

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO CENTRO DE CIÊNCIAS MATEMÁTICAS E DA NATUREZA INSTITUTO DE GEOCIÊNCIAS CURSO DE ASTRONOMIA

PROJETO DE FIM DE CURSO REDUÇÃO EM PLACAS FOTOGRÁFICAS DO SISTEMA DE URANO EM UM MICRODENSITÔMETRO

ALUNA : LUCIANA RIBEIRO MONTEIRO ORIENTADOR : CARLOS HENRIQUE VEIGA - ON Rio de Janeiro , Fevereiro / 1988

Agradecimentos

A Carlos Henrigue Veiga , pela orientação integral para este trabalho.

Ao CNPg/ON pelo subsídio dado para a realização deste projeto.

A Luzia Penalva pelo auxílio técnico .

A Reinaldo R. de Carvalho , pelos programas de redução das imagens agui utilizados.

Para Guilherme ...

INDICE :

I-INTRODUÇÃO - 1

I-1 PROCESSO FÍSICO DE OBTENÇÃO DAS IMAGENS - 2 I-1.1 FORMAÇÃO DAS IMAGENS NA PLACA - 2 I-1.2 SENSITOMETRIA - 3

II- OBSERVAÇÕES E TÉCNICAS INSTRUMENTAIS – 5 II-1 AS OBSERVAÇÕES – 5 II-2 AS MEDIDAS – 9

III- REDUÇÃO DAS IMAGENS - 12
III-1 REDUÇÃO DOS CENTROS DAS IMAGENS - 12
III-1.1 SATÉLITES EXTERIORES E URANO - 15
III-1.2 PLANETA - MIRANDA - 21

IV- DISCUSSÃO DOS RESULTADOS -38

BIBLIOGRAFIA-43

ÍNDICE DE FIGURAS :

FIGURA 1

CURVA CARACTERÍSTICA - 3

FIGURA 2

SISTEMA DE URANO - 6

FIGURA 3 MICRODENSITÔMETRO - 10

FIGURA 4

SISTEMA DE URANO EM TRÊS DIMENSÕES-13

FIGURA 5

IMAGEM DOS QUATRO SATÉLITES EXTERIORES - 16

FIGURA 6 IMAGEM DE UM SATÉLITE COM FUNDO DE CÉU ELIMINADO — 19

FIGURA 7 IMAGEM DE MESMA VARREDURA PARA URANO E MIRANDA - 22

FIGURA 8

IMAGEM DE URANO E MIRANDA COM DETERMINAÇÃO VISUAL DO CENTRO DE MIRANDA -24

FIGURA 9

PERFIS EM DENSIDADE DAS IMAGENS DE URANO E MIRANDA - 26

FIGURA 10

CURVA CARACTERÍSTICA DA PLACA IIIaj - 28

FIGURA 11

PERFIL DE MIRANDA EM INTENSIDADE - 30

FIGURA 12

AJUSTE DA GAUSSIANA AO PERFIL DO SATÉLITE MIRANDA - 32

ÍNDICE DE TABELAS E GRÁFICOS :

TABELA 1

TABELA 2

TABELA 4

GRÁFICO 1

TABELA 3 RESÍDUOS ENTRE AS POSIÇÕES OBSERVADAS E CALCULADAS DE URANO **- 40**

DISTÂNCIA DOS SATÉLITES AO CENTRO DE URANO - 7

COMPARAÇÃO ENTRE OS RESULTADOS UTILIZANDO-SE

O MICRODENSITÔMETRO E O ASCORECORD - 38

VARIAÇÃO DA ESCALA DE PLACA COM O INSTANTE MÉDIO DE OBSERVAÇÃO PARA AS REDUÇÕES COM O ASCORECORD E PDS — **41**

ESCALA DE PLACA X TEMPO DE OBSERVAÇÃO PARA AS REDUÇÕES COM O ASCORECORD E PDS -42 I - INTRODUÇÃO

Este trabalho é baseado na dissertação de mestrado (Veiga, 1986), na qual é descrito um novo procedimento de redução de posição utilizando-se um microdensitômetro para a determinação das coordenadas dos cinco satelites mais externos de Urano, cujas imagens são registradas em placas fotográficas.

Tais posições deverão ser usadas para fazer novos ajustes utilizando a teoria desenvolvida por (Lazzaro ,1987) ; evidentemente para isto precisamos de uma massa de dados muito grande , o que neste trabalho não foi possivel de se obter devido ao tempo que levaria para reduzir todas as placas .

Descreveremos um procedimento de redução semelhante ao desenvolvido em Veiga (1986) , com algumas modificações.

Para avaliar este processo foi escolhida uma amostra de 9 placas obtidas em uma missão de quatro dias consecutivos (05/06/84 a 08/06/84) no Laboratório Nacional de Astrofísica (CNPg/LNA).

Utilizou-se como instrumento de medida o microdensitômetro PDS da Perkin Elmer - modelo 1010A do Observatório Nacional (CNPq/ON), cuja precisão na posição é da ordem de 1 micron.

Em virtude da imagem do satélite Miranda ser afetada pela distribuição da luz do planeta na placa fotográfica , utilizou-se dois métodos diferentes de redução dos centros das imagens ; um para Miranda e outro para o planeta e demais satélites.

Pretende-se então comparar os resultados da redução das posições usando-se este procedimento a resultados obtidos a partir de medidas visuais .

0 ((

I-1 PROCESSO FÍSICO DE OBTENÇÃO DAS IMAGENS.

Uma placa fotográfica é constituída de um material fotosensível aplicado sobre uma lâmina de vidro, cujo coeficiente de dilatação deve ser o menor possível, uma vez que o nosso trabalho é determinar a posição de objetos sobre a mesma.O material fotosensivel é constituído de um conjunto de cristais de sal de prata e de uma camada de gelatina, cuja combinação é denominada emulsão fotográfica.

I-1.1 FORMAÇÃO DAS IMAGENS NA PLACA.

A radiação proveniente de um objeto no céu , ao incidir sobre a placa fotográfica , impressiona os grãos da emulsão radialmente a partir de um ponto central . Este ponto corresponde ao valor máximo da radiação , a qual decresce à medida que se afasta do centro da imagem.

Denomina-se FOG fotográfico à região da placa não exposta , a qual é utilizada para definir o valor da densidade da própria placa guando se deseja medir densidade relativa de objetos sobre a mesma.

I-1.2 SENSITOMETRIA

Define-se opacidade (B.H.Carrol et al , 1986) como a razão entre intensidade de luz incidente e intensidade de luz transmitida O logaritmo da opacidade , densidade óptica , é tomado como meio de avaliar a imagem revelada.

A relação entre a densidade e a guantidade de luz exposta é comumente representada pela curva característica, conhecida como curva H&D.Esta curva é obtida plotando-se densidade versus o logaritmo da exposição, onde a exposição E é determinada pelo produto IT de luz irradiante I e tempo de ação T. A FIGURA 1 mostra a forma típica da curva característica.

FIGURA 1 - CURVA CARACTERISTICA

A curva característica pode ser dividida arbitrariamente em quatro regiões:

> PARTE I: é denominada região de exposição insuficiente. PARTE II:região de crescimento linear de densidade com log E.

PARTE III:é a região de excesso de exposição, onde um aumento na exposição produz apenas um ligeiro aumento relativo de densidade. A curva inclina-se em direção ao eixo de exposição, eventualmente tornando-se paralela a este eixo.

4

PARTE IV:é a região onde um aumento na exposição resulta num decréscimo da densidade revelada.

Na região II, onde a mudança em densidade é proporcional à mudança no logaritmo da exposição , a densidade é dada pela relação:

D = GAMA (LOG E - LOG i)

Nesta equação LOG i é o ponto onde a linha reta extrapolada corta o eixo LOG E , e GAMA é o fator de proporcionalidade , ou seja, a inclinação da reta . Numericamente , o valor de GAMA é igual ao da tangente do angulo ALFA.

DETERMINAÇÃO DA CURVA CARACTERÍSTICA DA PLACA:

São feitas varreduras em determinadas regiões da placa, expostas com diferentes filtros para o mesmo tempo de exposição da placa. De posse do valor médio em densidade obtido em cada uma das nove regiões (SPOTS) e dos valores tabelados (Da Costa et al,1982) para LOG E correspondente , obtém-se a curva característica da placa , cujos coeficientes determinados por mínimos guadrados permitem a transformação de densidade para intensidade. II- OBSERVAÇÕES E TÉCNICAS INSTRUMENTAIS:

II-1 AS OBSERVAÇÕES:

Das observações do sistema de Urano realizadas entre 1982 e 1985 num total de 264 placas, 9 foram retiradas a fim de testarmos o procedimento de redução dos centros das imagens descrito neste trabalho.

Estamos considerando o Sistema de Urano constituído do planeta Urano - o período de revolução em torno do Sol é de 84 anos ; a inclinação i do plano do equador do planeta ao plano da eclíptica é de 0.7722 ; distância geocêntrica variando entre 18 e 19 unidades astronômicas - e de seus cinco satélites exteriores.

As magnitudes visuais dos satélites variam entre 14.23 (Oberon) e 16.5(Miranda), os períodos de 1.4 dias (Miranda) a 13.5 dias (Oberon), e a elongação máxima varia entre 10"(Miranda) e 45"(Oberon).

Dois fatores são essenciais para que a imagem do satélite Miranda seja separada da imagem de Urano na placa fotográfica:

1) O telescópio utilizado nas observações deve ser um instrumento de longo foco tal que permita que as imagens Urano-Miranda sejam separadas na placa fotográfica , uma vez que a diferença em magnitude dos objetos é de 10.7 e a distância do bordo de Urano ao satélite é reduzida de 8" para 2" na placa.

2) O telescópio deve ainda possuir uma abertura suficiente para que Miranda , que possui um rápido movimento em torno de Urano

(Velocidade = 10.7 em longitude) , seja obtido num tempo de exposição relativamente curto .

Embora Urano possua quinze satélites , dez desses não aparecem na placa por estarem contidos numa região que é coberta pela difusão da luz do planeta .

Fornecemos a seguir a representação em escala do sistema de Urano , FIGURA 2 , e a distància dos satélites ao centro do planeta , TABELA 1.

FIGURA 2 - SISTEMA DE URANO

TABELA 1- DISTÂNCIA DOS SATÉLITES ÀO CENTRO DE URANO

SATÉLITE	DISTÂNCIA AO CENTRO
	DE URANO (")
ANEIS	2.8341889 a 3.9188406
198607	3.807005
198608	4.1210638
198609	4.5347022
1986U3	4.7338614
198606	4.8028011
198602	4.9483406
198601	5.0632401
198604	5.3543190
198605	5.7679574
198501	6.5875742
MIRANDA	9.9503010
ARIEL	14.622882
UMBRIEL	20.375520
TITANIA	33.420449
OBERON	44.688264

Os valores desta tabela foram retirados da (Science , 1986). O valor da unidade astronômica utilizada foi de 149597870 Km (valor extraído da I.A.U) e a distância geocêntrica do planeta foi de 18U.A.

Dados do telescópio utilizado , cujas características básicas ,

0

((

(((

((((((

((

(((

0

abertura e distância focal , satisfazem as condições necessárias à observação do sistema de satélites de Urano:

refletor Ritchey-chretien da Perkin-Elmer abertura | 1.6 metros

. distância focal ¦ 1587 cm

. coordenadas | longitude :3h 2m 19.84s

latitude : -220 32' 4."01

altitude : 1872 metros

Dados das placas fotográficas :

placas fotográficas de vidro kodak , previamente

dimensão : 10 x 12 cm
campo : 21' x 26' no plano focal
tipos de emulsão : IIIaj (8 minutos de exposição)
revelador : D19 x 5m x 20oC

II-2 AS MEDIDAS :

Através do Microdensitômetro do Observatório Nacional, instrumento de medida utilizado , foram feitas as varreduras dos objetos , o planeta Urano e seus cinco satélites exteriores , em relação a uma origem arbitrária , para a determinação de suas coordenadas .

MICRODENSITÔMETRO (PDS - Photoeletric Densitometer System)

O Microdensitômetro PDS-1010 A (Rité C. et al , 1987), FIGURA 3 ,consiste de três sistemas : o primeiro para medir densidade ou transmissão em placas fotográficas ;o segundo para mover o carro nas direçoês x e y ; e o terceiro para fornecer informações precisas a respeito da posição do carro , que é de 1 micron .

As medidas de densidade são obtidas através de um feixe luminoso que chega pelo sistema ótico inferior do instrumento , passa pela amostra e segue para o sistema ótico superior , que é simétrico ao primeiro . Em seguida , o feixe luminoso incide em uma fotomultiplicadora que converte a intensidade da luz incidente em uma diferença de potencial. Essa diferença de potencial é proporcional à intensidade de luz incidente e , após a passagem por um amplificador logarítmico ,a voltagem resultante representa a densidade da amostra em guestão . Esta informação é armazenada na memória de um computador PDP8/E.

PROCEDIMENTO DE MEDIDA :

0

0

A placa a ser medida é fixada sobre um suporte de vidro, e toma-se um referencial arbitrário. Desloca-se o cursor até o vértice inferior esquerdo de uma caixa centrada no objeto, para definir o começo da varredura - posição (Xcs,Ycs). A partir do tamanho da imagem, da fenda e passo escolhidos, pode-se então definir a matriz densidade, fazendo-se a varredura do objeto.

A fenda utilizada foi de 20 x 20 microns , pois esta se mostrou pouco ruidosa . Foi adotado para todas as varreduras um passo de 5 microns , que equivale a 0."065 na escala de placa , estando dentro da precisão da teoria.

Apesar da velocidade do carro do PDS ser dada pela relação : Velocidade = 0.2 x xtravel , onde xtravel é o tamanho do vetor na direção x , dado em micron , optou-se por utilizar uma velocidade fixa de 40microns/seg , afim de homogeneizar todos os parâmetros das varreduras .

As matrizes de densidade (em pixeis) para os satélites de Ourano exceto para o satélite Miranda são de 60 x 60 pixeis .

É definida uma matriz de 500 x 500 pixeis , a qual envolve as imagens de Urano e Miranda , permitindo a aplicação do tratamento de redução aqui descrito .

☐ III- REDUÇÃO DAS IMAGENS :

()

((

A redução dos centros das imagens para as coordenadas aparentes dos objetos, ou seja, para as coordenadas observadas no céu, será comparada às coordenadas aparentes teóricas do sistema de Urano obtendo-se então as diferenças das posições observadas e das posições calculadas (o - c).

Os resultados das posições observadas (medidas) serão também comparados às posições obtidas com o Ascorecord , sendo a propósito o objetivo deste trabalho.

III-1 REDUÇÃO DOS CENTROS DAS IMAGENS :

A imagem de Miranda , ao contrário dos demais satélites, sofre uma forte contribuição da luz do planeta devido à proximidade dos dois ; este fato pode ser constatado ao analisarmos a varredura incluindo todo o sistema de Urano , FIGURA 4 .

Desta forma , utilizaremos dois métodos distintos de determinação do centro das imagens : um para o satélite Miranda e outro para o planeta e os quatro satélites exteriores.

0

0

((

0

((

(((

III-1.1 URANO E SATÉLITES EXTERIORES :

0

()

(((

0

Neste caso adota-se o seguinte procedimento para a determinação do centro da imagem :

Inicialmente faz-se uma estatística , obtendo-se os valores máximo e mínimo de densidade da imagem . Elimina-se da imagem , FIGURA 5 , os níveis do fundo de céu , deixando apenas os níveis inerentes à imagem. FIGURA 5 - IMAGEM DOS QUATRO SATÉLITES EXTERIORES DE URANO

16

٠,

Esta eliminação na imagem do fundo de céu é possivel mediante o resultado de uma varredura pequena (10 x 10 pixeis), na borda da placa fotográfica ; a varredura desta região não exposta , fornece o valor do FOG ,ou seja ,o valor em densidade do fundo de céu.

Desta forma ,subindo o valor mínimo de densidade da imagem para um valor maior do que o obtido para o FOG,garantimos estarmos obtendo níveis de densidade da própria imagem .A imagem resultante deste procedimento é fornecida pela FIGURA 6.

0

0

((

0

((

(((

De acordo com os valores máximo e mínimo de densidade das imagens dos objetos , já extraídos os niveis de ruído, ajustam-se elipses para anéis de isodensidade de largura 0."2 , cuja média aritmética de seus centros geométricos fornece o centro de cada imagem . Adotou-se o valor 0."2 para a largura de anel por esta compreender um número médio de pontos suficiente para o ajuste desejado .

As coordenadas obtidas para os centros das imagens são relacionadas ao começo da varredura através das relações :

x (m) = x (cs) - x (ce). passo

, sendo :

 γ (m) = γ (cs) + γ (ce) . passo

x (m),y (m) -> posições x,y em microns

x (cs), y (cs) -> posições x, y do começo da varredura

x (ce),y (ce) -> posições x,y do centro da imagem dadas em pixeis

passo -> distância em microns percorrida pelo instrumento entre duas leituras consecutivas de uma varredura

III-1.2 PLANETA-MIRANDA :

Para o satélite Miranda ,não podemos utilizar o mesmo procedimento para a determinação do centro da imagem pois há um número insuficiente de niveis de densidade , como pode ser visto na FIGURA 7 .

Ainda há uma forte contribuição de luz do planeta envolvendo o satélite , este fator dificultando portanto , em virtude da fraca magnitude do satélite , a separação dos níveis dos objetos.

Na verdade, a contribuição da luz do planeta causa um erro sistemático na direção que une os dois centros . Adotou-se então um procedimento de determinação do centro de Miranda , onde retira-se esta contribuição de luz . Para minimizar estes erros utiliza-se uma varredura maior em Miranda (500 x 500 pixeis) , incluindo a imagem de Urano, com a finalidade de retirarmos o efeito da luz do planeta sobre o satélite.

Inicialmente, subimos o valor inicial de densidade da imagem Urano-Miranda, tomando o cuidado de pegarmos níveis médios ou seja, níveis situados acima do ruído do fundo do céu e abaixo do limite de saturação da placa.

Apenas com a imagem do planeta já retirados possíveís niveis de ruído , como descrito em II-l.l , determina-se seu centro.

Tomando-se a imagem original , faz-se uma determinação visual do centro de Miranda , a partir da definição de dois vértices de uma caixa centrada no satélite, como pode ser visto na FIGURA 8 .

FIGURA 8 - DETERMINAÇÃO VISUAL DO CENTRO DE MIRANDA

Em seguida, de posse das coordenadas (x,y) do centro do

planeta e do centro do satélite , realizam-se dois cortes na imagem : o primeiro na direção gue une os centros de Urano e Miranda;o segundo , com origem no centro de Urano , na direção do céu , a 180 graus do primeiro.

A FIGURA 9 mostra os perfis obtidos.

0

Um procedimento certamente bem mais correto seria o de fazer vários cortes , os quais varressem toda imagem de Urano ; mas por tal procedimento exigir um maior de tempo de processamento , optamos por considerar os perfis planeta - Miranda e planeta-céu , cujos resultados se mostraram bons .

Determinamos em seguida , a curva característica da placa, FIGURA 10, que permite a transformação dos perfis em densidade para intensidade .

A razão de transformarmos os perfis de densidade para intensidade para posterior subtração dos mesmos , deve-se ao fato da densidade ser uma quantidade definida em escala logarítmica , enquanto que intensidade é uma grandeza física .

Faz-se então a subtração dos perfis em intensidade , obtendo-se como resíduo , o perfil do satélite Miranda , FIGURA 11.

((

5

FIGURA 11- PERFIL DE MIRANDA

A partir deste, ajusta-se uma gaussiana ao perfil subtraído, FIGURA 12, cujo valor máximo fornecerá a distância em segundo de arco do satélite ao planeta. FIGURA 12 - AJUSTE NO PERFIL DE MIRANDA

Para o satélite Miranda , as coordenadas x (m),y (m) são dadas pelas seguintes relações :

x (m) = x (cs) - (x(ce) + x/0."065) .passo

,sendo :

y(m) = x(cs) + (y(ce) + y/0."065).passo

x (m),y (m) -> posição x,y em microns

x (cs), y (cs) -> posição x, y do começo da varredura de Urano-Miranda em microns

x (ce), y (ce) -> posição x, y do centro de Urano em pixeis

x,y -> posição x,y do centro do satélite Miranda ,em segundo de arco ,determinadas através das relações : x = ro . cos0 , y = ro . sen0

onde O é o ângulo que o raio ro (centro do planeta a Miranda) faz com o eixo x.

REDUÇÃO DAS PLACAS

Afim de avaliar o processo de medida agui descrito , para a redução das placas , utilizamos as efemérides dos quatro satélites mais externos , consideradas de boa precisão , para calcular a posição de Miranda .

O processo usual de redução da posição de objetos em placas fotográficas consiste em tomar as posições medidas e de catálogo de estrelas do campo , e ajustar um polinômio , afim de definir o sistema de referência ; porém optamos pela redução inter-satélites em virtude desta permitir em tempo menor , a verificação do processo a que o trabalho se propõe.

Esta redução inter-satélites é obtida determinando-se por mínimos quadrados , a melhor similaridade que transforme um sistema medido (R) em um sistema teórico (R') (Veiga , 1986).

Este tipo de redução foi utilizado nas observações do sistema de satélites de Urano em um CCD (D.Pascu et al,1987) , por este possuir um campo pequeno de 5'x 5'.

35 DETERMINAÇÃO TEÓRICA DAS COORDENADAS APARENTES DO SISTEMA DE URANO : Definição da órbita de um satélite ,onde as longitudes são contadas a partir do nodo ascendente do plano de referência : #- PERICENTRO DO SATÉLITE PLANO DA ÓRBITA DO SATÉLITE 벙 ω $\widetilde{\omega} = \omega + \Omega$ Ω N EQUADOR 7- NODO ASCENDENTE DO PLANO DE REFERÊNCIA Notação : PLANO DE REFERÊNCIA (PROXIMO DO EQUADOR DE URANO) P - período Uo - longitude média em to e - excentricidade $\widetilde{\omega_o}$ - longitude do pericentro em to ŵ - movimento de precessão do pericentro N - longitude (ascensão reta) do nodo do plano de referência sobre o equador em to J - inclinação do plano de referência sobre o equador em to i - inclinação do plano da órbita sobre o plano de referência Ω_0 - longitude do nodo ascendente da órbita sobre o pla0

no de referência em to a - semi- eixo maior

As coordenadas aparentes do Sistema de Urano, calculadas a partir dos parâmetros orbitais referidos ao equador e equinócio de 1950.0, são obtidas através de uma série de rotações

As coordenadas retangulares de um satélite no plano de sua órbita são dadas por :

 $X1 = r \cdot \cos(u - \Omega)$ $Y1 = r \cdot \sin(u - \Omega)$ Z1 = 0 , onde :

 $\Omega = \Omega_0 + \dot{\Omega} \cdot \dot{T}$ u = uo + n.T + 2e.senL + 5/4e².sen2L r = a(1 + e²/2(1 - cos2L) - ecosL) , sendo :

n - movimento médio do satélite (n = 360 GRAUS/p)
T - intervalo de tempo contado a partir de 1950.0(T=t-to)
to - 1950.0

 $t = tl - T \cdot D$, onde :

t - instante da observação corrigido da aberração planetária
 tl - instante da observação

T -tempo no qual a luz percorre uma unidade astronômica; (T = 0h.13849)

D - distância geocêntrica de Urano

L - anomalia média ; L = uo - $\vec{\omega}_{\circ}$ + (n - $\vec{\omega}$).T $\hat{\Omega}$ - movimento de precessão do nodo ascendente

Em seguida , efetuamos as seguintes rotações :

Coordenadas equatoriais Uranocentricas do satélite :

$$\begin{bmatrix} X \\ Y \\ z \end{bmatrix} = R3(-N)R1(-J)R3(-W)R1(-i) \begin{bmatrix} X1 \\ Y1 \\ z1 \end{bmatrix}, \text{ onde}$$

Rj(0) representa rotação do angulo 0 em torno do eixo j , j = 1 rotação em torno do eixo x j = 2 rotação em torno do eixo y j = 3 rotação em torno do eixo z

Coordenadas geocêntricas 1950.0 do satélite :

Tq
$$X = Y'/D$$

Tq $Y = Z'/D$

onde :
$$\begin{bmatrix} X' \\ Y' \\ z' \end{bmatrix}$$
 = R2(-DELTA)R3(ALFA) $\begin{bmatrix} X \\ Y \\ z \end{bmatrix}$

○ V- DISCUSSÃO DOS RESULTADOS :

((

(((((

((

0

Uma comparação com resultados obtidos a partir de medidas visuais mostra serem mais precisas as posições medidas dos cinco satélites externos de Urano , usando o procedimento descrito neste trabalho .

Tais resultados podem ser vistos na TABELA 2 ,onde fornecemos a média dos resíduos (o - c) dados em segundo de arco , entre as posições observadas e calculadas de cada um dos satélites , de um total de 9 placas, para os dois instrumentos de medida utilizados.

TABELA 2 - RESÍDUOS DAS POSIÇÕES OBTIDAS COM O ASCORECORD E O PDS

Satélites	Ascor	ecord	PDS		
	х	Y	x	Y	
Miranda	0.164	0.145	0.079	0.070	
Ariel	0.040	0.057	0.020	0.030	
Umbriel	0.097	0.037	0.033	0.025	
Titania	0.062	0.073	0.038	0.017	

É evidente que uma amostra maior de placas poderia evidenciar mais os resultados aqui obtidos , contudo o número pequeno de placas não invalida o trabalho , já que este se propõe a mostrar o processo em si de redução das imagens e não resultados estatísticos . Uma continuação deste trabalho seria ler um número significativo de placas , afim de ajustarmos as posições a teorias mais recentes , determinando assim parâmetros orbitais mais precisos.

Um outro resultado interessante , foi o da determinação do centro de Urano , uma vez que os instrumentos de medidas visuais não permitem fazê-lo , pois as dimensões das imagens do planeta na placa excedem os limites dos retículos de enquadramento , não permitindo portanto uma boa repetibilidade entre as medidas ,que deve ser no máximo de 5 microns(0".065 na escala de placa).

A TABELA 3 mostra os resíduos (O-C),em segundos de arco, entre as posições observadas e calculadas de Urano, esta última tendo sido determinada a partir da teoria do Bureau des Longitudes, que utiliza os polinômios de Chebychev (Veiga ,1986).

0

TABELA 3-RESÍDUOS ENTRE AS POSIÇÕES OBSERVADAS E CALCULADAS DE URANO

#PLACA	POSIÇÕES TEÓRICAS					POSIÇÕES CALCULADAS						
	7	ALF?	A	DEL	.T/	A	2	ALF?	4	DE	:L]	A
554	16	37	31.622	-22	3	14.20	16	37	31.627	-22	3	14.25
557	16	37	31.100	-22	3	13.20	16	37	31.073	-22	3	13.38
561	16	37	30.740	-22	3	12.52	16	37	30.746	-22	3	12.53
571	16	37	21.979	-22	2	55.78	16	37	21.929	-22	2	55.69
572	16	37	21.898	-22	2	55.63	16	37	21.894	-22	2	55.58
574	16	37	21.744	-22	2	55.33	16	37	21.770	-22	2	54.79
579	16	37	21.128	-22	2	54.16	16	37	21.043	-22	2	54.12
582	16	37	10.504	-22	2	33.83	16	37	10.500	-22	2	33.87

	RESIDUOS (0 - C)
# PLACA	ALFA	DELTA
554	0.075	0.050
557	-0.405	0.180
561	0.090	0.010
571	-0.005	-0.090
572	-0.060	-0.050
574	0.390	-0.540
579	-0.085	-0.040
587	-0.060	0.040

Na TABELA 4 é mostrada a variação da escala de placa (em "/mm) ao longo do tempo , determinada por mínimos quadrados , qual está consistente com o valor da escala determinado a partir da características do instrumento , que é de 12.9"/mm.

TABELA 4 - VARIAÇÃO DA ESCALA DE PLACA

DATA	Т	ESCALA("/m	m)
	(fração de hora)	ASCORECORD	PDS
05/06/84	5.14299	12.90076	13.00407
05/06/84	5.19299	13.00463	12.98576
05/06/84	5.22632	13.00850	13.00251
05/06/84	6.05479	12.98727	12.99558
05/06/84	6.06243	12.98000	12.99029
05/06/84	6.07701	12.98330	12.97985
06/06/84	6.13535	12.97867	12.99849
07/06/84	7.14194	12.97715	12.97453
08/06/84	8.13674	12.95248	12.95237

No GRÁFICO 1 são plotados os valores das escalas de placa em função do tempo . É plotado o valor médio da escala (linha contínua) , o gual pode ser utilizado para um conjunto de dados obtidos em uma mesma época . A incerteza (barra de erro) dos vários valores das escalas são da ordem de 0.40022"/mm .

> Escala Média (Ascorecord) = 12.97475 Escala Média (PDS) = 12.98705

- B.H.Carrol , G.C.Higgins , T.H.James (1986) - Introduction to photographic theory - The Silver Halide Process .

D.Pascu , P.K.Seidelmann , R.E.Schmidt , E.J.Santoro ,
 J.L.Hershev (1987) - Astrometric CCD Observations of
 Miranda : 1981 - 1985 The Astronomical Journal, volume
 93, no 4.

- da Costa , L.A.N. , Rité , C.F. , de Carvalho , R.R. ,
 Pellegrini , P.S.S. (1982) - Image Processing at the
 Observatório Nacional , I - Surface Photometry , publicações
 do Observatório Nacional no 2 .

Lazzaro , D. (1987) - Teoria Semi-Analítica para o movimento
 dos satélites de Urano - Tese de Doutoramento , IAG/USP ,
 Sao Paulo.

- Rité , C.F. , da Costa , L.A.N. , de Carvalho , R.R. , Nunes , M.A. , Junior , D.N., Pellegrini , P.S.S. (1987) - Utilização do Microdensitômetro PDS 1010A , publicações do Observatório Nacional no 14 .

- Stone , E.C. , Mines , E.D. (1986) - The Voyager 2 Encounter with the Uranian System , Science no 233 , pags 39 a 64.

- Veiga , C.H. (1986) - Observações dos Satélites de Urano Dissertação de Mestrado , publicações do Observatório Nacional no 4 .