

INFLUÊNCIA DA CONFIGURAÇÃO DE ESTRELAS DE REFERÊNCIA NUMA REDUÇÃO COM POLINÔMIOS DO 1º GRAU

·i.

por

MARCELO ASSAFIN

PROJETO SUBMETIDO AO CORPO DOCENTE DO OBSERVATÓRIO DO VALONGO DA U.F.R.J., COMO PARTE DOS REQUISITOS NECESSÁRIOS À OBTENÇÃO DO GRAU DE ASTRONOMO.

AREA DE CONCENTRAÇÃO: ASTROMETRIA

PROFESSOR ORIENTADOR: Gilson Gomes Vieira

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO OBSERVATÓRIO DO VALONGO JANEIRO DE 1988

AGRADECIMENTOS.

O meu sincero agradecimento ao Prof. Gilson G. Vieira, pela sua orientação durante o Curso e agora, na realização deste Projeto.

Meu agradecimento a todos os colegas e Professores do Departamento de Astronomia que, sem exceção, contribuíram de alguma maneira para minha formação e para a conclusão deste trabalho. Em particular, meu agradecimento ao Prof. José Adolfo S. de Campos pela ajuda na confecção dos diagramas das placas, os quais constituem boa parte do volume deste trabalho.

Finalmente, à amiga Denise Perassoli Hote, pela paciência e boa vontade em datilografar com esmero este trabalho, meu muito obrigado.

RESUMO.

Estudamos as correlações entre as configurações de estrelas de base e um indicador do condicionamento da matriz dos coeficientes do sistema normalizado por minimos quadrados, na redução de posição de objetos celestes. Este indicador foi designado 'número de condição', sendo função, apenas, das coordenadas retilineas medidas das estrelas de base e, portanto, da configuração destas estrelas. Consideramos inexistentes os erros nestas coordenadas. Através de desenvolvimentos analíticos, pudemos demonstrar que o número de condição é fator de ampliação da propagação de erros das coordenadas catalogadas das estrelas de hase, sendo esta ampliação máxima quando o número de condição tende para zero, e mínima quando tende para 1. Estabelecemos, a partir da expressão analítica do número de condição, as circunstâncias nas quais certas configurações de estrelas de base dariam sistemas bem ou mal condicionados. Demonstramos, também, que o tamanho da configuração, no caso de paígenos convexos, bem como a disposição do polígono na placa fotográfica, não tem interferência no valor do número de condição e, portanto, na ampliação dos erros propagados pelo método.

.iv.

• v •

F	M	n	T	CE
T	1.0	$\boldsymbol{\nu}$	1	CL

1.	INTRODUÇÃO	- 1
2.	TEORIA DA REDUÇÃO	3
	Relação entre coordenadas retilíneas celestes e medi-	
	das	5
	Os erros	5
	Relação entre coordenadas esféricas e coordenadas re-	
	tilineas celestes	7
	Procedimento de redução com polinômios do primeiro	
	grau	7
3.	CONDICIONAMENTO DE SISTEMAS LINEARES	10
4.	PROPAGAÇÃO DE ERROS E SUA AMPLIAÇÃO EM REDUÇÕES AO	
	PRIMEIRO GRAU	11
	O número de condição na ampliação da propagação de er	
	ros	13
4	Configurações de estrelas de referência e o número de	
	condição	16
5.	SIMULAÇÃO DE CONFIGURAÇÕES DE ESTRELAS DE BASE E REDU	
	ÇÃO DE CONFIGURAÇÕES REAIS	17
	Número de condição igual a 0	20
	Número de condição inxeterminado (0/0)	28
	Caso a	29
	Caso B	29
	Nûmero de condição igual a 1	40
6.	CONCLUSÕES	69
7.	SUGESTÕES PARA NOVOS TRABALHOS	71

	Pág.
BIBLIOGRAFIA	72
APÉNDICE A	-73

1. INTRODUÇÃO.

O presente trabalho estuda a influência da configuração de estrelas de referência na redução de posições de objetos celestes através do ajustamento de polinômios do primeiro grau, pelo método dos mínimos quadrados.

A redução de posições consiste na determinação das coord<u>e</u> nadas esféricas de um ponto qualquer de uma placa fotográfica, a partir de estrelas cujas coordenadas são conhecidas, designadas estrelas de referência ou de base.

A opção por reduções ao primeiro grau se justifica uma vez que, quanto maior o grau do polinômio ajustante, maior o número de estrelas de referência necessário para a redução. A título de ilustração, para reduções de placas obtidas no instrumento GPO (f=4 m, d=40 cm) do ESO, La Silla, Chile, e no astrógrafo Zeiss (f=2 m, d=40 cm) instalado em Campinas, SP, Brasil, são necessárias 5 estrelas de referê<u>n</u> cia.

Esta restrição se torna mais crítica em astrometria de longo foco onde o número de estrelas de referência disponíveis e, em geral, pequeno devido ao reduzido campo disponível.

Como ponto de partida, procuramos encontrar alguma corre lação entre certas configurações de estrelas de referência e a matriz do sistema de equações normalizado por minimos quadrados. Isto foi feito empiricamente, efetuando reduções com pentágonos reais e examinando os coeficientes de a_{10} , a_{01} , b_{10} e b_{01} , onde o polinômio ajustante foi representado

.1.

na notação convencional devida a Debehogne³.

Desde logo, ficou evidente a neces idade de obtermos um parâmetro que indicasse matematicamente as variações de con figuração no pentágono de estrelas de referência. Escolhemos examinar o condicionamento da matriz do sistema normali zado por meio de um parâmetro que será designado, daqui por diante, de 'número de condição' da redução².

O número de condição consiste do determinante da matriz dos coeficientes, devidamente normalizado para que seu valor fique compreendido entre O e 1. Um número de condição próxi o de 1 indica matriz bem condicionada, e próximo de O, mal condicionada.

Verificamos que o número de condição tem grande influência na propagação de erros dentro do processo de redução. A propósito, convém frizar que levamos em conta apenas os erros nas coordenadas esféricas das estrelas de referência (erros de catálogo), de acordo com Bougeard¹.

O estudo da expressão analítica do número de condição mostrou quais configurações levavam a números de condição próximos de 0, acarretando grande propagação de erros, e próximos de 1, com pequena propagação de erros

Paralelamente, e independente do estudo do número de con dição, foram detetadas certas configurações de estrelas de referência que deveriam ser evitadas cono, por exemplo, pen tágonos não convexos, onde estrelas ficariam próximas do b<u>a</u> ricentro do pentágono. Não foi detectada qualquer influência de tamanho ou de posição de pentágono de referência na propagação de erros dentro do procedimento de redução de posição ao primeiro grau.

2. TEORIA DA REDUÇÃO.

Apresentaremos os princípios gerais da redução de posição de objetos celestes de maneira suscinta. As descrições mais detalhadas do método estão contidas na maioria dos livros citados na bibliografia.

A presente versão está baseada na apresentação tradicional de Podobed ⁶ e na apresentação moderna de Debehogne⁴.

Seja, na figura 1, a esfera celeste de centro 0 e raio igual a distância focal do instrumento. Seja 0 o centro óptico da objetiva e a distância focal adotada como unidade de medida.

Suponhamos, em primeira aproximação, uma situação ideal, geométrica, ausente de erros.

Seja C' o pé da perpendicular baixada desde o centro óp tico da objetiva até a placa fotográfica situada no plano focal da objetiva.

Seja C, ponto diametralmente oposto a C', o ponto da es fera celeste para o qual apontamos o telescópio.

No plano da placa fotográfica (plano focal do instrumento), caracterizamos o sistema de eixos C'xy de coorden<u>a</u> das retilíneas medidas definido, na prática, pelos eixos da máquina de medir e tendo como origem C'(x_o,y_o).

No plano tangente a esfera celesto pelo ponto $C(\alpha_0, \delta_0)$ definimos o sistema de eixos das coordenadas retilíneas ce lestes, CXY, com o eixo CY orientado positivamente no sentido do norte e CX, perpendicular a CY, dirigido no sentido das ascersões retas crescentes.

Usamos, aqui, a designação de 'coordenadas retilíneas celestes' proposta por R. R. de Freitas Mourão e registr<u>a</u> da em seu dicionário Enciclopédico de Astronomia e Astronáutica ⁵, em substituição a expressão 'coor enadas padrão'.

.4.

As coordenadas equatoriais são referidas a um equinócio bem determinado, geralmente 1950.0.

Qualquer objeto luminoso puntiforme, de coordenadas equatoriais $E(\alpha, \delta)$, da esfera celeste, e projetado opticamen te em I(x,y) na placa fotográfica, e geometricamente em $\pi(X,Y)$, no plano das coordenadas retilíneas celestes.

O problema da astrometria fotográfica consiste em se definir as relações entre os pontos E (α, δ) e os pontos correspondentes $\pi(X, Y)$, bem como as relações entre estes e os pontos I(x, y).

Relação entre coordenadas retilineas celestes e medidas.

Trataremos, primeiramente, das relações entre as coord<u>e</u> nadas retilíneas celestes e as coordenadas retilíneas medidas.

Na ausência de erros, a relação entre as duas é

```
X = xY = y.
```

Os erros.

Levando-se em conta os diversos erros que podem afetar o trabalho de redução, as relações acima tornam-se mais complexas.

Uma descrição sistemática dos erros relacionados com o trabalho de rotina de redução com recursos de alta qualidade (astrógrafo, computador, coordenatógrafo, placas fotográficas, etc.), hem como suas características e efeitos pode ser encontrada em Vieira⁸.

A título de ilustração, são eles:

 erros cósmicos - posições catalogadas das estrelas de referência e seu movimento próprio;
 erros pessoais - enquadramento dos objetos no retícu-

lo do coordenatógrafo;

A relação entre as coordenadas retilíneas celestes e as coordenadas retilíneas medidas pode ser dada pelas equações de Turner⁶, aqui expressas na notação convencional compacta devida a Debehogne⁴:

$$X = \sum_{\substack{i+j=k=0}}^{g} a_{ij} x^{i} y^{j}$$

$$Y = \sum_{i+j=k=0}^{g} b_{ij} x^{i} y^{j} ,$$

i∔j↑ , i + j = k = 0,..., g , g o grau do polinômio de ajuste.

Quanto maior o grau do polinômio de ajuste, mais erros são, em geral, corrigidos, porém maior é o número de estre las de referência necessárias para a redução. As equações anteriores são as equações de condição do problema e as constantes a_{ii}, b_{ii} são as constantes de placa.

Relação entre coordenadas esféricas e coordenadas retilineas celestes.

Trataremos, agora, da relação entre as coordenadas esféricas das estrelas e as coordenadas retilíneas celestes correspondentes.

Por trigonometria esférica, encontramos 3

$$X = \cos \delta \operatorname{sen}(\alpha - \alpha_{0}) / A$$

$$Y = \{\operatorname{sen} \delta \cos \delta_{0} - \cos \delta \operatorname{sen} \delta_{0} \cos (\alpha - \alpha_{0}) \} / A \quad (I)$$

$$A = \operatorname{sen} \delta \operatorname{sen} \delta_{0} + \cos \delta \cos \delta_{0} \cos (\alpha - \alpha_{0})$$

para o caso direto, e

$$tg(\alpha - \alpha_{0}) = X/(\cos \delta_{0} - Y \sin \delta_{0})$$
(II)
$$tg\delta = (\sin \delta_{0} + Y \cos \delta_{0}) \cos(\alpha - \alpha_{0}) / (\cos \delta_{0} - Y \sin \delta_{0})$$

para o caso inverso.

Procedimento de redução com polinômios do primeiro grau.

A redução com polinômios do primeiro grau permite corrigir os erros de centragem, de faita de paralelismo entre os eixos de coordenadas retilíneas celestes e de coordenadas retilíneas medidas, o erro devido ao não perpendicularismo entre os eixos da máquina de medir, bem como o erro de esca la.

Os polinômios ajustantes são da forma

$$X = a_{00} + a_{10}x + a_{01}y$$

$$Y = b_{00} + b_{10}x + b_{01}y$$
(III)

Escolhemos, na placa fotográfica, cinco estrelas de ref<u>e</u> rência catalogadas, de coordenadas retilíneas medidas (x_i, y_i) e de coordenadas retilíneas celestes (X_i, Y_i) , estas últimas obtidas por meio das equações (I).

O catálogo de estrelas mais comumente utilizado no Obser vatório do Valongo tem sido o do Smithsonian Astrophysical Observatory, xesignado por S.A.O..

Reduzimos as coordenadas retilíneas medidas e celestes à média, de modo que

$$\{x_{i}\} = 0$$

 $\{y_{i}\} = 0$

e

$$\{X_{i}\} = 0$$

 $\{Y_{i}\} = 0$

onde as chaves indicam somatorios.

Com o objetivo de simplificar a notação, as referidas coordenadas, já reduzidas à média, continuarão a ser representadas como vinha sendo feito anteriormente, sem nenhum sinal diferenciador.

Obtemos, a partir de (III),

com um sistema análogo para Y.

O sistema de equações acima é superdeterminado, e sua normalização por mínimos quadrados conduz a

$$a_{10} \{x_{i}^{2}\} + a_{01} \{x_{i}, y_{i}\} = \{x_{i} X_{i}^{-}\}$$

$$a_{10} \{x_{i}, y_{i}\} + a_{01} \{y_{i}^{2}\} = \{y_{i} X_{i}\} \quad (V)$$

$$5a_{00} = 0 ,$$

e outro sistema análogo para Y.

Com o objetivo de ressaltar certos aspectos que são do nosso interesse desenvolver no trabalho, vamos resolver os sistemas de equações normalizados pelo método de Cramer.

A matriz M dos coeficientes dos dois sistema é

	$\left(\left\{ x^2 \right\} \right)$	{xy}
M =	${xy}$	$\{y^2\}$

cujo determinante vale

det M = $\{x^2\}\{y^2\} - \{xy\}^2$.

As constantes de placa são dadas pelas expressões

.9.

$$a_{00} = 0$$

$$b_{00} = 0$$

$$a_{10} = \frac{\{xX\}\{y^2\} - \{yX\}\{xy\}}{\det M}$$

$$a_{01} = \frac{\{yX\}\{x^2\} - \{xX\}\{xy\}}{\det M}$$

$$b_{10} = \frac{\{xY\}\{y^2\} - \{yY\}\{xy\}}{\det M}$$

$$b_{01} = \frac{\{yY\}\{x^2\} - \{xY\}\{xy\}}{\det M}$$

Calculamos as coordenadas retilíneas celestes de um objeto por meio de (III) e, finalmente, suas coordenadas es féricas por meio de (II).

3. CONDICIONAMENTO DE SISTEMAS LINEARES.

Dado um sistema de equações lineares, dizemos que um tal sistema é bem condicionado se, para um pequeno incremento em algum ou alguns de seus coeficientes, as soluções têm variação da mesma ordem de grandeza. Em caso contrário, quando a variação da solução é muito maior que a variação dada aos coeficientes, dizemos que o sistema é mal condicionado².

Uma maneira de se determinar o condicionamento de um sistema de equações lineares é através do determinante no<u>r</u> malizado da matriz dos coeficientes.

.10.

A normalização é feita dividindo o determinante da matriz dos coeficientes pelo produto das normas das suas linhas. Os valores do determinante normalizado ficam compree<u>n</u> didos entre 0 e 1.

O sistema é mal condicionado para valores pequenos, e bem condicionado para valores grandes (próximos de 1) do d<u>e</u> terminante normalizado.

Para o caso em estudo, a expressão do determinante norm<u>a</u> lizado, daqui por diante chamado 'número de condição', NC, é

NC=
$$||\det M|| = \frac{\{x^2\}\{y^2\} - \{xy\}^2}{(\{x^2\}^2 + \{xy\}^2)^{1/2} \cdot (\{y^2\}^2 + \{xy\}^2)^{1/2}}$$

4. <u>PROPAGAÇÃO DE ERROS E SUA AMPLIAÇÃO EM REDUÇÕES</u> AO PRIMEIRO GRAU.

Os erros das coordenadas retilíneas celestes, devido aos erros de catálogo, são propagados aos coeficientes {xX}, {yX}, {xY} e {yY}, dos sistemas normalizados.

Conforme já referido anteriormente, os erros de catálogo serão os únicos considerados no presente trabalho. O uso do método de mínimos quadrados, no caso da existência de erros de medida, é formalmente incorreto e conduz à soluções te<u>n</u> denciosas, de acordo com Bougeard¹.

O número de condição na ampliação da propagação de erros.

Sem os erros de catálogo, as soluções para as constantes de placa seriam exatas. Na presença destes erros, as novas soluções podem ser expressas como as soluções exatas, mais os erros propagados.

Sejam, agora,

$$X_{i} = X_{iv} + ec_{iX}$$

 $Y_{i} = Y_{iv} + ec_{iY}$, $i = 1, \dots, 5$

onde (X_{iv}, Y_{iv}) são as coordenadas retilíneas celestes exatas da i-ésima estrela de base, (ec_{iX}, ec_{iY}) são os erros de catálogo em X e Y da i-ésima estrela de base e (X_i, Y_i) são as coordenadas retilíneas celestes com o erro propagado, devido aos erros de catálogo.

Vamos referir todas as coordenadas envolvidas à média de<u>s</u> sas coordenadas.

Sabemos que:

$$\frac{\{X_i\}}{n} = \frac{\{X_{iv}\}}{n} + \frac{\{ec_{ix}\}}{n}$$

Escrevendo

$$x'_{i} = x_{i} - \frac{\{X_{i}\}}{n}$$

$$x'_{iv} = x_{iv} - \frac{\{X_{iv}\}}{n}$$

$$ec'_{ix} = ec_{ix} - \frac{\{ec_{ix}\}}{n}$$

$$x'_{i} = x_{i} - \frac{\{X_{i}\}}{n} , vem$$

$$x'_{i} = x'_{iv} + ec'_{ix} , com expressões aná-$$

logas para Y_i , Y_{iv} , $ec_{iY} e y_i$.

Como já referido anteriormente, por uma questão puramente gráfica, suprimiremos os apóstrofos nas coordenadas ref<u>e</u> ridas à média.

Desenvolvendo os coeficientes dos sistemas normalizados em função das expressões acima, vem

$$\{x_{i}^{2}\} \equiv \{x^{2}\}$$

$$\{y_{i}^{2}\} \equiv \{y^{2}\}$$

$$\{x_{i}y_{i}\} \equiv \{xy\}$$

$$\{x_{i}X_{i}\} = \{x_{i}(X_{iv} + ec_{iX})\} = \{x_{i}X_{iv}\} + \{x_{i}ec_{iX}\} \equiv \{xX_{v}\} + \{xe_{X}\}$$

$$\{y_{i}X_{i}\} = \{y_{i}(X_{iv} + ec_{iX})\} = \{y_{i}X_{iv}\} + \{y_{i}ec_{iX}\} \equiv \{yX_{v}\} + \{ye_{X}\}$$

$$\{x_{i}Y_{i}\} = \{x_{i}(Y_{iv} + ec_{iY})\} = \{x_{i}Y_{iv}\} + \{x_{i}ec_{iY}\} \equiv \{xY_{v}\} + \{xe_{y}\}$$

$$\{y_{i}Y_{i}\} = \{y_{i}(Y_{iv} + ec_{iY})\} = \{y_{i}Y_{iv}\} + \{y_{i}ec_{iY}\} \equiv \{yY_{v}\} + \{ye_{Y}\}$$

Substituindo os somatórios acima nas expressões (VI) das constantes de placa e, por último, dividindo o numerador e o denominador destas expressões pelo produto P das normas das linhas da matriz dos coeficientes, com o objetivo de f<u>a</u> zer surgir o número de condição NC nas expressões das constantes de placa, chegamos a

$$a_{10} = a_{10v} + E_{a_{10}}$$

 $a_{01} = a_{01v} + E_{a_{01}}$
 $b_{10} = b_{10v} + E_{b_{10}}$
 $b_{01} = b_{01v} + E_{b_{01}}$, onde

.14.

$$a_{10v} = \frac{\{xX_{v}\} \{y^{2}\} - \{yX_{v}\}\{xy\}}{NC.P}$$

$$a_{01v} = \frac{\{yX_{v}\} \{x^{2}\} - \{xX_{v}\}\{xy\}}{NC.P}$$

$$b_{10v} = \frac{\{xY_{v}\} \{y^{2}\} - \{yY_{v}\}\{xy\}}{NC.P}$$

$$b_{01v} = \frac{\{yY_{v}\} \{x^{2}\} - \{xY_{v}\}\{xy\}}{NC.P}$$

$$E_{a_{10}} = \frac{\{xe_{\chi}\} \{y^{2}\} - \{ye_{\chi}\}\{xy\}}{NC.P}$$

$$E_{a_{01}} = \frac{\{ye_{\chi}\} \{x^{2}\} - \{xe_{\chi}\}\{xy\}}{NC.P}$$

$$E_{b_{10}} = \frac{\{xe_{\gamma}\} \{y^{2}\} - \{ye_{\gamma}\}\{xy\}}{NC.P}$$

$$E_{b_{01}} = \frac{\{xe_{\gamma}\} \{y^{2}\} - \{ye_{\gamma}\}\{xy\}}{NC.P}$$

O número de condição aparece no denominador de todas as constantes de placa.

Os erros das coordenadas retilíneas celestes, propagados aos somatórios que aparecem nos numeradores é, portanto, am pliado por um fator NC^{-1} . A ampliação é l para NC = 1, e infinita para NC = 0. Para um objeto A, de coordenadas retilíneas medidas $(x_A^{}, y_A^{})$, temos

$$X_A = a_{10}X_A + a_{01}Y_A \equiv X_{A_V} + E_{X_A}$$

 $Y_A = b_{10}X_A + b_{01}Y_A \equiv Y_{A_V} + E_{Y_A}$

onde

$$X_{A_{v}} = a_{10v}X_{A} + a_{01v}Y_{A}$$

 $Y_{A_{v}} = b_{10v}X_{A} + b_{01v}Y_{A}$

e

$$E_{X_{A}} = x_{A}E_{a_{10}} + y_{A}E_{a_{01}}$$
$$E_{Y_{A}} = x_{A}E_{b_{10}} + Y_{A}E_{b_{01}}$$

Introduzindo (X_A, Y_A) , acima nas equações (II), vem

$$\alpha_{A} = \alpha_{0} + \arctan \frac{\chi_{A_{v}} + E_{X_{A}}}{\cos \delta_{0} - Y_{A_{v}} \sin \delta_{0} - E_{Y_{A}} \sin \delta_{0}}$$

$$\delta_{A} = \arctan \frac{(\operatorname{sen} \delta_{0} + Y_{A_{v}} \cos \delta_{0}) \cos(\alpha_{A} - \alpha_{0}) + E_{Y_{A}} \cos \delta_{0} \cos(\alpha_{A} - \alpha_{0})}{\cos \delta_{0} - Y_{A_{v}} \sin \delta_{0} - E_{Y_{A}} \sin \delta_{0}}$$

Estas expressões são análogas às expressões (II), onde foram evidenciados os erros propagados na aplicação do mét<u>o</u> do.

Configurações de estrelas de referência e o número de condição.

Uma vez que já foi evidenciada a importância do número de condição na ampliação dos erros propagados na redução, e uma vez que estamos interessados em tentar relacionar as configurações com o número de condição, surgiu a ideia _ de obter, em uma dada placa fotográfica, pentágonos reais pecu liares e calcular seu número de condição.

Este procedimento, no entanto, esbarra na dificuldade de obtermos pentágonos que satisfizessem rossas exigências quanto à forma, tamanho e disposição na placa.

O caminho natural para superar essa dificuldade foi simular os pentágonos necessários, demonstrando que algumas configurações conduziriam, fatalmente, à obtenção de certos valores para o número de condição correspondente. Esta demonstração foi feita analiticamente para todos os casos e<u>s</u> tudados.

A partir daí, escolhemos pentágonos reais que mais se aproximassem daqueles simulados e mostramos que, para estes, ocorria o que havia sido previsto nos casos ideais.

5. <u>SIMULAÇÃO DE CONFIGURAÇÕES DE ESTRELAS DE BASE E REDUÇÃO</u> DE CONFIGURAÇÕES REAIS.

Esclarecemos que a placa fotográfica utilizada para obtermos configurações reais foi a de número 82, de dimensões 16x16 cm, obtida por F. A. P. Vieira no astrógrafo Zeiss (f=2 m, d=40 cm), instalado em Campinas mediante convênio U.F.R.J. - UNICAMP - PUC CAMPINAS - PREFEITURA MUNICIPAL DE CAMPINAS em 11/06/1986, centro $\alpha_0 = 11^{h} 08^{m}$, $\delta_0 = 16^{\circ} 08^{\circ}$, instante médio da exposição TU = $21^{h} 37^{m} 30^{s}$, medida por G. G. Vieira no Ascorecord do Observatório do Valongo. Uma representação gráfica da placa 82 é mostrada na figura 02. Fig. 02^{19.} Placa 82

Esc. 1:2

As estrelas pertencem ao catálogo S.A.O.. Todas são número 99000 mais as centenas. y orientado positivamente para cima. x orientado positivamente para a direita. Para as simulações, foi desenvolvido um programa de com putador em BASIC-TRS-80 (Apêndice A) capaz de fornecer, a partir das coordenadas (x_i, y_i) das estrelas de base simuladas, os valores de $\{x^2\}, \{y^2\}, \{xy\}, x$ médio, y médio e o número de condição.

A seguir, serão apresentados os resultados obtidos da forma mais clara possível.

Número de condição igual a 0.

Seja a expressão do número de condição NC dada por

NC =
$$\frac{\{x^2\}\{y^2\} - \{xy\}^2}{(\{x^2\}^2 + \{xy\}^2)^{1/2} \cdot (\{y^2\}^2 + \{xy\}^2)^{1/2}}$$

Para que o número de condição se anule, é suficiente que o numerador da expressão se anule, ou seja:

$$\{x^2\}\{y^2\} = \{xy\}^2$$
,

 $com \{x^2\} e \{y^2\}$ diferentes de zero.

As configurações para as quais isto acontece são aquelas nas quais as estrelas de base estão alinhadas, formando ângulo diferente de zero com os eixos baricêntricos.

Eixos baricêntricos são aqueles obtidos por translação dos eixos de coordenadas retilíneas celestes, com sua origem no baricentro do pentágono.

Nestas configurações podemos relacionar as coordenadas

 (x_i, y_i) das diversas estrelas de base segundo a equação de uma reta que passa pelo baricentro:

$$y_i = Cx_i$$
,

onde C é o coeficiente angular da reta e

 $C \neq tg 0^{\circ}$,

e

C ≠ tg 90°.

Substituindo x_i nos somatórios, teremos

$$\{x^{2}\}\{y^{2}\} = \sum_{i=1}^{n} x_{i}^{2} \cdot \sum_{j=1}^{n} y_{i}^{2} = \sum_{i=1}^{n} \frac{y_{i}^{2}}{c^{2}} \cdot \sum_{j=1}^{n} y_{i}^{2} = \frac{1}{c^{2}} \left(\sum_{i=1}^{n} y_{i}^{2}\right)^{2} = \frac{1}{c^{2}} \{y^{2}\}^{2}$$

e

$$\{xy\}^{2} = \left(\sum_{i=1}^{n} x_{i}y_{i}\right)^{2} = \left(\sum_{i=1}^{n} \frac{y_{i}}{c} \cdot y_{i}\right)^{2} = \frac{1}{c^{2}} \left(\sum_{i=1}^{n} y_{i}^{2}\right)^{2} = \frac{1}{c^{2}} \left\{y^{2}\right\}^{2}$$

e, portanto:

$$\{x^{2}\}\{y^{2}\} = \{xy\}^{2}$$

e, com $\{x^{2}\} \neq 0$ e $\{y^{2}\} \neq 0$, teremos

NC = 0.

Em configurações reais semelhantes a esta, o número de condição fica pequeno. Vejamos os exemplos a seguir de co<u>n</u> figurações fictícias e reais.

Esc. 1:2

Configuração fictícia alinhada.

Tabela F-01.

•

Estrelas	(x _i	,	y _i) cm	ı			
1	(50,0	;	20,0)	$\{x^2\}$. =	20	cm^2
2	(49,0	;	21,0)	$\{y^2\}$	=	20	cm^2
3	(51,0	;	19,0)	{ xy }	=	-20	cm^2
4	(53,0	;	17,0)	x _m	=	50	cm
5	(47,0	;	23,0)	Уm	=	20	cm
NC = -0							

Esc. 1:2

Configuração real em linha.

Tabela R-01.

Estrelas	(x _i	,	y _i) c	m
99442	(47,0	;	16,9)	
99472	(49,7	;	19,8)	
99499	(52,2	;	21,0)	
99502	(52,5	;	22,9)	
99530	(55,4	;	22,6)	
NC = 0	.039			

Esc. 1:2

Configuração fictícia alinhada.

Tabela F-02.

Estrela	as	(x_i)	,	y _i) cm	1			
	1	(50,0	;	20,0)	$\{x^2\}$	=	20	cm^2
-	2	(49,0	;	19,0)	$\{y^2\}$	=	20	cm^2
	3	(51,0	;	21,0)	{ xy }	=	20	cm ²
	4	(47,0	;	17,0)	x _m	=	50	cm
	5	(53,0	;	23,0)	Уm	=	20	cm
NC -	0							

x⁴⁰⁹ x⁴³⁹ x⁴⁷² x⁵⁰¹ x⁵³³

Esc. 1:2

Configuração real alinhada.

Tabela R-02.

Estrelas	(x _i	,	y _i) cm
99409	(43,3	;	26,5)
99439	(47,0	;	23,3)
99472	(49,7	;	19,8)
99501	(52,3	;	15,8)
99533	(55,6	;	13,6)
NC = 0	.0.07		

Verifica-se que a posição da configuração de estrelas de base na placa fotográfica não altera o resultado, pois sempre leva consigo o baricentro como mostra a simulação a seguir (ver figura 07).

Esc. 1:2

Configuração fictícia alinhada deslocada. Tabela F-03.

Estrelas	(x_i)	,	y _i)	cm			
1	(51,0	;	21,0)	$\{x^2\}$	=	10	cm ²
2	(52,0	;	19,0)	$\{y^2\}$	=	. 40	cm ²
3	(50,0	;	23,0)	{ xy }	=	-20	cm^2
4	(49,0	;	25,0)	x _m	=	51	cm
5	(53,0	;	17,0)	y _m	=	21	cm
NC = Q							

É fato que as configurações fictícias apresentadas conduzem a uma indeterminação nas soluções (VI) das constantes de placa, à exceção de a_{00} e b_{00} e neste caso, o método de redução usual não se aplica. Para configurações reais semelhantes o método é aplicável, mas é de se esperar uma grande ampliação na propagação dos erros.

Número de condição indeterminado (0/0).

Para que isto ocorra, é necessário que o numerador e o denominador do número de condição se anulem. Para que o d<u>e</u> nominador se anule, é suficiente que:

 ${xy} = 0$ e que ${x^2} = 0$ e/ou ${y^2} = 0$.

Para $\{x^2\} \in \{y^2\}$ iguais a 0, com $\{xy\} = 0$, temos o caso degenerado de toda a configuração encontrar-se num ponto, o que foge ao assunto. Estudaremos portanto as configurações que obedecem à:

> $\{xy\} = 0 \ e \ \{x^2\} = 0 \ com \ \{y^2\} \neq 0 \ (caso \underline{a}) \ ou$ $\{xy\} = 0 \ e \ \{y^2\} = 0 \ com \ \{x^2\} \neq 0 \ (caso \underline{b}).$

Em ambos os casos (<u>a</u> e <u>b</u>), o numerador se anula, pois ora o somatório em x^2 , ora o somatório em y^2 se anula.

As configurações que obedecem ao caso <u>a</u> são aquelas em que as estrelas de base encontram-se alinhadas no eixo baricêntrico y, enquanto que as configurações que obedecem ao caso b encontram-se alinhadas no eixo baricêntrico x. Nos dois casos o número de condição fica indeterminado com NC = 0/0.

Caso a.

Estrelas alinhadas com o eixo baricêntrico y apresentam coordenadas (0,y_i). Assim

$$\{xy\} = \sum_{i=1}^{n} x_{i} y_{i} = \sum_{i=1}^{n} 0 y_{i} = 0,$$

e

$$\{x^2\} = \sum_{i=1}^{n} x_i^2 = \sum_{i=1}^{n} 0^2 = 0$$
,

com $\{y^2\} \neq 0$, e estas configurações levam a NC = 0/0.

Caso b.

Estrelas alinhadas com o eixo baricêntrico x apresentam coordenadas (x_i,0). Assim

{xy} = $\sum_{i=1}^{n} x_i \cdot y_i = \sum_{i=1}^{n} x_i \cdot 0 = 0$,

e

$$\{y^2\} = \sum_{i=1}^{n} y_i^2 = \sum_{i=1}^{n} 0^2 = 0,$$

com $\{x^2\} \neq 0$, e estas configurações levam também como no caso anterior a NC = 0/0.

É de se esperar que o número de condição assuma valores muito diferentes para configurações reais diferentes que tenham formas semelhantes às dos casos <u>a</u> e <u>b</u>. Veja os exe<u>m</u> plos a seguir.

Esc. 1:2

Configuração fictícia alinhada com o eixo baricêntrico y. Tabela F-04.

Estrela	as	(x _i	,	y _i) c	m			
	1	(50,0	;	20,0)	$\{x^2\}$	=	0	cm^2
	2	(50,0	;	22,0)	$\{y^2\}$	=	40	cm ²
	3	(50,0	;	24,0)	{ xy }	=	0	cm^2
	4	(50,0	;	18,0)	x _m	=	50	cm
	5	(50,0	;	16,0)	Уm	=	20	cm
NC =	0/	0						

Esc. 1:2

Configuração fictícia alinhada com o eixo baricêntrico x. Tabela F-05.

Estrela	as	(x _i	,	y _i) o	cm			
	1	(50.,0	;	20,0)	$\{x^2\}$	=	40	cm^2
	2	(48,0	;	20,0)	$\{y^2\}$	=	0	cm ²
	3	(46,0	;	20,0)	{ xy }	=	0	cm^2
	4	(52,0	;	20,0)	x _m	=	50	cm
	5	(54,0	;	20,0)	Уm	=	20	cm
NC =	0/0)						

.31.

Esc. 1:2

Configuração real alinhada com o eixo baricêntrico x. Tabela R-03.

Estrelas	(x _i	,	yi)	cm
99499	(52,2	;	21	,0)	
99439	(47,0	;	23	, 3)	
99466	(49,0	;	23	,1)	
99502	(52,6	;	23	,0)	
99530	(55,4	;	23	,6)	
NC = 0	.967				

Esc. 1:2

Configuração real alinhada com o eixo baricêntrico x. Tabela R-04.

Estrelas	(x _i	,	y _i) cm
99485	(50,7	;	24,0)
99439	(47,0	;	23,3)
99466	(48,0	;	23,1)
99502	(52,6	;	23,0)
99530	(55,4	;	23,6)
NC = 0	.549		

Esc. 1:2

Configuração real alinhada com o eixo baricêntrico x. Tabela R-05.

Estrelas	(x _i	,	y _i) cm
99430	(46,0	;	22,3)
99439	(47,0	;	23,3)
99466	(49,0	;	23,1)
99502	(52,6	;	23,0)
99530	(55,4	;	23,6)
NC = 0	.113		

Esc. 1:2

Configuração real alinhada com o eixo baricêntrico x. Tabela R-06.

.

Estrelas	(x _i	,	y _i) cm	1
99543	(57,0	;	21,9)	
99439	(47,0	;	23,3)	
99466	(49,0	;	23,1)	
99502	(52,6	;	23,0)	
99530	(55,4	;	23,6)	
NC = 0	.234			

Esc. 1:2

Configuração real alinhada com o eixo baricêntrico y. Tabela R-07.

Estrelas	(x _i	,	y _i) cm
99472	(49,7	;	19,8)
99493	(51,7	;	14,3)
99499	(52,2	;	21,0)
99501	(52,3	;	15,9)
99502	(52,6	;	23,0)
NC = 0	.989		

Esc. 1:2

Configuração real alinhada com o eixo baricêntrico y. Tabela R-08.

Estrelas	(x _i	,	y _i) cm
99485	(50,7	;	24,0	0)
99493	(51,7	;	14,	3)
99499	(52,2	;	21,	0)
99501	(52,3	;	15,9	9)
99502	(52,6	;	23,0	0)
NC = 0	.514			

.38.

Esc. 1:2

Configuração real alinhada com o eixo baricêntrico y. Tabela R-09.

Estrelas	(x _i	,	y _i) cm
99515	(53,7	;	25,2)
99493	(51,7	;	14,3)
99499	(52,2	;	21,0)
99501	(52,3	;	15,9)
99502	(52,6	;	23,0)
NC = 0	.058		

Esc. 1:2

Configuração real alinhada com o eixo baricêntrico y. Tabela R-10.

Estrelas	(x _i	,	y _i) cm
99466	(49,0	;	23,1)
99493	(51,7	;	14,3)
99499	(52,2	;	21,0}
99501	(52,3	;	15,9)
99502	(52,6	;	23,0)
NC = 0	.619		

As configurações fictícias <u>a</u> e <u>b</u> conduzem a uma indeterminação nas soluções (VI) das constantes de placa à exceção de a_{00} e b_{00} e o método de redução usual não se aplica. A ampliação da propagação de erros em configurações reais-semelhantes torna-se imprevisível face a grande variabilidade do número de condição.

Número de condição igual a 1.

Para que o número de condição seja igual a 1, é suficien te que

 $\{xy\} = 0$

$$com \{x^2\} \neq 0 \in \{y^2\} \neq 0.$$

Assim, teremos

NC =
$$\frac{\{x^2\}\{y^2\}}{(\{x^2\}^2)^{1/2} \cdot (\{y^2\}^2)^{1/2}}$$
$$= \frac{\{x^2\}\{y^2\}}{\{x^2\}\{y^2\}} = 1.$$

Estrelas dispostas sobre os eixos baricêntricos da conf<u>i</u> guração, exceções feitas aos casos <u>a</u> e <u>b</u> jã vistos, resultam em {xy} = 0, pois ora $x_i = 0$, ora $y_i = 0$ e NC = 1.

Sejam n estrelas de base, todas dispostas sobre os eixos baricêntricos da configuração. Sejam as estrelas sobre o e<u>i</u> xo baricêntrico de x numeradas de 1 até g e as sobre o eixo y de g até n, com g<n. Temos que:

$$y_{i} = 0 , i = 1, \dots, g , e$$

$$x_{i} = 0 , i = g + 1, \dots, n . Mas$$

$$\{xy\} = \sum_{i=1}^{n} x_{i}y_{i} = \sum_{i=1}^{g} x_{i}y_{i} + \sum_{i=g+1}^{n} x_{i}y_{i}$$

$$= \sum_{i=1}^{g} x_{i} . 0 + \sum_{i=g+1}^{n} 0 . y_{i} = 0.$$

Mas como x_i não é nulo para todo i, nem o é y_i, concluímos que

$$\{x^{2}\} = \sum_{i=1}^{n} x_{i}^{2} = \sum_{i=g+1}^{n} x_{i}^{2} \neq 0$$

 $\{y^2\} = \sum_{i=1}^{n} y_i^2 = \sum_{i=1}^{g} y_i^2 \neq 0$

e

e, portanto

$$NC = 1.$$

Vejamos os próximos dois exemplos.

Esc. 1:2

Configuração fictícia sobre os eixos baricêntricos. Estrela 5 no baricentro.

Tabela F-06.

Estrelas
$$(x_i, y_i)$$
 cm
1 (50,0; 24,0) $\{x^2\} = 32$ cm²
2 (54,0; 20,0) $\{y^2\} = 32$ cm²
3 (50,0; 16,0) $\{x_Y\} = 0$ cm²
4 (46,0; 20,0) $x_m = 50$ cm
5 (50,0; 20,0) $y_m = 20$ cm
NC = 1

Esc. 1:2

Configuração fictícia sobre os eixos baricêntricos. Estrela 5 ausente. Tabela F-07.

Estrelas
$$(x_{i}, y_{i})$$
 cm
1 (50,0; 24,0) $\{x^{2}\} = 32$ cm²
2 (54,0; 20,0) $\{y^{2}\} = 32$ cm²
3 (50,0; 16,0) $\{xy\} = 0$ cm²
4 (46,0; 20,0) $x_{m} = 50$ cm
 $y_{m} = 20$ cm

NC = 1

Os dois exemplos anteriores são instrutivos, e merecem um comentário à parte. O ponto (50,20) cm é o próprio baricentro da configuração. As coordenadas da estrela fictícia neste ponto, em relação à média, são (0,0) cm. Somos levados, então, a concluir que o resultado da redução é o mesmo com ou sem a inclusão de uma estrela localizada no baricentro de uma configuração.

Podemos generalizar este resultado dizendo que quanto mais próxima do baricentro da configuração estiver uma estr<u>e</u> la de base, menor será sua influência na redução o que desaconselha, desde logo, o emprego de polígonos não convexos c<u>o</u> mo configuração de base.

De uma manéira mais geral, configurações de estrelas de base formadas por pares de estrelas simetricamente dispostas em relação aos eixos baricêntricos, possuem {xy} = 0 e, portanto, NC = 1, excluindo, mais uma vez, os casos a e b.

Seja uma configuração de estrela de base de m pares de es trelas dispostas como descrito acima. Para um dado par (1,2) podemos ter uma das seguintes situações ilustradas na figura 20.

Esc. 1:2

Estrelas 1 e 2 dispostas simetricamente em relação ao eixo baricêntrico x respectivamente nos quadrantes 2 e 3.

Esc. 1:2

Estrelas 1 e 2 dispostas simetricamente em relação ao eixo baricêntrico y respectivamente nos quadrantes 3 e 4.

Esc. 1:2

Estrelas 1 e 2 dispostas simetricamente em relação ao eixo baricêntrico x respectivamente nos quadrantes 4 e 1.

Esc. 1:2

Estrelas 1 e 2 dispostas simetricamente em relação ao eixo baricêntrico y respectivamente nos quadrantes 1 e 2. Em qualquer dos casos anteriores, as coordenadas das estrelas 1 e 2 são:

×1	=	.x1	;	x2	=	-x1	
y ₁	=	y ₁	;	у ₂	=	<i>y</i> ₁	,

ou

 $x_1 = x_1$; $x_2 = x_1$ $y_1 = y_1$; $y_2 = -y_1$

de forma que

$$x_1 y_1 = -x_2 y_2$$
,

e

$$\sum_{i=1}^{2} x_{i}y_{i} = x_{1}y_{1} + x_{2}y_{2} = x_{1}y_{1} - x_{1}y_{1} = 0.$$

O raciocínio acima é aplicável a todos os outros m - 1 pares de estrelas. Assim

$$\{xy\} = \sum_{i=1}^{2m} x_i y_i = \sum_{j=1}^{m} (x_j y_j + x_{j+1} y_{j+1})$$

Mas, como vimos, $x_j y_j = -x_{j+1} y_{j+1}$, o que leva a $\{xy\} = \sum_{j=1}^{m} (x_j y_j + x_{j+1} y_{j+1}) = \sum_{j=1}^{m} (x_j y_j - x_j y_j) = 0.$

Como $x_i e y_i$ não são necessáriamente todos nulos, então, $\{x^2\} \neq 0 e \{y^2\} \neq 0$, e, como $\{xy\} = 0$, vem que

NC = 1.

Vejamos o exemplo seguinte.

Simulação

Esc. 1:2

Configuração fictícia de pares simétricamente opostos aos eixos baricêntricos.

Tabela F-08.

Estrelas
$$(x_i, y_i)$$
 cm
1 (46,0; 24,0) $\{x^2\} = 64$ cm²
2 (54,0; 24,0) $\{y^2\} = 64$ cm²
3 (54,0; 16,0) $\{xy\} = 0$ cm²
4 (46,0; 16,0) $x_m = 50$ cm
 $y_m = 20$ cm

NC = 1

Configurações que mesclam pares simétricos com estrelas "solitârias" sobre um dos eixos baricêntricos naturalmente também apresentam número de condição igual a 1. Enquanto os pares simétricos se anulam no somatório cruzado de x e y, o termo $x_i y_i$ da estrela solitâria também se anulará, e portan to $\{xy\} = 0$ da mesma forma. Um exemplo "clássico" é um pen tágono regular de estrelas, onde uma delas está sobre um dos eixos baricêntricos como mostra o seguinte exemplo.

Esc. 1:2

Configuração fictícia de pentágono regular. Tabela F-09.

Estrela	IS	(x _i	,	y _i) c	m			
	1	(50,0	;	24,0)	$\{x^2\}$	=	40.4	cm ²
	2	(46,2	;	21,2)	$\{y^2\}$	=	39,4	cm ²
	3	(47,6	;	16,8)	{xy}	=	0	cm ²
	4	(52,4	;	16,8)	×m	=	50	cm
	5	(53,8	;	21,2)	y _m	=	20	cm
NC =	1							

.52.

Polígonos irregulares também podem preencher os requisitos já vistos e apresentarem NC = 1. Veja o seguinte exemplo.

.54.

Esc. 1:2

Configuração fictícia de polígono irregular. Tabela F-10.

> Estrelas (x_i, y_i) cm 1 (50,0; 24,0) $\{x^2\} = 50$ cm² 2 (55,0; 21.0) $\{v^2\} = 33$ cm² 3 (45,0; 21,0) $\{xy\} = 0$ cm² 4 (50,0; 16,0) $x_m = 50$ cm $y_m = 20.5$ cm

NC = 1

Somente a forma das configurações de estrelas de base são relacionáveis ao número de condição. O tamanho das configur<u>a</u> ções não interfere no resultado do número de condição. Vejamos dois exemplos de configurações fictícias de estrelas de base onde variamos o tamanho mantendo a forma. O número de condição permanece inalterado, pois a forma do polígono de estrelas permaneceu inalterada.

Esc. 1:2

Configuração fictícia de polígono pequeno. Tabela F-11.

Estrelas	(x _i	,	y _i)	cm			
1	(50,0	;	20,8)	$\{x^2\}$	=	1.28	cm ²
2	(50,8	;	20,0)	$\{y^2\}$	=	1.28	cm ²
3	(50,0	;	19,2)	{xy}	=	0	cm ²
4	(49,2	;	20,0)	×m	=	50	cm
				y _m	=	20	cm
10 - 1							

NC = 1

Simulação

Esc. 1:2

Configuração fictícia de polígono grande. Tabela F-12.

> Estrelas (x_i, y_i) cm 1 (50,0, 24,0) $\{x^2\} = 32$ cm² 2 (54,0; 20,0) $\{y^2\} = 32$ cm² 3 (50,0; 16,0) $\{xy\} = 0$ cm² 4 (46,0; 20,0) $x_m = 50$ cm $y_m = 20$ cm

NC = 1

Apresentamos, agora, alguns exemplos de configurações r<u>e</u> ais de estrelas de base semelhantes às estudadas até aqui.. O número de condição destas configurações está altamente compatível com os das configurações fictícias, apresentando -se acima de 0.9 em todas as amostras extraídas da qual veremos uma parte.

Esc. 1:2

Configuração real de pentágono regular. Tabela R-11.

Estrelas	(x _i	,	y _i)	cm
99493	(51,7	;	14	3)	
99442	(47,0	;	16,	9)	
99532	(55,6	;	16,	9)	
99466	(49,0	;	23,	1)	
99502	(52,6	;	23,	0)	
NC = 0	.967				

.60.

Esc. 1:2

Configuração real de pentágono. Tabela R-12.

Estrelas	(x _i	,	y _i) cm
99423	(45,0	;	19,8)
99472	(49,7	;	19,8)
99415	(43,6	;	23,4)
99485	(50,7	;	24,0)
99450	(47,5	;	13,1)
NC = 1	.000		

.61.

Esc. 1:2

Configuração fictícia de pentágono regular. Tabela R-13.

Estrelas	(x _i	,	y _i) cm
99472	(49,7	;	19,8)
99466	(49,0	;	23,1)
99515	(53,7	;	25,2)
99543	(57,0	;	21,9)
99514	(53,7	;	18,6)
NC = 0	.995		

.62.

Esc. 1:2

Configuração real de pentágono. Tabela R-14.

Estrelas	(x _i	,	y _i) cm
99399	(42,4	;	20,2)
99439	(47,0	;	23,3)
99442	(47,0	;	16,9)
99532	(55,6	;	16,9)
99530	(55,5	;	23,6)
NC = 1	.000		

Esc. 1:2

Configuração real de pentágono pequeno. Tabela R-15.

Estrelas	(x _i	,	y _i) cm
99450	(47,5	;	13,1)
99493	(51,7	;	14,3)
99442	(47,0	;	16,9)
99488	(50,8	;	17,7)
99501	(52,3	;	15,9)
NC = 0	.965		

Esc. 1:2

Configuração real de pentágono pequeno.

Tabela R-16.

Es	trelas	(x _i	,	y _i ') cm
	99499	(52,2	;	21,0)
	99502	(52,6	;	23,0)
	99515	(53,7	;	25,2)
	99530	(55,5	;	23,6)
	99543	(57,0	;	21,9)
	NC = 0	.993		

Esc. 1:2

Configuração real de pentágono regular pequeno. Tabela R-17.

Estrelas	(x _i	,	y _i) cm
99533	(55,7	;	13,6)
99493	(51,7	;	14,3)
99514	(54,0	;	18,6)
99488	(50,8	;	17,7)
99532	(55,6	;	16,9)
NC = 0	.904		

.66.

Esc. 1:2

Configuração real de pentágono grande. Tabela R-18.

> Estrelas (x_i, y_i) cm 99450 (47,5 ; 13,1) 99533 (55,7 ; 13,6) 99399 (42,4 ; 20,2) 99466 (49,0 ; 23,1) 99543 (57,0 ; 21,9) NC = 0.990

Esc. 1:2

Configuração real de pentágono grande Tabela R-19.

Estrelas	(x _i	,	y _i) cm
99450	(47,5	;	13,1)
99533	(55,7	;	13,6)
99399	(42,4	;	20,2)
99515	(53,7	;	.25,2)
99543	(57,0	;	21,9)
NC = 0	.955		

.68.

Esc. 1:2

Configuração real de pentágono grande. Tabela R-20.

Estrelas	(x _i	,	y _i) cm
99450	(47,5	;	13,1)
99533	(55,7	;	13,6)
99515	(53,7	;	25,2)
99409	(43,4	;	26,6)
99543	(57,0	;	21,9)
NC = 0	.917		

6. CONCLUSÕES.

O número de condição funciona como um indicador do grau de ampliação da propagação de erros de catálogo, presentes em uma dada configuração de estrelas de base.

Fomos capazes de constatar várias correlações entre certas configurações de estrelas de base e o número de condição o que nos conferiu a capacidade de escolher as configurações que levassem a melhores reduções, supondo mantidas as outras condições,

Assim, configurações de estrelas de base estreitas ou alinhadas não são boa escolha. Já as que apresentam pares si métricos de estrelas, dispostas em quadrantes baricêntricos adjacentes, ou que tenham estrelas sobre algum eixo baricên trico, são boas configurações.

Neste último grupo, merecem destaque as configurações que se assemelham a polígonos regulares, os mais usados , quase que intuitivamente, na prática.

Como vimos, há outros tipos de configurações não regulares que, entretanto, são boas opções. Vimos, também, que não é recomendável escolhermos estrelas de base próximas do baricentro da configuração, pois sua influência na redução é bastante reduzida.

É importante ressaltar que todo formalismo foi baseado na suposição de que os erros de medição eram desprezíveis, comparados aos erros de catálogo. O não cumprimento desta suposição invalida os desenvolvimentos e as conclusões d<u>e</u> rivadas da aplicação do método dos mínimos quadrados. De qualquer forma, é intuitivo que medições as mais precisas possíveis levam a uma melhoria na qualidade das reduções, qualquer que seja o método utilizado na redução.

Por fim, cabe ressaltar que configurações com número de condição alto, até mesmo 1, não resultam, necessariamente, em uma redução boa, no sentido de minimizar os resíduos internos.

O número de condição alto garante que a propagação dos erros de catálogo pelas constantes de placa, até às coordenadas uranográficas (α , δ) de um objeto não será ampliada. Entretanto, se os erros de catálogo das estrelas, ou mesmo de apenas uma delas, forem suficientemente grandes, mesmo uma configuração com número de condição alto resultará em resíduos internos altos e, portanto, numa má red<u>u</u> ção.

Situação anâloga ocorre se as medidas das estrelas de base contiverem erros pois, como já dito acima, o método de mínimos quadrados não mais é adequado e a redução s<u>e</u> rá ruim, mesmo se o número de condição da configuração r<u>e</u> sultar alto.

Nosso estudo restringiu-se à redução com polinômios do primeiro grau. Estudos analíticos para polinômios de grau

igual ou superior a dois parecem-nos impraticáveis. Entretanto, está em aberto a possibilidade de estudos empíricos e de comparação com os resultados do primeiro grau.

7. SUGESTÕES PARA NOVOS TRABALHOS.

Com o objetivo de tornar mais realística a análise feita no presente trabalho, seria oportuno buscar referências sobre desenvolvimentos matemáticos que contornassem a deficiência do método de mínimos quadrados para lidar com os erros nas coordenadas retilíneas medidas das estrelas de base, aplicando, a este novo formalismo, os mesmos procedimentos analíticos aqui expostos.

BIBLIOGRAFIA.

- 1 BOUGEARD, M.L. Statistical problems about the use of the ordinary least-squares method in astrometry. Application to the Paris-Astrolabe data. <u>Astr. & Astrophys.</u>, vol 183, nº 1, September, p. 156-166, Berlin, 1987.
- 2 CONTE, S.D. Elementary Numerical Analisis. New York, MacGraw-Hill Book Company, 1965, p.163-169.
- 3 DEBEHOGNE, H. Réduction des positions au moyen de l'ordinateur életronique. Choix de la méthode. Reduction of Satellite Photographic Plates. COSPAR Transactions, nº 7, March, p. 107. 1970.
- 4 DEBEHOGNE, H. Astrometry in Modern and Classical Algebra Language. <u>Acta Astronomica</u>, Vol. 36, pp. 301-306.
 Varsovie, 1986.
- 5 FREITAS MOURÃO, R.R. <u>Dicionário Enciclopédico de Astrono</u>mia e Astronáutica. No prelo.
- 6 PODORED, V.V. Fundamental Astrometry. Chicago, The University of Chicago Press, 1965, 236 p.
- 7 VAN DE KAMP, P. <u>Principles of Astrometry</u>. San Francisco,
 W.H Freeman and Company, 1967. 227 p.
- 8 VIEIRA, G.G. Determinação do Centro de Redução de Uma Pla ca Fotográfica, Tese de Mestrado, 1987.


```
20 CLEAR
 30 DEFINT I,N
 40 DEFDBL X,Y,C
 50 INPUT "NUMERO DE PONTOS DO POLIGONO";N
60 DIM X(N), Y(N)
70 FOR I = 1 TO N
80 INPUT "X=";X(I)
90 INPUT "Y=";Y(I)
100 NEXT I
110 FOR I = 1 TO N
120 \text{ XM} = \text{XM} + \text{X(I)/N}
130 \text{ YM} = \text{YM} + \text{Y(I)}/\text{N}
140 NEXT I
150 FOR I = 1 TO N
160 X(I) = X(I) - XM
170 Y(I) = Y(I) - YM
180 NEXT I
190 FOR I = 1 TO N
200 X2 = X2 + X(I) * X(I)
210 Y2 = Y2 + Y(I) * Y(I)
220 XY = XY + X(I) * Y(I)
230 NEXT I
240 PRINT "XM="; XM, "YM="; YM, "X2="; X2, "Y2="; Y2, "XY="; XY
250 CN = (X2*Y2-XY*XY)/SQR((X2*X2+XY*XY)*(Y2*Y2-XY*XY))
260 PRINT "NUMERO DE CONDICAO="; CN
270 :: INPUT "CONTINUAR (S/N)"; A$: IF A$="S" THEN GOTO 10
280 END
```

.74.

10 CLS