

# Efeito do suporte em catalisadores de níquel para reforma a vapor do glicerol

Flávia Cunha Jácome

## Projeto de Final de Curso

Orientadora

Prof<sup>a</sup>. Mariana de Mattos Vieira Mello Souza, D. Sc.

Janeiro de 2018

## EFEITO DO SUPORTE EM CATALISADORES DE NÍQUEL PARA REFORMA A VAPOR DO GLICEROL

Flávia Cunha Jácome

Projeto de Final de Curso submetido ao Corpo Docente da Escola de Química, como parte dos requisitos necessários à obtenção do grau de Engenheira Química.

Aprovado por:

Yordanka Reyes Cruz, D.Sc.

Isabelle Cândido de Freitas, M.Sc.

Juliana Ferreira Gonçalves, M.Sc.

Orientado por:

Mariana de Mattos Vieira Mello Souza, D.Sc.

Rio de Janeiro, RJ – Brasil Janeiro de 2018

Jácome, Flávia Cunha.

Efeito do suporte em catalisadores de níquel para reforma a vapor do glicerol / Flávia Cunha Jácome. Rio de Janeiro: UFRJ/EQ, 2018. xii, 55p., il.

(Projeto Final) – Universidade Federal do Rio de Janeiro, Escola de Química, 2018. Orientadora: Mariana de Mattos Vieira Mello Souza.

1. Glicerol. 2. Catálise. 3. Reforma a vapor. 4. Projeto Final (Graduação – UFRJ/EQ). 5. Mariana de Mattos Vieira Mello Souza. I. Efeito do suporte em catalisadores de níquel para reforma a vapor do glicerol.

Dedico este trabalho ao meu pai Sergio, que se faz presente em todos os dias da minha vida, sei que, de onde estiver, está olhando por mim, à minha mãe Maria Amélia e à minha irmã Fernanda, por todo ensinamento, todo apoio e, principalmente, todo o amor.

"O começo de todas as ciências é o espanto de as coisas serem o que são."

Aristóteles

### AGRADECIMENTOS

Agradeço à minha família e amigos, pelo apoio e incentivo ao longo de todo o percurso, aos colegas do Laboratório de Tecnologias do Hidrogênio e à professora Mariana de Mattos Vieira Mello Souza, pela orientação. Resumo do Projeto de Final de Curso apresentado à Escola de Química como parte dos requisitos necessários para obtenção do grau de Engenheira Química.

## EFEITO DO SUPORTE EM CATALISADORES DE NÍQUEL PARA REFORMA A VAPOR DO GLICEROL

Flávia Cunha Jácome

Janeiro, 2018

Orientadora: Prof<sup>a</sup>. Mariana de Mattos Vieira Mello Souza, D.Sc.

A procura por fontes alternativas de energia encontra-se em crescente aumento, motivado pela diminuição das reservas de combustíveis fósseis e pela preocupação ambiental. Uma opção de energia alternativa é o biodiesel. Sua produção por transesterificação produz glicerol como principal subproduto, o que gera problemas relacionados à destinação do mesmo. Portanto, torna-se essencial o desenvolvimento de rotas tecnológicas para a conversão do glicerol em produtos de maior valor agregado. Uma das rotas possíveis é a reforma a vapor do glicerol para produção de hidrogênio. Neste trabalho, catalisadores de níquel suportado em alumina e alumina promovida com cálcio foram preparados por impregnação úmida do níquel no suporte. Os catalisadores preparados e um catalisador comercial, utilizado na reforma a vapor de metano, foram caracterizados por fluorescência de raios X (FRX), difração de raios X (DRX), redução à temperatura programada (TPR), dessorção à temperatura programada de amônia (TPD-NH<sub>3</sub>), fisissorção de N<sub>2</sub> e microscopia eletrônica de varredura (MEV). Os catalisadores, após a reação, foram caracterizados por difração de raios X, microscopia eletrônica de varredura, análise termogravimétrica (TGA) e análise térmica diferencial (DTA). A reação de reforma a vapor foi realizada em um reator de leito fixo em fluxo contínuo e conduzida a uma temperatura de 500 °C, a pressão atmosférica, velocidade espacial de 200.000 h<sup>-1</sup>, durante 30 horas de reação, com concentração de alimentação de 20% em volume de glicerol. Observou-se que a adição de cálcio a catalisadores Ni/Al<sub>2</sub>O<sub>3</sub> promove uma melhoria da estabilidade do catalisador. Após 24 horas de reação, o catalisador Ni/CaO-Al<sub>2</sub>O<sub>3</sub> apresentou os melhores resultados para conversão do glicerol e rendimento em hidrogênio. Na fase líquida foram encontrados como subprodutos acroleína, acetol e ácido propanoico.

## ÍNDICE DE TABELAS

| Tabela 2.1: | Propriedades físico-químicas do glicerol a 20 °C (Adaptada de LIDE, 2005) 6       |
|-------------|-----------------------------------------------------------------------------------|
| Tabela 2.2: | Distribuição do consumo de glicerol na indústria nacional (BEATRIZ et al., 2011). |
|             | 7                                                                                 |
| Tabela 3.1: | Composição teórica dos catalisadores (% em massa)20                               |
| Tabela 3.2: | Tempo de retenção dos gases26                                                     |
| Tabela 3.3: | Fator de correção dos gases26                                                     |
| Tabela 3.4: | Condições de operação do HPLC27                                                   |
| Tabela 3.5: | Tempos de retenção no HPLC27                                                      |
| Tabela 4.1: | Composição química dos catalisadores (% em massa)29                               |
| Tabela 4.2: | Área BET, volume e tamanho médio de poros dos catalisadores31                     |
| Tabela 4.3: | Tamanhos de cristalito do níquel e dispersão do níquel para os catalisadores35    |
| Tabela 4.4: | Graus de redução do NiO nos catalisadores37                                       |
| Tabela 4.5: | Adsorção de amônia por massa e por área de catalisador39                          |

### ÍNDICE DE FIGURAS

| Figura 2.1: Aplicações do hidrogênio (Adaptado de KIRTAY, 2011)4                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------|
| Figura 2.2: Distribuição de mercado mundial para o glicerol (PAGLIARO e ROSSI, 2008). 6                                                   |
| <b>Figura 2.3:</b> Reação de transesterificação para produção de biodiesel (BAGNATO <i>et al.</i> , 2017).                                |
| Figura 2.4: Rotas de valorização do glicerol (SAD <i>et al.</i> , 2015)9                                                                  |
| <b>Figura 2.5:</b> Influência da temperatura e pressão no rendimento em H <sub>2</sub> (BAGNATO <i>et al.</i> , 2017)10                   |
| <b>Figura 2.6:</b> Influência da temperatura nos produtos gasosos da reforma (WANG <i>et al.</i> , 2013).                                 |
| <b>Figura 2.7:</b> Influência da razão molar água/glicerol no rendimento em H <sub>2</sub> (BAGNATO <i>et al.</i> , 2017)12               |
| <b>Figura 2.8:</b> Influência da (a) razão água/glicerol e (b) temperatura na formação de coque (ADHIKARI <i>et al.</i> , 2007a)13        |
| <b>Figura 2.9:</b> Reações químicas para produção de H <sub>2</sub> por reforma a vapor do glicerol (POMPEO <i>et al.</i> , 2010)14       |
| Figura 2.10: Subprodutos líquidos primários da reforma do glicerol (CORMA <i>et al.</i> , 2008).                                          |
| Figura 2.11: Subprodutos líquidos secundários da reforma do glicerol (CORMA <i>et al.</i> , 2008).                                        |
| Figura 3.1: Esquema da unidade de reação (MANFRO, 2013)25                                                                                 |
| <b>Figura 4.1:</b> Isotermas de adsorção física de nitrogênio nos catalisadores: (a) Ni/α-Al <sub>2</sub> O <sub>3</sub> , (b)            |
| $Ni/\gamma$ -Al <sub>2</sub> O <sub>3</sub> , (c) Ni/CaO-Al <sub>2</sub> O <sub>3</sub> , (d) Ni/CaO-Al <sub>2</sub> O <sub>3</sub> com30 |
| <b>Figura 4.2:</b> Difratogramas do catalisador Ni/α-Al <sub>2</sub> O <sub>3</sub> 32                                                    |
| <b>Figura 4.3:</b> Difratogramas do catalisador Ni/γ-Al <sub>2</sub> O <sub>3</sub> 32                                                    |
| Figura 4.4: Difratogramas do catalisador Ni/CaO-Al <sub>2</sub> O <sub>3</sub> 33                                                         |
| Figura 4.5: Difratogramas do catalisador Ni/CaO-Al <sub>2</sub> O <sub>3</sub> com34 viii                                                 |

| Figura 4.6: Perfis de redução dos catalisadores obtidos por TPR                                                      | 37     |
|----------------------------------------------------------------------------------------------------------------------|--------|
| <b>Figura 4.7:</b> TPD-NH <sub>3</sub> dos catalisadores                                                             | 38     |
| Figura 4.8: Conversão global de glicerol dos catalisadores                                                           | 40     |
| Figura 4.9: Conversão a gás de glicerol dos catalisadores                                                            | 41     |
| Figura 4.10: Rendimento em H <sub>2</sub> dos catalisadores                                                          | 42     |
| Figura 4.11: Taxa de geração de H <sub>2</sub> dos catalisadores                                                     | 42     |
| Figura 4.12: Seletividade em H <sub>2</sub> dos catalisadores                                                        | 43     |
| Figura 4.13: Seletividade em (a) CO, (b) CO <sub>2</sub> e (c) CH <sub>4</sub> dos catalisadores                     | 44     |
| Figura 4.14: Rendimento em (a) acroleína, (b) acetol e (c) ácido propanoico                                          | 46     |
| Figura 4.15: Análise termogravimétrica e termodiferencial dos catalisadores após a reaç                              | ão. 47 |
| <b>Figura 4.16:</b> MEV do catalisador Ni/ $\alpha$ -Al <sub>2</sub> O <sub>3</sub> (a) reduzido e (b) após a reação | 48     |
| <b>Figura 4.17:</b> MEV do catalisador Ni/γ-Al <sub>2</sub> O <sub>3</sub> (a) reduzido e (b) após a reação          | 48     |
| Figura 4.18: MEV do catalisador Ni/CaO-Al <sub>2</sub> O <sub>3</sub> (a) reduzido e (b) após a reação               | 49     |
| Figura 4.19: MEV do catalisador Ni/CaO-Al <sub>2</sub> O <sub>3</sub> com (a) reduzido e (b) após a reação           | 49     |

#### NOMENCLATURA

- **BET -** Branauer-Emmet-Teller
- BJH Barrett-Joyner-Halenda
- CG Cromatografia gasosa
- **DRX -** Difração de raios X
- DTA Análise térmica diferencial
- FRX Fluorescência de raios X
- GHSV Gas Hourly Space Velocity
- HPLC Cromatografia líquida de alta performance
- MEV Microscopia eletrônica de varredura
- TCD Detector de condutividade térmica
- TG Termogravimetria
- TGA Análise termogravimétrica
- TPD-NH3 Dessorção à temperatura programada de NH3
- TPR Redução à temperatura programada

| 1 INTRODUÇÃO E OBJETIVOS                                           | 1        |
|--------------------------------------------------------------------|----------|
| 1.1 Introdução                                                     | 1        |
| 1.2 Objetivos                                                      | 3        |
| 1.2.1 Geral                                                        | 3        |
| 1.2.2 Específicos                                                  | 3        |
| 2 REVISÃO BIBLIOGRÁFICA                                            | 4        |
| 2.1 Hidrogênio                                                     | 4        |
| 2.2 Glicerol                                                       | 5        |
| 2.3 Reforma a vapor do glicerol para produção de hidrogênio        | 9        |
| 2.3.1 Termodinâmica                                                | 9        |
| 2.3.2 Mecanismos                                                   | 13       |
| 2.3.3 Catalisadores à base de níquel                               | 16       |
| 3 MATERIAIS E MÉTODOS                                              | 20       |
| 3.1 Preparo dos catalisadores                                      | 20       |
| 3.2 Caracterização dos catalisadores                               | 21       |
| 3.2.1 Composição química                                           | 21       |
| 3.2.2 Análise textural                                             | 21       |
| 3.2.3 Difração de raios X (DRX)                                    | 21       |
| 3.2.4 Redução à temperatura programada (TPR)                       | 22       |
| 3.2.5 Dessorção à temperatura programada de NH3 (TPD-NH3)          | 23       |
| 3.2.6 Análise termogravimétrica (TGA) e análise térmica diferencia | al (DTA) |
|                                                                    | 23       |
| 3.2.7 Microscopia eletrônica de varredura (MEV)                    | 24       |

## SUMÁRIO

| 3.3 Testes catalíticos                             | 24 |
|----------------------------------------------------|----|
| 3.4 Análises dos produtos da reação                | 25 |
| 3.4.1 Cromatografia gasosa (CG)                    | 25 |
| 3.4.2 Cromatografia líquida (HPLC)                 | 26 |
| 3.4.3 Desempenho catalítico                        | 27 |
| 4 RESULTADOS E DISCUSSÃO                           | 29 |
| 4.1 Fluorescência de raios X                       | 29 |
| 4.2 Análise textural                               | 29 |
| 4.3 Difração de raios X                            | 31 |
| 4.4 Redução à temperatura programada               | 35 |
| 4.5 Dessorção à temperatura programada de NH3      | 37 |
| 4.6 Testes catalíticos                             | 39 |
| 4.7 Termogravimetria e análise térmica diferencial | 46 |
| 4.8 Microscopia eletrônica de varredura            | 47 |
| 5 CONCLUSÕES E SUGESTÕES PARA TRABALHOS FUTUROS    | 50 |
| 5.1 Conclusões                                     | 50 |
| 5.2 Sugestões para trabalhos futuros               | 51 |
| 6 REFERÊNCIAS                                      | 52 |

#### **1 INTRODUÇÃO E OBJETIVOS**

#### 1.1 Introdução

Atualmente os combustíveis fósseis suprem grande parte da demanda de energia mundial. No entanto, a procura por fontes alternativas de energia encontra-se em crescente aumento uma vez que os recursos fósseis são não renováveis e são os principais emissores de gases poluentes. Esses gases poluentes afetam gravemente o sistema respiratório, o sistema nervoso e a pele, além de causar desequilíbrio na fauna e na flora, como a chuva ácida, e o efeito estufa (SHAHID; JAMAL, 2008).

Reduzir a dependência dos combustíveis fósseis e minimizar as emissões prejudiciais ao meio ambiente pode ser alcançado por fontes de energia sustentáveis. A pesquisa contínua de energia alternativa futura para substituir os combustíveis fósseis tem produzido muitas opções, tais como biodiesel, metanol, etanol, éter metílico, éter dietílico, bioetanol, gás natural sintético e hidrogênio (AHMED *et al.*, 2016).

Com emissões de uso final quase zero ou zero e recursos continuamente reabastecidos, o hidrogênio pode ser um transportador de energia sustentável ideal. Podemos citar como vantagens do hidrogênio a abundância, facilidade de conversão para outras formas de energia, maior poder calorífico específico se comparado a combustíveis fósseis convencionais, produção de água sem emissões poluentes e diferentes formas de armazenamento (DINCER; ACAR, 2015).

Nos últimos anos, foram alcançados avanços significativos na utilização de biocompostos, obtidos a partir de fontes renováveis de biomassa, em diferentes processos industriais. O biodiesel, uma mistura de ésteres de ácidos graxos, é produzido a partir da transesterificação de óleos vegetais ou gorduras animais usando álcoois simples, tais como metanol ou etanol, e obtém-se como principal subproduto o glicerol. Estima-se que a quantidade de glicerol obtida a partir da produção de biodiesel terá um rápido aumento nos próximos anos no mundo, e representa um problema porque o excesso de glicerol não será facilmente absorvido pelo mercado futuro com a crescente demanda de biodiesel (SANCHEZ; COMELLI, 2014).

No Brasil, por exemplo, segundo dados da Agência Nacional de Petróleo, Gás Natural e Biocombustíveis (ANP), houve um aumento da produção de biodiesel de 736 m<sup>3</sup> em 2005 para 3.801.339 m<sup>3</sup> em 2016. Esse aumento expressivo está atrelado à obrigatoriedade da adição

de biodiesel puro ao diesel, desde 2008, de acordo com o artigo 2° da Lei n° 11.097/2005. A quantidade de biodiesel no diesel cresceu de 2% para 8%, entre 2008 e 2017, e espera-se que aumente ainda mais, pois o cronograma de aumento do teor de biodiesel prevê a obrigatoriedade de 10% de biodiesel no diesel até março de 2018, conforme a Lei n° 13.263/2016.

Existe um crescente interesse pela transformação do glicerol já que tal composto orgânico é proveniente de recursos renováveis abundantes. Ademais, tal transformação permitirá um desenvolvimento ambiental sustentável. O glicerol é um substrato muito conveniente para produzir hidrogênio, que pode ser usado como combustível e limpo em células a combustível, além de ser utilizado como matéria-prima para obter produtos químicos e produtos alimentares, e em processos industriais, como produção de amônia e síntese de Fischer Tropsch (SANCHEZ; COMELLI, 2014).

Os processos atuais para produção de hidrogênio são baseados na reforma catalítica de hidrocarbonetos, sendo cerca de 50% da produção mundial gerada pela reforma a vapor do metano. Nos últimos anos, a possibilidade de obter hidrogênio a partir do glicerol tem sido amplamente investigada, já que é baseada em processos eficientes para empregar o excesso de glicerol proveniente da indústria do biodiesel. Entre os métodos para converter glicerol em hidrogênio estão a reforma auto-térmica, reforma em fase líquida, reforma com água supercrítica e reforma a vapor (SILVA *et al.*, 2015).

A reforma a vapor do glicerol mostra-se interessante devido ao fato de que o processo de reforma a vapor já é amplamente empregado na indústria e não exigiria muitas mudanças no sistema caso a carga de alimentação fosse alterada de metano ou nafta para glicerol. Comparando-se com a reforma a vapor de metano, processo mais empregado na indústria atualmente, a reforma a vapor do glicerol produz uma maior quantidade de hidrogênio para a mesma quantidade molar de alimentação. Estequiometricamente, 3 mols de hidrogênio podem ser obtidos por mol de metano, enquanto 7 mols podem ser obtidos por mol de glicerol. Além disso, enquanto que na reforma a vapor do metano um combustível é consumido para gerar outro combustível, o mesmo não ocorre na reforma do glicerol (SILVA *et al.*, 2015).

A reforma a vapor do glicerol, como qualquer outro processo, apresenta alguns desafios que precisam ser superados para tornar sua comercialização efetiva. Alguns dos principais desafios são a limitação termodinâmica, sendo a conversão prejudicialmente afetada em certas condições, particularmente em temperaturas baixas, a presença de reações secundárias que afetam a produção e pureza do hidrogênio e a formação de coque, que desativa o catalisador (SILVA *et al.*, 2015).

Com o objetivo de superar esses problemas, novos catalisadores vêm sendo estudados. Os materiais mais investigados são os catalisadores suportados de Pt, Pd, Ru, Co e Ni, sendo que o níquel apresenta uma atividade adequada durante a reação e baixo custo. O uso de diferentes suportes para um mesmo metal ativo resulta em performances catalíticas muito diferentes.

#### 1.2 Objetivos

#### 1.2.1 Geral

Estudar o efeito do suporte no desempenho de catalisadores à base de níquel na reforma a vapor do glicerol para produção de hidrogênio.

#### 1.2.2 Específicos

- Sintetizar catalisadores de níquel suportado em α-alumina, γ-alumina e γ-alumina com cálcio como promotor por impregnação úmida.
- Obter propriedades como área específica, grau de redução, dispersão do níquel, fases cristalinas e tamanho de cristal antes e após a reação.
- Correlacionar as propriedades obtidas para os catalisadores ao desempenho catalítico.

#### 2 REVISÃO BIBLIOGRÁFICA

#### 2.1 Hidrogênio

O hidrogênio é o mais leve, o mais simples e o mais abundante de todos os elementos químicos no universo. No entanto, ocorre apenas em combinação com outros elementos, principalmente com oxigênio, em forma de água, e com carbono, nitrogênio e oxigênio em compostos orgânicos e combustíveis fósseis. Tal elemento não é uma fonte primária de energia, mas torna-se um transportador de energia atraente quando separado desses outros elementos usando uma fonte de energia. O hidrogênio é muito limpo em termos de emissão no ponto de uso. Em células a combustível, é combinado com oxigênio sem geração de CO<sub>2</sub>, sendo o único subproduto a água (ACAR; DINCER, 2014).

O hidrogênio pode ser usado como combustível para combustão direta em motores de combustão interna e como combustível para células a combustível. No entanto, os maiores usuários do hidrogênio são as indústrias de fertilizantes, para produção de amônia, e de petróleo, para processos como hidrotratamento e hidrocraqueamento, com, respectivamente, 49% e 37% do uso total, como pode ser observado na Figura 2.1. A utilização atual do hidrogênio é equivalente a 3% do consumo mundial de energia, com uma taxa de crescimento estimada em 5-10% ao ano (KIRTAY, 2011).



Figura 2.1: Aplicações do hidrogênio (Adaptado de KIRTAY, 2011).

O setor de transporte terá provavelmente um uso muito difundido do hidrogênio no futuro, onde ajudará a reduzir a poluição proveniente da queima de combustíveis fósseis. Os veículos com células a combustível de hidrogênio são três vezes mais eficientes do que um motor a gasolina (KIRTAY, 2011).

Entre os possíveis métodos de produção de hidrogênio, a reforma a vapor de gás natural é o processo mais utilizado, cerca de 50% do total, resultando em grandes emissões de gases de efeito estufa. Trinta por cento, provém da reforma de óleos pesados e nafta, 18% da gaseificação do carvão, 3,9% da eletrólise da água e 0,1% de outras fontes (DINCER; ACAR, 2015).

#### 2.2 Glicerol

Glicerol, ou 1,2,3-propanotriol, é um líquido incolor, inodoro e viscoso com um sabor doce, derivado de matérias-primas naturais e petroquímicas. O nome do glicerol é derivado da palavra grega para doce, *glykys*, e os termos glicerina e glicerol tendem a ser usados indistintamente na literatura. Por outro lado, a expressão glicerina geralmente se refere a uma solução de glicerol em água, na qual o componente principal é o glicerol. O glicerol cru possui pureza entre 70% e 80% e é frequentemente concentrado e purificado antes da venda comercial a uma pureza de 95,5% a 99% (PAGLIARO; ROSSI, 2008).

O glicerol é uma das substâncias químicas mais versáteis e valiosas conhecidas pelo homem. É completamente solúvel em água e álcoois, parcialmente solúvel em muitos solventes comuns, como éter e dioxano, porém é insolúvel em hidrocarbonetos (PAGLIARO; ROSSI, 2008).

O glicerol possui uma combinação única de propriedades físicas e químicas (Tabela 2.1), sendo utilizado na fabricação de milhares de produtos. De fato, o glicerol possui mais de 1500 usos finais conhecidos, incluindo aplicações como ingrediente ou auxiliar de processamento em cosméticos, artigos de higiene pessoal, formulações farmacêuticas e produtos alimentares. Além disso, o glicerol é altamente estável sob condições normais de armazenamento, compatível com muitos outros materiais químicos, praticamente não irritante em seus vários usos e não há conhecimento de efeitos ambientais negativos (PAGLIARO; ROSSI, 2008). Na Figura 2.2 podemos observar a distribuição de mercado mundial para o glicerol.

| Fórmula química   | C <sub>3</sub> H <sub>8</sub> O <sub>3</sub> |
|-------------------|----------------------------------------------|
| Massa molecular   | 92,09382 g/mol                               |
| Densidade         | 1,264 g/cm <sup>3</sup>                      |
| Viscosidade       | 1,5 Pa.s                                     |
| Ponto de fusão    | 18,2 °C                                      |
| Ponto de ebulição | 290 °C                                       |

Tabela 2.1: Propriedades físico-químicas do glicerol a 20 °C (Adaptada de LIDE, 2005).



Figura 2.2: Distribuição de mercado mundial para o glicerol (PAGLIARO; ROSSI, 2008).

A Tabela 2.2 mostra o consumo industrial de glicerol no Brasil. Como principais consumidores destacam-se as indústrias de cosméticos, saboarias e fármacos, onde o glicerol é usado na forma bruta, principalmente como umectante. A utilização de derivados de transformações químicas do glicerol é ainda muito modesta (BEATRIZ *et al.*, 2011).

| Uso em                         | %  |
|--------------------------------|----|
| Cosméticos, saboaria, fármacos | 28 |
| Revenda                        | 15 |
| Ésteres                        | 13 |
| Poliglicerina                  | 12 |
| Alimentos e bebidas            | 8  |
| Resinas alquídicas             | 6  |
| Filmes de celulose             | 5  |
| Tabaco                         | 3  |
| Papel                          | 1  |
| Outros                         | 10 |

Tabela 2.2: Distribuição do consumo de glicerol na indústria nacional (BEATRIZ et al., 2011).

O glicerol pode ser produzido usando diferentes processos e matérias-primas. Por exemplo, ele pode ser obtido a partir de propileno através de várias vias, por hidrólise de óleo ou por transesterificação de óleos/gorduras. A produção de glicerol também pode ser realizada por fermentação com leveduras como *Saccharomyces cerevisiae, Candida albicans*, bactérias como *Bacillus subtilis* e microalgas como *Dunaliella tertiolecta* (BAGNATO *et al.*, 2017).

Desde o final dos anos 40, o glicerol tem sido produzido a partir da epicloridrina obtida a partir do propileno. Hoje, no entanto, fábricas de produção de glicerol estão fechando e fábricas que usam glicerol como matéria-prima estão sendo abertas, como resultado do grande excedente de glicerol obtido como coproduto da produção de biodiesel (BEATRIZ *et al.*, 2011).

A produção de biodiesel é realizada por meio de uma reação de transesterificação, a qual ocorre entre um triglicerídeo e um álcool de cadeia curta, metanol ou etanol, na presença de catalisador, gerando como produtos o biodiesel e glicerol (Figura 2.3). A solução glicerolmetanol é mais densa que os ésteres, podendo ser separada por decantação (PAGLIARO; ROSSI, 2008).



Figura 2.3: Reação de transesterificação para produção de biodiesel (BAGNATO et al., 2017).

O glicerol resultante da fabricação do biodiesel apresenta cerca de 20% de impurezas, sendo as principais o catalisador, álcool, ácidos graxos, sais e água. Estas impurezas dependem do tipo da oleaginosa e do tipo de catálise empregada na produção do biodiesel. Consequentemente, o glicerol bruto tem poucas aplicações diretas, sendo necessária a sua purificação para atender o mercado tradicional do glicerol ou para a sua conversão posterior. Portanto, é interessante encontrar processos viáveis para obter produtos com maior valor agregado (BEATRIZ *et al.*, 2011).

A Figura 2.4 mostra diversas possíveis reações para obter produtos mais valiosos a partir do glicerol como desidratação, oxidação, eterificação, esterificação, craqueamento, hidrogenólise etc. A rota de maior interesse neste trabalho é a produção de  $H_2$  a partir do glicerol via reação de reforma a vapor, como destacado na figura, que será apresentada em detalhes.



Figura 2.4: Rotas de valorização do glicerol (SAD et al., 2015).

#### 2.3 Reforma a vapor do glicerol para produção de hidrogênio

#### 2.3.1 Termodinâmica

A reforma a vapor do glicerol gera  $H_2$  e  $CO_2$  como principais produtos e  $CH_4$  e CO em baixas concentrações, mas também podem ser formados outros alcanos e subprodutos líquidos (MANFRO, 2012).

A reação global de reforma a vapor (Eq. 2.1) é endotérmica e resulta da combinação da decomposição do glicerol (Eq. 2.2) com a reação de shift (Eq. 2.3), a qual ocorre a partir do CO obtido na decomposição do glicerol reagindo na presença de água, gerando hidrogênio e CO<sub>2</sub>. Adicionalmente, pode ocorrer formação de metano a partir de CO ou CO<sub>2</sub> e H<sub>2</sub> por duas reações de metanação exotérmicas (Eq. 2.4 e 2.5).

$$C_3H_8O_{3(l)} + 3H_2O_{(l)} \leftrightarrow 3CO_{2(g)} + 7H_{2(g)}(\Delta H_{298 K} = 128kJ/mol)$$
 (Eq. 2.1)

$$C_3H_8O_{3(l)} \leftrightarrow 3CO_{(g)} + 4H_{2(g)} (\Delta H_{298 K} = 251 \text{ kJ/mol})$$
 (Eq. 2.2)

$$CO_{(g)} + H_2O_{(l)} \leftrightarrow CO_{2(g)} + H_{2(g)} (\Delta H_{298 K} = -41 \text{ kJ/mol})$$
 (Eq. 2.3)

$$CO_{(g)} + 3H_{2(g)} \leftrightarrow CH_{4(g)} + H_2O_{(g)} (\Delta H_{298 K} = -206 \text{ kJ/mol})$$
 (Eq. 2.4)

$$\text{CO}_{2(g)} + 4\text{H}_{2(g)} \leftrightarrow \text{CH}_{4(g)} + 2\text{H}_2\text{O}_{(g)} (\Delta\text{H}_{298 \text{ K}} = -165 \text{ kJ/mol})$$
 (Eq. 2.5)

A fim de favorecer a produção de hidrogênio através da reação de reforma a vapor, o catalisador deve promover a quebra das ligações C-C, O-H e C-H no reagente, resultando em  $H_2$  e CO, e facilitar a reação de shift para remover o CO adsorvido na superfície como CO<sub>2</sub>, em oposição à quebra das ligações C-O, o que resulta em alcanos (SAD *et al.*, 2015).

A reação de reforma a vapor ocorre com aumento de volume molar, portanto, pelo princípio de Le Chatelier, é favorecida a baixas pressões e, devido à sua natureza endotérmica, altas temperaturas. Essa tendência pode ser observada na Figura 2.5, onde os melhores rendimentos são obtidos em maiores temperaturas e menores pressões (BAGNATO *et al.*, 2017).



Figura 2.5: Influência da temperatura e pressão no rendimento em H<sub>2</sub> (BAGNATO et al., 2017).

Na Figura 2.6 observa-se uma variação do número de mols de todos os produtos gasosos (H<sub>2</sub>, CO, CO<sub>2</sub> e CH<sub>4</sub>) de acordo com a variação da temperatura. Em temperaturas mais baixas, a formação de CO<sub>2</sub> e CH<sub>4</sub> é maior, já que as reações de shift e de formação de metano são exotérmicas e, portanto, favorecidas em menores temperaturas. Em contrapartida, reações endotérmicas, como a reforma a vapor do glicerol e reação reversa de shift, são favorecidas em altas temperaturas, o que pode explicar o aumento do número de mols de H<sub>2</sub> e CO e pequena redução do número de mols de CO<sub>2</sub> observados nessas temperaturas (SILVA *et al.*, 2015).



Figura 2.6: Influência da temperatura nos produtos gasosos da reforma (WANG et al., 2013).

A razão molar água/glicerol de alimentação também influencia significativamente a produção de hidrogênio no equilíbrio. Considerando o princípio de Le Chatelier, é esperado que para maiores razões água/glicerol o equilíbrio desloque-se no sentido de consumo do excesso de água, produzindo então mais hidrogênio. Essa tendência pode ser observada na Figura 2.7, a qual mostra que para uma variação de razão molar entre 3 e 9, quanto maior a razão água/glicerol, maior o rendimento em H<sub>2</sub> (SILVA *et al.*, 2015).



Figura 2.7: Influência da razão molar água/glicerol no rendimento em H<sub>2</sub> (BAGNATO et al., 2017).

A temperatura de operação e a razão molar água/glicerol também influenciam na formação de coque. Adhikari *et al.* (2007a) sugeriram que a formação de carbono pode ser atribuída às reações de desproporcionamento de CO (Eq. 2.6), decomposição de metano (Eq. 2.7) e hidrogenação do CO e CO<sub>2</sub> (Eq. 2.8 e 2.9).

$$2CO_{(g)} \leftrightarrow CO_{2(g)} + C_{(s)}$$
(Eq. 2.6)

$$CH_{4(g)} \leftrightarrow 2H_{2(g)} + C_{(s)}$$
 (Eq. 2.7)

$$CO_{(g)} + 2H_{2(g)} \leftrightarrow H_2O_{(g)} + C_{(s)}$$
(Eq. 2.8)

$$\mathrm{CO}_{2(\mathrm{g})} + 2\mathrm{H}_{2(\mathrm{g})} \leftrightarrow 2\mathrm{H}_{2}\mathrm{O}_{(\mathrm{g})} + \mathrm{C}_{(\mathrm{s})} \tag{Eq. 2.9}$$

A formação de coque não é desejável no processo de reforma a vapor pois leva a desativação do catalisador. A Figura 2.8 mostra as condições em que a formação de coque é termodinamicamente possível. A uma temperatura de 1000 K, não há formação de coque para qualquer razão água/glicerol. Nas razões molares 6:1 e 9:1, a formação de coque foi termodinamicamente inibida para qualquer temperatura analisada. Aumentando a razão molar de 1:1 até 3:1, a formação de coque cai significativamente (Adhikari *et al.*, 2007a).



**Figura 2.8:** Influência da (a) razão água/glicerol e (b) temperatura na formação de coque (ADHIKARI *et al.*, 2007a).

#### 2.3.2 Mecanismos

Cheng *et al.* (2011) propuseram um mecanismo de reação para a reforma a vapor do glicerol na presença de catalisador de níquel suportado em alumina utilizando as expressões cinéticas de Langmuir-Hinsherwood baseadas em adsorção em sítio único ou duplo. O mecanismo é descrito a seguir:

$$\begin{array}{c} C_{3}H_{8}O_{3}+X_{1}\Leftrightarrow C_{3}H_{8}O_{3}X_{1}\\ H_{2}O+2X_{2}\Leftrightarrow OHX_{2}+HX_{2}\\ C_{3}H_{8}O_{3}X_{1}+HX_{2}\Rightarrow CH_{2}OHCHOHX_{1}+CHOHX_{2}+H_{2}\\ CHOHX_{2}\Rightarrow COX_{2}+H_{2}\\ CH_{2}OHCHOHX_{1}+HX_{2}\Rightarrow CH_{2}OHX_{1}+CH_{3}OX_{2}\\ CH_{2}OHX_{1}+X_{2}\Rightarrow CH_{2}X_{1}+OHX_{2}\\ CH_{2}X_{1}+HX_{2}\Rightarrow CH_{2}X_{1}+OHX_{2}\\ CH_{3}X_{1}+HX_{2}\Rightarrow CH_{4}+X_{1}+X_{2}\\ CH_{3}OX_{1}+X_{2}\Rightarrow CH_{2}OX_{1}+HX_{2}\\ CH_{2}OX_{1}+X_{2}\Rightarrow HCOX_{1}+HX_{2}\\ HCOX_{1}+X_{2}\Rightarrow COX_{1}+HX_{2}\\ COX_{1}\Leftrightarrow CO+X_{1}\\ COX_{1}+OHX_{2}\Leftrightarrow CO_{2}+HX_{2}+X_{1}\\ HX_{2}+HX_{2}\Leftrightarrow H_{2}+2X_{2}\\ \end{array}$$

Onde  $X_1$  e  $X_2$  são sítios ativos básicos e ácidos, respectivamente. O glicerol é adsorvido em um sítio catalítico  $X_1$  e água é dissociada e adsorvida em sítios catalíticos  $X_2$ . Posteriormente, o glicerol adsorvido reage com o hidrogênio adsorvido para dissociar em moléculas mais simples para produzir hidrogênio e dióxido de carbono, que é dessorvido no final do processo. Pompeo *et al.* (2010) apresentaram um esquema de reações químicas envolvidas na produção de hidrogênio a partir da reforma a vapor do glicerol, utilizando catalisadores suportados de Pt (Figura 2.9). Analisando a presença de produtos intermediários na fase líquida resultante da reforma do glicerol, foi possível elaborar o esquema das reações.

O primeiro passo envolve uma desidrogenação que leva à formação de 1,3-dihidroxi-2propanona ou 2,3-dihidroxi-propanal. A partir desse ponto, duas vias de reação podem ocorrer, indicadas na Figura 2.9 como [I] ou [II]. O caminho [I] indica que, devido à etapa de desidratação do 1,3-dihidroxi-2-propanona juntamente com uma hidrogenação, obtém-se o 1hidroxi-2-propanona (acetol), que por uma desidrogenação posterior leva a formação do 2oxopropanal. Os passos seguintes envolvem a quebra das ligações C-C. Reações de desidrogenação e hidratação do etanal podem levar a obtenção do ácido acético e finalmente obter o H<sub>2</sub>, CO, CO<sub>2</sub> e CH<sub>4</sub> pela quebra das ligações C-C. O caminho [II] não envolve reações de desidratação, mas envolve principalmente quebra das ligações C-C e desidrogenação, produzindo H<sub>2</sub> e CO. De acordo com os resultados obtidos, o menor teor do intermediário 2,3dihidroxi-propanal nos produtos da reação pode indicar uma maior taxa relativa da reação pelo caminho [II]. Assim, a baixa produção de CO<sub>2</sub> e CH<sub>4</sub> poderia ser atribuída à menor contribuição do caminho [I].



Figura 2.9: Reações químicas para produção de H<sub>2</sub> por reforma a vapor do glicerol (POMPEO et al., 2010).

Na reforma a vapor do glicerol podem ocorrer sucessivas etapas de desidratação, levando a subprodutos líquidos. A desidratação do glicerol demonstrou produzir primeiro acetol e acroleína, como mostrado na Figura 2.10. Este mecanismo foi observado em uma grande variedade de catalisadores, incluindo catalisadores suportados ácidos e básicos e zeólitas (CORMA *et al.*, 2008).



Figura 2.10: Subprodutos líquidos primários da reforma do glicerol (CORMA et al., 2008).

A desidratação do glicerol ocorre através de dois caminhos distintos e independentes. Um levando a acroleína, a partir do 3-hidroxipropionaldeído, um produto muito instável, e o outro formando acetol. O primeiro caminho ocorre a partir da remoção da função central de álcool na molécula de glicerol, enquanto que o segundo ocorre a partir da remoção de um dos dois grupos terminais de álcool (CORMA *et al.*, 2008).

A Figura 2.11 mostra os subprodutos líquidos secundários da reforma a vapor do glicerol, formados a partir da conversão do acetol. Acetona pode ser obtida a partir da hidrodesoxigenação do acetol, ocorrendo através de um intermediário, o propano-1,2-diol, o qual não é observado como produto, ou ocorrendo diretamente em uma reação combinada com H<sub>2</sub> ou doador de hidrogênio de forma semelhante ao craqueamento catalítico. Coque, olefinas e suas espécies de acetol podem ser espécies doadoras de hidrogênio. A formação de ácido pode ser explicada pela isomerização do acetol, formando ácido propanoico (CORMA *et al.*, 2008).



Figura 2.11: Subprodutos líquidos secundários da reforma do glicerol (CORMA et al., 2008).

#### 2.3.3 Catalisadores à base de níquel

Os catalisadores heterogêneos mais estudados para reforma a vapor do glicerol são os catalisadores à base de níquel, platina, cobalto e rutênio. A grande vantagem dos catalisadores de níquel comparados a catalisadores à base de metais nobres é o baixo custo (SILVA *et al.*, 2015).

O uso de diferentes suportes em catalisadores à base de níquel resulta em performances catalíticas muito diferentes. Adhikari *et al.* (2008) compararam a performance de catalisadores de níquel em diferentes suportes: MgO, CeO<sub>2</sub> e TiO<sub>2</sub>. A uma temperatura de 600 °C e razão água/glicerol 9:1, foi observada a seguinte ordem para a seletividade de hidrogênio: CeO<sub>2</sub> (70%) > MgO (40%) > TiO<sub>2</sub> (15%). Além disso, o catalisador com suporte de céria apresentou a menor deposição de coque. Foi sugerido que a céria estabelece uma maior interação com a fase ativa de níquel, o que leva a uma maior dispersão do metal e maior área específica disponível. Pant *et al.* (2011) observaram que a presença de céria afeta a redução das espécies de Ni<sup>2+</sup>, aumentando a atividade catalítica. Também foi sugerido que os dois estados de oxidação (+4/+3) que a céria apresenta acarreta em um desprendimento de oxigênio que reage com o carbono depositado durante a reação, reduzindo assim a formação de coque.

Manfro *et al.* (2012) estudaram catalisadores de Ni suportado em Al<sub>2</sub>O<sub>3</sub>, CeO<sub>2</sub> e ZrO<sub>2</sub> para a reforma a vapor do glicerol a 500 °C, com uma solução 10% em volume de glicerol. Todos os catalisadores apresentaram conversão próxima a 100%. A seletividade de hidrogênio mostrou a seguinte tendência:  $ZrO_2 > Al_2O_3 \approx CeO_2$ . O catalisador suportado em CeO<sub>2</sub> mostrou baixa atividade para a reação de shift, com a maior seletividade de CO, e todos os catalisadores apresentaram baixa formação de CH<sub>4</sub>. A formação de coque foi maior no catalisador suportado em Al<sub>2</sub>O<sub>3</sub>, mas não foi observada desativação em 8 horas de reação.

Sánchez *et al.* (2010) e Adhikari *et al.* (2007b) analisaram a performance do catalisador Ni/Al<sub>2</sub>O<sub>3</sub> para a reforma a vapor do glicerol. O primeiro grupo obteve uma conversão de 96,8% após 4 horas de reação a 600 °C, aumentando para 99,4% a 700 °C, e obteve uma seletividade de hidrogênio de 99,7% a 650 °C. O grupo também observou desativação do catalisador após 8 horas de reação, a 600 °C e 650 °C. Adhikari *et al.* (2007b) obtiveram uma conversão de aproximadamente 80% e seletividade de hidrogênio de 73-74%, a 900 °C.

Adhikari *et al.* (2007b) estudaram o efeito do teor de níquel em catalisadores Ni/Al<sub>2</sub>O<sub>3</sub> sobre a conversão e seletividade em hidrogênio. A uma temperatura de 900 °C, com 1,5% em massa de níquel, a conversão de glicerol foi de 75%, com o aumento do teor do níquel para 2,5%, a conversão aumentou para 81% e, com teor de 3,5%, a conversão aumentou para 94%. Apesar da conversão do glicerol aumentar de acordo com o teor de níquel, a seletividade de hidrogênio manteve-se praticamente estável em torno de 70%.

A desativação dos catalisadores é altamente dependente, entre outras coisas, da natureza do suporte. Muitos autores verificaram a formação de depósitos de carbono em catalisadores Ni/Al<sub>2</sub>O<sub>3</sub>, o que leva a uma desativação relativamente rápida. Normalmente, a formação de depósitos de coque está associada a reações de desidratação, craqueamento e polimerização que ocorrem nos sítios ácidos da alumina (SILVA *et al.*, 2015).

A  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> é um suporte adequado devido a sua estabilidade química e física, bem como sua alta resistência mecânica. Entretanto, a fraca interação com os percursores das espécies ativas resulta em uma baixa tolerância à sinterização (POMPEO *et al.*, 2005).

Em muitos estudos relatados na literatura, promotores têm sido usados em catalisadores à base de níquel a fim de melhorar seu desempenho na reforma a vapor do glicerol. Como mencionado anteriormente, a céria apresenta boas características para a reforma a vapor, sendo usada, por esse motivo, por muitos autores como promotor (SILVA *et al.*, 2015).

Iriondo *et al.* (2010) estudaram a reforma a vapor de glicerol utilizando catalisadores de Ni, com 13% em massa, suportado em alumina, céria e alumina promovida com 5%, 10% e 20% de céria. Os testes catalíticos foram realizados durante 8 horas utilizando uma solução de glicerol a 10%, pressão de 4 atm e temperaturas de 500 °C e 600 °C. A 500 °C, o catalisador

de Ni suportado em céria apresentou quase 100% de conversão nas primeiras horas de reação, no entanto a conversão decai rapidamente, chegando a 25,5% após 8 horas de reação, sugerindo desativação do catalisador. O aumento da temperatura para 600 °C não aumentou a conversão do glicerol. O catalisador de Ni suportado em alumina apresentou maior atividade que o catalisador suportado em céria, obtendo conversão total do glicerol a 500 °C e 600 °C. Os catalisadores de Ni suportado em alumina promovida com céria apresentaram conversão total do glicerol a 500 °C e 600 °C, no entanto a produção de H<sub>2</sub> mostrou-se dependente da quantidade de céria adicionada, já que o aumento do teor de céria promove uma redução dos produtos gasosos e um aumento de compostos oxigenados na fase líquida.

Iriondo *et al.* (2008) observaram que a adição de um promotor de zircônia à alumina não apenas melhora a performance em relação ao catalisador sem promotor como também apresenta melhor performance na reforma a vapor que o catalisador promovido por céria.

Kousi *et al.* (2016) investigaram os efeitos da adição de  $B_2O_3$  e  $La_2O_3$  em catalisadores Ni/Al<sub>2</sub>O<sub>3</sub> e observaram um incremento na seletividade de hidrogênio na presença de  $La_2O_3$ , enquanto que adicionando  $B_2O_3$  os autores notaram um resultado inverso, mais pronunciado a baixas temperaturas.

Wang *et al.* (2001) estudaram um catalisador com porcentagem em massa de 24,1% de NiO, 26,1% de MgO e 49,8% de Al<sub>2</sub>O<sub>3</sub>. A 650 °C, o catalisador exibiu uma seletividade de hidrogênio de 78,5% e conversão do glicerol de 88%. Dieuzeide *et al.* (2016) investigaram a influência da presença de Mg em catalisadores Ni/MgO-Al<sub>2</sub>O<sub>3</sub>, variando a porcentagem em massa de 0% a 10% de Mg. A 500 °C, eles observaram o melhor resultado em termos de baixa formação de carbono usando o catalisador com 3% de Mg, provavelmente porque favorece uma melhor dispersão de Ni.

Outros promotores básicos, como o cálcio, também foram relatados a fim de melhorar o desempenho da reforma a vapor do glicerol. Seung-hoon *et al.* (2014) analisaram o efeito da adição de cálcio a catalisadores Ni/Al<sub>2</sub>O<sub>3</sub> e observaram uma diminuição na formação de coque de 0,3561 g/g<sub>cat</sub> para 0,1484 g/g<sub>cat</sub> em 24 horas de reação a 600 °C, obtendo uma conversão de 84% e seletividade de hidrogênio de 63,09%.

Seung-hoon *et al.* (2014) adicionaram metais alcalinos (K, Ca, Sr) como promotores em catalisadores Ni/Al<sub>2</sub>O<sub>3</sub>. Uma formação de coque muito baixa foi obtida usando Ni/SrO-Al<sub>2</sub>O<sub>3</sub>, provavelmente como consequência do aumento da basicidade do catalisador.

A adição de promotores básicos ao suporte de alumina aumenta a estabilidade do níquel contra a sinterização, uma vez que diminui o grau de interação da fase ativa de níquel com o suporte de alumina, reduzindo a acidez do suporte e aumentando sua resistência à formação de carbono (SILVA *et al.*, 2015).

#### **3 MATERIAIS E MÉTODOS**

#### **3.1 Preparo dos catalisadores**

Foram preparados 3 catalisadores com 20% em massa de NiO, variando o suporte empregado para fins comparativos. Os suportes utilizados foram  $\alpha$ -Al<sub>2</sub>O<sub>3</sub>,  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> preparada por calcinação da boemita e CaO – Al<sub>2</sub>O<sub>3</sub>, sintetizado para conter uma proporção de 14% de CaO e 86% de  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>, preparado por impregnação úmida.

A Tabela 3.1 mostra a composição teórica dos catalisadores estudados.

|                                       | NiO (%) | Al <sub>2</sub> O <sub>3</sub> (%) | CaO (%) |
|---------------------------------------|---------|------------------------------------|---------|
| Ni/a-Al <sub>2</sub> O <sub>3</sub>   | 20      | 80                                 | -       |
| Ni/γ-Al <sub>2</sub> O <sub>3</sub>   | 20      | 80                                 | -       |
| Ni/CaO-Al <sub>2</sub> O <sub>3</sub> | 20      | 68,8                               | 11,2    |

Tabela 3.1: Composição teórica dos catalisadores (% em massa).

O suporte  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> foi preparado por calcinação da boemita a 500 °C por 3 horas, empregando uma taxa de aquecimento de 10 °C/min, sob fluxo de ar numa vazão de 60 mL/min.

Para o suporte CaO – Al<sub>2</sub>O<sub>3</sub>, pesou-se 1,77g de nitrato de cálcio tetrahidratado (Vetec) e 2,58g de  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>, que foram solubilizados em 200 mL de água destilada e homogeneizados sob rotação constante de 200 rpm por 2 horas. Em seguida a solução foi levada à evaporação em rotaevaporador à temperatura de 80 °C, sob vácuo e com rotação de 200 rpm. Após a evaporação completa da água, o suporte foi seco em estufa a 100 °C durante 24 horas e calcinado a 500 °C por 3 horas, com taxa de 10 °C/min e sob fluxo de ar (60 mL/min).

Após a preparação dos suportes, os catalisadores de níquel foram preparados pela técnica de impregnação úmida, utilizando como precursor o nitrato de níquel hexahidratado (Vetec). Para a impregnação, foram pesadas quantidades de nitrato de níquel de modo a obter o teor desejado de 20% em massa de NiO após a calcinação. As quantidades pesadas foram solubilizadas em 200 mL de água destilada e as soluções resultantes misturadas aos suportes e homogeneizadas sob rotação de 200 rpm por 2 horas. Após a homogeneização o excesso de água foi removido por evaporação em rotaevaporador a 80 °C, sob vácuo e com rotação de 200 rpm. Os catalisadores foram então secos em estufa a 100 °C durante 24 horas e calcinados a 500 °C por 3 horas, com taxa de 10 °C/min e sob fluxo de ar (60 mL/min).

Foi também utilizado um catalisador comercial, denominado Ni/CaO-Al<sub>2</sub>O<sub>3</sub>com, de reforma a vapor de gás natural, que se encontrava na forma de pellets. Os pellets foram macerados e separados por peneiramento, de modo a obter um diâmetro médio de aproximadamente 0,106 mm.

#### 3.2 Caracterização dos catalisadores

As análises texturais foram realizadas no Laboratório de Tecnologias Verdes – GreenTec/EQ/UFRJ. As demais análises e testes catalíticos foram realizados no Laboratório de Tecnologias do Hidrogênio – LabTecH/EQ/UFRJ.

#### 3.2.1 Composição química

As composições químicas foram determinadas através da análise de fluorescência de raios X (FRX). Foi utilizado um espectrômetro da marca Rigaku, modelo Primini.

Para a realização das análises, amostras do suporte  $CaO - Al_2O_3$  e dos catalisadores calcinados foram colocadas em porta amostra e cobertas com filme fino de polipropileno.

#### 3.2.2 Análise textural

As propriedades texturais dos catalisadores foram determinadas por fisissorção de  $N_2$ , em um equipamento TriStar 3000. As áreas específicas dos catalisadores foram determinadas pelo método Branauer-Emmet-Teller (BET) e o volume específico dos poros pelo método Barrett-Joyner-Halenda (BJH).

As amostras foram previamente secas a 300 °C e sob vácuo, em seguida, a análise foi iniciada a -196 °C, obtendo as isotermas de adsorção e dessorção em diferentes pressões relativas de  $N_2$ .

#### 3.2.3 Difração de raios X (DRX)

Com a finalidade de determinar a estrutura cristalina das amostras, foi utilizada a técnica de difração de raios X. A análise foi feita em um difratômetro da marca Rigaku, modelo Miniflex II, com radiação de Cu k<sub>a</sub> (30 kV e 15 mA), com intervalo de análise de 5° $\leq$ 2 $\theta$  $\leq$ 90° e passo de 0,05°/s, utilizando tempo de contagem de 1 segundo por passo. A identificação das estruturas cristalinas foi realizada com base nos dados JCPDS (*Joint Committee on Powder Diffraction Standards*).

O tamanho médio de cristalito de níquel dos catalisadores reduzidos e após os testes catalíticos foi obtido através dos respectivos difratogramas, pela equação de Scherrer (Eq. 3.1).

$$D_{hkl} = \frac{k\lambda}{\beta \cos(\theta)}$$
(Eq. 3.1)

Onde:

D<sub>hkl</sub> - Tamanho médio do cristalito;

- k Constante que depende da forma das partículas (para esfera, k = 0.94);
- $\lambda$  Comprimento de onda da fonte de raios X (para Cu k<sub>a</sub>,  $\lambda$  = 1,5488 Å);
- $\beta$  Largura do pico à meia altura, em radianos;
- $\theta$  Ângulo de difração.

A dispersão da fase ativa dos catalisadores foi estimada de acordo com Anderson (1975) (Eq. 3.2).

$$D = \frac{6V_m}{D_{hkl}A_m}$$
(Eq. 3.2)

Onde:

D-Dispersão;

 $V_m$  – Volume atômico do Ni (0,0109 nm<sup>3</sup>);

D<sub>hkl</sub> - Tamanho médio do cristalito, em nm;

 $A_m$  – Área superficial de um átomo de Ni (0,0649 nm<sup>2</sup>).

#### 3.2.4 Redução à temperatura programada (TPR)

A análise dos perfis de redução dos catalisadores foi realizada em unidade acoplada a um detector de condutividade térmica (TCD).

As amostras foram pesadas de forma a ter 10 mg de fase ativa, correspondente a 50 mg de catalisador. Primeiramente, as amostras foram pré-tratadas, para remoção da umidade, sendo aquecidas a temperatura de 150 °C por 30 minutos, com uma taxa de 10 °C/min, sob fluxo de argônio (30 mL/min). Após resfriadas a temperatura ambiente, as amostras foram aquecidas até 1000 °C, com uma taxa de 10 °C/min, sob fluxo de 1,8% H<sub>2</sub>/Ar (30 mL/min) e o hidrogênio consumido foi monitorado.

A partir da reação de redução do óxido de níquel (Eq. 3.3), foi possível calcular o consumo teórico de  $H_2$  para a redução total do NiO e, pela integração dos picos de consumo de  $H_2$  no Origin®, pôde-se calcular o consumo obtido experimentalmente. Assim, foi estimado o grau de redução dos catalisadores.

$$NiO + H_2 \rightarrow Ni + H_2O$$
 (Eq. 3.3)

Pela observação dos perfis de consumo de H<sub>2</sub>, foi fixada a temperatura de redução para os testes catalíticos de todos os catalisadores.

#### 3.2.5 Dessorção à temperatura programada de NH<sub>3</sub> (TPD-NH<sub>3</sub>)

A fim de avaliar a acidez total dos catalisadores, foi utilizada a análise de dessorção à temperatura programada de amônia. Os gases foram analisados por um espectrômetro de massas da marca Pfeiffer, modelo QMG-220, sendo utilizada a razão m/z=15 para a quantificação da amônia.

Primeiramente, as amostras foram reduzidas *in situ* sob fluxo de uma mistura 1,8% H<sub>2</sub>/Ar (30 mL/min) até a temperatura de redução fixada através do TPR (800 °C) por 30 minutos, com uma taxa de aquecimento de 10 °C/min. Em seguida, após o resfriamento das amostras a temperatura ambiente, realizou-se a adsorção de amônia à 70 °C por 30 minutos, sob fluxo de uma mistura 4% NH<sub>3</sub>/He, com vazão de 30 mL/min. Após esse período, para remoção da amônia fisissorvida, realizou-se uma purga com hélio por 60 minutos com uma vazão de 30 mL/min. A dessorção da amônia quimissorvida foi realizada por aquecimento até 800 °C, com uma taxa de 20 °C/min.

A partir da integração dos picos de dessorção da amônia no Origin®, pôde-se estimar a quantidade de amônia quimissorvida no catalisador, o que está relacionado à acidez.

#### 3.2.6 Análise termogravimétrica (TGA) e análise térmica diferencial (DTA)

Para a quantificação do coque formado durante a reação, foram realizadas análises termogravimétricas e análises térmicas diferenciais em um equipamento da marca TA, modelo SDT Q600.

No próprio equipamento, foram pesadas massas entre 3 mg e 10 mg das amostras dos catalisadores após as reações. Após a pesagem, as amostras foram aquecidas no forno do equipamento até uma temperatura de 1000 °C com uma taxa de aquecimento de 10 °C/min, sob fluxo de ar sintético com vazão de 50 mL/min.

Os picos de perda de massa na curva do TG associados aos picos exotérmicos no DTA foram atribuídos à queima do coque. Dessa forma, foi possível quantificar o coque formado.

#### 3.2.7 Microscopia eletrônica de varredura (MEV)

Os aspectos morfológicos dos catalisadores antes e após os testes catalíticos foram observados por microscopia eletrônica de varredura, para fins comparativos. Foi utilizado um microscópio da marca Hitachi, modelo TM-3030Plus.

#### 3.3 Testes catalíticos

Os testes catalíticos foram realizados em reator de leito fixo de quartzo e a alimentação foi feita através de uma bomba Eldex, modelo 1 SM.

Antes do início das reações, os catalisadores foram misturados com carbeto de silício em uma proporção 1:5 (catalisador/carbeto), equivalente a 150 mg de catalisador e 750 mg de carbeto, e reduzidos *in situ* utilizando uma mistura redutora de H<sub>2</sub>/N<sub>2</sub>, com uma vazão de H<sub>2</sub> igual a 30 mL/min e vazão de N<sub>2</sub> igual a 60 mL/min, sendo aquecidos a temperatura de 800 °C por 30 minutos, com uma taxa de aquecimento de 10 °C/min.

As reações de reforma a vapor do glicerol foram realizadas à pressão atmosférica, temperatura de 500 °C e *Gas Hourly Space Velocity* (GHSV) de 200000 h<sup>-1</sup>. A alimentação consistia em uma solução 20% em volume de glicerolPA (Vetec), equivalente a uma razão molar água/glicerol igual a 15, a uma vazão de 0,106 mL/min. O vaporizador, as válvulas e a linha por onde passava o reagente vaporizado foram mantidos aquecidos a uma temperatura de 225 °C, a fim de evitar a condensação. Foi utilizado Hélio como gás de arraste, a uma vazão de 51 mL/min. Os parâmetros utilizados nas reações foram determinados pelo teste difusional realizado por Menezes (2017).

Um esquema simplificado da unidade de realização dos testes catalíticos é apresentado na Figura 3.1.



Figura 3.1: Esquema da unidade de reação (MANFRO, 2013).

#### 3.4 Análise dos produtos da reação

A saída do reator era conectada a um condensador de vidro, no qual circulava água a aproximadamente 3 °C, a fim de promover a condensação dos produtos líquidos e do glicerol não convertido.

A fração líquida era coletada de hora em hora, durante as 8 primeiras horas e, no segundo dia, a partir da 24<sup>ª</sup> hora, até completar 30 horas de reação. As amostras líquidas eram então analisadas por cromatografia líquida de alta performance (HPLC). A fração não condensada era injetada em cromatógrafo a gás de hora em hora durante as 30 horas de reação. A vazão de gás também era medida para cálculos posteriores.

#### 3.4.1 Cromatografia gasosa (CG)

A fase gasosa foi analisada em tempo real por cromatografia gasosa com um cromatógrafo Shimadzu, modelo GC-2014, equipado com uma coluna Carboxen 1010 e detector de condutividade térmica (TCD). A identificação de H<sub>2</sub>, CO, CO<sub>2</sub> e CH<sub>4</sub> foi realizada pela coluna Carboxen 1010, através do TCD.

Foi utilizado hélio como gás de arraste da coluna, com uma vazão total de 25 mL/min e vazão na coluna de 2,78 mL/min. A temperatura dos injetores foi mantida em 120 °C e dos detectores em 250 °C, enquanto que a coluna era mantida a 40 °C por 20 minutos e aquecida até 120 °C com uma taxa de 10 °C/min, mantendo-se nessa temperatura por 10 minutos.

A Tabela 3.2 mostra o tempo de retenção dos gases na coluna Carboxen 1010.

| Gás             | Tempo de retenção (min) |
|-----------------|-------------------------|
| H_2             | 1,75                    |
| СО              | 3,36                    |
| $\mathrm{CO}_2$ | 15,47                   |
| $CH_4$          | 6,30                    |

Tabela 3.2: Tempo de retenção dos gases.

A quantificação da fração molar dos gases foi feita através da integração dos picos no TCD e correção por fatores de cada gás determinados em trabalhos anteriores. A fração molar então foi obtida pela razão entre a área corrigida de cada gás e a soma das áreas corrigidas de todos os gases. Na Tabela 3.3 são apresentados os fatores de correção utilizados para cada gás.

Tabela 3.3: Fator de correção dos gases.

| Gás    | Fator de correção |
|--------|-------------------|
| H2     | 0,9               |
| СО     | 42                |
| $CO_2$ | 48                |
| $CH_4$ | 35,7              |

#### 3.4.2 Cromatografia líquida (HPLC)

Os produtos líquidos e o glicerol não convertido foram analisados por cromatografia líquida de alta performance. Em trabalhos anteriores, curvas de calibração de cada composto foram construídas pela análise de soluções com concentração conhecida e os tempos de retenção foram determinados.

Na cromatografia líquida foi utilizado um equipamento da marca Shimadzu, modelo Prominence. O sistema é composto por desgaseificador DGU-20<sup>a</sup>, bomba de pistão duplo LC-20AT, controladora CBM-20AT, forno CTO-20<sup>a</sup>, detector de índice de refração RID-10<sup>a</sup> e detector de ultravioleta e visível (UV/VIS) SPD-20AV. A coluna utilizada foi da Bio-Rad, modelo Aminex HPX-87H (300 x 7,8 mm).

Na fase líquida foram identificados e quantificados glicerol, acroleína, acetol e ácido propanoico. O glicerol e o acetol foram analisados pelo detector RID e a acroleína e o ácido propanoico pelo detector UV/VIS. As condições de operação utilizadas no HPLC são apresentadas na Tabela 3.4 e os tempos de retenção dos compostos na Tabela 3.5.

| Variável                           | Valor                                |
|------------------------------------|--------------------------------------|
| Fase móvel                         | 0,01M H <sub>2</sub> SO <sub>4</sub> |
| Vazão                              | 0,6 mL/min                           |
| Temperatura da coluna e detectores | 30 °C                                |
| Comprimento de onda UV/VIS         | 210 nm                               |
| Volume de injeção                  | 20 µL                                |

 Tabela 3.4: Condições de operação do HPLC.

Tabela 3.5: Tempos de retenção no HPLC.

| Compostos        | Detector | Tempo de retenção (min) |
|------------------|----------|-------------------------|
| Glicerol         | RID      | 13,5                    |
| Acroleína        | UV/Vis   | 27,5                    |
| Acetol           | RID      | 17,5                    |
| Ácido propanoico | UV/Vis   | 17,5                    |

#### 3.4.3 Desempenho catalítico

O desempenho catalítico nas reações foi avaliado por parâmetros como conversão, seletividade, rendimento e taxa de formação de H<sub>2</sub>, descritos pelas equações seguintes.

1. Conversão global

$$X_{a}(\%) = \frac{N_{glicerol}^{entrada}(\frac{mol}{h}) - N_{glicerol}^{saida}(\frac{mol}{h})}{N_{glicerol}^{entrada}(\frac{mol}{h})} \times 100$$
(Eq. 3.4)

2. Conversão a gás

$$X_{g}(\%) = \frac{\text{mols de carbono nos produtos gasosos}}{\text{mols de carbono na entrada}} \times 100$$
(Eq. 3.5)

27

3. Seletividade em H<sub>2</sub>

$$S_{H_2}(\%) = \frac{\text{mols de } H_2 \text{ produzidos}}{\text{mols de carbono nos produtos gasosos}} \times \frac{1}{RR} \times 100$$
(Eq. 3.6)

Onde:

RR - Razão entre  $H_2/CO_2$  na reforma a vapor do glicerol (7/3)

4. Seletividade em CO, CO<sub>2</sub> e CH<sub>4</sub>

$$S_{i}(\%) = \frac{\text{átomos de carbono da espécie i}}{\text{átomos de carbono nos produtos gasosos}} \times 100$$
(Eq. 3.7)

Onde:

- i CO, CO<sub>2</sub> ou CH<sub>4</sub>
  - 5. Rendimento em  $H_2$

$$Y_{H_2}(\%) = \frac{N_{H_2}^{\text{saida}}(\frac{\text{mol}}{h})}{7N_{\text{glicerol}}^{\text{entrada}}(\frac{\text{mol}}{h})} \times 100$$
(Eq. 3.8)

6. Rendimento em acroleína, acetol e ácido propanoico

$$Y_{j}(\%) = \frac{N_{j}^{\text{saida}}(\frac{\text{mol}}{h})}{N_{\text{glicerol}}^{\text{entrada}}(\frac{\text{mol}}{h})} \times 100$$
(Eq. 3.9)

Onde:

#### j - Acroleína, acetol ou ácido propanoico

7. Taxa de geração de H<sub>2</sub>

Taxa de H<sub>2</sub> 
$$\left(\frac{\mu mol}{\text{gcat.min}}\right) = \frac{N_{\text{H}_2}^{\text{saida}}(\frac{mol}{\min})}{m \text{ catalisador (g)}} \times 10^6$$
 (Eq. 3.10)

#### **4 RESULTADOS E DISCUSSÃO**

#### 4.1 Fluorescência de raios X

A composição química dos catalisadores preparados e do catalisador comercial é apresentada na Tabela 4.1. As composições obtidas experimentalmente pela técnica de fluorescência de raios X são similares às composições teóricas calculadas, sendo o Ni/α-Al<sub>2</sub>O<sub>3</sub> o catalisador com maior discrepância. Tais diferenças podem ser explicadas por erros experimentais ou erro de leitura do equipamento. O catalisador comercial apresentou em sua composição, além de NiO, Al<sub>2</sub>O<sub>3</sub> e CaO, pequenas proporções de MgO e K<sub>2</sub>O.

|                                           | 1 7 1   |               |         | ,       |                      |
|-------------------------------------------|---------|---------------|---------|---------|----------------------|
| Catalisador                               | NiO (%) | $Al_2O_3$ (%) | CaO (%) | MgO (%) | K <sub>2</sub> O (%) |
| Ni/a-Al <sub>2</sub> O <sub>3</sub>       | 27      | 73            | 0       | 0       | 0                    |
| $Ni/\gamma$ - $Al_2O_3$                   | 21      | 79            | 0       | 0       | 0                    |
| Ni/CaO-Al <sub>2</sub> O <sub>3</sub>     | 25      | 63            | 12      | 0       | 0                    |
| Ni/CaO-Al <sub>2</sub> O <sub>3</sub> com | 15      | 68            | 14      | 1,4     | 2,1                  |

 Tabela 4.1: Composição química dos catalisadores (% em massa).

#### 4.2 Análise textural

As isotermas de adsorção física de nitrogênio nos catalisadores são apresentadas na Figura 4.1. A isoterma do Ni/α-Al<sub>2</sub>O<sub>3</sub> assemelha-se a uma isoterma do Tipo II, para materiais não-porosos, enquanto as demais podem ser classificadas como isoterma Tipo IV, para materiais mesoporosos. Observa-se que em todos os catalisadores ocorre o fenômeno de histerese, caracterizado pela diferença entre as curvas de adsorção e dessorção, comportamento associado à condensação capilar. Os diferentes formatos de histerese encontrados relacionamse a diferentes formas e distribuições de tamanho de poros.



**Figura 4.1:** Isotermas de adsorção física de nitrogênio nos catalisadores: (a) Ni/α-Al<sub>2</sub>O<sub>3</sub>, (b) Ni/γ-Al<sub>2</sub>O<sub>3</sub>, (c) Ni/CaO-Al<sub>2</sub>O<sub>3</sub>, (d) Ni/CaO-Al<sub>2</sub>O<sub>3</sub>com.

A Tabela 4.2 apresenta os resultados obtidos para área específica, volume e tamanho médio dos poros dos catalisadores. O catalisador Ni/ $\alpha$ -Al<sub>2</sub>O<sub>3</sub> apresenta a menor área BET, o que está de acordo com a literatura. Pompeo *et al.* (2005) obtiveram uma área BET de 10 m<sup>2</sup>/g e tamanho médio do poro de 170 Å para o Ni/ $\alpha$ -Al<sub>2</sub>O<sub>3</sub>.

Os catalisadores Ni/ $\alpha$ -Al<sub>2</sub>O<sub>3</sub> e Ni/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub> apresentam uma grande discrepância entre suas áreas específicas. Esse fato ocorre pela mudança de fase da alumina para os suportes. Lee *et al.* (2015) observaram que a mudança de fase da  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> para  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> provoca uma diminuição da área BET de 200 m<sup>2</sup>/g para 25 m<sup>2</sup>/g.

O catalisador  $Ni/\gamma$ - $Al_2O_3$  apresenta maior área BET, o que já era esperado, pois a adição de óxido de cálcio ao suporte de alumina causa uma diminuição da área específica dos catalisadores, conforme estudado por Dias e Assaf (2003).

|                                           | Área BET (m²/g) | Volume de poros      | Tamanho médio do |
|-------------------------------------------|-----------------|----------------------|------------------|
|                                           |                 | (cm <sup>3</sup> /g) | poro (Å)         |
| Ni/a-Al <sub>2</sub> O <sub>3</sub>       | 12              | 0,03                 | 150,9            |
| Ni/y-Al <sub>2</sub> O <sub>3</sub>       | 145             | 0,34                 | 65,4             |
| Ni/CaO-Al <sub>2</sub> O <sub>3</sub>     | 65              | 0,38                 | 167,7            |
| Ni/CaO-Al <sub>2</sub> O <sub>3</sub> com | 88              | 0,13                 | 67,5             |

Tabela 4.2: Área BET, volume e tamanho médio de poros dos catalisadores.

#### 4.3 Difração de raios X

Os difratogramas dos catalisadores  $Ni/\alpha$ -Al<sub>2</sub>O<sub>3</sub> e  $Ni/\gamma$ -Al<sub>2</sub>O<sub>3</sub> são apresentados nas Figuras 4.2 e 4.3. Observa-se que os picos referentes à  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> (JCPDS 10-0173) e  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> (JCPDS 29-0063) se mantêm em todos os estágios analisados, sendo eles o suporte, o catalisador calcinado, o catalisador reduzido e o catalisador após os testes catalíticos.

Nos catalisadores calcinados observa-se o aparecimento de picos referentes ao óxido de níquel nos ângulos 20 iguais a 37,3°, 43,3°, 63,3°, 75,5° e 79,5° (JCPDS 47-1049). Tal fato confirma o sucesso da calcinação em converter o nitrato de níquel impregnado em óxido de níquel.

Nos catalisadores reduzidos observa-se o desaparecimento dos picos referentes ao óxido de níquel e aparecimento de picos referentes ao níquel metálico nos ângulos 2 $\theta$  iguais a 44,5°, 51,8° e 76,5° (JCPDS 04-0850) para ambos os catalisadores, Ni/ $\alpha$ -Al<sub>2</sub>O<sub>3</sub> e Ni/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub>, confirmando a eficiência da redução.

Nos difratogramas dos catalisadores utilizados após a reação, verifica-se a diminuição da intensidade dos picos referentes ao níquel metálico em relação ao catalisador reduzido, o que sugere uma redução da cristalinidade. Não houve reaparecimento dos picos de óxido de níquel, o que demonstra estabilização da fase ativa durante a reação.

No catalisador Ni/ $\alpha$ -Al<sub>2</sub>O<sub>3</sub> após a reação, observa-se a formação de um ombro em torno do ângulo 2 $\theta$  igual a 26°, referente ao carbono, o que caracteriza a formação de coque durante a reação (MONTERO *et al.*, 2015).



Figura 4.2: Difratogramas do catalisador Ni/α-Al<sub>2</sub>O<sub>3.</sub>



Figura 4.3: Difratogramas do catalisador Ni/γ-Al<sub>2</sub>O<sub>3.</sub>

Os difratogramas dos catalisadores Ni/CaO-Al<sub>2</sub>O<sub>3</sub> e Ni/CaO-Al<sub>2</sub>O<sub>3</sub>com são apresentados nas Figuras 4.4 e 4.5, respectivamente. Nos difratogramas do catalisador Ni/CaO-Al<sub>2</sub>O<sub>3</sub>com, os picos sinalizados como Al<sub>2</sub>O<sub>3</sub> referem-se a uma mistura de fases de alumina. De forma análoga aos casos anteriores, são observados picos referentes ao óxido de níquel nos catalisadores calcinados nos ângulos 20 iguais a 37,5°, 43,5°, 62,9° e 75,7° (JCPDS 47-1049). Também se observa os picos referentes ao níquel metálico nos catalisadores reduzidos nos ângulos 20 iguais a 44,5°, 51,8° e 76,3° (JCPDS 04-0850) em ambos os catalisadores. Além disso, não há reaparecimento dos picos de óxido de níquel após as reações.

No catalisador Ni/CaO-Al<sub>2</sub>O<sub>3</sub> observa-se um pico referente ao óxido de cálcio no ângulo 20 igual a 53,9° (JCPDS 48-1467) no suporte, catalisador calcinado e catalisador reduzido. Já no Ni/CaO-Al<sub>2</sub>O<sub>3</sub>com observa-se, além de picos de óxido de cálcio, picos referentes ao  $(CaO)_x(Al_2O_3)_{11}$ , um óxido misto de cálcio e alumínio, nos ângulos 20 iguais a 7,8°, 15,8°, 30,3° e 66,8° (JCPDS 41-0358). Também são observados picos referentes ao SiC, nos ângulos 20 iguais a 35,7° e 60° (JCPDS 29-1131), devido a dificuldade de separação entre o catalisador usado e o carbeto de silício utilizado como diluente no reator.



Figura 4.4: Difratogramas do catalisador Ni/CaO-Al<sub>2</sub>O<sub>3.</sub>



Figura 4.5: Difratogramas do catalisador Ni/CaO-Al<sub>2</sub>O<sub>3</sub>com.

Os tamanhos de cristalito do níquel, obtidos a partir da difração de raios X, através da equação de Scherrer, e a dispersão do níquel, calculada de acordo com Anderson (1975), são apresentados na Tabela 4.3 para os catalisadores reduzidos e após os testes catalíticos.

Para o cálculo do tamanho de cristalito foi utilizado o pico referente à 2θ igual a 44,5°, pois é o pico de níquel metálico que sofre menor interferência do suporte de alumina, como visto nos difratogramas dos catalisadores.

| Catalisador                                        | Tamanho de cristalito | Dispersão do níquel (%) |
|----------------------------------------------------|-----------------------|-------------------------|
|                                                    | do níquel (nm)        |                         |
| Ni/a-Al <sub>2</sub> O <sub>3</sub> reduzido       | $22,9 \pm 0,8$        | 4,4                     |
| Ni/α-Al <sub>2</sub> O <sub>3</sub> usado          | $23,3 \pm 3,8$        | 4,3                     |
| Ni/γ-Al <sub>2</sub> O <sub>3</sub> reduzido       | $8,4 \pm 2,0$         | 12,0                    |
| Ni/y-Al2O3 usado                                   | $8{,}4\pm0{,}7$       | 12,0                    |
| Ni/CaO-Al <sub>2</sub> O <sub>3</sub> reduzido     | $15,3 \pm 1,2$        | 6,6                     |
| Ni/CaO-Al <sub>2</sub> O <sub>3</sub> usado        | $16,8 \pm 1,5$        | 6,0                     |
| Ni/CaO-Al <sub>2</sub> O <sub>3</sub> com reduzido | $18,2 \pm 1,0$        | 5,5                     |
| Ni/CaO-Al <sub>2</sub> O <sub>3</sub> com usado    | $16,2 \pm 1,1$        | 6,2                     |

Tabela 4.3: Tamanhos de cristalito do níquel e dispersão do níquel para os catalisadores.

A partir dos resultados apresentados, observa-se que o menor tamanho de cristalito e consequente maior dispersão do níquel dentre os catalisadores reduzidos foram obtidos pelo catalisador Ni/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub>, com tamanho de cristalito igual a 8,4 nm e dispersão de 12%.

O catalisador Ni/CaO-Al<sub>2</sub>O<sub>3</sub> apresentou tamanho de cristalito do níquel igual a 15,3 nm, o que é um aumento significativo se comparado ao catalisador Ni/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub>. Isso ocorre devido à diminuição da área específica do catalisador quando adicionado óxido de cálcio ao suporte de  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>. O catalisador Ni/ $\alpha$ -Al<sub>2</sub>O<sub>3</sub> apresentou o maior tamanho de cristalito entre todos os catalisadores (22,9 nm) e, consequentemente, menor dispersão do níquel (4,4%). Isso ocorre devido a menor área específica do suporte de  $\alpha$ -Al<sub>2</sub>O<sub>3</sub>.

O catalisador Ni/CaO-Al<sub>2</sub>O<sub>3</sub>com apresentou tamanho de cristalito do níquel igual a 18,2 nm e dispersão do níquel igual a 5,5%. No caso desse catalisador, pode haver um erro embutido no cálculo do tamanho de cristalito devido à sobreposição do pico de níquel metálico com a alumina, como pode ser visto em seu difratograma.

Comparando-se os catalisadores reduzidos com os catalisadores usados, observa-se que, dentro da margem de erro, não há aumento do tamanho de cristalito do níquel para nenhum catalisador estudado. Isso demonstra uma grande resistência ao processo de sinterização dos catalisadores.

#### 4.4 Redução à temperatura programada

Os perfis de redução dos catalisadores podem ser observados na Figura 4.6. Os catalisadores Ni/ $\alpha$ -Al<sub>2</sub>O<sub>3</sub> e Ni/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub> apresentaram picos de redução em 445 °C e 800 °C, respectivamente. Esse deslocamento para maiores temperaturas deve-se à formação do aluminato de níquel, possível na presença de  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>, porém praticamente inocorrente com a  $\alpha$ -Al<sub>2</sub>O<sub>3</sub>, devido à diferença de estabilidade entre essas fases alotrópicas. Rynkowski *et al.* (1993) observaram que três tipos de espécies de níquel podem existir com Al<sub>2</sub>O<sub>3</sub>: NiO livre (temperatura de redução abaixo de 400 °C), NiO ligado a Al<sub>2</sub>O<sub>3</sub> (temperatura de redução entre 400 °C e 690 °C) e NiO incorporado em Al<sub>2</sub>O<sub>3</sub>, isto é, formação de aluminato de níquel (temperatura de redução acima de 700 °C).

No perfil de redução do catalisador Ni/CaO-Al<sub>2</sub>O<sub>3</sub> é possível observar um pico centralizado em 390 °C, associado à parcela de NiO que não interage com o suporte, quatro picos entre 455 °C e 750 °C, que podem estar relacionados a diferentes níveis de interação do NiO com Al<sub>2</sub>O<sub>3</sub> e CaO, e um pico em 890 °C, referente a redução do aluminato de níquel.

O perfil de redução do catalisador Ni/CaO-Al<sub>2</sub>O<sub>3</sub>com mostra três picos sobrepostos na faixa de 500 °C a 950 °C, sendo o primeiro centralizado em 620 °C, o segundo em 710 °C e o terceiro em 820 °C. Diferente do Ni/CaO-Al<sub>2</sub>O<sub>3</sub>, o catalisador comercial não apresenta pico em temperaturas abaixo de 400 °C, o que sugere melhor interação entre o Ni e o suporte.

A partir da análise dos perfis apresentada, foi fixada a temperatura de redução nos testes catalíticos em 800 °C para todos os catalisadores, de modo a garantir a redução máxima do NiO.



Figura 4.6: Perfis de redução dos catalisadores obtidos por TPR.

A Tabela 4.4 apresenta os graus de redução do NiO nos catalisadores. O catalisador Ni/ $\alpha$ -Al<sub>2</sub>O<sub>3</sub> apresentou o menor grau de redução (54%), enquanto que os catalisadores Ni/CaO-Al<sub>2</sub>O<sub>3</sub> e Ni/CaO-Al<sub>2</sub>O<sub>3</sub>com apresentaram os maiores graus de redução, iguais a 99% e 100%, respectivamente. O catalisador Ni/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub> apresentou um grau de redução de 90%.

| Tabe | la 4.4: | Graus | de rec | lução ( | do | NiO | nos | catalisadores. |  |
|------|---------|-------|--------|---------|----|-----|-----|----------------|--|
|------|---------|-------|--------|---------|----|-----|-----|----------------|--|

| Catalisador                               | Grau de redução (%) |
|-------------------------------------------|---------------------|
| Ni/a-Al <sub>2</sub> O <sub>3</sub>       | 54                  |
| Ni/γ-Al <sub>2</sub> O <sub>3</sub>       | 90                  |
| Ni/CaO-Al <sub>2</sub> O <sub>3</sub>     | 99                  |
| Ni/CaO-Al <sub>2</sub> O <sub>3</sub> com | 100                 |

#### 4.5 Dessorção à temperatura programada de NH3

A Figura 4.7 apresenta os perfis de dessorção de amônia à temperatura programada (TPD-NH<sub>3</sub>) dos catalisadores estudados. O catalisador Ni/α-Al<sub>2</sub>O<sub>3</sub> não apresentou picos de

dessorção de amônia, o que pode ser explicado por sua baixa área específica. No catalisador Ni/γ-Al<sub>2</sub>O<sub>3</sub> a amônia é dessorvida na faixa de temperatura de 40 °C até aproximadamente 660 °C, sendo o pico centralizado em torno de 190 °C. O perfil do catalisador Ni/CaO-Al<sub>2</sub>O<sub>3</sub> é semelhante ao perfil do Ni/γ-Al<sub>2</sub>O<sub>3</sub>, com dessorção de amônia ocorrendo na faixa de 30 °C a 650 °C, com pico centralizado em torno de 160 °C. Para o catalisador Ni/CaO-Al<sub>2</sub>O<sub>3</sub>com, o pico de dessorção está centralizado em torno de 225 °C. Como a temperatura de dessorção está relacionada com a força do sítio ácido, pode-se concluir que o catalisador Ni/CaO-Al<sub>2</sub>O<sub>3</sub>com tem sítios ácidos mais fortes que os demais, o que pode estar relacionado com as características superficiais da alumina desse catalisador.



Figura 4.7: TPD-NH<sub>3</sub> dos catalisadores.

A Tabela 4.5 mostra a quantidade de amônia adsorvida por grama de catalisador e por área específica. Observa-se que o catalisador  $Ni/\alpha$ -Al<sub>2</sub>O<sub>3</sub> apresentou adsorção de amônia próxima a zero, já que não foram encontrados picos discerníveis no perfil de dessorção de amônia do mesmo.

O catalisador Ni/γ-Al<sub>2</sub>O<sub>3</sub> apresentou a maior adsorção de amônia, por massa e área de catalisador, o que já era esperado, pois a adição de um promotor básico no suporte de alumina

reduz os sítios ácidos do catalisador (SÁNCHEZ-SÁNCHEZ *et al.*, 2007). O catalisador Ni/CaO-Al<sub>2</sub>O<sub>3</sub>com apresentou uma menor adsorção de amônia, se comparado ao catalisador Ni/CaO-Al<sub>2</sub>O<sub>3</sub>, o que pode ser explicado pelo maior teor de promotores básicos contido nesse catalisador.

|                                           | NH3 quimissorvida | NH3 quimissorvida |
|-------------------------------------------|-------------------|-------------------|
| Catalisador                               | (µmols/gcat)      | $(\mu mols/m^2)$  |
| Ni/a-Al <sub>2</sub> O <sub>3</sub>       | 0                 | 0                 |
| Ni/γ-Al <sub>2</sub> O <sub>3</sub>       | 458,9             | 3,1               |
| Ni/CaO-Al <sub>2</sub> O <sub>3</sub>     | 105,4             | 1,6               |
| Ni/CaO-Al <sub>2</sub> O <sub>3</sub> com | 24,1              | 0,3               |

**Tabela 4.5:** Adsorção de amônia por massa e por área de catalisador.

#### 4.6 Testes catalíticos

A Figura 4.8 apresenta a conversão global do glicerol, obtida pela equação 3.4, para todos os catalisadores estudados, conforme condições descritas anteriormente (500 °C, GHSV= 200.000 h<sup>-1</sup> e 20% glicerol). Os catalisadores Ni/ $\alpha$ -Al<sub>2</sub>O<sub>3</sub> e Ni/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub> apresentaram resultados semelhantes durante as 30 horas de reação, tendo o Ni/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub> apresentado melhor resultado. Durante as 8 primeiras horas, mantiveram-se na faixa de 85% a 100% de conversão. No dia seguinte, a partir das 24 horas de reação, observou-se um decaimento da conversão causado pela desativação dos catalisadores. A conversão do catalisador Ni/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub> sofreu uma redução para 67% na 24<sup>a</sup> hora e manteve-se na faixa de 67% a 77% até o fim da reação. Já a conversão do catalisador Ni/ $\alpha$ -Al<sub>2</sub>O<sub>3</sub> reduziu para 61% e manteve-se na faixa de 60% a 67% até o final da reação. Essa diferença pode estar associada à menor área superficial do catalisador Ni/ $\alpha$ -Al<sub>2</sub>O<sub>3</sub> e maiores dispersão de níquel e grau de redução do Ni/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub>, o que resulta em uma maior disponibilidade de sítios ativos de níquel metálico para a reação no catalisador Ni/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub>.

A desativação nos catalisadores suportados com alumina já era esperada. Sánchez *et al.* (2010) observaram desativação de catalisadores de Ni/alumina após 8 horas de reação, para temperaturas de 600 °C e 650 °C.

Os catalisadores com adição de óxido de cálcio obtiveram um resultado inferior nas 8 primeiras horas, porém não apresentaram desativação significativa durante as 30 horas de reação. O catalisador Ni/CaO-Al<sub>2</sub>O<sub>3</sub> obteve conversão constante na faixa de 70% a 80% durante

toda a reação, já o catalisador Ni/CaO-Al<sub>2</sub>O<sub>3</sub>com apresentou conversão na faixa de 40% a 60% a partir da segunda hora de reação. A menor conversão global do glicerol observada para o catalisador comercial pode ser explicada pelo menor teor de níquel contido nesse catalisador. Conforme observado nas análises de FRX, o catalisador Ni/CaO-Al<sub>2</sub>O<sub>3</sub>com possui 10% a menos de NiO em sua composição que o catalisador Ni/CaO-Al<sub>2</sub>O<sub>3</sub>, o que resulta em uma menor fase ativa de níquel metálico disponível para que a reação ocorra.



Figura 4.8: Conversão global de glicerol dos catalisadores.

A Figura 4.9 apresenta os resultados obtidos para conversão a gás dos catalisadores, a partir da equação 3.5. Os melhores resultados para conversão a gás foram obtidos pelo catalisador Ni/α-Al<sub>2</sub>O<sub>3</sub>, que apresentou conversão a gás próxima à conversão global, o que sugere baixa formação de subprodutos líquidos. O catalisador Ni/γ-Al<sub>2</sub>O<sub>3</sub> apresentou baixa conversão a gás nas 8 primeiras horas de reação, enquanto que a partir da 24<sup>a</sup> hora a conversão a gás se aproxima da conversão global.

Os catalisadores Ni/CaO-Al<sub>2</sub>O<sub>3</sub> e Ni/CaO-Al<sub>2</sub>O<sub>3</sub>com apresentaram tendências de conversão a gás parecidas com as de conversão global, com uma defasagem de aproximadamente 20%.



Figura 4.9: Conversão a gás de glicerol dos catalisadores.

As Figuras 4.10 e 4.11 mostram os rendimentos em H<sub>2</sub> e taxa de geração de H<sub>2</sub>, respectivamente, para os catalisadores. Os catalisadores Ni/ $\alpha$ -Al<sub>2</sub>O<sub>3</sub>, Ni/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub> e Ni/CaO-Al<sub>2</sub>O<sub>3</sub> obtiveram resultados semelhantes, com rendimentos médios em H<sub>2</sub> de respectivamente 37%, 33% e 35% e taxas médias de geração de H<sub>2</sub> de 4900, 4400 e 3900 µmol de H<sub>2</sub>/g.min.

O catalisador Ni/CaO-Al<sub>2</sub>O<sub>3</sub>com apresentou o pior rendimento e taxa de geração de H<sub>2</sub> entre os catalisadores analisados. O rendimento médio obtido foi em torno de 13% e a taxa média em torno de 1600  $\mu$ mol de H<sub>2</sub>/g.min. Esse resultado está associado à sua menor conversão a gás e também pode estar indicando uma baixa atividade desse catalisador para a reação de shift.



Figura 4.10: Rendimento em H<sub>2</sub> dos catalisadores.



Figura 4.11: Taxa de geração de H<sub>2</sub> dos catalisadores.

A Figura 4.12 apresenta a seletividade em H<sub>2</sub> para os catalisadores. Observa-se que o catalisador Ni/ $\alpha$ -Al<sub>2</sub>O<sub>3</sub> obteve a menor seletividade média em H<sub>2</sub> (51%), o que sugere que o H<sub>2</sub> que está sendo gerado pela reação de reforma é consumido para formação de coque pelas reações de hidrogenação de monóxido e dióxido de carbono (Eq. 2.8 e 2.9) e/ou para formação de metano pelas reações de metanação (Eq. 2.4 e 2.5).

Os catalisadores  $Ni/\gamma$ -Al<sub>2</sub>O<sub>3</sub>, Ni/CaO-Al<sub>2</sub>O<sub>3</sub> e Ni/CaO-Al<sub>2</sub>O<sub>3</sub>com apresentaram resultados semelhantes, com seletividade média em H<sub>2</sub> de 68%, 64% e e 69%, respectivamente.



Figura 4.12: Seletividade em H<sub>2</sub> dos catalisadores.

A Figura 4.13 mostra as seletividades em (a) CO, (b) CO<sub>2</sub> e (c) CH<sub>4</sub> para os catalisadores. Os catalisadores Ni/ $\alpha$ -Al<sub>2</sub>O<sub>3</sub> e Ni/CaO-Al<sub>2</sub>O<sub>3</sub> apresentam uma pequena queda na seletividade em CO e aumento na seletividade em CO<sub>2</sub> durante a reação. Essa tendência demonstra um aumento na eficiência da reação de shift, o que pode explicar o leve aumento da taxa de geração de H<sub>2</sub> para o catalisador Ni/CaO-Al<sub>2</sub>O<sub>3</sub> nas primeiras horas de reação. Para esse catalisador a seletividade em CO é igual a 32% na primeira hora e diminui para aproximadamente 7% a partir da 24<sup>a</sup> hora.

O catalisador Ni/γ-Al<sub>2</sub>O<sub>3</sub> apresentou a menor seletividade em CO durante as 30 horas de reação. A seletividade em CO é igual a 11% na primeira hora e se mantém em torno de 5% ao longo da reação. Esse comportamento evidencia a alta atividade desse catalisador para a reação de shift.

O catalisador Ni/CaO-Al<sub>2</sub>O<sub>3</sub>com apresentou a maior seletividade média em CO entre os catalisadores estudados (25%), o que corrobora a hipótese de que os baixos rendimento e taxa de geração de H<sub>2</sub> para esse catalisador estão relacionados à baixa eficiência da reação de shift.

O catalisador Ni/ $\alpha$ -Al<sub>2</sub>O<sub>3</sub> apresentou a maior seletividade média em CH<sub>4</sub> (12%). Essa alta seletividade em CH<sub>4</sub> indica uma alta atividade para as reações de metanação (Eq. 2.4 e 2.5), o que explica a baixa seletividade em H<sub>2</sub> desse catalisador se comparado aos outros catalisadores estudados. Os catalisadores Ni/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub>, Ni/CaO-Al<sub>2</sub>O<sub>3</sub> e Ni/CaO-Al<sub>2</sub>O<sub>3</sub>com apresentam baixos resultados para a seletividade média em CH<sub>4</sub>, com 6%, 3% e 3%, respectivamente.



Figura 4.13: Seletividade em (a) CO, (b) CO<sub>2</sub> e (c) CH<sub>4</sub> dos catalisadores.

A Figura 4.14 mostra os rendimentos dos produtos em fase líquida, onde foram encontrados acroleína, acetol e ácido propanoico. O catalisador Ni/α-Al<sub>2</sub>O<sub>3</sub> apresentou os menores rendimentos para todos os subprodutos líquidos, o que já era esperado, visto que sua conversão a gás obteve valores próximos à conversão global. Esse catalisador obteve rendimento médio de 0,08% em acroleína, 2,4% em acetol e 0,5% em ácido propanoico.

O catalisador Ni/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub> apresentou uma queda nos rendimentos dos subprodutos líquidos do primeiro para o segundo dia de reação. O rendimento médio em acroleína caiu de 8,6% nas 8 primeiras horas para 1% a partir da 24<sup>a</sup> hora, o rendimento médio em acetol caiu de 7,6% para 2,6% e o rendimento médio em ácido propanoico caiu de 3% para 0,7%. Tal fato pode explicar a tendência observada para a conversão a gás, que nas 8 primeiras horas apresenta uma maior defasagem da conversão global.

Os catalisadores com promotores básicos, Ni/CaO-Al<sub>2</sub>O<sub>3</sub> e Ni/CaO-Al<sub>2</sub>O<sub>3</sub>com, apresentaram os maiores rendimentos em acetol e ácido propanoico. Stošić *et al.* (2012) estudaram o efeito das propriedades ácido-base dos catalisadores na desidratação do glicerol e observaram que, diferente do rendimento em acroleína que está diretamente associado à acidez de Brønsted do suporte, o rendimento em acetol aumenta com a redução dos sítios ácidos do catalisador.



Figura 4.14: Rendimento em (a) acroleína, (b) acetol e (c) ácido propanoico.

#### 4.7 Termogravimetria e análise térmica diferencial

A Figura 4.15 mostra os perfis de TG e DTA dos catalisadores após as 30 horas de reação. O catalisador Ni/ $\alpha$ -Al<sub>2</sub>O<sub>3</sub> perdeu aproximadamente 60% de sua massa inicial, indicando grande formação de coque durante a reação, o que promove a desativação observada após 8 horas de reação. A desativação para esse catalisador está associada com o seu maior tamanho de cristalito de níquel, como observado por Lisboa *et al.* (2005).

Os catalisadores Ni/γ-Al<sub>2</sub>O<sub>3</sub> e Ni/CaO-Al<sub>2</sub>O<sub>3</sub> apresentaram aproximadamente 30% de perda de massa e o catalisador Ni/CaO-Al<sub>2</sub>O<sub>3</sub>com obteve a menor perda de massa (22%) entre os catalisadores estudados. Era esperado que os catalisadores promovidos obtivessem menor perda de massa, visto que a adição de promotores básicos ao suporte de alumina diminui o grau de interação da fase ativa de níquel com o suporte de alumina, reduzindo a acidez do suporte e aumentando sua resistência à formação de carbono (SILVA *et al.*, 2015), porém, apesar de os catalisadores Ni/γ-Al<sub>2</sub>O<sub>3</sub> e Ni/CaO-Al<sub>2</sub>O<sub>3</sub> apresentarem a mesma perda de massa, foram encontradas diferenças na natureza do coque.

Os picos exotérmicos nas curvas de DTA podem ser atribuídos à combustão do coque depositado sobre o catalisador, e os picos em diferentes temperaturas estão relacionados a diferentes propriedades de coque. A incorporação de óxido de cálcio no catalisador Ni/CaO-Al<sub>2</sub>O<sub>3</sub> deslocou os picos do DTA para menores temperaturas, estando o pico principal para esse catalisador localizado em 430 °C e para o catalisador Ni/γ-Al<sub>2</sub>O<sub>3</sub> localizado em 474 °C. Como o coque filamentoso apresenta menor temperatura de oxidação máxima que o coque amorfo (JACKSON *et al.*, 1981 e QUITETE *et al.*, 2015), isso é uma indicação de que o catalisador Ni/CaO-Al<sub>2</sub>O<sub>3</sub> apresenta maior quantidade de coque filamentoso do que o Ni/γ-Al<sub>2</sub>O<sub>3</sub>. O coque filamentoso é menos nocivo para o catalisador do que o coque amorfo, o que explica a não desativação do Ni/CaO-Al<sub>2</sub>O<sub>3</sub>.



Figura 4.15: Análise termogravimétrica e termodiferencial dos catalisadores após a reação.

#### 4.8 Microscopia eletrônica de varredura

O coque formado sobre a superfície dos catalisadores foi visualizado a partir da técnica de microscopia eletrônica de varredura. As Figuras 4.16 e 4.17 mostram as micrografias dos catalisadores Ni/ $\alpha$ -Al<sub>2</sub>O<sub>3</sub> e Ni/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub>, respectivamente, reduzidos e após a reação. No catalisador Ni/ $\alpha$ -Al<sub>2</sub>O<sub>3</sub> observa-se que a formação de coque é maior, o coque formado é do tipo esponjoso e recobre a superfície dos catalisadores.



Figura 4.16: MEV do catalisador  $Ni/\alpha$ -Al<sub>2</sub>O<sub>3</sub> (a) reduzido e (b) após a reação.



Figura 4.17: MEV do catalisador Ni/γ-Al<sub>2</sub>O<sub>3</sub> (a) reduzido e (b) após a reação.

As Figuras 4.18 e 4.19 mostram as micrografias dos catalisadores Ni/CaO-Al<sub>2</sub>O<sub>3</sub> e Ni/CaO-Al<sub>2</sub>O<sub>3</sub>com, respectivamente, reduzidos e após a reação. No catalisador Ni/CaO-Al<sub>2</sub>O<sub>3</sub> é possível visualizar a formação de coque filamentoso e, no catalisador Ni/CaO-Al<sub>2</sub>O<sub>3</sub>com, a formação de coque não foi evidenciada.



300 µm TM3030Plus1372 2018/01/09 NMUD7.2 x300 2018/01/09 NMUD8.2 x4.0k 20 µm

Figura 4.18: MEV do catalisador Ni/CaO-Al $_2O_3$  (a) reduzido e (b) após a reação.



Figura 4.19: MEV do catalisador Ni/CaO-Al<sub>2</sub>O<sub>3</sub>com (a) reduzido e (b) após a reação.

#### **5 CONCLUSÕES E SUGESTÕES PARA TRABALHOS FUTUROS**

#### 5.1 Conclusões

Os resultados obtidos na análise de fluorescência de raios X mostraram que o método de preparo utilizado é eficiente para síntese destes catalisadores, já que os mesmos apresentaram composição química real semelhante à composição química teórica. O catalisador que apresentou maior discrepância entre os valores foi o Ni/α-Al<sub>2</sub>O<sub>3</sub>, o que pode ser explicado por erros experimentais no preparo ou na análise do equipamento.

As análises de difração de raios X mostraram que a calcinação das amostras converteu eficientemente o nitrato de níquel em óxido de níquel para todos os catalisadores, o que foi comprovado pelo aparecimento de picos associados ao óxido de níquel para as mostras calcinadas. Também foi possível observar os picos de níquel metálico após a redução das amostras e o aparecimento do ombro associado à formação de coque no catalisador Ni/ $\alpha$ -Al<sub>2</sub>O<sub>3</sub> usado, o qual mostrou maior quantidade de coque nas análises de TG.

A análise de DRX e a utilização das equações de Scherrer e da correlação de Anderson permitiriam o cálculo do tamanho de cristalito de níquel metálico e da dispersão de níquel nos catalisadores. Observou-se que a incorporação de óxido de cálcio no suporte  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> diminui a dispersão de níquel nos catalisadores.

As análises de redução à temperatura programada mostraram que o níquel apresenta altas temperaturas de redução nos catalisadores Ni/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub>, Ni/CaO-Al<sub>2</sub>O<sub>3</sub> e Ni/CaO-Al<sub>2</sub>O<sub>3</sub> com, o que está associado à formação de aluminato de níquel. Foi possível observar também que o catalisador Ni/ $\alpha$ -Al<sub>2</sub>O<sub>3</sub> apresenta menor grau de redução se comparado aos outros catalisadores estudados, o que pode estar associado à sua conversão mais baixa, se comparado ao catalisador com suporte de  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>.

As análises de dessorção à temperatura programada de NH<sub>3</sub> mostram que a incorporação de óxido de cálcio no suporte de  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> é eficiente na redução da acidez dos catalisadores. O catalisador Ni/ $\alpha$ -Al<sub>2</sub>O<sub>3</sub> apresentou acidez próxima a zero, o que pode ser explicado pela sua baixa área BET.

Os testes catalíticos mostraram a desativação dos catalisadores Ni/ $\alpha$ -Al<sub>2</sub>O<sub>3</sub> e Ni/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub> após 8 horas de reação, enquanto que os catalisadores com promotores de cálcio não apresentaram desativação, devido a menor acidez e menor quantidade de coque amorfo formado. A adição de óxido de cálcio ao suporte  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> mostrou-se vantajosa pois, após 24 horas de reação, o catalisador Ni/CaO-Al<sub>2</sub>O<sub>3</sub> apresentou os melhores resultados para conversão do glicerol e rendimento em hidrogênio.

O catalisador Ni/ $\alpha$ -Al<sub>2</sub>O<sub>3</sub> apresentou baixa seletividade em H<sub>2</sub> e alta seletividade em CH<sub>4</sub>, o que indica alto consumo de hidrogênio nas reações de metanação. O catalisador Ni/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub> apresentou a menor seletividade em CO e maior seletividade em CO<sub>2</sub>, o que indica alta atividade da reação de shift, enquanto que o catalisador Ni/CaO-Al<sub>2</sub>O<sub>3</sub>com apresentou baixa atividade na reação de shift, o que resulta em baixos rendimento e taxa de geração de H<sub>2</sub>.

As análises termogravimétricas dos catalisadores após a reação revelaram grande deposição de coque no catalisador Ni/ $\alpha$ -Al<sub>2</sub>O<sub>3</sub>, o que explica sua desativação. As análises termodiferenciais mostraram que, apesar da quantidade de coque formado sobre a superfície dos catalisadores Ni/ $\gamma$ -Al<sub>2</sub>O<sub>3</sub> e Ni/CaO-Al<sub>2</sub>O<sub>3</sub> ser a mesma, o catalisador Ni/CaO-Al<sub>2</sub>O<sub>3</sub> apresenta maior quantidade de coque filamentoso, o qual é menos nocivo para o catalisador, explicando assim a não desativação do Ni/CaO-Al<sub>2</sub>O<sub>3</sub>.

#### **5.2 Sugestões para trabalhos futuros**

Para trabalhos futuros sugere-se aprofundar os estudos com o catalisador Ni/CaO-Al<sub>2</sub>O<sub>3</sub>, que apresentou resultados promissores na reação de reforma a vapor do glicerol. Para isso, pode-se estudar a influência do teor de cálcio sobre a conversão do glicerol e rendimento em hidrogênio, e também o efeito das condições reacionais, como temperatura, velocidade espacial e concentração de glicerol na alimentação.

#### **6 REFERÊNCIAS**

ACAR, C.; DINCER, I., Comparative assessment of hydrogen production methods from renewable and non-renewable sources, *International Journal of Hydrogen Energy*, v. 39, p. 1-12, 2014.

ADHIKARI, S.; FERNANDO, S.; GWALTNEY, S.R.; TO, S.D.F.; BRICKA, R.M.; STEELE, P.H.; HARYANTO, A., A thermodynamic analysis of hydrogen production by steam reforming of glycerol, *International Journal of Hydrogen Energy*, v. 32, p. 2875-2880, 2007a.

ADHIKARI, S.; FERNANDO, S.; HARYANTO, A., Production of hydrogen by steam reforming of glycerin over alumina-supported metal catalysts, *Catalysis Today*, v. 129, p. 355-364, 2007b.

ADHIKARI, S.; FERNANDO, S.D.; TO, S.D.F.; BRICKA, R.M.; STEELE, P.H.; HARYANTO, A., Conversion of Glycerol to Hydrogen via a Steam Reforming Process over Nickel Catalysts, *Energy Fuels*, v. 22, p. 1220-1226, 2008.

AHMED, A.; AL-AMIN, A.Q.; AMBROSE, A.F.; SAIDUR, R., Hydrogen fuel and transport system: A sustainable and environmental future, *International Journal of Hydrogen Energy*, v. 41, p. 1369-1380, 2016.

ANDERSON, J.R., Structure of metallic catalysts, London, New York: Academic Press, 1975.

ANP, Agência Nacional do Petróleo, Gás Natural e Biocombustíveis, disponível em: <a href="http://www.anp.gov.br/wwwanp/biocombustiveis/biodiesel">http://www.anp.gov.br/wwwanp/biocombustiveis/biodiesel</a>, acesso em Dezembro de 2017.

BAGNATO, G.; LULIANELLI, A.; BASILE, A., Glycerol Production and Transformation: A Critical Review with Particular Emphasis on Glycerol Reforming Reaction for Producing Hydrogen in Conventional and Membrane Reactors, *Membranes*, v. 7, p. 17, 2017.

BEATRIZ, A.; ARAÚJO, Y.J.K.; LIMA, D.P., Glicerol: um breve histórico e aplicação e sínteses estereosseletivas, *Química Nova*, v. 34, p. 306-319, 2011.

CHENG, C.K.; FOO, S.Y.; ADESINA, A.A., Steam reforming of glycerol over Ni/Al<sub>2</sub>O<sub>3</sub> catalyst, *Catalysis Today*, v. 178, p. 25-33, 2011.

CORMA, A.; HUBER, G.W.; SAUVANAUD, L.; O'CONNOR P., Biomass to chemicals: Catalytic conversion of glycerol/water mixtures into acrolein, reaction network, *Journal of Catalysis*, v. 257, p. 163-171, 2008. DIAS, J.A.C.; ASSAF, J.M., Influence of calcium content in Ni/CaO/γ-Al<sub>2</sub>O<sub>3</sub> catalysts for CO<sub>2</sub>reforming of methane, *Catalysts Today*, v. 85, p. 59-68, 2003.

DIEUZEIDE, M.L.; LABORDE, M.; AMADEO, N.; CANNILLA, C.; BONURA, G.; FRUSTERI, F., Hydrogen production by glycerol steam reforming: How Mg doping affects the catalytic behaviour of Ni/Al<sub>2</sub>O<sub>3</sub> catalysts, *International Journal of Hydrogen Energy*, v. 41, p. 157-166, 2016.

DINCER, I.; ACAR, C., Review and evaluation of hydrogen production methods for better sustainability, *International Journal of Hydrogen Energy*, v. 40, p. 11094-11111, 2015.

IRIONDO, A.; BARRIO, V.L.; CAMBRA, J.F.; ARIAS, P.L.; GÜEMEZ, M.B.; NAVARRO, R.M.; SÁNCHEZ-SÁNCHEZ, M.C.; FIERRO, J.L.G., Hydrogen production from glycerol over nickel catalysts supported on Al<sub>2</sub>O<sub>3</sub> modified by Mg, Zr, Ce or La, *Topics in Catalysis*, v. 49, p. 46-58, 2008.

IRIONDO, A.; BARRIO, V.L.; CAMBRA, J.F.; ARIAS, P.L.; GUEMEZ, M.B.; SANCHEZ-SANCHEZ, M.C.; NAVARRO, R.M.; FIERRO J.L.G., Glycerol steam reforming over Ni catalysts supported on ceria and ceria-promoted alumina, *International Journal of Hydrogen Energy*, v. 35, p. 11622-11633, 2010.

JACKSON, S.D.; THOMSON, S.J.; WEBB, G., Carbonaceous deposition associated with the catalytic steam-reforming of hydrocarbons over nickel alumina catalysts, *Journal of Catalysis*, v.70, p.249–263, 1981.

KIRTAY, E., Recent advances in production of hydrogen from biomass, *Energy Conversion* and *Management*, v. 52, p. 1778-1789, 2011.

KOUSI, K.; CHOURDAKIS, N.; MATRALIS, H.; KONTARIDES, D.; PAPADOPOULOU, C.; VERYKIOS, X, Glycerol steam reforming over modified Ni-based catalysts, *Applied Catalysis A: General*, v. 518, p. 129-141, 2016.

LEE, J.; JEON, H.; OH, D.G.; SZANYI, J.; KWAK, J.H., Morphology-dependent phase transformation of γ-Al<sub>2</sub>O<sub>3</sub>, *Applied Catalysis A: General*, v. 500, p. 58-68, 2015.

LIDE, D.R., ed., *CRC Handbook of Chemistry and Physics, Internet Version 2005,* <a href="http://www.hbcpnetbase.com">http://www.hbcpnetbase.com</a>, CRC Press, Boca Raton, FL, 2005.

LISBOA, J.D.S.; SANTOS, D.C.R.M.; PASSOS, F.B.; NORONHA, F.B., Influence of the addition of promoters to steam reforming catalysts, *Catalysis Today*, v.101, p.15–21, 2005.

MANFRO, R.L.; RIBEIRO, N.F.P.; SOUZA, M.M.V.M., Production of hydrogen from steam reforming of glycerol using nickel catalysts supported on Al<sub>2</sub>O<sub>3</sub>, CeO<sub>2</sub> e ZrO<sub>2</sub>, *Catalysis for Sustainable Energy*, p. 60-70, 2012.

MENEZES, J.P.S.Q., Geração de hidrogênio por reforma a vapor do glicerol a partir de catalisadores a base de níquel suportado em alumina e nióbia, Trabalho de Conclusão de Curso, Escola de Química/UFRJ, Rio de Janeiro, 2017.

MONTERO, C.; OCHOA, A.; CASTAÑO, P.; BILBAO, J.; GAYUBO, A.G., Monitoring Ni<sup>0</sup> and coke evolution during the deactivation of a Ni/La<sub>2</sub>O<sub>3</sub>–α-Al<sub>2</sub>O<sub>3</sub> catalyst in ethanol steam reforming in a fluidized bed, *Journal of Catalysis*, v. 331, p. 181-192, 2015.

PAGLIARO, M.; ROSSI, M., The Future of Glycerol: New Uses of a Versatile Raw Material, RSC Green Chemistry Book Series, 2008.

PANT, K.K.; JAIN, R.; JAIN, S., Renewable hydrogen production by steam reforming of glycerol over Ni/CeO<sub>2</sub> catalyst prepared by precipitation deposition method, *Korean Journal of Chemical Engineering*, v. 28, p. 1859-1866, 2011.

POMPEO, F.; NICHIO, N.N.; FERRETTI, O.A.; RESASCO, D., Study of Ni catalysts on different supports to obtain synthesis gas, *International Journal of Hydrogen Energy*, v. 30, p. 1399-1405, 2005.

POMPEO, F.; SANTORI, G.; NICHIO, N. N., Hydrogen and/or syngas from steam reforming of glycerol. Study of platinum catalysts, *International Journal of Hydrogen Energy*, v. 35, p. 8912-8920, 2010.

QUITETE, C. P.B.; BITTENCOURT, R. C. P.; SOUZA, M. M.V.M., Coking resistance evaluation of tar removal catalysts, *Catalysis Communications*, v.71, p.79–83, 2015.

RYNKOWSKI, J.M.; PARYJCZAK, T.; LENIK, M., On the nature of oxidic nickel phases in NiO/γ-Al<sub>2</sub>O<sub>3</sub> catalysts, *Applied Catalysis A: General*, v. 106, p. 73-82, 1993.

SAD, M.E.; DUARTE, H.A.; VIGNATTI, CH.; PADRÓ, C.L.; APESTEGUÍA, C.R., Steam reforming of glycerol: Hydrogen production optimization, *International Journal of Hydrogen Energy*, v. 40, p. 6097-6106, 2015.

SÁNCHEZ-SÁNCHEZ, M.C., NAVARRO, R.M., FIERRO, J.L.G., Ethanol steam reforming over Ni/M<sub>x</sub>O<sub>y</sub>-Al<sub>2</sub>O<sub>3</sub> (M=Ce, La, Zr and Mg) catalysts: Influence of support on the hydrogen production, *International Journal of Hydrogen Energy*, v. 32, p.1462-1471, 2007.

SÁNCHEZ, E.A., D'ANGELO, M.A., COMELLI, R.A., Hydrogen production from glycerol on Ni/Al<sub>2</sub>O<sub>3</sub> catalyst, *International Journal of Hydrogen Energy*, v. 35, p. 5902-5907, 2010.

SANCHEZ, E.A., COMELLI, R.A., Hydrogen production by glycerol steam-reforming over nickel and nickel-cobalt impregnated on alumina, *International Journal of Hydrogen Energy*, v. 39, p. 8650-8655, 2014.

SEUNG-HOON, K., JAE-SUN, J., EUN-HYEOK, Y., KWAN-YOUNG, L., JU, M.D., Hydrogen production by steam reforming of biomass-derived glycerol over Ni-based catalysts, *Catalysis Today*, v. 228, p. 145-151, 2014.

SILVA, J.M., SORIA, M.A., MADEIRA, L.M., Challenges and strategies for optimization of glycerol steam reforming process, *Renewable and Sustainable Energy Reviews*, v. 42, p. 1187-1213, 2015.

SHAHID, E.M., JAMAL, Y., A review of biodiesel as vehicular fuel, *Renewable and Sustainable Energy Reviews*, v. 12, p. 2484-2494, 2008.

STOSIC, D., BENNICI, S., SIROTIN, S., CALAIS, C., COUTURIER, J., DUBOIS, J., TRAVERT, A., AUROUX, A., Glycerol dehydration over calcium phosphate catalysts: Effect of acidic-basic features on catalytic performance, *Applied Catalysis A: General*, v. 447-448, p. 124-134, 2012.

WANG, Z.X., ZHUGE, J., FANG, H., PRIOR, B.A., Glycerol production by microbial fermentation: A review, *Biotechnology Advances*, v. 19, p. 201-223, 2001.