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Esse trabalho é dedicado à minha amiga da alma Chiara Prochnik.

iv



“All the stars must represent some single gigantic equation, to the mind of god as

straight-forward as, say, the equation of a sphere... To us: unreadable,

incalculable.”

- Thomas Pynchon

v



ACKNOWLEDGEMENTS
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Resumo da Monografia apresentada à Escola de Qúımica como parte

dos requisitos necessários para obtenção do grau de Bacharel em

Engenharia Qúımica

Machine Learning and CFD: a new approach to simulate and optimize

micromixers in different geometries

Luca Martin Ainstein

October, 2022

Orientadores: Prof. Fábio Pereira dos Santos, D.Sc

Prof. Daniela de O. Maionchi, D.Sc.

Este trabalho busca explorar uma nova abordagem de otimização na área de mi-

crofluidodinâmica, utilizando a combinação de técnicas de Dinâmica de Fluidos

Computacional (CFD) e Inteligência Artificial. O objetivo desta combinação é pos-

sibilitar a realização de uma otimização global com menor custo computacional.

Essa otimização ocorre através da possibilidade de construir um banco de dados de

simulações em um menor tempo, utilizando uma rede neural densa treinada com

os dados obtidos utilizando CFD. Neste trabalho foi posśıvel testar, para micromis-

turadores de geometria-Y, 265 simulações, variando parâmetros como diâmetro da

obstrução (OD) e offset da obstrução (OF), permitindo obter uma rede neural que

apresenta erros de cálculo menores do que 1% para o processo de escoamento e

menores do que 4% para a perda de carga. Por fim, a utilização do algoritmo

genético possibilitou, levando 3 parâmetros como base (custo da energia da mistura,

perda de carga e porcentagem de mistura), otimizar os valores de OD e OF da

geometria globalmente.

Palavras-chave: 1. CFD. 2. Micromixers. 3. Artificial Inteligence. 4. Geometry

Optimization.
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ABSTRACT

Machine Learning and CFD: a new approach to simulate and optimize

micromixers in different geometries

Luca Martin Ainstein

Agosto, 2021

Supervisors: Prof. Fábio Pereira dos Santos, D.Sc

Prof. Daniela de O. Maionchi, D.Sc.

This work seeks to explore a new optimization approach in microfluid dynamics,

using the combination of Computational Fluid Dynamics (CFD) and Artificial In-

telligence techniques. The objective of this combination is to enable the realization

of a global optimization with a lower computational cost. This optimization occurs

with the possibility of building a database of simulations in a shorter time, using

a dense neural network trained with data obtained using CFD. In this work, we

tested 265 Y-geometry micromixers, varying parameters such as obstruction diam-

eter (OD) and obstruction offset (OF). Allowing to obtain a neural network that

presents calculation errors smaller than 1% for the flow process and less than 4% for

pressure drop. Finally, the use of the genetic algorithm made it possible to consider

3 parameters as a basis (cost of mixing energy, head loss and mixing percentage),

to optimize the OD and OF values of the geometry globally.

Key-words: 1. CFD. 2. Micromixers. 3. Artificial Inteligence. 4. Geometry

Optimization.
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Chapter 1

Introduction

The need to develop chemical engineering technologies to solve various of

problems have led to the miniaturization of equipment (Capretto et al., 2011).

In addition to enabling the integration of several functionalities on a single chip,

called Lab-on-chip (LOC), it was possible to focus on reducing energy consumption,

equipment/chemical plant sizes, production capacity ratio, and waste generation

(Stankiewicz et al., 2000). The use of LOC has been reported in several areas, such

as nanoparticle crystallization (St̊ahl et al., 2001), extraction (Sprogies et al., 2008),

polymerization (Nagaki et al., 2004), organic synthesis (Haswell et al., 2001), enzyme

assay (Miller and Wheeler, 2008), protein folding (Bilsel et al., 2005), bioprocess op-

timization (Micheletti and Lye, 2006), and drug delivery studies (Razzacki et al.,

2004).

The use of Computational Fluid Dynamics (CFD), an area that is concerned

with combining physical knowledge about fluid mechanics with mathematical and

computational resources and tools to predict, model, and optimize flow parameters,

occupies a prominent role in several areas due to its versatility (Khan et al., 2018).

Among these areas, it is possible to mention its use in the study of atmospheric

movements (Mirzaei, 2021) and (Kim et al., 2021), biomedicine (Wüstenhagen et al.,

2021), aerospace (Wang et al., 2013), oil and gas (Mart́ınez et al., 2020), design of

industrial equipment (Negi and Subhash, 2021), ocean engineering (Foroushani and

Sabzpooshani, 2021) and microfluidics (Chen et al., 2020; Ortega-Casanova, 2017b).

The understanding of relevant physical parameters in the analysis of mi-

cromixers occurs through the use of CFD, since it is not possible to treat a mi-
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cromixer as an ordinary reduced-size mixer, given that this change in dimensions

totally changes the physics involved, because it creates a flow preferably laminar

(Capretto et al., 2011). This paradigm shift causes the preferentially turbulent mix-

ing model on regular mixers to give way to a molecular diffusion model (Beebe et al.,

2002). The challenge that arises with this physical model is that, to improve the

mixing process, caps (Wang et al., 2012) or obstructions (Alam et al., 2014) are

added and geometries in T (Nimafar et al., 2012a; Zhendong et al., 2012), H (Nima-

far et al., 2012a), O (Nimafar et al., 2012b), Y (Wang et al., 2012) or fractals (Chen

et al., 2020) are adopted, which end up increasing the pressure drop, which directly

influences the mixing energy cost (mec), a variable that will be revisited throughout

the text, as it presents great value for analysis (Rahmannezhad and Mirbozorgi,

2019).

In this sense, the optimization of equipment involves the determination of

geometry, flow rates, and pressure drop analysis (Wang et al., 2012). The difficulty

found in the optimization process is the generation of data since, if an experimental

procedure is used, it is necessary to build several geometries, and test in different

configurations, which generates a high cost of experimentation, while a Computa-

tional calculation approach, using CFD, requires time to generate a relevant number

of simulations, in addition to having a computational cost. This makes the optimiza-

tion work, both experimental and simulation, have a limited number of cases being

tested (Wang et al., 2012; Nimafar et al., 2012a; Rahmannezhad and Mirbozorgi,

2019). To avoid this difficulty, the use of Machine Learning emerges as a smart out-

put, given that it is a type of technology that learns from the data generated, and

allows predictions to be made in a time window much shorter than that required by

existing CFD techniques.

Although several works combine CFD with machine learning, an extensive

review has shown that few articles use machine learning in microfluidics. Of these

few works, it is worth mentioning the work of Hadikhani et al. (2019), where many

droplet images are recorded and used to train deep neural networks (DNN) to predict

the flow rate or the concentration. This method quantifies the concentrations of

each component with a 0.5% accuracy and the flow rate with a resolution of 0.05

ml/h. Arjun et al. (2020) detected and classified binary-coalesced droplets inside

2



microchannels based on the degree of mixing using a deep neural network. The

use of Machine Learning to reduce order in optimization problems using CFD in

micromixers is an unprecedented approach.

1.1 Motivation

One of the main challenges concerning the optimization of geometries using

CFD is the high computational cost and processing time for performing the sim-

ulations. Because of this, this work’s motivation was to think of a way to reduce

this simulation time without significantly sacrificing the accuracy of the solution

obtained.

This work proposes the use of a set of numerical flow simulations in different

geometries for the training of a neural network. This neural network could perform

the second set of simulations in a shorter time interval than the numerical solution,

allowing the global optimization of geometry based on the parameters of interest.

In addition to the apparent relevance of this type of optimization, given that

there is a reduction in processing time without an equivalent loss of assertiveness,

this work paves the way for the use of the same possibility of resolution (the al-

most unprecedented combination of CFD and deep neural networks) in other fluid

dynamics problems.

1.2 Objectives

1.2.1 General Objectives

Originally, one of the goals of this work was to perform simulations using

CFD to allow global optimization of the geometry of this micromixer. However,

this set of simulations required about 45 days of full computing power and was not

sufficient to perform such an optimization process.

Because of that, the general objective of this work is to propose a new method-

ology for flow simulation in micromixers and geometry optimization through the

combined use of CFD and machine learning.
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1.2.2 Specific Objectives

The specific objectives of this study are as follows:

• Reproduce, through the use of numerical methods, the experimental results

presented by Wang et al. (2012) for a simple micromixer geometry.

• Reproduce, through the use of numerical methods, the experimental results

presented by Rahmannezhad and Mirbozorgi (2019) for a grooved micromixer

geometry.

• Simulate, using OpenFOAM, a new set of geometries derived from data pre-

sented by Rahmannezhad and Mirbozorgi (2019).

• Use the results obtained in the simulations to train a neural network, which can

calculate the flow parameters (pressure drop, mec and percentage of mixing)

by selecting the geometry (type of obstruction, obstruction diameter (OD) and

obstruction offset (OF)).

• Use the dataset generated by a Neural Network to reach the global optimiza-

tion, using a Genetic Algorithm, of the system geometry.

1.3 Organization of this Work

An introduction to the main concepts used, as well as the application of

micromixers in various fields of science is presented in Chapter 1, along with the

general and specific objectives of this work. Chapter 2 presents and discusses the

main technical concepts covered in this work, such as microfluidics, micromixers, the

Navier-Stokes equation, numerical solution methods, and use of neural networks. In

Chapter 3 it is possible to follow the entire methodology, starting with the construc-

tion of geometries, their simulations using OpenFOAM, training the neural network

and geometry optimization. The results obtained are presented and discussed in

Chapter 4. Finally, in Chapter 5 the final discussion is made, where some points are

briefly presented and the conclusion is presented.
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Chapter 2

Fundamental Concepts

Chapter 2 is focused on explaining the theoretical basis that guided the con-

struction of this work. It reading begins with the definition and literature review

related to microfluidics, passing through the main points of study of micromixers.

Next, the Navier-Stokes equations, which model the flow of fluids, are discussed.

In addition to explaining the functioning and application of such equations, this

section aims to illustrate the historical context of its proposal and the difficulties

and implications of the process of obtaining an analytical solution. This step is only

for the didactic purpose of demonstrating to readers who are beginning the study of

fluid mechanics the beauty behind an equation of such a simple nature. Finally, a

review of numerical solution methods is made, deepening the concept of CFD. The

following discussion is where the main concepts of Machine Learning are presented.

2.1 Computational Fluid Dynamics

The analytical solution of fluid dynamics problems is possible only in systems

with simple geometries and specific pressure and flow velocity conditions (Fox et al.,

2020).

There is a need for a solution model that can address more complex problems.

The strategy adopted to solve this problem is to overcome the difficulty of working in

complex geometries with different conditions by adopting a discretized mesh. That

allow, through extensive calculation work, to obtain a convergent numerical solution

(Fox et al., 2020).
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The main problem when adopting this approach is that as the number of

nodes increases, the computational cost increases. For very fine meshes, it is neces-

sary to use supercomputers. The field of study that deals with this type of solution

is known as Computational Fluid Dynamics (CFD).

The use of CFD can be analyzed as a technique composed of three sequential

steps: pre-processing, solver, and post-processing (Versteeg and Malalasekera, 2007),

as presented in Figure 2.1.

Figure 2.1: Schematic flowchart of steps to solve a problem using CFD inspired by An-

derson and Wendt (1995).

In the pre-processing stage, the mesh that will be used is defined, in addition

to describing the physical-chemical properties of the fluids represented in the prob-

lem of interest, as well as all relevant phenomenological models and their respective

boundary conditions (Versteeg and Malalasekera, 2007).

The process of dividing the analysis domain into cells is called meshing or

discretization (Silva and Cardoso, 2020). There is an extensive debate about the

ideal size of each cell in a mesh, and this definition is made to reach the mesh

that achieves the mesh independent solution. At the same time, one should seek

6



to achieve the mesh that minimizes the computational solution time required. The

procedure usually used is shown in Figure 2.2 and consists of starting the process

with a coarse mesh, solving the problem, refining the mesh (usually doubling the

number of cells), and redoing the solution. Once you have both solutions, evaluate

the convergence criterion and decide if another iteration is necessary (Silva and

Cardoso, 2020).

Figure 2.2: Iterative process of mesh selecting flowchart inspired by Silva and Cardoso

(2020).

Silva and Cardoso (2020) studies the solution mesh construction process for

a fluidized bed reactor. There is the possibility of choosing different cell sizes for

the same geometry, obtained and optimized during the mesh convergence process.

In the solver step, the equations that govern the problem are discretized.

Discretization involves transforming partial equations into a system of non-linear

equations, which are solved using a solver. There is a deeper understanding of this

7



solution method in the section 2.3 (Versteeg and Malalasekera, 2007).

Finally, the post-processing step refers to a visualization step (which can be

in 2D or 3D) of the generated data, the flow vectors, and other relevant generated

results (Versteeg and Malalasekera, 2007).

In this section, the concept of numerical solution was constantly adopted.

This concept was not developed in this section as it is discussed in section 2.3.

Therefore, once the mesh convergence is defined, it is possible to proceed to the

most appropriate numerical solution method.

It is also worth mentioning that the use of CFD comprises several areas, such

as its application in the food industry (Norton and Sun, 2007; Xia and Sun, 2002),

in oil and gas (Jafari et al., 2020), in the biochemical industry, as in the study of

optimization of the process of pyrolysis (Rostami et al., 2004), in medicine (Morris

et al., 2016), in the agro-enviromental industry (Lee et al., 2013), in the aeronautics

(Langtry and Menter, 2005) and automotive (Dhaubhadel, 1996) industries, over

heat exchangers and other equipaments design (Bhutta et al., 2012), among others

applications.

2.2 Microfluidics

Microfluidics refers to the behavior, control or operation of fluids on the sub-

millimeter scale, which causes surface forces to become the main forces of interaction

between fluids and the medium. In fact, the understanding of relevant physical

parameters in the analysis of micromixers occurs through the use of CFD, since it is

not possible to treat a micromixer as an ordinary reduced-size mixer, given that this

change in dimensions totally changes the physics involved, because it creates a flow

preferably laminar (Ducree et al., 2006; Wu and Nguyen, 2005). When referring to

equipment that involves the flow of more than one fluid, as is the case in this work,

it is observed that, since it is not a turbulent flow, the mixing between the fluids

shifts from convection to a diffusion mechanism (Pethig and Smith, 2012), which

requires a long channel length and a high retention time, resulting in high pressure

drop and energy cost (Alam et al., 2014).

The analysis of size reduction can be performed through the use of scaling law,
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which compares surface forces (such as surface tension and viscosity) with volumetric

forces (such as gravity and inertia) when there is a variation in dimension ℓ, keeping

other physical properties constant, such as time, pressure and temperature (Bruus,

2007). The most common way to make this comparison is:

surface

volume
=

ℓ2

ℓ3
= ℓ−1 −−→

ℓ→0
∞ (2.1)

This reinforces the above by demonstrating that when working on the mi-

cro scale, volumetric forces, which play an important role in most fluid mechanics

applications, lose out to surface forces.

Preetam et al. (2022) studied the main applications of microfluidics for use

in the fields of medicine and biotechnology. He lists the main reasons that make

the application of microfluidics appropriate: low consumption of reagents (for geo-

metric reasons, it is trivial to understand that in fact there is a low consumption

of reagents, which is especially useful in handling expensive materials, as synthesis

reagents or enzymes, difficult to purify, in addition to making operations involving

hazardous materials safer), high surface to volume ratio (facilitating mass and heat

transfer, and being particularly useful in applications involving surface reactions),

high Spatio-temporal resolution (microfluidics allow to maintain small environments

and do detailed monitoring), high-throughput applications (microfluidics is ideal for

applications such as screening studies as they have small working volumes and par-

allel reactions sites), rapid prototyping (there are prototyping methods that allow,

at low cost, to quickly develop new geometries and equipment) and portable system

(this relates to the initial purpose of microfluidics: to build a LOC).

In this sense, Maeki et al. (2022) presents technologies and devices for lipid

nanoparticle-based RNA delivery. The use of new RNA-based compounds gained

ground in 2021, with the approval of vaccines against COVID-19. The study of

RNA-delivery technology has been investigated by several research centers for ap-

proximately 30 years. One of the technologies that have recently emerged is the use

of Lipid Nanoparticles (LNP) to stabilize and improve the delivery of this RNA to

target organs. The production of RNA-loaded LNP production was developed using

advantages provided by microfluidics, such as high reproducibility, high-throughput

optimization of LNP formulation, and controllability.

Cheng et al. (2022) present the main advances in using microfluidics to de-
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velop advanced polymer films. The main point here is that the use of laminar flow

properties, which occurs at the micro-scale, as discussed earlier, leads to the pos-

sibility of controlling and manipulating the properties of the developed film (such

as ultrathin, heterogeneous, gradient, and/or multilayer). These films have ap-

plications in several emerging fields, such as biotechnology, nanotechnology, other

syntheses of high added-value components, among others. Despite this, there is still

a big gap between the means to develop new films and the market’s need for them.

2.2.1 Micromixers

Over the past few decades, microfluidics devices have occupied an important

role in chemical, biochemical, and analytical applications. As cited before, there are

examples of microfluidics being applied in COVID detection, chemical synthesis, or

other operations that require high efficiency and precise control. Therefore, for all

the applications that mix two or more fluid streams, the micromixer is one of the

essential units (Tofteberg et al., 2010).

Active micromixers require an external power source to increase their mixing

capability. Because of this, they have a higher cost of operation and installation

as they need auxiliary equipment to supply energy, which demands investment and

space (Ortega-Casanova, 2016).

Ortega-Casanova (2016) proposes using an active micromixer consisting of a

straight channel with a squared obstruction, that requires energy to oscillate in a

given frequency and amplitude. This oscillation promotes an increase in the system’s

surface area, favoring the molecular diffusion mechanism. The work is based on

finding the best flow configuration for each selected amplitude, including for low

Reynolds numbers.

Other active micromixers construction strategies are interesting and worth

mentioning. Groisman and Steinberg (2001) used polymer additives at a concentra-

tion of only 0.001% to lead to instability and irregularity in the flow, which increased

the mixing capacity in curved channels. Hellman et al. (2007) used nanosecond

pulses from laser to generate cavitation bubbles within 100 and 200 micrometers.

This bubbles expansion and later collapsed produced a local region of mixed fluid,

improving the percentage of mixing. Finally, Jain and Nandakumar (2013) used
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heterogeneous electrical charges to create an electromagnetic field, thus obtaining

a pattern of electrical charges that led to improvements in the results obtained in

T-shaped micromixers.

On the other hand, there are passive micromixers, which use geometry changes

to promote fluid mixing. These can be further divided into two subclasses: laminar,

where the mixture is based on increasing diffusion transport to the molecular level,

and convective, where chaotic advection in the flow occurs (Hardt et al., 2004).

In this work, Wang et al. (2012) uses a Y-shaped micromixer to propose 3

new geometries made with cylindrical grooves adjoining the main straight channel.

The variation between geometries in the depth of the cylindrical groove used. Next,

he studies both the experimental and simulated results, which is possible since the

construction of the micromixer was carried out. The micromixer construction is

a cheap and fast process, one of the properties that helps testing new geometries.

With this, it is possible to conclude which is the best geometry to promote the

highest percentage of mixing. In Section 4.1.1 these results are discussed in-depth

and compared with those obtained in this work for the same geometry.

Mixing fluids under laminar conditions is a challenge for almost any applica-

tion. Usually, this type of problem requires an increase in the size of the channel to

increase the surface area, where the process of molecular diffusion, dominant in flows

of this nature, occurs. In an attempt to increase the surface area without having

to increase the length of the device, many works choose to insert obstacles in the

flow path, creating a disturbance that, despite creating an increase in pressure drop,

is capable of increasing the percentage of mixing (Rahmannezhad and Mirbozorgi,

2019; Ortega-Casanova, 2017a; Alam et al., 2014).

Alam et al. (2014) proposed a geometry for the construction of a micromixer,

with circular obstructions along the flow. The results were compared with a mi-

cromixer with T-geometry, with the same pattern of obstructions. All results are

from numerical simulations with Reynolds Numbers ranging from 0.1 to 60. Vari-

ous parameters were evaluated: how the position and amount of obstructions vary

percentage of mixing of the system, how did a micromixer behave without any ob-

struction, and how the variation of Reynolds Number generate different results. In

general terms, the author’s conclusion is that percentage of mixing increased along
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with the increase in the number of obstructions, as well as with the increase in their

heights. However, with Reynolds numbers approaching 60, these effects attenuated.

Rahmannezhad and Mirbozorgi (2019) discuss a local optimization using the

response surface model (RMS) on grooved micromixers with obstructions. All ge-

ometries used for the optimization have the same type of grooved wall, varying

between 3 different types of obstructions (square, circle, and diamond) and simulat-

ing, for each type of obstruction, different diameters, and positions. Through the

evaluation of 3 parameters (pressure drop, percentage of mixing, and mixing energy

cost), two of which are independent, it was possible to find the best configuration

for each obstruction geometry. This article, and that of Wang et al. (2012) are of

vital interest for this work as they will be reviewed and taken as a starting point

for the construction of the geometries used. In Chapter 4 there is a space to discuss

the results obtained in more depth.

On the other hand, in the field of passive convective micromixers, Lin (2015)

proposes a numerical characterization of simple three-dimensional chaotic micromix-

ers. Using two representative types, 3D serpentine micromixer and the square-wave

micromixer with square grooves, it was possible to investigate the flow and mixing

characteristics in a wide range of Reynolds Numbers: from 8 to 160. The evaluation

was focused on mixing quality and pressure drop. At low Reynolds numbers, the

mixing process is mainly dominated by the diffusion mechanism, while in higher

Reynolds Numbers the mixing is enhanced by the gradually intensive chaotic advec-

tion.

Tayeb et al. (2020) studied the thermal mixing performance for 3 different

geometries using a non-Newtonian fluid inside a two-layer crossing channels mi-

cromixer. In this case, there was not only concern about mixing in a scenario

with laminar flow characteristics, but also about promoting thermal efficiency. The

results showed that using this type of geometry deals well with both problems, es-

pecially the C-geometry, adopted by the authors as the optimal geometry, among

those tested.
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2.3 Solution Methods

Once the problem is defined, there are three main ways to proceed with the

solution in order to understand all the parameters related to the flow. In this section,

experimental, analytical, and numerical solutions will be described, not only to solve

flow behavior in micromixers problems but to solve flow problems in general.

There is no intention in this section to define a solution method as the best

method but to illustrate that each solution form is the one that best applies to a set

of problems. Proof of this is that to have a holistic understanding of the problem,

combining more than one method is often necessary, as some of the articles studied

here show.

Solutions using experimental methods are the basis of all scientific knowledge,

which makes this solution method the oldest among the three presented. However,

one cannot have the mistaken impression that being older, is of lesser value Andersen

and Hepburn (2015).

It is exactly the experimental results that led to the possibility of building

models that explain the observed phenomenon, allowing the development of equa-

tions that can later be solved by analytical and numerical methods.

In the case of fluid mechanics, the experimental solution is normally used to

validate the numerical method, that is, the researcher repeats the same experiment

both experimentally and numerically and compares the results. If there is assertive-

ness in the numerical model, this allows the model to be extended to other cases

with similar properties Xia et al. (2016).

This approach occurs because the main weakness of experimental methods

is their difficulty in being scaled, and reproduced, and, in cases of high complex-

ity, it often becomes impractical to perform. In addition, experimental methods

require financial investment and a work structure not always available in research

centers. In addition, one of the main drawbacks of working with experimental meth-

ods lies in the fact that the solution is subject to a range of possible errors such as

equipment calibration, human operation of the equipment, solvent purity, parame-

ter control (flow rate, pressure, temperature, etc.) in the equipment used, among

others. Therefore, experimental tests end up not being representative of complex
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problems.

Examples of experimental solutions involving micromixers include the work

done by Wang et al. (2012), as discussed earlier, Chen et al. (2020), who studies

passive micromixers with fractal-like tree structures, Sun et al., who investigates a

magnetic micromixer under microwires and uniform magnetic field, Ahmadi et al.

(2021), which analyzes the effects of baffle configuration and number on inertial

mixing in a curved serpentine micromixer and Xia et al. (2016) which analyzes a

planar micromixer with gaps and baffles based on field synergy principle. All the

articles cited in this section end up solving the problem both experimentally and

numerically and performing the comparison.

Starting from equations obtained from observations of the phenomena, it

is tempting to solve such equations to obtain an exact and immediate solution to

the problem. For some simple physical problems, this is possible, however, many

mathematical models that seek to describe reality do not have an analytical solution.

In this section, we will talk about those that actually have, given their simplicity,

or based on a series of assumptions and considerations, exact analytical solutions.

In the case of fluid mechanics, there are the Navier-Stokes equations for a

flow, which explain the observed phenomenon. However, the mathematical nature

of these equations does not allow, with currently available techniques, to develop a

comprehensive analytical solution to any problem with complex geometry.

One of the main problems in the analytical solution of the Navier-Stokes

equations lies in our inability to understand the turbulence process. There is a

famous story in the field of physics attributed to the German physicist Werner

Heisenberg where he, on his deathbed, would have said (Powers, 1993):

When I meet God, I am going to ask him two questions: Why relativity?

And why turbulence? I really believe he will have an answer for the first.

Despite being just a story, there is an alive and complex scientific field of

turbulence process.

Works that analytically solve the Navies-Stokes equations, presented below

in Equations 2.2 and 2.3, must carry out a series of considerations (such as laminar

flow, steady-state, among others), which restricts their solutions. Unfortunately, the
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parameters that this work will use don’t allow the analytical approach from being

used.

∇.u = 0. (2.2)

ρ
Du

Dt
= −∇p+ µ∇2u. (2.3)

Where ρ is the density, u is the flow velocity, p is the pressure and µ is the

viscosity. It is possible to obtain analytical solutions to the Navier-Stokes equations

in some very particular cases. However, in micromixer applications, these solutions

are not possible for the given model, boundary conditions and initial state, which

leads to the need to approach the problem either by experimental or numerical

approach.

Once it is defined that for a complex model such as a micromixer, it is

impossible to solve the Navier Stokes Equations analytically, it is clear that there

are two options: an experimental model (already discussed) or a numerical model.

Numerical methods are defined as algorithms that allow, through well-defined

steps, to approximately solve a problem whose analytical solution does not exist or

requires much effort. In this way, numerical methods offer very precisely, although

inexact, solutions. Algorithms used in numerical methods need convergence criteria

to be defined, that is, an interval where variations are no longer relevant, and it is

possible to trust the solution obtained.

Some problems require very complex algorithms to solve, while others require

a lot of computational power to run. An example of this is factoring numbers into

primes, the heart of cryptography. It is not worth, in this work, to go into details

about problems of type P or NP, but almost all security systems are based on the

fact that the algorithms we currently have require a lot of computational power to

perform the factorization of large numbers, which allows using these numbers, whose

prime factors are the key to security, to encrypt information.

Unlike analytical solutions, in the field of fluid mechanics, we can consider all

real physical and flow conditions, thus obtaining a real and precise solution, which
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allows us to understand the selected model.

To solve the governing differential equations, they need to be discretized using

a numerical approach, and the control volume must be refined to smaller cells, thus

creating a simulation mesh, where the union of all these cells composes the original

control volume (Deglon and Meyer, 2006). The resolution of these equations in each

of the cells is done using an appropriate solution method for the type of problem

(solver) and must be monitored in some parameters such as consistency, stability

and convergence (Sobachkin and Dumnov, 2013). Finally, it is important to note

that the solver links the flow parameters of all cells to solve the proposed problem

(Mohammadian et al., 2020).

2.4 Machine Learning

One of the main concepts when analyzing a machine learning process is that

we can evaluate an improvement in the performance of a machine when performing

a certain function due to learning about its own experience. The application of

Machine Learning covers several fields, such as robotics, virtual personal assistants

(like Alexa, from Amazon), data mining, and natural language processing, among

others (Ray, 2019).

In this way, it is possible to define Machine Learning as the field of study that

gives computers the ability to learn without necessarily being explicitly programmed.

The use of Machine Learning (ML) depends on some algorithms to manage and

process data. Currently, there is no one-fits-all algorithm, and it is necessary, for

each problem, to make the correct selection of the algorithm that will be used.

There are several algorithms, such as Supervised Learning, Unsupervised Learning,

Semi-supervised learning, Reinforcement Learning, Multi-task Learning, Ensemble

Learning, Neural Network, and instance-based learning (Mahesh, 2020). Figure 2.4

presents the main existing algorithms.

2.4.1 Neural Network

The construction of neural networks is inspired by the functioning of a hu-

man brain, where billions of neurons are connected in dense layers. The artificial
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Figure 2.3: Representation of different Machine Learning algorithms, inspired by Mahesh

(2020).

neural network consists of a layer of input neurons, a number n of hidden neurons,

and a final layer of neurons corresponding to the output. The connection between

neurons of different layers is called weight (Wang, 2003). Figure 2.4 represents the

architecture of a Neural Network.

The output, hi, of neuron i in the hidden layer is given by Equation 2.4,

where ρ() is called activation function, N the Number of input neurons, Vij, the

weights, xj inputs to the input neurons, and T hid
i the threshold terms of the hidden

neurons.

hi = ρ

(
N∑
j=1

Vijxj + T hid
i

)
(2.4)

Although several works are using Machine Learning in the study of fluid me-

chanics, as synthesized in Brunton et al. (2020) and Brunton (2022), in the field of

micromixers study, the use of Machine Learning is almost unprecedented. It was

possible to find 2 papers that studied this field, both by the same research group

and with the same approach. In both Ortega-Casanova and Granados-Ortiz (2020)

and Granados-Ortiz and Ortega-Casanova (2021), the use of Machine Learning is

proposed as a strategy to reduce the simulation time required to perform an opti-

mization of the geometry of a micromixer. Local optimization is performed on both,

17



Figure 2.4: Architecture of a Neural Network inspired by Wang (2003).

using the combination of CFD and ML data.

2.5 Optimization Methods

Optimization processes aim to obtain, for a given system, its maximum (or

minimum) value, for a series of properties, through the system’s variation of prop-

erties and dimensions. In this context, several algorithms can be selected for this

purpose. The selection of the algorithm for a given problem depends on the objec-

tive function characteristic, the nature of the constraints, the number of dependent

and independent variables, and the complexity of the problem (Simon, 2013).

The stochastic and evolutionary optimization methods are the most suitable

for problems of the nature described above because they have flexibility and robust-

ness, are suitable for solving discrete optimization problems, or in analyzes that are

highly nonlinear, high-dimensional, or that present difficulty of being optimized by
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classical methods. Among the main methods of stochastic and evolutionary opti-

mization, it is possible to mention some, such as Genetic algorithm (GA), simulated

annealing (SA), differential Evolution (DE), tabu Search (TS), artificial bee colony

(ABC), and particle swarm optimization (PSO) (Simon, 2013).

2.5.1 Genetic Algorithm

The genetic algorithm, which will be used in the optimization part of this

work, is a computational model of biological evolution (Forrest, 1996). GA takes el-

ements from the Darwinian theory of evolution, being a population-based algorithm,

where the survival of a population of creatures is tested and their genes stimulated

(Goldberg and Holland, 1988).

The GA starts with an initial population, composed of several solutions,

which represent the chromosomes of the individuals. There are two ways to define

an initial population: random initialization and heuristic initialization. The first

uses a completely random initial population, based on some probability distribution,

such as the Gaussian distribution. The second indicates that the initial population

is composed using known heuristic solutions. The approach usually adopted is the

combination of a heuristic set with a random set (Venkateswarlu and Jujjavarapu,

2020).

After defining the Initial Population, 3 simple and sequential operations are

performed. The reproduction operation selects the best chromosomes, the crossover

operation recombines the best parts of the chromosomes while the mutation opera-

tion internally alters the chromosomes to improve their performance. This step, in

addition to improving the result, ends up playing a decisive role in optimizing the

function globally (and not locally) (Venkateswarlu and Jujjavarapu, 2020).

Finally, GA evaluates the fitness of each individual in a population using

a fitness (objective) function and evaluates whether another iteration is necessary,

based on the adopted convergence criterion. (Goldberg and Holland, 1988).

Figure 2.5 shows a flowchart of Genetic Algorithm.

19



Figure 2.5: Flowchart of Genetic Algorithm inspired by Simon (2013).

20



Chapter 3

Methodology

Chapter 3 focuses on bringing clarity to the methodology applied in this

work. It is divided into several sections, due to the combination of several indepen-

dent techniques to carry out this work. It is even possible to affirm that the value

contributed by this work resides mainly in the proposed variety of methods, which

allowed us to obtain results with high precision and low computational cost.

Section 3.1 talks about the construction of geometries to perform the simula-

tions. In this section dimensions, format and variations are discussed. The process of

defining geometries and their visualization using ParaView is also briefly discussed.

Section 3.2 addresses the numerical solution of the presented problem using

the OpenFOAM software. In addition, the equations entered in the solver and the

selected boundary conditions are discussed.

Section 3.3 presents the training of the neural network used, covering the

selected parameters. There is a discussion about the use of TensorFlow and about

the result expected of some parameters, in addition to discussing a common problem

in poorly structured neural networks: overfitting.

Finally, Section 3.4 presents the geometry optimization process, discussing

the application of the genetic algorithm for the selection of the geometry that repre-

sents the global optimum of the system. This section also discusses some convergence

criteria to be adopted.
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3.1 Construction of Geometries

As discussed in Chapter 2, it is necessary to make the domain discrete so that

it is possible to use a solver and deal with fluid dynamics problems. The geometry

construction process was performed using Gmsh. Gmsh is an open-source 3D finite

element mesh Generation with a built-in CAD engine and post-processor (Geuzaine

and Remacle, 2009). As the main mesh generation software (Royer et al., 2021),

Gmsh was chosen because it was built following a philosophy of being fast, light and

user-friendly (Geuzaine and Remacle, 2009). According to Geuzaine and Remacle

(2009), the use of the software takes place through 4 modules:

Geometry: the abstract, object-oriented geometry layer permits to write all the

algorithms independently of the underlying CAD representation. At the source

code level Gmsh is thus easily extensible by adding support for additional CAD

engines.

Mesh: using the abstract geometrical interface it is also possible to interface addi-

tional meshing kernels.

Solver: a socket-based communication interface allows to interface Gmsh with vari-

ous solvers without changing the source code; tailored graphical user interfaces

can also easily be added when more fine-grained interactions are needed.

Post-processing: the post-processor can be extended with user-defined operations

through dynamically loadable plug-ins. These plug-ins act on post-processing

datasets (called views) in one of two ways: either destructively changing the

contents of a view, or creating one or more views based on the current view.

This work was inspired by the works of Wang et al. (2012) and Rahmannezhad

and Mirbozorgi (2019). Because of this, the selection of the geometry, presented in

Table 1, was that of a micromixer with Y-geometry, as presented in Figure 3.1. The

dimensions of the diameters and offsets of the obstructions were varied in a range

on 20− 100µm and 0− 150µm, respectively.
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Table 3.1: Dimensions of micromixer.

Channel lenght (L) 2cm

Channel width (W) 200µm

Channel depth (d) 20µm

Distance between two CGs 1000µm

Diameter of CGs 200µm

Distance between two obstructions 1000µm

Figure 3.1: Schematic diagram of the Y-geometry micromixer.

The geometries presented by Wang et al. (2012) and addopted by Rahman-

nezhad and Mirbozorgi (2019) have different groove depths, ranging from 0 to 3/4

cylindrical groove, as presented in Figure 3.

In the present work, geometries with CG=1/4 and CG=1/2 and without

obstructions were used for validation and CG=1/2 with obstructions were used to

perform the optimization process.

The construction of the mesh in Gmsh was carried out in 3 steps, both in

models with obstruction and in models without obstruction: the first one repre-

sents the entrance of the fluid in the system (Figure 3.3), the second represents the

sequential and repeated parts of the system model, containing in each case the re-
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Figure 3.2: Two-dimensional (top view) and three-dimensional (right column) scheme of

the four designs studied in Wang et al. (2012). Design 1 is the straight channel and designs

2, 3, and 4 are the channels with CGs 1/4, 1/2 and 3/4, respectively.

spective obstruction and different groove sizes (Figure 3.4), and a last construction

to end the geometry of the system (Figure 3.5). Figures 3.3, 3.4, and 3.5 show the

constructions that correspond to the system with GC=1/4 and without obstruction,

used to validate the simulation with the comparison with the results obtained with

Wang et al. (2012). The other geometries were made in a similar way, with different

cylindrical groove (using CG=0, CG=1/4, CG=1/2 and CG=3/4), as well as with

the presence (or absence) of obstructions, these in different geometries. The final

mesh obtained is presented in Figure 3.6, with a detail about the points of interest.

Figure 3.3: Visualization in Gmsh of the fluid input in the proposed geometry.
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Figure 3.4: Visualization in Gmsh of the first repetition structure in the proposed geom-

etry.

3.2 Simulations Using OpenFOAM

In total, 265 simulations were carried out, where the variation of the OD,

OF and the geometry of the obstruction occurred. The simulations were done in a

HPC Cluster with procesor Inter Xeon ® E5-2640 v4 2.4GHz, where the training

calculation was performed mainly in a Tesla P100 GPU with 16GB VRAM. In this

case, each simulation of our dataset, took around 4 hours.

All simulations were performed using OpenFOAM for stationary and incom-

pressible flow using the finite volume method. The obstruction of channels with

cylindrical grooves CG = 1/2 was considered to be in a circle shape, in a range

of OD obstruction dimensions from 20 to 140µm and OF obstruction displacement

from 10 to 160µm (the offset in this case refers to the distance from the bottom

point of the circle to the bottom wall of the channel for all possible OD values).

The continuity, Navier-Stokes and convection-diffusion-species equations (Eq.

3.2, Eq. 3.2 and Eq. 3.2) were solved for a uniform laminar flow of a Newtonian

fluid with constant properties. The flow has the same velocity at both inputs, but

different mass concentrations of solute C, being C = 1 mol/m3 in the lower entry

and C = 0 mol/m3 in the upper entry, ie, free of solute.
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Figure 3.5: Visualization in Gmsh of the fluid output in the proposed geometry.

∇.u = 0 (3.1)

ρ
Du

Dt
= −∇p+ µ∇2u (3.2)

DC

Dt
= γ∇2C, (3.3)

Where −→u , p and C are, respectively, the velocity, pressure and concentration,

and ρ, µ and γ are, respectively, the density, viscosity and fluid diffusion coefficient.

The boundary conditions used in the inputs were normal uniform velocity,

based on the Reynolds number (Re), no slip on the walls and gauge pressure (p =

0Pa) at the output. The density, dynamic viscosity and diffusion coefficient of the

fluid are ρ = 998kg/m3,µ = 8.9 · 10−4Pa · s and γ = 10−9m2/s, respectively. The

Reynolds number is defined as Re = ρUinW/l, where Uin is the flow inlet velocity

and W is the channel width. The Reynolds number was considered Re ≈ 1 in the

validation case and in the other simulations.

The distribution of concentration levels across the width of the main channel

can be used to assess the level of fluid mixing in micromixers. The distributions
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Figure 3.6: Visualization of the final Geometry.

at x = 0mm and x = 20mm were consider to evaluate the pressure drop and the

distribution at x = 16mm was consider to evaluate the percentage of mixing, as

presented in Figure 4.

Figure 3.7: Measurements to calculate pressure drop (x = 0mm and x = 20mm) and

blend percentage (x = 16mm).

The blend percentage (φ) is determined by the following equation (Lin et al.,

2007),

φ =

(
1− σ

σmax

)
· 100%, (3.4)

where σ is the standard deviation, and the subscript max denotes the initial unmixed

state in the micromixer (0.5 in this case). The standard deviation can be calculated

by the concentration distribution as
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σ =

√√√√ 1

N − 1

N∑
i=1

(Ci − Ci)2, Ci =

∑N
i=1Ci

N
, (3.5)

where N is the number of sampling across the channel width, Ci is the concentration

of sampling i, and Ci is the mean value of the concentration. In addition, the mixing

energy cost (mec) (Ortega-Casanova, 2017a), is also used to estimate the efficiency

of the micromixers, as it measures the pumping power needed to obtain one percent

of the mixture. So it can be defined as

mec =
Q∆P

φ
, (3.6)

where Q is the flow rate through the mixing channel and ∆P is the pressure differ-

ence between the output and inputs of the channel.As Q is constant, in this work, we

will consider only the value of the ratio ∆P/φ. The governing equations were solved

until the residuals reached below 10−9, which means that all flow properties remain

constant throughout the iterations. The methodology of this study is validated by

reproducing the results of Wang et al. (2012) and Rahmannezhad and Mirbozorgi

(2019).

A summary of the steps performed in this section are shown in Figure 3.8.

Figure 3.8: Measurements to calculate pressure drop (x = 0mm and x = 20mm) and

blend percentage (x = 16mm).
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3.3 Neural Network Training

This section used two completely open-source platforms: TensorFlow and

Keras. The first is the platform that allows building deep neural networks, while

the second corresponds to an Application Programming Interface (API) that allows

simplified access and through simpler programming languages, such as Python.

TensorFlow is a complete open-source platform for machine learning. Basi-

cally, it allows the implementation of various mathematical tasks, including training

deep neural networks, using various tools, frameworks, and community resources.

The development and processing in TensorFlow are performed in C++, allowing

high performance in computing operations on matrix and vector. The name Ten-

sorFlow originates from the core of the framework used: tensor. Any operation

performed in TensorFlow involves using a tensor, an n-dimensional vector, or a ma-

trix representing data of any nature. All values in a tensor contain the same data

type with a known shape. The shape of the data is the dimensionality of the matrix

or vector.

The data from the simulations performed using CFD made it possible to train

a dense neural network using the TensorFlow library. In this neural network, the

inputs used were the OD and OF, while the outputs were the pressure drop value

and the percentage of mixing. Although we also evaluated the mixing energy cost,

the neural network did not calculate this because it is a relationship between the

other two variables, as presented in Equation 3.2.

All of the Deep Neural network was made using Python 3.9. At first, it was

necessary to import libraries to perform the algebraic operations, graph visualiza-

tion, machine learning development and data treatment, as shown above (Hunter,

2007; Harris et al., 2020; McKinney et al., 2010; Abadi et al., 2015; Pedregosa et al.,

2011).

1 ### Library Import

2 ### −−−−− ###

3

4 # Math and Graph v i s u a l i z a t i o n l i b r a r i e s

5 import math

6 import matp lo t l i b . pyplot as p l t
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7 import numpy as np

8 from numpy . random import seed

9 seed (1 )

10 import pandas as pd

11 import s ta t smode l s . ap i as sm

12 import s ta t smode l s . formula . api as smf

13 from numpy . random import rand int

14 from numpy . random import rand

15

16 # Machine Learning L i b r a r i e s

17 import t en so r f l ow

18 t en so r f l ow . random . s e t s e e d (1 )

19 from ten so r f l ow . python . keras . l a y e r s import Dense

20 from ten so r f l ow . keras . l a y e r s import Dropout

21 from ten so r f l ow . python . keras . models import Sequent i a l

22 from ten so r f l ow . python . keras . wrappers . s c i k i t l e a r n import

KerasRegressor

23 from sk l ea rn . met r i c s import mean abso lu t e e r ro r

24 from sk l ea rn . met r i c s import mean squared error

25 from sk l ea rn . mode l s e l e c t i on import t r a i n t e s t s p l i t

26 from sk l ea rn . p r ep ro c e s s i ng import MinMaxScaler

27

28 # Data tratment l i b r a r i e s

29 import os

30 import csv

31 from pandas . p l o t t i n g import s c a t t e r ma t r i x

32 from matp lo t l i b import g r i d spe c

Listing 3.1: Code for import libraries.

To perform the neural network setup, it is necessary to upload and process

the data. The data obtained in the simulations were processed and compiled into a

single file. This file is uploaded as shown in line 5, on Listing 3.2 of the code below.

Next, the input and output tensors of the neural network are defined. The input

tensor (X) comprises each simulation’s OD and OF information. The output tensor

(Y) includes the values obtained for the Percentage of Mixing and Pressure Drop.

When setting up a neural network, part of the data must be separated for

training and another part for validation. In this work, 80% of the data were used
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for training and 20% for validation, as shown in line 14 (test size = 0.2) on Listing

3.2.

Finally, the data are transformed to the 0 − 1 scale, to perform the neural

network training, as shown in lines 17-23 on Listing 3.2.

1 ### Pre code preparat ion

2 ### −−−−− ###

3

4 # Load Resu l t s from s imu la t i on :

5 df = pd . r ead c sv ( ’ r e s u l t c i r c l e . csv ’ )

6 datase t = df . va lue s

7

8 # Def ine t enso r o f inputs (X)

9 # Def ine t enso r o f known outputs (Y)

10 X = datase t [ : , 2 : 4 ]

11 Y = datase t [ : , 6 : 8 ]

12

13 # Sp l i t the datase t f o r t r a i n i n g and t e s t i n g ( propor t ion o f 20% over

80%)

14 X train , X val , y t ra in , y va l = t r a i n t e s t s p l i t (X, Y, t e s t s i z e =0.2)

15

16 # Data Transformation

17 s c a l e r x = MinMaxScaler ( )

18 s c a l e r y = MinMaxScaler ( )

19

20 x t r a i n s c a l e=s c a l e r x . f i t t r a n s f o rm ( X tra in )

21 x v a l s c a l e=s c a l e r x . f i t t r a n s f o rm ( X val )

22 y t r a i n s c a l e=s c a l e r y . f i t t r a n s f o rm ( y t r a i n )

23 y v a l s c a l e=s c a l e r y . f i t t r a n s f o rm ( y va l )

Listing 3.2: Code for tensor preparation.

The definition of the neural network happens, as presented in the code be-

low. This is possible, as discussed, thanks to the use of Keras. The model type

(sequential) is defined in line 4, on Listing 3.3. Next, the input layer, of dimension 2

(for reading the X tensor) is added. Finally, a layer with 125 neurons is added, with

a dropout equal to 75%. The Dropout layer randomly sets input units to 0 with a

frequency of rate at each step during training time, which helps prevent overfitting.

Inputs not set to 0 are scaled up by 1/(1 − rate) such that the sum of all infor-
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mation is unchanged. Finally, line 8 on Listing 3.3 creates the output layer, with a

dimension equal to 2 (tensor Y).

Lines 12 and 13 on Listing 3.3 compile the model and allow its execution. In

line 13 of the code a variable is defined as epochs = 200. The number of epochs is

a hyperparameter that defines the number of times that the learning algorithm will

work through the entire training dataset.

1 ### Neural Network d e f i n i t i o n

2 ### −−−−− ###

3

4 model = Sequent i a l ( )

5 model . add (Dense (250 , input dim=2, k e r n e l i n i t i a l i z e r=’ normal ’ ,

a c t i v a t i o n=’ r e l u ’ ) )

6 model . add (Dense (125 , a c t i v a t i o n=’ r e l u ’ ) )

7 model . add (Dropout ( 0 . 7 5 ) )

8 model . add (Dense (2 , a c t i v a t i o n=’ l i n e a r ’ ) )

9 model . summary ( )

10

11

12 model . compi le ( l o s s=’mse ’ , opt imize r=’adam ’ , met r i c s =[ ’mse ’ , ’mae ’ ] )

13 h i s t o r y=model . f i t ( x t r a i n s c a l e , y t r a i n s c a l e , epochs=200 , b a t ch s i z e

=100 , verbose=1, v a l i d a t i o n s p l i t =0.2)

Listing 3.3: Code for Deep Neural Network setup.

Finally, the code is run to display training and testing loss (lines 8-14, on

Listing 3.4). Loss analysis is important to study whether overfitting has occurred.

Overfitting is an error that occurs when the neural network has memorized training

data but is unable to generalize to new situations. This is evidenced by an error in

the training set very close to zero, but a large error when the network is used in other

datasets. Neural networks with many layers and neurons, as well as small training

datasets, can lead to overfitting. In addition to promoting network reduction, there

are resources to prevent overfitting. One of them is the dropout, used in this work,

as explained above.

Finally, the validation dataset is predicted to compare with the results ob-

tained in the simulation.

1 ### Resu l t s from Neural Network Train ing
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2 ### −−−−− ###

3

4 # Print each Epoch

5 p r i n t ( h i s t o r y . h i s t o r y . keys ( ) )

6

7 # Plot data from t r a i n i n g and t e s t (To compare Loss )

8 p l t . p l o t ( h i s t o r y . h i s t o r y [ ’ l o s s ’ ] )

9 p l t . p l o t ( h i s t o r y . h i s t o r y [ ’ v a l l o s s ’ ] )

10 p l t . t i t l e ( ’model l o s s ’ )

11 p l t . y l ab e l ( ’ l o s s ’ )

12 p l t . x l ab e l ( ’ epoch ’ )

13 p l t . l egend ( [ ’ t r a i n ’ , ’ v a l i d a t i o n ’ ] , l o c=’ upper l e f t ’ )

14 p l t . show ( )

15

16 # Pred i c t outputs f o r v a l i d a t i o n datase t

17 p r e d i c t i o n s = model . p r ed i c t ( x v a l s c a l e )

18 # Use the Sca l e r i nv e r s e transform to return the r e s u l t s to the

o r i g i n a l format

19 p r e d i c t i o n s = s c a l e r y . i nv e r s e t r an s f o rm ( p r ed i c t i o n s )

20

21 # Print t enso r o f input ’ s v a l i d a t i o n

22 p r i n t ( X val )

23 # Print Pr ed i c t i on s made over the va l i d a t i o n tenso r

24 p r i n t ( p r e d i c t i o n s )

Listing 3.4: Code for show and export results.

A summary of the steps performed in this section are shown in Figure 3.9.

3.4 Geometry Optimization

The optimization was performed using the Python library Genetic Algorithm,

which allows to find for an objective function its minimum point, as explained in

Chapter 2.5.1.

The genetic algorithm method used was NSGAII (Deb et al., 2002). For

this work, 3 objective functions ( φ, ∆P and ∆P/φ) were selected and optimized

individually, outputting the values OD and OF for each of the 3 optimized geome-

tries. Then, the geometries selected as optimal were simulated using OpenFOAM
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Figure 3.9: Summary of the steps performed to obtain and process data.

to compare the values obtained.

A summary of the steps performed in this section are shown in Figure 3.10.

Figure 3.10: Summary of the steps to optimize the geometries.
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Chapter 4

Results and Discussion

We performed 265 simulations, changing the OD and OF values, in an HPC

Cluster with processor Intel Xeon® E5-2640 v4 2.4GHz, where the training calcu-

lation was performed mainly in a Tesla P100 GPU with 16GB VRAM. In this case,

each simulation of our dataset, took around 4 hours. Figure 3.1 illustrates one of

the cases with simulated obstacles in OpenFOAM.

The simulation results were used to train a dense neural network using the

TensorFlow library. This neural network can predict new configurations (changing

OD and OF) that can be used to carry out the global optimization process.Therefore,

the neural network was trained considering the values of OD and OF as input

variables and the values of ∆P/φ and φ as output. With an adequate neural network

model, the optimization was performed in order to maximize φ and minimize ∆P/φ.

The GeneticAlgorithm and Platypus Python libraries were used for the cases of single

objective and multiobjective functions, respectively.

Figure 4.1 is a schematic representation of the stages performed in this work.
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Figure 4.1: Schematic representation of the stages of this work, described in Chapter 3.

4.1 Validation

The concentration distribution at the position x = 16mm was numerically

evaluated in this work and compared with the experimental results presented in

Wang et al. (2012) and Rahmannezhad and Mirbozorgi (2019), as shown in Figure

4.2. This comparison is necessary to validate the results obtained in this work and

is not unprecedented in the literature: Rahmannezhad and Mirbozorgi (2019) uses

the same comparison to validate their own results.

The concentration distribution is related to the blend percentage, as shown
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in Equation 3.4. The results obtained show that the simulation results are consis-

tent with the experimental results. It is important to emphasize that data from

unpublished simulations were used in this work. The comparison with data from

the literature served the sole purpose of validating the results of the simulations.

(a) (b)

Figure 4.2: Comparison between experimental and numerical (present study) concentra-

tion distribution at the distance of 16 mm for CG (a) 1/4 and (b) 1/2, with Re = 1.

In addition, the comparison between the flow lines and the transverse velocity

in the cap region was also performed. As can be seen in Figures 4.3 and 4.4, the

results obtained computationally showed again a lot of precision in relation to the

experimental data.

The data in Figure 4.2 can be used to evaluate the predicted mixture percent-

age experimentally (Wang et al., 2012) and numerically (this study). Using Eq. 3.4,

φ is calculated for CG 1/4 and 1/2, respectively, as 45.5% and 39.1% by the exper-

imental data from Wang et al. (2012), and 42.4% and 41.4% for the numerical data

for this study. Considering the methodological differences between the experiment

and simulation, the agreement between the results is considered good enough.
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(a) (b)

Figure 4.3: Simulated results obtained by Wang et al. (2012) of streamlines and transverse

velocity contour of designs CG (a) 1/4 and (b) 1/2, with Re = 1.

Figure 4.4: Simulated results obtained with OpenFOAM of streamlines and transverse

velocity contour of designs CG 1/4 (top) and 1/2 (bottom), with Re = 1.

From the results obtained from the simulations in the distribution through

the cross section of the micromixer at the position x = 16mm, it was possible to

define σ, φ and ∆P/φ, shown in Figs. 4.5 and 4.6.
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Figure 4.5: Data obtained from simulations: σ, φ, ∆P e ∆P/φ as function of OD.

Figure 4.6: Data obtained from simulations: σ, φ, ∆P e ∆P/φ as function of OF.

The values obtained in the simulation performed were compared with those

described in the literature, being consistent with what was expected.

Interestingly, as OD increases, both φ, ∆P and ∆P/φ also increase. As OF

increases, both φ, ∆P and ∆P/φ tend to decrease. This shows how difficult it is to

find OD and OF values that simultaneously satisfy the maximization of φ and the

minimization of ∆P and ∆P/φ.
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The first parameter analyzed was the pressure drop. In Figure 4.5 we can see,

in the graph that relates pressure drop and OD, that for the same offset values, we

have an increase in pressure drop as the diameter of the obstruction increases. This

result is expected since the increase of an obstacle dimension in the same position

(OF) would cause a greater pressure drop. Furthermore, in Figure 4.6, the graph

that relates pressure drop and OF demonstrates that, for a given value of OD, there

is an OF that generates a local maximum point in the pressure drop. A possible

explanation for this fact is that, for very small values of OF, we have a system

with half flow symmetry, given that it is divided almost equally between the two

paths generated by the obstruction. This symmetry may reduce the disturbance

generated, in addition to reducing its interaction with the walls of the system, by

placing the obstruction at an almost maximum distance between both walls. As the

OF increases, we see this symmetry reduce, as well as increase the effect that the

wall causes, increasing the disturbance caused. However, after a certain point, the

space between the obstruction and the wall becomes so small that the flow through it

becomes irrelevant to the system as a whole. In this case, the obstruction no longer

behaves like a flow divider and starts to behave similarly to a groove attached to

the wall. From that point on, we observed a reduction in the pressure drop.

The analysis performed on the behavior of the blend percentage reached

an interesting result, which illustrates the difficulty in optimizing the system. In

Figure 4.5, the graph that relates φ with OD, shows that for small values of OF, it

is clear that an increase in the value of OD generates an increase in the percentage

of mixing. However, when the value of OF is increased, a rapid drop in the blend

percentage is observed for all configurations, as can be better visualized in Figure

4.6 in the graph that relates φ with OF, through the green markers. A possible

explanation for this phenomenon is that, for low values of OF, greater obstructions

create greater perturbations, which increase the area of interaction between the

stream flows, improving the blend percentage. However, as the value of OF increases,

an asymmetry is created in the system that generates two different flows. In this

case, the higher the OD value, the more insignificant the flow that follows the

shortest path generated is for the system. Therefore, with the increase in OD, we

see a reduction in φ. On the other hand, as the OF increases, the more secondary
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this flow becomes, which explains the similarity between the values obtained for the

higher values of OF.

Figure 4.7 shows the relationship between ∆P and φ that must be optimized.

Figure 4.7: Pressure drop ∆P and ∆P/φ as functions of the mixture φ.

4.2 Neural network training and test

Part of the results shown in Figures 4.5 and 4.6 were used to train a dense

neural network, which generated a predictive model that allows, from a given geom-

etry, to predict the values of the pressure drop ∆P , the mixing percentage φ and

∆P/φ.

The data obtained in the simulations were organized containing the variables

to be used in the neural network, that is, OD and OF for input, φ and ∆P for

output. These data were separated into training data and test data with the ratio

value 0.2, which means that 20% of the data was be used for test and 80% for

training. The selection of the training data is made by an randomized algorithm, as

shown in Line 14 at Listing 3.2. Herein, we mapped values in the range from 0 to 1,

which ensures that the weight of all variables, both input and output, are the same.

The neural network requires the definition of the model, we defined our dense

neural network. It is worth emphasizing here the importance of observing through

the graph whether overfitting occurs, which is identified by the training data pre-
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senting a value higher than the curve of the simulation data. Finally, test data can

be applied to the found network for its validation.

The mean square error for pressure drop was less than 6.1%, while the mean

square error for percentage φ was less than 1.3%. The comparison between the

values obtained in the simulations using OpenFOAM (labeled as “test”) and those

predicted by the neural network (labeled as “validation”), from the OD and OF

values, are shown in Figures 4.8 - 4.10.

(a) (b)

Figure 4.8: (a) Loss function for the training data and (b) comparison of the value φ

between the test and validation data. The average error calculated was 0.979%.

(a) (b)

Figure 4.9: (a) Loss function for the training data and (b) comparison of the value ∆P

between the test and validation data. The average error calculated was 2.604%.

4.3 Optimization and verification

The optimization was first performed using Python’s Geneticalgorithm li-

brary, which allows the definition of only one objective function. Three different
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optimizations involving the maximization and minimization of (i) φ, (ii) ∆P and

(iii) ∆P/φ were considered.

(a) (b)

(c) (d)

Figure 4.10: (a) Loss function for the training data, comparison of (b) φ, (c) ∆P and (d)

∆P/φ between the test and validation data. The average error calculated was 0.972% and

1.820%, respectively.

As an example, ∆P/φ was chosen as the objective function with the devel-

oped network model, the input data is OD and OF and the prediction of these values

are used as output of the objective function. Furthermore, the function is subject

to a restriction due to the width of the channel, where the diameter of the obstacle

must be smaller than this value, that is, OD + OF > 200µm. If this relationship

is satisfied, it must assign a penalty value that will be added to the output of the

objective function. The penalty should be a value much higher than those usually

obtained at the exit to ensure that this situation is far from the minimum of the

function.

If, instead of the global (or local) minimum, the interest is in finding the

maximum of the objective function, the only change to be made is in the output

signal turning it to minus.

Once the appropriate objective function is defined, the execution of the ge-
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netic algorithm is performed. The parameters of this algorithm must be defined,

such as population size, mutation and crossover rate and maximum number of it-

erations. In this problem we chose to exclude the cases with very low ∆P , as they

also correspond to low φ (< 50%), which is obtained when considering OD ranging

only from 10 to 150 and OF from 10 to 160.

The values obtained for the objective functions, as well as the respective OD

and OF are presented in Tables 4.1 and 4.2.

Table 4.1: Maximum values obtained with the optimization.

ObF Maximum φ ∆P OD (µm) OF (µm)

φ (%) 59.45 59.45 - 139 41

∆P (mPa) 582.99 - 582.99 144 51

∆P/φ 9.36 59.59 557.66 142 34

∆Ps + 1/φs 111.39 42.69 51.34 102 99

Table 4.2: Minimum values obtained with the optimization.

ObF Minimum φ ∆P OD (µm) OF (µm)

φ (%) 42.28 42.28 - 10 76

∆P (mPa) 40.79 - 40.79 14 16

∆P/φ 0.96 42.71 41.05 11 11

∆Ps + 1/φs 1.65 56.91 224.12 127 12

The maximum values found for OD are very similar for φ, ∆P and ∆P/φ,

that is, around 140µm , while the values of OF are small, not exceeding 34µm. That

is, they represent a geometry with large obstacles and close to the channel wall. For

∆Ps+1/φs, the found OD value is smaller, 102µm, with OF 99µm. This corresponds

to geometries with diameters around half the width of the channel, which are also

located close to the channel wall. Note that in the latter case, the values for φ and

∆P are much smaller than for ∆P/φ which results in 1.20.

For the minimal cases, the OD values for φ, ∆P and ∆P/φ are also small,

between 10 and 14µm, while OF varies between 11 and 76µm. In other words,

small obstacles close or not to the wall generate flow with very low values for both
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variables, what should be expected. On the other hand, ∆Ps + 1/φs presents a

higher OD value, 127µm for a small OF value, 12µm. Note that ∆Ps and φs are

normalized to stay between 0 and 1. While the minimum value of ∆P/φ has low

values for both ∆P and φ, the same does not occur for its maximum value, which

indicates that this objective function can be used to obtain a condition of φ high

and ∆P as low as possible.

These optimization results correspond to the adoption of a single objective

function, φ, ∆P or ∆P/φ. Note that, according to Figures 4.5 and 4.6, both φ and

∆P increase with the value of OD and decrease with the value of OF. Thus, the

objective of finding OD and OF values that simultaneously satisfy the conditions of

φ maximum, ∆P minimum and ∆P/φ minimum cannot be achieved as the method

shown above. It becomes necessary to use a multiobjective genetic algorithm, which

was done using Python’s Platypus library. The three objective functions, in addi-

tion to these functions, must return the same restriction condition used previously.

One must inform the number of input variables, objective functions and constraints

to the problem. Furthermore, the restriction contained in the objective function

output must be complemented so that the range of possible values for the input

variables is well defined. The genetic algorithm method used was NSGAII (Deb

et al., 2002). At the end, the feasible solutions were filtered out of all the possible

solutions found. Pareto curves, as well as simulation data, are shown in Figure 4.11

for easy comparison.
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Figure 4.11: Pareto curves that maximize φ and minimize ∆P and ∆P/φ or (∆Ps+1/φs).

The first curves shown in Figure 4.11 correspond to the best possible values of

the objective functions, ranging from the prioritization of minimizing ∆P and ∆P/φ

to maximizing φ. The value found for φmax also corresponds to the highest value

of ∆P . Likewise, the value found for ∆Pmin also corresponds to the smallest value

of φ. In this work, we will consider, in addition to the optimal point obtained from

(∆Ps + 1/φs)min, the points with ∆P/φ minimum and φ maximum. In Table 4.3,

the chosen case is summarized, as well as the results obtained in the verification

simulation.

From the OD and OF values obtained for (∆Ps + 1/φs)min and observing

Figures 4.5 and 4.6, it can be noted that the case obtained refers to geometry
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Table 4.3: Comparison between the values obtained with optimization and simulation.

ObF OD (µm) OF (µm) φopt ∆Popt (mPa) φsim ∆Psim (mPa)

(∆Ps + 1/φs)min 131 10 57.47 235.87 57.98 227.67

close to the channel wall, with a medium-sized obstacle. In this region, ∆P tends to

decrease and φ remains large, as observed in Rahmannezhad and Mirbozorgi (2019).

Thus, the optimized geometry is compatible with what is expected, that is, obstacles

that are not too big or too small and close to the channel wall should be prioritized.

Figures 4.12 and 4.13 show the concentration, velocity and pressure profiles

obtained through the simulation for the optimal case.

Figure 4.12: Concentration (top) and velocity (bottom) profiles of the optimal cases.

Figure 4.13: Pressure profile of the optimal case.
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The errors obtained for φ and ∆P , respectively, for the optimized case were

0.88% and 3.60%. Both the predicted values of φ and ∆P are very accurate, specially

for the optimum case. The error for the maximum and minimum cases can be related

to the limits of the multivariable method applied.
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Chapter 5

Conclusion

A total of 265 different configurations was simulated for a micromixer with Y-

geometry micromixer. Originally, one of the goals of this work was to perform simu-

lations using CFD to allow global optimization of the geometry of this micromixer.

However, this set of simulations required about 45 days of full computing power and

was not sufficient to perform such an optimization process.

In this sense, it was assumed that the use of a dense neural network built

from the data obtained with CFD would allow solving the problem of computation

time versus precision. In this way, it would be possible to use reliable and accurate

data to feed a tool whose computation time is on the order of milliseconds. The goal

was to create a system with the computational speed offered by neural networks and

the precision achieved by using CFD.

Based on the results of these simulations, which evaluate two independent

parameters: blend percentage and pressure drop, which lead to the calculation of the

mixing energy cost, it was possible to train a dense neural network that generates a

predictive model that allows to predict from a given geometry the values of pressure

drop, percentage of mixing and mec. The average error for percentage of mixing

was less than 1%, while the average error for pressure drop was less than 3%.

The results obtained point to the construction of an optimal micromixer with

OD = 131µm and OF = 10µm for Re = 1. This corresponds to a medium size

obstacle that is close to the wall, which is compatible with previous results in the

literature.

When verifying through the simulation the values of φ and ∆P resulting
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from the optimization for the optimal case, we get errors of 0.88% and 3.60%,

respectively. Besides the small erros, the values φ = 57.975% and ∆P = 227.668

mPa of the simulated optimal geometry are even larger/smaller than the forecast of

57.47% and 297.46 mPa.

Finally, the use of Machine Learning, more specifically neural networks and

genetic algorithm proved to be effective in the study of problems involving optimiza-

tion, being this approach practically unprecedented in the literature. It is important

to emphasize that global optimization could be obtained by simulating 2000 cases

using CFD.

However, as each simulation takes around 4h, the total time to guarantee the

global optimization would be about 330 days. With this methodology, the whole

process of producing the dataset, training and optimization takes 45 days. This

procedure is a tremendous advantage for microfluidic optimization. It should also

be emphasized that despite the case studied applied with a geometric optimization,

the methodology will be the same for cases involving the optimization of any other

parameters, such as input flow or diffusion coefficient, for example.

It is also important to note that this work used software, programs, and sys-

tems for its development. The most prominent are: Gmsh 4.11 for the construction

of geometries, OpenFOAM 9 (Weller et al., 1998) for the solution of fluid dynam-

ics problems, Python 3.9 for data processing, Keras 2.9 (Chollet et al., 2015), and

TensorFlow 2.9 (Abadi et al., 2015) for the construction of neural networks. In ad-

dition, we almost only used operating systems that used the Linux Kernel (mainly

5.4 Kernel, using Ubuntu 18.04.5 LTS and Ubuntu 20.04.1 LTS) on this work. All

those listed above have in common the fact of being open source, which made it

possible, free of charge, to exercise science and learning. We believe that science

and human knowledge have a value infinitely above their monetary value, and it is of

great importance to do a course conclusion work almost entirely using open-source

systems.
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