
NETWORK FUNCTIONS VIRTUALIZATION-BASED SECURITY

PROPOSALS FOR CLOUD COMPUTING ENVIRONMENTS

Leopoldo Alexandre Freitas Mauricio

Tese de Doutorado apresentada ao Programa

de Pós-graduação em Engenharia Elétrica,

COPPE, da Universidade Federal do Rio de

Janeiro, como parte dos requisitos necessários

à obtenção do t́ıtulo de Doutor em Engenharia

Elétrica.

Orientadores: Otto Carlos Muniz Bandeira

Duarte

Marcelo Gonçalves Rubinstein

Rio de Janeiro

Março de 2019

NETWORK FUNCTIONS VIRTUALIZATION-BASED SECURITY

PROPOSALS FOR CLOUD COMPUTING ENVIRONMENTS

Leopoldo Alexandre Freitas Mauricio

TESE SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO LUIZ

COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA (COPPE)

DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS

REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE DOUTOR

EM CIÊNCIAS EM ENGENHARIA ELÉTRICA.

Examinada por:

Prof. Otto Carlos Muniz Bandeira Duarte, Dr.Ing.

Prof. Marcelo Gonçalves Rubinstein, D.Sc.

Prof. Mauro Sergio Pereira Fonseca, Dr.

Prof. Edmundo Roberto Mauro Madeira, D.Sc.

Prof. Lúıs Henrique Maciel Kosmalski Costa, Dr.

Prof. Pedro Braconnot Velloso, Dr.

RIO DE JANEIRO, RJ – BRASIL

MARÇO DE 2019

Freitas Mauricio, Leopoldo Alexandre

Network Functions Virtualization-Based Security

Proposals for Cloud Computing Environments/Leopoldo

Alexandre Freitas Mauricio. – Rio de Janeiro:

UFRJ/COPPE, 2019.

XII, 76 p.: il.; 29, 7cm.

Orientadores: Otto Carlos Muniz Bandeira Duarte

Marcelo Gonçalves Rubinstein

Tese (doutorado) – UFRJ/COPPE/Programa de

Engenharia Elétrica, 2019.

Referências Bibliográficas: p. 65 – 76.

1. Security attacks. 2. Software-Defined Networking.

3. Network Function Virtualization. I. Duarte, Otto

Carlos Muniz Bandeira et al. II. Universidade Federal do

Rio de Janeiro, COPPE, Programa de Engenharia Elétrica.

III. T́ıtulo.

iii

Acknowledgments

I thank my mom Solange Mauricio, my father Luiz Octavio Mauricio, my wife

Beatriz, and my kids Sophia and Pedro who have always been by my side, for all

their love and understanding. In particular, I thank my parents for the support they

give me at all times and for always motivating me to move on.

Thanks also to all the friends I made in the Grupo de Teleinformática e Au-

tomação (GTA), since they have always contributed positively to the conclusion of

this work.

Thanks also to all the teachers who participated in obtaining this degree. In

particular, I thank my advisors, Professors Otto Carlos Duarte and Marcelo Rubin-

stein, for all the advice, dedication and especially patience during the orientation.

Also, a special mention to Professor Marcelo Rubinstein, for the discussion and

contribution to this work and personal life. I would also like to thank Professors

Lúıs Henrique Maciel Kosmalski Costa, Miguel Elias Mitre Campista, Pedro Bra-

connot Velloso and Rodrigo de Souza Couto for making the GTA/UFRJ laboratory

a pleasant working environment.

I thank Professors Mauro Pereira Fonseca and Edmundo Roberto Mauro Madeira

for their participation in the examining jury.

I thank the employees of the Electrical Engineering Department (PEE) of

COPPE/UFRJ, Mauricio, Daniele, Roberto and Marcos for prompt service in the

program secretariat.

I thank all the people who directly or indirectly collaborated with this stage of

my life. Finally, a special thanks to Globo.com, who supported me economically

and with free time that I needed for this achievement.

Finally, I thank CAPES, CNPq, FAPERJ and FAPESP (2015/24514-9,

2015/24485-9, and 2014/50937-1) for the funding of this work.

iv

Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos necessários

para a obtenção do grau de Doutor em Ciências (D.Sc.)

PROPOSTAS DE SEGURANÇA BASEADAS EM VIRTUALIZAÇÃO DE

FUNÇÃO DE REDE PARA AMBIENTES DE COMPUTAÇÃO EM NUVEM

Leopoldo Alexandre Freitas Mauricio

Março/2019

Orientadores: Otto Carlos Muniz Bandeira Duarte

Marcelo Gonçalves Rubinstein

Programa: Engenharia Elétrica

Esta tese implementa e avalia propostas de segurança baseadas em virtualização

de funções de rede para ambientes de computação em nuvem. Suas principais con-

tribuições são: (i) transferimos o grande número de regras de segurança tipica-

mente implementadas nos roteadores de topo de rack de um datacenter estudado

para funções virtualizadas de segurança firewall (FW-VSF), criadas em hardware de

prateleira. Assim, reduzimos custos e liberamos recursos de TCAM para acelerar

as operações de roteamento. Avaliamos o desempenho de uma FW-VSF criada com

o Iptables (Iptables FW-VSF) em função das demandas encontradas no datacenter

estudado. (ii) propomos e implementamos o framework ACLFLOW, que é uma es-

trutura de segurança NFV/SDN que cria e gerencia firewalls OpenFlow (FW-VSFs)

distribúıdos, como uma alternativa ao uso de TCAMs de roteador ou middleboxes

de segurança, para controlar o tráfego de máquinas virtuais em um ambiente de

computação em nuvem. O ACLFLOW converte regras de segurança regulares (IP

de origem/destino, porta de origem/destino e protocolo) em regras de filtragem

OpenFlow, cria e gerencia grandes quantidades de regras em OpenFlow FW-VSFs

distribúıdos, além de orquestrar e acelerar sua implantação em nuvens de produção.

Também propomos um algoritmo que adapta oportunamente as regras do FW-VSF

às mudanças nas condições de tráfego, priorizando dinamicamente as mais populares

para melhoria de desempenho. (iii) propomos e implementamos uma arquitetura de

segurança NFV que fornece proteção automática e eficiente contra ataques, encade-

ando uma VSF ao fluxo de dados para bloquear dinamicamente o tráfego malicioso,

sem interromper o benigno. Prototipamos as propostas na plataforma aberta para

NFV (Open Platform for NFV - OPNFV) e avaliamos seus desempenhos.

v

Abstract of Thesis presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Doctor of Science (D.Sc.)

NETWORK FUNCTIONS VIRTUALIZATION-BASED SECURITY

PROPOSALS FOR CLOUD COMPUTING ENVIRONMENTS

Leopoldo Alexandre Freitas Mauricio

March/2019

Advisors: Otto Carlos Muniz Bandeira Duarte

Marcelo Gonçalves Rubinstein

Department: Electrical Engineering

This thesis implements and evaluates Network Functions Virtualization-based

security proposals for cloud computing environments. The following are the main

contributions of this work: (i) We move a large number of security rules implemented

in Top-of-Rack routers of a studied virtualized data center to virtual firewalls created

in commodity hardware. Thus, we can reduce costs and release TCAM resources

for accelerating routing operations. We evaluate an Iptables FireWall Virtual Se-

curity Function (FW-VSF) performance against the demands encountered in the

production data center studied. (ii) We propose and implement the ACLFLOW

framework that is an NFV/SDN security framework that creates and manages dis-

tributed OpenFlow FW-VSFs as an alternative to using router TCAMs or special-

ized security middleboxes to control traffic from virtual machines in a cloud comput-

ing environment. ACLFLOW translates regular security rules (source/destination

IP, source/destination port, and protocol) into OpenFlow filtering rules. Besides,

it creates and manages large amounts of OpenFlow rules on distributed firewall

VSFs and implements mechanisms that orchestrate and accelerate the deployment

of OpenFlow FW-VSF in production clouds. We also propose an algorithm that

timely adapts FW-VSF rules to changes in the traffic conditions by dynamically

prioritizing the most popular rules to improve performance. (iii) We propose and

implement an NFV security architecture that provides automatic and efficient pro-

tection against attacks, by chaining a Virtual Security Function to the data stream

to dynamically block malicious traffic without stopping the benign one. We proto-

type our security proposals into the Open Platform for NFV (OPNFV) and evaluate

their performances.

vi

Contents

List of Figures ix

List of Tables xii

1 Introduction 1

1.1 Objectives . 4

1.2 Publications . 6

1.3 Text Organization . 6

2 Software-Defined Networking and Network Functions Virtualiza-

tion 8

2.1 Software-Defined Networking . 9

2.2 Network Functions Virtualization . 13

2.2.1 The Open Platform for NFV (OPNFV) 15

2.2.2 Service Function Chaining . 16

3 Related Work 19

3.1 Virtual Network Functions Using Software-Defined Networking Tech-

nologies . 19

3.2 TCAM limitations and performance of Virtual Network Functions . . 21

3.3 Service Function Chaining . 24

4 Iptables Firewall Virtual Security Function 26

4.1 Implementation . 31

4.2 Evaluation and Results . 32

5 ACLFLOW Security Framework 38

5.1 Implementation . 41

5.2 Evaluation and Results . 46

6 NFV Security Architecture 52

6.1 Implementation . 52

6.2 Evaluation and Results . 56

vii

7 Conclusion 62

7.1 Future Work . 63

Bibliography 65

viii

List of Figures

2.1 Relationship between NFV, SDN and Cloud Computing. 8

2.2 Multiple types of Virtual Network Functions created over an SDN

architecture. 9

2.3 Open vSwitch architecture. First packets of a flow are evaluated in

the user space and cached decisions are evaluated in kernel. 11

2.4 The ETSI reference NFV architecture. 14

2.5 Example of an SFC including logical components involved in the ex-

ecution of the SFC. 17

4.1 Typical topology of a data center that uses the Fat-Tree architecture. 26

4.2 Unique users and the amount of Network bandwidth 27

4.3 TCAM entries reserved for speeding up routing (IN-L3 FIB), to layer

3 ACL processing (IN-L3 ACL in Dell and Vacl in Cisco), and so on

of a Cisco Nexus 6001 (a) and a Dell S5048F-ON (b) Top-of-Racks. . 29

4.4 The firewall virtual security function implemented in a Virtual Ma-

chine controls communication between nodes, that may be in different

data center racks. 32

4.5 Reception rate for different UDP packet sizes and different number

of rules in Dell S5048F-ON. 33

4.6 Reception rate for different UDP packet sizes and different number

of rules in one Iptables FW-VSF. 33

4.7 Reception rate for different UDP transmission rates and different

number of rules in one Iptables FW-VSF. 34

4.8 Reception rate for different UDP transmission rates and different

number of rules using two Iptables FW-VSF. 35

4.9 Reception rate for different UDP transmission rates and different

number of rules using three Iptables FW-VSFs. 35

4.10 Reception rate for different UDP transmission rates and different

number of rules using four Iptables FW-VSFs. 35

4.11 Reception rate for different UDP transmission rates and different

number of rules using five Iptables FW-VSFs. 36

ix

4.12 Reception rate for different UDP transmission rates and different

number of rules using six Iptables FW-VSFs. 36

5.1 ACLFLOW security framework that installs a FireWall Virtual Se-

curity Function (FW-VSF) on each cloud computing node (server).

Distributed FW-VSFs that belong to the same security group have

the same firewall rules. Therefore, Virtual Machines (Vr3 and Vp7)

can migrate between servers without the risk of blocking traffic or

security breaches. The ACLFLOW prioritization algorithm improves

FW-VSF performance. The management module speeds up the de-

ployment of distributed FireWall Virtual Security Functions into pro-

duction clouds. 42

5.2 OpenFlow rules we have created in Open vSwitches from production

servers in the data center studied. The ACLs were removed from the

ToRs and written in the OVSs. 43

5.3 ACLFLOW management module web interface developed to register

new FW-VSFs. 44

5.4 ACLFLOW management module web interface developed to handle

multiple security ambient and their FW-VSFs. 44

5.5 ACLFLOW management module web interface to operate each FW-

VSF. 45

5.6 Test scenario with Virtual Security Functions that implement ACLs

on commercial off-the-shelf servers with Iptables/OpenFlow rules. . . 46

5.7 Maximum HTTP request rate for different number of rules. 47

5.8 Maximum throughput for different number of rules. 47

5.9 Round-trip-time for different number of rules. 48

5.10 Maximum HTTP requests rate comparing the Iptables first-match

performance with OpenFlow FW-VSF with and without dynamically

prioritized rules. 49

5.11 Maximum throughput comparing the Iptables first-match perfor-

mance with OpenFlow FW-VSF with and without dynamically pri-

oritized rules. 50

5.12 Round trip time comparing the Iptables first-match performance with

OpenFlow FW-VSF with and without dynamically prioritized rules. . 50

6.1 Extended Network Functions Virtualization architecture. The pro-

posed security components are colored. Main interactions of the pro-

posed security controller are a) receiving alarms; b) automatic instal-

lation of customized security rules in Virtualized Security Function

application firewall, and c) firewall chaining to block malicious traffic. 53

x

6.2 NFV Security Controller interactions with Virtual Security Functions

and NFV Virtual Network. 54

6.3 Web client benign and malicious HTTP requests (rx) and responses

(tx). 57

6.4 Malicious HTTP requests blocked by WAF Virtual Security Function.

Number of successful attacks, benign HTTP requests and successful

HTTP responses when WAF-VSF is automatically chained. 58

6.5 Web application performance when WAF-VSF is not chained. 59

6.6 Web application performance when WAF-VSF is chained to the Web

server. 61

xi

List of Tables

2.1 Examples of OpenFlow rules . 12

3.1 NFV/SDN features implemented in this thesis versus related work. . 20

3.2 Features implemented in this thesis to reduce cost by removing secu-

rity rules from TCAMs versus related work. 23

3.3 Service Function Chaining proposals. 24

4.1 Command Line to set up entries in TCAM for layer 3 ACLs 28

4.2 Expensive security devices for data center and campus networks . . . 30

5.1 Prioritization algorithm input data. 39

6.1 Web application attack examples . 57

xii

Chapter 1

Introduction

In recent years, the Internet-provided communication infrastructure has been

transforming the world economy. New markets and services for people and busi-

nesses have emerged from the development of virtualization techniques, the growth

of cloud computing, and the Internet of Things (IoT), which enables interaction be-

tween different types of networks and devices, such as home and business networks,

sensor networks, surveillance cameras, TVs, cell phones, cars, etc. [1]. Nevertheless,

the Internet has evolved presenting several security issues, such as issues of confi-

dentiality, integrity, and availability. Security attacks are increasingly frequent and

cause great harm to people and organizations because the Internet was not originally

designed to deal with malicious nodes [2–5].

One of the most popular attacks is malware one. Malware is a malicious code

created to damage the victim’s resources intentionally or to execute malicious ac-

tivity against the interest of the computer user. It can be a worm, a Trojan, a

virus, a ransomware software, etc. [6]. Malicious codes can exploit vulnerable Web

applications by performing Structured Query Language Injection (SQLI) attacks to

steal sensitive data, such as financial or personal private information [7]. Likewise, a

malware could inject several malicious codes into operating systems to execute Lo-

cal File Inclusion (LFI) attacks, Web exploitation attacks can redirect users towards

phishing sites (cross-Site Scripting - XSS), deface or vandalize websites, etc. [8].

Many companies have been dealing with data breaches and significant financial

losses caused by vulnerability exploitations [9–11]. The amount of data breach re-

ported in 2015 is higher than in previous years. In 2011 there were 1281 security

incidents, while 3930 were recorded in 2015, exposing 736 million sensitive data [12].

Only one database exploit attack illegally exposed 191 million users’ personal infor-

mation [13]. Akamai security report [3] shows that 88% of Web application exploits

in 2016 were related to SQLI and LFI. These problems happen because there are

more and more vulnerable systems accessible through the Internet and available at-

tack codes to exploit their weaknesses. Accenture cost of cybercrime study[2] shows

1

that 98% of the Internet companies had to deal with malware attacks in 2017, 67%

with Web application attacks, and the two higher expenses were incurred in SQLI

and LFI (about 2.4 million and 2 million US dollars).

Distributed Denial of Service (DDoS) attacks aims to consume the victim’s re-

sources to cause unavailability. Some have already reached rates above 1.1 Tb/s [14].

The increase in the intensity of denial of service attacks is related to the low-security

level of the IoT devices, which present a progressively more substantial computing

power without implementing robust security mechanisms. 70% of the IoT devices

evaluated by HP in 2016 [15] presented security vulnerabilities. About 25 vulner-

abilities, on average, were found on each device evaluated. In more than 80% of

the cases, it was not possible to use passwords with satisfactory complexity and

length, approximately 70% of the devices do not encrypt the communication, and

60% have vulnerable user interfaces and firmware. For these reasons, such devices

are increasingly being used to augment the volume of DDoS attacks [14].

Many security attack sources are botnet nodes [16], a set of zombie machines

with malware that allows an attacker to control them remotely, also known as “in-

fected” devices. In that case, owners of enslaved hosts, which may be computers,

TVs, cameras, mobile devices, and so on, do not know that these hosts are gener-

ating malicious traffic. Some estimates indicate that there are already botnets with

more than one million zombie devices [17]. Moreover, source IPs of security attacks

may belong to a Network Address Translation (NAT) gateway that serves many

network nodes. Although blocking source IPs should be an effective countermeasure

against most of the denial of service attacks [18], efficient network security systems

must also be able to prevent vulnerability exploitation, such as Structured Query

Language Injection, Local File Inclusion, and Cross-Site Scripting, without affecting

the benign traffic of the same source IP. However, most traditional security solutions

are usually unable to segregate malicious traffic from the benign one when they are

generated from the same source so that they commonly apply filters to block all

traffic generated by the attacking node.

Several security mechanisms are used to protect networks and systems. En-

cryption hinders unauthorized reading of end-to-end communications traffic, and

authentication and authorization mechanisms control access to network resources.

An Intrusion Prevention System (IPS) is a Network Function (NF) that examines

traffic flows, detects and prevents vulnerability exploits, whereas Web Application

Firewalls (WAFs) filters traffic based on the analysis of the packet content. Routers

traditionally implement Access Control Lists (ACLs) to filter traffic by selectively

evaluating the five-tuple source/destination IP, source/destination port, and proto-

col.

Network Functions generally process security policies at line speed using Ternary

2

Content Addressable Memories (TCAMs) [19] which are memory tables that enable

fast search operations by reading all the rules in parallel when the matching entries

for each packet need to be identified. Although NF can use TCAMs to process

security policies at wire speed, such hardware solution is power hungry and is not

designed to handle large amounts of rules. Many rules may be required, whereas the

storage capacity of TCAMs is scarce and expensive [20]. TCAMs limit the number of

filters to a few thousand rules, between 2-4k, and are up to 400 times more expensive

than RAMs, with power consumption up to 100 times higher [21]. For this reason,

security Network Functions usually are expensive specialized middleboxes found

in a data center and Internet Service Provider (ISP) networks that require a high

deployment time and rely on the manual configuration of network administrators [22,

23].

Network operators typically rely on security middleboxes to protect systems and

applications and control traffic between networks. Those middleboxes are hardware

Network Functions, such as router Access Control Lists, physical Web Application

Firewalls, Intrusion Prevention Systems devices and so on [24]. A typical hardware-

based north-south data center traffic created by network administrators to secure

a web application, for instance, may traverse a BGP router, a Monitor, an IPS, a

Load Balancer, an ACL, and a WAF [25, 26]. Each physical NF of that sequential

service chain has a specific position, and it is not easy to change them within the

network topology to provide new services, meet new security demands or deal with

capacity changes. For these reasons, relying on physical security middleboxes does

not meet the requirements of cloud computing where computing resources, develop-

ment platforms, and software must quickly adapt to variations in user demand and

be offered as a service [27, 28].

Network Functions Virtualization (NFV), standardized by the European

Telecommunications Standards Institute (ETSI), is a new technology that aims

to make networks more agile and flexible and to reduce equipment and operat-

ing costs [29]. NFV proposes the deployment of Virtual Network Functions (VNFs)

as software packages running on Commercial Off-The-Shelf (COTS) hardware to be

an alternative to using specialized network and security devices [30]. Thus, with

NFV, the number of middleboxes decreases as well as the costs with heat dissipa-

tion, electricity consumption, and maintenance. Then, it is possible to reduce both

CAPEX and OPEX. Network Functions Virtualization also enables software-based

Service Function Chaining (SFC) in which policy routes can be dynamically created

to steer traffic through hardware-agnostic VNFs [31, 32].

Software-based SFCs are not tied to network topologies, and their physical con-

nections since NFV decouples Network Functions from specialized hardware to in-

crease flexibility. As such, Virtual Network Functions can be chained to deliver

3

services at the edge, closer to end users, and fine-grain service chains can deploy

VNFs on-demand to meet security or another specific constraint [33]. The Internet

Engineering Task Force (IETF) proposes the creation of service chains using the

Network Service Header (NSH) protocol [34]. The NSH protocol encapsulates net-

work traffic that is routed between Virtual Network Functions to implement new

services, such as chaining multiple VNFs located on remote Internet sites. Although

the NSH enables new services, it increases the NFV overhead [35]. Moreover, NSH

has the disadvantage of being a clean-slate [36] network solution due to it demands

changes in the Network Function Operating System (OS) kernel to be appropriately

used.

Cloud computing providers can offer Virtual Network Functions of different types

as a service to their users. So, a client would be able to instantiate an application

firewall to protect a Web site or a database service that is hosted in the cloud

provider. ISPs can also use NFV to offer new services to their customers. Cur-

rently, ISPs install router devices on the users’ home/business network, which have

software capable of connecting only the ISP client’s network to the Internet. For this

reason, ISPs always need a technical workforce and new hardware installation in the

customer environment to provide new services. With NFV, client middleboxes can

offer software that supports the remote creation of different types of Virtual Network

Functions. Such devices can also become Virtual Network Functions instantiated

within the ISP’s network. Therefore, ISPs can use NFV to offer new services to their

clients, such as a Deep Packet Inspection VNF, a custom firewall VNF to protect

security cameras, an application firewall VNF to secure financial operations made

by credit card machines of a network of pharmacies, and so on.

1.1 Objectives

The goal of this thesis is to present proposals regarding the problems of benign

traffic blocking and performance of security NFV solutions. We argue that efficient

protection systems should be able to dynamically steer malicious traffic through se-

curity software-based Service Chains to block exploitation attacks without stopping

the benign traffic. Besides, we also argue that each cloud computing physical server

can host a firewall Virtual Network Function as an alternative to using TCAMs or

specialized security middleboxes. Therefore, the security policies are implemented

closest to the object to be protected, which is the Virtual Machine (VMs).

This thesis first evaluates and discusses the NFV overhead of a firewall imple-

mented as a security Virtual Network Function (or Virtual Security Function). Then,

we propose the ACLFLOW framework with mechanisms to implement and manage

distributed firewalls in cloud computing environments. The ACLFLOW framework

4

implements OpenFlow firewalls on distributed virtual switches to address the TCAM

storage capacity problem. Moreover, this work proposes and implements an algo-

rithm that prioritizes firewall rules to improve NFV performance. This work also

proposes and implements an NFV security architecture to provide automatic and ef-

ficient protection against attacks by dynamically blocking malware without affecting

benign traffic. We build prototypes in Open Platform for NFV (OPNFV), which is

an open source Linux Foundation platform developed to accelerate the NFV imple-

mentation in real networks [37]. The evaluations measure the efficiency of the NFV

security architecture and the performance of the security framework and its firewall

Virtual Security Function using commodity machines. The main contributions of

this thesis are:

• We evaluate the performance of an Iptables FireWall (FW) implemented as a

Virtual Security Function (Iptables FW-VSF) using commodity servers [38].

We propose a case study to evaluate if an FW-VSF can handle 4000 rules,

that is, the maximum number of Access Control Lists we can implement in

the Top of Rack routers TCAMs found in the production data center studied.

• We propose and implement a cost-effective security framework, named

ACLFLOW, that translates regular ACLs (source/destination IP, source/des-

tination port, and protocol) into OpenFlow filtering rules [26] and manages

distributed FireWall VSFs (FW-VSFs) that are implemented on each cloud

computing physical server, closest to the Virtual Machine (VMs), to protect

cloud computing environments by addressing the TCAM limited size prob-

lem [39]. ACLFLOW also simplifies orchestration and accelerates the imple-

mentation of FW-VSFs in production clouds.

• We propose an algorithm that dynamically prioritizes the rule with the highest

traffic volume (the most popular rule) to increase the ACLFLOW FW-VSF

performance, because the use of Virtual Security Functions generally presents

lower performance [29, 38, 40]. The evaluation of the ACLFLOW algorithm

efficiency uses real traces from production OpenFlow FW-VSFs [39, 41].

• We design an NFV security architecture that provides automatic and ef-

ficient protection against attacks by dynamically steering traffic through a

Web Application Firewall Virtual Security Function1 (WAF-VSF), which can

block only malicious activity without interrupting benign traffic from the same

source [42].

1Security Virtual Network Functions and Virtual Security Functions are synonyms in this work.

5

1.2 Publications

The results of this thesis were published in the following events:

• GTA-18-39 - Mauricio, L. A. F., Rubinstein, M. G., and Duarte, O. C.

M. B. - “ACLFLOW: An NFV/SDN Security Framework for Provisioning

and Managing Access Control Lists”, in IEEE 9th International Confer-

ence Network of the Future - NoF’2018, Poznan, Poland, November 2018.

http://www.gta.ufrj.br/ftp/gta/TechReports/MRD18.pdf

• GTA-17-03 - Mauricio, L. A. F., Alvarenga, I. D., Rubinstein, M. G., and

Duarte, O. C. M. B. - “Uma Arquitetura de Virtualização de Funções de

Rede para Proteção Automática e Eficiente contra Ataques”, in XXII Work-

shop de Gerência e Operação de Redes e Serviços (WGRS’2017) - SBRC’2017,

Belém- Pará, PA, Brazil, May 2017. http://www.gta.ufrj.br/ftp/gta/

TechReports/MARD17.pdf

• GTA-16-48 - Mauricio, L. A. F., Rubinstein, M. G., and Duarte, O. C. M.

B. - “Proposing and Evaluating the Performance of a Firewall Implemented

as a Virtualized Network Function”, in IEEE 7th International Conference

Network of the Future - NoF’2016, Buzios-RJ, Brazil, November 2016. http:

//www.gta.ufrj.br/ftp/gta/TechReports/MRD16.pdf

• GTA-17-15 - Sanz, I. J., Alvarenga, I. D., Andreoni Lopez, M. E., Mauricio,

L. A. F., Mattos, D. M. F., Rubistein, M. G., and Duarte, O. C. M. B. -

“Uma Avaliação de Desempenho de Segurança Definida por Software através

de Cadeias de Funções de Rede”, in XVII Simpósio Brasileiro em Segurança

da Informação e de Sistemas Computacionais - SBSeg’17, Braśılia, DF, Brazil,

November 2017. http://www.gta.ufrj.br/ftp/gta/TechReports/SAA17.

pdf

1.3 Text Organization

The rest of this thesis is organized as follows. In Chapter 2 we introduce Software-

Defined Networking and Network Functions Virtualization technologies. Besides,

we show that Service Function Chaining, proposed by NFV, can be created with

OpenFlow policies on SDN-enabled switches. Chapter 3 discusses related work.

In Chapter 4, we present a case study to evaluate if ACLs found in ToRs of the

studied data center can be moved to Iptables FW-VSFs implemented on commodity

servers to release TCAM resources. Chapter 5 details the proposed ACLFLOW

6

http://www.gta.ufrj.br/ftp/gta/TechReports/MRD18.pdf
http://www.gta.ufrj.br/ftp/gta/TechReports/MARD17.pdf
http://www.gta.ufrj.br/ftp/gta/TechReports/MARD17.pdf
http://www.gta.ufrj.br/ftp/gta/TechReports/MRD16.pdf
http://www.gta.ufrj.br/ftp/gta/TechReports/MRD16.pdf
http://www.gta.ufrj.br/ftp/gta/TechReports/SAA17.pdf
http://www.gta.ufrj.br/ftp/gta/TechReports/SAA17.pdf

framework and presents the prioritization algorithm for increasing OpenFlow FW-

VSF performance. In Chapter 6 we present the proposed NFV security architecture

that automatically chains Web Application Firewall VSFs to protect Web servers

against malware without affecting the benign traffic of the same source IP. Chapter 7

presents conclusions and future work.

7

Chapter 2

Software-Defined Networking and

Network Functions Virtualization

Network Functions Virtualization is a new technology aimed at reducing the

complexity of operation and management of Network Functions and improving net-

work efficiency and performance [43]. To reduce CAPEX and OPEX, NFV builds

Virtual Network Functions on commodity servers.

Figure 2.1: Relationship between NFV, SDN and Cloud Computing.

Figure 2.1 shows that there is a relationship between NFV, cloud computing

and Software-Defined Networking. Thus, NFV can use the automation and isola-

tion provided by SDN, and the orchestration and on-demand resource allocation

capabilities offered by cloud computing to create VNFs and service chains. Accord-

ingly, Mijumbi et al. states that the best approach to accelerate the development

and maturation of NFV is combining it with SDN technologies and cloud computing

capabilities [29, 44]. In this chapter, we present the main features of SDN and NFV.

8

Cloud computing will not be presented because it is a well-discussed and general

topic.

2.1 Software-Defined Networking

Traditional networking equipment has a data plane and a control plane. The con-

trol plane supports several protocols and is responsible for routing rules configuration

into routing tables. The data plane forwards packets by following the instructions

written by the control plane. Despite this, traditional networking equipment is not

flexible. Programming new logic of packet routing other than that implemented by

the IP protocol, for instance, is not permitted [5]. For this reason, these devices

“ossify” the network core [36].

Figure 2.2: Multiple types of Virtual Network Functions created over an SDN ar-
chitecture.

Software-Defined Networking (SDN) separates the network control function of

the forwarding function. Its most popular protocol is OpenFlow (OF) [45, 46].

Through it, the control plane inserts flow rules into the data plane to control its

behavior (Figure 2.2). Software-Defined Networking enables centralized control and

a global view of the network. SDN controllers manage the network topology, provide

an Application Programming Interface (API) to facilitate its operation and many

9

times use the Open vSwitch Database Management Protocol (OVSDB) to enable

the configuration of switch interfaces, VLANs, and so on.

Multiple types of Virtual Network Functions can be created in a data plane

by combining NFV with SDN technologies. It is possible to orchestrate multiple

VNF types as a distributed data plane, from centralized controllers [40]. Figure 2.2

illustrates that a Virtual Network Function can be a load balancer that increases

capacity and reliability by distributing the network traffic across multiple servers,

based on source IP, destination IP, and so on [47]. Otherwise, the VNF can be a

traffic engineering, when data plane rules specify which paths the data flow should

follow [48, 49]. The VNF can also be a firewall, which enforces filtering rules [38].

Therefore, with proper rules, the data plane SDN device can act as a layer-two

switch, a router, a firewall, a load balancer, a traffic engineering, and so on [33].

Moreover, an SDN can be implemented in either reactive or proactive mode [44–

46]. In the reactive mode, the controller installs flow rules in the data plane according

to the request made by the OpenFlow switches. Whenever a switch receives a new

flow, it sends an instruction request message named OFF-packet-in to the SDN

controller, which inserts rules into the data plane to allow the traffic. This approach

inserts a network delay because the data plane must wait for controller intervention

whenever switches receive a new flow. Moreover, the controller and switch buffers

may become overloaded when the number of simultaneous new flows is large [50].

Consequently, an SDN virtual security function configured in the reactive mode may

block traffic incorrectly or cause security issues.

All filtering rules are previously installed in the data plane when a proactive SDN

is used to provide security. Thus, when the first packets of a new flow reach the

OpenFlow switch, those that do not match the previously installed rules are imme-

diately blocked, and the matching packets are forwarded without setup delays [51].

This characteristic is very interesting for security solutions.

Fail secure and fail standalone modes can be set up in an SDN switch. Every

time an OpenFlow switch is configured in the fail standalone mode and loses its

connection with the controller it removes all flow rules that have been inserted by

the controller, and it starts to act as a legacy standalone Ethernet switch. On the

other hand, the SDN switch in the fail secure mode persists all rules programmed

by the controller. Those rules expire in the fail secure mode only if a timeout value

is set.

Software switches are widely used by virtualization tools to interconnect virtual

machines and forward their packets. They can store large amounts of rules, and

some already reach rates of up to 40 Gb/s although running on machines with only

four cores [21]. Open vSwitch (OVS) is an example of a software switch, widely

used in cloud computing implementations.

10

When an Open vSwitch belongs to an SDN data plane, its packet classification

evaluates the first packets of a flow in user space (OVS pipeline), through queries

executed in several hash tables (Tables 0 to n in Figure 2.3). The number of OVS

hash tables queried in the OVS pipeline varies according to the number of OpenFlow

rule types. It happens because the OVS packet classification algorithm creates a

particular hash table, automatically, in the user space, for each different match field

combination being used for the OpenFlow rules it stores. For instance, let P =

{p1, ..., pn} be the OVS OpenFlow rule types. When all OpenFlow rules evaluate

only destination IPs (dst ip), there is only one hash table in user space, represented

by: (p1 ∈ Table 1 | p1 = [dst ip, *]), with wildcard (*) representing all undefined

fields. Similarly, OVS classifier automatically creates two hash tables in user space

when some OpenFlow rules evaluate only destination IPs, while others deal with

the source IP (src ip), destination IP (dst ip), and destination port (dst port) fields,

such as: (p1 ∈ Table 1; p2 ∈ Table 2 | p1 = [dst ip, *] and p2 = [src ip, dst ip,

dst port, *])

Figure 2.3: Open vSwitch architecture. First packets of a flow are evaluated in the
user space and cached decisions are evaluated in kernel.

Therefore, when an OpenFlow firewall has rules created from the five tuples

(source IP, destination IP, source port, destination port, and protocol) only up to 32

different hash tables may exist in user space to be queried by OVS packet classifier,

no matter how many rules are in the OpenFlow firewall. The OVS pipeline does

only one query per hash table at constant execution time, O(1), to find a match. In

this case, queries happen at linear time O(n), where n is the number of hash tables

that varies between 1 and 32.

When priorities are the same, the match always occurs in the most general

OpenFlow rule that has the highest degree of specificity. Table 2.1 illustrates some

rules that we have inserted in an OpenFlow firewall to describe its operation. The

four OpenFlow rules in Table 2.1 have the same priority (priority = 65000) and

allow the Internet Control Message Protocol (ICMP) traffic generated by the host

11

10.170.29.40/32. The action “NORMAL” means that the OpenFlow firewall should

forward the traffic. All matches happen in the OpenFlow rule of row 1 because it is

the most generic with the highest degree of specificity among the policies.

All fields of the most generic OpenFlow rule that could be created in a firewall

are wildcards (*). That means they are not specified. Therefore, all traffic evaluated

by the firewall packet classifier, whatever the protocols, source, and destination IP

addresses, source and destination ports, etc. will match this rule. On the other

hand, the most specific rule of an OpenFlow firewall instructs the packet classifier

to evaluate all bits of all OpenFlow header tuples. In this case, the classifier evalu-

ates whether the particular values indicated in the rule are met by the information

included in all the packet header fields by testing all its bits, looking for a match.

The first two rules of Table 2.1 are more generic than rules 3 and four because

they evaluate only the header tuples protocol and source IP address, while 3 and 4

assess the tuples protocol, source IP address and destination IP address. Among the

more generic rules (rules 1 and 2), which evaluate the same header fields, the first one

has a higher degree of specificity. This is because it instructs the packet classifier to

evaluate all 32 bits of the source IP address (nw src=10.170.29.40/32), while in rule

2 the classifier evaluates only 24 bits of the same header tuple. Therefore, although

rule 2 can release ICMP traffic generated by any host on the 10.170.29.0/24 network,

the match occurs on the first line rule (ID = 1) when the host 10.170.29.40/32 sends

ICMP traffic. Rules 3 and four also release ICMP traffic generated by the host

10.170.29.40/32 to the tested destination, which has IP address 10.170.0.170/32.

However, they are not used because they are less specific OpenFlow rules than rules

1 and two since they evaluate more header fields. On the other hand, if we remove

rules 1 and two from the OpenFlow firewall and keep only rules 3 and 4, traffic will

match rule 4 because it will become the rule with the highest degree of specificity

between them. This is because all 32 bits of both the source IP address and the

destination IP address match the generated ICMP traffic.

Table 2.1: Examples of OpenFlow rules

ID OpenFlow rules

1
cookie=0x5ba3200000b19, duration=5761.177s, table=0, n packets=3112,

n bytes=629614, idle age=1, hard age=65534, priority=65000, icmp,
nw src=10.170.29.40/32 actions=NORMAL

2
cookie=0x5c1a300000b19, duration=5761.100s, table=0, n packets=0, n bytes=0,
idle age=65534, hard age=65534, priority=65000, icmp, nw src=10.170.29.0/24

actions=NORMAL

3
cookie=0x5a98f00000b19, duration=5761.280s, table=0, n packets=0, n bytes=0,
idle age=65534, hard age=65534, priority=65000, icmp, nw src=10.170.29.40/32,

nw dst=10.170.0.0/24 actions=NORMAL

4
cookie=0x65d6a00000b19, duration=5761.280s, table=0, n packets=0, n bytes=0,
idle age=65534, hard age=65534, priority=65000, icmp, nw src=10.170.29.40/32,

nw dst=10.170.0.170/32 actions=NORMAL

12

OpenFlow rules may include priority. When it happens, regardless of the gen-

erality and degree of specificity, the match always happens in the rule with the

highest priority that corresponds to the traffic (matches traffic). Besides, the OVS

packet classifier reads rule priorities in descending order, from highest to lowest, and

caches the forwarding decision in the kernel data-path that speeds up the forwarding

of subsequent packets [21, 52]. However, cached rules leave kernel space whenever

their cache times expire or every time the SDN controller changes rules in the data

plane. When this happens, packets that do not match a rule in the fast-path kernel

follow back through the slower user space processing [46]. Every time the matching

rule does not have the highest priority, the sequential searching between hash tables

goes on until the last hash table. However, when the matching rule already has the

highest priority, the linear searching between hash tables is stopped and OVS im-

mediately forwards the packet, without querying other hash tables of the pipeline.

Consequently, the number of queries performed in user space is smaller.

Over the years, different SDN controllers have been developed. The first one,

known as NOX, was created by Gude et al. [53] to act as a network operating system

capable of allowing interaction with OpenFlow switches. Subsequently, NOX evolved

into POX to allow its execution on Linux, Windows or MacOS machines. Among the

different types of SDN drivers developed [54], this thesis highlights OpenDaylight

(ODL), as it is implemented in OpenStack, which is used in the Open Platform

for NFV [37]. This thesis uses the OPNFV, described next in this chapter and the

OpenDaylight SDN controller, to implement some of the proposed security solutions.

2.2 Network Functions Virtualization

The European Telecommunications Standards Institute released Network Func-

tions Virtualization in 2012 proposing solutions to reduce the dependency of Internet

Service Providers on the manufacturers of network middleboxes [32, 55]. However,

data centers can also benefit from the use of NFV solutions to increase network

flexibility. Since 2013, ETSI released other proposals with different test scenarios to

be implemented using NFV to solve ISP and data center problems [30, 56, 57].

Figure 2.4 illustrates the ETSI reference architecture for Network Functions Vir-

tualization [55, 57]. The NFV Management and Orchestration (MANO) is a frame-

work with tools to orchestrate and manage all virtual and physical resources of the

Network Functions Virtualization cloud. MANO has a Virtualized Infrastructure

Manager (VIM), a Virtual Network Function (VNF) Manager, and an NFV Orches-

trator. The NFV VIM controls the Network Functions Virtualization Infrastructure

(NFVI), which manages physical and software resources. NFVI provides computing

(memory and CPU), networking, and storage resources required to deploy and run

13

VNFs. The VNF Manager deals with VNF instance life cycles. It creates, updates,

migrates and removes VNFs. It also captures and manages event reports from the

Element Management System (EMS) modules that monitor VNF resource utiliza-

tion. The NFV Orchestrator globally manages all NFV cloud resources authorizing

and validating each NFVI resource request, managing the creation and the life cycle

of NFV instances and Network Services and controlling VNF packages. Operation

Support System (OSS) and Business Support System (BSS) modules manage net-

work inventory, service provisioning, billing, crash reports, and so on.

Figure 2.4: The ETSI reference NFV architecture.

Figure 2.4 also shows that ETSI reference NFV architecture proposes interaction

interfaces (Nf-Vi, Vi-Ha, Vn-Nf, Ve-Vnfm, Se-Ma, Os-Ma, Or-Vnfm, Or-Vi, and Vi-

Vnfm) that correspond to APIs between NFV components [30, 32, 56]. Those inter-

action interfaces (reference points) are named with the initials of the interconnecting

systems. The Or-Vnfm interface, for instance, connects the NFV Orchestrator to

the VNF Manager module to allow communication between them. The NFV Or-

chestrator can also interact directly with the Virtualized Infrastructure Manager

through the Or-Vi interface to configure, reserve, and manage hardware resources.

14

Alternatively, these activities can be performed by the VNF Manager, through the

Vi-Vnfm interface. The VNF Manager deploys and allocate resources and configures

and monitors VNFs during its life cycle by using the Ve-Vnfm interface.

The virtualization layer serves as an abstraction tool for the physical resources

provided by the NFV Infrastructure. Therefore, regardless of the hardware platform,

the virtualization layer must be able to use the Vl-Ha interface to instantiate VNFs.

The Vn-Nf interface has been defined to support the information traffic required

for Virtual Machine creation, execution, portability, monitoring, performance mea-

surements, and resource management. Through the Nf-Vi interface, the Virtualized

Infrastructure Manager determines the way requests for configuration and alloca-

tion of resources, either sent by the VNF Manager or by the NFV Orchestrator, will

be performed. Therefore, it is through the Nf-Vi interface that the MANO module

communicates with the NFV Infrastructure to configure and monitor both hardware

resources and the virtual resources provided by the virtualization layer.

Finally, the Os-Ma reference point interconnects the OSS and BSS modules to

MANO. This happens because the applications developed in these modules need

to be able to collect information from the NFV architecture for services such as

registration of usage and billing, status information of installed VNFs and available

physical resources, among others [32, 55].

2.2.1 The Open Platform for NFV (OPNFV)

The Open Platform for Network Functions Virtualization (OPNFV) is an open

platform aimed at accelerating the introduction of new products and services re-

lated to NFV [37]. OPNFV aims at the integrated implementation of a Virtualized

Infrastructure Manager and an NFV Infrastructure. Using a custom Linux named

OpenStack Fuel (OPNFV manager), it is possible to manage the installation of the

VIM and the NFVI components on physical servers.

The OPNFV Virtualized Infrastructure Manager (Figure 2.4) is OpenStack,

which is a cloud operating system capable of virtualizing and managing resources.

The OPNFV NFVI enables the deployment and management of Software-Defined

Networks (virtual network in Figure 2.4) using the OpenDaylight driver. OpenStack

Tacker [58] is the OPNFV module responsible for managing and orchestrating the life

cycle of VNFs, as well as creating and removing Service Function Chains [59]. Open-

Stack Tacker links the created VNFs with Element Management Systems, which

allow it to monitor each Virtual Network Function resource utilization.

Since the latest OPNFV version still does not implement the ETSI Operational

Support System and Business Support System, it is not possible to perform network

inventory management operations yet. Likewise, the generation of service provision-

15

ing reports or failure reports and billing are not yet available.

2.2.2 Service Function Chaining

RFC 7665 [34] proposes the Service Function Chaining, also known as Network

Function Chaining (NFC), the new logical components illustrated in Figure 2.5,

and RFC 8300 [60] proposes the Network Service Header (NSH) protocol. A Service

Function Chain is an abstraction that specifies the set of Network Functions in a

given chain and in which order they must be traversed by the network traffic [61].

SFC is still one of the major challenges of NFV solutions. The Network Functions

positioning, for instance, has been studied by different authors because it is neces-

sary to avoid VNF positions which lead to latencies capable of making the network

operation unfeasible [59, 62, 63]. As an example, the wrong placement and order-

ing of VNFs may result in non-enforcement of security policies, leading to security

vulnerabilities and incidents. Various chaining techniques have been implemented

in NFV solutions to solve this problem [64].

A service chain can be implemented using the Network Service Header (NSH)

protocol described in RFC 8300 [60]. OPNFV has introduced an experimental

python plugin to support chaining with NSH encapsulation. The NSH header has a

field to allow the exchange of metadata information between Network Functions of

an SFC. In this way, it is possible to create classification rules with highly specific

routing policies, such as routing rules based on each tenant ID. With NSH it is also

possible to classify and reclassify flows that traverse multiple Network Functions.

Whenever traffic satisfies a classification rule, all packets generated by the end-

points are encapsulated with the NSH protocol and inserted into the respective

chain of Network Functions. The architecture element responsible for encapsula-

tion and routing the NSH traffic is the Service Function Forwarder (SF Forwarder)

(Figure 2.5). The OPNFV SF Forwarder is implemented within the Open vSwitch,

which acts as an NSH packet forwarder.

A Network Function is a “SFC aware” when it can understand, decapsulate, and

encapsulate the NSH packets it receives from the SF Forwarder. An unaware SFC

Network Function needs to use an SF Proxy to insert traffic into a service chain.

The SF Proxy is an element capable of decapsulating the data stream before sending

it to unaware VNFs and encapsulating the stream to send it to aware VNFs.

With NSH encapsulation, multiple chains can use the same VNF because it adds

two new header fields into packets, the Service Path Identifier (SPI) and the Service

Index (SI). Figure 2.5 illustrates that incoming packets, sent by clients, first reach

the Service Function Classifier (SF Classifier) (1) that encapsulates them with NSH

headers, processes the SPI field to correlate each packet to its Service Function Paths

16

(SFPs), and sends them to the Service Function Forwarder (SF Forwarder) (2). SFPs

define the order of the VNFs each packet should traverse. SF Forwarder steers traffic

through VNFs that may be aware (3 and 4) or unaware (5 to 8) of the NSH protocol.

Aware VNFs decapsulate packets, execute its Network Function, encapsulate packet

again decrementing the service index, and then send it back to the SF Forwarder. If

the VNF is unaware of the NSH protocol, all NSH encapsulation and decapsulation

steps are performed by a Service Function Proxy (SF Proxy), which removes NSH

headers from each packet before sending it to unaware VNFs (6). The SF Proxy

insert the NSH headers again (7) before sending the packets back to aware VNFs.

The communication between physical machines happens through the remote’s SF

Forwarders. The steps 10 and 11 in Figure 2.5 illustrate an NSH communication

between the SF Forwarder and the VNF of the remote host. When the SF forwarder

identifies that there are no more VNFs ahead in the Service Chain, it sends the traffic

to the SF Classifier (12). Then the SF Classifier identifies the terminator belonging

to the Service Function Path (Server in Figure 2.5) and delivers the traffic to it (13).

However, NSH encapsulation introduces performance overhead [65].

Figure 2.5: Example of an SFC including logical components involved in the execu-
tion of the SFC.

Sanz et al. [66] design and implement service chains using the Network Service

Header protocol and evaluate its performance impact in terms of throughput, round

trip time, and HTTP request rate. The evaluation followed the ETSI NFV-MANO

reference architecture standard and the RFC 7665 Network Function Chaining ar-

chitecture and the environmental testing was created in the OPNFV platform. Both

17

an Intrusion Detection and Prevention System, as well as a Firewall, are built as

Virtual Security Functions. We evaluate the overhead added for Virtual Security

Functions by varying the chain topology implemented, the number of virtual cores

provided to VSFs, and the VSF configurations. Results show that the increase of

physical link hops, as well as the sharing of resources on the same node, are factors

that compromise the end-to-end delay and increase the NFV overhead. Moreover,

the number of cores supplied to the Virtual Security Function affect the number

of packets that each VSF is capable of processing. We conclude that the NSH en-

capsulation using the vxlan tool, that is a python application is the main limitation

for throughput because all encapsulation and decapsulation activities happen in the

user space of the Operating System (OS).

NFV could use SDN, which separates the control plane of Network Functions

from their data plane, to enable Service Function chaining, creating multiple virtual

networks with innovative forwarding and routing logic. A service chain can be

implemented by creating hierarchical routing rules in OpenFlow devices to properly

drive the network traffic through the previously specified Network Functions. Thus,

suitable OpenFlow rules in switch tables can create multiple Service Function Paths,

enabling refined and detailed control of the routing policies [67]. In this thesis, we

use this type of chaining solution.

Therefore, the sequential SFC illustrated in Figure 2.5 can be created with Open-

Flow policies in SDN-enabled devices without the NSH encapsulation overhead be-

cause flow rules can steer traffic through VNFs [40, 50, 68–70]. Packets from an

initial source IP address or source MAC sent to a destination IP and port could

match a flow rule that drives them firstly to a VNF. Subsequently, packets from this

VNF can match another flow rule that sends them to other VNFs or towards the

destination host and port. Besides, an encapsulation protocol, such as MPLS, can

be used for Service Function Path identification [71]. Fields of the MPLS packet

header could be correlated to specific chains to determine by which VNFs traffic

must follow. These solutions are an IETF SFC architectural concept without the

NSH encapsulation overhead [39].

18

Chapter 3

Related Work

This chapter discusses the state-of-the-art and presents related work of this the-

sis. We divide this chapter into three main topics. Section 3.1 describes related

works that implement Virtual Network Functions using Software-Defined Network-

ing technologies. In Section 3.2 we discuss proposals to increase the performance of

Virtual Network Functions and solutions designed to address the problem of shortage

of TCAM entries for storing security rules. We present Service Function Chaining

proposals in Section 3.3.

3.1 Virtual Network Functions Using Software-

Defined Networking Technologies

Several researches propose Network Functions Virtualization security solutions

using Software-Defined Networking properties [40, 68, 72–77]. Table 3.1 lists the

main features of our NFV/SDN proposal versus those implemented by other re-

searches.

Deng et al. [40] propose the VNGuard framework, which uses SDN and NFV to

provide and manage virtualized firewalls. VNGuard components are implemented

in ClickOS [72] and it defines a high-level language to simplify policy management

so that users do not need to know low-level information from virtual networks to

create filtering rules. However, there is a significant reduction in VNF network

performance when the number of rules increases [38].

Porras et al. [68] create a programming language and software modules of a so-

lution named FRESCO that simplifies the development and deployment of security

services in SDN networks using NOX controllers. Network administrators can pro-

gram policies to interconnect security modules, such as firewalls, IDSs, and so on.

They also can insert instructions for monitoring security alerts, blocking malicious

traffic, redirecting them to a dynamic quarantine or a remote reflector scanner, and

19

so on. FRESCO acts on SDN-enabled switches and NOX controllers to create cus-

tom OpenFlow rules but is not able to program application firewalls to block only

malicious traffic without disrupting the reliable traffic of the same source IP.

Zanna et al. [73] show that it is possible to integrate an Intrusion Detection

System with an SDN controller to detect and block Denial-of-Service (DoS) attacks.

IDS Bro is configured to send a blocking flow request to the Application Program-

ming Interface (API) of the Ryu controller to filter IPs that generate the malicious

traffic. However, besides blocking malicious network traffic, the proposed solution

also blocks the benign traffic that is generated by the same source IPs.

Xing et al. [74] propose SnortFlow, which is a Snort-based IDS that use the Open-

Flow protocol to detect attacks. SnortFlow implements countermeasures against at-

tacks through network reconfiguration. However, the proposal is limited only to the

Xen hypervisor virtualization platform and the Snort agent installed in each man-

agement domain (Dom 0) can overload Xen Dom 0. Dom 0 overhead can degrade

the network performance of all Virtual Machines hosted on the same physical server

because they need to use the Dom 0 network drivers to access resources located on

other machines in the cloud.

Table 3.1: NFV/SDN features implemented in this thesis versus related work.

Features [40] [68] [73] [74] This thesis

Ability to detect malicious traffic X X X X

Ability to automatically block
X X X

Denial-of-Service (DoS) attacks

Ability to automatically
X X X

block malware attacks

Ability to block malware
X

without affecting benign traffic

Dynamic network reconfiguration
X X X

to block malicious traffic

Simple OpenFlow
X X X

Rule Management

API to implement security services
X X X X X

in SDN networks (firewalls, IDSs, etc)

API to deploy SDN networks
X

in production cloud environments

High performance
X

NFV/SDN solution

20

This thesis proposes and implements an NFV/SDN framework to create security

environments by implementing OpenFlow rules into distributed FW-VSF to pro-

tect and control the network traffic of virtual machines from cloud environments.

Furthermore, we also propose and implement an NFV/SDN architecture which au-

tomatically detects, and blocks malware sent for web applications. Our NFV/SDN

solutions have low overhead and offer APIs and web interfaces that simplify their

implementation into computing servers of production cloud environments. It is also

easy to manage policies and deploy new virtual security functions because our APIs

hide low-level information from the network administrators.

3.2 TCAM limitations and performance of Vir-

tual Network Functions

The efficiency and low-cost processing of policies is a subject that has required

the attention of the research community because security rules are usually stored in

TCAMs that are expensive, power-hungry and have a scarce rule space [78]. Some

proposals address these problems through the optimization of the TCAM rule space

while other researches implement and process filtering rules in software [20, 21, 47,

52, 79, 80]. Table 3.2 lists the main characteristics of some researches that deal with

the TCAM problem versus the proposals of this thesis.

Kanizo et al. [79] implement a framework for decomposing large flow tables

into small ones to distribute the rules among various heterogeneous switches with

tables of limited size. Using a positioning algorithm, Kang et al. [47] optimize the

placement of rules into SDN hardware switches by minimizing its number since

hardware switches have a limited TCAM rule space. The algorithm prioritizes the

implementation of rules into SDN hardware switches according to the network traffic

that traverses them. Thus, the rule placement is efficient, taking into account each

switching path used by end-to-end communications. Katta et al. [21] propose a

hybrid hardware-software switch that provides large and low-cost rule tables using

a cache algorithm that places the essential rules in a TCAM and redirects the cache

missed rules to software switches. The aforementioned proposals do not reduce

the costs of OPEX/CAPEX since they still heavily rely on TCAMs processing. In

addition, solutions that divert some of the traffic to be handled by software switches

rather than specialized hardware do not implement techniques to accelerate the

packet classification to compensate for performance losses caused by the non-use of

TCAMs.

Maqbool et al. [20] develop an application named T-Flex that implements virtual-

ized TCAMs on ToR (Top-of-Rack) switches using their onboard Central Processing

21

Units (CPUs) and virtual disk memories. T-Flex increases the TCAM size by per-

forming the same way an Operating System (OS) does when it extends the amount

of memory available to applications by using the virtual memory disk. Whenever an

input packet does not match a rule stored in the TCAM switch, it is redirected to

the switch CPU by a default lowest priority rule that redirects all “missed TCAM

incoming packets” to T-Flex, which performs a lookup operation to find out a match-

ing rule. After that, a new rule is inserted into the TCAM to accelerate subsequent

packet processing. That proposal still uses expensive, power-hungry and limited size

TCAMs to store security rules. Therefore, it is not a low-cost security solution and

remains linked to the life cycles of network devices from different vendors.

Kourtis et al. [80] implement a DPI (Deep Packet Inspection) Virtual Network

Function using SR-IOV (Single Root Input/output Virtualization) and DPDK (the

Data Plane Development Kit) features to enhance the VNF performance. SR-IOV

provides efficient allocation of low-level network resources because it enables the

direct access and control of the system hardware devices. The Intel DPDK libraries

make it easy to deploy network-intensive applications by implementing a packet-

processing engine that uses polling mode instead of the standard interrupt mode of

the Linux network stack. All packet classification and forwarding actions happen in

the user space, with no copying from the kernel, for efficiently consuming CPU cycles.

However, with this solution, all applications running on the operating system need to

be changed to allow communication with the DPDK library and specialized Network

Interface Controllers (NICs) must be used. For this reason, the implementation cost

increases. Moreover, its full implementation in a production cloud would demand

hardware changes on all existing physical servers.

Emmerich et al. [81] evaluate software switches and conclude that optimization in

the kernel Operating System (OS), dedicated CPU utilization for network interfaces

or techniques to forward packets without copy are essential to the implementation

of high-performance virtual switches. Bonafiglia et al. [82] propose to use virtual

switches with DPDK to improve the NFV performance. They also compare the

performance of Virtual Network Functions implemented in containers versus a fully

virtualized VNF when the virtual switch used by them implements DPDK libraries.

Results show that Virtual Machines using switches with DPDK support have better

performance than containers with dedicated processing cores.

This thesis evaluates the performance of the Iptables firewalls created as Virtual

Network Functions (or Virtual Security Functions) to process the number of security

policies found in the Top of Rack routers of a studied data center. Small Iptables

firewall VSFs with only 4 GB of RAM and two virtual CPUs can store more filtering

rules than commercial Top-of-Rack switch TCAMs. However, our analysis shows

that although reducing costs and increasing flexibility the Iptables firewall VSF

22

overhead increases due to the rise in the number of security rules.

This thesis proposes and implements the NFV/SDN ACLFLOW security frame-

work that solves the ToR TCAM storage problem without a significant reduction

in network performance when the number of security rules rises. The ACLFLOW

implements distributed firewall Virtual Security Functions, one on each physical

server of a cloud environment, to protect the networks and virtual machines that

those physical node hosts. Our performance evaluation shows that ACLFLOW is

an NFV security solution with low overhead that does not significantly affect the

network overhead and RTT found when physical servers run without our FW-VSF.

We implement an algorithm to increase the performance of the proposed firewall

Virtual Security Function, by dynamically prioritizing its most popular rules. The

implementation of the ACLFLOW prioritization algorithm neither requires changes

in applications running on the same operating system, as occurs when DPDK solu-

tions are used nor does it need specialized hardware.

Table 3.2: Features implemented in this thesis to reduce cost by removing security
rules from TCAMs versus related work.

Features [79] [47] [21] [20] [80] [82] This thesis

Ability to manage ACLs
X X

of heterogeneous switches

Ability to prioritize
X X X

most popular security rules

Ability to deprive
X X X X X

unused rules

Dynamic firewall
X X X X X

rule reconfiguration

Do not rely on specialized
X

hardware resources to work

TCAM security rules can
X X X X

be moved to software switches

Do not implement security
X X X

rules in expensive TCAMs

High performance
X X X X X X X

security solution

23

3.3 Service Function Chaining

Different techniques to implement service chains have been proposed by re-

searches [34, 69, 83–85]. The table 3.3 lists different implementations of SFC and

its main features.

Qazi et al. [69] propose the policy enforcement middlebox software-defined struc-

ture named SIMPLE, which is an SDN-based policy application layer capable of di-

recting packets through a desired sequence of Network Functions without the need

to manually plan and configure routes to define by which middleboxes and routers

the traffic should flow. However, SIMPLE does not provide tools for dynamically

detecting and blocking malicious traffic.

Fayazbakhsh et al. [83] proposal implements a Service Function Chaining (SFC)

encapsulation so that middleboxes can introduce labels in the packet header and pass

context information to the next one in the service chain, enabling the traffic policies

enforcement. Qazi et al. [86] also implement labels into packets that should follow

through the network functions of a service chain. However, their solution increases

the overhead by building tunnels between the network functions when they perform

the chaining of the service functions.

Zhang et al. [84] do not add labels to packet headers to implement service chains.

Instead, they use the OpenFlow protocol to create hierarchical routing rules with

custom actions to direct packets between the Network Functions of the data plane.

[84] and Callegati et al. [85] proposals do not employ the IETF Network Func-

tion Chaining definition [34] which proposes the packet header encapsulation using

the Network Service Header (NSH) protocol, which increases the overhead signif-

icantly [35]. Callegati et al. [85] implement the Cloud4NFV that is a Network

Functions Virtualization architecture based on four planes: infrastructure, virtual

infrastructure management, orchestration, and service.

Table 3.3: Service Function Chaining proposals.

Features [69] [83] [86] [84] [85] [35] This thesis

Ability to automatically
X X

block malware by creating
service chains

Do not increase
X X X X

network overhead

SFC technique:

SDN NE
Tn

SDN SDN
NSH

SDN
New Encapsulation (NE)
Tunneling (Tn)

NE NE
SDN solution (SDN)

24

This thesis proposes and implements an automated and integrated solution for

detecting and mitigating security attacks using SDN and NFV technologies. The

proposal is compliant with the ETSI Network Functions Virtualization security man-

agement and monitoring specification [57]. It includes an NFV security controller

module that receives and analyzes alerts sent by an IDS-VSF and dynamically de-

cides whether to chain the data stream to an application firewall Virtual Security

Function. This firewall provides suitable policy rules to block only the attack traffic,

without harming the benign one of the users that use the same source IP. The NFV

security architecture algorithm also automates the vulnerability scanning on Web

applications. From scan results, it proactively inserts new policies into a VSF to

mitigate and reduce the exposure time to identified threats. Further, by reducing

the number of security policies in chained VSFs, the end-to-end latency of the SFC

is decreased [38, 65]. Therefore, this proposed algorithm also removes policies that

become unnecessary, whenever a vulnerability ceases to exist, to reduce latency and

increase software-based SFC capacity.

In the next chapter, we implement and evaluate Virtual Network Functions cre-

ated to replace security middleboxes. We assess and measure VNFs performance

against the demands commonly encountered in production data centers.

25

Chapter 4

Iptables Firewall Virtual Security

Function

Data centers are spread worldwide and continue to evolve nowadays. They can

benefit from using virtualization to optimize CAPEX/OPEX [61] and increase net-

work flexibility [70]. It is possible to reduce expenses related to heat dissipation,

electricity consumption, and maintenance by using fewer physical machines. There

are also advantages of not being tied down to particular vendors since Commercial

Off-The-Shelf hardware can be used.

One of the most used topologies for data centers is the Fat-tree one [25]. This

topology illustrated in Figure 4.1, has a core and pod elements containing aggrega-

tion switches, edge switches (Top-of-Racks) and servers. There are trees of routing

and switching elements in that network architecture, with progressively more spe-

cialized and expensive equipment moving up the network hierarchy. Thus, the ToR

is the minor cost switch/router.

Figure 4.1: Typical topology of a data center that uses the Fat-Tree architecture.

Data center servers host different services, and many users (tenants) can have

several Virtual Machines spread over multiple physical hosts and networks that can

be in different racks. Moreover, those networks may need security policies to allow

access to shared services like a MySQL database or a file system. Therefore, to

26

control the transfer of data between these data center networks, security policies

need to be applied.

We made a case study in a production data center hosting a big Internet Content

Provider [41]. It is a virtualized data center with nearly 10,000 VMs and 3 Tb/s

dedicated bandwidth. The case study shows that this data center already reaches

bandwidth usage higher than 2 Tb/s when providing web content to more than 1.4

million unique users (Figure 4.2). Access Control Lists are still the basic technique

for providing security in communications between the tenant networks of this Inter-

net Content Provider. In a significant number of these data centers, ACLs provide

fine-grained and good performance security solution by using TCAMs of the ToR

routers, that also act as network gateways to every server located inside the respec-

tive data center rack. Moreover, our case study reveals that there is a large amount

of network traffic between racks that require high link utilization and many ACLs

to allow/deny network communication within the data center studied.

Figure 4.2: Number of unique Internet Content Provider users and the amount of
network bandwidth registered during the case study.

ToRs generally use hardware optimization, such as Ternary Content Address-

able Memories, to accelerate the ACL packet classification, which selectively filters

traffic based on the five-tuple source/destination IP, source/destination port, and

protocol [78]. TCAMs are the current state-of-the-art regarding the optimization of

27

packet classification in ACLs1 hosted in ToR routers [87, 88]. They are high-speed

memory tables that perform only one operation to search all memory. It is like a

searching performed on hash tables, which is fast because of its low complexity, equal

to O(1) [78, 89, 90]. However, although ToRs can use TCAMs to process ACLs at

wire speed, such hardware solution is not designed to handle large amounts of rules.

TCAMs are specialized but expensive so that ToRs usually have limited TCAM

storage capacity [20, 88, 91]. Those TCAMs have limited storage capacity and are

up to 400 times more expensive than RAMs. Besides, they have power consumption

up to 100 times higher than RAMs [21].

Figure 4.3 displays the amount of TCAM entries reserved, in Cisco Nexus 6001

and Dell S5048F-ON, for Virtual LAN ACLs (Vacl are the same as IN-L3 ACL in

Dell), for Quality of Service (QoS) operations, TCAM entries to accelerate traffic

mirroring operations (Span) from one or more source ports to a destination port,

and so on. Besides, Figure 4.3 also illustrates the number of TCAM entries reserved

for Layer 2 (L2) and Layer 3 (L3), input and output ACLs, as well as the reserved

amount to speed up routing operations (IN-L3 FIB). The number of TCAM entries

for each activity is configurable by network operators. Therefore, we argue that

it is necessary to minimize the number of ACLs stored in ToRs to increase the

amount of TCAM resource reserved to routing packets at line speed, which is the

main activity of the ToR router [92]. Moreover, Figure 4.3 shows that the first

Top-of-Rack switch/router supports only 1024 network ACLs, while the second one

is configured to work with up to 2048.

Cisco Nexus 6001 and Dell S5048F-ON are the two top models of ToR routers

found in the case study. Although the maximum TCAM capacity of these ToR

switch/routers for processing layer 3 ACLs is 4096 TCAM [93], the network oper-

ators generally reserve only up to 2048 entries for layer-3 ACLs because ToRs also

use TCAMs to accelerate their routing operations, QoS, etc. Table 4.1 illustrates

command lines used to set up layer 3 ACL in a Dell S5048F-ON device.

Table 4.1: Command Line to set up entries in TCAM for layer 3 ACLs

conf t
feature acloptimized
!
cam-acl l2acl 0 ipv4acl 9 ipv6acl 0 ipv4qos 0 l2qos 0 l2pt 0 ipmacacl 0 vman-qos 0
!
cam-ipv6 extended-prefix 1024
!
cam-acl-vlan vlanopenflow 0 vlaniscsi 0 vlanaclopt 2
end

1Cisco 6001 is a ToR with more than 60% of market share in the switch and router mar-
ket according to https://www.forbes.com/sites/greatspeculations/2017/04/12/where-does-cisco-
stand-in-the-ethernet-switch-market c4aa0434a

28

(a) Cisco Nexus 6001

(b) Dell S5048F-ON

Figure 4.3: TCAM entries reserved for speeding up routing (IN-L3 FIB), to layer 3
ACL processing (IN-L3 ACL in Dell and Vacl in Cisco), and so on of a Cisco Nexus
6001 (a) and a Dell S5048F-ON (b) Top-of-Racks.

Nevertheless, the current demand for Access Control Lists in the data center

studied is about 6000 ACLs per rack, much higher than the capacity of the Top-of-

Rack devices. To work around this problem, which is common in cloud computing

environments, network operators generally insert policies that do not fit into TCAMs

in Iptables firewalls installed on Xen Dom 0 or in tenant’s Virtual Machines.

Over the years several studies have proposed techniques to reduce the over-

head that packet filters impose on network performance. Qiu et al. [91] propose

algorithms, specialized data structures and heuristics to improve the packet classi-

fication by identifying and removing useless policies to reduce the number of rules

to be inspected. Thus, the search time of a matching rule decreases. Hamed et

al. [94] show that traditional stateless Iptables firewalls perform sequentially and

ordered matching search in policies so that it has a packet classification complexity

equal to O(n), where n is the number of security rules. For this reason, the higher

the number of rules the lower the Iptables firewall performance. Moreover, Iptables

firewall is vulnerable to the Denial of Service attacks when it hosts a large number

of rules [95, 96].

Hamed et al. [94] also implement techniques to enhance the packet classification

by rejecting unwanted packets as early as possible to avoid using the default deny

rule that is at the end of the sequential firewall policy set. Thus, it is possible to

reduce the long path cost of matching the default deny rule to drop a packet that

does not find a matching rule [95]. Most commercial firewalls implement classifica-

tion enhancement techniques to speed up packet classification and prevent Denial

of Service attacks. However, they are expensive [23, 97]. Table 4.2 reveals how

29

many security devices the data center studied bought to protect its networks and

applications, and how much money was invested. They had to spend about $13

million in Top-of-Rack devices with TCAM capacity to store up to 4096 layer 3

ACLs, more than $1 million in Threat Mitigation Systems, and so on. In this way,

cheaper alternative solutions should be sought.

Table 4.2: Expensive security devices for data center and campus networks

Type Model Price Quantity Network type

ACL Gateway Dell S5048F-ON $ 130,000 40-100 Data center network

Threat Mitigation Arbor $ 350,000 2-4 Data center network

Firewall Palo Alto/Fortinet $ 100,000 15-20 Campus network

Load Balance F5 i5800 $ 160,000 6-8 Data center network

VPN Gateway Palo Alto $ 10,000 2-4 Data center network

It is possible to dynamically manage the Iptables firewalls rules considering traffic

characteristics to reduce the number of inspected rules, by rearranging them. Thus,

the sequential rule order can be dynamically changed according to the frequency

of matching. In this type of approach, the most frequent rule, for example, can be

positioned at the beginning of the rule set so that it can be quickly evaluated [87].

El-Atawythey et al. [96] state that a significant part of the Internet traffic matches a

small subset of firewall rules that are usually in sparse database positions. Moreover,

they state that many Internet firewalls still implement orderly and sequential packet

classification, without prioritization techniques. Firewalls are generally configured

with an explicit default deny rule in the last position of the sequential firewall policy

set [96].

When a packet matches the first rule of a given Iptables firewall, the “first-match”

happens. The Iptables “middle-match” happens when packets match the security

rule in the “central position” of the firewall policy sequential set (the “middle-one

rule”). Finally, the Iptables “last-match” occurs when a packet does not match any

previous rule and needs to be dropped by the default deny rule.

El-Atawythey et al. [96] claim that is possible to use decision (or classifica-

tion) trees to reorder firewall rule bases in order to reduce the search time when a

huge number of packets matches the “middle-one rule”. There are also researches

proposing mechanisms to remove redundant rules from the rule base before reorder-

ing them according to the characteristics of the traffic. Gupta et al. [98] propose

a set of off-line mechanisms to identify and remove redundant rules before to place

the most frequently matched rules at the top of the firewall policy sequential set.

30

Gupta et al. [98] mechanisms also optimize the firewall performance when the num-

ber of matches in a default deny rule increases. An adaptive scheme based on traffic

builds organization profiles to optimize the firewall policy set. However, the effi-

ciency of this approach decreases when the number of overlapping rules is large, and

the adaptability of the solution is low because the mechanism that evaluates most

frequently rules is an offline task.

Our case study shows that when a cloud solution is implemented to optimize

the data center physical resource utilization, it is expected that the number of Vir-

tual Networks (VNs) and security policies increases. However, it is not possible to

increase the TCAM storage capacity of ToRs without replacing equipment. More-

over, each more TCAM entries a ToR router has configured to dealing with ACLs

fewer hardware resources (TCAM entries) the device has to accelerate routing ac-

tivities [88].

On the other hand, it is possible to use the NFV paradigm to move security

policies from ToRs to virtual firewalls created as Virtual Machines in commodity

hardware, like an x86 server. Thus, the ToR routing operations can be increased

while firewall virtual security functions deal with ACLs. From Cloud Computing

techniques it is also possible to scale up virtual firewalls according to the network

demand inside the Internet Content Provider. In this scenario, the security rule

processing capacity ceases to depend on the size of ToR TCAMs and becomes a

function of the amount of memory and CPU allocated to Virtual Network Functions.

As the processing capability of a group of VMs may be higher than the capacity of

a TCAM ToR, such a solution can be employed. Figure 4.4 illustrates this type of

solution, where a client VM, located in the server 1, communicates with a server

VM through the FW-VSF, which contains the matching rules necessary to release

the data traffic. Therefore, in a simple solution, the Access Control Lists of a ToR

can be moved to Virtual Security Functions by implementing a firewall such as

Iptables [38, 99]. In this context, we use Iptables firewall Virtual Security Functions

(Iptables FW-VSF) to process policies for access between networks.

4.1 Implementation

We implement a firewall as a VSF to process security policies inside a virtu-

alized data center network that hosts an Internet Content Provider. The Iptables

FW-VSFs are implemented as VMs and the network environment is configured to

use VLANs. Three network interfaces were configured in an Iptables FW-VSF in

different VLANs: one to allow communications with other networks of the labo-

ratory, the second for allowing access to the Internet, and the third one to allow

communications with other VMs created. Iptables is configured to act as a “state-

31

Figure 4.4: The firewall virtual security function implemented in a Virtual Machine
controls communication between nodes, that may be in different data center racks.

less” packet filter. Moreover, no NAT is configured in the Iptables FW-VSF. The

network default route of VMs involved in the tests is configured to point to the

Iptables FW-VSF. Thus, all network traffic generated from VMs to any destination

is inspected by the Iptables FW-VSF. The testbed network is also configured to

ensure that all traffic return through the Iptables FW-VSF. Therefore, the Iptables

FW-VSF is configured to guarantee the security perimeter of all cloud networks.

4.2 Evaluation and Results

We use the Iperf tool to send aggregate traffic from one or more generators to

a receiver. To ensure greater control over the experimental scenario and to isolate

external factors, all test machines have no Internet access. We use three physical

servers and VMs with two virtual CPUs and 4 GB of RAM in the evaluations, to

avoid network performance issues, that happen when the amount of memory and

CPU allocated to VMs do not fit the size of “NUMA” nodes in the hardware. We

discuss this problem in [100]. Thus, the traffic generator is a VM created on the

first server, the Iptables FW-VSFs were created on the second, and the VM used as

a server was created on the third physical node. Our physical servers are Intel(R)

Xeon(R) CPU E5-2630L 2.00 GHz with six cores, 64 GB of RAM, and three 1 Gb/s

Ethernet interfaces.

We start the tests with a single Iptables FW-VSF and a single instance of a traffic

generator. After that, we need to create more instances to increase the evaluation

traffic. The number of generators is equal to the amount of instantiated Iptables

FW-VSFs. The receiver in all test scenarios is also a VM with two virtual CPUs

and 4 GB of RAM. We use three physical servers.

The aggregate transmission rate2 is measured by the machine(s) that generate

2The transmission rate is defined as the rate effectively injected into the network.

32

traffic. The reception rate is measured on the receiving machine, where the Iperf

server is executed. The transmission rate varies according to the size of the packet

Therefore, as the packet size increases, the transmission rate gets closer to the

maximum value of 1 Gb/s. All results are means with 95%-confidence intervals. We

omit error intervals when they are too small.

In the first experiment, we configure the firewall with a different number of rules

and use different packet sizes in a 1 Gb/s UDP flow to traverse the firewall from one

generator to the receiver. Since an Iptables firewall handles its rules in a sequential

and orderly way, we have made all performance evaluation in the worst case, which

occurs when the rule that allows the traffic is in the last position of the rule set [38].

Thus, only the last one of the firewall policy set releases the evaluation traffic.

Figure 4.5: Reception rate for different UDP packet sizes and different number of
rules in Dell S5048F-ON.

Figure 4.6: Reception rate for different UDP packet sizes and different number of
rules in one Iptables FW-VSF.

The transmission rate varies according to the size of the packet. Therefore, as

33

the packet size increases, the transmission rate gets closer to the maximum value of

1 Gb/s.

We first evaluated the performance of a Dell S5048F-ON Top of Rack by varying

the number of ACLs in its TCAM between 0 and 4000 and the packet size between

64 bytes and 1472 bytes. Figure 4.5 shows that the S5048F-ON handles the 4000

ACLs at line speed without reducing the network performance. Regarding IPtables

FW-VSF, Figure 4.6 shows that, beyond the effect of the header overhead, there is a

significant variation according to the number of rules. Results show that the firewall

performance for more than 1000 rules is lower than the transmission rate and the

reception rate significantly decreases for more than 2000 rules. The performance

becomes worse as the number of rules increases. The higher the number of rules,

the higher the processing time of each packet in the firewall and, hence, the lower the

reception rate. Besides, the maximum receive rate achieved when using a physical

machine to host the Iptables FW-VSF is slightly less than the maximum reception

rate achieved by the Dell S5048F-ON.

In a second test, we transmit UDP packets at different rates, ranging from 100

to 900 Mb/s. We use 1472-byte packet size, in order to reduce the effect of the lim-

itations of the transmission capacity and the overhead. The measured transmission

rate is constant and corresponds to the rate offered by Iperf and, then, it is not

presented in a figure. We omit evaluation results using the Dell S5048F-ON when

transmission rates vary from 100 to 900 Mbps, as ToR handles 4000 ACLs at line

speed without reducing network performance, as expected.

Figure 4.7 depicts the effect that the number of rules and the transmission rate

caused in the reception rate. Iptables FW-VSF performs well for every number of

rules at a 100 Mb/s transmission rate. For 300 Mb/s rate, however, the performance

is good enough up to 2000 rules.

Figure 4.7: Reception rate for different UDP transmission rates and different number
of rules in one Iptables FW-VSF.

Figures 4.6 and 4.7 show that a firewall function using a unique Virtual Machine

(one Iptables FW-VSF) is not enough to handle the incoming firewall traffic when

34

Figure 4.8: Reception rate for different UDP transmission rates and different number
of rules using two Iptables FW-VSF.

Figure 4.9: Reception rate for different UDP transmission rates and different number
of rules using three Iptables FW-VSFs.

Figure 4.10: Reception rate for different UDP transmission rates and different num-
ber of rules using four Iptables FW-VSFs.

the number of security rules is equal to or higher than 1000, and the reception rate is

higher than 500 Mb/s. Thus, we can use the elastic property of cloud computing, in-

creasing the number of Iptables FW-VSFs to meet the traffic demand. Therefore, we

varied the amount of Iptables FW-VSFs between 2 (Figure 4.8) and 6 (Figure 4.12)

with the same specifications of the previous experiment, and we transmit the same

35

Figure 4.11: Reception rate for different UDP transmission rates and different num-
ber of rules using five Iptables FW-VSFs.

Figure 4.12: Reception rate for different UDP transmission rates and different num-
ber of rules using six Iptables FW-VSFs.

UDP packets at different rates, ranging from 100 to 900 Mb/s. In all tests, the

aggregate traffic is divided between the two/six generators. Therefore, in the case

of a transmission rate of 100 Mb/s and five Iptables FW-VSF, each client transmits

20 Mb/s. Also, each 20 Mb/s traverse a different Iptables FW-VSF instance.

We vary the number of ACL rules between 03 and 4000 and the transmission rate

between 100 Mb/s and 900 Mb/s using two FW-VSFs. Figure 4.8 shows that the

communication between the client and the server is satisfactory when the transmis-

sion rate is equal to or less than 300 Mb/s using two Iptables FW-VSFs. Besides,

Figure 4.9 illustrates that three Iptables FW-VSFs could satisfactorily handle a

500 Mb/s traffic when the number of rules is equal to or less than 4000 and Fig-

ure 4.10 show that four could adequately handle a 700 Mb/s traffic. Figure 4.11

illustrates that five Iptables FW-VSFs could satisfactorily handle a 900 Mb/s traf-

fic when the number of rules is equal to or less than 3000 and six are enough to

sufficiently process traffic up to 900 Mb/s.

Results show that it would be necessary to use six Iptables FW-VSFs to process

3The Iptables FW-VSF has only one rule that allows any incoming traffic.

36

900 Mb/s traffic.

The tests performed here always considered the worst case when packet classi-

fication time and memory consumption are maximized. Also, virtualization allows

simple scaling the number of Iptables FW-VSFs, to meet the number of ACLs and

the required baud rate. For this reason, we conclude that it is possible to use firewall

Virtual Security Functions to increase the number of ACLs processed in a virtualized

data center. However, it is also possible to state that Iptables FW-VSFs created in

Virtual Machines are subject to Denial-of-Service (DoS) attacks that exploit their

worst matching case whenever the number of rules is large. This is evident in the

graphs because network performance is strongly affected by the increase in the num-

ber of rules, while the rule that matches the test traffic is the last one in the Iptables

FW-VSF. This problem arises from the approach used by the Iptables classification

mechanisms that evaluate firewall rules in an orderly and sequential way. As a re-

sult, an attacker can overload the FW-VSF by sending several streams that will be

discarded only through the standard deny rule, after analyzing a large number of

rules.

In the next chapter, we detail the proposed ACLFLOW framework. ACLFLOW

translates regular ACLs (source/destination IP, source/destination port, and pro-

tocol) into OpenFlow filtering rules that we insert into distributed FireWall VSFs

(FW-VSFs). We also present an algorithm to improve the network performance of

FW-VSFs, dynamically prioritizing the rules with the highest number of matches.

37

Chapter 5

ACLFLOW Security Framework

Chapter 4 shows that Iptables firewalls implemented in Virtual Machines as

Virtual Security Functions demand mechanisms to improve the packet classification

performance. Orderly and sequential search across multiple rules in a stateless

firewall policy set is very costly when the rule base is too large. This type of research

has an O(n) complexity, where n is the number of firewall rules. For this reason,

the higher the number of rules the lower the Iptables FW-VSF performance. Taking

advantage of SDN concepts, we propose and implement a security framework named

ACLFLOW to deal with this problem by creating distributed OpenFlow firewalls as

Virtual Security Functions.

In this thesis, we implement the ACLFLOW framework with OpenFlow FW-

VSFs, by creating filtering rules in Open vSwitches (OVSs) configured in the proac-

tive mode. Thus, ACLFLOW previously programs firewall rules in FW-VSFs to de-

fine which types of traffic should be allowed and which ones should be blocked. Fur-

thermore, the OpenFlow fail secure mode is configured in ACLFLOW FW-VSFs to

persist firewall rules if their communications with the SDN controller fails, prevent-

ing inappropriate traffic blocking and security failures. Additionally, ACLFLOW

does not use a timeout value in the rules it creates, i.e., the rules never expire.

ACLFLOW also implements an algorithm that dynamically prioritizes the most

popular rules in user space to accelerate the OpenFlow pipeline and increase our

firewall performance.

The algorithm implemented in ACLFLOW (Algorithm 1) dynamically priori-

tizes the FW-VSF rule with the highest traffic volume (most popular rule) of each

algorithm execution round. Thus, it increases FW-VSF performance by reducing

unnecessary searches across multiple hash tables in the user space. The algorithm

deals with four priority levels to accelerate the packet classification in FW-VSF user

space: lowest priority, low priority, standard priority, and high priority (Table 5.1).

We create each FW-VSF with a default deny rule and assign it the lowest prior-

ity (Pri.drop = LowestPriority). ACLFLOW also provides a REST API so that

38

cloud computing tenants can create firewall rules on distributed FW-VSFs to pro-

tect their applications. These rules always receive low priority (Pri.low). Critical

FW-VSF rules, such as those created by administrators to enable DHCP (Dynamic

Host Configuration Protocol), DNS (Domain Name System), and NTP (Network

Time Protocol), receive the default priority, which is higher than the low priority

(Pri.standard = Pri.low + 1). We dynamically set up the high priority (Pri.high)

to the rule identified as having the highest amount of traffic in each algorithm exe-

cution round. It’s an online operation.

We implement two thresholds in ACLFLOW prioritization algorithm: an Upper

Threshold (UT) and a Lower Threshold (LT). UT is used to identify which rules have

enough traffic to be a candidate to be prioritized. LT is used to find out which rules

should receive low priority because they now have low traffic volume. Therefore,

filtering rules with the amount of traffic higher than UT should be prioritized and

those who no longer have the highest traffic volumes can go back to the low priority.

ACLFLOW prioritization module executes Algorithm 1 at each time interval T.

Lines 6–13 and 14-24 of the algorithm show which decisions the algorithm makes

based on the traffic volume of each FW-VSF security rule. Decisions also vary

depending on the type of each rule.

Table 5.1: Prioritization algorithm input data.

Type Description

rule.id Rule id

UT Upper Threshold

LT Lower Threshold

R FW-VSF filtering rule

S
Standard filtering rules created by

network administrators

T Waiting time for re-executing the algorithm

rule.idle Time without matching in each rule

rule.pk Last number of matches in each rule

rule.pk.count Cumulative number of matches in each rule

Pri.drop Default deny rule priority

Pri.low
Priority assigned to rules created by cloud

computing tenants

Pri.standard
Priority assigned to rules that allow essential

network services

Pri.high
Priority dynamically assigned to the most

popular rule

39

Algorithm 1: Prioritization Algorithm
input : Table 5.1 values

1 begin
2 IdleRules←− 0
3 regular.rule.ids[]←− 0
4 MisusedRules, CountRules←− 0
5 highest.rule.id, highest.rule.δ ←− 0
6 for rule ∈ R do
7 if rule.id ∈ S then
8 continue;
9 else

10 rule.δ ←− (rule.pk.count - rule.pk);
11 rule.pk ←− (rule.pk.count);
12 CountRules←− CountRules+ 1;

13 end
14 for rule ∈ R do
15 if rule.idle ≤ T AND rule.δ ≥ UT AND rule.δ > highest.rule.δ then
16 highest.rule.id←− rule.id;
17 highest.rule.δ ←− rule.δ;
18 if rule.δ ≤ LT AND rule.priority == Pri.high then
19 regular.rule.ids[]←− rule.id;
20 if rule.δ == 0 then
21 IdleRules←− IdleRules+ 1;
22 if rule.pk.count == 0 then
23 MisusedRules←−MisusedRules+ 1;

24 end
25 highest.priority ←− Pri.high;
26 regular.priority ←− Pri.low;
27 UpgradePriority(highest.rule.id, highest.priority);
28 DowngradePriority(regular.rule.ids[], regular.priority);
29 IdleRules←− (IdleRules/CountRules);
30 RulesNeverUsed←− (MisusedRules/CountRules);

31 end

We have decided not to automatically change the priority of the standard fil-

tering rules created by network administrators. Therefore, the algorithm does not

process its statistics (Lines 7-8). Otherwise, the algorithm calculates and records

the difference between the cumulative number of matches and the last number of

matches in each rule (Line 10). We calculate how many rules the prioritization al-

gorithm processes at each time interval T (Line 12) for generating detailed network

statistics.

When the time without new matches for a rule is less than or equal to the time

between two executions of the algorithm (T), it evaluates if the variation in the

number of packets is greater than or equal to UT (Line 15). If so, the number

of packets that have matched the rule since the last analysis is considered signifi-

cant and this could be the filtering rule with the highest amount of traffic. Then,

the algorithm records the firewall rule ID (Line 16) and the number of matching

packets since the last algorithm execution (Line 17). The identified most popular

rule priority is dynamically set up to the high priority (Line 25) in all OpenFlow

40

FW-VSFs through an update message sent to the OpenFlow controller(s) (Line 27).

Thereby, the ACLFLOW prioritization algorithm dynamically speeds up the packet

classification in user space to improve the OpenFlow FW-VSFs performance.

Otherwise, if the number of packets that have matched the rule since the last

analysis is less than the lower threshold (Line 18 of Algorithm 1), the traffic variation

is considered small. Then, if the filtering rule analyzed still has a Pri.high priority,

the algorithm records its rule ID in a list (Line 19) of rules that will have their

priority reset to the default value, also through a message sent to the OpenFlow

controller(s) (Line 28).

The algorithm also calculates the number of inactive filtering rules since its last

execution (Lines 20, 21, and 29) and the ratios of rules that never recorded packet

traffic (Lines 22, 23, and 30). With this information, cloud administrators can

remove long-term inactive rules, as well as identify which rules are no longer in use.

They also can decrease the Upper Threshold to increase the number of candidate

rules to be prioritized; so that more rules can be inserted into the most popular

rule group, one rule of each algorithm execution round. On the other hand, the

algorithm shows that lowering the Lower Threshold reduces the number of rules

that remain prioritized in the most popular rules group.

We have developed the ACLFLOW translation module as an API that can trans-

late security policies that evaluate the five-tuple source/destination IP, source/des-

tination port, and protocol into OpenFlow filtering rules (with up to 12 tu-

ples) [26, 45, 46].

Each physical cloud server of the ACLFLOW security framework has an Open-

Flow FW-VSF that belongs to a security domain (Figure 5.1). The ACLFLOW

security domain is a set of SDN controllers that manage multiple VSFs that can

be grouped in the same rack or distributed, even across different data centers. All

FW-VSFs belonging to the same security domain have the same set of firewall rules.

This feature enables secure migration of Virtual Machines without the risk of traf-

fic blocking or improper security breaches, as illustrated in Figure 5.1 by Vr3 VM.

Therefore, when a Virtual Machine migrates from one physical cloud computing

machine to another, in the same security domain, all firewall rules required for its

operation are already replicated in the remote OpenFlow FW-VSF.

5.1 Implementation

Figure 5.1 illustrates the implemented ACLFLOW translation, management,

monitoring, and prioritization modules.

ACLFLOW translation module is a python package make available on GitHub

in [26], under the Apache license version 2.0. This module aims to hide of network

41

Figure 5.1: ACLFLOW security framework that installs a FireWall Virtual Security
Function (FW-VSF) on each cloud computing node (server). Distributed FW-VSFs
that belong to the same security group have the same firewall rules. Therefore,
Virtual Machines (Vr3 and Vp7) can migrate between servers without the risk of
blocking traffic or security breaches. The ACLFLOW prioritization algorithm im-
proves FW-VSF performance. The management module speeds up the deployment
of distributed FireWall Virtual Security Functions into production clouds.

administrators the details and complexities of the distribution of OpenFlow firewall

rules among various FW-VSFs. Thus, regular ACLs inserted as a JavaScript Object

Notation (JSON) document into the RESTful interface of the ACLFLOW translator

(Figure 5.1 - (α)) are sent to SDN controller(s) (β), which insert OpenFlow filtering

rules into the FW-VSFs (γ). Since only five tuples vary, the ACLFLOW translator

inserts wildcard characters into the remaining OpenFlow tuples when translating

regular ACLs and each OpenFlow filtering rule receives a unique identifier. That

way, we can get usage statistics and manage every filtering rule installed on any FW-

VSF in the ACLFLOW security framework. Figure 5.2 illustrates some OpenFlow

rules we have created in Open vSwitches from production servers of the data center

studied by using the ACLFLOW translation module.

The ACLFLOW management module provides an API and some Web interface

42

Figure 5.2: OpenFlow rules we have created in Open vSwitches from production
servers in the data center studied. The ACLs were removed from the ToRs and
written in the OVSs.

developed as python applications to simplifies the implementation of FW-VSFs in

a cloud production environment. Figures 5.3, 5.4 and 5.5 respectively illustrate

the web interface we have developed to register new FW-VSFs, the developed in-

terface to handle multiple security ambient and its FW-VSFs, and the interface to

simplify the FW-VSF operation. Through those interfaces and APIs, we automate

the installation of SDN controllers (A and A’ of Figure 5.1) and the configuration of

OpenFlow FW-VSFs (B and B’), by reducing the setup time from about 2 hours to

about 5 minutes. Thereby, cloud administrators can quickly implement OpenFlow

FW-VSFs in a production environment.

Network administrators can use the ACLFLOW management northbound REST

API to configure new SDN controllers and distribute FW-VSFs efficiently. The

northbound API requires the IP address of the machine hosting Open vSwitch; the

IP address of the Virtual Machine to install an OpenDaylight (ODL) controller,

and the security domain identifier used by ACLFLOW to define which FW-VSFs

should have the same rules. Network administrators can also inform the IP addresses

of critical services they wish to allow into the distributed FW-VSF rules, such as

DHCP, DNS, or NTP. After receiving information through its northbound API or

43

Figure 5.3: ACLFLOW management module web interface developed to register
new FW-VSFs.

Figure 5.4: ACLFLOW management module web interface developed to handle
multiple security ambient and their FW-VSFs.

44

Figure 5.5: ACLFLOW management module web interface to operate each FW-
VSF.

Web interface, the management module uses its southbound API to configure FW-

VSFs in a proactive mode. We do that to avoid the reactive mode delays which

increase and can create security problems when the number of new flows is large

(the controller takes a too long time to write the OpenFlow rules in the data plane

by causing packet loss) [45, 46]. Also, the management module configures the fail

secure mode in FW-VSFs to persist firewall rules previously created in the data

plane if communication with its SDN controller fails.

ACLFLOW monitoring module gets the unique identifier of each firewall rule

(rule.id), the cumulative number of matches in each rule (rule.pk.count), and for

how long each filtering rule is not used (rule.idle). The monitoring module collects

all information from the SDN controller API ((1) in Figure 5.1) and sends them

to the prioritization module (2) at each time interval T. Upon receiving statistics,

ACLFLOW prioritization module performs the algorithm described in Section 5

to accelerate packet classification and improve FW-VSF performance. To update

firewall rules (rule.id) the prioritization module sends a message to the translation

module (3) informing new priorities. To prioritize a rule, it sends the highest one

(highest.priority) priority. To remove a previously prioritized rule from the most

popular rule group, it sends a regular priority (regular.priority). Upon receiving

messages from the prioritization module, the ACLFLOW translation module up-

45

dates the priorities in all SDN controllers belonging to the same FW-VSF security

domain (4). Then, SDN controllers update distributed FW-VSF firewall rules (5).

5.2 Evaluation and Results

The Iptables Virtual Security Function presented in [38] is a stateless firewall.

Iptables classifies packets by performing linear, ordered, and sequential searches on

the rule set [95]. For this reason, its performance varies according to the position of

the rule that matches the traffic. Therefore, we evaluate the performance of Iptables

“first-match”, when the matching rule is in the first position of the Iptables policies,

Iptables “middle-match”, when the matching firewall rule is in the middle position

and Iptables “last-match”, when the matching rule is in the last position of the

Iptables policies and compare their performance with that of OpenFlow FW-VSF.

We implement this proposal in the Open Platform for NFV (OPNFV). The OP-

NFV installation involves five machines. The OPNFV manager is a desktop, one ma-

chine is used to build the OpenStack controller node, and three others are compute

nodes, where VSFs are installed. The OPNFV manager and the OPNFV controller

nodes are Intel (R) Core (TM) i7-4770 CPU @ 3.40 GHz with four cores, 8 threads,

32 GB of RAM, and three 1 Gb/s Ethernet interfaces. The OpenStack computes are

Intel (R) Xeon (R) E5-2650 CPU @ 2.00 GHz with eight cores, 16 threads, 64 GB

of RAM, and three 1 Gb/s Ethernet interfaces. Besides, all OpenStack nodes are

Ubuntu 14.04.

Figure 5.6: Test scenario with Virtual Security Functions that implement ACLs on
commercial off-the-shelf servers with Iptables/OpenFlow rules.

We built our OpenFlow FW-VSFs inside Open vSwitches, version 2.5.1, config-

ured to act in the proactive mode. Thus, distributed FW-VSFs receive firewall rules

in advance. Only up to 32 hash tables are created inside OpenFlow FW-VSFs by

the five tuples: source IP, destination IP, source port, destination port, and proto-

col [45, 46, 52]. Besides, no matter how many rules exist on each FW-VSF hash

table, the OVS packet classifier performs only one query (an O(1) lookup) when it

46

checks whether the information of the packet header evaluated matches one of the

stored rules. Thus, increasing the number of rules does not significantly change the

number of performed queries in FW-VSF, which is always less than 32.

In our testbed, communication between a client (IP 10.170.0.170) and a server

(IP 10.170.29.40) traverses the FW-VSF as illustrated in Figure 5.6. To measure

network performance, we use HTTPerf, Iperf, and Netcat tools. We use HTTPerf to

evaluate how much FW-VSF impacts the maximum HTTP request rate transmitted

from the client to the server. In another experiment, we use Iperf tool to send

UDP packets with 1472 bytes at 1 Gb/s to the server and measure the maximum

throughput. We also estimate RTT using Netcat. Results are means of 15 rounds

with 95% confidence intervals.

0 1 2

Firewall rules
10

4

0

2

4

6

8

10

R
e
q

u
e
s
ts

/s

10
2

OpenFlow

FW-VSF

Iptables first-match

Iptables

middle-match

Iptables

last-match

Figure 5.7: Maximum HTTP request rate for different number of rules.

0 1 2

Firewall rules
10

4

2

4

6

8

T
h

ro
u

g
h

p
u

t
(p

k
t/

s
)

10
4

OpenFlow

FW-VSF

Iptables first-match

Iptables

middle-match

Iptables

last-match

Figure 5.8: Maximum throughput for different number of rules.

We first compare the Iptables performance and OpenFlow FW-VSF without

47

prioritization rules (OpenFlow FW-VSF). The maximum HTTP request rate (Fig-

ure 5.7), the maximum throughput (Figure 5.8) and the Round-Trip Time (Fig-

ure 5.9) are evaluated when we vary the number of rules in the firewall from 250

to 20000. Results show better HTTP request rate (about 800 requests/s), higher

throughput (about 68k pkt/s), and lower RTT (less than 3 ms) when the matching

rule is in the first position of the Iptables policies (Iptables “first-match” FW-VSF).

The number of rules does not significantly affect the network throughput and the

HTTP request rate, because in this scenario all traffic match the first rule and the

others do not need to be evaluated. Besides, RTT variation is up to only 0.8 ms

when the Iptables “first-match” FW-VSF is used, and the number of rules varies

between 0 and 20000. That small variation in latency is not sufficient to affect a live

video application transmitting a football game via an over-the-top (OTT) streaming

service, for instance.

0 1 2

Firewall rules
10

4

0

1

2

3

4

5

R
T

T
 (

m
s
)

OpenFlow

FW-VSF

Iptables

first-match

Iptables

middle-match

Iptables

last-match

Figure 5.9: Round-trip-time for different number of rules.

RTT increases and the rate of HTTP requests and the maximum throughput

decrease when the matching firewall rule is in the middle position of the rule set

(Iptables middle-match). Worst results are obtained when the last Iptables firewall

rule forwards the traffic (Iptables last-match). The increasing number of filtering

rules causes a throughput reduction of more than 90%, the reduction in HTTP

request rate is approximately 60%, and RTT increases by about 70% when the

number of rules is 20000. That is the worst case for Iptables FW-VSF.

When comparing OpenFlow FW-VSF without the prioritization engine to Ipta-

bles first-match, results show similar maximum throughput values (see Figure 5.8), a

slightly higher RTT (Figure 5.9) for ACLFLOW, and the maximum HTTP request

rate a little bit lower than the best case for Iptables (Figure 5.7). It is essential to

highlight the performance of OpenFlow FW-VSF is not affected by the variation of

the number of rules.

48

To evaluate the efficiency of the ACLFLOW prioritization algorithm, we have

deployed 22 OpenFlow FW-VSFs on 22 physical servers in a production data cen-

ter [41]. These servers host more than 145 virtual machines, about 80 distinct

applications, and 145 virtual networks. All OpenFlow FW-VSFs are within the

same security domain. Therefore, all FW-VSFs have the same set of production

filtering rules. However, each OpenFlow FW-VSF has a unique set of “matching

statistics” because physical servers host distinct Virtual Machines with different

traffic patterns. 2860 firewall rules are inserted on each of 22 production OpenFlow

FW-VSFs, but these rules are in different positions for different FW-VSFs. We took

these 22 different “traces” of “matching statistics” from those 22 physical produc-

tion servers to use as a baseline to our prioritization algorithm. Thus, a different

trace from the 22 productions FW-VSF is used on each one of the 22 round tests

executed. We vary the number of rules in our tests, from 250 to 20000. First round

with 250 rules inside the proposed firewall. Second round with 500 rules. The third

one with 1000, and so on, 22 rounds until 20000 (250, 500, 1000, 2000, ..., 19000,

20000). Each round was executed for 15 times to get means with 95% confidence

intervals.

0 1 2

Firewall rules
10

4

0

2

4

6

8

10

R
e
q

u
e
s
ts

/s

10
2

OpenFlow

FW-VSF

Iptables first-match

OpenFlow

FW-VSF

prioritized

rule

Figure 5.10: Maximum HTTP requests rate comparing the Iptables first-match
performance with OpenFlow FW-VSF with and without dynamically prioritized
rules.

When evaluation begins, the prioritization algorithm has matching statistics of

the production “trace” with traffic records that are larger than that of the firewall

rule that matches the test traffics generated by HTTPerf, Iperf, and Netcat. For this

reason, the firewall rule that matches the test traffic is not prioritized immediately.

After a while, the number of matches registered in the test rule becomes higher

than those we have taken from the production trace to use as a baseline in the

prioritization algorithm. Then, the proposed algorithm changes the priority of the

49

0 1 2

Firewall rules
10

4

2

4

6

8

T
h

ro
u

g
h

p
u

t
(p

k
t/

s
)

10
4

OpenFlow

FW-VSF

Iptables

first-match
OpenFlow

FW-VSF

prioritized

rule

Figure 5.11: Maximum throughput comparing the Iptables first-match performance
with OpenFlow FW-VSF with and without dynamically prioritized rules.

test rule because its matching statistic has become the one with the highest volume

of traffic (most popular rule).

0 1 2

Firewall rules
10

4

0

1

2

3

4

5

R
T

T
 (

m
s
)

OpenFlow

FW-VSF

Iptables

first-match

OpenFlow

FW-VSF

prioritized rule

Figure 5.12: Round trip time comparing the Iptables first-match performance with
OpenFlow FW-VSF with and without dynamically prioritized rules.

We choose to set up the prioritization algorithm time interval T of ACLFLOW to

5 min. Thus, we make it five times greater than the cache entries in the OpenFlow

FW-VSF kernel space that is set up to 60 s, which is the standard time found in Open

vSwitches. Thus, the flows prioritized by the algorithm are those that persistently

presented higher traffic volume for at least 5 minutes. The Upper Threshold is

configured to prioritize the firewall rules which register a variation in the number

of matches greater than 2000. The Lower Threshold is used to reset the priority

of rules previously prioritized (with Pri.high) when they have registered a variation

in the number of matches higher than UT. Firewall rules with packet variation less

50

than 500 have their priorities reset to Pri.low. The priority of the default deny rule

is 300, the non-privileged rules receive priority equals to 30000, and most popular

rules receive the highest one priority, equal to 65001 (Pri.high = 65001).

We compare first-match Iptables VSFs and the proposed OpenFlow FW-VSF

with and without the interaction of the prioritization algorithm. Figures 5.10, 5.11

and 5.12 show that the ACLFLOW prioritization module presents similar perfor-

mance when compared with Iptables first-match. Moreover, it improves the HTTP

request rate by about 15% and reduces RTT by about 25% when compared to

ACLFLOW without prioritization. Performance is enhanced because the algorithm

engine speeds packet classification into user space to quickly return the rule with the

highest traffic volume to the OpenFlow FW-VSF kernel, where packet forwarding

is fast.

Furthermore, Figure 5.12 shows that by using the prioritization algorithm, it is

possible to obtain even lower RTT values than those obtained when using the Ipta-

bles “first-match”. This is because, most of the time, prioritized rules are classified

and forwarded into the operating system (OS) kernel. On the other hand, Iptables

performs all packet classification in the Operating System user space, which is gen-

erally slower to forward traffic, when copies of packets must be sent from user space

to kernel space to achieve the machine’s network interfaces [101].

51

Chapter 6

NFV Security Architecture

In this chapter we present the proposed and implemented NFV security architec-

ture that dynamically creates a software-based chain with a WAF Virtual Security

Function to block attacks.

Figure 6.1 illustrates the ETSI NFV reference architecture [55, 57], extended with

our security components, which aim to provide automatic and efficient protection

against Web exploitation attacks. Our three new components are highlighted in

Figure 6.1. The central element is the NFV Security Controller module, which

interacts with an Intrusion Detection System and a Web Application Firewall. The

IDS Virtual Security Function analyzes data traffic, detects threats, and sends alerts

to the Security Controller (Figure 6.1 (a)). Upon receiving the alert and identifying

the type of attack, the NFV Security Controller decides whether an update of the

application firewall rules is required and if WAF-VSF should be chained to filter the

detected malicious traffic. If so, the NFV Security Controller writes suitable security

rules into WAF Virtual Security Function to block detected attacks (b). Then, the

NFV Security Controller sets up OpenFlow rules into virtual switches to steer traffic

through WAF-VSF that can block malicious traffic without stopping the benign one.

The NFV Security Controller creates OpenFlow Service Function Chains managing

an SDN controller that is inside the NFVI Virtual Network module (c). We choose

to create OpenFlow SFCs because so far, the SFC with NSH is still an experimental

option in the OPNFV that presents a deficient network performance, as we show

in [35]. Subsequently, the NFV Security Controller performs a periodic vulnerability

scan on the attacked Web application to see if it can reduce the number of security

policies implemented in WAF-VSF to increase its performance.

6.1 Implementation

We implement the proposed NFV security architecture in the same Open Plat-

form for NFV (OPNFV) described in Chapter 5. OPNFV virtual network module

52

Figure 6.1: Extended Network Functions Virtualization architecture. The proposed
security components are colored. Main interactions of the proposed security con-
troller are a) receiving alarms; b) automatic installation of customized security rules
in Virtualized Security Function application firewall, and c) firewall chaining to
block malicious traffic.

uses OpenDaylight (ODL) [102] as an SDN controller, virtual switches are Open

vSwitches [52], and OpenStack [103, 104] acts as NFV VIM, managing all Network

Function Virtualization Infrastructure physical resources. We used three OpenStack

computing nodes to allow testing with VSFs built on different physical servers and

one network node and built the NFV Security Controller. Thus, the WAF Virtual

Security Function and the IDS Virtual Security Function run on different computing

machines, one component per node. Each compute node has an Open vSwitch con-

figured as an OpenFlow data plane of the SDN controller OpenDaylight, installed

in the OpenStack network node. Figure 6.2 details each proposed security mod-

ule and its interactions when they block malicious traffic sent to a vulnerable Web

application.

We implement the proposed Intrusion Detection System Virtual Security Func-

tion (IDS-VSF) with threat detection and threat notification mechanisms (Fig-

ure 6.2). To build the threat detection IDS-VSF, we use the open source IDS

Bro [105], which we configure to monitor network traffic passively and to search

for suspicious activity. Thus, it can analyze network traffic to find events with

patterns classified as malicious, such as XSS, SQL Injection and LFI. We use the

53

TAP technique1 to send a copy of each network packet to the IDS-VSF. IDS-VSF

receives copies of each network packet without being chained to the data stream.

For this reason, the IDS-VSF does not overhead the end-to-end communication of

the software-based security chain.

In Figure 6.2, Interaction (1) shows that the Intrusion Detection System receives

the traffic it analyses from the Open vSwitch through its TAP network interface.

IDS-VSF threat notification is a Python code that we designed, extending the Bro

code, to send HTTP messages with threat alerts to the NFV Security Controller (2).

Each message has the IP address that generates the malicious traffic, the destination

IP address, the Uniform Resource Locator (URL) related to the attack, the Uniform

Resource Identifier (URI) used, and the type of threat detected.

Figure 6.2: NFV Security Controller interactions with Virtual Security Functions
and NFV Virtual Network.

We developed the NFV Security Controller with a Threat Classification, a VSF

Chaining, a Vulnerability Scanning, and an SDN Management engines. They are

all python applications. Besides, it also has a Security Policy Database (DB) that

we build to store threat alerts types, in our case the OWASP top 10 most critical

Web application security risks [106], and each suitable security rule able to block

them. We use MongoDB [107] to create this database and our security rules are a

set of generic attack detection rules for use with Mod Security. The NFV Security

Controller executes the proposed Algorithm 2 to handle packets when malicious

activity is detected. Upon receiving alerts from IDS-VSF Threat Notification, the

Threat Classification engine of the NFV security controller validates if malicious

1TAP network operation type sends a copy of each network interface event to a configured
system, which usually monitors and analyzes the captured data.

54

traffic is a Denial of Service (Ψ) attack (Algorithm 2, Line 2). If so, the NFV Security

Controller automatically sends OpenFlow rules to the OpenDaylight controller ((4)

in Figure 6.2) to filter all network traffic generated by the identified source IP address

(Line 3).

Unknown vulnerability exploitation is a zero-day attack which has no available

fixes. Therefore, every time the NFV Security Controller Threat Classification re-

ceives an unknown vulnerability exploitation alert (Line 4) it sends HTTP messages

to the OpenDaylight REST API to block all network traffic generated by the iden-

tified source IP address to the vulnerable application IP (Line 5). Thus, the NFV

security architecture automatically blocks traffic when it is not able to write a coun-

termeasure rule within the WAF Virtual Security Function. This happens when

there is no appropriate rule in the Security Policy Database to mitigate malicious

traffic. Security network operators can register new security rules on the Security

Controller Policy Database at any time.

When IDS-VSF detects known vulnerability exploitation (Line 6), the Threat

Classification engine can find suitable rules on the Security Policy Database to block

the malicious activity. Then, it triggers the NFV Security Controller VSF Chaining

mechanism that automatically configures policies inside the WAF Virtual Security

Function (3) to mitigate the detected attack. Then, through the SDN controller

OpenDaylight (4) the NFV Security Controller inserts redirection flows into OVS

(5), so that all traffic previously chained directly to the vulnerable site (6) is routed

first through the WAF Virtual Security Function (7), which filters malicious traffic

without blocking benign HTTP requests (Lines 7-9). After that, the NFV Security

Controller starts its vulnerability scanning module (Lines 11-15) to periodic assess

the application attacked (Interaction (α)). If it founds a new vulnerability, NFV

Security Controller adds policies on WAF-VSF Security Module (Line 13). Thus,

we can discover vulnerabilities and mitigate the threats before an attacker could

exploit the weaknesses. Furthermore, if a known vulnerability once identified no

longer exists, the NFV Security Controller removes this unnecessary policy from

WAF-VSF Security Module (Line 15). The NFV Security Controller also records

all attacks received (Line 10).

We use Mod Security that is a widely deployed open source WAF in the world,

used by more than one million websites [108] to create our WAF-VSF Security Mod-

ule. We implement our Proxy Module by using the NGINX, that is the second most

used web server in the Internet [109]. The NFV Security Controller automatically

chains and configures the WAF-VSF Security Module to remove malicious traffic

and the WAF-VSF Proxy Module to act as a “reverse proxy” that redirects all be-

nign HTTP requests it receives to the vulnerable Web server (8). In this way, the

WAF Virtual Security Function removes malicious traffic without blocking benign

55

HTTP requests generated from the same source address.

Algorithm 2: Security Attack Treatment
input : δ={srcIP,dstIP,URL,URI,type}: Detected attack;

Φ: Known vulnerability exploitation;
WAF-VSF: The WAF Virtual Security Function;
Ψ: Denial of service attacks;

1 begin
2 if δ.type ∈ Ψ then
3 Filter security attack(δ.srcIP, ∗);
4 else if δ.type /∈ Φ then
5 Filter security attack(δ.srcIP, δ.dstIP);
6 else
7 edit waf-vsf rules(δ.URL, δ.URI, δ.type);
8 create chain(WAF-VSF);
9 divert traffic(δ.srcIP, δ.dstIP);

10 Register(δ);
11 while Φ ∈ (URL ‖ URI) do
12 if Φ /∈ WAF-VSF then
13 write policies(WAF-VSF(security module));

14 end
15 remove policies(WAF-VSF(security module))

16 end

6.2 Evaluation and Results

We install and configure a honeypot, which is a tool able to emulate vulnerable

applications and operating systems [110]. The primary purpose of this security tool

is to serve as a vulnerable Web server to be exploited and compromised. So, new

types or trends of attacks can be discovered through careful analysis of the behavior

and actions of the attacker. In our evaluation, a python script sends malicious and

benign HTTP requests from a Web client to the vulnerable Web server for a fixed

time interval, in which 220 benign and 340 malicious HTTP requests are sent on

average. The benign HTTP requests access the main page of the vulnerable Web

site2 whereas the malicious HTTP requests (malware) aim to exploit ten different

vulnerabilities in the honeypot. Besides, there are no preconfigured policies on the

WAF-VSF Security Module and no previously URL redirection policies on its Proxy

Module. Moreover, the Policy Database of the NFV Security Controller stores all

suitable rules to prevent the malicious HTTP requests sent to the Web server.

Table 6.1 illustrates some security attack types we use in the evaluation. The

HTTP request of Line 1 aims to get the encrypted password, IDs, and names of

all registered users of a vulnerable operating system hosting the exposed Web site.

Line 2 shows an HTTP request used to insert a file named “9zseqh” on the Web

2We use the curl command to send several GET HTTP requests to the vulnerable website.

56

Table 6.1: Web application attack examples

HTTP
Malicious HTTP request

HTTP Response
Method Status Code

GET http://mysite/?rHPbc8c=../../../../etc/passwd 200 OK

PUT http://mysite/oRnQL file:9zseqh 201 OK

GET
http://mysite/?XzuFzsw=SELECT TOP

200 OK
3 * FROM adminusers

GET http://mysite/?rHPbc8c=ps -aux 403 Forbidden

server. This file could be a malware able to execute malicious code to enslave or

damage its operating system. Line 3 corresponds to an SQL Injection attack to get

all information from three registered users in the “adminuser” table of the vulnerable

Web site database. We can also inject a malicious JavaScript to redirect users to

phishing sites or to modify the visited HTML. Line 4 describes an attack to list all

running processes on the vulnerable Web server operating system. Other attacks

from the OWASP top 10 most critical Web application security risks are sent.

Using our architecture, we obtain different responses depending on the attack.

Malicious HTTP requests described in Lines 1, 2, and 3 are successful because they

receive 2xx (OK) HTTP response status codes. It happens when a network security

system does not block malicious traffic sent to a vulnerable application. On the

other hand, the HTTP response status code of Line 4 indicates that the malicious

request is unsuccessful, which means that our architecture was able to prevent this

attack.

Figure 6.3: Web client benign and malicious HTTP requests (rx) and responses (tx).

We install the Open Platform for NFV on four commodity servers: one network

node and three computing nodes. They are Ubuntu 14.04.5 LTS, KVM is the virtu-

alization platform, and OpenStack is the Virtualized Infrastructure Manager. One

57

computing node and the OpenStack network node are Intel (R) Core i7-4770 CPU

@ 3.40 GHz eight-core processors, with 32 GB of RAM and three 1 Gb/s Ethernet

interfaces. Another computing node is an Intel (R) Core i7-2660 CPU @ 3.40 GHz

eight-core processor, with 32 GB of RAM and three 1 Gb/s Ethernet interfaces.

Finally, the third computing node has two Intel (R) Xeon (R) CPUs E5-2650 v2 @

2.60 GHz sixteen cores, 32 GB of RAM, and two 1 Gb/s interfaces. The proposed

NFV Security Controller, the WAF Virtual Security Function, the IDS-VSF, the

Security Policy Database, the vulnerable Web server, and the Web client are VMs

with two virtual CPUs and 4 GB of RAM. Evaluations are averages of 10 rounds

with 95% confidence intervals. Some confidence intervals are not displayed because

they are too small.

We first send malicious and benign HTTP requests to the vulnerable Web server

without enabling the proposed security modules on the Network Functions Virtu-

alization architecture and, as expected, all malicious HTTP requests successfully

receive 2xx (OK) status codes responses. Then we evaluate the efficiency of our

architecture.

Figure 6.4: Malicious HTTP requests blocked by WAF Virtual Security Function.
Number of successful attacks, benign HTTP requests and successful HTTP responses
when WAF-VSF is automatically chained.

Figure 6.3 shows that Web client test script generates an average of 340 malicious

HTTP requests and 220 benign ones (see HTTP requests (malicious) and HTTP

requests (benign) by the Web client (tx)). As soon as the Web client generates

the malicious traffic, the IDS-VSF rapidly identifies malicious requests and sends

an alert message to NFV Security Controller, which automatically diverts all traffic

to the WAF-VSF by applying OpenFlow rules on virtual switches. Moreover, the

NFV Security Controller configures security rules into the WAF-VSF to filter the

identified malicious traffic and configures the WAF-VSF Proxy Module.

58

Figure 6.4 shows that the vulnerable Web server sends back three successful

HTTP response status codes to malicious requests (there is an average delay of

about 6 seconds related to this procedure). Therefore, only three attacks reach the

vulnerable Web server and are successful (see HTTP response status code received

(2xx OK) by the Web client in Figure 6.3). Evaluation results indicate that there

are network outages when the Security Controller makes changes in the OVS rules

to redirect the Web client flow packets to chain the WAF Virtual Security Function.

OVS starts to redirect all packets with Web client source IP and Web server des-

tination IP to the WAF Virtual Security Function. During this operation, packet

losses happen, like those when a router in a packet-switching network fails. For this

reason, only 207.3 (see HTTP response status code sent (2xx OK) by the Web server

in Figure 6.4) of the 220 benign HTTP requests (see HTTP requests (benign) sent

by Web client in Figure 6.3) reach the Web server without problems.

Figure 6.5: Web application performance when WAF-VSF is not chained.

Likewise, 205.9 (see HTTP response status code received (2xx OK) by the Web

client in Figure 6.3) of the 207.3 HTTP response status code sent by Web server

reach the Web client successfully. Moreover, the WAF Virtual Security Function

chained to the data stream blocks 337 malicious HTTP requests (see Malicious

HTTP requests blocked (403 forbidden) by WAF-VSF in Figure 6.4) and its reverse

proxy handles 201.1 (see HTTP response status code sent (2xx OK) by WAF-VSF in

Figure 6.4) benign HTTP requests from the 220 made by the Web client (see HTTP

requests (benign) in Figure 6.3). There was an average of 12.7 benign HTTP requests

lost between the client and the vulnerable server (220 - 207.3). The WAF-VSF proxy

module handles 201.1 of 207.3 benign HTTP responses sent from server to the Web

client approximately; so six of these HTTP responses do not go through the WAF-

VSF. Besides, the amount of benign HTTP responses lost between the server and

59

the Web client is on average equal to 1.4 (207.3 - 205.9). Therefore, the results show

that the proposed NFV security architecture is efficient since it dynamically blocks

99.12% of the generated attacks and 93.59% of the benign traffic is not affected

when it is dynamically chained with the WAF Virtual Security Function.

To evaluate the performance of our architecture, we vary the number of HTTP

requests per second sent to the Web server. The purpose is to verify how the WAF

Virtual Security Function chaining affects the HTTP response rate and the Web

site response time. During the experiment, WAF-VSF dynamically receives ten

suitable rules because we generate ten different attack types. We use HTTPerf to

generate HTTP requests. This application generates and maintains sustainable rates

of HTTP requests to overload a Web server. Thus, it is possible to define the TCP

connection rate per second, how many HTTP requests should be performed on each

connection and the maximum number of HTTP requests that a Web client must

generate. It is also possible to increase the TCP connection rate per second during

a test by setting an initial rate, increment value, and a maximum TCP connection

rate.

We use Auto bench [111] to automate HTTPerf and it is configured to vary the

TCP connection rate between 10 and 220, increasing 10 connections per second. We

send two persistent HTTP requests per each TCP connection established with the

Web server. Therefore, the HTTP request rate varies between 20 and a maximum

value of 440 requests per second that is the maximum capacity of our test Web

server. We use these values because several preliminary tests showed that this is a

limit to postpone the significant increase in the HTTP response time, which is the

time elapsed between requesting and receiving an object, to the maximum. Results

are means with 95% confidence intervals. Some confidence intervals are not shown

in the figures because they are narrow.

Figure 6.5 shows that the maximum HTTP request rate supported by the Web

server, without a significant increase in the response time, is equal to 380 requests

per second. From this value, the response time increases considerably, going from

approximately zero to about 9 s when the Web client attempts to send 440 HTTP

requests per second to the server.

Figure 6.6 shows that the WAF Virtual Security Function chaining reduces the

Web server HTTP response rate and there is a significant increase in response time

from about 300 requests per second. The rising number of security policies in the

WAF Virtual Security Function causes a reduction in performance. Therefore, from

300 HTTP requests per second, the response time increases considerably, reaching

about 8 s. Thus, the automatically WAF Virtual Security Function chaining reduces

connection rate and HTTP requests per second by approximately 21% when we

have ten policies inside the firewall. However, it is possible to use cloud computing

60

Figure 6.6: Web application performance when WAF-VSF is chained to the Web
server.

scalability to increase the capacity of Virtual Network Functions. We can scale up

horizontally by increasing the number of Virtual Security Functions or vertically by

enhancing memory, CPU or disk resources of the Virtual Security Function to meet

the demand growth.

61

Chapter 7

Conclusion

In this work, we present proposals regarding the problems of benign traffic block-

ing and performance of security NFV solutions. We analyze the use of Virtual

Network Functions to build network security solutions able to dynamically steer

malicious traffic through security software-based Service Chains to block exploita-

tion attacks without stopping the benign traffic. Furthermore, this work presents a

framework that implements distributed firewall Virtual Network Functions in com-

modity machines, as an alternative to using TCAMs or specialized security middle-

boxes.

We implement a virtual firewall named Iptables FW-VSF that can handle a

typical number of access policies currently found in the Top-of-Rack routers of the

studied data center. Performance results show that one instance of the Iptables

FW-VSF is not enough to handle 300 Mb/s of incoming traffic or higher when the

number of rules is greater than 2000, but six Iptables FW-VSF instances are enough

to sufficiently process traffic up to 900 Mb/s in firewalls with 4000 rules. According

to the tests, it is viable to remove access control lists from data centers Top-of-rack

routers and process them using firewall Virtual Security Functions built into VMs,

because they can scale up to meet the required network performance.

We also propose a security framework named ACLFLOW, which simplifies and

automates the installation of distributed OpenFlow firewall Virtual Security Func-

tions (FW-VSFs). ACLFLOW is an NFV/SDN security framework that creates and

manages distributed OpenFlow FW-VSFs as an alternative to using router TCAMs

or specialized security middleboxes to control traffic from Virtual Machines in a

Cloud Computing environment. We implement a translation, management, moni-

toring, and a prioritization module in ACLFLOW. ACLFLOW translation module

is a northbound python API that translates security policies that evaluate the five-

tuple source/destination IP, source/destination port, and protocol into OpenFlow

filtering rules (with up to 12 tuples). ACLFLOW management module speeds up

the deployment of distributed FireWall Virtual Security Functions into production

62

clouds. ACLFLOW monitoring module collects information from SDN controller

APIs and sends them to the prioritization module. Finally, ACLFLOW priori-

tization module performs an algorithm that accelerates packet classification and

improves FW-VSF performance.

FW-VSF has maximum throughput up to 90% higher, HTTP request rate up

to 50% better, and RTT up to 70% less than that of a stateless Iptables VSF when

the last rule forwards the traffic and the number of rules is 20000. Its prioritization

algorithm dynamically improves the HTTP request rate of the most popular rule by

about 15% and reduces RTT by approximately 25% when compared with FW-VSF

without prioritization.

NFV security architecture is a cost-effective proposal that applies countermea-

sures against vulnerability exploitation attacks. NFV security architecture central

element is the NFV Security Controller module, which interacts with an Intrusion

Detection System and a Web Application Firewall. The proposed IDS Virtual Secu-

rity Function sends alerts to the Security Controller that decides whether an update

of the application firewall rules is required and if WAF-VSF should be chained to

filter the detected malicious traffic. NFV Security Controller sets up OpenFlow rules

into virtual switches to steer traffic through WAF-VSF that can block malicious traf-

fic without stopping the benign one. We choose to build our security architecture

creating OpenFlow SFCs to avoid the NSH encapsulation performance overhead.

Furthermore, NFV Security Controller has a module that performs periodic vulner-

ability scan on vulnerable applications to reduce the time between found a vulner-

ability and mitigate the threat. Besides it automatically removes rules from WAF

to reduce the number of security policies implemented and increase its performance

when vulnerabilities cease to exist. NFV security architecture dynamically chains

an efficient WAF Virtual Security Function that filters 99.12% of malicious HTTP

requests without significantly affecting the benign traffic from the same source IP.

It allows the creation of dynamic and personalized software-based service chains to

meet the demands of specific applications and has a vulnerability scanning module

to identify application flaws and automatically apply countermeasures to mitigate

and reduce the exposure time to identified threats.

7.1 Future Work

As future work, we want to integrate the NFV security architecture with a contin-

uous deployment tool and extend ACLFLOW management module to optimize the

consumption of computing resources by efficiently deploying distributed controllers

into the security framework. The dynamic deployment and removal of Virtual Net-

work Functions, depending on the results of security scans, falls into a problem

63

of optimizing the location of VNFs. For this reason, this type of study must be

performed to identify constraints and to develop algorithms that minimize resource

consumption, setup times, network delays, and so on. Software-based Service Func-

tion Chaining (SFCs) with customized Virtual Network Functions can meet specific

user or applications constraints. However, techniques to optimize the performance of

software-based service chains in Network Function Virtualization (NFV) are manda-

tory because they can introduce performance overhead. Thus, we also want to in-

vestigate techniques to build shorter asymmetrical bidirectional service chains, by

removing virtual network functions from the outbound pathway to reduce the NFV

overhead and delivery good performance software-based service chains.

64

Bibliography

[1] ZANELLA, A., BUI, N., CASTELLANI, A., VANGELISTA, L., et al. “Internet

of Things for Smart Cities”, IEEE Internet of Things Journal, v. 1, n. 1,

pp. 22–32, February 2014.

[2] ACCENTURE, PONEMON, I. Cost of Cyber Crime Study - Insights on the

Security Investiments that make a Diference. Technical report, Accenture,

2017.

[3] AKAMAI. State of the Internet - Connectivity Report - Additional Resources.

Technical report, Akamai, 2017.

[4] ANDERSON, R., BARTON, C., BÖHME, R., CLAYTON, R., et al. “Measuring

the cost of cybercrime”. In: The economics of information security and

privacy, Springer, pp. 265–300, Bohinj, Slovenia, 2013.

[5] MAURICIO, L. A. F., RUBINSTEIN, M. G. “Avaliação experimental das

plataformas Xen, KVM e OpenFlow no roteamento de pacotes”. In:

XXXIII Simpósio Brasileiro de Telecomunicações (SBRT), Juiz de Fora,

MG, 2015.

[6] LIN, C.-H., PAO, H.-K., LIAO, J.-W. “Efficient Dynamic Malware Analysis

Using Virtual Time Control Mechanics”, Computers & Security, v. 73,

pp. 359–373, 2018.

[7] ALJAWARNEH, S. A., ALAWNEH, A., JARADAT, R. “Cloud security en-

gineering: Early stages of SDLC”, Future Generation Computer Sys-

tems, v. 74, pp. 385 – 392, 2017. ISSN: 0167-739X. doi: https://doi.

proxy.ufrj.br/10.1016/j.future.2016.10.005. Available in: <http://www.

sciencedirect.com/science/article/pii/S0167739X16303788>.

[8] CHEN, Y., MAO, Y., CUI, L., LENG, S., et al. “A Two Layer Model of Malware

Propagation in a Search Engine Context”. In: IEEE INFOCOM 2018-

IEEE Conference on Computer Communications Workshops (INFOCOM

WKSHPS), pp. 21–26. IEEE, 2018.

65

http://www.sciencedirect.com/science/article/pii/S0167739X16303788
http://www.sciencedirect.com/science/article/pii/S0167739X16303788

[9] THE NEW YORK TIMES. “Facebook Security Breach Exposes Accounts of 50

Million Users”. https://www.nytimes.com/2018/09/28/technology/

facebook-hack-data-breach.html, 2018.

[10] THE GUARDIAN. “PlayStation Network Hackers Access Data of 77 Million

Users”. https://bit.ly/2MhfYUp, 2011.

[11] FORBES. “Ashley Madison Hack Data Reveals Interesting Statistics”. https:

//bit.ly/2Fyg5cB, 2015.

[12] DATALOSSDB. “Data Breach QuickView: 2015 Data Breach Trends”. https:

//blog.datalossdb.org/, 2016.

[13] CHOU, T. “Security Threats on Cloud Computing Vulnerabilities”, Interna-

tional Journal of Computer Science & Information Technology, v. 5, n. 3,

pp. 79, 2013.

[14] BERTINO, E., ISLAM, N. “Botnets and Internet of Things Security”, Com-

puter, v. 50, n. 2, pp. 76–79, 2017.

[15] HP INC. “HP Study Reveals 70 Percent of Internet of Things Devices Vulner-

able to Attack: IoT devices averaged 25 vulnerabilities per product, indi-

cating expanding attack surface for adversaries”. http://www8.hp.com/

us/en/hp-news/press-release.html?id=1744676#.WcFPV9OGMWp, Au-

gust 2014.

[16] MTIBAA, A., HARRAS, K. A., ALNUWEIRI, H. “From Botnets to Mobibots:

A Novel Malicious Communication Paradigm for Mobile Botnets”, IEEE

Communications Magazine, v. 53, n. 8, pp. 61–67, 2015.

[17] MALWARETECH. “Mapping Mirai: A Botnet Case Study”. https://www.

malwaretech.com/2016/10/mapping-mirai-a-botnet-case-study.

html, June 2017.

[18] NGO, D.-M., PHAM-QUOC, C., NGOC THINH, T. “An Efficient High-

Throughput and Low-Latency SYN Flood Defender for High-Speed Net-

works”, Security and Communication Networks, v. 2018, pp. 14, 2018.

ISSN: 9562801. doi: 10.1155/2018/9562801. Available in: <https:

//doi.org/10.1155/2018/9562801>.

[19] LIN, C. C., HUNG, J. Y., LIN, W. Z., LO, C. P., et al. “7.4 A 256b-

wordlength ReRAM-based TCAM with 1ns search-time and 14x improve-

ment in wordlength-energyefficiency-density product using 2.5 T1R cell”.

66

https://www.nytimes.com/2018/09/28/technology/facebook-hack-data-breach.html
https://www.nytimes.com/2018/09/28/technology/facebook-hack-data-breach.html
https://bit.ly/2MhfYUp
https://bit.ly/2Fyg5cB
https://bit.ly/2Fyg5cB
https://blog.datalossdb.org/
https://blog.datalossdb.org/
http://www8.hp.com/us/en/hp-news/press-release.html?id=1744676#.WcFPV9OGMWp
http://www8.hp.com/us/en/hp-news/press-release.html?id=1744676#.WcFPV9OGMWp
https://www.malwaretech.com/2016/10/mapping-mirai-a-botnet-case-study.html
https://www.malwaretech.com/2016/10/mapping-mirai-a-botnet-case-study.html
https://www.malwaretech.com/2016/10/mapping-mirai-a-botnet-case-study.html
https://doi.org/10.1155/2018/9562801
https://doi.org/10.1155/2018/9562801

In: 2016 IEEE International Solid-State Circuits Conference (ISSCC),

pp. 136–137, Jan 2016. doi: 10.1109/ISSCC.2016.7417944.

[20] MAQBOOL, Q., AYUB, S., ZULFIQAR, J., SHAFI, A. “Virtual TCAM for

Data Center switches”. In: 2015 IEEE Conference on Network Function

Virtualization and Software Defined Network (NFV-SDN), pp. 61–66, Nov

2015. doi: 10.1109/NFV-SDN.2015.7387407.

[21] KATTA, N., ALIPOURFARD, O., REXFORD, J., WALKER, D. “Infinite

CacheFlow in Software-defined Networks”. In: Proceedings of the Third

Workshop on Hot Topics in Software Defined Networking, HotSDN ’14,

pp. 175–180, New York, NY, USA, 2014. ACM. ISBN: 978-1-4503-2989-7.

doi: 10.1145/2620728.2620734. Available in: <http://doi.acm.org/10.

1145/2620728.2620734>.

[22] ARBOR. “Arbor Networks DDoS Protection”. https://www.arbornetworks.

com/, May 2017. Acessado: 15/05/2017.

[23] PALO ALTO. “VM-Series 7.1 Deployment Guide”. https://www.

paloaltonetworks.com/documentation/80/virtualization/

virtualization, April 2017. Acessado: 14/04/2017.

[24] TAKABI, H., JOSHI, J. B. D., AHN, G. J. “Security and Privacy Challenges

in Cloud Computing Environments”, IEEE Security Privacy, v. 8, n. 6,

pp. 24–31, Nov 2010. ISSN: 1540-7993. doi: 10.1109/MSP.2010.186.

[25] COUTO, R. S., CAMPISTA, M. E. M., COSTA, L. H. M. “A reliability analysis

of datacenter topologies”. In: IEEE Global Communications Conference

(GLOBECOM), pp. 1890–1895, 2012.

[26] CUNHA, H. B. L., MAURICIO, L. A. F., CESARIO, M. V. G., BRIL-

HANTE, E., et al. “GloboNetworkAPI”. https://github.com/

globocom/GloboNetworkAPI, November 2017.

[27] SHAIKH, F. B., HAIDER, S. “Security Threats in Cloud Computing”. In: 2011

International Conference for Internet Technology and Secured Transac-

tions, pp. 214–219, 2011.

[28] PADILHA, R., PEDONE, F. “Confidentiality in the Cloud”, IEEE Security

Privacy, v. 13, n. 1, pp. 57–60, 2015.

[29] MIJUMBI, R., SERRAT, J., GORRICHO, J. L., BOUTEN, N., et al. “Net-

work Function Virtualization: State-of-the-Art and Research Challenges”,

67

http://doi.acm.org/10.1145/2620728.2620734
http://doi.acm.org/10.1145/2620728.2620734
https://www.arbornetworks.com/
https://www.arbornetworks.com/
https://www.paloaltonetworks.com/documentation/80/virtualization/virtualization
https://www.paloaltonetworks.com/documentation/80/virtualization/virtualization
https://www.paloaltonetworks.com/documentation/80/virtualization/virtualization
https://github.com/globocom/GloboNetworkAPI
https://github.com/globocom/GloboNetworkAPI

IEEE Communications Surveys Tutorials, v. 18, n. 1, pp. 236–262, First

quarter 2016. ISSN: 1553-877X. doi: 10.1109/COMST.2015.2477041.

[30] ETSI GS NFV 001 V1.1.1. “Network Functions Virtualisation (NFV); Use

Cases”. 2013. Available in: <https://www.etsi.org/deliver/etsi_

gs/NFV/001_099/001/01.01.01_60/gs_nfv001v010101p.pdf>. ETSI

Ind. Spec. Group (ISG).

[31] FIROOZJAEI, M. D., JEONG, J. P., KO, H., KIM, H. “Security challenges

with network functions virtualization”, Future Generation Computer Sys-

tems, v. 67, pp. 315 – 324, 2017. ISSN: 0167-739X. doi: https://doi.

proxy.ufrj.br/10.1016/j.future.2016.07.002. Available in: <http://www.

sciencedirect.com/science/article/pii/S0167739X16302321>.

[32] HAN, B., GOPALAKRISHNAN, V., JI, L., LEE, S. “Network function virtual-

ization: Challenges and opportunities for innovations”, IEEE Communi-

cations Magazine, v. 53, n. 2, pp. 90–97, February 2015. ISSN: 0163-6804.

[33] LIN, Y.-D., LIN, P.-C., YEH, C.-H., WANG, Y.-C., et al. “An Extended SDN

Architecture for Network Function Virtualization with a Case Study on

Intrusion Prevention”, IEEE Network, v. 29, n. 3, pp. 48–53, 2015.

[34] HALPERN, J., PIGNATARO, C. Service Function Chaining (SFC) Architec-

ture. RFC 7665, RFC Editor, October 2015. Available in: <http://

www.rfc-editor.org/rfc/rfc7665.txt>. http://www.rfc-editor.

org/rfc/rfc7665.txt.

[35] SANZ, I. J., ALVARENGA, I. D., ANDREONI LOPEZ, M., MAURICIO, L.

A. F., et al. “Uma Avaliação de Desempenho de Segurança Definida por

Software através de Cadeias de Funções de Rede”. In: XVII Simpósio

Brasileiro em Segurança da Informação e de Sistemas Computacionais -

SBSeg 2017, 2017.

[36] REXFORD, J., DOVROLIS, C. “Future Internet Architecture: clean-slate

versus evolutionary research”, Communications of the ACM, v. 53, n. 9,

pp. 36–40, 2010.

[37] OPNFV. “Open Platform for NFV”. https://www.opnfv.org/, 2017.

[38] MAURICIO, L. A. F., RUBINSTEIN, M. G., DUARTE, O. C. M. B. “Propos-

ing and evaluating the performance of a firewall implemented as a virtu-

alized network function”. In: 2016 7th International Conference on the

Network of the Future (NOF), pp. 1–3, Nov 2016. doi: 10.1109/NOF.

2016.7810127.

68

https://www.etsi.org/deliver/etsi_gs/NFV/001_099/001/01.01.01_60/gs_nfv001v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV/001_099/001/01.01.01_60/gs_nfv001v010101p.pdf
http://www.sciencedirect.com/science/article/pii/S0167739X16302321
http://www.sciencedirect.com/science/article/pii/S0167739X16302321
http://www.rfc-editor.org/rfc/rfc7665.txt
http://www.rfc-editor.org/rfc/rfc7665.txt
http://www.rfc-editor.org/rfc/rfc7665.txt
http://www.rfc-editor.org/rfc/rfc7665.txt
https://www.opnfv.org/

[39] MAURICIO, L. A. F., RUBINSTEIN, M. G., DUARTE, O. C. M. B.

“ACLFLOW: An NFV/SDN Security Framework for Provisioning and

Managing Access Control Lists”. In: 2018 9th International Confer-

ence on the Network of the Future (NOF), pp. 44–51, Nov 2018. doi:

10.1109/NOF.2018.8598136.

[40] DENG, J., HU, H., LI, H., PAN, Z., et al. “VNGuard: An NFV/SDN Com-

bination Framework for Provisioning and Managing Virtual Firewalls”.

In: IEEE Conference on Network Function Virtualization and Software

Defined Network (NFV-SDN), pp. 107–114, 2015.

[41] MAURICIO, L. A. F. “Globo.com Uses OpenDaylight Due to Its Community

Size, Flexibility, and Well-defined APIs”. https://www.opendaylight.

org/use-cases-and-users/user-stories/globo-com, December 2018.

[42] MAURICIO, L. A. F., ALVARENGA, I. D., RUBINSTEIN, M. G., DUARTE,

O. C. M. B. “Uma Arquitetura de Virtualização de Funções de Rede

para Proteção Automática e Eficiente contra Ataques”. In: Anais do

XXII Workshop de Gerência e Operação de Redes e Serviços (WGRS

- SBRC 2017), v. 22, Porto Alegre, RS, Brasil, 2017. SBC. Avail-

able in: <http://portaldeconteudo.sbc.org.br/index.php/wgrs/

article/view/2598>.

[43] PATTARANANTAKUL, M., HE, R., MEDDAHI, A., ZHANG, Z. “SecMANO:

Towards Network Functions Virtualization (NFV) Based Security MAN-

agement and Orchestration”. In: IEEE Trustcom/BigDataSE/ISPA, pp.

598–605, 2016.

[44] FERNANDEZ, M. P. “Comparing OpenFlow Controller Paradigms Scalability:

Reactive and Proactive”. In: 2013 IEEE 27th International Conference

on Advanced Information Networking and Applications (AINA), pp. 1009–

1016, March 2013. doi: 10.1109/AINA.2013.113.

[45] MCKEOWN, N., ANDERSON, T., BALAKRISHNAN, H., PARULKAR, G.,

et al. “OpenFlow: Enabling Innovation in Campus Networks”, SIG-

COMM Comput. Commun. Rev., v. 38, n. 2, pp. 69–74, March 2008.

ISSN: 0146-4833. doi: 10.1145/1355734.1355746.

[46] SHELLY, N., JACKSON, E. J., KOPONEN, T., MCKEOWN, N., et al. “Flow

Caching for High Entropy Packet Fields”, SIGCOMM Comput. Commun.

Rev., v. 44, n. 4, August 2014. ISSN: 0146-4833. doi: 10.1145/2740070.

2620755.

69

https://www.opendaylight.org/use-cases-and-users/user-stories/globo-com
https://www.opendaylight.org/use-cases-and-users/user-stories/globo-com
http://portaldeconteudo.sbc.org.br/index.php/wgrs/article/view/2598
http://portaldeconteudo.sbc.org.br/index.php/wgrs/article/view/2598

[47] KANG, N., LIU, Z., REXFORD, J., WALKER, D. “Optimizing the “One

Big Switch” Abstraction in Software-defined Networks”. In: Proceedings

of the Ninth ACM Conference on Emerging Networking Experiments and

Technologies, CoNEXT ’13, pp. 13–24, New York, NY, USA, 2013. ACM.

ISBN: 978-1-4503-2101-3. doi: 10.1145/2535372.2535373. Available in:

<http://doi.acm.org/10.1145/2535372.2535373>.

[48] XIE, L., ZHAO, Z., ZHOU, Y., WANG, G., et al. “An adaptive scheme for

data forwarding in software defined network”. In: 2014 Sixth International

Conference on Wireless Communications and Signal Processing (WCSP),

pp. 1–5, Oct 2014. doi: 10.1109/WCSP.2014.6992181.

[49] BRAUN, W., MENTH, M. “Wildcard Compression of Inter-Domain Rout-

ing Tables for OpenFlow-Based Software-Defined Networking”. In: 2014

Third European Workshop on Software Defined Networks, pp. 25–30, Sept

2014. doi: 10.1109/EWSDN.2014.23.

[50] BARI, M. F., ROY, A. R., CHOWDHURY, S. R., ZHANG, Q., et al. “Dynamic

Controller Provisioning in Software Defined Networks”. In: Proceedings

of the 9th International Conference on Network and Service Management

(CNSM 2013), pp. 18–25, Oct 2013. doi: 10.1109/CNSM.2013.6727805.

[51] TOOTOONCHIAN, A., GORBUNOV, S., GANJALI, Y., CASADO, M., et

al. “On Controller Performance in Software-defined Networks”. In: Pro-

ceedings of the 2Nd USENIX Conference on Hot Topics in Management

of Internet, Cloud, and Enterprise Networks and Services, Hot-ICE’12,

pp. 10–10, Berkeley, CA, USA, 2012. USENIX Association. Available in:

<http://dl.acm.org/citation.cfm?id=2228283.2228297>.

[52] PFAFF, B., PETTIT, J., KOPONEN, T., JACKSON, E., et al. “The De-

sign and Implementation of Open vSwitch”. In: 12th USENIX Sympo-

sium on Networked Systems Design and Implementation (NSDI 15), pp.

117–130, Oakland, CA, 2015. USENIX Association. ISBN: 978-1-931971-

218. Available in: <https://www.usenix.org/conference/nsdi15/

technical-sessions/presentation/pfaff>.

[53] GUDE, N., KOPONEN, T., PETTIT, J., PFAFF, B., et al. “NOX: Towards an

Operating System for Networks”. In: ACM SIGCOMM Computer Com-

munication Review, SIGCOMM ’08, pp. 105–110. ACM, 2008.

[54] SHALIMOV, A., ZUIKOV, D., ZIMARINA, D., PASHKOV, V., et al. “Ad-

vanced Study of SDN/OpenFlow Controllers”. In: Proceedings of the 9th

70

http://doi.acm.org/10.1145/2535372.2535373
http://dl.acm.org/citation.cfm?id=2228283.2228297
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/pfaff
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/pfaff

Central & Eastern European Software Engineering Conference in

Russia, CEE-SECR ’13, pp. 1:1–1:6, New York, NY, USA, 2013. ACM.

[55] ETSI. “Network Functions Virtualisation (NFV); Architectural Framework”.

October 2013. Available in: <https://www.etsi.org/deliver/etsi_

gs/nfv/001_099/002/01.01.01_60/gs_nfv002v010101p.pdf>. ETSI

GS NFV 002

[56] ETSI GS NFV 003 V1.3.1. “Network Functions Virtualisation (NFV);

Terminology for Main Concepts in NFV”. January 2018. Available

in: <https://www.etsi.org/deliver/etsi_gs/NFV/001_099/003/01.

02.01_60/gs_nfv003v010201p.pdf>. ETSI Ind. Spec. Group (ISG).

[57] ETSI GS NFV-SEC 013 V3.1.1. “Network Functions Virtualisation

(NFV) Release 3; Security; Security Management and Moni-

toring specification”. February 2017. Available in: <https:

//www.etsi.org/deliver/etsi_gs/NFV-SEC/001_099/013/03.01.

01_60/gs_NFV-SEC013v030101p.pdf>. ETSI Ind. Spec. Group (ISG).

[58] OPENSTACK. “Tacker - OpenStack NFV Orchestration”. https://wiki.

openstack.org/wiki/Tacker, December 2016. Acessado: 10/12/2016.

[59] MEDHAT, A. M., TALEB, T., ELMANGOUSH, A., CARELLA, G. A., et al.

“Service Function Chaining in Next Generation Networks: State of the

Art and Research Challenges”, IEEE Communications Magazine, v. 55,

n. 2, pp. 216–223, 2017.

[60] QUINN, P., ELZUR, U., PIGNATARO, C. Network Service Header (NSH).

RFC 8300, RFC Editor, January 2018. Available in: <https://tools.

ietf.org/html/rfc8300>. https://tools.ietf.org/html/rfc8300.

[61] BARI, M. F., CHOWDHURY, S. R., AHMED, R., BOUTABA, R., et al. “Or-

chestrating Virtualized Network Functions”, Computer Networks, v. 63,

pp. 221–237, 2015.

[62] LUIZELLI, M. C., BAYS, L. R., BURIOL, L. S., BARCELLOS, M. P., et

al. “Piecing together the NFV provisioning puzzle: Efficient placement

and chaining of virtual network functions”. In: IFIP/IEEE International

Symposium on Integrated Network Management (IM), pp. 98–106, 2015.

[63] QUINN, P., NADEAU, T. Problem Statement for Service Function Chaining.

RFC 7498, RFC Editor, 2015.

71

https://www.etsi.org/deliver/etsi_gs/nfv/001_099/002/01.01.01_60/gs_nfv002v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/nfv/001_099/002/01.01.01_60/gs_nfv002v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV/001_099/003/01.02.01_60/gs_nfv003v010201p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV/001_099/003/01.02.01_60/gs_nfv003v010201p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-SEC/001_099/013/03.01.01_60/gs_NFV-SEC013v030101p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-SEC/001_099/013/03.01.01_60/gs_NFV-SEC013v030101p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-SEC/001_099/013/03.01.01_60/gs_NFV-SEC013v030101p.pdf
https://wiki.openstack.org/wiki/Tacker
https://wiki.openstack.org/wiki/Tacker
https://tools.ietf.org/html/rfc8300
https://tools.ietf.org/html/rfc8300
https://tools.ietf.org/html/rfc8300

[64] FAYAZBAKHSH, S. K., SEKAR, V., YU, M., MOGUL, J. C. “FlowTags:

Enforcing Network-wide Policies in the Presence of Dynamic Middlebox

Actions”. In: II ACM SIGCOMM Workshop on Hot Topics in Software

Defined Networking, HotSDN ’13, pp. 19–24. ACM, 2013.

[65] SANZ, I. J., MATTOS, D. M. F., DUARTE, O. C. M. B. “SFCPerf: An auto-

matic performance evaluation framework for service function chaining”.

In: NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management

Symposium, pp. 1–9, April 2018. doi: 10.1109/NOMS.2018.8406237.

[66] SANZ IGOR J., ANDREONI LOPEZ MARTIN, MATTOS, D. M. F.,

DUARTE, O. C. M. B. “A Cooperation-Aware Virtual Network Function

for Proactive Detection of Distributed Port Scanning”. In: IEEE/IFIP

1st Cyber Security in Networking Conference (CSNet’17), 2017.

[67] ZHANG, Y., BEHESHTI, N., BELIVEAU, L., LEFEBVRE, G., et al. “StEER-

ING: A software-defined networking for inline service chaining”. In: 2013

21st IEEE International Conference on Network Protocols (ICNP), pp.

1–10, 2013.

[68] PORRAS, P., SHIN, S., YEGNESWARAN, V., FONG, M., et al. “A Security

Enforcement Kernel for OpenFlow Networks”. In: Proceedings of the First

Workshop on Hot Topics in Software Defined Networks, HotSDN ’12, pp.

121–126, New York, NY, USA, 2012. ACM. ISBN: 978-1-4503-1477-0.

doi: 10.1145/2342441.2342466. Available in: <http://doi-acm-org.

ez29.capes.proxy.ufrj.br/10.1145/2342441.2342466>.

[69] QAZI, Z. A., TU, C.-C., CHIANG, L., MIAO, R., et al. “SIMPLE-fying

Middlebox Policy Enforcement Using SDN”, SIGCOMM Comput. Com-

mun. Rev., v. 43, n. 4, pp. 27–38, August 2013. ISSN: 0146-4833. doi:

10.1145/2534169.2486022.

[70] MORAES, I. M., MATTOS, D. M. F., FERRAZ, L. H. G., CAMPISTA, M.

E. M., et al. “FITS: A Flexible Virtual Network Testbed Architecture”,

Computer Networks, v. 63, pp. 221–237, 2014.

[71] OPENSTACK. “IETF SFC Encapsulation”. https://docs.openstack.org/

networking-sfc/queens/contributor/ietf_sfc_encapsulation.

html, 2018.

[72] MARTINS, J., AHMED, M., RAICIU, C., OLTEANU, V., et al. “ClickOS and

the Art of Network Function Virtualization”. In: 11th USENIX Sympo-

sium on Networked Systems Design and Implementation (NSDI 14), pp.

72

http://doi-acm-org.ez29.capes.proxy.ufrj.br/10.1145/2342441.2342466
http://doi-acm-org.ez29.capes.proxy.ufrj.br/10.1145/2342441.2342466
https://docs.openstack.org/networking-sfc/queens/contributor/ietf_sfc_encapsulation.html
https://docs.openstack.org/networking-sfc/queens/contributor/ietf_sfc_encapsulation.html
https://docs.openstack.org/networking-sfc/queens/contributor/ietf_sfc_encapsulation.html

459–473, Seattle, WA, 2014. USENIX Association. ISBN: 978-1-931971-

09-6. Available in: <https://www.usenix.org/conference/nsdi14/

technical-sessions/presentation/martins>.

[73] ZANNA, P., O’NEILL, B., RADCLIFFE, P., HOSSEINI, S., et al. “Adaptive

Threat Management through the Integration of IDS into Software Defined

Networks”. In: International Conference on the Network of the Future

(NOF) - Workshop on Smart Cloud Networks & Systems, pp. 1–5, dec

2014.

[74] XING, T., HUANG, D., XU, L., CHUNG, C., et al. “SnortFlow: A OpenFlow-

Based Intrusion Prevention System in Cloud Environment”. In: 2013 Sec-

ond GENI Research and Educational Experiment Workshop, pp. 89–92,

March 2013. doi: 10.1109/GREE.2013.25.

[75] KONING, R., GRAAFF, B., POLEVOY, G., MEIJER, R., et al. “Measur-

ing the efficiency of SDN mitigations against attacks on computer infras-

tructures”, Future Generation Computer Systems, v. 91, pp. 144 – 156,

2019. ISSN: 0167-739X. doi: https://doi.proxy.ufrj.br/10.1016/j.future.

2018.08.011. Available in: <http://www.sciencedirect.com/science/

article/pii/S0167739X18302255>.

[76] LIU, Y., GUO, Z., SHOU, G., HU, Y. “To Achieve a Security Service Chain by

Integration of NFV and SDN”. In: 2016 Sixth International Conference on

Instrumentation Measurement, Computer, Communication and Control

(IMCCC), pp. 974–977, July 2016. doi: 10.1109/IMCCC.2016.162.

[77] BLENDIN, J., RUCKERT, J., LEYMANN, N., SCHYGUDA, G., et al. “Posi-

tion Paper: Software-Defined Network Service Chaining”. In: 2014 Third

European Workshop on Software Defined Networks (EWSDN), v. 00,

pp. 109–114, Sept. 2014. doi: 10.1109/EWSDN.2014.14. Available in:

<doi.ieeecomputersociety.org/10.1109/EWSDN.2014.14>.

[78] VIVEK, C., RAJAN, S. P. “Z—TCAM: An Efficient Memory Architecture

Based TCAM”, Asian Journal of Information Technology, v. 15, n. 3,

pp. 448–454, 2016.

[79] KANIZO, Y., HAY, D., KESLASSY, I. “Palette: Distributing tables in

software-defined networks”. In: 2013 Proceedings IEEE INFOCOM, pp.

545–549, April 2013. doi: 10.1109/INFCOM.2013.6566832.

[80] KOURTIS, M. A., XILOURIS, G., RICCOBENE, V., MCGRATH, M. J., et al.

“Enhancing VNF performance by exploiting SR-IOV and DPDK packet

73

https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/martins
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/martins
http://www.sciencedirect.com/science/article/pii/S0167739X18302255
http://www.sciencedirect.com/science/article/pii/S0167739X18302255
doi.ieeecomputersociety.org/10.1109/EWSDN.2014.14

processing acceleration”. In: 2015 IEEE Conference on Network Function

Virtualization and Software Defined Network (NFV-SDN), pp. 74–78, Nov

2015. doi: 10.1109/NFV-SDN.2015.7387409.

[81] EMMERICH, P., RAUMER, D., WOHLFART, F., CARLE, G. “Performance

characteristics of virtual switching”. In: IEEE 3rd International Confer-

ence on Cloud Networking (CloudNet), pp. 120–125, 2014.

[82] BONAFIGLIA, R., CERRATO, I., CIACCIA, F., NEMIROVSKY, M., et al.

“Assessing the Performance of Virtualization Technologies for NFV: A

Preliminary Benchmarking”. In: 2015 Fourth European Workshop on

Software Defined Networks, pp. 67–72, 2015.

[83] FAYAZBAKHSH, S. K., SEKAR, V., YU, M., MOGUL, J. C. “FlowTags:

Enforcing Network-wide Policies in the Presence of Dynamic Middlebox

Actions”. In: II ACM SIGCOMM Workshop on Hot Topics in Software

Defined Networking, HotSDN ’13, pp. 19–24, New York, NY, USA, 2013.

ACM. ISBN: 978-1-4503-2178-5.

[84] ZHANG, Y., BEHESHTI, N., BELIVEAU, L., LEFEBVRE, G., et al. “StEER-

ING: A Software-defined nEtwoking for inlinE seRvice chainING”. In:

2013 21st IEEE International Conference on Network Protocols (ICNP),

pp. 1–10, October 2013.

[85] CALLEGATI, F., CERRONI, W., CONTOLI, C., SANTANDREA, G. “Dy-

namic chaining of Virtual Network Functions in cloud-based edge net-

works”. In: 1st IEEE Conference on Network Softwarization (NetSoft),

pp. 1–5, April 2015.

[86] QAZI, Z., TU, C.-C., MIAO, R., CHIANG, L., et al. “Practical and incremen-

tal convergence between SDN and middleboxes”, Open Network Summit,

Santa Clara, CA, 2013.

[87] DUAN, Q., AL-SHAER, E. “Traffic-aware dynamic firewall policy manage-

ment: Techniques and applications”, IEEE Communications Magazine,

v. 51, n. 7, pp. 73–79, July 2013.

[88] CISCO. “Cisco Nexus 6000 Series NX-OS Security Configuration Guide,

Release 7.x”. https://www.cisco.com/c/en/us/td/docs/switches/

datacenter/nexus6000/sw/security/7x/b_6k_Security_Config_7x.

html, April 2017. Acessado: 26/04/2017.

74

https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus6000/sw/security/7x/b_6k_Security_Config_7x.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus6000/sw/security/7x/b_6k_Security_Config_7x.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus6000/sw/security/7x/b_6k_Security_Config_7x.html

[89] PAGIAMTZIS, K., SHEIKHOLESLAMI, A. “Content-addressable memory

(CAM) circuits and architectures: A tutorial and survey”, IEEE Journal

of Solid-State Circuits, v. 41, n. 3, pp. 712–727, 2006.

[90] YU, F., KATZ, R. H., LAKSHMAN, T. V. “Gigabit rate packet pattern-

matching using TCAM”. In: IEEE International Conference on Network

Protocols (ICNP), pp. 174–183, 2004.

[91] QIU, L., VARGHESE, G., SURI, S. “Fast firewall implementations for soft-

ware and hardware-based routers”. In: Proceedings Ninth International

Conference on Network Protocols. ICNP 2001, pp. 241–250, 2001.

[92] SOLDO, F., MARKOPOULOU, A., ARGYRAKI, K. “Optimal Filtering of

Source Address Prefixes: Models and Algorithms”. In: IEEE Conference

on Computer Communications (INFOCOM), pp. 2446–2454, 2009.

[93] DELL-EMC. “Dell EMC Networking Command Line Reference Guide for the

S5048F–ON System”. https://dell.to/2GdlQv4, 2019.

[94] HAMED, H., EL-ATAWY, A., AL-SHAER, E. “Adaptive Statistical Optimiza-

tion Techniques for Firewall Packet Filtering”. In: IEEE Conference on

Computer Communications (INFOCOM), pp. 747–755, April 2006.

[95] IPTABLES. https://wiki.archlinux.org/index.php/iptables, April

2018.

[96] EL-ATAWY, A., SAMAK, T., AL-SHAER, E., LI, H. “Using Online Traffic

Statistical Matching for Optimizing Packet Filtering Performance”. In:

IEEE Conference on Computer Communications (INFOCOM), pp. 866–

874, May 2007.

[97] FORTINET. “FortiGate Virtual Appliances”. https://www.fortinet.

com/content/dam/fortinet/assets/data-sheets/FortiGate_VM.pdf,

April 2017. Acessado: 14/04/2017.

[98] GUPTA, P., PRABHAKAR, B., BOYD, S. “Near-optimal routing lookups with

bounded worst case performance”. In: IEEE Conference on Computer

Communications (INFOCOM), pp. 1184–1192, March 2000.

[99] BOUCHER, M., JOSEFSSON, M., KADLECSIK, J., MCHARDY, P., et al.

“Netfilter: firewalling, NAT and packet mangling for Linux”. http://

www.netfilter.org/, August 2016. Acessado: 26/08/2016.

75

https://dell.to/2GdlQv4
https://wiki.archlinux.org/index.php/iptables
https://www.fortinet.com/content/dam/fortinet/assets/data-sheets/FortiGate_VM.pdf
https://www.fortinet.com/content/dam/fortinet/assets/data-sheets/FortiGate_VM.pdf
http://www.netfilter.org/
http://www.netfilter.org/

[100] MAURICIO, L. A. F., RUBINSTEIN, M. G. Avaliação de Desempenho de

Plataformas de Virtualização de Redes. M.Sc. dissertation, Universidade

do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil, 2013. Available

in: <https://bit.ly/2UfKtwd>.

[101] SUN, C., BI, J., ZHENG, Z., YU, H., et al. “NFP: Enabling Network

Function Parallelism in NFV”. In: Proceedings of the Conference of the

ACM Special Interest Group on Data Communication, SIGCOMM ’17,

pp. 43–56, New York, NY, USA, 2017. ACM. ISBN: 978-1-4503-4653-5.

doi: 10.1145/3098822.3098826. Available in: <http://doi.acm.org/10.

1145/3098822.3098826>.

[102] ODL. “OpenDaylight: Open Source SDN Platform”.

https://www.opendaylight.org/, 2018.

[103] LUCREZIA, F., MARCHETTO, G., RISSO, F., VERCELLONE, V. “Intro-

ducing network-aware scheduling capabilities in OpenStack”. In: Proceed-

ings of the 2015 1st IEEE Conference on Network Softwarization (Net-

Soft), pp. 1–5, April 2015. doi: 10.1109/NETSOFT.2015.7116155.

[104] COUTO, R. S., SADOK, H., CRUZ, P., DA SILVA, F. F., et al. “Building

an IaaS cloud with droplets: a collaborative experience with OpenStack”,

Journal of Network and Computer Applications, 2018.

[105] SOMMER, R. “Bro: An Open Source Network Intrusion Detection System.”

In: DFN-Arbeitstagung über Kommunikationsnetze, pp. 273–288, 2003.

[106] OWASP. “The OWASP Foundation: the free and open software security

community”. https://www.owasp.org/index.php/Main_Page, 2018.

[107] CHODOROW, K. MongoDB: The Definitive Guide: Powerful and Scalable

Data Storage. ” O’Reilly Media, Inc.”, 2013.

[108] RISTIC, I. ModSecurity Handbook. Feisty Duck, 2010.

[109] NETCRAFT. “January 2019 Web Server Survey”. https://news.netcraft.

com/archives/2019/01/24/january-2019-web-server-survey.html,

2019.

[110] BAYKARA, M., DAS, R. “A novel honeypot based security approach for real-

time intrusion detection and prevention systems”, Journal of Information

Security and Applications, v. 41, pp. 103–116, 2018.

[111] AUTOBENCH. “Autobench: An HTTP benchmarking suite”.

https://github.com/menavaur/Autobench, 2017.

76

https://bit.ly/2UfKtwd
http://doi.acm.org/10.1145/3098822.3098826
http://doi.acm.org/10.1145/3098822.3098826
https://www.owasp.org/index.php/Main_Page
https://news.netcraft.com/archives/2019/01/24/january-2019-web-server-survey.html
https://news.netcraft.com/archives/2019/01/24/january-2019-web-server-survey.html

	List of Figures
	List of Tables
	Introduction
	Objectives
	Publications
	Text Organization

	Software-Defined Networking and Network Functions Virtualization
	Software-Defined Networking
	Network Functions Virtualization
	The Open Platform for NFV (OPNFV)
	Service Function Chaining

	Related Work
	Virtual Network Functions Using Software-Defined Networking Technologies
	TCAM limitations and performance of Virtual Network Functions
	Service Function Chaining

	Iptables Firewall Virtual Security Function
	Implementation
	Evaluation and Results

	ACLFLOW Security Framework
	Implementation
	Evaluation and Results

	NFV Security Architecture
	Implementation
	Evaluation and Results

	Conclusion
	Future Work

	Bibliography

