de secundário (*EOS*) – a linha correspondente a *OCR* = 2.0, do corpo de prova 4. Este é um ponto que será discutido na próxima seção.

O parâmetro ψ parece apresentar uma tendência de redução de valor de acordo com a diminuição de $\dot{\varepsilon}_v$. No entanto, esse padrão não se verifica em todos os casos, como por exemplo nos corpos de prova 1 e 2 e na curva de $\dot{\varepsilon}_v = 10^{-6}s^{-1}$ do CP3. Uma vez que ψ está relacionado à resistência do esqueleto e dos minerais constituintes do solo, também deve estar, de maneira implícita, associado à viscosidade. Como se viu na seção anterior, os resultados mostram que a parcela viscosa diminui proporcionalmente de acordo com $\dot{\varepsilon}_v$.

A tabela 5.11 apresenta uma análise estatística dos parâmetros da formulação de Martins revisitada. Além da análise correspondente ao conjunto total de dados, constante na tabela 5.4, foram efetuadas outras associadas às únicas curvas de compressão que puderam ser traçadas em todos os ensaios: 24 h, $\dot{\varepsilon}_v = 10^{-6}s^{-1}$ e $\dot{\varepsilon}_v = 10^{-7}s^{-1}$. Análises estatísticas associadas às curvas $\dot{\varepsilon}_v = 10^{-8}s^{-1}$, $\dot{\varepsilon}_v = 10^{-9}s^{-1}$, $\dot{\varepsilon}_v = 10^{-10}s^{-1}$ e $\dot{\varepsilon}_v = 10^{-10}s^{-1}$ e $\dot{\varepsilon}_v = 10^{-11}s^{-1}$ não foram realizadas porque nestes casos a população de dados é muito pequena.

Verifica-se que o parâmetro Ω é, dentre os três, aquele que apresenta a menor dispersão, com coeficiente de variação (*CV*) que vai de 4.5 % a 6.3 %. Os outros dois parâmetros, $\psi \in C_0$, apresentam dispersão na faixa de 20 %. Os valores dos parâmetros encontrados
no presente trabalho estão situados dentro da mesma faixa de ocorrência de Louvise (2015), que aplicou a formulação de Martins revisitada aos depósitos de argila mole de Sarapuí II (RJ), Santos (SP) e Suape (RE).

Conjunto de dados		Ω	ψ (kPa) x 10 ⁴	C ₀ (kPa)
Todas as curvas de compressão	Média ± DP	$\textbf{5.85} \pm \textbf{0.37}$	5.60 ± 1.64	$\textbf{-44.3} \pm \textbf{12.8}$
da tabela 5.4 (23 no total)	CV	6.3%	29.3%	28.9%
Currues de 24 h	Média ± DP	$\textbf{5.75} \pm \textbf{0.26}$	5.64 ± 1.35	-44.4 ± 9.4
Curvas de 24 li	CV	4.5%	24.0%	21.2%
Curvas de	Média ± DP	5.72 ± 0.28	$\textbf{6.08} \pm \textbf{1.44}$	$\textbf{-44.1} \pm \textbf{10.9}$
$\dot{\varepsilon_v} = 10^{-6} s^{-1}$	CV	4.8%	23.7%	24.7%
Curvas de	Média ± DP	5.80 ± 0.35	$\textbf{6.07} \pm \textbf{1.76}$	$\textbf{-46.9} \pm \textbf{12.4}$
$\dot{s_v} = 10^{-7} s^{-1}$	CV	6.0%	28.9%	26.5%

Tabela 5.11 - Análise estatística dos parâmetros da expressão de Martins (1983) revisitada

Da tabela anterior, tomando-se os parâmetros médios de ψ , Ω e C_0 correspondentes às curvas de 24 h, é possível traçar uma estimativa média do domínio virgem da argila da Ilha do Fundão na compressão unidimensional. O resultado é apresentado na figura 5.61, concomitantemente às outras curvas de compressão de 24 h obtidas via expressão de Martins revisitada.

Ainda que a população de dados seja razoavelmente pequena, mostra-se homogênea, pois a curva média reproduz de maneira adequada o comportamento no domínio virgem. Tanto o paralelismo aproximado que se observa entre as curvas originais, como a compressibilidade delas, são refletidas pelas curvas médias convencional ($e \ x \ \sigma'_v$) e normalizada ($e/e_0 \ x \ \sigma'_v$).

Figura 5.61 – Curva de compressão de 24 h com parâmetros médios da expressão de Martins (1983) revisitada, plotada em diagramas convencional ($e \ x \ \sigma'_v$) e normalizado ($e/e_0 \ x \ \sigma'_v$)

5.2.6 Do parâmetro C₀

Uma das hipóteses aventadas no capítulo 3 afirmava que para satisfazer a equação 3.4, o valor de C_0 teria de ser positivo, algo que seria atingido somente se a expressão de Martins (1983) revisitada fosse aplicada à linha de final de secundário. Indo além, caso esta hipótese se confirmasse, seria um forte indício de que a constante teria ligação com a parcela viscosa de resistência reivindicada pela abordagem do Grupo de Reologia dos Solos da COPPE/UFRJ, a qual não se manifesta quando $\dot{\varepsilon}_{\nu} = 0$, caso da curva de *EOS*.

Como se viu, os valores de C_0 apresentados na tabela 5.4, obtidos via aplicação da expressão de Martins (1983) revisitada, resultaram todos negativos, inclusive aquele associado à linha de *EOS*, em que *OCR* = 2.0. Nessa condição encontrou-se um valor de -58.6 kPa. Além disso, as curvas de igual $\dot{\varepsilon}_v$ não parecem indicar qualquer tipo de tendência com o conjunto de valores de C_0 .

Portanto, o que se pode dizer é que a hipótese levantada é falsa, e ao menos de maneira explícita não há uma relação entre C_0 e a parcela viscosa de resistência. Tampouco se

pode afirmar que a dedução da formulação de Martins assume uma condição estática $(\dot{\varepsilon}_{\nu} = 0)$.

Dito isso, o fato de C_0 ter resultado negativo significa também que a equação 3.4 continua não sendo satisfeita quando $\sigma'_v = 0$. Então, a pergunta legítima que naturalmente aflora é a seguinte: existe alguma incongruência na expressão de Martins (1983)?

A resposta é não, e a chave está nos limites da equação 3.4. Para ilustrar graficamente o comportamento desta função, vamos tomar como exemplo os parâmetros da expressão de Martins revisitada decorrentes da curva de 24 h do corpo de prova 4. Da tabela 5.4, $\psi = 3.91x10^4$ kPa, $\Omega = 5.52$ e $C_0 = -33.7$ kPa. Variando-se o valor de C_0 segundo três possibilidades – negativo, positivo e zero –, a expressão 3.4 assume as seguintes formas, respectivamente:

$$\sigma_{\nu}' = \frac{3.91x10^4}{(1+e)^{5.52}} - (-33.7) \tag{5.15}$$

$$\sigma_{\nu}' = \frac{3.91x10^4}{(1+e)^{5.52}} - (+33.7) \tag{5.16}$$

$$\sigma'_{\nu} = \frac{3.91 \times 10^4}{(1+e)^{5.52}} \tag{5.17}$$

Uma vez plotadas, estas expressões resultam na figura 5.62. Em relação às abscissas, como a escala logarítmica não permite valores menores ou iguais a zero, faz-se necessário empregar escala aritmética.

Fica claro que C_0 representa uma reta vertical que intercepta as abscissas e que delimita o valor que σ'_v pode assumir. No limite, quando $\sigma'_v = C_0$, a função $e = f(\sigma'_v)$ cresce assintoticamente e tende ao infinito.

Figura 5.62 – Estimativas do modelo de Martins (1983) revisitado com três valores distintos de C_0 , empregando-se escala aritmética no diagrama ($e \ x \ \sigma'_v$)

Do ponto de vista estritamente matemático, o conjunto domínio da função está restrito aos valores de $\sigma'_v > -(C_0)$. Portanto, quando a constante C_0 for negativa, não faz sentido falar da situação limite $\sigma'_v = 0$, já que o valor de σ'_v não pertence ao conjunto domínio da função neste caso. A grosso modo, a função só poderia ser empregada no domínio normalmente adensado do solo. Mas do ponto de vista físico, como um índice de vazios negativo ou nulo é impossível, então o domínio dessa função também é delimitado por uma outra condição: $\sigma'_v < \psi - (C_0)$.

Esclarecido o primeiro ponto, sobre os limites da expressão de Martins e a relação explícita inexistente de C_0 com a parcela viscosa de resistência, ainda paira uma dúvida sobre o que poderia estar associado à referida constante. É momento de retomar a discussão sobre limite de liquidez físico (w_L^*) , índice de vazios máximo $(e_{máx})$ e C_0^* .

A tabela 5.12 apresenta concomitantemente os valores de C_0 e C_0^* . Vale lembrar que eles são derivados, respectivamente, das curvas de compressão edométrica e do conceito de índice de vazios máximo. Uma análise estatística de C_0 foi apresentada anteriormente na tabela 5.11, e agora é apresentada em conjunto com a de C_0^* , na tabela 5.13. Nota-se que a dispersão de C_0^* , dada pelo coeficiente de variação, é cerca de duas vezes maior que a de C_0 . Ainda, os valores de C_0^* resultaram todos positivos e muito próximos a zero, em contrapartida aos de C_0 .

СР	Curva	Ω	ψ (kPa) x 10 ⁴	C ₀ (kPa)	<i>C</i> ₀ [*] (kPa)
	24 h	5.63	8.14	-56.4	6.2
1	$\dot{\varepsilon}_v = 10^{-6} s^{-1}$	5.61	8.75	-58.9	6.9
	$\dot{\varepsilon}_v = 10^{-7} s^{-1}$	5.72	9.20	-57.5	6.0
	24 h	5.38	5.40	-34.0	6.1
2	$\dot{\varepsilon}_v = 10^{-6} s^{-1}$	5.36	5.79	-34.4	6.9
	$\dot{\varepsilon}_v = 10^{-7} s^{-1}$	5.23	4.99	-25.7	7.4
	24 h	5.84	6.32	-39.6	3.4
	$\dot{\varepsilon}_v = 10^{-6} s^{-1}$	5.75	6.50	-37.3	4.0
3	$\dot{\varepsilon}_v = 10^{-7} s^{-1}$	6.03	7.22	-51.1	2.8
	$\dot{\varepsilon}_v = 10^{-8} s^{-1}$	6.04	6.69	-45.6	2.5
	$\dot{\varepsilon}_v = 10^{-9} s^{-1}$	5.58	4.59	-13.1	3.8
	24 h	5.52	3.91	-33.7	3.6
4	$\dot{\varepsilon}_v = 10^{-6} s^{-1}$	5.51	4.26	-32.5	4.0
4	$\dot{\varepsilon}_v = 10^{-7} s^{-1}$	5.54	4.01	-36.6	3.5
	$\dot{\varepsilon}_v = 10^{-11} s^{-1}$	5.95	2.29	-30.9	1.00
	24 h	6.12	5.55	-56.1	1.8
5	$\dot{\varepsilon}_v = 10^{-6} s^{-1}$	6.20	6.38	-58.7	1.9
5	$\dot{\varepsilon}_v = 10^{-7} s^{-1}$	6.29	6.36	-62.5	1.6
	$\dot{\varepsilon}_v = 10^{-10} s^{-1}$	6.47	4.70	-58.8	0.9
	24 h	5.99	4.54	-46.6	1.9
6	$\dot{\varepsilon}_v = 10^{-6} s^{-1}$	5.93	4.80	-42.7	2.2
0	$\dot{\varepsilon}_v = 10^{-7} s^{-1}$	6.01	4.67	-48.0	1.9
	$\dot{\varepsilon}_v = 10^{-11} s^{-1}$	6.79	3.78	-58.6	0.4

Tabela 5.12 – Comparação entre os valores de C_0 e C_0^*

Tabela 5.13 – Análise estatística de C_0 e C_0^*

Conjunto de dados		C ₀ (kPa)	C ₀ [*] (kPa)
Todos os cumuos do compressão	Média ± DP	$\textbf{-44.3} \pm \textbf{12.8}$	3.5 ± 2.1
Todos as curvas de compressao	CV	28.9%	59.4%
Currues de 24 h	Média ± DP	$\textbf{-44.4} \pm \textbf{9.4}$	3.8 ± 1.8
Curvas de 24 li	CV	21.2%	46.6%
Curvas de	Média ± DP	$\textbf{-44.1} \pm \textbf{10.9}$	$\textbf{4.3} \pm \textbf{2.0}$
$\dot{\varepsilon}_v = 10^{-6} s^{-1}$	CV	24.7%	46.5%
Curvas de	Média $\pm DP$	$\textbf{-46.9} \pm \textbf{12.4}$	3.8 ± 2.1
$\dot{\varepsilon_v} = 10^{-7} s^{-1}$	CV	26.5%	55.4%

Destes resultados, o caminho mais plausível aponta para uma ligação entre a referida constante de integração e a estrutura do solo. Veja-se o porquê.

Nesta dissertação, w_L^* resultou cerca de 12 % superior a w_L , ao passo que no trabalho de Louvise (2015) essa diferença chegou a atingir 50 %. Deve-se levar em conta que isso não se deve apenas ao fato dos solos empregados serem distintos, mas também está atrelado ao tipo de extrapolação utilizado para encontrar w_L^* , que no caso de Louvise (2015) foi linear tendo como base a reta convencional, diferentemente do procedimento aqui empregado, mais realista.

De qualquer modo, em ambos os trabalhos os valores de w_L^* enquadram-se dentro da faixa de trabalho utilizada por Burland (1990) na moldagem dos corpos de prova associados à linha de compressão intrínseca. Vale lembrar que a *ICL* é originada de amostras totalmente reconstituídas com teores de umidade iguais ou até 50% superiores ao limite de liquidez convencional. Portanto, esse é um elemento que corrobora a discussão do capítulo 3, de modo que o valor de $e_{máx} = 4.4$, obtido via expressão 3.10, parece realmente estar associado à *ICL* na condição $\sigma'_{\nu} = 0$.

Não é demais falar que para a realização do ensaio de limite de liquidez a estrutura do solo é completamente destruída. Como o parâmetro C_0^* deriva diretamente de $e_{máx}$ e de w_L^* , é factível imaginar que, de alguma forma, ele possa ser uma medida da estrutura do solo. Para tentar ilustrar isso, é valido comparar as estimativas de domínio virgem de uma mesma curva obtidas utilizando-se C_0 e C_0^* . Isso pode ser feito tomando-se novamente a curva de 24 h do corpo de prova 4, com $C_0 = -33.1$ kPa e $C_0^* = +3.6$ kPa; e $\psi = 3.91x10^4$ kPa e $\Omega = 5.52$. Para amplificar o efeito, pode-se traçar uma terceira curva com um valor de, digamos, $C_0 = +100$ kPa. O resultado é apresentado na figura 5.63.

Verifica-se que entre as diferentes estimativas de domínio virgem, há uma degradação da estrutura à medida que C_0 passa de -33.7 kPa, na previsão que é a mais fidedigna, para +3.6 kPa e +100 kPa. Ambas as previsões com C_0 positivo parecem representar curvas de compressão edométrica de amostras tipicamente amolgadas. O aspecto delas remete com força aos efeitos de amolgamento apontados por Ladd (1973), como redução de C_c e de σ'_{vm} , maior dificuldade na determinação de σ'_{vm} e menor índice de

vazios em face da mesma tensão vertical efetival em comparação com a curva de boa qualidade.

Analisando-se o domínio sobreadensado das duas curvas supostamente "amolgadas", verifica-se que no caso de $C_0^* = +3.6$ kPa, em escala logarítmica a função atinge um valor estacionário igual a $e_{máx} = 4.4$, já que esse ponto está associado a $\sigma'_v = 0$, de acordo com a sua dedução. No caso de $C_0 = +100$ kPa, esse valor pode ser calculado pela expressão 5.18, que consiste em um rearranjo dos termos da equação 3.4. Tomando-se como valor de σ'_v qualquer potência de 10 menor ou igual a zero ($\sigma'_v = 10^0, 10^{-1}, 10^{-2}, ...$), encontra-se que $e_{máx} = 1.95$.

$$e_{max} = \left(\frac{\psi}{\sigma_{\nu}' + C_0}\right)^{\frac{1}{\Omega}} - 1 \tag{5.18}$$

Assim, se as curvas com C_0 positivo estão associadas a amostras amolgadas, sendo que tanto maior o amolgamento maior é o valor da constante, cabe a pergunta: se a expressão de Martins (1983) revisitada for aplicada a uma curva de compressão edométrica de uma amostra reconstituída desse solo, qual será o valor de C_0 ? Infere-se que próximo ao de $C_0^* = +3.6$ kPa, desde que o teor de umidade adotado seja próximo a w_L^* . Isso confirmaria a hipótese de que $e_{máx}$ está atrelado à *ICL* e representa um *lower boundary*, em contraposição ao *upper boundary* da *SCL* de Burland (1990) e de Been e Sills (1981).

De toda sorte, não apenas as evidências trazidas nesta seção apontam que C_0 está ligado à estrutura do solo, mas também a discussão precedente que tratou da qualidade dos corpos de prova. No capítulo 3, apontando para a mesma direção, foi visto que, quando $C_0 = 0$, o domínio virgem corresponde exatamente a uma reta, sendo que essa característica é um indício claro de amolgamento. E isso encontra fundamentação matemática na equação 3.5, que corresponde a uma reta em um plano bilogarítmico $v \propto \sigma'_{v}$.

Por fim, o último ponto a ser explorado, mas de maneira superficial, diz respeito ao conceito de tensão de sobreadensamento. Se a expressão de Martins (1983) revisitada é capaz de reproduzir o domínio virgem, e nos casos em que C_0 é positivo, também o sobreadensado, então o conceito de tensão de sobreadensamento de Casagrande (1936)

não deveria ser repensado? A indagação é pertinente porque Casagrande (1936) definiu σ'_{vm} a partir de critérios puramente geométricos, baseando-se no efeito causado pela escala logarítmica do diagrama $e \ x \ \sigma'_v$. Este tipo de escala induz ao surgimento de um ponto de plastificação que não necessariamente se manifesta em escala linear. A resposta, contudo, foge do escopo deste trabalho e fica como sugestão para futuras pesquisas.

Figura 5.63 – Estimativas da formulação de Martins (1983) revisitada empregando-se três valores distintos para o parâmetro C_0

6 CONSIDERAÇÕES FINAIS

6.1 CONCLUSÕES

i) O solo estudado enquadra-se, segundo o Sistema Unificado de Classificação dos Solos (USCS), no grupo das argilas de alta plasticidade (CH). Trata-se de um depósito sedimentar com espessura da ordem de 15 m, muito provavelmente de origem holocênica flúvio-marinha, encontrado na Ilha do Fundão, RJ.

ii) Esta argila apresenta $w_L = 154\%$, IP = 101%, G = 2.56, FA = 73%, A = 1.38, TMO = 3.8%, e_o médio de 2.27, w média de 85%, N_{SPT} variando de 0 a 3, compressibilidade média dada pelo parâmetro $CR = \frac{C_C}{(1+e_0)} = 0.48$ e valor médio de σ'_{vm} igual a 98 kPa. Essas propriedades estão compreendidas dentro da faixa típica de valores característicos observados em outros solos com a mesma natureza.

iii) O coeficiente de adensamento (c_v) tem, no domínio sobreadensado, um valor médio de 11.4 x 10⁻⁴ cm²/s, e no domínio normalmente adensado, um valor médio de 1.2 x 10⁻⁴ cm²/s, cerca de uma ordem de magnitude abaixo

iv) O histórico dos aterros construídos no terreno, os recalques e danos observados nas instalações da TechnipFMC, e o padrão de variação da tensão de sobreadensamento (σ'_{vm}), do índice de vazios de campo (e_0) e da umidade natural (w) ao longo da profundidade, indicam que o depósito está em processo de adensamento (OCR = 1.0).

v) Os corpos de prova foram, de acordo com Andrade (2009), classificados como sendo de boa a muito boa qualidade em sua maioria. Isso está de acordo com o padrão das curvas de compressão $e x \sigma'_v (log)$ e $c_v x \sigma'_v (log)$.

vi) Nos estágios dos ensaios edométricos onde empregaram-se razões incrementais de carregamento $(\Delta \sigma_v / \sigma'_v)$ menores que 1, observaram-se curvas de adensamento $(\varepsilon_v x t)$ nos formatos II e III de Leonards e Girault (1961). Nos estágios onde $\Delta \sigma_v / \sigma'_v \ge 1.0$, as curvas de adensamento $(\varepsilon_v x t)$ apresentaram-se com o formato "terzaghiano".

vii) Os resultados sugerem que a linha de final de secundário (*EOS*) está associada a um $OCR \cong 2.0$ em relação à linha de compressão edométrica de 24 h.

viii) O comportamento do solo $(\varepsilon_v x t)$ é dependente do *OCR* gerado no descarregamento. Quanto maior é o valor desse *OCR*, maior é o tempo de retorno para a retomada do adensamento secundário e com menor valor de $\dot{\varepsilon}_v$.

ix) A tensão vertical efetiva viscosa transferida ($\Delta \sigma'_{\eta}$) para a tensão vertical efetiva sólida (σ'_{s}) e a parcela de tensão vertical efetiva viscosa (σ'_{η}) durante o adensamento secundário foram determinadas experimentalmente ao longo do tempo e mostraram-se estar de acordo com o modelo de comportamento de solos plásticos do Grupo de Reologia dos Solos da COPPE/UFRJ.

x) Verifica-se a existência de paralelismo entre curvas $e x \sigma'_v$ de $\dot{\varepsilon}_v$ constante, além de redução da tensão de sobreadensamento com redução de $\dot{\varepsilon}_v$. Esses resultados estão de acordo com as abordagens de Bjerrum (1973), Leroueil *et al.* (1985) e do próprio Grupo de Reologia dos Solos da COPPE/UFRJ.

xi) A expressão de Martins (1983) revisitada (equação 3.4) representa com grande fidedignidade as curvas experimentais de compressão edométrica de 24 h e de igual $\dot{\varepsilon}_v$. A formulação mostra-se, portanto, válida para a estimativa do domínio virgem na compressão unidimensional da argila estudada.

xii) Os três parâmetros que descrevem a expressão de Martins (1983) revisitada (Ω , $\psi \in C_0$) apresentaram valores com dispersão menor que 30%, sendo que Ω é o que teve menor variação dentre eles (aproximadamente 6% ou menos).

xiii) Todos os valores de C_0 resultaram negativos, inclusive aquele decorrente da aplicação da expressão 3.4 à linha de *EOS*. Portanto, não há uma relação explícita entre a referida constante e a parcela viscosa de resistência.

xiv) Na aplicação da expressão de Martins (1983) revisitada, para que ela seja plenamente satisfeita, deve ser observado o domínio da função $e = f(\sigma'_v)$, qual seja: $-(C_0) < \sigma'_v < \psi - (C_0)$.

xv) Como todos os valores de C_0^* são positivos, quando substituídos na expressão de Martins (1983) mantendo-se fixados os valores de $\psi \in \Omega$ correspondentes à amostra indeformada, obtêm-se curvas de compressão edométrica típicas de amostras amolgadas. Quanto maior o grau de amolgamento expresso pela curva de compressão edométrica, maior será o valor de C_0^* , indicando que a referida constante de integração é uma medida da estrutura do solo.

xvi) Estes resultados, assim como o valor de $w_L^* = 173$ %, sugerem que o conceito de $e_{máx}$ está associado à linha de compressão intrínseca (*ICL*) de Burland (1990) na condição $\sigma'_{\nu} = 0$.

xvii) Os procedimentos de determinação de w_L^* e $e_{máx}$ descritos nesta dissertação mostraram-se satisfatórios. Estes conceitos possuem grande potencial a ser explorado, mas ainda devem ser encarados com ressalvas, tendo em vista as diversas hipóteses de trabalho aventadas nas suas deduções e a quantidade exígua de resultados produzidos até aqui.

6.2 SUGESTÕES PARA TRABALHOS FUTUROS

i) Aplicar a expressão de Martins (1983) em uma diversidade maior de argilas sedimentares e outros tipos de solos para verificar se os resultados são satisfatórios, como se deu nesta dissertação.

ii) Como os valores de $\dot{\varepsilon}_v$ observados com *OCR* de 2.0 e 2.5 foram, ao final de 3 meses, da ordem de 10⁻¹¹s⁻¹, é possível que pelo menos parte dessa $\dot{\varepsilon}_v$ possa ser atribuída à deformação do equipamento com o tempo. Por isso, sugere-se que seja realizado ensaio de calibração a longo prazo com corpo de prova de aço para verificar como essas deformações evoluem ao longo do tempo.

iii) Executar uma campanha de ensaios de compressão edométrica com monitoramento de adensamento secundário, empregando-se valores de OCRmaiores que 2.5, de modo a definir com maior acurácia as regiões de equilíbrio indiferente e de expansão secundária. Se possível, introduzir medidas de tensão horizontal para verificar o comportamento do coeficiente de empuxo no repouso (K_0) durante a compressão e expansão secundárias.

iv) Nos ensaios de compressão edométrica, executar estágios de relaxação imperfeita seguidos de estágios de adensamento secundário, e unir os pontos de igual $\dot{\varepsilon}_v$ verificando se há um padrão de paralelismo entre as curvas $e \ x \ \sigma'_v$ para $\dot{\varepsilon}_v$ constante.

v) Em uma grande quantidade de solos, realizar ensaios para determinação de w_L^* e comparar com os valores de w_L obtidos por meio do procedimento convencional.

vi) Realizar ensaios de compressão edométrica em amostras reconstituídas com diferentes teores de umidade, quais sejam, w, w_L e w_L^* . Aplicar a expressão de Martins (1983) revisitada e analisar o valor da constante C_0 .

vii) De posse de ψ e Ω determinados com o procedimento do item imediatamente anterior, obter o valor de C_0^* e comparar com o valor de C_0 .

viii) Estudar a relação dos parâmetros $\psi \in \Omega$ com a qualidade das amostras.

ix) Uma vez que C_0 parece resultar negativa em amostras de boa qualidade, tornando inviável a aplicação do modelo de Martins (1983) quando $\sigma'_{\nu} \leq -(C_0)$, buscar uma expressão que a descreva em função da tensão vertical efetiva ($C_0 = f(\sigma'_{\nu})$), de modo que seja constante no domínio virgem e variável no domínio sobreadensado.

x) Com o intuito de aprofundar a investigação geológico-geotécnica sobre o depósito de argila mole da Ilha do Fundão, executar um programa experimental exaustivo de laboratório e de campo (*e.g.* triaxial de compressão não-drenada, Vane, piezocone, etc) que cubra uma área mais extensa e que abarque também ensaios de caracterização química e mineralógica.

xi) Estudar os efeitos de temperatura sobre o comportamento reológico desta argila para compreender melhor o papel da parcela viscosa da tensão normal efetiva.

REFERÊNCIAS BIBLIOGRÁFICAS

AGUIAR, V. N. **Características de adensamento da argila do canal do Porto de Santos na região da Ilha Barnabé**. 2008. 223 f. Dissertação (Mestrado em Engenharia Civil) – Programa de Pós-Graduação em Engenharia Civil, COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2008.

AGUIAR, V. N. **Contribuição ao estudo das relações tensão-deformaçãoresistência-tempo das argilas moles**. 2014. 439 f. Tese (Doutorado em Engenharia Civil) – Programa de Pós-Graduação em Engenharia Civil, COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2014.

ALMEIDA, M. S. S.; MARQUES, M. E. S. **The behaviour of Sarapuí soft clay**. Tan *et al.*, Eds. In: Characterization and Engineering Properties of Natural Soils. Lisse, the Netherlands: Swets & Zeitlinger, 2003, v. 1, p. 477-504.

ALMEIDA, M. S. S.; FUTAI, M. M.; LACERDA, W. A.; MARQUES, M. E. S. Laboratory behaviour of Rio de Janeiro soft clays. Part 1: index and compression properties. **Soils and Rocks**, v. 31, n. 2, p. 69-75, 2008.

ALMEIDA, M. S. S.; MARQUES, M. E. S. Aterros sobre solos moles: projeto e desempenho. 2. ed. (1. reimpr.). São Paulo: Oficina de Textos, 2014 (reimpr. 2011).

ALVES, M. C. M. **Comportamento de sedimentação e adensamento de uma lama vermelha**. 1992. 213 f. Tese (Doutorado em Engenharia Civil) – Departamento de Engenharia Civil da PUC-Rio, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 1992.

AMERICAN SOCIETY FOR TESTING AND MATERIALS. **D2487**: classification of soils for engineering purposes (Unified Soil Classification System). USA, 2000.

ANDRADE, M. E. S. **Contribuição ao estudo das argilas moles da cidade de Santos**. 2009. 397 f. Dissertação (Mestrado em Engenharia Civil) – Programa de Pós-Graduação em Engenharia Civil, COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2009.

ANGULO, R. J.; LESSA, G. C.; SOUZA, M. C. A critical review of mid- to late-Holocene sea-leveL fluctuations on the eastern Brazilian coastline. **Quaternary science reviews**, v. 25, n. 5-6, p. 486-506, 2006.

ARAGÃO, C. J. C. **Propriedades geotécnicas de alguns depósitos de argila mole na área do Grande Rio**. 1975. Dissertação (Mestrado em Engenharia Civil) – Departamento de Engenharia Civil da PUC-Rio, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 1975.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 6457**: amostras de solo – preparação para ensaios de compactação e ensaios de caracterização. Rio de Janeiro, 2016.

. NBR 6459: solo – determinação do limite de liquidez. Rio de Janeiro, 2016.

_____. **NBR 6508**: grãos de solos que passam na peneira de 4,8 mm – determinação da massa específica. Rio de Janeiro, 2016.

_____. NBR 7180: solo – determinação do limite de plasticidade. Rio de Janeiro, 2016.

_____. NBR 7181: solo – análise granulométrica. Rio de Janeiro, 2016.

_____. **NBR 9820**: coleta de amostras indeformadas de solos de baixa consistência em furos de sondagem – procedimento. Rio de Janeiro, 1997.

_____. NBR 13600: solo – determinação do teor de matéria orgânica por queima a 440°C – método de ensaio. Rio de Janeiro, 1996.

ATKINSON, J. H.; BRANSBY, P. L. **The mechanics of soils**: an introduction to critical state soil mechanics. London: McGraw-Hill Book Company, 1978.

BALIGH, M. M.; AZZOUZ, A. S.; CHIN, C. T. Disturbance due to "ideal" tube sampling. Journal of Geotechnical Engineering, ASCE, v. 113, n. 7, p. 739-757, 1987.

BARDEN, L. Time dependent deformation of normally consolidated clays and peats. **Journal of Geotechnical Engineering,** ASCE, v. 95, n. 2, SMS 1, p. 1-31, 1969.

BARONI, M. **Investigação geotécnica em argilas orgânicas muito compressíveis em depósitos da Barra da Tijuca**. 2010. 249 f. Dissertação (Mestrado em Engenharia Civil) – Programa de Pós-Graduação em Engenharia Civil, COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2010.

BEEN, K.; SILLS, G. C. Self-weight consolidation of soft soils: an experimental and theoretical study. **Géotechnique**, v. 31, n. 4, p. 519-535, 1981.

BERRE, T.; IVERSEN, K. Oedometer test with different specimen heights on a clay exhibiting large secondary compression. **Géotechnique**, v. 22, n. 1, p. 53-70, 1972.

BIOT, M. A. General theory of three-dimensional consolidation. Journal of Applied Physics, v. 12, n. 2, p. 155-164, 1941.

BJERRUM, L. Engineering geology of norwegian normally-consolidated marine clays as related to settlements of buildings. **Géotechnique**, v. 17, n. 2, p. 81-118, 1967.

BJERRUM, L. Problems of soil mechanics and construction on soft clays and structurally unstable soils (colapsible, expansive and others). In: VIII International Conference on Soil Mechanics and Foundation Engineering. Anais...Moscow: 1973, v. 3, p. 111-159.

BUISMAN, A. S. K. **Results of long duration settlement tests**. In: I International Conference on Soil Mechanics and Foundation Engineering. **Anais**...Cambridge, Massachusetts: 1936, v. 1, p. 103-106.

BURLAND, J. On the compressibility and shear strength of natural clays. **Géotechnique**, v. 40, n. 3, p. 329-378, 1990.

BUTTERFIELD, R. A natural compression law for soils (an advance on e-log p'). **Géotechnique**, v. 29, n. 4, p. 469-480, 1979.

CAMPANELLA, R. G.; MITCHELL, J. K. Influence of temperature variations on soil behavior. **Journal of the Soil Mechanics and Foundations Division, ASCE**, v. 94, n. 3, p. 709-734, 1968.

CASAGRANDE, A. The determination of the pre-consolidation load and its pratical significance. In: I International Conference on Soil Mechanics and Foundation Engineering. Anais...Cambridge, Massachusetts: 1936, v. 3, p. 60-64.

COLLINS, K.; McGOWEN, A. The form and function of microfabric features in a variety of natural soils. **Géotechnique**, v. 24, n. 2, p. 223-254, 1974.

COUTINHO, R. Q. Características de Adensamento com Drenagem Radial de uma Argila Mole da Baixada Fluminense. 1976. 206 f. Dissertação (Mestrado em Engenharia Civil) – Programa de Pós-Graduação em Engenharia Civil, COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 1976.

COUTINHO, R. Q. Characterization and engineering properties of Recife soft clays-Brazil. Tan *et al.*, Eds. In: Characterization and Engineering Properties of Natural Soil. Anais...Singapore: Balkema, 2007, v. 3, p. 2049-2099.

COUTINHO, R. Q.; LACERDA, W. A. Characterization - consolidation of Juturnuíba organic clay. In: International Symposium on Geotechnical Engineering of Soft Soil. Anais... Mexico: 1987, v. 1, p. 17-24.

CUNHA, R. P.; LACERDA, W. A. Analysis of a sanitary-embankment rupture over the Rio de Janeiro soft clay deposit. **Canadian Geotechnical Journal**, v. 28, n. 1, p. 92-102, 1991.

DANZIGER, F. A. B.; JANNUZZI, G. M. F.; MARTINS, I. S. M. The relationship between sea-level change, soil formation and stress history of a very soft clay deposit. **AIMS Geosciences**, v. 5, n. 3, p. 461-479, 2019.

DAVIS, E. H.; RAYMOND, G. P. A non-linear theory of consolidation. **Géotechnique**, v. 15, n. 2, p. 161-173, 1965.

DE JONG, DE J.; VERRUIJT, A. **Primary and secondary consolidation of a spherical clay sample**. In: VI International Conference on Soil Mechanics and Foundation Engineering. **Anais**...Cambridge, Massachusetts: 1965, v. 1, p. 254-258.

DE JONG, DE J. Consolidation models consisting of an assembly of viscous elements or a cavity channel network. **Géotechnique**, v. 18, n. 2, p. 195-228, 1968.

ESPÍNDOLA, M. S. Análise dos parâmetros geotécnicos dos solos moles da obra de ampliação do Aeroporto Internacional Hercílio Luz, Florianópolis. 2011. Dissertação (Mestrado em Engenharia Civil) – Universidade Federal de Santa Catarina, Florianópolis, 2011. FEIJÓ, R. L. **Relação entre a compressão secundária, razão de sobreadensamento e coeficiente de empuxo no repouso**. 1991. 167 f. Dissertação (Mestrado em Engenharia Civil) – Coordenação dos Programas de Pós-Graduação, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 1991.

FUTAI, M. M.; ALMEIDA, M. S. S.; LACERDA, W. A. **Propriedades geotécnicas das argilas do Rio de Janeiro**. In: Encontro Propriedades de Argilas Moles Brasileiras. **Anais**... Rio de Janeiro: 2001, p. 138-165.

GARCIA, S. G. F. **Relação entre o adensamento secundário e a relaxação de tensões de uma argila mole submetida à compressão edométrica**. 1996. 157 f. Dissertação (Mestrado em Engenharia Civil) – Programa de Pós-Graduação em Engenharia Civil, COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 1996.

GRAY, H. **Progress report on research on consolidation of fine-grained soils**. In: I International Conference on Soil Mechanics and Foundation Engineering. **Anais**...Cambridge, Massachusetts: 1936, v. 1, p.138-141.

HAIGH, S. K.; VARDANEGA, P. J.; BOLTON, M. D. The plastic limit of clays. **Géotechnique**, v. 63, n. 6, p. 435-440, 2013.

HANSBO, S. A new approach to the determination of the shear strength of clay by the fall-cone test. **Royal Swedish Geotechnical Institute**, n. 14, p. 7-48, 1957.

JANNUZZI, G. M. F.; DANZIGER, F. A. B.; MARTINS, I. S. M. Geologicalgeotechnical characterisation of Sarapuí II clay. **Engineering geology**, v. 190, p. 77-86, 2015.

JANNUZZI, G. M. F. Inovadoras, modernas e tradicionais metodologias para caracterização geológico-geotécnica da argila mole de Sarapuí II. 2013. Tese (Doutorado em Engenharia Civil) – Programa de Pós-Graduação em Engenharia Civil, COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2013.

JOHNSON, S. Precompression for improving foundation soils. Journal of the Soil Mechanics and Foundations Division, ASCE, v. 96, n. SM1, p. 111-143, 1970.

KAVAZANJIAN, E.; MITCHELL, J. K. Time dependence of lateral earth pressure. **Journal of Geotechnical Engineering, ASCE**, v. 110, n. 4, p. 530-533, 1984.

LACERDA, W. A.; ALMEIDA, M. S. S. **Engineering properties of regional soils:** residual soils and soft clays. In: X Panamerican Conference on Soil Mechanics and Foundation Engineering. Anais... Guadalajara: v. 4, p. 161-176, 1995.

LACERDA, W. A.; MARTINS, I. S. M. Discussão de "Time dependence of lateral earth pressure", por Kavazanjian, E. e Mitchell, J. K. Journal of Geotechnical Engineering, ASCE, v. 111, n. 10, p. 1242-1244, 1985.

LADD, C. C. Estimating Settlements of Structures Supported on Cohesive Soils. Revised Version of a Paper Originally Prepared for MIT 1971, Special Summer Program, 1.34S "Soft Ground Construction", 1973. LADD, C. C.; DEGROOT, D. J. **Recommended practice for soft ground site characterization: Arthur Casagrande Lecture**. In: 12th Panamerican Conference on Soil Mechanics and Geotechnical Engineering. **Anais**... Cambridge, Massachusetts: 2003.

LEE, K. L.; SEED, B. Drained strength characteristics of sands. Journal of the Soil Mechanics and Foundations Division, ASCE, v. 93, n. SM 6, p. 116-141, 1967.

LEONARDS, G. A.; ALTSCHAEFFL, A. G. Compressibility of clay. Journal of the Soil Mechanics and Foundations Division, ASCE, v. 90, n. SM5, p. 133-155, 1964.

LEONARDS, G. A.; GIRAULT, P. A study of the one-dimensional consolidation test. In: V International Conference on Soil Mechanics and Foundation Engineering. Anais...Paris: 1961, v. 1, p. 213-218.

LEROUEIL, S.; KABBAJ, M.; TAVENAS, F.; BOUCHARD, M. Stress-strain-strain rate relation for the compressibility of sensitive natural clays. **Géotechnique**, v. 35, n. 2, p. 159-180, 1985.

LIMA, G. P. **Estudo de uma teoria não-linear para o adensamento unidimensional**. 1993. 125 f. Dissertação (Mestrado em Engenharia Civil) – Programa de Pós-Graduação em Engenharia Civil, COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 1993.

LINS, A. H.; LACERDA, W. A. Ensaios triaxiais de compressão e extensão na argila cinza do Rio de Janeiro em Botafogo. **Solos e Rochas**, v. 3, n. 2, p. 5-29, 1980.

LIRA, E. N. S. **Sistema de aquisição de dados para ensaio triaxial**. 1988. 202 f. Dissertação (Mestrado em Engenharia Civil) – Programa de Pós-Graduação em Engenharia Civil, COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 1988.

LOUVISE, R. B. Estimativa da curva de compressão de argilas moles a partir de amostras deformadas e ensaios de caracterização. 2015. 122 f. Dissertação (Mestrado em Engenharia Civil) – Programa de Pós-Graduação em Engenharia Civil, COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2015.

LUNNE, T.; BERRE, T.; STRANDVIK, S. **Sample disturbance effects in soft low plastic Norwegian clay**. M. de S. S. de Almeida, Ed. In: Symposium on recent developments in soil and pavement mechanics. **Anais**...Roterdam: Balkema, 1997.

MARQUES, M. E. S.; LEROUEIL, S.; ALMEIDA, M. S. S. Viscous behaviour of St-Roch-de-l'Achigan clay, Québec. **Canadian Geotechnical Journal**, v. 41, n. 1, p. 25-38, 2004.

MARTIN, L.; SUGUIO, K.; FLEXOR, J. M. Relative sea-level construction during the last 7000 years along the State of Paraná and Santa Catarina: additional information derived from shell middens. **Quaternary of South America and Antarctic Peninsula**, v. 4, p. 219-236, 1987.

MARTIN, L.; SUGUIO, K.; DOMINGUEZ, J. M. L.; FLEXOR, J. M. Geologia do Quaternário costeiro do litoral Norte do Rio de Janeiro. Belo Horizonte: CPRM, 1997.

MARTINS, I. S. M. **Sobre uma nova relação índice de vazios tensão em solos**. 1983. 220 f. Dissertação (Mestrado em Engenharia Civil) – Coordenação dos Programas de Pós-Graduação, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 1983.

MARTINS, I. S. M. Fundamentos de um modelo de comportamento de solos argilosos saturados. 1992. 257 f. Tese (Doutorado em Engenharia Civil) – Coordenação dos Programas de Pós-Graduação, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 1992.

MARTINS, I. S. M.; ABREU, F. R. S. Uma solução aproximada para o adensamento unidimensional com grandes deformações e submersão de aterros. **Solos e Rochas**, v. 25, n. 1, p. 3-14, 2002.

MARTINS, I. S. M.; LACERDA, W. A. **A theory of consolidation with secondary compression**. In: XI International Conference on Soil Mechanics and Foundation Engineering. **Anais**... San Francisco: 1985. p. 567-570.

MARTINS, I. S. M.; LACERDA, W. A. Discussão de " C_{α}/C_{c} concept and K_{0} during secondary compression", por Mesri, G. e Castro, A. Journal of Geotechnical Engineering, ASCE, v. 115, n. 3, p. 264-267, 1989.

MARTINS, I. S. M.; LACERDA, W. A. Sobre a relação índice de vazios - tensão vertical efetiva na compressão unidimensional. **Solos e Rochas**, v. 17, n. 3, p. 157-166, 1994.

MASSAD, F.; SUGUIO, K.; PÉREZ, F.S. **Propriedade geotécnica de sedimentos argilosos como evidência de variações do nível relativo do mar em Santos**. In: VIII Congresso Brasileiro de Mecânica dos Solos e Engenharia de Fundações. **Anais**...1996, v. 8, p. 163-176.

MAYNE, P. W.; KULHAWY, F. H. K₀-OCR relationships in soil. Journal of the Geotechnical Engineering Division, ASCE, v. 108, n. GT6, p. 851-872, 1982.

MESRI, G.; CASTRO, A. C_{α}/C_{c} concept and K_{0} during secondary compression. Journal of Geotechnical Engineering, ASCE, v. 113, n. 3, p. 230-247, 1987.

MESRI, G.; GODLEWSKI, P. M. Time- and stress-compressibility interrelationship. Journal of the Geotechnical Engineering Division, ASCE, v. 103, n. GT5, p. 417-430, 1977.

MILNE, G. A.; LONG, A. J.; BASSETTA, S. E. Modelling Holocene relative sea-level observations from the Caribbean and South America. **Quaternary science reviews**, v. 24, n. 10-11, p. 1183-1202, 2005.

MITCHELL, J. K. Shearing resistance of soils as a rate process. Journal of the Soil Mechanics and Foundations Division, ASCE, v. 94, SM 1, p. 29-61, 1964.

MITCHELL, J.; SOGA, K. Fundamentals of soil behavior. 3. ed. New Jersey: John Wiley & Sons, 2005.

PAASWELL, R. E. Temperature effects on clay soil consolidation. Journal of the Soil Mechanics and Foundations Division, ASCE, v. 93, n. 3, p. 9-22, 1967.

PACHECO SILVA, F. **Uma nova construção gráfica para a determinação da pressão de pré-adensamento de uma amostra de solo**. In: IV Congresso Brasileiro de Mecânica dos Solos e Engenharia de Fundações. **Anais**...1970, v. 2, p. 219-224.

PINTO, C. S. **Curso básico de mecânica dos solos em 16 aulas**. 3. ed. (2. reimpr.). São Paulo: Oficina de Textos, 2006 (reimpr. 2011).

POPPER, K. R. A lógica da pesquisa científica. Tradução de Hegenberg, L.; Motta, O. S. 9. ed. São Paulo: Cultrix, 1974.

PÓVOA, L. M. M.; NASCIMENTO, P. N. C.; MAIA, P. C. A. Laboratory Parameters of a Soft Soil Deposit in Macaé, Brazil. **Soils and Rocks**, vol. 41, nº 1, p. 3-16, 2018.

SANTOS, R. M. Estudo experimental da parcela viscosa na tensão normal efetiva de solo argiloso. 2006. 122 f. Dissertação (Mestrado em Engenharia Civil) – Programa de Pós-Graduação em Engenharia Civil, COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2006.

SCHMERTMANN, J. H. A simple question about consolidation. Journal of Geotechnical Engineering, ASCE, v. 109, n. 1, p. 119-122, 1983.

SCHOFIELD, A.; WROTH, W. Critical state soil mechanics. London: McGraw-Hill Book Company, 1968.

SILLS, G. C.; ELDER, D. M. The transition from sediment suspension to settling bed. In: J., M. A. (Ed.). **Estuarine cohesive sediment dynamics**. New York: Springer, 1986. v. 14, p. 192-205.

SILVA, D. M. Estimativa do índice de compressão de argilas moles da costa brasileira a partir de ensaios de caracterização. 2013. 172 f. Dissertação (Mestrado em Engenharia Civil) – Programa de Pós-Graduação em Engenharia Civil, COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2013.

SILVA, L. C.; SANTOS, R. A.; DELGADO, I. M.; CUNHA, H. C. S. **Mapa geológico do Estado do Rio de Janeiro**. 2. ed. Brasília: CPRM, 2001. Programa levantamentos geológicos básicos do Brasil.

SILVA, L. C.; CUNHA, H. C. S. Geologia do estado do Rio de Janeiro: texto explicativo do mapa geológico do Estado do Rio de Janeiro. 2. ed. Brasília: CPRM, 2001. Programa levantamentos geológicos básicos do Brasil.

SKEMPTON, A. W. **The coloidal activity of clays**. In: III International Conference on Soil Mechanics and Foundation Engineering. **Anais**...Zurich: 1953, p. 57-61.

SOARES, J. M. D. Estudo do comportamento geotécnico do depósito de argila mole da grande Porto Alegre. 1997. 300 f. Tese (Doutorado em Engenharia Civil) – Programa de Pós-Graduação em Engenharia Civil, Universidade Federal do Rio Grande do Sul, Porto Alegre, 1997.

SUGUIO, K.; CRUZ, O. **Coastline of the states of Rio de Janeiro and São Paulo**. International Geographical Union – Comission on the coastal environment field trip. São Paulo, 1982.

TAYLOR, D. W. **Research on consolidation of clays**. Dept. of Civil Engineering and Sanitary Engineering, Massachusetts Institute of Technologie. 145 p., 1942.

TAYLOR, D. W. Fundamentals of soil mechanics. (16 reimpr.). New York: John Wiley & Sons, 1948 (reimpr. 1967).

TAYLOR, D. W.; MERCHANT, W. A theory of clay consolidation accounting for secondary compression. **Journal of Mathematics and Physics**, v. 19, n. 3, p. 167-185, 1940.

TERZAGHI, K. The shearing resistance of saturated soils and the angle between the planes of shear. I International Conference on Soil Mechanics and Foundation Engineering. Anais...Cambridge, Massachusetts: 1936, v. 1, p. 54-56.

TERZAGHI, K. Undisturbed clay samples and undisturbed clays. Journal of the Boston Society of Civil Engineers, v. 28, n. 3, p. 45-65, 1941.

TERZAGHI, K.; FRÖHLICH, O. K. **Theorie der Setzung von Tonschichten:** eine Einführung in die analytische Tonmechanik. Franz Deuticke: Viena, 1936.

THOMASI, L. **Sobre a existência de uma parcela viscosa na tensão normal efetiva**. 2000. 121 f. Dissertação (Mestrado em Engenharia Civil) – Programa de Pós-Graduação em Engenharia Civil, COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2000.

VALERIANO, C. M.; SILVA, L. C. Geologia e recursos minerais da folha Baía de Guanabara SF-23-Z-B-IV, estado do Rio de Janeiro, escala 1:100.000. Belo Horizonte: CPRM, 2012. Programa Geologia do Brasil.

VIEIRA, L. O. M. **Contribuição ao estudo do adensamento secundário**. 1988. 137 f. Dissertação (Mestrado em Engenharia Civil) – Coordenação dos Programas de Pós-Graduação, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 1988.

VILELA, T. F. Determinação dos parâmetros de resistência, creep e de relaxação de tensões de uma argila mole do Rio de Janeiro. 1976. 193 f. Dissertação (Mestrado em Engenharia Civil) – Programa de Pós-Graduação em Engenharia Civil, COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 1976.

VILLWOCK, J. A.; TOMAZELLI, L. J. Geologia costeira do Rio Grande do Sul, nota explicativa para o mapa geológico na escala 1:100.000. Porto Alegre: UFRGS, 1995. Notas técnicas/CECO.

WANG, Y. H.; XU, D. Dual porosity and secondary consolidation. Journal of Geotechnical and Geoenvironmental Engineering, v. 133, n. 7, p. 793-801, 2007.

ZEEVAERT, L. Consolidation theory for materials showing intergranular viscosity. In: 3rd Pan American Conference on Soil Mechanics and Foundation Engineering. Anais... Caracas, Venezuela: 1967, v. 1, p. 89-110.

ANEXO A – Planta Baixa de Locação das Sondagens

ANEXO B – Boletim da Sondagem e do Ensaio SPT Realizados na Vertical de Amostragem (2018)

PER	FIL GE		100				
CLIENTE: FMC	TECHNOLOGIES	DO BRASIL LTD	۹.	55			
LOCAL: RUA PAU	LO EMÍDIO BARB	OSA, 485 - CIDADE	UNIVERSITÁRIA - RI	O DE JANEIRO - RJ	الكلالا الا		
SONDAGEM: SP	9 - 01		COTA: NF				
Nº. de Golpes 1º e 2º 2º e 3º	Grá	fico C 30 40	otas (m) Profund N.A. (m)	Amostra	Descrição do M	aterial	
			-2.25 -5 -10	1 2 3 4 5 6 7 8 9	.Aterro - Material variada	k.)	
			10,50 -	(1)			
				(13) (14)			
			- 15	(15)	Argila com fragmentos d	de conchas,	
			-	(16)	cinza escura.		
	-			(18)			
			-20	(19)			
NÍVEL D'	ÁGUA (m)	SIMB	OLOGIA	O/N O amostrad	or penetrou N cm sob o peso das	a hastes	
2,50	2,25	X - Amostra não r NFO - Nível D'ág	ecuperada ua não foi observada	da D (N C amostrador penetrou N cm sob o peso das hastes + peso			
29/01/2018	29/01/2018	NFE - Nivel D'ag	ua não foi encontrado	rado F/N do batente			
• <u>•</u> ••••••••••••••••••••••••••••••••••	0 cm iniciais 0 cm finais	Amostrador	// 6 mm // interno 34,9 mm	mm FLÁVIO ANDRÉ PEREIRA			
ESCAL	A 1:100	Peso 65 Kg - alt	ura da queda 75 cm	GEÓLOGO 31/0* n CREA-RJ Nº 94102252-9 31/0*			

	PER	FIL GEC		17 3				
						Sous		
SONDAG	GEM: SP	- 01	OSA, 403 - CIDADE UNIVER	COTA: NF	DE JANEIRO - RJ			
Nº. de	Golpes	Grá	fico Cotas(m)	Profund	Amostra	Descrição do M	aterial	
1º e 2º	2º e 3º	10 20	30 40 N.A .	(m)	Alliooka			
					21			
		<u></u>		-	22	Argila com fragmentos o cinza escura.	de conchas,	
		. un suesca sue un	·····		23			
10	18			23,90 — 24,50 —	24	Argila siltosa, pouco are clara, rija.	nos <mark>a, ci</mark> nza	
17	22		- 25		25			
17	25				26	Areia fina e média, pou cinza, compacta.	co <mark>argilos</mark> a,	
28	40			26,80	(27)			
						Argila siltosa, cinza, durc	1.	
28	42	minimi		27,90	28			
29	44				29	Silte arenasa, varienada	muito	
32	51		- 30		30	compacto.	, 11010	
35	54		·····		31			
				31,45 —	32		AGEM	
		. manananana			33	Obs: sondagem paralisada de acordo com a norma técnica. 5 penetrações > 30/30		
		mini an ine ine			34	5 peneirações 2	30/30	
					35			
					36			
			<u></u>		37			
		mmmmmm			38			
					39			
INIC	IVEL D'Á	GUA (m)	SIMBOLOGIA		O/N O amostrado	or penetrou N cm sob o peso da	s hastes	
2,5	0	2,25	NFO - Nivel D'água não foi NFE - Nivel D'água não foi	observada encontrado	a P/N O amostrador penetrou N cm sob o peso das hastes + peso			
29/01/	Legenda	Gráfica	Revestimento Ø76 mm)	RESPONSÁVEL DA		DATA	
	• 30) cm iniciais) cm finais	Amostrador Ø interno	o 34,9 mm o 50,8 mm	mm FLÁVIO ANDRÉ PEREIRA GEÓLOGO 31/01/201		31/01/2018	
	ESCALA	A 1:100	Peso 65 Kg - altura da qu	ueda 75 cm	8 mm GEÓLOGO 31/01/ 75 cm CREA-RJ Nº 94102252-9			

ANEXO C – Boletins das Sondagens e dos Ensaios SPT Realizados na Área da TechnipFMC (2010)

CLIENT	PERI	FIL	GEO								
LOCAL		OEMIDIO	BARR	DO B	RASIL					Sous	
SONDA	GEM: SP	- 01	DAND	03A, 40	55 - 6107	ADE ONIVERS	COTA	- DO FOR	IDAO - RO		and the
Nº. de	Golpes		Grá	fico	_	Cotas (m)	Profund		an taga taga	Description	
1º e 2º	2º e 3º	10	20	30	40	N.A.	(m)	Am	iostra	Descrição do M	ateria
8 24	12 53					<u>•1,69</u>			1 2	Aterro - Material variado.	
	2	minima			mmn		2,58 —	(3	IMPENETRÁVEL A PE	
)						_	(4	t = 10 min2, t = 10 min2	55 a 2,57 mts
							_	(5	t = 10 min2,	58 a 2,58 mts
	1					-	_		6		
							_	į,	Ì		
	-						_	(8		
						-	_	(9		
				n an		n -	_	(10		
							_	(11)		
									12)		
	1		un on			**	_		13		
)	mann	in in in in					(14)		
	3		an an			-			15		
			tun aun	an ana	mhuria				16		
									17)		
		<u></u>	tan an	nn nn	mmin	"	-	(18		
			The last	an ini					19)		
N	VEL D'Á	GUA (m)		-	s	IMBOLOGIA		O/N	O amostrado	or penetrou N cm sob o peso da	s hastes
INIC 1,9	0	FINA 1,69	L	X - A	mostra i - Nível I	não recuperada D'água não foi	observada	D/N	O amostrado	or penetrou N cm sob o peso da	s hastes + peso
25/05	5/2010	25/05/20	010	NFE	- Nivel () água não foi (encontrado	ado F/N do batente			DATA
o	o 30	cm iniciais		Amo	strador	Ø 76 mm Ø interno	34,9 mm	,9 mm FLAVIO A, PEREIRA		DAIA	
	escala	cm finais		Ø externo 50,8 mm Peso 65 Kg - altura da queda 75 cm					FLAVIO A, PEREIRA nm GEÓLOGO 27/05/20 cm CREA-RJ № 94102252-9 27/05/20		27/05/2010

	PER	FIL (GEO	OLO	ÓG	IC	O GE	NIC	0		100	
CLIENT	E: FMC	TECHNOL	OGIE	S DO	BRAS	IL L	TDA				En uE	
LOCAL:	RUA PAU	LO EMÍDIO	BARB	OSA,	485 = 0	DAD	DE UNIVERSI	TÁRIA - ILHA	A DO FUI	NDÃO - RJ	الدهد اعتز علا إغاز الدهم	
SONDA	GEM: SP	-01A	Grá	fice			Cotos (m)	COTA: NF	1			1000 APRIL
1º e 2º	2° e 3°	10	20	30	, 40		N.A.	(m)	Ar	nostra	Descrição do M	aterial
7 23	12 48						<u>• 1,59</u>			1 2	Aterro - Material variado.	
8	10							2,90 -		3		
9	12							4.50		4	Aterro - Argilo s ito sa, pouco rija.	arenosa, variegoda,
14	18						-5			(5)		
5	9							6.76		6	Aterro - Areia fina e média, « conchos, com pedregulhos, compacta.	com fragmentos de medianamente
								0,10		7	IMPENETRÁVEL A PE	RCUSSÃO
			m m							8	t = 10 min 6, t = 10 min 6,	74 a 6,75 mts 75 a 6,76 mts
				uu	i na n	nun		_		9	t = 10 min 6,	76 a 6,76 mts
				mm	renor en			_		10		
										11		
		mmm				u iui		_		(12)		
				anapa				_		13		
								_		14)		
		m m m						_		(15)		
		un nu un	ini ni	mm	, and a			-		16		
					i auton			-		17		
					i ini ii					18		
		mmm		min						(19)		
		CILA ()	0.2		0.0		1					
	IAL	GUA (m) FINAL	Ľ	X-	Amos	SIN	BOLOGIA		O/N	O amostrado	or penetrou N cm sob o peso da	s hastes
1,87 1,59					O - Ni	vel D'	água não foi c água não foi c	observada	ada P/N O amostrador penetrou N cm sob o peso das hastes + pe		s hastes + peso	
25/05/2010 25/05/2010 Legenda Gráfica					/estim	ento	Ø76 mm		RESPONSÁVEL DATA		DATA	
0	Amostrador Ø interno 34,9 mr Ø externo 50,8 m					.9 mm FLAVIO A. PEREIRA .8 mm GEÓLOGO 27/05/2			27/05/2010			
	ESCALA 1:100					Kg -	altura da qu	eda 75 cm		CREA-	RJ Nº 94102252-9	

	PER	FIL GEC	LÓGIC	D GE	OTÉC	CNICO			
CLIENT	E: FMC	TECHNOLOGIES	DO BRASIL LI	DA					
LOCAL:	RUA PAU	LO EMÍDIO BARB	OSA, 485 - CIDAD	EUNIVERSI	TÁRIA - ILHA	DO FUNDÃO - RJ			
SONDA	GEM: SP	9-01 B		~ ~ ~ ~ ~	COTA: NF			States and a	
Nº. de 1º e 2º	Colpes 2º e 3º	Grá 10 20	fico 30 40	Cotas (m) N.A.	Profund (m)	Amostra	Descrição do M	ateria	
12	17			-1,64		1	Aterro - Material variado, co	m pedregulhos.	
14	24				-	2			
10	13				2,90	3	Aterro - Argilo sitoso, pouco rija	arenosa, varlegada,	
9	12			-5	4,55 —	(4)	1994		
19	7				5 95	(5)	Aterro - Areia fina e média, e conchas, cinza clara, comp	com fragmentos de octa.	
6	6					6			
5	7				1	(8)	Turía arg i losa, cinza escura,	média.	
6	8					9			
2	3	/		- 10	9,60	10			
1/30				and	and from	1			
2	3				- materia	(12)			
2	2					(13)			
1/30						14	Arg ia si ltosa, cinza escura, n	nuito mole a mole.	
1/45			ur ur ur ur ur	- 15		(15)			
1/30			an an manann	4	- united and a second se	16			
2	2				Jum	Ű			
1/25	1/20					(18)			
1/30				- 20		(19)			
NIC 2,0 29/05	IVEL D`Å IAL 2 5/2010	GUA (m) FINAL 1,64 29/05/2010	SIN X - Amostra nä NFO - Nivel D NFE - Nivel D	IBOLOGIA o recuperada água não foi o água não foi e	observada incontrado	O/N O amostrad P/N O amostrad do batente	or penetrou N cm sob o peso da or penetrou N cm sob o peso da	s hastes s hastes + peso	
-411	Legenda	Gráfica	Revestimento	Ø 76 mm		RESPONSÁVEL DATA			
•	0 30	cm finais	Amostrador Peso 65 Ko	Ø interno Ø externo	34,9 mm 50,8 mm eda 75 cm	mm FLAVIO A. PEREIRA mm GEÓLOGO 31/05/2010 75 cm GREAR J. 93402252-0 31/05/2010			
	ESCALA	A 1:100	reso os kg -	atura da que	queda 75 cm CREA-RJ Nº 94102252-9				

	PERFIL GEOLÓGICO GEOTÉCNIC											GEOTÉ	CNICO					100 100
CLIENT	E: FMC T	ECH	INC	DLO	DG	IES	D	OB	R/	SI		TDA						
LOCAL:	RUA PAUL	O EN	лíD	10	ва	RB	os/	A, 4	85 -	CI	DAD	DE UNIVERSI	TÁRIA - ILHA	A DO FU	NDĀ	O-RJ		
SONDA	GEM: SP	- 01	8										COTA: NF	-				
1º e 2º	Golpes 2º e 3º		10	5	Gr 2	áfic O	:0 3	10	4	٥		Cotas (m) N.A.	Profund (m)	A	mos	tra	Descrição do N	laterial
1/30				uur)	m					uu	n o				21			
2	2	-	TU S	m	7013	m	лп			m			_		@2			
3	4												_		23			
2	2	-		mı	m	m	n n				nn.		_		24			
3	4	f	1		THE					uu	<u>n</u> n	- 25			25			
12	24			1	1	1					mm		25,50 —		26			
20	28		mþ		1		1				m		_		27		Arela fina e média, com pe compacta.	dregulhos, cinza dlara
23	31			m									27,60 —		28		Areia lina. cinza. compacto	J.
22	29	ana		me	m	-				m	un		28,70 -		29		Silte argiloso, pouco arenos	o, micáceo,
30	42				mr		1			N		- 30	29,80 -		(30)		Variegado, auro, (solo resid	iuali
45	30/15														91		Silte arenoso, pouco arg i os variegado, muito compact	o, micáceo, o (Solo Residual)
45/10		100000			0.000	16.575		1922							9		ranggada, nang panggad	de louise notices any
			1111		the second	TTT					THE		32,10		(33)		LIMITE DE SOND	AGEM
															34		OBS: Sondagem paralis com norma té	ada de acordo cnica.
			-							m					(35)		5 Penetrações >	30/30
			1110		UNCO UNCO										36			
		mm													(37)			
															(38)			
						56325				1111					(39)			
							2534	1-0				0						
NÍVEL D'ÁGUA (m)								SIN	BOLOGIA		O/N	Oa	mostrado	or penetrou N cm sob o peso da	is hastes			
2,02 1,64				X - Amostra não recuperada NFO - Nível D'água não foi observada NFE - Nível D'água não foi encontrado					observada encontrado	nvada P/N 0 amostrador penetrou N cm sob o peso das hastes + pes		is hastes + peso						
29/05/	Legenda	Gráfi	ca	120	10		F	Rev	est	ime	ento	Ø 76 mm	noonacao		00	RES	SPONSÁVEL	DATA
• 30 cm iniciais • 30 cm finais • SCALA 1:100				F	Amo	ostr	ado 5 K	я 9 =	Ø interno Ø externo altura da qu	34,9 mm 50,8 mm ieda 75 cm			FLAV	IO A. PEREIRA GEÓLOGO RJ Nº 94102252-9	31/05/2010			

	PER	FIL GEO		1			
CLIENT	E: FMC		S DO BRASIL LTDA			SmuS	
SONDA	GEM: SE	LO EMILIO BARD	USA, 465 - CIDADE UNIVI		DO FUNDAO = RJ		De la
Nº. de	Golpes	Grá	fico Cotas	(m) Profund			
1° e 2º	2º e 3º	10 20	30 40 N.A	. (m)	Amostra	Descrição do M	aterial
6	7		- 1.61		1		
7	8				2	Aterro - Material Variado.	
5	6		····· ···· ···· ····	- 3,00 -	3	Aterro - Araila sitosa, pouce	arenoso, variegada.
8	15			3,60 —	4	média.	
10	13		- 5		5	Aterro - Areia fina e média, : medianamente compacta.	iitosa, cinza c l ara,
6	7		···· ···· ···· ····	5,80	6		
4	6	mfmmmm			7	Turfa arg il osa, cinza escura,	média.
4	5			and the second sec	8		
2	2		····· ···· ····	8,80	9		
2	2		- 10	_	10		
2	2	1			11		
1/30					(12)		
1/25	1/35	m m m m m m			13		
1/40		minimini			14)	Argila siltosa, cinza escura, n	nuito mo l e.
1/50			- 15	_	(15)		
1/55		mini mini mini mini mini mini mini mini			16		
1/55		m m m m	110 100 100 100 100		Ŧ		
1/60		manana man			18		
1/80				al an	(19)		
1/80 N	VEL D'Á	GUA (m)	-20	GIA			
INIC 1,9	IAL 7	FINAL 1,61 26/05/2010	X - Amostra não recupe NFO - Nível D'água não NFE - Nível D'água não	rada o foi observada o foi encontrado	ada P/N O amostrador penetrou N cm sob o peso das hastes do batente		s hastes s hastes + peso
20/00	Legenda	Gráfica	Revestimento Ø76	mm	RESPONSÁVEL DATA		DATA
0) cm iniciais) cm finais	Amostrador Ø inte	erno 34,9 mm	FLAV	IO A. PEREIRA	07/05/05/4
	ESCAL	A 1:100	Peso 65 Kg - altura di	a queda 75 cm	CREA-	GEOLOGO RJ Nº 94102252-9	27/05/2010

	PERF	IL G	EOL	ÓGI	CO	GEOTÉ	CNICO				17 363	
CLIENT	E: FMC T	ECHNOL	OGIES	DO B	RASII	LTDA						
LOCAL:	RUA PAUL	O EMÍDIO	BARB	OSA, 48	85 - CI		ITÁRIA - ILHA	DO FUND	40 - RJ			
SONDA	GEM: SP	- 02	0.40		_		COTA: NF					
1º e 2º	Golpes 2º e 3º	10	Grafic 20	30	40	Cotas (m)	Profund (m)	Amos	stra	Descrição do M	aterial	
1/45				un trij				21				
2	2			uu uu			-	22)			
2	2	- <mark>-</mark>		0.0 (10			22.50	23				
3	3						23,50	24)	Turfa argilosa, marrom clara	, mo l e.	
3	4					- 25	24,80 —	25				
12	16			<u>110 m</u>	muu	nn -	-	26		Arela fina e média, pouco (pedregulhos, cinza clara, c	argilosa, com ompacta.	
22	32						26,85	27)		n n	
24	36				1		28,60	28		sine argilaso, pouco arenos micáceo, variegado, duro.), com peareguinos, [So l a Residua	
32	47					-	-	29		Silte arenoso, com pedregul varlegado, multo compacto	hos, micáceo, a. (Solo Residual)	
58/25	30/10						30,25 —	30)			
				nn nn				31		LIMITE DE SOND	AGEM ada de acordo	
				un un				32)	5 Penetrações > 30/30		
		ann ann ann	emena	<u>no no</u>				33)			
				un tra				(34)			
								35				
								30				
		mmm						(38)			
								39				
NIC 1,9 25/05	IAL 7 2010	GUA (m) FINA 1,61 26/05/2	NL 010	X - A NFO NFE	mostra - Níve - Níve	SIMBOLOGIA não recuperada D'água não foi D'água não foi	a observada encontrado	O/N 0 a P/N 0 a do	amostrado amostrado batente	or penetrou N cm sob o peso da or penetrou N cm sob o peso da	s hastes s hastes + peso	
	Gráfica		Reve	estime	nto Ø76 mm	н	RESPONSÁVEL DATA		DATA			
0	• 30 • 30 • 30 • 50	cm inicials cm finais 1:100	8	Amo Pesc	strado 65 Kg	r Ø interno Ø externo g - altura da qu	o 34,9 mm o 50,8 mm ueda 75 cm	mm FLAVIO A. PEREIRA mm GEÓLOGO 27/05/20 5 cm CREA-RJ № 94102252-9			27/05/2010	

															1		
CLIENT	E: FMC T	ECH	INC		DG	IES	5 D	OE	BR/	SI		TDA				Smu S	
LOCAL:		.0 El	MID	0	BA	RB	os.	A, 4	85	C	DAL	DE UNIVERSI	TARIA - ILHA	A DO FU	NDAO - RJ	a second that the that second	
Nº. de	GEM: SP Golpes	- 03			G	74	£ 17				-	Cotas (m)	COTA: NF				
1º e 2º	2° e 3°	ĺ.	10)	2	0	3	0	4	0		N.A.	(m)	Ar	mostra	Descrição do M	ateria
17	28	199			-	/3									1	Aterro - Material variado co	m pedregulhos e
41/25	37/10		ura	mr	uu	m	uu			1.00	1	2	2.25		2		
		uura		r	me	m			m				-		3	IMPENETRÁVEL A PE ROCHA OU MAT	RCUSSÃO IACÃO
		anna		m	m	m	m		m		·····		_		4		
			men	m	mr	m		hin	m	m	m				5		
	- 100 100 100 100				uu:	m	au		m	nu	m				6		
	1		iir b		m		an		an				_		$\overline{\mathcal{O}}$		
				m	m			-011	ini		m		_		(8)		
					m	uu	m	ini,	m	00	m		_		9		
					me	an									10		
			-										_		Ð		
				au,	ini,	nu	ing	210	m	uu			_		12		
	1	2009		m	m	m		au	20	au	an				13		
	2	m			m	TTT	m		m				_		(14)		
													_		(15)		
					uu	m	uu		m	uu					(16)		
			mes		m				100		m				Ð		
		m	nr i	m	me	m	m	m	m						18		
							ani	m		_		(19)					
INIC	IVEL D'À	GUA	FIN	n) JAI	j.		SIMBOLOGIA							O/N	O amostra	dor penetrou N cm sob o peso da	s hastes
NFE NFE						 Amostra nao recuperada NFO - Nivel D'água não foi observada NFE - Nivel D'água não foi encontrado 							P/N	O amostra	dor penetrou N cm sob o peso da	s hastes + peso	
09/06	Legenda	Gráfi	06/ ca	20	10		F	Rev	est	ime	nto	Ø 76 mm	au	RESPONSÁVEL DATA		DATA	
•	• • 30 cm iniciais • • • 30 cm finais						Amostrador Ø interno 34,9 Ø externo 50,8					Ø interno	34,9 mm		FLA	/IO A. PEREIRA	14/05/2010
	o 30 cm finais ESCALA 1:100						F	es	0 6	5 K	g -	altura da qu	eda 75 cm		CREA	-RJ Nº 94102252-9	14/05/2010

CLIENT	PERFIL GEOLÓGICO GEOTÉCNICO																
LOCAL:	.OCAL: RUA PAULO EMÍDIO BARBOSA, 485 - CIDADE UNIVERSITÁRIA - ILHA DO FUNDÃO - RJ														SOLUS 🔜 🖌		
SONDA	SONDAGEM: SP - 03 A COTA: NF																
Nº. de	Golpes		1000		G	r á	fi	c 0				Cotas (m)	Profund	Δ	nostra	Descrição do Material	
1º e 2º	2° e 3°		1	0	2	0		30	4	0	-	N.A.	(m)	~	nustra	Descrigeo do inderna	
18 39/25	30 33/10	111	me			1	1	1					_		0	Aterro - Material variado com pedregulhos e matacões de rocha.	
		anas		ana		in the	111	100		100	1		2,36				
		uus	me	m		m	un						_		3	IMPENETRÁVEL A PERCUSSÃO ROCHA OU MATACÃO	
	:	annes	m	ini	m		m			-			_		4		
			mr		The second se		inin	hin	m						5		
		aaa	nue		uu		300		au				_		6		
	2			501	uur		i in			-					1		
	3	111	m		IIII	 	1								8		
		uu:	m		int		ini.		m	111			_		9		
	3		me		ant		310	- an		barr			_		10		
				****	ent			1							11		
				2013											12 @		
					im										14		
															(15)		
		aute	uus	-11.1			aut								(16)		
			me		m	ain									Ū		
	;	m	me	m	m	m	m	hun	m						18		
										100					(19)		
NIVEL D'AGUA (m)						SIMBOLOGIA							O/N	O amostra	dor penetrou N cm sob o peso das hastes		
NFE NFE					X - Amostra não recuperada NFO - Nível D'água não foi observada							P/N	O amostra	dor penetrou N cm sob o peso das hastes + peso			
09/06/2010 09/06/2010						NFE - Nível D'água não foi encontrado							F/N	do batente			
0-	o 30 cm iniciais						Amostrador Ø interno 34,9 mm								FLAVIO A. PEREIRA		
ESCALA 1:100						1	Pes	io 6	5 K	g -	Ø externo altura da qu	50,8 mm eda 75 cm		GEÓLOGO 14/05/2010 A-RJ Nº 94102252-9			
	PER	FIL GE		100													
--------------	--	----------------------------	---------------------------	---	--	--	--	---------------------------------									
CLIENT	E: FMC	TECHNOLOGIE	S DO BRASIL L	TDA			Circu u Ci										
LOCAL:	RUA PAU	ILO EMÍDIO BARI	BOSA, 485 - CIDAI	DE UNIVERSI	TARIA - ILHA	DO FUNDÃO - RJ	and Kits to Manual										
Nº. de	GEM: SI Golnes	P=04	ifico	Cotas (m)	COTA: NF			Service and the									
1º e 2º	2º e 3º	10 20	30 40	N.A.	(m)	Amostra	Descrição do M	ateria									
7	9					1	Aterro - Material variado.										
10	14			-1,80		2											
6	8	-			2,70	3	Alerro - Argila arenasa, pov marrom, mèdia.	co arenosa,									
17	22			-	3,80	4											
18	23		<u></u>	- 5		5											
7	9		a na mana na m			6	Aterro - Areia fina e média, pedregulhos, cinza, median	iltosa, com amente compacta.									
5	6			_		T											
5	7		<u></u>		7,70 —	8		2									
6	8		<u>, na na na na na</u>	_		9	Turfa arg il asa, cinza escura,	mole.									
1/70				- 10	9,95 —	10											
1/80		5 	<u></u>		l de la companya de	11											
1/70			<u></u>			12											
1/85			<u></u>		-	13											
P/60					1	14	Argila siltosa, cinza escura, r	nuito mole.									
P/60				- 15		15											
1/65		a un un us un n	,			16											
1/65		o n marana			- Province	Ð											
1/70			<u>"</u>			18											
1/75						(19											
1/75 -20																	
INIC 2,30	NIVEL D'AGUA (m) SIMBOLOO INICIAL FINAL X - Amostra não recuper 2,30 1,80 NFO - Nível D'água não 27/06/2040 28/05/2040 NFE - Nível D'água não			IBOLOGIA lo recuperada lágua não foi c água não foi e	observada incontrado	O/N O amostrada P/N O amostrada do batente	or penetrou N cm sob o peso da or penetrou N cm sob o peso da	s hastes s hastes + peso									
21105	27/05/2010 28/05/2010 REPENDED agua nao fore Legenda Gráfica Revestimento ∅ 76 mm				RESPONSÁVEL DATA												
0	• 30 cm iniciais A			Amostrador Ø interno 34,9 mm		FLAVIO A. PEREIRA		20/05/2010									
	ESCAL	A 1:100	Peso 65 Kg -	altura da que	eda 75 cm	CREA-	RJ Nº 94102252-9	28/05/2010									

	PERFIL GEOLÓGICO GEOTÉCNICO								17 TH
CLIENTE	E: FMC	TECHNOLOGIE	S DO BRASIL I	TDA					
LOCAL: R	RUA PAU	LO EMIDIO BARE	30SA, 485 - CIDA	DE UNIVERS	ITÁRIA - ILHA	DO FUNE	DÃO - RJ		
SONDAC	GEM: SP	- 04			COTA: NF				
1º e 2º	2º e 3º	10 20	30 40	Cotas (m) N.A.	Profund (m)	Amo	ostra	Descrição do M	aterial
1/40			anniminin	e e e e e e e e e e e e e e e e e e e		÷	21)		
1/40		an an an an an ar	3 <u>101 001 001 001 00</u>	π [‡]		(22)		
1/50				-		(23)		
1/45				-		¢	24)		
1/45				- 25		Ę	25)		
1/30			<u>ana ana ana ana an</u>	- 1		¢	26)		
12	18		<u></u>	-	26,70 —	(27	Areia fina e média, pouco a	rgilosa, com
13	16		i un un un un un un	-	28.50		28	pedregulhos, micácea, cinzo medianamente compacta.	s clora.
21	30			-	20,00		29		- 41 100
25	34			- 30		1	30)	Silte argiloso, pouco arenoso variegado, duro, (Solo Residi	, micáceo, Jalj
24	31			-	30,90		31)		
35	45						32)	Silte crenaso, com pedregul variegado, muito compacto	nos, micáceo, (Solo Residual)
30/10			<u>,</u>	-	33,10 —	3	33		
				+ -		3	34)		GEM
				-		8	35)	Com norma téc	nica.
			1 columnation	-		3	36)	5 Penetrações > .	30/30
				-		8	37)		
				+ -		1	38)		
				-		۲	39)		
NÍ	VEL D'	AGUA (m)	s						
INICI	AL	FINAL	X - Amostra n	ão recuperada	sheeninda) amostrado	or penetrou N cm sob o peso das	hastes
27/05/2	2010	28/05/2010	NFE - Nivel D	agua não foi (encontrado	P/N) amostrado lo batente	r penetrou N cm sob o peso das	i hastes + peso
0	Legenda 0 3	Gráfica 0 cm Iniciais	Revestimente Amostrador	Ø 76 mm	34.9 mm		RES	PONSÁVEL	DATA
-0	escal) cm finais A 1:100	Peso 65 Kg	Ø externo - altura da qu	50,8 mm leda 75 cm	mm FLAVIO A. PEREIRA mm GEÓLOGO 28/05/ 5 cm CREA-RJ № 94102252-9			28/05/2010

CLIENT			_					
LOCAL:	RUA PAU	LO EMÍDIO BARB	OSA, 485 - CIDAD		TÁRIA - ILHA	DO FUNDÃO - RJ	SoluS	
SONDA	GEM: SF	- 05			COTA: NF			20 10
N⁰. de	Golpes	Grá	fico	Cotas (m)	Profund	Amostra	Descrição do M	aterial
1º e 2º	2º e 3º	10 20	30 40	N.A.	(m)			
14	18					1	Aterro - Material variado, co	m pedregulhos e
11	14		110/111/111/111/111	-2,30		2	malações de racha:	
18	26		<u> </u>	-	2,85	3	Aterro - Areia fina, cinza clar	a, compacta.
23	32				-	4		
13	15			-5		5	Aterro - Argila arenosa, cinzo	a clara, dura.
7	9				5,90 —	6		
6	8				-	\overline{O}		
8	10			_		(8)	Turfa argilosa, cinza escura,	média.
6	7					9		
2	2	/		- 10	9,50	10		
1/45					_	Ħ		
2	2					(12)		
1/55						(13)		
1/40		m mananan		-		14		
1/50				- 15		(15	Argila siltosa, cinza escura, n	uito mole a mole.
1/55						(16		
2	2					17		
2	3		minimi			18		
2	2			_		(19		
3	4			- 20				
NÍVEL D'ÁGUA (m) SIMBOLOGIA				O/N O amostrad	or penetrou N cm sob o peso da:	s hastes		
2,7	INICIAL FINAL X - Amostra não recuperada 2,70 2,30 NFO - Nivel D'água não foi observada			observada	P/N O amostrad	or penetrou N cm sob o peso da:	s hastes + peso	
04/06	04/06/2010 05/06/2010 NFE - Nivel D'água não foi encontrado			incontrado	do batente	SDONSÁVEL	DATA	
•	Legenda Gráfica Composition Composition			34,9 mm	FLAV	IO A. PEREIRA	DATA	
0	Continucials Amostrador Ø interno 34,9 m Ø externo 50,8 m ESCALA 1:100 Peso 65 Kg - altura da queda 75				50,8 mm eda 75 cm	FLAVID A, PEKEIKA 1 GEÓLOGO 11/06/201 m CREA-RJ Nº 94102252-9 11/06/201		

	PERF	IL GEOL	ÓGICO			17 773		
CLIENT	E: FMC 1	TECHNOLOGIES	DO BRASIL L	TDA				
LOCAL:	RUA PAU	LO EMÍDIO BARB	OSA, 485 - CIDAI	DE UNIVERSI	TÁRIA • ILHA	DO FUNDÃO - RJ		
SONDA	GEM: SP	- 05			COTA: NF			
Nº. de	Golpes 2º e 3º	Gráfic	30 40	Cotas (m) N.A.	Profund (m)	Amostra	Descrição do M	ateria
3	5					21		
4	5	man and an an	na manana an		21,90 —	22		
5	6					23		
6	7				-	24	Argila siltosa, pouco arenosa	ı. cinza. média.
6	7			- 25		25		
12	17				25,45 —	26	Areia fina e média, pouco a medianamente compacta.	rgilosa, cinza,
18	26			_	26,50 — 27 30 —	27	Areia média e grossa, com p compacta.	oodregu hos, cinza,
17	23					28	Silte orgiloso, pouco arenoso	, micóceo,
24	30				29,10		Vallegado, avia, (sola kesia	Jan
29	39			- 30		30		
27	35		(_	31	Silte arenaso, com pedregul	nos, micáceo,
31	47				_	32	variegado, compacto o mu (Solo Residual)	to compacto.
50	33/15	mani mumaa			22.45	33		
					33,43	34)	LIMITE DE SONDA	GEM
					-	35	OBS: Sondagem paralise com norma téc	ada de acordo nica.
					_	36	5 Penetrações >	30/30
					_	37		
					-	38		
			<u></u>		-	39		
N	VEL D'Á	GUA (m)						
INIC	IAL	FINAL	X - Amostra nā	io recuperada		O/N O amostrad	or penetrou N cm sob o peso das	a hastes
2,7 04/06/	0/2010	2,30 05/06/2010	NFO - Nivel D NFE - Nivel D	água não foi e água não foi e	observada encontrado	P/N O amostrade do batente	or penetrou N cm sob o peso da:	s hastes + peso
Legenda Gráfica Revestimento Ø 76 mm RESPONSÁVE			SPONSÁVEL	DATA				
0	escala) cm finais A 1:100	Peso 65 Kg -	Ø externo altura da qu	erno 50,8 mm FLAVIO A, PEREIRA erno 50,8 mm GEÓLOGO 11/06 a queda 75 cm CREA-RJ Nº 94102252-9			11/06/2010

	PER	FIL GEO		1			
CLIENT	E: FMC	TECHNOLOGIES	DO BRASIL LTDA			Smu ⁵	
LOCAL:	RUA PAU	LO EMÍDIO BARB	OSA, 485 - CIDADE UNIV	VERSITÁRIA - ILHA	DO FUNDÃO - RJ	الدهد ادا علا إدار الدهم	
Nº de	GEM: SH Golpes	-06 Grá	fic o Cotar	(m) Profund			Product and the
1º e 2º	2º e 3º	10 20	30 40 NJ	A. (m)	Amostra	Descrição do M	ateria
7	9			70	1		
14	16	·····	- <u></u>		2	-Aleno - Malena Valiado,	
16	19			2,90 -	3		
17	22			-	4	Aterro - Argila arenosa, com variegada, rija a dura.	pedregulhos,
7	8		-5	4,70	5	Aterro - Areia fina e média, :	sitosa, com restos de
10	11			6,50 —	6	vegetais, cinza clara, media	namente compacta
3	4		·····		7		
3	5		<u></u>		8	Turfa argilosa, cinza escura,	ma l e a média.
5	6				9		
1/40		f	<u></u>	3,30	10		
1/50					(1)		
1/60				Lunnud Lunnud	12		
1/50					(14)		
1/40			- 11	5	(15)	Argila siltosa, cinza escura, n	nuito mole.
1/80					16		
1/70					17		
1/50		minimum			18		
1/50					(19)		
1/50 -20							
NIC 2,1	NÍVEL D'ÁGUA (m) SIMBOLOGIA ÍNICIAL FINAL X - Amostra não recuperada 2,15 1,70 NFO - Nivel D'água não foi			OGIA erada ao foi observada	O/N O amostrado	or penetrou N cm sob o peso da or penetrou N cm sob o peso da	s hastes s hastes + peso
26/05/2010 27/05/2010 NFE - Nivel D'água não foi enco			io iorencontrado	do do batente		DATA	
	Legenda Gráfica		terno 34,9 mm	mm RESPONSÁVE erno 34,9 mm FLAVIO A. PERE		wran s	
o 30 cm finais ESCALA 1:100			Ø ex Peso 65 Kg - altura d	terno 50,8 mm da queda 75 cm	CREA-	GEÓLOGO RJ Nº 94102252-9	27/05/2010

	PERFIL GEOLÓGICO GEOTÉCNICO								17 12				
CLIENT	E: FMC T	ECHNOL	OGIES	DOB	BRAS		TDA						
LOCAL:	RUA PAUL	O EMÍDIO	BARBO	DSA, 4	85 - CI	DAD	DE UNIVERSI	TÁRIA - ILHA	DO FU	NDĂ	0-RJ		
SONDA	GEM: SP	- 06	2.40					COTA: NF	2 7				
1º e 2º	2º e 3º	10	20	30	40		Cotas (m) N.A.	Profund (m)	A	nost	ra	Descrição do M	aterial
1/50				ii ii iiii						21			
1/50						Hurr				22			
1/60								-		23			
1/60		mennenn	mini		man					24)			
1/55			minai			http://www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/www.com/	- 25			25			
1/45		····								26			
5	8	1	unun			e ue		-		27)			
7	10							27,95		28			
21	33		1	7				_		29		Arela fina e média, siltosa, a medianamente compacta.	inza c l ora,
23	30					e ne	- 30	29,70 -	70769	30		Silte orgiloso, pouco arenos micáceo, variegado, duro,	o, com pedregulhos. (Solo Residual)
27	35				-			30,65 —		31			
29	46			1		1	-	_		32		Silte arenosa, com pedregul variegado, multo compacto	hos, micáceo, 1. (Solo Residual)
48	30/15					1		33,30 —		33			
					200,000			-		34)		LIMITE DE SOND	AGEM
								_		35		OBS: Sondagem paralis com norma téc	ada de acordo :nica.
						- m				36		5 Penetrações >	30/30
		montan				ene.				37			
				na m				_		38			
				uori rin				_		39			
	VELD	CHA (m)				-							
INIC	IAL	GUA (m) FINAL		x-	Amostr	SIN a nă	o recuperada		O/N	0 ar	nostrado	or penetrou N cm sob o peso da	s hastes
2,1	5 /2010	1,70	10	NF	D - Níve		água não foi d água não foi e	observada encontrado	P/N	O ar do b	nostrado atente	or penetrou N cm sob o peso da	s hastes + peso
	Legenda	Gráfica		Rev	estime	ento	Ø 76 mm				RES	PONSÁVEL	DATA
0	• 30 • 30 • 30	cm iniciais cm finais	_	Amo	o 65 K	or (g -	Ø interno Ø externo altura da qu	34,9 mm 50,8 mm eda 75 cm			FLAV	O A. PEREIRA SEÓLOGO RJ Nº 94102252-9	27/05/2010

	PERFIL GEOLÓGICO GEOTÉCNICO							
CLIENT	E: FMC		DO BRASIL L				Smus	
SONDA	GEM: SP		USA, 405 - CIDA	DE UNIVERS	COTA: NE	CO FUNDAO • KJ		
Nº. de	Golpes	Grá	fico	Cotas (m)	Profund		Deseriaño de M	starial
1º e 2º	2º e 3º	10 20	30 40	N.A.	(m)	Amostra	Descrição do M	atternal
14	18		1. 1. 1. 1.		_	1	Aterro - Material variado, co	m pedregulhos e
10	14			•2,37	_	2	matações de rocha.	
22	29		N		2,85 _	3		
24	33					4	Aterro - Areia lina, cinza clar	a, compacta.
13	16			- 5		5		
8	10			-	5,90 _	6		
6	8				_	7		
7	9	·			_	8	Turfa argilosa, cinza escura, i	média.
4	5				_	9		
2	3	/		- 10	9,70 —	10		10 10 10 10 10 10 10 10 10 10 10 10 10 1
1/45				-	_	1		
1/60		. mananana		-	_	(12)		
1/60		mananan a.		-		13		
1/45		minenen nu		-	_	14		
1/50		uu uu uu uu uu	no no no na n	- 15	_	(15)	Argila siltosa, cinza escura, n	nuito mole a mole.
1/60		an mananan		r -	-	(16		
1/60				n -	_	17		
1/45				-		(18)		
2	2			-	-	(19		
1/50 -20								
NIC	NIVEL D'AGUA (m) SIMBOLOGIA INICIAL FINAL X - Amostra não recuperada				O/N O amostrad	or penetrou N cm sob o peso da:	s hastes	
2,8	2,80 2,37 NFC - Nivel D'água não foi observada			observada encontrado	P/N O amostradi	or penetrou N cm sob o peso das	s hastes + peso	
07/06/2010 08/06/2010 NPE - Niver D agua nao toi encontrado Logenda Gráfica Revestimento Ø 76 mm			RE	SPONSÁVEL	DATA			
0-	• • • • • • • • • • • • • • • • • • •			34.9 mm	FLAV	IO A. PEREIRA		
	ESCALA	A 1:100	Ø externo 50,8 mm Peso 65 Kg - altura da queda 75 cm			GEÓLOGO 11/06/2 CREA-RJ Nº 94102252-9		

	PERFIL GEOLÓGICO GEOTÉCNICO									15° 10
CLIENT	E: FMC	TECHNOLOGI	ES DO BF	RASIL LT	FDA					
LOCAL:	RUA PAU	LO EMIDIO BAR	RBOSA, 485	5 - CIDAD	E UNIVERSI	ITÁRIA - ILHA	DO FUNDÃO	D-RJ		
SONDA	GEM: SP	- 07 Cr	1000			COTA: NF				
1º e 2º	2º e 3º	10 20	afico 0 30	40	Cotas (m) N.A.	Profund (m)	Amostr	ra	Descrição do M	aterial
2	3						21			
4	5	mini arrante	ահարար	mmm	- my	21,70 -	22			
3	5						23		Argija sijiosa, pouco arenoso	1, cínza, média.
6	6		mhuhuh	minimi			24			
7	10			mmm	- 25	24,55 —	25	15	Areia fina e média, pouco o pouco compacta.	rgilosa, cinza clara,
10	16					26,00 -	26		Areia média e grassa, com s	pedreau hos, cinza,
12	29					27,00 —	27		medianamente compacta.	///////////////////////////////////////
27	35		7				28		Silte argiloso, pouco arenoso variedado, dura, (Sala Resid), micáceo,
30	43				- The second sec		29		Annagana) ann, fann asa	Julij
24	31		$\langle \langle$		- 30	29,70 —	30			
34	49	3			4		31		Silte arenaso, com pedregul variegado, compacto a mu (Solo Residual)	nos, micáceo, ito compacto,
56	37/15		minimin			32,30 —	32			
			an an an a				33			AGEM
							34)		com norma téc	inica.
							35		5 Peneirações >	30/30
			minimi n	u uu uu			36			
							37			
							38			
							39			
N										
INIC	IAL	FINAL		SIN mostra nã	BOLOGIA		O/N O am	nostrado	r penetrou N cm sob o peso da	s hastes
2,8	0	2,37	NFO NFE	- Nivel D'	água não foi d água não foi d	observada encontrado	P/N O am	nostrado atente	r penetrou N cm sob o peso da	s hastes + peso
	Legenda	Gráfica	Reve	stimento	Ø 76 mm			RES	PONSÁVEL	DATA
	0 30 0 30 ESCAL) cm iniciais) cm finais A 1:100	Amos	trador 65 Kg -	Ø interno Ø externo altura da qu	interno 34,9 mm externo 50,8 mm a da queda 75 cm CREA-RJ Nº 94102252-9		11/06/2010		

	PER	FIL GEO		10 10				
CLIENT	E: FMC	TECHNOLOGIES	DO BRASIL L	TDA		ana	En LE	
LOCAL:	RUA PAU	LO EMÍDIO BARB	OSA, 485 - CIDAI	E UNIVERSI	TARIA - ILHA	DO FUNDÃO - RJ	الدعد ادا علا ادا	
SONDA	GEM: SH	- 08	files	0-1	COTA: NF			
1º e 2º	2º e 3º	10 20	30 40	Cotas (m) N.A.	Profund (m)	Amostra	Descrição do M	aterial
9	12		minin minin	- 1,70		1	Aterro - Material variado.	
12	14			-		2		
15	21				3,00	3	Aterro - Argila siltosa, pouca	arenosa, variegada,
16	28				3,90 —	4	dura.	
24	36			-5		5	Aterro - Areia fina e média, : compocta.	iltosa, cinza clara,
6	7				6,00 -	6		-
5	6						Turfa arg i lasa, cinza escura,	média.
5	7		·m m m m m			8		
1/30		/	un in in in in		8,95 -	9	<u> </u>	
1/35				- 10	- The second sec	10		
1/45					1	(1)		
1/60			an an an an an			12		
1/40					-	13		
1/30			·····			14	Argila siliosa, cinza escura, r	nuito mole a mole.
1/30		mini mini mini	an mananan	- 15		15		
1/40			un ment ment		4	(16)		
1/50						Ū		
1/45			minimini minimini			18		
2	2					(19)		
INIC 2,4	IAL 8	FINAL 1,70	X - Amostra nă NFO - Nível D	BOLOGIA o recuperada água não foi o	bservada	O/N O amostrado	or penetrou N cm sob o peso da or penetrou N cm sob o peso da	s hastes s hastes + peso
28/05/2010 29/05/2010 NFE - Nivel D'água não foi en		ncontrado	do batente					
Legenda Gráfica Revestimento Ø 76 mm		Ø 76 mm	34.9 mm	RESPONSÁVEL DATA		DATA		
•	0 30) cm finais	Pose 65 Ke	Øexterno	50,8 mm	FLAV	GEÓLOGO	31/05/2010
	ESCALA	A 1:100	Peso 65 Kg -	aitura da qui	aua 75 cm	CREA-	KJ Nº 94102252-9	

	PERF	IL GEOL	ÓGICO GEOTÉO	100		
CLIENT	E: FMC 1	TECHNOLOGIE	S DO BRASIL LTDA			
LOCAL:	RUA PAU	LO EMÍDIO BARE	BOSA, 485 - CIDADE UNIVERSIT	FÁRIA - ILHA	DO FUNDÃO - RJ	
SONDA	GEM: SP	- 08		COTA: NF		
Nº. de	Golpes	Gráfi	ico Cotas (m)	Profund (m)	Amostra	Descrição do Material
1 0 2	200		30 40			
1/25	1/20			militi	21	
1/50				- milium	22	
1/80					23	
2	2	-			24)	
2	2		- 25	mhuu	25	
13	18			25,70	26	Areia fina e média, pouco siltesa, cinza dara, medianamente compacta.
16	26			26,75	27	Areia média e grossa, com pedregulhos, cinza
24	31			29.60	28	clara, compacto.
36	41			29,50	29	Silte argilosa, pouco arenosa, micóceo, variegado, duro, (Solo Residual)
29	47		- 30	in the second	30	
54	37/15	. 		The second se	31	Silte arenasa, com pedregu(nos, micaceo, variegado, muito compacto, (Solo Residual)
58	38/15		·····	32,30	32	
		<u></u>		ahuun	33	LIMITE DE SONDAGEM OBS: Sondagem paralisada de acordo
		. <u></u>		quin	34)	com norma técnica. 5 Penetrações > 30/30
		in nene or ar			35	
		110 101 101 011 01 01			(36)	
		an m m m		duran	(37)	
				hunn	(38)	
				humun	(39)	
N	NÍVEL D'ÁGUA (m) SIM				O/N O amostrado	or penetrou N cm sob o peso das hastes
2,4	1AL 8	1,70	X - Amostra não recuperada NFO - Nível D'água não foi o	bservada	a D/N O amostrador penetrou N cm sob o peso das haste	
28/05	/2010	29/05/2010 Gráfica	NFE - Nivel D'àgua não foi ei	ncontrado	do do batente	
0	Legenda Gráfica oo 30 cm iniciais		Amostrador Ø interno	34,9 mm	FLAV	IO A. PEREIRA
0	• 30 cm iniciais • 30 cm finais ESCALA 1:100		Ø externo Peso 65 Kg - altura da que	50,8 mm eda 75 cm	CREA-	GEÓLOGO 31/05/2010 RJ Nº 94102252-9

CLIENT	PER	FIL GE	_					
LOCAL			ROSA 485 - CIDA	DE UNIVERSITÁRIA -		DÃO - R.I	SoluSi	
SONDA	GEM: SP	- 09		COTA	NF	10/10 - 110	Contractory Statistics (Statistics (Statistics))	See to
Nº. de	Golpes	Gr	áfico	Cotas (m) Profu	nd Am	netra	Descrição do M	aterial
1º e 2º	2º e 3º	10 20	30 40	N.A. (m)	AII	ostra	Descrição do M	atornal
31	41					1	Alerro - Material variado co matacões de rocha e blocc	n pedregulho. s de concreto.
30	42		ահայույակընո			2)		
				2,5	(3	IMPENETRÁVEL A PE ROCHA OU MAT	RCUSSÃO ACÃO
						4)		
						5		
	b		,			6)		
	5	·····	···· ··· ···· ···· ····			7		
	1	minimi	ulan ana ang ang ang ang ang ang ang ang a		(8		
		an a				9		
			*****************			10		
						1)		
						13		
				- I		14)		
						15)		
						16)		
				, <u> </u>		17)		
		minimum	<u></u>			18)		
						19		
- NI				1				
INIC NFI	NIVEL D AGUA (m) SIMBOLOGIA INICIAL FINAL X - Amostra não recuperada NFE NFE NFO - Nivel D'água não foi obser Operações do 2010/01/2010 NEE NEE			MBOLOGIA ão recuperada 'água não foi observad 'água não foi encontrad	a bo	O amostrado O amostrado	or penetrou N cm sob o peso da or penetrou N cm sob o peso da	s hastes s hastes + peso
03/06	03/06/2010 03/06/2010 NFE - NIVELD agua nao toi encontrado Legenda Gráfica Revestimento (7) 76 mm				RES	SPONSÁVEL	DATA	
Cegenda Gráfica Revestimento Ø S0 cm iniciais Amostrador Ø ESCALA 1:100 Peso 65 Kg - altur			Ø interno 34,9 mr Ø externo 50,8 mi altura da queda 75 d	m m cm	FLAV	IO A, PEREIRA GEÓLOGO RJ Nº 94102252-9	14/05/2010	

	PER	FIL GEO	DLÓGICO	NICO		10		
CLIENT	E: FMC		DO BRASIL LT	DA			Unit of the	
SONDA			OSA, 485 - CIDAD			DO FUNDAO - RJ	الحدد اط علا اط الد	
Nº, de	Geimes	Grá	fico	Cotas (m)	Profund			
1º e 2º	2º e 3º	10 20	30 40	N.A.	(m)	Amostra	Descrição do M	ateria
27	30					1	Aterro - Material variado, co biocos de concreto.	m pedregulhos e
6	9		no incunciun	•2,21	1,90 —	2	Aterro - Argila arenosa, pouc média.	to siltosa, cinza,
12	20	m n Knige		-	3,00 -	<u> </u>		
27	34			mahan		4	Aterro - Areia fina e média, y pedregulhos, cinza escura, c	ouco argilosa, com ompacta.
17	20			-5		5		
5	6				5,85	6		
4	5					7	elis en en	8155
3	5					8	Turfa argilosa, cinza escura, i	nédia.
5	5		no no no no no		9,30 —	9		
1/70		/		- 10		10		
1/60						(1)		
1/60				mahana		12		
1/65			nu na manu a	l	milian	13		
1/55				- millione		(14)	10 10 10 10	6 S 10
1/50		minimun		- 15		(15)	Argila organica, com tragmi cinza escura, multo mole.	entos de conchas,
1/50		un incher incher				(16		
1/55				hur		Û		
1/45				milin	mhun	(18		
2	2			mahan	indiana.	19		
2	2 2 -20							
N	NÍVEL D'ÁGUA (m) SIMBOLOGIA				O/N O amostrado	or penetrou N cm sob o peso da	s hastes	
2,6	INICIAL FINAL X-Am 2,68 2,21 NFO-		X - Amostra não NFO - Nível D'á	X - Amostra não recuperada NFO - Nível D'água não foi observada		P/N O amostrador penetrou N cm sob c peso das hastes +		s hastes + peso
08/06	08/06/2010 09/06/2010 N		NFE - Nivel D'água não foi encontrado		do batente		DATA	
0-	• 30) cm iniciais) cm finais	Amostrador	Ø interno:	34,9 mm	M FLAVIO A, PEREIRA		D. III
	o 30 cm finais ESCALA 1:100		Peso 65 Kg - a	∅ externo Itura da que	50,8 mm eda 75 cm	CREA-	GEOLOGO RJ Nº 94102252-9	11/06/2010

	PERF	IL GEOL	ÓGICO	GEOTÈC	CNICO			117 323
CLIENT	E: FMC 1	ECHNOLOGIES	DO BRASIL L	TDA				
LOCAL:	RUA PAUL	O EMÍDIO BARB	OSA, 485 - CIDAL	DE UNIVERSIT	ÁRIA - ILHA	DO FUNDÃO - RJ		
SONDA	GEM: SP	- 09 A			COTA: NF			
Nº. de 0	Golpes 2º e 3º	Gráfic	30 40	Cotas (m) N.A.	Profund (m)	Amostra	Descrição do M	aterial
4	4		<u></u>		20,90 -	21		
4	5					22		
5	6			. mpro		23	Argila sillosa, pouco arenosa	cinza, mole a média.
19	28				24,20	24	9	
21	29	un un un un die		- 25	untra	25	Areia fina e média, com per compacta.	aregu hos, cinza clara
18	24				25,80	26	3	
20	28				h.u	27	Silte argiloso, pouco arenoso (Solo Residual)	», micóceo, duro,
22	31		\		27,60 —	28		
22	34					29		
29	40			- 30	luu	30	Silte crenaso, pouco argiloss variegado, compacto muito (Solo Residual)	», micáceo,) compacto,
45	30/15			and		31		
56/25	50/25				32,25	32		
		an an ar ar ar ar			miliuu	33	LIMITE DE SOND	AGEM
)	<u></u>			und und	34)	CBS: Sonaagem paraiss com norma téc	nica.
		an an an an an	<u>antin minin</u>			35	3 reneirações >	45/30
		un an an an an		, m		36)		
	2	an an an an an	and		and and	37		
	5					38)		
						39		
N	VEL D'Á	GUA (m)	SI					
INIC	IAL	FINAL	X - Amostra nā	io recuperada		O/N O amostrad	dor penetrou N cm sob o peso da	s hastes
2,68	8/2010	2,21 09/06/2010	NFO - Nivel D' NFE - Nivel D'	água não foi ob água não foi en	oservada Icontrado	P/N O amostrad do batente	dor penetrou N cm sob o peso da	s hastes + peso
0	Legenda	Gráfica) em iniciais	Revestimento	Ø 76 mm	24.0 mm	RESPONSÁVEL DATA		DATA
0	o 30	cm finais	Peso 65 Kg -	Ø externo 3 Ø externo 5 altura da que	50,8 mm da 75 cm	FLAV	/IO A. PEREIRA GEÓLOGO -RJ Nº 94102252-9	11/06/2010

	PER	FIL GEO	OLÓGIC	O GE	OTÉC	NICO		P. N
CLIENT			S DO BRASIL L				50.05	
SONDA	GEM SP	- 10	03A, 465 - CIDA	DE UNIVERSI	COTA: NE	COO FONDAO - KJ		
Nº. de	Golpes	Grá	fico	Cotas (m)	Profund		Deseriaño de M	atarial
1º e 2º	2º e 3º	10 20	30 40	N.A.	(m)	Amostra	Descrição do M	aterial
11	17				_	1	Aterro - Material variado.	
8	13			-2.10		2		
16	27		<u>}</u>		2,80 -	3		
14	23				-	4	Aterro - Areia fina e média, s fraamentos de conchas, cin	i l rosa, com za, compacta,
17	26			-5	_	6		
7	9				5,85 -	6		
7	10				-	T	Turfa arg i losa, cinza escura,	média.
8	11				-	8		
2	2	/			8,90 —	9		
1/30				- 10	-	10		
1/30					_	1		
1/40			an an m'na an		-	12		
2	2				-	13		
2	3	ananana mara	na menenara		-	14	Arg ia siliosa, cinza escura, n	nuito mole a mole.
2	2		un no no no no	- 15	-	15		
2	2	in minimum	un un un un un		_	16		
2	3		un anany no m		-	17		
1/20	1/25				_	18		
1/30			an an an an an		_	(19)		
3 N	4 VEL D'À	GUA (m)		- 20				
INIC 2,5	IAL 5	FINAL 2,10 04/06/2010	X - Amostra ná NFO - Nível D NFE - Nível D	io recuperada 'água não foi o água não foi e	observada ancontrado	da da P/N O amostrador penetrou N cm sob o peso das hastes + peso do batente		
00/00	Legenda	Gráfica	Revestimento	I D'água não foi encontrado ento Ø 76 mm		RES	SPONSÁVEL	DATA
0	• 30 • 30	cm iniciais cm finais	Amostrador	Ø interno	34,9 mm	FLAVIO A, PEREIRA		07/06/2010
	ESCALA	1:100	Peso 65 Kg -	altura da qu	eda 75 cm	CREA-	RJ Nº 94102252-9	07/06/2010

	PERF	L	G	ΞO	LÒ	Gl	CC)	GEOTÉ	CNICO					100	
CLIENT	E: FMC 1	ECHI	IOL	OGI	ES C	O B	RA	SIL I	TDA							
LOCAL:	RUA PAUI	O EM	DIO	BAR	BOS	6A, 4	85 =	CIDA	DE UNIVERS	TÁRIA - ILH/	A DO FU	NDÃO	RJ			
SONDA	GEM: SP	- 10							1.	COTA: NF	oi P				24. 199	
1º e 2º	Golpes 2º e 3º		10	Grá 20	fico	30	4(5	Cotas (m)	Profund (m)	A	nostra	Ĩ.	Descrição do M	aterial	
3	5		cina				101		-			21				
4	6		In the second	m		-110	m	min		_		22				
5	6		ear.			en e	aute		r -	22,50 —		23				
6	7		corr	ana	m	rin	une	aar a	т <u>-</u>			24		Areia fina e media, pouco a pouco compacta.	rg i osa, cinza,	
8	13		1					mdu	- 25	24,60 —		25				
10	16		1	\						_	1997 199	26		Areia média e grossa, com p clara, mecianamente comp	pedregu lhos, cinz a pacta.	
14	20				13-113	tine:			т	27,00	253	27				
16	24			<u>.</u>					-	_		28		Silte orgiloso, pouce arenoso	o, micáceo,	
21	31				(1.	m	mm		_		29		varlegado, duro, (So lo Resid	ual)	
25	34		-	un	$\left \right $			aadia	- 30	29,80 —		30				
24	35	antan	eau		-		~	_		_		31		Silte crencso, com pedregui	hos, micáceo,	
35	52)	~			_		32		vanegado, compacto o mu [Solo Residual	no compacio.)	
56	35/15		i				m			33,30 —		33				
								min	, 4			34)		LIMITE DE SONDA OBS: Sondagem paralise	AGEM ada de acordo	
				ana			anac	matan		_		35		com norma tec 5 Penetrações >	snica. 30/30	
		mm		,,,,,,,					+ 4			36				
			e nu	mit				min				37				
		3.02 (1)	deu							-		38				
	<u>100 100 100 100 100 100 100 100 100 100</u>						m	tter te				39				
N	NÍVEL D'ÁGUA (m)							S	MBOLOGIA		O/N	O amo	strade	or penetrou N cm sob o peso da	s hastes	
NIC 2,5 03/06/	INICIAL FINAL X - Amostra não 2,55 2,10 NFO - Nivel D'ag 03/06/2010 04/06/2010 NFE - Nivel D'ag						ão recuperada l'água não foi l'água não foi e	observada encontrado	P/N	O amo do bat	strado ente	or penetrou N cm sob o peso da:	s hastes + peso			
0	Legenda Gráfica Revestimento							ment	0 Ø76 mm	24.0	-		RES	SPONSÁVEL	DATA	
0	Legenda Gráfica 9 0 30 cm iniciais 9 30 cm finais ESCALA 1:100						o 65	iuor	Ø interno Ø externo altura da gu	nm rno 34,9 mm F rno 50,8 mm gueda 75 cm cr				SPONSAVEL DATA /IO A. PEREIRA 07/06/2010 GEÓLOGO 07/06/2010		

	PER	FIL GE	OLÓGICO GE	OTÉC	NICO		17 19
CLIENT	E: FMC	TECHNOLOGIE	S DO BRASIL LTDA				
LOCAL:	RUA PAU	LO EMÍDIO BARE	BOSA, 485 - CIDADE UNIVERSI	TÁRIA - ILHA	DO FUNDÃO - RJ	المعر الأطالي المع	
SONDA	GEM: SP	P - 11		COTA: NF			Sector And
1° e 2°	2° e 3°	10 20	30 40 N.A.	(m)	Amostra	Descrição do M	aterial
24	32				1	Alerro - Material variado, co malacões de rocha.	m pedregulhos e
14	15		<u>-2,31</u>	0.70	2		
21	27			2,70	3		
26	32				4	Aterro - Areia fina e média, : compocta.	itosa, cinza clara,
6	8		-5	5,00	5		
2	2				6		
3	5				7	Turla ara li asa, cinza escura,	mo l e a média.
3	4				8	in 2004 (no bar sense and sense	//21/04/07/99/06/17///25/08/04/07/
4	4				9		
1/50			- 10	9,65	10		
1/30					(1)		
1/40					12		
1/20	1/30				13	Arglia orgânica, com fragm cinza escura, muito mole,	entos de conchas.
1/40		-		1	14)		
1/20	1/20		- 15		15		
2	2			15,90 —	(16)		
2	2				17		
2	2				18	Argila siltosa, cinza escura, n	nole.
2	3	-			19		
2	3		- 20				
	IAL	FINAL	SIMBOLOGIA		O/N O amostrado	or penetrou N cm sob o peso da	s hastes
2,8	8	2,31	NFO - Nível D'água não foi o NFE - Nível D'água não foi o	bservada	P/N O amostrado	or penetrou N cm sob o peso da	s hastes + peso
29/05	Legenda	Gráfica	Revestimento Ø76 mm		RESPONSÁVEL DATA		DATA
0-	0 30) cm iniciais) cm finais	Amostrador Ø interno	34,9 mm	9 mm FLAVIO A, PEREIRA		
	ESCALA	A 1:100	Ø externo Peso 65 Kg - altura da que	eda 75 cm	CREA-	GEOLOGO RJ Nº 94102252-9	07/06/2010

	PERF	IL GEOL	ÓGICO GEC	TÉCNICO			100
CLIENT	E: FMC	TECHNOLOGIES	DO BRASIL LTDA				
LOCAL:	RUA PAU	LO EMÍDIO BARB	OSA, 485 - CIDADE UNI	VERSITÁRIA - ILHA	DO FUNDÃO - RJ		
SONDA	GEM: SF	· - 11		COTA: NF			120
Nº. de	Golpes	Gráfi	co Cota:	s (m) Profund	Amostra	Descrição do M	aterial
1° e 2°	2º e 3º	10 20	30 40 N.	A. (m)	Alliosud		
2	3				21		
4	4	minimi			22		
4	5				23		
15	19	mining		undin undin	24)		
18	25		-2	5	25		
21	32				26	Arela fina e média, pouco a medianamente compacta d	rgilosa, cinza, o compacta.
20	27			26,60	27	Areia média e grossa, com p compacta	bedregulhas, cinza,
23	39			27,85	28) 28)	Silte orgiloso, pouco arenoso	, micáceo,
27	36)	- 29,00 -	<u>@</u>	variegado, duro. (Solo Resid	ual)
24	37		-3	<u> </u>	30		
38	43			international data	31	Silte orenoso, com pedregul variegado, compacto a mu (Solo Residual	nos, micáceo, to compacto.
39	51		·····	32,45	32		
		m m m m m			33)		AGEM
			**** **** **** ****	unhun unhun	34)	com norma téc	nica.
			20 m. n. n. n. .	undaria undaria	35	5 Peneirações >	30/30
					36)		
			···· ···· ···· ····		37		
					38)		
					39)		
. NI	VEL D'A	GUA (m)					
INIC	IAL	FINAL	SIMBOLO X - Amostra não recur	DGIA	O/N O amostrado	or penetrou N cm sob o peso das	s hastes
2,8	8	2,31	NFO - Nível D'água na	ão foi observada	ada P/N O amostrador penetrou N cm sob o peso das hastes + peso		s hastes + peso
29/05/	Legenda	31/05/2010 Gráfica	Revestimento (7.7) mm	PEG	PONSÁVEL	DATA
0-	0 3() cm iniciais	Amostrador Ø in	iterno 34,9 mm	FLAV	O A. PEREIRA	27.07
0	escal/	A 1:100	Ø ex Peso 65 Kg - altura	da queda 75 cm	CREA-I	VIO A. PEREIRA GEÓLOGO 07/06/2010 A-RJ Nº 94102252-9	

CLIENT				OTÉC	NICO	_	
LOCAL:	RUA PAU	LO EMÍDIO BARB	OSA, 485 - CIDADE UNIVER	SITÁRIA - ILHA	DO FUNDÃO - RJ	SoluS	
SONDA	GEM: SF	° = 12		COTA: NF			Sec. and
Nº. de 1º e 2º	Golpes 2º e 3º	Grá 10 20	fico Cotas(m. 30 40 N.A.) Profund (m)	Amostra	Descrição do M	aterial
21	28			analana analana analana	1	Aterro - Material variado, co matacões de rocha.	m pedregulho e
9	10		<u>-2,02</u>	1,70 —	2	Alerro - Argila arenosa, cinzo	a, média a rija.
12	21			3,00	3		
18	29			and the second s	4	Aterro - Areia fina, cinza clar	a, compacta,
2	3		- 5	5,50	5		
3	4	- 11-111-1111-111			6		
4	5				\bigcirc		24 2002
4	4				(8)	Turfa argilosa, cinza escura, i	mole a média.
2	3			and	9		
1/60		.	- 10	9,90 —	10		
1/45		<u></u>	<u>on on on on</u>	and	(1)		
1/65					12		
1/60		3 <mark>110/100/101</mark> 00/100			13		
1/50					14	Argila argânica, com fragme	entos de conchas.
1/50			- 15	al a	15	cinzo escura, multo mole.	
1/45				uluur alaan	(16)		
1/45					17		
1/45				uhum valana	(18)		
2	2			19,00	19	Argija sitosa, cinza escura, n	nole.
2 N		GUA (m)	- 20	<u> </u>			
INIC	IAL	FINAL	SIMBOLOGIA X - Amostra não recuperad	a	O/N O amostrade	or penetrou N cm sob o peso das	s hastes
2,7	6/2010	2,02 04/06/2010	NFO - Nível D'água não fo NFE - Nível D'água não foi	observada encontrado	rada trado P/N O amostrador penetrou N cm sob o peso das hastes + peso do batente		
	Legenda	Gráfica	Revestimento Ø76 mm	1	RESPONSÁVEL DATA		DATA
<u> </u>		0 cm finais	Amostrador Øintern Øextern	o 34,9 mm o 50,8 mm	FLAV	O A. PEREIRA GEÓLOGO	14/06/2010
	ESCALA	A 1:100	Peso 65 Kg - altura da q	ueda 75 cm	CREA-	RJ Nº 94102252-9	14/05/2010

	PERF	IL GEO	LÓGICO	GEOTÉ	CNICO			100
CLIENT	E: FMC 1	rechnologi	ES DO BRASIL L	TDA				
LOCAL:	RUA PAU	LO EMÍDIO BAR	RBOSA, 485 - CIDA	DE UNIVERSI	TÁRIA - ILHA	DO FUNDÃO - RJ		
SONDA	GEM: SP	-12	(n ~ *		COTA: NF			
1º e 2º	2º e 3º	10 20	anco) 30 40	Cotas (m) N.A.	Profund (m)	Amostra	Descrição do M	aterial
2	3					21		
4	4	minimi				22		
4	5					23		
10	19				24,00 —	24		
23	30			- 25		25	Areia fina e média, cinza clo	ra, medianamente
19	26					26	compacta a compacta.	
19	27		martin martin		26,60 —	27	Areia média e grossa, pouco	argilosa, cinza,
25	41				28,00 -	28		
30	50			-		29	Silte orgiloso, pouco arenoso variegado, duro, (Solo Resid), micáceo, ual)
24	35	<u></u>		- 30	29,90 —	30		
27	45					31	Silte arenosa, com pedregul variegado, compacto a mu (Solo Residual	nos, micáceo, ito compacto,
59	38/15				32,30 —	32		
			mananananananananananananananananananan			33	OBS: Sondagem paralise	ada de acordo
		<u>han an an an a</u>				34)	3 Penetrações >	45/30
						35		
						36		
		<u></u>				37)		
						38		
						39		
N	VEL D'Á	GUA (m)	SI	BOLOGIA		O/N 0 amostrade	or penetrou N cm sob o peso das	s hastes
INIC 2,7 03/06/	AL 0 2010	FINAL 2,02 03/06/2010	X - Amostra na NFO - Nivel D NFE - Nivel D	io recuperada 'água não foi o água não foi e	observada encontrado	vada trado P/N O amostrador penetrou N cm sob o peso das hastes + pes do batente		
0	Legenda	Gráfica) em inicipie	Revestimento	Ø 76 mm	m RES		SPONSÁVEL	DATA
0	escal.) cm finais	Peso 65 Kg =	Ø externo altura da que	54,9 mm 50,8 mm eda 75 cm	FLAV	O A, PEREIRA GEÓLOGO RJ Nº 94102252-9	14/06/2010

CLIENT		ECH	INC) DG			0	D C) SI	C		OTÉC	NIC	0	_	
LOCAL:	OCAL: RUA PAULO EMÍDIO BARBOSA, 485 - CIDADE UNIVERSI SONDAGEM: SP - 13 Nº. de Golpes Gráfico Cotas (m)										DAD		TÁRIA - ILHA	OO FU	NDÃO - RJ		
SONDA	GEM: SP	- 13											COTA: NF	1			20 100
Nº. de 1º e 2º	Golpes 2º e 3º		10	j	G 1 21	rá 0	fi 3	c o 10	4	0		Cotas (m) N.A.	Profund (m)	Ar	nostra	Descrição do M	ateria
8	15		~		~						m	-	_		1	Alerro - Malerial variada co matacões de rocha.	m pedregulno e
14	24	aut:)		un		m		-2,31	2,53 —		2		
	Ē		m		m			m		m	нл				3	IMPENETRÁVEL A PE ROCHA OU MA	RCUSSÃO IACÃO
				m						m	1117				4		
		huh	mh		m			m	·····		πı				5		
				100											(6) (7)		
															8		
	2						щ	un		шı	m	-	6		9		
											mie				10		
													_		1		
	3	au t		w	m	w		····	m		π.				12		
	-							200	mu	m	n o		8		13		
															(14)		
			m			uu				uu					(16)		
	1														17		
			mþ			лn	m	m		m	ar n				(18)		
											πe		_		(19)		
		0114	1-			_								420			
NIC 2,5	INICIAL FINAL X - Amostra não recuperada 2,50 2,31 NFO - Nível D'água não foi observad 02/06/2010 02/06/2010 NFE - Nível D'água não foi encontrai							SIN a nă I D'	ABOLOGIA o recuperada água não foi o água não foi o	observada	O/N P/N	O amostrad	or penetrou N cm sob o peso da or penetrou N cm sob o peso da	s hastes s hastes + peso			
02/08	02/06/2010 02/06/2010 NPE - NVPL D agua nao ioi encontrat Legenda Gráfica Revestimento Ø 76 mm							nto	Ø 76 mm	moontradu	ntrado do batente BESPONSÁVEL DATA			DATA			
0	02/06/2010 02/06/2010 Legenda Gráfica 0 30 cm iniciais 0 30 cm finais						1	Amo	o 6	ado	or a -	Ø interno Ø externo altura da ou	34,9 mm 50,8 mm eda 75 cm		FLAV	IO A. PEREIRA GEÓLOGO RJ Nº 94102252-9	14/05/2010

CLIENT	PER	TEC	L	IOL	G .00	E	D S D) (BR/	SI	C (O GE	OTÉC	NIC	0	_	
LOCAL:	RUA PAU	LOE	EMÍ	DIO	BA	RB	os	A, 4	85 -	CI	DAD	E UNIVERSI	TÁRIA - ILH/	DO FU	NDÃO - RJ	50LU5	
SONDA	GEM: SP	• - 1	3 A	ų									COTA: NF	8			See free
Nº. de 1º e 2º	Golpes 2º e 3º		1	0	G	rá 20	fi	с о 30	4	0		Cotas (m) N.A.	Profund (m)	Ar	nostra	Descrição do M	aterial
10	14			1.	1										1	Aterro - Material variado co matacões de racha.	m pedregulho e
15	25	an a	uu		m			200	an.	au		•2,28	2,55 —		2		
		-			ana					au					3	IMPENETRÁVEL A PE ROCHA OU MAT	RCUSSÃO TACÃO
			m	••••	m		im		m				_		4		
				200					m	210			-		(5)		
			m		2010		au	au	au	m			_		6		
							m		m	iiri					\bigcirc		
													_		(8)		
					1.01		uu	au.	uu				-		9		
									m		m		-		10		
			inr		m				m	m	ini	-	_		11		
				111					iur	nu		1			(12)		
							an		an		m	-	-		13		
			m				hin		m		m		_		14)		
										m			_		15		
		au			au	200	au				an:		-		16		
									m				_		Ū		
		m	int		m		m	m	m	m	m		_		18		
				111		111				814					(19)		
	(a. com)																
N INIC	IVEL D'A	GU	A (m) NA	L			x	Am	icte-	SIN	BOLOGIA		O/N	O amostrad	or penetrou N cm sob o peso da	s hastes
2,4	2,47 2,28 NFO - Nivel D'água não foi observac 02/06/2010 02/06/2010 NFE - Nivel D'água não foi encontrai								0 - 1 E - N	live	D'a	água não foi e	observada encontrado	P/N	O amostrad	or penetrou N cm sob o peso da	s hastes + peso
02/00	Legenda Gráfica Revestimento Ø 76 mm								esti	ime	nto	Ø 76 mm		RESPONSÁVEL DATA			DATA
	• 30 • 30) cm) cm	inic fina	iais ais			1	Ame	ostr	adc	r	Ø interno Ø externo	34,9 mm 50,8 mm		FLAV	IO A. PEREIRA GEÓLOGO	14/05/2010
	ESCALA	1:	100				F	Pes	0 6	5 K	g - a	altura da qu	eda 75 cm		CREA-	RJ Nº 94102252-9	

	PER	FIL		(G	E	DI	١Ċ	00	Ì	C	O GE	OTÉC	NIC	0		100
CLIENT	E: FMC 1	FECH	INC	DL	OG	IES	D	0 8	BR/	SI		TDA					
LOCAL:	RUA PAUI	LOE	MÍD	10	BA	RB	os	A, 4	85 -	C	DAE	DE UNIVERSI	TÁRIA - ILH/	DO FU	NDÃO - RJ	and bits bit and	
SONDA	GEM: SP	- 13	B	_	6	71						Color (m)	COTA: NF			_	100 A 100
1º e 2º	2º e 3º		10)	2	0	3	0	4	0		N.A.	(m)	Ar	nostra	Descrição do M	aterial
12	17				THE								-				
14	28				1	1		Concerner of	- 21 S.S.	63.54						Aterra - Material variado con matacões de racha.	n pedregulno e
	20	1111		nds	me	1100	T.D.	1.11	ana	1011		-2,33	2,50 -		2		
		m		m		TE D	irir	110	101				-		(3)	IMPENETRÁVEL A PE ROCHA OU MAT	RCUSSÃO ACÃO
	2			m		110	n a	170	m		m				4		
		aun		ius	au;	1.0	10	1.00	302	m		1	-		5		
		m	m	m	m	un	m		m	m	m		2		6		
			m	m	m	n n	110	TH	m	m	m		-		$\overline{\mathcal{O}}$		
			mh	m	m	ππ	πı	1111		m	m		2		(8)		
		- ma	mp	m	m	nar	m	Tru	un	m	m		-		9		
						m		TT:			me				10		
					m			111			m		-		11		
			uus	uu	uv	nn.	.	1.10			an		-		12		
					me	11.11		1.111					-		13		
			m	m	m	ii n		i in	im	m	m		-		14		
															15		
				m	m	na	an a	1.10	anc	m	nu		-		(16)		
					me	1111		110	THE						(17)		
						11.0	11.11	110	1		m				(18)		
							11	a di si							19		
							aut		e19				19				
N	ÍVEL D'Á	GUA	(n	n)	 1						SIN	BOLOGIA		O/N	O amostra	dor penetrou N cm sob o peso das	s hastes
2,5	0		2,3	AL 33			120	X -	Amo	vive	nā D	o recuperada água não foi o	observada	P/N	O amostra	dor penetrou N cm sob o peso das	s hastes + peso
02/06	02/06/2010 02/06/2010 NFE - Nivel D agua nao tol encontra Legenda Gráfica Revestimento Ø 76 mm								= - N	live	D's	agua não foi e	encontrado	ntrado P/N do batente DESDONS ÁVEL DATA			DATA
0-		cm i	nici	ais			F	Amo	ostr	add	or	Øinterno	34,9 mm	-	FLA	VIO A. PEREIRA	DAIA
0	ESCALA	1:10	mar 00	3			F	es	0 6	5 K	g -	Ø externo altura da qu	50,8 mm eda 75 cm	50,8 mm GEÓLOGO 14/0! da 75 cm CREA-RJ № 94102252-9			14/05/2010

	PER	FIL GE	OLÓGICO GE	OTÉCN	1100		1
LOCAL	E: FMC	LO EMÍDIO BARE	S DO BRASIL LIDA	TÁRIA - ILHA	DO FUNDÃO - RJ	Sous	
SONDA	GEM: SF	- 13 C		COTA: NF			
Nº. de	Golpes	Grá	ifico Cotas(m)	Profund	Amostra	Descrição do M	aterial
1º e 2º	2° e 3°	10 20	30 40 N.A.	(m)	Alloatia		
13	18		·····		1	Alerro - Material variado, co malações de racha	m pedregulhos e
10	15		<u>-2,28</u>		2		
18	27			2,75	3		
23	30				4	Aterro - Areia fina e média, o conchos, cinza, compacta.	com fragmentos de
10	12		-5	4,50 —	5	Aterro - Areia fina, cinza clar compacta.	a, medianamente
6	8	<mark>//</mark>		5,90	6		
8	9	· · · · · · · · · · · · · · · · · · ·		1	7		2011
9	10			- La	8	Turía arg i osa, cinza escura, i	média.
2	3			9,00	9		
3	4		- 10	- Li	10		
2	3	.		-	11		
1/20	1/30	[(12)		
1/30					(13)		
1/35					(14)	Argila siliosa, cinza escura, n	nole a muito m ole .
1/25	1/20		- 15		(15)		
2	2				(16)		
2	2			-	Ð		
1/35				-	18		
1/30				- The second sec	(19)		
2	2		-20				
INIC	VEL D'Á	GUA (m)	SIMBOLOGIA		O/N O amostrado	or penetrou N cm sob o peso das	s hastes
2,5	5	2,28	 A - Amostra não recuperada NFO - Nível D'água não foi o NFE - Nível D'água não foi e 	erada to foi observada to foi encontrado P/N O amostrador penetrou N cm sob o peso das hastes + per			s hastes + peso
02/00	Legenda	Gráfica	Revestimento Ø76 mm	RESPONSÁVEL DATA			DATA
	• 30 • 30) cm iniciais) cm finais	Amostrador Ø interno: Ø externo	Ø interno 34,9 mm Ø externo 50,8 mm Gedu oco			07/06/2010
the first	ESCALA	A 1:100	Peso 65 Kg - altura da que	eda 75 cm	CREA-	RJ Nº 94102252-9	01/03/2010

	PER	FIL GEO	DLÓGIC	O GE	OTÉC	NICO		100
CLIENT	E: FMC	TECHNOLOGIES	S DO BRASIL L	TDA			England and English	
LOCAL:	RUA PAU	LO EMÍDIO BARB	OSA, 485 - CIDAI	DE UNIVERS	TÁRIA - ILHA	DO FUNDÃO - RJ	المعد اعترجي اعترادهم	
SONDA	GEM: SP	P=14 Grá	fico	Cotac (m)	COTA: NF			State of the
1º e 2º	2º e 3º	10 20	30 40	N.A.	(m)	Amostra	Descrição do M	aterial
17	21		m m m m			1	Aterro - Material variado, co matacões de rocha.	m pedregulhos e
11	15			<u>•2,12</u>		2		
28	37				2,65	3		
25	34					4	Aterro - Areia fina, cinza clar	a, compacta.
6	6			- 5	4,90 —	5	Aterro - Areia fina, pouco arg fragmentos de conchos, cinzo	ilosa, com 5. pouco compacta.
3	4				5,80	6		
4	6						Turfa argilosa, cinza escura, r	média.
3	5					8		8987-11 H.S. G.F.
4	4	- montant and			9,00	(9)		
1/55				- 10	1	10		
P/70		angin an an an	ini ni ini ini ini			1		
1/50						12	Argila orgânica, com fragme cinza escura, muito mole.	entos de conchas.
1/60					_	13		
1/55			mmmmmm			14)		
1/65				- 15	14,90	(15)		
1/50		minimum				(16)		
1/50						Ð	A	a la su ite angle
1/45		-			-	18	Aigno sinosa, ciniza escuita, fr	iore a multo mole:
1/45						(19		
4	4			- 20				
N	IVEL D'À	AGUA (m)	SIM	BOLOGIA		O/N O amostrade	or penetrou N cm sob o peso das	s hastes
2,6	0	2,12	X - Amostra nä NFO - Nível D	o recuperada água não foi o	observada	P/N O amostrade	or penetrou N cm sob o peso das	s hastes + peso
09/06	Legenda	09/06/2010 Gráfica	Revestimento	agua nao ioi €	ancontrado	itrado P/N do batente		DATA
o	0 30	0 cm iniciais 0 cm finais	Amostrador	Øinterno	34,9 mm	4,9 mm FLAVIO A. PEREIRA		
	ESCAL	A 1:100	Peso 65 Kg -	g externo altura da qu	eda 75 cm	Image: Provide and the second seco		

	PERF	IL GEOL	.ÓGICO GEOTÉC			10-10		
CLIENT	E: FMC 1	ECHNOLOGIE	S DO BRASIL LTDA			5		
LOCAL:		O EMIDIO BARB	SOSA, 485 - CIDADE UNIVERSI	COTA: NE	DO FUNDAO - RJ	الحدد اط علا اط السدر		
Nº. de	Gem: SP Golpes	Gráfi	ico Cotas (m)	Profund			Contrast Contrast of Contrast	
1º e 2º	2° e 3°	10 20	30 40 N.A.	(m)	Amostra	Descrição do M	aterial	
3	4				Ð			
4	5				(22)			
5	7				23			
20	27			23,80	24			
22	27		- 25		25	Areia fina, cinza, compacta.		
17	25			25,95 -	26	Areia média e grossa, pouco	argilosa, cinza,	
22	31			27,00	27	compacia.		
23	38				28	Silte argiloso, pouco arenoso variegado, duro, (Solo Resid	, micáceo, ual)	
21	52	<u> </u>		28,90	29			
30	43		- 30		30	Silte arenaso, com pedregul variegado, muito compacto	nos, micáceo, . (Solo Residual)	
36	58			31,45	37			
		····			32	LIMITE DE SONDA	GEM ada de acordo	
					(33)	com norma téc	nica. 30/30	
				mhan	34)	o renendções r		
		····· ···· ···· ····		mlana	(35)			
					(36)			
					37			
				- Internet	38			
					39			
N	VEL D'Á	GUA (m)	SIMBOLOGIA		0.111			
INIC 2,61	AL 0	FINAL 2,12	X - Amostra não recuperada NFO - Nivel D'água não foi o NFE - Nivel D água não foi o	bservada ncontrado	P/N O amostrado	strador penetrou N cm sob o peso das hastes strador penetrou N cm sob o peso das hastes + peso		
05/06/	Legenda	Gráfica	Revestimento Ø76 mm		RESPONSÁVEL DAT		DATA	
0	• 30	cm iniciais cm finais	Amostrador Ø interno	34,9 mm	FLAVIO A. PEREIRA		14/06/2010	
	ESCALA	1:100	Peso 65 Kg - altura da que	eda 75 cm	CREA-	GEÓLOGO 14/06/20 RJ Nº 94102252-9		

	PER	FIL GEO		100				
CLIENT	E: FMC		DO BRASIL L	TDA			Long La	
LOCAL:	RUA PAU	LO EMÍDIO BARB	OSA, 485 - CIDAI	DE UNIVERSI	TARIA - ILHA	DO FUNDÃO - RJ	السدادا علالنا السر	
Nº. de	GENI: SP Goldes	Grá	fico	Cotas (m)	COTA: NF			
1º e 2º	2º e 3º	10 20	30 40	N.A.	(m)	Amostra	Descrição do M	ateria
29	35		//			1	Alerro - Material variado, co matacões de rocho e bloco	m pedregulhos, s de concreto.
23	30			<u>-2,19</u>	2,50	2		
18	25		(-	3		
24	31					4	Aterro - Areia fina, cinza clar medianamente compacta c	a, 1 compacta.
7	10		miniminini ni	- 5	5,00 -	5		
4	4					6)		
4	5				2		Turfa argijosa, cinza escura, i	noje a média.
4	6	-				8)s	
3	4				1	9		
1/50		.		- 10	9,70	10		
P/60		••••••••••				Ð		
P/55						(12)		
1/70		- an an an an an				13	Argilo orgânica, com fragma restos de vegetais, cinza esc	entos de conchas. ura, multo molo,
1/65		-	·······			14		
1/45			•••••••••••••••••	- 15		15		
1/50		. munununu			16,50 —	16		
1/45					- milan	17		
2	2	numununu	unun munu		1	18	Argila siltosa, cinza, mole a n	nuito mole.
2	2		<u></u>			(19)		
2	2			- 20				
INIC 2,7	IAL 0	FINAL 2,19	SIN X - Amostra nă NFO - Nivel D NEE - Nivel D	BOLOGIA o recuperada água não foi o água não foi o	observada	O/N O amostrado P/N O amostrado	or penetrou N cm sob o peso das hastes or penetrou N cm sob o peso das hastes + peso	
04/08	Legenda	Gráfica	Revestimento	Ø 76 mm				DATA
0-	• 30	0 cm iniciais 0 cm finais	Amostrador	Øinterno	34,9 mm	TLAVIO A. PEREIRA		
	ESCALA	A 1:100	Peso 65 Kg -	altura da qu	eda 75 cm	GEÓLOGO 14/06/20 CREA-RJ Nº 94102252-9		

	PERFIL GEOLÓGICO GEOTÉCNICO												17 374
CLIENT	E: FMC 1	TECHNOL	OGIES	DO	BRAS	AL L'	TDA				Î		
LOCAL:	RUA PAU	LO EMÍDIO	BARB	DSA, 4	85 - C	IDAD	DE UNIVERSI	TÁRIA - ILH/	A DO FU	NDĀ	O-RJ		
SONDA	GEM: SP	- 15						COTA: NF				·····	
Nº. de 0	Golpes 2° e 3°	10	Gráfic	20	40		Cotas (m) N.A.	Profund (m)	A	nos	tra	Descrição do M	aterial
1 02	205		20	30	40					1			0
2	3									21			
4	4	minum	mun		in n			-		22			
4	4							_		23			
9	16							24,40 —		24			
23	30			-			- 25			25			
23	28				anan					26		Areia fina, cinza, compacta	
20	30	-			m	mm		26,65 —	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	27)		Areia média e grossa, pouc	o argilosa, cinza,
20	27	mmm						28,00 -		28	10124	Geboll 1 (piterio rose	
21	32		-			um				29		Silte argiloso, pouco arenoso variegado, duro. (Solo Resid	o, micáceo. ual
26	44	3 m m m		1		1	- 30	33,50 —		30			etroof.
29	56			-				_		31)			
45/25	30/10	mmm								32)		Silte arenaso, com pedregul variegado, muito compacto	nos, micáceo, 5. (Solo Residual)
54/23	30/08			mono	3101311			33,23		33		LIMITE DE SOND/	AGEM
	8	- 						_		34)		OBS: Sondagem paralis com norma téc	ada de acordo cnica.
	6	m m m								35		5 Penetrações >	30/30
		- manana	mann		<u>indu</u>	nun				36			
		mmm		1010	in in					(37)			
					1000	uhuu				(38)			
	<u></u>				100.0	a an				(39)			
N	NÍVEL D`ÁGUA (m)					SIN	BOLOGIA		O/N	Oa	mostrado	or penetrou N cm sob o peso da	s hastes
2,7	INICIAL FINAL 2,70 2,19		X - Amostra não recuperada NFO - Nível D`água não foi observada				da D IN O amostrador penetrou N cm sob o peso das hastes + pa			s hastes + peso			
04/06/	04/06/2010 04/06/2010		NFE - Nivel D'água não foi encontrado				rado P/N do batente		DATA				
0	Legenda Gráfica • 30 cm iniciais		Revestimento Ø 76 mm Amostrador Ø interno 34,9 mm			MM FLAVIO A, PEREIRA		DATA					
0	0 30 cm iniciais 0 30 cm finais ESCALA 1:100			Pes	o 65	Kg -	Ø externo altura da qu	34,9 mm FLAV 50,8 mm eda 75 cm CREA-			CREA-	GEÓLOGO RJ Nº 94102252-9	14/06/2010

CLIENT	PER		GEC								
LOCAL:	RUA PAUL	LO EMÍDIO	BARBO	DSA, 48	5 - CIC		ITÁRIA - ILHA		ÄO-RJ		
SONDA	GEM: SP	- 16					COTA: NF				
Nº. de 1º e 2º	Golpes 2° e 3°	10	Grái 20	fico 30	40	Cotas (m) N.A.	Profund (m)	Amo	stra	Descrição do M	aterial
22	29				-	-		0	D	Aterro - Material variado cor matacões de racha e bloca	n pedregulho. s de concreto.
10	42/20		meno	an sur s	mana	TTT	2,38 —	(2			
		m m m						(3	D	IMPENETRÁVEL A PE ROCHA OU MAT	RCUSSÃO ACÃO
		m m m						(4	Ð		
	:							(6	Ð		
	l							(6	D		
		mmm	mm		mm		_	Ĩ	0		
	1						-	(8	D		
		amanna			man		-	(9	D		
							-	1	0		
	1	mmm					_	1	Ð		
							-	(1	2)		
							_	Ē	3)		
		minim		mm	mhini			Ð	Ð		
				mana	mana	w -		(1	5)		
								1	6)		
								1	0		
			mini	m				(1	8)		
		-na mi na						(1	9		
N INIC NF	NIVEL D'ÀGUA (m) INICIAL FINAL X-A NFE NFE NFE NFE NFE					MBOLOGIA não recuperada D'água não foi	observada	O/N 0	amostrado amostrado	or penetrou N cm sob o peso das or penetrou N cm sob o peso das	s hastes s hastes + peso
09/06	09/06/2010 09/06/2010 Legenda Gráfica					to agua não toi	encontrado	do batente RESPONSÁVEL DAT		DATA	
0	• • • • • • • • • • • • • • • • • • •				Amostrador Ø interno 34,9 mm Ø externo 50,8 mm Peso 65 Kg - altura da queda 75 cm				FLAVIO A. PEREIRA GEÓLOGO 14/05/20 m CREA-RJ Nº 94102252-9		

	PER	FIL GE	OLÓGICO G	0011		F.	
CLIENT	E: FMC 1						
SONDA		- 16 A	SOSA, 485 - CIDADE UNIV	COTA: NE	DO FUNDAO - RJ	يتنصب اعتارها إلى السبيح	
Nº. de	Golpes	Grá	fico Cotas	(m) Profund		Deserieis de M	
1° e 2°	2° e 3°	10 20	30 40 N.A	(m)	Amostra	Descrição do M	aterial
23	29				•	Aterro - Material variado con matacões de rocha e blacc	n pedregulho, s de concreto,
	00.20			2,39			
			<u> </u>		3	IMPENETRÁVEL A PE ROCHA OU MAT	RCUSSÃO ACÃO
			• • • • • • • • • • • • • • • •		4		
					5		
		minimi ni			6		
					\bigcirc		
					8		
		mmmmm	<u>1911 m m m m</u>		(9)		
		nonanana n	<u> </u>		10		
					1		
		mana mana	<u></u>		(12)		
			<u>, an manan</u>		(13)		
			<u> </u>		14)		
					(15)		
					(16)		
		m m m m	Ten an an an an		(18)		
					(19)		
N	ÍVEL D'Á	GUA (m)	SIMBOLO	GIA	O/N 0 emostrade	or nenetrou N cm sob a pero da	s hastes
INIC NF	E	FINAL	X - Amostra não recupe NFO - Nível D'água não	erada o foi observada	DAL 0 amostrado	or penetrou N cm sob o peso dat	s hastes + neso
09/06	6/2010	09/06/2010	NFE - Nível D'água não	o foi encontrado	do P/N do batente		
o	Legenda 0 30	Gráfica) cm iniciais	Revestimento Ø76 Amostrador Ø inte	mm erno 34,9 mm	RESPONSAVEL DATA		
0	escala	cm finais	Ø ext Peso 65 Kg - altura d	erno 50,8 mm a queda 75 cm	FLAVIO A. PEREIRA GEÓLOGO 14/05 CREA-RJ Nº 94102252-9		

CLIENT	PERFIL GEOLÓGICO GEOTÉCNICO LIENTE: FMC TECHNOLOGIES DO BRASIL LIDA																
LOCAL:	RUA PAUL	O EN	ND	ов	AR	BO	SA	, 48	5 -	CIE	AD	E UNIVERSI	TÁRIA - ILHA	DO FU	NDÃO - RJ	120LU2	
SONDA	GEM: SP	- 16	в										COTA: NF	i.			See the
Nº. de	Golpes		State of the	G	3 r i	á f	i c	0				Cotas (m)	Profund	۸.	nostra	Descrição do M	aterial
1º e 2º	2º e 3º	ļ.	10		20		30)	4	0		N.A.	(m)		nostra	Descrição do m	latoma
22 8	31 42/18		/		1			-		-	 				0	Aterro - Material variado co matacões de rocha e bloco	m padragulho, os de concreto.
	2758248A	10000			100		0000	8 6019					2,35 —		C		
		ama	nen.	u u	n n	min		m	m	m	m		_		3	IMPENETRÁVEL A PE ROCHA OU MA	RCUSSÃO TACÃO
	;	m	nen			min	÷	m	nir	m	m		_		4		
	į										m		_		5		
		aute	ara	uu		un	u.		u	au	m		-		6		
)												_		$\overline{\mathcal{O}}$		
	3		arto	u n		min			m		m	-	_		8		
		indi	ai n	u in	uin,	u u	ni-	m	m	uu	шř		-		9		
						ma		,,,,,			uu		_		10		
	:												_		Ħ		
			nr n			mm	11-1				m				12		
		ana a	ar or	uu	10.00	ora	ue.		u	au	m				(13)		
		ama	m		n n		m		m	m	m				14		
	3								m						15		
		m	ni ii	uhi	në n	un	-		m		m		_		(16)		
	3		actor.		uu					un	·····		_		Ð		
	,		nr n		min					un	un		_		(18)		
		mi				min		m			m		_		19		
	VEL D'A	GUA	1											20,000			
INIC	NIVEL D'AGUA (m)					-	x	- A	mo	stra	SIM	BOLOGIA		O/N	O amostrac	dor penetrou N cm sob o peso da	s hastes
NF	NFE NFE				NNN	FO	- N	live	D'4	água não foi r	observada	P/N	O amostrac	dor penetrou N cm sob o peso da	s hastes + peso		
09/06/2010 09/06/2010 Legenda Gráfica				+	Revestimento Ø 76 mm					Ø 76 mm			RE	SPONSÁVEL	DATA		
Cegenda Grafica O 30 cm iniciais O 30 cm finais ESCALA 1:100					Amostrador Ø interno 34,9 mm Ø externo 50,8 mm Peso 65 Kg - altura da gueda 75 cm					Ø interno Ø externo altura da gu	34,9 mm 50,8 mm eda 75 cm	FLAVIO A. PEREIRA GEÓLOGO CREA-RJ Nº 94102252-9			14/05/2010		

CLIENT			_						
LOCAL:	RUA PAU	LO EMÍDIO BAI	RBOSA, 4	85 - CIDA		ITÁR IA - I LH/	DO FUNDÃO - RJ	SIDLUS	
SONDA	GEM: SP	9 - 17				COTA: NF	1		Ser les
Nº. de	Golpes	Gr	áfico	40	Cotas (m)	Profund	Amostra	Descrição do M	ateria
1.67	2.6.2	10 20	J 30	40	N=0=				
42	43				-	_	1	Aterro - Material variado, co	m matacões e
14	18				- 2,26		2	blocos de concreto.	
28	35					2,95 —	3	Aterro - Areia fina, cinza clar	a, compacta.
24	30				-	3,90 —	<u>(4)</u>	Aterra - Argila arenosa, com conchas, cinzo, dura,	tragmentos de
4	4		nu nu nu		-5	4,50	5	Aterro - Areio fina, cinza clar	a, pouco compacia
2	3		manuput	mun	-	5,50 —	6		
4	5	····			-	_	$\overline{\mathcal{O}}$	Turfa argilosa, cinza escura, i	mole a média.
4	4		minim		-		(8)		
2	3	/			-		9		
1/30	1/20				- 10	9,60	10		
1/40					-	_	11		
1/45					-		12		
P/50					-		13	Argila orgânica, com fragme cinza escura, muito mole.	entos de conchas,
1/40						_	14		
1/30	1/30		minim		- 15		15		
1/20	1/20		mmm		-	16.50	16		
2	2				-		17		
2	2		minim	an an ar	-		(18)	Argila siitasa, cinza, mole.	
2	2		m an m		-	-	(19)		
3	4				- 20				
INIC	AL	FINAL		SI Amostra n	MBOLOGIA ão recuperada		O/N O amostrad	or penetrou N cm sob o peso das	a hastes
3,0	7	2,26 29/05/2010	NFC	- Nivel E - Nivel D) água não foi e Tágua não foi e	observada ancontrado	P/N O amostrador penetrou N cm sob o peso das hastes + pe		s hastes + peso
1.00	Legenda	Gráfica	Rev	estiment	o Ø76 mm		RESPONSÁVEL DATA		DATA
0	• 30 • 30) cm inicials) cm finals	Amostrador Ø interno 34,9 mm Ø externo 50,8 mm				mm FLAVIO A, PEREIRA		10/06/2010
	ESCALA	1:100	Pes	65 Kg	altura da qu	eda 75 cm	GEÓLOGO 10/0 CREA-RJ Nº 94102252-9		

	PERF	IL GEC	OLÓGICO (100		
CLIENT	E: FMC	FECHNOLOG	GIES DO BRASIL L	TDA				
LOCAL:	RUA PAU	LO EMÍDIO BA	ARBOSA, 485 - CIDAD	DE UNIVERSITÁRIA -	LHA DO FUN	NDÃO - RJ		
SONDA	GEM: SP	- 17		COTA:	NF			
Nº. de 1º e 2º	Golpes 2º e 3º	Gr 10 2	ráfico 20. 30 40	Cotas (m) Profu N.A. (m)	nd An	nostra	Descrição do M	aterial
3	4		tool and			21		
4	4			mhm		(22)		
3	5					23		
15	22			23,8	0	24	Areia fina e média, ciazo clo	ra compacia
21	28			- 25 25,0	0	25		ing comparent.
22	29					26	Areia média e grossa, siltosa	.com pedregulhos.
23	30					(i)	cinza, compacta,	
23	31			27,5	0	(28)		
22	35					29	site orgioso, pouco arenosa variegado, duro, (Solo Residi	, micaceo, Jal)
25	41			- 30 29,6	0	30		
30	48					31	Silte arenaso, com pedreguli variegado, muito compacta	nos, micáceo, , (Solo Residual)
32	52			324		32		
				32,4	2	33	LIMITE DE SONDA	GEM
						34)	OBS: Sondagem paralise com norma téc	ada de acordo nica.
			<u></u>			35	5 Penetrações > :	30/30
					militi	36		
					and and a second	37		
			<u></u>		and and a	(38)		
					andian	39		
N	IVEL D'A	GUA (m)	SIN	BOLOGIA	O/N	O amostrado	or penetrou N cm sob o peso das	hastes
3,0	7	2,26	NFO - Nivel D	o recuperada água não foi observad água não foi encontrad	da P/N O amostrador penetrou N cm sob o peso das hastes + peso			s hastes + peso
28/05/	2010 Legenda	29/05/2010 Gráfica	Revestimento	0 76 mm	RESPONSÁVEL DATA		DATA	
0) cm iniciais) cm finais	Amostrador	Ø interno 34,9 mr	mm FLAVIO A. PEREIRA			
	ESCAL	1:100	Peso 65 Kg -	() externo 50,8 m altura da queda 75 (m cm	GEÓLOGO 10/0 CREA-RJ Nº 94102252-9		

CLIENT	PER	FIL G	EO GIES								
LOCAL:	RUA PAU	LO EMÍDIO B	ARBO	SA, 4	85 - Cl	DADE	UNIVERS	TÁRIA - ILHA	OO FUNDÃO - RJ	130LU S	
SONDA	GEM: SP	- 18						COTA: NF			Star for
Nº. de 1º e 2º	Golpes 2º e 3º	10 c	Sráfi 20	ico 30	40	c	otas (m) N.A.	Profund (m)	Amostra	Descrição do M	ateria
35	53					-			1	Aterro - Material variado, co	m pedregulhos e
23	31			1		i in tr	-2,22		2	blocos de concreto.	
20	28		• (••••	(rmr		3,00 —	3	Aterro - Areia fina, cinza, co	mpacta.
24	30)				3,80 —	4	Alerro - Areia fina e média, «	com fragmentos de
3	3		e nu u				-5	5,00	5	conditos, canzo, compacio,	
2	2					ron r		_	6		
3	3					r nar			$\overline{\mathcal{O}}$	Turfa argilosa, cinza escura,	mole.
4	4			.,		ron			8		
3	4		minin		an an	m		9.50	9		
2	2						- 10	-	10		
1/30						ron-			11		
1/30			<u>e na</u> te			in an			12	Argila organica, com tragm cinza escura, muito mole,	entos de conchas.
P/15	1/40					ran		14.55	13		
P/20	1/60					r mir		.,,	14)		
1/45							- 15		(15)		
1/30	1					m		_	16		
2	2								Ū	Argila siltesa, cinza escura, n	nuito mole a mole.
2	2					i i i i			18		
3	4		ii ini ii	ii uu		i ani			(19)		
4	4						- 20	1			
INIC 2,9	NÍVEL D'ÁGUA (m) INICIAL FINAL 2,95 2,22				Amostr) - Níve	SIMB a não r el D'ági	OLOGIA ecuperada ua não foi u	observada	O/N O amostrac	tor penetrou N cm sob o peso da tor penetrou N cm sob o peso da	s hastes s hastes + peso
27/05/2010 28/05/2010				Ret	optim	a b age	7 7 C	andonn ado	ado do batente		DATA
0	Legenda Gráfica O 30 cm iniciais				strade	or (Ø interno	34,9 mm	mm FLAVIO A, PEREIRA		DAILY.
•	o 30 cm finais ESCALA 1:100				o 65 K	ζ (g - alti	⊘ externo ura da qu	o 50,8 mm GEÓLGGO 31 ueda 75 cm CREA-RJ № 94102252-9			31/05/2010

	PERF	IL GI	EOL	ÓG		100				
CLIENT	E: FMC 1	TECHNOL	OGIES	S DO	BRASI	LTDA				
LOCAL:	RUA PAU	O EMIDIO	BARB	OSA,	485 - CII		RSITÁRIA - ILH	A DO FUNDÃO - R		
SONDA	GEM: SP	- 18	0-46			0.000	COTA: NF	1		
1º e 2º	2º e 3º	10	20	30	40	N.A.	n) Profund (m)	Amostra	Descrição do N	laterial
4	4							21		
4	5		iu 11	inin	alan in	init		22		
4	5			mm	n			23		
20	23		- Aller			iire	23,95	24		
28	30					- 25		25		
21	29							26	Areia fina e média, com pe compacta.	dregulhos, cinza clara
24	32			<u></u>			-	27		
26	38)	<u>}</u>		27,45 -	28		
21	34					m		29	Silte argiloso, pouco arenos (Solo Residual	o, micáceo, duro.
24	42					- 30	29,80	30		
29	51							31	Silte arenosa, micáceo, vari compacto, (Salo Residual)	egado, muito
53	50/25					/	32,25	32		
		mmm			n	m		33	LIMITE DE SOND	AGEM
								34)	OBS: Sondagem paralis com norma téo	ada de acordo cnica.
		an na na			n incons			35	5 Penetrações >	30/30
					nim m	me	in the second se	36		
						m	- Hereiter	37)		
				anna				38		
								39		
N	NÍVEL D'ÁGUA (m)					SIMBOLOCI				
INIC	NIVEL D'AGUA (m)			x	- Amostra	não recupera	da al abrograda	O/N O amostr	ador penetrou N cm sob o peso da	s hastes
27/05/	2,95 2,22 27/05/2010 28/05/2010			NFO - Nível D'água não foi observada NFE - Nível D'água não foi encontrado				rada P/N O amostrador penetrou N cm sob o peso das hastes + p rado do batente		s nastes + peso
~	Legenda Gráfica ••• 30 cm iniciais				vestime	nto Ø76 m or Øinten	m no 34,9 mm	9 mm FLAVIO A PEREIRA		
0-	• 0 30 cm iniciais • 0 30 cm finais ESCALA 1:100				so 65 K	Ø exter	no 50,8 mm queda 75 cm	CRE	31/05/2010	