
A DIDACTIC INTRODUCTION TO GRAPH SIGNAL PROCESSING TECHNIQUES
AND APPLICATIONS

Pedro Angelo Medeiros Fonini

Dissertação de Mestrado apresentada ao
Programa de Pós-graduação em Engenharia
Elétrica, COPPE, da Universidade Federal do Rio
de Janeiro, como parte dos requisitos necessários
à obtenção do título de Mestre em Engenharia
Elétrica.

Orientadores: Paulo Sergio Ramirez Diniz
Markus Vinícius Santos Lima

Rio de Janeiro
Março de 2019

A DIDACTIC INTRODUCTION TO GRAPH SIGNAL PROCESSING TECHNIQUES
AND APPLICATIONS

Pedro Angelo Medeiros Fonini

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO LUIZ
COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA (COPPE) DA
UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS REQUISITOS
NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE MESTRE EM CIÊNCIAS EM
ENGENHARIA ELÉTRICA.

RIO DE JANEIRO, RJ – BRASIL
MARÇO DE 2019

Fonini, Pedro Angelo Medeiros
A didactic introduction to Graph Signal Processing

techniques and applications/Pedro Angelo Medeiros Fonini.
– Rio de Janeiro: UFRJ/COPPE, 2019.

XII, 50 p.: il.; 29, 7cm.
Orientadores: Paulo Sergio Ramirez Diniz

Markus Vinícius Santos Lima
Dissertação (mestrado) – UFRJ/COPPE/Programa de

Engenharia Elétrica, 2019.
Referências Bibliográficas: p. 48 – 50.
1. graphs. 2. graph signal processing. 3. adaptive

filtering. I. Diniz, Paulo Sergio Ramirez et al. II. Universidade
Federal do Rio de Janeiro, COPPE, Programa de Engenharia
Elétrica. III. Título.

iii

Agradecimentos

Qualquer agradecimento que eu escreva aqui será pouco face à importância que teve
para este trabalho o suporte e a paciência do Markus e do Diniz. Se eu aprendi nem que
seja 10% do que eles tentaram me ensinar, o mérito é deles, e o lucro é meu.

iv

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos
necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

UMA INTRODUÇÃO DIDÁTICA ÀS TECNICAS E APLICAÇÕES DO
PROCESSAMENTO DE SINAIS EM GRAFOS

Pedro Angelo Medeiros Fonini

Março/2019

Orientadores: Paulo Sergio Ramirez Diniz
Markus Vinícius Santos Lima

Programa: Engenharia Elétrica

Processamento de sinais é uma área tradicionalmente bem-sucedida em diversas
aplicações em que o domínio de interesse é uniforme. Embora a maioria das ferra-
mentas desta área sejam baseadas no fato de que é esperado que tais domínios sejam
uniformes—por exemplo o contínuo de instantes de tempo ou um domínio discreto com
amostras igualmente espaçadas—, muitos problemas interessantes são colocados sobre
estruturas mais irregulares. Ao lidar com aplicações como redes sociais, arrays de sen-
sores arbitratriamente distribuídos, redes neuronais ou redes de distribuição de energia,
uma das estratégias matemáticas para respeitar as irregularidades nessas estruturas é
interpretar os dados como sendo definidos em vértices de um grafo ponderado.

Uma vez que tais estruturas subjacentes costumam carregar informações valiosas o
campo do processamento de sinais em grafos (GSP) tem estado ativo na última década.
Neste trabalho, revisamos alguns dos avanços obtidos por este novo campo de pesquisa.
Damos foco especial para sinais variantes no tempo—nos quais cada vértice do grafo
está associado a uma série temporal—e para os algoritmos adaptativos projetados para
esta nova forma de processamento de sinais.

Quando técnicas de filtragem adaptativa são aplicadas ao GSP, é possível projetar
algoritmos que aprendem a partir das estatísticas de um sinal em um grafo. Ao levar em
consideração a estrutura subjacente do domínio irregular no qual os dados residem, os
resultados são um maior poder de inferência, e decisões melhor-informadas.

v

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the
requirements for the degree of Master of Science (M.Sc.)

A DIDACTIC INTRODUCTION TO GRAPH SIGNAL PROCESSING TECHNIQUES
AND APPLICATIONS

Pedro Angelo Medeiros Fonini

March/2019

Advisors: Paulo Sergio Ramirez Diniz
Markus Vinícius Santos Lima

Department: Electrical Engineering

Traditional signal processing thrives when applied to uniform, euclidean domains.
Even though most DSP tools are built around the fact that signal domains are expected
to be uniform—e.g. continuous time or an equally spaced discrete domain—, many in-
teresting problems are defined on top of more irregular structures. When dealing with
applications such as social networks, arbitrarily distributed arrays of sensors, neuronal
networks, and power grids, one of the mathematical strategies to acknowledge the ir-
regular structure is to interpret the data as being defined on the vertices of a weighted
graph.

Since these subjacent structures usually carry valueable information, the field of
signal processing on graphs, or graph signal processing (GSP), has been active in the
recent decade. In this work, we review some of the advances made possible by this new
field. We give special focus to time-varying signals—in which each graph vertex rep-
resents a time-series—and the adaptive algorithms designed for this new kind of signal
processing.

By applying to GSP techniques borrowed from adaptive filtering, one is able to de-
rive processing algorithms that learn from the statistics of a graph signal. When the
subjacent structure of the irregular domain on which the data reside is accounted for,
the results are higher inference power, and better-informed decisions.

vi

Contents

List of Figures ix

List of Symbols xi

1 Introduction 1

1.1 Contributions . 2
1.1.1 The graphdsp computer library 2

1.2 Structure of this text . 3
1.3 Notation and conventions . 3

2 Graph signal processing fundamentals 4

2.1 Introduction . 4
2.1.1 Unweighted and weighted graphs 4
2.1.2 Edge weights and kernels . 6
2.1.3 Graph signals . 7

2.2 The graph Laplacian . 9
2.3 The graph Fourier transform . 13

2.3.1 Frequency interpretation and analogy to classical Fourier analysis 14
2.3.2 Frequency-domain processing . 17
2.3.3 Wavelets . 21

3 The Least Mean Squares algorithm 27

3.1 The algorithm . 28
3.2 Probabilistic sampling . 33

4 Further exploratory results 35

4.1 Sparse wavelet representation . 35
4.1.1 Proposed algorithm . 36
4.1.2 Results and stability considerations 39

4.2 Optimal sampling for Least Mean Squares 40

5 Conclusions 43

vii

A List of selected routines from the graphdsp package 45

Bibliography 48

viii

List of Figures

2.1 A visualization of a graph with N = 5 nodes. Each dot represents a
node, and is labeled by an integer from 0 to 4. We draw a line segment
between each pair of connected nodes; i.e., each line represents an edge
of the graph. If the graph were directed, arrows would be drawn instead
of lines; one for each (directed) connection. 5

2.2 Visualization of a classical discrete-time signal with positive real values. 8
2.3 Visualization of a graph signal. 9
2.4 Zero-crossing edges for Laplacian eigenvectors on a randomly-

generated graph with two different kernels for edge weights. 15
2.4 [cont.] Zero-crossing edges for Laplacian eigenvectors on a randomly-

generated graph with two different kernels for edge weights. 16
2.5 Using the same graph as in Figure 2.4, with the inverse-square kernel, we

attempt to mimic the Euclidean-domain phenomenon of constructing an
impulse signal out of in-phase complex exponentials. 19

2.6 An example of frequency-domain filtering. 21
2.7 Wavelet examples. 22
2.8 Mother functions that generate an SGWT. 25
2.9 An example of a set of generating functions for a Spectral GraphWavelet

Transform. The scales are uniformly spaced in the log-domain, hence
the log-scale in the horizontal axis. In order to handle graphs with edges
normalized for λmax = 1, the smallest (finest) scale, sJ , shown in yellow
(rightmost curve), has been chosen so that g (sJλmax) = 1; that is, sJ = 1. 26

3.1 Results of an LMS example. 32

4.1 Example of application of Algorithm 1 in a graph withN = 64 vertices,
using J = 4 scales. 38

4.2 Number of coefficients of the sampled SGWT transform, for J = 4.
Critical sampling (α = 0.5) generates a transformwith exactly 1·N = N

coefficients, while the full transform (α = 1.0) needs (J + 1)N = 5N

coefficients. 39

ix

4.3 Condition number of the problem of inverting the sampled SGWT trans-
form. 40

4.4 Less greedy sampling for the bandlimited LMS algorithm. 42

x

List of Symbols

CG Set of functions from the vertices of the graph G to the complex
field C. Such functions are to be interpreted as (complex) signals
on the graph G, p. 7

CV Set of functions from V to the complex field C. Such functions
are to be interpreted as (complex) signals on the vertices vi ∈ V
of a graph, p. 7

Di Degree of a vertex in a graph, p. 9

D Degree matrix of a graph, p. 9

G Graph structure, defined as (V ,W), p. 5

K2 Gaussian kernel for assigning edge weights, p. 7

K1 Inverse-square kernel for assigning edge weights, p. 7

K Kernel function used in the construction of graphs to assign edge
weights based on similarity values, p. 7

Λ Diagonal matrix of eigenvalues of L, p. 13

L Laplacian matrix of a graph, p. 9

Mki Entry of the incidence matrix of a graph, corresponding to edge
ek and node ei, p. 12

M Incidence matrix of a graph., p. 12

N Number of nodes in a graph, p. 4

U Orthogonal matrix of eigenvectors of L, p. 13

V Set of graph vertices or nodes; graph domain, p. 4

Wij Weight of the edge between vertices vi and vj of a graph, or zero
if there is no such edge, p. 6

xi

W Weights matrix, or adjacency matrix, p. 5

dij Similarity measure between vertices vi and vj of a graph. Usually,
euclidean distance between vectors represented by the nodes of
the graph, or some other distance metric in a feature space. The
smaller the value dij , the more similar the nodes are, p. 7

λl l-th eigenvalue of the Laplacian L, when listed by increasing
value., p. 12

τ Threshold used for forcing the sparsity of the adjacency matrix of
a graph, p. 7

ul Element of the othonormal eigenvector basis of matrix L corre-
spondent to eigenvalue λl, p. 12

vi A node, or vertex, of a graph, p. 4

x Signal on a graph, interpreted as a vector x ∈ CG , p. 7

x Signal on a graph, interpreted as a function x : G → C, p. 7

xii

Chapter 1

Introduction

Traditional signal processing thrives when applied to uniform, euclidean domains.
The uniformity in the time intervals between each sample of a time series, even though
being an essential reason for the simplicity and power of the Fourier transform and
most other classical signal processing techniques [1], is most often unacknowledged
and taken for granted. Indeed, it is quite easy to see the reason why we usually speak of
time serieswhenwe think about classical discrete-domain signals—they are usually even
called time-domain signals! The reason is that time is a rare example of a resource with
the uniformity properties mentioned above. Of course, non-time discrete domains also
make up for important applications of traditional signal processing theory [2]—after all,
the very first applications of Fourier series were solving partial differential equations
(PDEs) in space, or space and time jointly [3], [4]. Such applications, however, still
depend on the uniformity of their domains (or, in the case of differential equations, the
uniformity of the discretization of the domains).

Not all interesting domains have such a desirable property, unfortunately. When
positioning sensors along a large area, geography and topography will usually not let
us draw a perfect, uniform square grid out of our sensors. Likewise, when studying
social networks, one has to account for the fact that not everyone has the same number
of friends! Energy and transportation networks are also examples of networks in which
the nodes, distribution centers or road connections, are spatially structured in a non-
uniform fashion.

Graph signal processing (GSP), or signal processing on graphs [5], [6], is a set of
techniques for analysing, filtering, and manipulating signals defined on non-uniformly
structured domains. GSP is usually concerned with weighted graphs; a weighted graph
is any domain of elements related to each other through some property which enables
us to assign a strength measure for such a relation. When the elements are points in a
geometric setting, for instance, this propery could be taken to be the distance between
points.

Graphs, being highly flexible constructions, can be the stage to a wide range of phe-

1

nomena. When an epidemy of some contagious disease outbreaks, graphs can represent
the transportation networks that will help identify patterns in the spread of the disease.
Even when there is no outbreak at all, migration patterns of different species in an
ecosystem can be encoded in a graph. Further applications that benefit from construct-
ing graph structures from arbitrary datasets, and using the spectral properties of the
graphs that arise, include clustering (since clustered data naturally generates discon-
nected, or almost-disconnected graphs) [7], design of processor interconnections, and
quantum physics (in which graph edges can represent couplings between particles) [8].

1.1 Contributions

In this text, we introduce the reader, in a didactic way, to the field of graph signal
processing. We analyze some of the most important tools used, making explicit their
connections and their differences to analogous tools traditionally used in signal pro-
cessing applications, and we give special focus to a Least Mean Square algorithm for
estimating band-limited signals on a graph.

We also contribute two experiments that build on the themes that will be developed
in the text, which we hope that will help the reader develop an intuition about the
possibilities and limitations of graph signal processing.

1.1.1 The graphdsp computer library

We have developed a computer library, using the SciPy ecosystem [9], for perform-
ing basic graph signal processing calculations and plotting their results. The library
also implements a functionality for quickly generating random graphs for the purpose
of prototying and testing.

All of the illustrations in this text were generated by this library. Attached to some of
the illustrations are code snippets that illustrate how the library can be used to generate
such figures. All of these snippets assume that the library has been downloaded and
installed by issuing the following commands

Download package

wget ”http://www02.smt.ufrj.br/~pedro.fonini/graphdsp.tar.xz”

Extract archive

tar xf graphdsp.tar.xz

Install python package

cd graphdsp; pip install .

and that the library has been loaded in Python with import graphdsp as gsp.
The documentation of the functionalities distributed is available by using Python’s

built-in documentation system. For instance, to learnmore about gsp.GraphSignal.gft,

2

a method in the class gsp.GraphSignal for computing graph Fourier transforms, just
type help(gsp.GraphSignal.gft) at a Python shell. In Appendix A we list some of the
most important classes and routines implemented in the package.

1.2 Structure of this text

In Chapter 2 we lay down the Graph Signal Processing framework. Most of the tools
that will be used during the rest of the text are defined and examined in this chapter.
In Chapter 3, we describe the Least Mean Square algorithm for graphs, which aims to
estimate a band-limited, time-varying signal on a graph. We show the results of some
complementary experiments in Chapter 4, and summarize our conclusions in Chapter 5.

1.3 Notation and conventions

In this text, vectors, denoted in boldface (e.g. x), usually represent graph signals, and
are construed as column vectors. If x is graph signal, each component of the vector is
the value of the signal on some node of the graph. If such values are complex, we write
x ∈ CN and index x using the integers i = 0, 1, . . . , N − 1. Each xi is thus an entry
of the signal x. When we want to emphasize that x is a signal defined on a specified
graph G, we will also write x ∈ CG or x ∈ CV , where V is a list of graph vertices. Most
of the time, CG , CV , and CN will be used interchangeably if N = |V| is the number of
vertices in the graph. Generally, ifX is a finite set, |X| is the number of elements ofX .
Graphs and signals on graphs will be described in more detail in Section 2.1.

Upper-case bold letters (e.g. A) are used for matrices. The transpose of a matrix
is written as AT ; for instance, if x, y are vectors, then their inner product is xTy. The
symbol I is reserved for the identity matrix. The dimensionality of Iwill always be clear
from context.

The norm of a vector x ∈ CN is denoted by ∥x∥, and is always defined as the Eu-
clidean (or ℓ2) norm:

∥x∥2 = xTx.

Finally, in probabilistic contexts, the expected value of a random variable is denoted
by the operator E[·].

3

Chapter 2

Graph signal processing fundamentals

This chapter is dedicated tomake an overview of graph signal processing techniques.
We will review how the Laplacian operator in Rn gives rise to the Fourier transform,
and describe how this can be mimicked to define a graph Fourier transform (GFT). We
will also discuss the assumptions made by the GSP framework that we describe, and
mention other possibilities.

In section 2.1 we present the formal definitions that will be used throughout the
text, and discuss how these definitions can be used to represent irregular structures on
networks. In section 2.2 we introduce the graph Laplacian, a linear operator that mea-
sures smoothness of graph signals and enables the translation of tools from continuous
domains to discrete domains described as graphs. Section 2.3 uses the spectral decom-
position of the Laplace operator to define the GFT on arbitrary weighted graphs.

2.1 Introduction

2.1.1 Unweighted and weighted graphs

A graph is an ordered pair (V ,A), where V is a finite list of N elements, and A ∈
{0, 1}N×N is a matrix with entries 0 and 1. The elements of V are called nodes or vertices
of the graph. Though strictly not necessary for the formal definition, it is important, for
the definiteness of the algorithms and for the computational perspective that surrounds
graph theory, that the vertices be labeled by integers, as in:

V = {v0, v1, . . . , vN−1} ,

which is why we called V a list instead of a set, above. The actual order of the labeling
does not affect the results of the principal theorems of graph theory (and, indeed, any
result that does depend on the order of the labeling is actually a result about the labeling,
instead of about the graph). V is also called the graph domain.

4

Figure 2.1: A visualization of a graph with N = 5 nodes. Each dot represents a node,
and is labeled by an integer from 0 to 4. We draw a line segment between each pair
of connected nodes; i.e., each line represents an edge of the graph. If the graph were
directed, arrows would be drawn instead of lines; one for each (directed) connection.

The matrix A = [Aij] is called the adjacency matrix of the graph, and for each pair
(i, j) such that Aij = 1, we say that node vi is connected to node vj . Here arises the
first categorical bifurcation we need to be specific about. When the adjacency matrix
of a graph is symmetric, a node vi will be connected to another vj if and only if vj
is connected to vi. In this case, we say the the graph is undirected. Otherwise, the
graph is said to be directed. Tipically, when one uses the word graph without specifying
whether directed or not, they mean an undirected graph1. In this work, we will focus
on undirected graphs, and will refer to such as simply graphs. The consequences of
restricting our atention away from directed graphs are discussed in [6].

Whenever nodes vi and vj are connected—no need to specify if vi is connected to vj
or the other way around when the graphs are undirected—we say that they are adjacent
or neighbors, and that there is an edge between them, this edge being incident on each
of them. It is usual to visualize the relationship between nodes and edges in a graph as
in Figure 2.1.

A weighted graph is an ordered pair G = (V ,W), where V is again a finite list of N
elements, andW ∈ RN×N is a real, symmetric2, square matrix with nonnegative entries.

1For instance, Godsil and Royle [10] bypass the adjacency matrix, and define: “A graph X consists of
a vertex set V (X) and an edge set E (X), where an edge is an unordered pair of distinct vertices of X .”
The word “unordered” (not emphasized in the original text) implies that connections between nodes are
not directed.

2We are again focusing on undirected graphs. For the definition of a directed weighted graph we
would remove the requirement of W being a symmetric matrix.

5

graph = gsp.GeometricUWG.make_random(N=5)

zeros = len(graph) * [0]

signal = gsp.GraphSignal(zeros, graph=graph) # zero signal

signal.plot(colorbar=False, show_indexes=True, dotcolor='k') # plot

Listing 1: Instructions to generate Figure 2.1.

We will still call W the adjacency matrix of the graph G, but its semantics are richer.
Given any two nodes vi and vj , if Wij = 0 then there is no connection between them.
However, ifWij > 0, then not only we say that vi and vj are connected by an edge, but
also the weight of this connection is given by the value ofWij . The interpretation is that
high edge weights represent strong connections, whereas low edge weights represent
weak connections, or occasionally almost the same as no connection at all.

As mentioned above, it is important for GSP applications to be able to specify the
intensity of connections between nodes—they might represent geographical closeness,
or similarity in some feature space. In this work, all graphs are weighted.

A last restriction is in order. In a graph, an edge from a node to itself is called
a loop. That happens whenever Wii ̸= 0 for some vertex vi. Since GSP applications
are concerned about relations between elements, and loops are not useful to represent
them, it is usual to ban loops. For the rest of this text, all graphs will obey the following
definition:

Definition 2.1. A graph is an ordered pair G = (V ,W) where V is a finite list of N
elements, and W is a real, symmetric, square, N ×N matrix with zeros on the diagonal
and nonnegative entries elsewhere. In other words, all graphs are undirected, weighted
with real, nonnegative weights, and without loops.

Although graph nodes and edges could represent anything, visualizations such
as the one in Figure 2.1, in which the nodes are thought of as points on the (two-
dimensional) plane, will be useful throughout this text. It should be noted, however,
that graphs are useful to represent non-uniform data in any number of dimensions.

2.1.2 Edge weights and kernels

Unlike classical signal processing, in which the topology of the domain is always
given, one of the key steps of applying GSP tools to solve a problem is constructing
the graph itself. Depending on what data is available and what kind of restrictions are
imposed by the problem at hand, the implementer can be responsible for designing any
number of the three graph features: nodes, connections between nodes, and weights
of these connections. Often, an ingenious way of assigning graph weights can single-
handedly solve a problem [5].

6

When weights are to be chosen to represent similarity, one of the most straight-
forward ways to assign weights is to map similarity values dij between vertices vi and
vj (e.g., euclidean distances between vectors represented by the nodes of the graph) to
edge weights via a kernel function K :

Wij = K (dij) .

Since having less edges makes the visualizations cleaner, and also makes the adjacency
matrix sparse, which helps in the computational complexity of the algorithms that will
process these matrices, it is useful to assign edges only to pairs of vertices whose simi-
larities do not exceed some threshold τ :

Wij =

K (dij) , if dij ⩽ τ

0, otherwise.

Another way of forcing the sparsity of W is to connect each node only to the k nearest
(most similar) nodes.

Although the construction of the graph affects most GSP techniques used, it is not
clear exactly how each design choice (e.g. which kernel function, similarity measure, or
sparsification strategy to use) influences the results [5]. For this reason, in this work we
will sometimes repeat some experiments with both of the following kernel functions:

K1 (d) =
1

d2

K2 (d) = exp
{
−1

2
d2
}

2.1.3 Graph signals

In traditional signal processing, we call a signal any kind of linearly-indexed data.
For example, a mapping from continuous time instants to signal values could be called
an analog signal; here, time is the linear index mentioned. In GSP, the index domain is
the graph itself. A signal is, therefore, a mapping from the graph nodes to signal values.

We write
x : V → C or x ∈ CV

to mean that x is a signal on the graph whose vertices are V . The difference in typeface
from x to x is to emphasize that the signal can be seen as a function from the domain of
vertices to the field of complex numbers; or as a vector of complex sample values. In the
first case, the value of the signal on the i-th vertex is denoted x (vi), and in the second,
the i-th entry of the vector is denoted xi. Both interpretations are equivalent, although
the second is more amenable to linear algebra techniques.

7

Figure 2.2: Visualization of a classical discrete-time signal with positive real values.

noise = np.random.standard_normal((len(graph),))

signal = gsp.GraphSignal(noise, graph=graph)

signal.plot()

Listing 2: Instructions to generate Figure 2.3, using the same graph object as in Listing 1.

It is sometimes convenient to write

x : G → C or x ∈ CG

using G in the place of V , when we want to emphasize that the domain of the signal
has the structure of a graph, instead of being just a list of elements with no connectivity
information.

Visualizing real signals on one-dimensional domains is usually done via a cartesian
plot: we plot the independent variable (e.g. time) in the axis of abscissae, and the signal
values in the axis of ordinates. Figure 2.2 shows an example.

Graph domains usually represent, at best, two-dimensional spaces, which makes the
cartesian plots mentioned above more difficult to render on two dimensional media and
to interpret—visualizing 3d plots is always hard. In this work, we will usually represent
real signals on graphs as colored plots. Diagrams like the one in Figure 2.1 will feature
color-coded dots, and the color of each dot will serve as visual indicator of the strength
of the signal value at that node, as in Figure 2.3.

8

Figure 2.3: Visualization of a graph signal.

2.2 The graph Laplacian

The degree of a node in a graph is the sum of the weights of the edges that incide on
it. In other words, the degree Di on vertex vi is:

Di =
∑
j

Wij.

(It doesn’t matter if, in the above summation, j is restricted to indexes of neighboring
vertices of vi or not, sinceWij is zero whenever vi and vj are not adjacent.) The degree
matrix of a graph is the diagonal matrix formed by the degrees of each node:

D =

D0

. . .
DN−1

and the Laplacian matrix is defined as:

L = D−W.

Note that the Laplacian matrix ignores loops in the graph, if they are present, since
adding or removing a loop at node vi would just increase or decrease the loop weight to
both matrices D andW in the same entry, maintaining the value ofDi−Wii unchanged.

The Laplacian matrix, when seen as a linear transformation on the space of graph
signals, acts according to the following formula. If x ∈ CG is a signal on the graph G,

9

and L is the Laplacian matrix of G, then Lx is another signal on the same graph, with
components given by:

(Lx)i = ((D−W) x)i = Dixi −
∑
j

Wijxj = Di

[
xi −

∑
j Wijxj∑
j Wij

]

This is proportional to the degree Di, but the most interesting factor (the one that de-
termines the polarity of (Lx)i, and also the only one that actually depends on the signal
x itself) is the subtraction in brackets. This second factor is the difference between the
value of the signal x at vertex vi and the mean value of the signal at the neighboring
vertices; this mean is pondered by the weights of the edges that connect vi to each of
its respective neighbors.

In other words, each sample of the signal Lx is proportional to the difference between
the original signal value at that vertex, and the mean of the signal values at neighbor-
ing vertices (pondered by how close they are to the central vertex, as measured by the
connection strength). This is similar to the behaviour of the Laplacian operator in the
continuous domain Rn. The continuous Laplacian operator in Rn, usually called△,∇2,
or ∇ · ∇, is given by:

if f : Rn → C is twice-continuously differentiable,

then △f (t) =
∑
i

∂2f

∂ti
2 (t) .

The Laplacian of a continuous function f also yields, at each point t of the Euclidean
space, a measure of howmuch f (t) differs from themean value of f at the neighborhood
of t, as made precise by the following theorem: [11]

Theorem 2.2. Let f : Rn → R be twice-continuously differentiable. For each r > 0, let
Sr (t) be the surface of the sphere of radius r centered at t, and letm (Sr (t)) be its area. For
a fixed t, let µ (r) be the mean value of f on this surface, as given by the surface integral:

µ (r) =
1

m (Sr (t))

∫
Sr(t)

f (s) dS (s) .

Then, as r approaches 0 from above:

µ (r) = f (t) +
1

2

△f (t)
n

r2 + o
(
r2
)
,

where n is the dimensionality of the domain Rn, and o (r2) represents a function of r that
converges to 0 faster than r2 when r → 0.

10

Alternatively, stated without the little-o notation:

lim
r↘0

f (t)− µ (r)

r2
= −1

2

△f (t)
n

.

The last formula in the theorem above states that, for small r, the difference between
the value of f at some point t ∈ Rn and the average value of f in a neighborhood of t
given by the surface of the sphere of radius r is proportional to minus the Laplacian of
f at t:

f (t)− µ (r) ≈ − r2

2n
△f (t) .

Using this formula, we see that the continuous Laplacian operator for the Euclidean
space is actually analogous to minus the Laplacian operator for graphs. If, for some
graph signal x ∈ CG , the Laplacian (Lx)i at vertex vi is positive, this means that the
value xi of the signal at vi is higher, on average, than the values at x at neighboring ver-
tices. Meanwhile, for a twice-continuously differentiable function inRn, if its Laplacian
△f (t) is positive, then its value f (t) is lower, on average, than the values of f in the
neighborhood of t.

The difference in the polarities of the conventions is, of course, just a matter of ter-
minology. Still, it serves to show that L is a discrete version of the continuous Laplacian
operator, in the sense that both of them yield, at each point in the domain, a measure
of how much the signal value at that point differs from the average signal value in the
point’s neighborhood.

One consequence of this property of L is that, since Lx depends, at each vertex, on a
value of xminus an average of values of x, the global average of x is irrelevant. In other
words, if x is a constant signal, then Lx = 0. Furthermore, since the averages mentioned
above are all local, meaning that all differences are differences between values of x at
connected vertices, if x is constant at each connected component of the graph, then
Lx = 0.

This is a recipe for finding eigenvectors of the Laplacian with eigenvalue zero. Sup-
pose that G has M connected components; i.e., the set of vertices V can be partitioned
inM subsets:

V = V0 ∪ V1 ∪ · · · ∪ VM−1

in such a way that there are no edges from Vk to Vl (unless k = l, of course). For each
k = 0, 1, . . . ,M − 1, we define the k-th indicator signal x(k) as x(k)i = 1 whenever
vi ∈ Vk, and x(k)i = 0 otherwise. Then all M indicator signals are orthogonal to one
another, and all of them satisfy Lx(k) = 0. Conversely, if x is such that Lx = 0, then
it is possible to show, using mathematical induction on the size of the graph G, that x
is constant at each connected component of the graph.3 Therefore, the kernel of L has

3This is a manifestation of the finite character of graphs. In infinite (and connected) domains, a signal

11

dimensionM , and
{
x(0), . . . , x(M−1)

}
is a basis for this kernel. We will usually assume

that a graph has only one connected component, in which case its Laplacian matrix
has exactly one eigenvalue equal to zero, and its respective eigenvector is the constant
signal.

As for the other eigenvalues of L, we can show that they are all positive. We define
the incidence matrixM of a graph as follows. M is an E×N real matrix, where E is the
number of edges in the graph. We assume that the edges are labeled e0 to eE−1, and for
each edge ek and each vertex vi we letMki be given by:

Mki =

0, if ek does not incide on vi or vj ;

+
√
Wij, if ek incides on vi and i < j;

−
√
Wij, if ek incides on vj and i < j.

In words, for each k, if we let vi and vj be the vertices connected by edge ek, then the
k-th line of M has all zero entries, except that Mki and Mkj are ±

√
Wij . If the graph

were directed, the choice of which ofMki andMkj would be assigned which sign (plus
or minus) could be informed by the direction of the edge ek. However when the graph
is undirected, the signs can really be chosen at random. If, for definiteness, we choose
as we did above, and assign +

√
Wij to the entry corresponding to the node with lower

index and−
√
Wij to the other one, then the resulting signs of the entries will be directly

dependent on the order of the labeling of the nodes in the graph. Still, since the signs
are not relevant, the labeling order is also not relevant.

Making the calculations, one can show that L = MTM. Because of this formula, L is
a semi-definite positive matrix, and therefore all non-zero eigenvalues must be positive,
as promised above.

Since L is symmetric, it has a complete set of eigenvectors and eigenvalues. If we
order the eigenvalues increasingly:

λ0 ⩽ λ1 ⩽ · · · ⩽ λN−1,

then λ0 will always be 0, as mentioned above (since all graphs have at least one con-
nected component). For a connected graph (which has exactly one connected compo-
nent), we have:

0 = λ0 < · · · ⩽ λN−1.

Let ul be the eigenvectors of L corresponding to λl. Since L is a real symmetric
matrix, we will always choose the vectors ul to be real and to form an orthonormal basis

can have null Laplacian, but still be non-constant. In the realm of continuous functions on the Euclidean
space, for instance, such signals are called harmonic functions, and finding all of them given boundary
conditions amounts to solving a partial differential equation called the Laplace equation.

12

of CG . If the eigenvectors are arranged, in order, as columns of an orthogonal matrix U,
and the eigenvalues are also arranged in order as diagonal elements of a diagonal matrix
Λ, then:

L = UΛUT .

2.3 The graph Fourier transform

In classical signal processing, the Fourier transform is a fundamental tool. It helps
analyse signals, explain phenomena, design filters, and solve problems. As mentioned
above, one of the first problems that Fourier analysis was applied to was solving partial
differential equations, the most simple of which was the steady-state heat equation, also
called the Laplace equation:

△f (t) = 0.

As in any linear equation, it is instructive to search for eigenvalues and eigenvec-
tors of the linear operators that arise in the problem. In the case for the one-dimensional
Laplacian operator, for example, the eigenfunctions are the so-called complex exponen-
tials:

△
{
e2πjξt

}
= − (2πξ)2 e2πjξt.

Therefore, the eigenvalues, − (2πξ)2, of the Laplacian operator are related to the fre-
quencies ξ. The Fourier transform on R is exactly the change of basis that diagonalizes
the Laplacian operator△, which yields, for each frequency ξ, the inner product between
a signal f and the complex exponential eξ (t) = e2πjξt:

f̂ (ξ) = ⟨f, eξ⟩ =
∫
R
f (t) e−2πjξt dt.

Although it is not obvious at once how to define the analog of complex exponentials
for signals on a graph, the Laplacian operator can be exploited to this end. The anal-
ogy between L and −△ mentioned in the last section will be main connector used to
transform traditional signal processing tools into graph signal processing tools.

The first thing to do in order to make this connection is to define a Fourier transform
for signals on graphs. If x ∈ CG is a graph signal, wemimic the definition for continuous
time, and define the Fourier transform of x to be the vector x̂ ∈ CN with components:

x̂ (λl) = x̂l = ⟨x, ul⟩ = uTl x.

Using this definition, the vector x̂ can be directly calculated as:

x̂ = UTx.

13

Thus,U is called thematrix of the graph Fourier transform, or GFT. SinceU is orthogonal,
the inverse GFT is given by:

x =
∑
l

x̂lul = Ux̂.

2.3.1 Frequency interpretation and analogy to classical Fourier analysis

In this construction of the graph Fourier transform, the graph Laplacian eigenval-
ues λl are analog to frequencies in traditional signal processing—or, at least, to positive
squared frequencies, since the eigenvalues of −△ are (2πξ)2. Also, the eigenvectors ul
are analog to the complex exponentials, and this analogy isn’t just algebraic; intuitively,
the higher the corresponding frequency λl, the “faster” the eigenvector ul changes val-
ues. As already mentioned, the eigenvectors corresponding to zero eigenvalues are con-
stant at each connected component of the graph—if the graph is itself connected, then
the zero eigenvalue has multiplicity one and its only eigenvector is the constant signal.

As for nonzero eigenvalues, in Euclidean domains the concept of a fast-changing
complex exponential is closely linked to periodicity, which does not happen in graph
Laplacian eigenvectors. Still, as pointed out in [5], another way of measuring the fre-
quency of classical sinusoids, which can be interpreted in a graph domain, is to measure
how often the signal changes polarity. That is, to measure how often the signal changes
from positive samples to negative samples and vice-verse. In a graph setting, we can
simply count the number of edges connecting samples with different polarity.

Figure 2.4 shows the result of an experiment in which wemeasure the rate of change
of polarity of various eigenvectors of the Laplacian operator for a randomly generated
graph. To generate the graph, we sample N = 50 points from a uniform distribution
over a square on the plane repeatedly until no two chosen points are too close to one
another (that is, forcing the distance between pairs of points to be higher than a chosen
threshold). The chosen points are the nodes of the graph. Edge weights are assigned
using a kernel function, and W is sparsified using another threshold for the distance
between points—i.e., if the distance dij is higher than the threshold, then Wij is set to
zero instead of K (dij). The experiment is repeated for inverse-square and Gaussian
kernels K . Also, the edge weights of both graphs are scaled to force λN−1 = λmax = 1.

The first two two plots, Figures 2.4a and 2.4b, show the generated graph. Edge colors
are drawn in grayscale to represent the weights. It can be seen that edge weight values
are less diverse when using a gaussian kernel, which happes because the inverse-square
kernel, K1 (d), tends to infinity when d goes to zero, while the Gaussian is capped at a
maximum peak value.

The rest of the plots show color-coded plots of the Laplacian eigenvector signals—
analogous to complex exponentials for classical signal processing, as mentioned above—
in the style of Figure 2.3. Below the first two plots, Figures 2.4c and 2.4d show the

14

(a) Inverse-square kernel graph. (b) Gaussian kernel graph.

(c) Inverse-square kernel graph. (d) Gaussian kernel graph.

(e) Inverse-square kernel graph. (f) Gaussian kernel graph.

(g) Inverse-square kernel graph. (h) Gaussian kernel graph.

Figure 2.4: Zero-crossing edges for Laplacian eigenvectors on a randomly-generated
graph with two different kernels for edge weights.

(i) Inverse-square kernel graph. (j) Gaussian kernel graph.

(k) Inverse-square kernel graph. (l) Gaussian kernel graph.

(m) Inverse-square kernel graph. (n) Gaussian kernel graph.

(o) Inverse-square kernel graph. (p) Gaussian kernel graph.

Figure 2.4: [cont.] Zero-crossing edges for Laplacian eigenvectors on a randomly-
generated graph with two different kernels for edge weights.

graph = gsp.GeometricUWG.make_random()

zeros = len(graph) * [0]

signal = gsp.GraphSignal(zeros, graph=graph)

signal.plot(colorbar=False, dotcolor='k', edge_color='grayscale')

lambd, U = graph.spectral_decomposition()

for k in range(len(graph)):

u_k = gsp.GraphSignal(U[:,k], graph)

u_k.plot(title=f'$\\lambda_{{{k}}}={lambd[k]:.4}$',

edge_color='zero-crossing')

Listing 3: Instructions to generate Figure 2.4.

first eigenvector, corresponding to λ0 = 0. As mentioned above, the first eigenvector
is always constant. All other eigenvectors, being orthogonal to the first, show both
positive and negative entries, since the entries’ sum must be zero. We will say that
an edge is a zero-crossing edge if it connects a positive sample to a negative one. In
the eigenvector signal plots, we have drawn zero-crossing edges in red, solid lines, and
non-zero-crossing edges in faint-gray dotted lines.

It can be seen that the higher the eigenvalue, the more zero-crossing edges there
are, implying that eigenvectors corresponding to high eigenvalues do indeed change
values more often, which is a confirmation of the interpretation of the eigenvalues λl as
frequencies.

2.3.2 Frequency-domain processing

The irregular nature of graphs can make it difficult to translate traditional signal
processing tools into the GSP framework. However, graph frequencies λl are always
just real numbers, and thereforemore amenable to the algebraicmanipulations that form
the basis for classical GSP. This section is dedicated to an overview of such processing
techniques.

The first thing to notice is that, although there are analogies, there are also impor-
tant differences between traditional DSP and GSP. One important feature of euclidean
domains is that the algebraic structure of the real field R gives rise to algebraic asym-
metries—special numbers with unique properties around which the algebraic structure
is formed. The number 0 ∈ R is one such number, sometimes called the origin in the
real number line. It serves special purpose in classical Fourier analysis also: whenever
a time-domain signal exhibits some kind of symmetry around zero, e.g. an even or odd
signal, it will also exhibit special properties in the frequency domain. If this signal is
shifted away from zero in the time domain, the frequency-domain representation be-

17

comes modulated.
When we define a signal on the frequency domain and apply the inverse Fourier

transform to derive the time-domain representation, zero also plays a special role. For
instance, if we define a signal with frequency component equal to 1 for all frequencies—
clearly a construction that’s agnostic with respect to domain elements—, the resulting
time-domain signal is an impulse signal supported exactly on zero.

The very definition of the Fourier transform uses the origin of the time-domain as a
special element. The orthonormal basis of eigenvectors of the Laplacian is not unique—
each eigenvector eξ could be multiplied by some constant cξ ∈ C on the unit circle
(|cξ| = 1), and the resulting basis {cξeξ}ξ∈R would still be an orthonormal eigenvector
basis for the Laplacian operator; given any such basis, the Fourier transform is defined
by choosing these constants in such a way that the value of any of the basis signals at
the origin is exactly 1.

When the domain is a graph, however, there’s no algebraic structure giving rise to
special domain elements. For an arbitrary graph G, there’s simply no systematic way to
pick one “central” vertex. This is a fundamental limit to the analogies between GSP and
DSP tools. For example, the problem of choosing one of the many orthonormal basis of
eigenvectors of the graph Laplacian based on the values of such signals on one specific
domain element is, in a way, simpler than the same problem for the classical Fourier
transform. Instead of having to choose, for each eigenvector ul, a complex multiplier cl
on the unit circle, we need only to choose between cl = +1 and cl = −1, since graph
Laplacian eigenvectors are required to be real. However, in another way this problem
is harder, because there is no central vertex we can use to inform our decision on the
direction of each eigenvector. The best we could do is choose one vertex vi—arbitrarily,
or perhaps based on the application—and choose the direction of each eigenvector ul in
such a way that Uil ⩾ 0. Figure 2.5 show the result of an experiment that explores this
issue.

We will now explore a few more operations on graph signals that can be borrowed
from the classical signal processing toolset.

2.3.2.1 Frequency-domain filtering

Traditionally, frequency-domain filtering consists in decomposing a signal into its
Fourier components, and then choosing which components to keep, which to enhance,
and which to discard. In a more concrete description, we take a signal f (t), multiply
its Fourier transform f̂ (t) by a filter function ĥ (t), and then take the inverse Fourier
transform of the resulting product. This is a simple enough specification of an operation
that it can be translated into the GSP framework without much effort.

Let R+ = [0,∞[be the graph frequency domain. We call any continuous function
ĥ : R+ → R a graph filter. Given any graph G and its Laplacian’s eigendecomposition

18

(a) Plot of a realization of the random graph
signal Uc =

∑
l clul, where the coefficients

cl are independent and identically distributed,
drawn randomly from the set {−1,+1}. This
is a simulation of a sum of out-of-phase com-
plex exponentials.

(b) Histogram of signal sample values for the
graph signal at the left. The values are clus-
tered around zero, showing no indication of a
single outlier sample that could be interpreted
as an impulse.

(c) Plot of the signal Uc =
∑

l clul where,
this time, the coefficients cl are deterministi-
cally chosen to make each clul positive at one
specific (arbitrarily determined) node, seen in
yellow in the figure. This simulates in-phase
complex-exponentials.

(d) Histogram of signal sample values for the
graph signal at the left. The variance of the
values around zero is smaller than in Fig-
ure 2.5b above, and this time there is clearly
an outlier, indicating that this signal could be
interpreted as an approximation of an impulse
signal. Here, the node on which the impulse
is supported is responsible for ≈ 46% of the
energy of the signal.

Figure 2.5: Using the same graph as in Figure 2.4, with the inverse-square kernel, we
attempt to mimic the Euclidean-domain phenomenon of constructing an impulse signal
out of in-phase complex exponentials.

Randomize polarity of each column of U:

U_randomized = U * ((np.random.random((len(graph),)) >= .5)*2-1)

signal = gsp.GraphSignal(U_randomized.sum(axis=1), graph)

signal.plot(edge_color='grayscale', colorbar=False)

plt.figure()

plt.hist(U_randomized.sum(axis=1))

Choose column polarities so that U [0, i] > 0:

U_deterministic = U_randomized

for i in range(len(graph)):

if U_deterministic[0,i] < 0:

U_deterministic[:,i] *= -1

signal = gsp.GraphSignal(U_deterministic.sum(axis=1), graph)

signal.plot(edge_color='grayscale', colorbar=False)

plt.figure()

plt.hist(U_deterministic.sum(axis=1))

Listing 4: Instructions to generate Figure 2.5, using the same graph and U objects as in
Listing 3.

L = UΛUT , we consider the linear transformation

Ĥ = ĥ (L) = Uĥ (Λ)UT = U

ĥ (λ0)

ĥ (λ1)

· · ·
ĥ (λN−1)

UT .

The action of Ĥ on a graph signal x is to apply successively the matrices UT , ĥ (Λ) ,U

to x. These linear transformations represent, respectively, a change of basis from x to
the frequency-domain x̂ (λl), a frequency-wise multiplication of each x̂ (λl) by the filter
gain ĥ (λl), and a change of basis back to the graph domain. In Figure 2.6 we show an
example.

2.3.2.2 Convolution

The algebraic definition of convolution in the Euclidean domain relies on its intrinsic
regularity. The definition of a convolution aims to answer the question of what is the
response of a time-invariant linear system given an input signal; however, there’s no
graph signal processing analogy of time-invariance, since there is no notion of transla-
tion.

20

(a) A signal on the graph of Figure 2.4a. (b) The same signal, after being filtered by
ĥ (λ) = e−3λ.

Figure 2.6: An example of frequency-domain filtering.

Still, convolution can be defined by generalizing the multiplicative property in the
frequency-domain. It must be noted, however, that this is dependent on the directions
chosen for the eigenvectors, as mentioned above.

Another notion close to the idea of convolution ismodulation. In Euclidean domains,
modulation is dual to convolution in the sense that while convolution in time translates
as pointwise multiplication in the frequency domain, modulation, being represented by
pointwise multiplication in the time-domain, translates as convolution in the frequency
domain. In [12] it is shown that if a graph signal with a prevalence of low frequecies
(usually called a “low-pass signal” in some contexts, since its graph Fourier transform
is supported near zero) is pointwise multiplicated (in the graph domain) by a Laplacian
eigenvector ul, the Fourier transform of the resulting vector is supported near λl.

2.3.3 Wavelets

Multiple authors have defined wavelet transforms and multiresolution representa-
tions on graphs [13–16]. In many cases, designing wavelets on graphs boils down to
defining, for each node and each scale, a wavelet signal “centered” on that node. This
can be done, e.g., by designing a frequency-domain filter for each scale, and defining the
wavelets to be filtered impulses, as in [16]. Alternatively, the design can be done in the
graph vertex domain, choosing signal sample values directly based on known wavelet
values (e.g., the “mexican hat” wavelet [17]) and the distance from each vertex to the
one on which the wavelet is to be centered. Here, “distance” is to be defined by the
application.

In Figure 2.7, we can see an example of wavelets generated by the Spectral Graph
Wavelet Transform (SGWT), a set of wavelets designed on the frequency domain, as
proposed on [16]. On the graph we have been using as example, we plot the scaling

21

(a) Scaling function (b) Coarse scale

(c) Medium scale (d) Local scale

Figure 2.7: Wavelet examples.

function and three scale levels of the wavelet centered around a given node. In this
section, we give a brief description of the SGWT transform.

2.3.3.1 Review of classical wavelet theory

In the classical theory of wavelets, one possible strategy for constructing a wavelet
transform is to define a “mother” wavelet signal ψ, and define the convolution of a
given signal x with different versions ψs of the mother wavelet, one for each scale. For
instance, if ψ (t) is the signal that represents the “mexican hat” wavelet, then we define

ψs (t) =
1

s
ψ

(
t

s

)
and then, for each scale factor s > 0, we consider the convolution ψs ∗x. The collection
of signals {ψs ∗ x | s > 0} is the first ingredient of the wavelet transform of the signal
x. If ψ̂ and x̂ are the Fourier transforms of the signals ψ and x, the Fourier transform of
the signal ys = ψs ∗ x is given by ŷs (ξ) = ψ̂ (sξ) x̂ (ξ).

22

Since the objective of each scaled wavelet ψs is to extract features of an original
signal x at a specific resolution (small scale factors s yielding fine resolutions, and bigger
factors s yielding coarser resolutions), the mother wavelet function ψ is designed to
behave in a band-pass manner in the frequency domain. In this way, if the energy of
the frequency representation ψ̂ (ξ) is concentrated around |ξ| = 1, then the energy of
ψ̂ (sξ) will be concentrated around |ξ| = 1/s, and that’s why the parameter s controls
the resolution of the transform: it controls which frequency regionswill be filtered away
(those far from 1/s) and which ones will be present in ψs ∗ x (those close to |ξ| = 1/s).

Because the mother wavelet ψ is chosen to act as a bandpass filter, it has no com-
ponent at ξ = 0, that is, ψ̂ (0) = 0. This means that the information about the mean
value of x gets lost in each of the convolutions mentioned above. To solve this problem,
we define another signal φ, called the scaling function of the wavelet transform, which
acts as a low-pass filter. The convolution y0 = φ ∗ x therefore encodes the information
that was lost in the convolutions with ψs, and the complete wavelet transform of the
signal x is the set of signals {ψs ∗ x, φ ∗ x} = {ys | s ⩾ 0}. In this last notation, we
write ys = ψs for s > 0, and y0 = φ.

2.3.3.2 The SGWT

Wavelets defined on euclidean spaces, as described above, can be designed on the
time-domain—i.e., the functions ψ and φ can be designed directly, and their Fourier
transforms can be calculated afterwards. As another possibility, they can be designed
in the frequency domain—in which case we first define ψ̂ and φ̂, and then calculate
their inverse transforms as needed. For wavelets defined on graphs, the graph-domain
formula “(1/s)ψ (t/s)” is hard to work with because of the arithmetic operation t/s;
now that the time-domain has become the graph-domain, t represents a graph node
instead of a time instant, and it is not clear what t/s should mean.

Defining a graph wavelet transform in the graph domain has been done; Crovella
and Kolaczyk [14] succeeded in doing so. For each graph node t0 used as the center of
the convolution

ψs ∗ x (t0) =
1

s

∫
ψ

(
t0 − t

s

)
x (t) dt,

they interpret the factor t0 − t as the geodesic distance on the graph from node t0 to
node t, thus being able to carry out the needed arithmetic. However, we will describe
here the approach used by Hammond et al. which define a graph wavelet transform
designed directly on the frequency domain.

The frequency domain is easier to work with, since the graph frequencies are real
numbers, and therefore the arithmetic in the formula ψ̂ (sξ) x̂ (ξ) can be carried out
directly. Following the classical description given above, the definition of the SGWT is

23

based on two mother functions:

g : R+ → R

λ 7→ g (λ) ; and

h : R+ → R

λ 7→ h (λ) .

The function g takes the place of ψ: it satisfies g (0) = g (∞) = 0, showing a band-
pass behaviour. Meanwhile, the function h is a lowpass filter, decreasing its value from
h (0) > 0 to h (∞) = 0. In Figures 2.8a and 2.8b, we show the mother functions g
and h proposed in [16]. Having defined the functions g and h, we proceed to defining,
for a given graph signal x, the functions ys which will comprise its SGWT transform
according to the considerations of the previous section. By mimicking those previous
formulas, we define ys on the frequency domain:

ŷs (λl) = g (sλl) x̂ (λl)

ŷ0 (λl) = h (λl) x̂ (λl)

Using the eigendecomposition of the graph Laplacian, L = UΛUT , we define

g (sΛ) =

g (sλ0)

g (sλ1)
. . .

g (sλN−1)

 ,

so that we can write directly in vector notation:

ŷs = g (sΛ) x̂

ŷ0 = h (Λ) x̂).

Using the Fourier transform and inverse transform matrices UT and U, we can write
those equations in the graph domain:

ys = Ug (sΛ)UTx = g (sL) x

y0 = Uh (Λ)UTx = h (L) x.
(2.1)

We have thus described the SGWT transform in terms of the linear transformations
defined by g (sL) = Ug (sΛ)UT and h (L) = Uh (Λ)UT . Given a graph signal x ∈ CG ,

24

(a) g-function for defining bandpass wavelet
signals. Designed so that g (1) = g (2) = 1,
and g (0) = 0.

(b) h-function for defining (lowpass) scaling
functions. Designed to have the same maxi-
mum value as g.

Figure 2.8: Mother functions that generate an SGWT.

the signals ys and y0 defined above comprise the SGWT transform of x. A simple way
of interpreting this transform is as follows. The value ys (i) of the signal ys at the i-th
node of the graph is given by the inner product between x and g (sL) δi, where δi is
the impulse vector at the i-th node, and similarly for y0 (i). This means that the action
of g and h on any graph vector x can be completely specified by the graph vectors
{g (sL) δi, h (L) δi | s > 0}.

The final step in defining the SGWT for a given graph is choosing a discrete set of
scales. As defined above, the SGWT transform of a signal x is an infinite set {ys}, since
s can be any non-negative real number. By choosing a set of scales {s1, . . . , sJ}, the
SGWT transform of a signal x becomes the set of J + 1 signals {y0, y1, . . . , yJ}, where
we have written yi in place of ysi in order to simplify the notation. In Figure 2.9 we
show an example of four filters g (sλ), one for each of four scales s, and another filter
h (λ), which together define an SGWT transform on a graph.

25

Figure 2.9: An example of a set of generating functions for a Spectral Graph Wavelet
Transform. The scales are uniformly spaced in the log-domain, hence the log-scale in
the horizontal axis. In order to handle graphs with edges normalized for λmax = 1, the
smallest (finest) scale, sJ , shown in yellow (rightmost curve), has been chosen so that
g (sJλmax) = 1; that is, sJ = 1.

Chapter 3

The Least Mean Squares algorithm

In applications such as networks of sensors, time-varying graph signals can rep-
resent the dynamic nature of the information recorded by such sensors, while at the
same time respecting the irregular structure of the domain. In this chapter, we study
time-varying graph signals, and in particular the estimation algorthims described in [18]
and [19].

The simplest way to pose the problem is as follows. The goal is to estimate a signal
x0 on a graph G = (V ,W), and the information available is a sequence of noisy mea-
surements x0+v [n]. The signal x0 is assumed to be band-limited to a set F of the graph
frequencies, and F is assumed to be known. It will be shown that, because the desired
signal is band-limited, it is enough to sample x0 on a subset S ⊂ V of the graph vertices.

In the network-of-sensors example, the assumptions above can be justified: if the
quantity measured by the sensors is a smooth function of the sensor position, then adja-
cent vertices on the graphwill correspond to geographically close sensors, and therefore
the values of x0 on such vertices will be similar. In this case, it is reasonable to assume
that only low graph-frequencies are present in x0. It is also reasonable to assume that
recording a sample value from a sensor requires power, and therefore that we would
like to minimize the amount of sensor readings at each time instant. This explains why
it is desireable to sample x0 only in the vertices belonging to some small subset S .

An example application of the LMS algorithm to networks of sensors is [20], in
which the authors apply the method described here to estimating temperatures in some
of Brazil’s weather stations. Although recovering information that was lost, or would
be expensive to measure directly, is the canonical application of this technique, [18] cites
others such as increasing situational awareness in cognitive radio networks with known
reliability.

27

3.1 The algorithm

As seen in Chapter 2, the main difficulty in translating signal processing techniques
and algorithms is to to pose or rewrite the technique in such a way that a generaliza-
tion becomes apparent. This is true of filtering—which, as we’ve seen, are more easily
handled in the frequency domain—, and even more so when dealing with adaptive fil-
ters, which rely heavily on the time-like uniformity of the signal domains. From what
we have gathered from a small literature review [18, 19], the path for designing adaptive
filtering techniques for graph signal processing is not clear. Since the field of signal pro-
cessing on graphs is still incipient, and in particular the workforce of trying to derive
adaptive filtering algorithms, most of the work is ad hoc in nature, devoid of a pattern
that could be inferred as a possible answer to the question “How to develop adaptive
filtering technique for graph signal processing?”

The algorithm that will be described in this chapter, for instance, bypasses some of
the difficulty of dealing with the transformation of time domains to graph domains by
working with both at once. This seems to be a common theme: to consider a linear
and uniform time dimension, and model the spatial dimension using graphs. In this
way, the theory of graph signal processing can be applied since each sample in time—
when thinking in terms of classical adaptive filtering—has now become a whole graph
signal. Other common themes seem to be the form of the algorithms, which remain
always similar to their classical counterparts, and the theoretical analysis1, which rely
on analysing the behaviour of the mean-square error when n→ ∞.

We begin by defining the sparsifying operators D and B. Given some set S ⊂ V
of vertices of a graph, we define D to be the diagonal matrix with ones at the entries
corresponding to elements of S , and zeros everywhere else. The operator D is an or-
thogonal projection on the space of graph signals supported on S . Analogously, given
a set of graph frequencies F ⊂ σ (L), where σ (L) = {λ0, . . . , λN−1} is the spectrum of
the graph Laplacian, we define B to be the orthogonal projection on the space of signals
band-limited to F , that is, the space spanned by {ul | l ∈ F}.

The space of graph signals band-limited to F , called the Paley-Wiener space for F ,
is the space of all x ∈ CG such that Bx = x. Similarly, the space of signals supported on
S is the space all x satisfying Dx = x.

It is shown in [21] that such spaces can admit non-trivial intersection. In particular,
we have the following theorem.

Theorem 3.1. Given a graph G = (V ,W), a subset of vertices S ⊂ V , and a subset of
frequencies F ⊂ σ (L), together with the corresponding matrices D and B, the following
conditions are equivalent:

1Means square error ans steady-state performance analysis will not be a subject of this text.

28

1. There is a non-zero graph signal x ∈ CG that’s perfectly localized both over vertex
set S and over frequency set F (that is, x = Bx = Dx);

2. BDB has an eigenvalue equal to 1;

3. DBD has an eigenvalue equal to 1;

4. ∥BDB∥ = 1;

5. ∥DBD∥ = 1;

6. BD has an eigenvalue equal to 1;

7. DB has an eigenvalue equal to 1;

8. ∥DB∥ = 1;

9. ∥BD∥ = 1.

If either of them holds, and therefore all others also do, then the eigenvector corresponding
to eigenvalue 1 can be taken to be the same in all matrices above, and represents a signal
x satisfying Bx = Dx = x.

Since D and B are orthogonal projections, they always satisfy ∥D∥ = ∥B∥ = 1, and
so all their products satisfy ∥DB∥ ⩽ ∥D∥ · ∥B∥ = 1. If such products have eigenvalues
equal to 1, then they also have norm 1, and the corresponding eigenvectors x satisfy
DBx = x. This can be written as

x 7→ Bx 7→ DBx = x.

Since each step in this chain is an orthogonal projection, orthogonal projections can’t
increase the norm of a vector, and the final output has the same norm as the initial input,
each step must preserve the norm of its input. Therefore, each step, being an orthogonal
projection, must preserve the actual input vector, that is, Bx = x and Dx = x.

This phenomenon of perfect localization simultaneously in the vertex and frequency
domains does not happen in classical Fourier analysis. In fact, the Paley-Wiener theo-
rem [22], [23] places very restrictive conditions on perfectly-localized, continuous-time,
non-periodic signals:

Theorem 3.2. (Paley-Wiener)

Let f ∈ L2 (R) be a square-integrable, complex-valued function on the real line. Then its
Fourier transform f̂ is supported on the interval [−M,M] if and only if f can be extended
to an entire function on C such that |f (x+ iy)| = O

(
eM |y|) .

29

We recall that an entire function is a function f : C → C that can be writen as a
power series that converges everywhere on the complex plane:

f (z) =
∞∑
n=0

anz
n, z ∈ C.

Of course, by duality the theorem is also valid the other way around: if f is supported
in a bounded set, then f̂ can be extended to an entire function. Since entire functions
can never vanish infinitely many times in a bounded set (let alone vanish in a non-
degenerate interval), no continuous-time, non-periodic signal f can be perfectly local-
ized (i.e. supported on a bounded set) in both time and frequency.

In the graph domain, then, the LMS approach gives rise to the following algorithm.
Let y [n] be the signal measured on the vertices S :

y [n] = D (x0 + v [n]) .

Then, given y, to solve the problem of estimating x0 we just need to find the solution to
the following optimization problem:

min E
[
∥y [n]− DBx∥2

]
s.t. Bx = x

The squared error can be rewritten as:

e2 = E
[
∥y [n]− DBx∥2

]
= ∥E[y [n]]− DBx∥2 ,

and then we use the instantaneous error to calculate the gradient, as done in [24]:

∇xe
2 = 2BD (Bx− y [n]) .

This gradient does not disrupt the condition Bx = x, which means that if the initial
guess x [n] is already band-limited to F , applying the algorithm is quite simple:

x [n+ 1] = x [n] + µBD (y [n]− x [n]) .

Let S̄ = V \S be the set complement of S with respect to V . In order for the original
signal x0 to actually be recoverable from its samples on S , there must not exist any F-
limited signals that are also perfectly localized on S̄—if such signals exist, they will be
sampled as 0, and D would lose all information on them. If we let D̄ = I − D be the
sampling matrix for the set S̄ , then the following theorem from [18] summarizes this
situation:

30

Theorem 3.3. The LMS optimization problem above admits a unique solution (i.e., any F-
limited signal x0 can be recovered from its S-samples Dx0), if and only if the sets S̄ and F
do not satisfy the conditions of Theorem 3.1.

A corollary of this theorem is that a necessary condition for the solvability of the re-
construction problem is |S| ⩾ |F|. This is required also from the perspective of degrees
of freedom: since we need to find all coefficients x̂l of the graph Fourier transform of x0
for l ∈ F , through a map with domain {x |Dx = x}, the dimensionality |S| should be
at least as large as that of the image of the map.

While requiring |S| ⩾ |F| is necessary, it is not sufficient. Even though the condi-
tion on Theorem 3.3 might be satisfied, the map from input y to the estimate x might be
ill-conditioned. We describe here one of the strategies proposed in [18] for choosing the
set S given F .

Let UF be the N × |F| matrix with columns ul for l in F , where N is the number
of nodes in the graph. Such ul form an orthonormal basis for the set of allowed (i.e.,
F-limited) signals x0. Since each line of U (and therefore each line of UF) corresponds
to a graph node (in the order of the labeling of nodes, as discussed in Section 2.1.1), when
we sample the measured signals through the sparsifying operator D, we focus on the
lines of U corresponding to the vertices of S . Knowing this, the strategy for choosing an
optimal set S is to make these |S| lines (of length |F| each) as independent from each
other as possible. In other words, these lines must span the subspace of S-localized
vectors, and must do so as stably as possible.

The algorithm then consists in a greedy search for the optimal S . In a first step, we
choose the line in UF with highest norm, and call it l0. Then, we choose the line whose
component orthogonal to l0 has highest norm and call it l1. Inductively, if we have
already chosen l0, . . . , ln−1, we choose ln to be the line in UF with greatest component
orthogonal to span {l0, . . . , ln−1}. Since this is equivalent to maximizing the (n+ 1)-
dimensional volume of the parallelepiped with sheared sides li, i = 0, . . . , n, it is also
equivalent to maximizing det+

(
UT
FD

(n)UF
)
, whereD(n) the binary diagonal matrix with

ones on the entries that have been selected by the algorithm, and det+ is the product of
the non-zero eigenvalues of a matrix.

In Figure 3.1 we plot an example of evolution of the LMS iteration. For the graph
of Figure 2.4a, we generate a random vector, band-limited to the first (lowest) 10 fre-
quencies, and we apply the greedy procedure described above to list the graph nodes in
order of importance. We then aply the LMS algorithm, using as sampling set S the first
K nodes listed by the greedy algorithm forK = 7, 8, 9, 10, 20, 30, 50. For each value of
K , we plot the mean square deviation, defined as

MSD = ∥x [n]− x0∥2 .

31

(a) Example of a random band-limited graph
signal. Here, the band consists of the first
(lowest) 10 frequencies, out of 50.

(b) 10 first samples chosen by the greedy al-
gorithm. We can see that the chosen nodes
are mostly those that the LMS iteration would
have most difficulty estimating, for they are
far from their neighbors, or are weakly linked
to them.

(c) We run the LMS iteration for the problem ilustrated in Figures 3.1a and 3.1b. Although Fig-
ure 3.1b shows only the set S with exactly 10 nodes, we also plot the results for 7, 8, 9, 10, 20,
30, and 50 measured nodes. The dotted line shows the theoretical steady-state MSD.

Figure 3.1: Results of an LMS example.

It can be seen that, for |S| = K < 10 = |F|, the algorithm is not able to recover the
original signal x0. As expected from intuition, the higher the number K of sampled
nodes, the higher the information available, and therefore the faster the convergence.
Also, the steady-state MSD is the same for all curves, since it does not depend on the
sampling set S (as long as the original signal is recoverable from its samples in S , as
mentioned in Theorem 3.3).

3.2 Probabilistic sampling

In [19] a more general sampling method was proposed, which we discuss in this sec-
tion. The motivation is that, while sampling in a limited subset of graph nodes can help
reduce costs and energy consumption, consistently ignoring another large subset of the
vertices can drastically reduce the convergence rate, as exemplfied in Figure 3.1c. Using
the method of probabilistic sampling, all graph nodes are potentially sampled, aiming to
maintain a sparse sampling pattern while at the same time not losing information from
important graph nodes.

In the deterministic framework described in the last section, it was important to
choose carefully a set S ⊂ V of graph vertices on which to measure signal values.
Specifying such a set is the same as specifying a binary vector

p =
[
p0 p1 · · · pN−1

]T
such that pi = 1 if the graph node vi belongs to S , and pi = 0 otherwise. In the
probabilistic framework, each pi is a probability pi ∈ [0, 1], and for every iteration, each
graph node is sampled or not at random, independently from other graph nodes, with
probability pi. If, for some vertex vi, pi is zero, then this vertex is never sampled; if, on
the other hand, pi = 1, then vi is sampled at each time instant.

The task of choosing a sampling set S has now been transformed into the task of
choosing a suitable probability vector p. The same trade-offs apply here: if pT1, the
expected number of sampled nodes, is high, then the costs of measuring are high; on
the other hand, if pT1 is too low, convergence of x [n] to the original signal x0 will not
take place.

Since the domain p ∈ [0, 1]N is now continuous, in contrast to the discrete domain
p ∈ {0, 1}N underlying the deterministic framework, the optimization problem we face
is analytic instead of combinatorial, and there is no need for greedy algorithms any-
more. The proposed strategy then is to solve an optimization problem for p, trying to
minimize the expected number of measurements per iteration, pT1. The two most triv-
ial constraints are 0 ⩽ p ⩽ 1. More generally, we can specify a vector pmax of energy
or resource limitations on each node, and require 0 ⩽ p ⩽ pmax. Unless other con-

33

strains are imposed, p = 0 would minimize pT1 trivially. Therefore, constraints on the
convergence rate and on the steady-state MSD value are usually present.

34

Chapter 4

Further exploratory results

In this chapter, we present the results of two exploratory experiments around the
theme of signal processing on graphs. In Section 4.1 we attempt to extend the spec-
tral graph wavelet transform (SGWT) proposed in [16] to allow for a critically sampled
wavelet transform as used in uniform euclidean domains [25]. In Section 4.2 we exam-
ine the trade-offs of less greedy algorithms for choosing sampling sets S in the LMS
iteration described in Chapter 3.

4.1 Sparse wavelet representation

The Spectral Graph Wavelet Transform described in Section 2.3.3 has one important
drawback, which is the complexity of the inversion problem. The product of the SGWT
is the collection of signals y1, . . . , yJ , y0—results of inner products between the original
graph signal x and all J scaled wavelet functions, plus the scaling function, centered at
each vertex. (See equations (2.1).)

The problem of recovering x from y1, . . . , yJ , y0 is solved by a least-squares proce-
dure. The wavelet signals are gathered in a matrix

Γ =
[
g (s1L) δ1 · · · g (s1L) δN · · · g (sJL) δ1 · · · g (sJL) δN h (L) δ1 · · · h (L) δN

]
whereΓ ∈ RN×(J+1)N . The solution to the inverse problem is the solution to the normal
equations:

ΓΓTx = Γ
[
yT1 · · · yTJ yT0

]T
.

The size of the matrix Γ reveals a trade-off: the more columns Γ has, the higher the
complexity of the inverse problem. The number of columns (J + 1)N means that the
transform of a signal xwithN samples is a collection of signals with a total of (J + 1)N

coefficients. Besides the complexity of the inverse problem, there is a storage problem:
the SGWT transform may reveal a lot of information about the multi-scale properties of

35

a signal, but this comes at the price of needing J +1 times the memory needed to store
the graph-domain signal.

In the other hand, subsampling this supercomplete transform is not trivial: the less
coefficients of the transform are stored, the higher the condition number of Γ, which
controls the stability of the inverse problem. It is possible to recover x from a subset of
the SGWT coefficients, but if too many coefficients are dismissed, the inverse problem
might become unstable.

4.1.1 Proposed algorithm

In this section, we propose a method for choosing a subset of the transform co-
efficients in a way reminiscent of critical sampling for filterbanks. In applications of
multirate systems, one also decimates the different versions of a signal, filtered to repre-
sent different scales, at fine-tuned rates, with the objective of obtaining a representation
from which a perfect reconstruction can be obtained while not containing redundancy
of information.

The heuristic for subsampling the SGWT transform will be the following. Our obje-
tive will be to dismiss JN of the (J + 1)N coefficients in such away as to obtain a linear
transform with N coefficients—represented in the graph-vertex domain by a matrix in
RN×N instead of RN×(J+1)N—but which extracts information from all scales, having
a stable inverse. As also happens in multirate systems in euclidean 1D domain [25],
coarse-scale coefficients vary very smoothly, and this redundancy can be used to recon-
struct the signal from just a few samples. Meanwhile, fine-scale coefficients represent
very localized features, and therefore vary more quickly. In other words, the higher the
scale si, the lower will be the number of coefficients needed to represent yi.

Inspired by dyadic filterbanks, our first experiment is to sample coefficients of the
SGWT transform in the following way. We initially suppose that the number N of
vertices in the graph is a power of two, N = 2K , and assign 2K−1 vertices to the finest
scale (s1), 2K−2 of the unused vertices to the second-finest scale, and so on.

We begin by partitioning the set of vertices in two equal parts (each with 2K−1 ver-
tices), in the most uniform manner (in the graph domain) as possible. In particular, if
the graph is bipartite1, the partitioning must preserve this structure. How this is done
will be specified shortly. In Figure 4.1a we can see an example. Given the partition, we
choose one of the vertex sets to be the set on which the finest-scale wavelet coefficients
will be sampled. The remaining set will be used for the remaining scales (and scaling
function). As to the remaining 2K−1 vertices, we partition them further in two equal
parts, and assign one of the parts to be used as vertices for sampling the next-finest

1A bipartite graph is a graph with a vertex set V which can be partitioned in two subsets V = V0 ∪
V1,V0 ∩ V1 = ∅ in such a way that, if v is any vertex in V0, then all of the vertices adjacent to v belong
to V1, and vice-versa.

36

scale, s2. The remaining 2K−2 vertices will be partitioned in two once more, and so on
until we have 2K−J vertices left. By then, we will have assigned vertices to all scales (s1
having received 2K−1 vertices and sJ received 2K−J), and the 2K−J remaining can be
assigned to the scaling function. Algorithm 1 summarizes the procedure, and Figure 4.1
illustrates it.

Algorithm 1: Procedure for subsampling the SGWT transform
Let G be a graph with N = 2K nodes
Let J ⩽ K be the number of scales
Label all 2K vertices as unassigned
Let Γ be a real matrix, initially empty with size N × 0

for i = 1 . . . J do

Let Ui be the set of unassigned vertices
Comment: Ui has 2K−i+1 elements
Sample 2K−i elements from Ui, uniformly spaced in the graph domain
foreach node v which was sampled in the above step do

Let ℓ be the index of v in the graph G
Assign vertex v to the scale si
Add the vector g (siL) δℓ as a column to Γ

Label v as assigned
end

end

Let U0 be the set of unassigned vertices
Comment: U0 has 2K−J elements
foreach v ∈ U0 do

Let ℓ be the index of v in the graph G
Assign v to the scaling function
Add the vector h (L) δℓ as a column to Γ

Label v as assigned
end

It still remains to be specified the procedure for choosing the nodes at each step
of the algorithm. One possible procedure is the recursive spectral bisection (RSB), de-
scribed in [26]. It consists in using the polarity of the graph Fiedler vector u0—the graph
Laplacian eigenvector associated to the least non-zero eigenvalue—to recursively bisect
the graph in two. This has the disadvantage of generating a set of “samples” which do
not correspond to actual nodes in the original graph, but only areas (sets of nodes). An
idea dual to the RSB is [27] to use the polarity of the eigenvector associated to the high-
est eigenvalue, umax. This is what we use: we sort the nodes according to their value for

37

(a) First pass of the algorithm. The nodes
shown in dark purple are assigned to the first
(finest) scale, s1, while the nodes shown in
bright yellow stay for the next pass.

(b) Second pass. All nodes present in this im-
age were colored yellow in Figure 4.1a. Nodes
colored purple are assigned to s2, and the rest
go through to the third pass.

(c) Third pass, using only nodes which were
colored yellow in Figure 4.1b. The color code
is the same as in the previous figures.

(d) Last pass of the algorithm. All nodes
present here were colored yellow in the last
figure. In this figure, nodes colored purple are
assigned to the last scale, sJ , and nodes col-
ored yellow will be used to sample the scaling
function coefficients.

Figure 4.1: Example of application of Algorithm 1 in a graph with N = 64 vertices,
using J = 4 scales.

Figure 4.2: Number of coefficients of the sampled SGWT transform, for J = 4. Critical
sampling (α = 0.5) generates a transform with exactly 1 ·N = N coefficients, while the
full transform (α = 1.0) needs (J + 1)N = 5N coefficients.

umax, and then sample the first half.
The only problem with this approach is that the set of nodes that would go through

for the subsequent pass is not a graph itself, but a subset of vertices of G; it is not clear
how the new vector umax will be chosen in the subsequent pass, unless this set of vertices
becomes a graph. For example, the edges shown in Figure 4.1b are not the original edges
of the graph (shown in Figure 4.1a). In order to populate the new graph with edges, we
can calculate resistive distances [28], or repopulate the edges using a kernel function as
described in Chapter 2.

4.1.2 Results and stability considerations

When we apply the algorithm described above to the graph of Figure 4.1, we obtain
a sampled Γ ∈ RN×N matrix, instead of the fullN× (J + 1)N . The trade-off is that the
condition number of the full matrix is usually of the order of a few units (between 1 and
10), while the condition number of the sampled matrix can reach much higher orders of
magnitude. For the graph shown, the condition number becomes κ ≈ 104.

In an attempt to mitigate this problem, we can give up the critical sampling, and
sample a fraction α ⩾ 0.5 at each pass of the algorithm, where α = 0.5 corresponds to
critical sampling, and α = 1.0 corresponds to the full transform. Figure 4.2 illustrates
the impact of α on the size of the transform, while Figure 4.3 illustrates the impact on
the conditioning of the problem.

39

Figure 4.3: Condition number of the problem of inverting the sampled SGWT transform.

4.2 Optimal sampling for Least Mean Squares

In Chapter 3, we described how the LMS algorithm proposed in [18] depends on the
set of vertices on which the bandlimited signal is allowed to be sampled. The algorithm
proposed in that paper is a greedy algorithm which, as already described, searches for
the best sampling set by choosing nodes one at a time, and sticking to them once they
have been chosen. In this section, we propose an improvement which searches for nodes
two at a time, or three at a time.

A note on complexity is in order. Choosing the sampling set S is a combinatorial
problem, with a time complexity exponential in the number of vertices of the graph. The
advantage of the greedy algorithm is that it breaks the search for the global optimum
in |S| steps, and each step has linear time complexity. When we substitute in a search
for nodes two at a time, each step becomes a search for the optimal pair of nodes at that
step, which has quadratic time complexity. If we search for nodes three at a time, the
time complexity of each step becomes cubic; and so on.

The results of this experiment are summarized in Figure 4.4. We recall that the
greedy algorithm that chooses one node at each step tries to maximize the determinant∣∣UT

FDUF
∣∣
+
. In Figure 4.4a we see the maximum found at each step for the graph used

as example in Chapter 3. Figure 4.4b compares this with the maximum obtained by
making the (less greedy) searches for nodes two at a time and three at a time. Since the
differences are not visible, we plot the differences explicitly in Figure 4.4c. Analysing
this figure we can infer that the difference between the results of the algorithms is that
the resulting order of importance of the nodes is almost exactly the same except for
a couple of nodes with interchanged positions. Indeed, when we plot a permutation
matrix (Figure 4.4d), we see that all nodes have the same order of importance, except

40

for five of them, which appear permuted. The result is that, in this example, unless
the number of vertices to be sampled was between 23 and 29 (see Fig. 4.4c), the set of
vectors returned by the different algorithm would be exactly the same. If the number
of vertices to be sampled was actually between 23 and 29, Fig. 4.4b indicates that the
difference would be negligible.

Finally, the last two figures show the result of a Monte Carlo mean. Figure 4.4e
shows the mean of 100 different realizations of Fig. 4.4c, onde for a different random
graph. The faint noise in the background is not enough to distinguish this figure from
an identity matrix. At last, Figure 4.4f shows the mean of 100 realizations of Fig. 4.4d.

41

(a) Maximum log-determinant achieved at each
step. This makes it clear that, in this example,
we are dealing with a signal bandlimited to 10
frequencies.

(b) Maximum log-determinant achieved at
each step, for the algorithms that search for
nodes one, two, and three at a time.

(c) Discrepancy between the curves 1 and 3
from Figure 4.4b.

(d) Permutation matrix corresponding to Fig-
ure 4.4c.

(e) Monte carlo mean of the log-determinant
from Figure 4.4c

(f) Monte carlo mean of the permutation ma-
trix image in Figure 4.4d

Figure 4.4: Less greedy sampling for the bandlimited LMS algorithm.

Chapter 5

Conclusions

In this work, we have discussed and analyzed a framework for processing signals
with irregular, non-uniform domains. Such domains, represented as graphs, are in con-
trast to the usual continuous Euclidean domain that is ubiquitous in analog signal pro-
cessing, or the discrete domainwith equally-spaced time intervals that features in digital
signal processing. We presented basic tools used to deal with such signals defined on
graphs in the way we would deal with signals in traditional signal processing. In partic-
ular, we defined a graph Fourier transform and examined closely its relationship to the
Fourier transform inRn. We have focused on being as didactic as possible, with the goal
that this work be useful as in introductory text to the field of graph signal processing.

Using the semantics of the graph Fourier transform and of graph frequencies, we
discussed band-limited signals on graphs, and how they can be recovered from an in-
complete set of samples. We analyzed how Paley-Wiener spaces have strikingly differ-
ent behaviours in the graph domain and in the Euclidean domain—signals on graphs can
be localized in both frequency and graph domains at the same time, while signals on R
that are localized in one domain must exhibit highly restrictive conditions on the other.
The interaction between the localization properties of graph signals on the vertex and
the frequency domains has helped us understand a Least Mean Squares algorithm for
estimating band-limited graph signals given noisy samples.

We have shown and discussed the results of two small experiments that further in-
vestigate the ideas presented in the text, in order to raise questions and insights about
the behaviour and inner working of the tools that were discussed in the text. The first ex-
periment, regardingwavelets, shows a promisingway of transforming the SGWT super-
complete transform into a critically-sampled—or almost critically-sampled, depending
on the conditioning-complexity trade-off chosen—transform that avoids the many-fold
increase in storage needed to store the SGWT representation of a signal. In one example,
although the critically sampled transform would avoid a five-fold increase in storage at
the cost of multiplying the condition number of the problem by 104, an almost-critically
sampled transform would still exchange the 5× increase for a 1.5× increase, but this

43

time at the cost of a minor loss of 102 in the condition number.
In the second experiment, we attempt to enhance the sampling mechanism of the

LMS for bandlimited signals. However, the gains obtained did not appear to be sig-
nificant enough to justify the increase in computational complexity incurred by the
enhancement.

Finally, we have developed a Python package focused on fast prototyping and data
visualization. Some examples were provided in order to illustrate the use of the library
for analysing the structure of graphs and graph signals.

44

Appendix A

List of selected routines from the graphdsp

package

In this section we list some important classes and routines implemented in the
graphdsp package. Instructions on how to download and install the package can be
found in Chapter 1.

• Class UndirectedWeightedGraph:

– Initializer signature:

UndirectedWeightedGraph(

*, # all parameters must be provided as keyword parameters

W=None, L=None,

nodes=None,

copy_matrix=True)

Exactly one of the W or L parameters must be provided. They should contain
the information about the edge weights in the form of a weight matrix, or a
Laplacianmatrix. The parameter nodes is an optional list of node names (any
hashable python object, e.g. strings or integers). The copy_matrix parameter
specifies whether to copy the W or Lmatrix provided into a new structure, or
to reuse the memory of the provided array. Example:

weights = np.array([

[0, 1, 3],

[1, 0, 1],

[3, 1, 0],

])

graph = gsp.UndirectedWeightedGraph(

W=weights, nodes=['A', 'B', 'C'], copy_matrix=False)

– Property W: returns the weight matrix of the graph.

45

– Property L: returns the Laplacian matrix of the graph.

– Special method __len__: returns the number of vertices on the graph. Ex-
ample: assert len(graph) == 3.

– Property nodes: returns the list of nodes of the graph.

– Property spectrum: the list of Laplacian eigenvalues in increasing order.
Calculated only once and then cached. The cache can be cleared with
del graph.spectrum.

– Property U: matrix of Laplacian eigenvectors.

– Method diag_lambda: diagonal matrix with graph eigenvalues, in increasing
order.

– Method spectral_decomposition: returns a pair (lambd, U), where
lambd is the list of eigentvalues in increasing order, and U is the
list of eigenvectors in the same order from left to right. Example:
lambd, U = graph.spectral_decomposition().

– Method gft: calculate the graph Fourier transform of a signal. Example:
transform = graph.gft(some_signal)

– Method igft: the same, but for the inverse transform.

• Class GeometricUWG. Inherits from UndirectedWeightedGraph. Represents a graph
whose nodes are associated to points in an Euclidean space.

– Class method make_random: returns a randomized graph. Example:

make_random(

cls, preset='default', *,

N=50,

lmax=1)

The preset parameter must be one of 'default' of 'planar'. The 'planar'
option generates a planar graph. N is the number of nodes (default 50), and
the graph edges will be normalized so that the largest Laplacian eigenvalue
will be lmax.

• GraphSignalBase: base class for graph-domain and frequency-domain graph sig-
nals. This is an abstract base class, and as such cannot be instantiated directly.

– Initializer:

super().__init__(

values,

graph=None,

46

copy_values=False,

from_transform=None)

Here, values is a list of signal samples; graph is an optional graph ob-
ject representing the graph on top of which the signal is to be interpreted;
copy_values specifies whether the values structure should be copied or
its values reused; and finally from_transform is a transformed signal, if it
is known. Examples: if signal is an instance of GraphSignalBase, then
len(signal) returns the number of entries, and signal[4] returns the value
of the entry number 4.

• Class GraphSignal. Inherits from GraphSignalBase. Implements one additional
method:

plot(self, *,

cmap=matplotlib.cm.get_cmap('viridis'),

title=None,

colorbar=True, edge_color='k',

show_indexes=False, filename=None,

dotcolor=None, highlight=None)

The parameter cmap is a matplotlib color map; edge_color can be one
of 'grayscale', 'zero-crossing', or a matplotlib color (see Figure 2.4);
show_indexes specifies whether to show the integer index of each node (see
Figure 2.1); dotcolor is a matplotlib color; and highlight is the index of a
node which should stand out in the image. The remaining parameters are self-
explanatory.

47

Bibliography

[1] PUSCHEL, M., MOURA, J. M. F. “Algebraic Signal Processing Theory: Foundation
and 1-D Time”, IEEE Transactions on Signal Processing, v. 56, n. 8, pp. 3572–
3585, Aug 2008.

[2] PUSCHEL, M., MOURA, J. M. F. “Algebraic Signal Processing Theory: 1-D Space”,
IEEE Transactions on Signal Processing, v. 56, n. 8, pp. 3586–3599, Aug 2008.

[3] STEIN, E. M., SHAKARCHI, R. Fourier Analysis: an introduction, v. 1, Princeton
Lectures in Analysis. Princeton (N.J.), Oxford, Princeton University Press,
2003.

[4] DE FIGUEIREDO, D. G. Análise de Fourier e Equações Diferenciais Parciais. Projeto
Euclides. Rio de Janeiro, Brasil, Instituto deMatemática Pura e Aplicada, 1977.

[5] SHUMAN, D. I., NARANG, S. K., FROSSARD, P., et al. “The emerging field of signal
processing on graphs: Extending high-dimensional data analysis to networks
and other irregular domains”, IEEE Signal Processing Magazine, v. 30, n. 3,
pp. 83–98, May 2013.

[6] SANDRYHAILA, A., MOURA, J. M. F. “Discrete Signal Processing on Graphs”, IEEE
Transactions on Signal Processing, v. 61, n. 7, pp. 1644–1656, April 2013.

[7] VON LUXBURG, U. “A tutorial on spectral clustering”, Statistics and Computing,
v. 17, n. 4, pp. 395–416, Dec 2007.

[8] CVETKOVIĆ, D., GUTMAN, I. Selected Topics on Applications of Graph Spectra. Novi
Sad, Zbornik Radova, 2011.

[9] JONES, E., OLIPHANT, T., PETERSON, P., et al. “SciPy: Open source scientific
tools for Python”. 2001–. Available at: <http://www.scipy.org/>. [Online;
accessed March 2019].

[10] GODSIL, C., ROYLE, G. Algebraic Graph Theory, v. 207, Graduate Texts in Mathe-
matics. New York, NY, Springer, 2001.

48

http://www.scipy.org/

[11] ACKER, F. Análise Vetorial Clássica, v. 11, Coleção Textos Universitários. Rio de
Janeiro, RJ, Sociedade Brasileira de Matemática, 2012.

[12] SHUMAN, D. I., RICAUD, B., VANDERGHEYNST, P. “A windowed graph Fourier
transform”. In: 2012 IEEE Statistical Signal ProcessingWorkshop (SSP), pp. 133–
136, Aug 2012. doi: 10.1109/SSP.2012.6319640.

[13] WANG, W., RAMCHANDRAN, K. “Random Multiresolution Representations for
Arbitrary Sensor Network Graphs”. In: 2006 IEEE International Conference on
Acoustics Speech and Signal Processing Proceedings, v. 4, pp. IV–IV, May 2006.

[14] CROVELLA, M., KOLACZYK, E. “Graph wavelets for spatial traffic analysis”. In:
INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE Computer
and Communications. IEEE Societies, v. 3, pp. 1848–1857, March 2003.

[15] SWELDENS, W. “The Lifting Scheme: A Construction of Second Generation
Wavelets”, SIAM Journal on Mathematical Analysis, v. 29, n. 2, pp. 511–546,
1998.

[16] HAMMOND, D. K., VANDERGHEYNST, P., GRIBONVAL, R. “Wavelets on graphs
via spectral graph theory”, Applied and Computational Harmonic Analysis,
v. 30, n. 2, pp. 129 – 150, 2011.

[17] RYAN, H. “Ricker, Ormsby, Klander, Butterworth – A Choice of Wavelets”, Jour-
nal of the Canadian Society of Exploration Geophysicists, v. 19, n. 7, pp. 8–9,
September 1994.

[18] DI LORENZO, P., BARBAROSSA, S., BANELLI, P., et al. “Adaptive Least Mean
Squares Estimation of Graph Signals”, IEEE Transactions on Signal and Infor-
mation Processing over Networks, v. 2, n. 4, pp. 555–568, Dec 2016.

[19] DI LORENZO, P., BANELLI, P., ISUFI, E., et al. “Adaptive Graph Signal Processing:
Algorithms and Optimal Sampling Strategies”, IEEE Transactions on Signal
Processing, v. 66, n. 13, pp. 3584–3598, July 2018.

[20] SPELTA, M. J., MARTINS, W. A. “Online Temperature Estimation using Graph
Signals”, XXXVI Simpósio Brasileiro de Telecomunicações, Setembro 2018.

[21] PESENSON, I. “Sampling in Paley-Wiener Spaces on Combinatorial Graphs”,
Transactions of the American Mathematical Society, v. 360, n. 10, pp. 5603–
5627, 2008.

[22] STEIN, E. M., SHAKARCHI, R. Complex Analysis, v. 2, Princeton Lectures in Anal-
ysis. Princeton (N.J.), Oxford, Princeton University Press, 2003.

49

[23] STRICHARTZ, R. A guide to distribution theory and Fourier transforms. Studies in
advanced mathematics. Boca Raton, Florida, USA, CRC Press, 1994.

[24] WIDROW, B., HOFF,M. E. “Adaptive Switching Circuits”, IREWESCONConvention
Record, v. 4, pp. 96–104, 1960.

[25] DINIZ, P. S. R., DA SILVA, E. A. B., NETTO, S. L. Digital Signal Processing: System
Analysis and Design. 2 ed. Cambridge, Cambridge University Press, Septem-
ber 2010.

[26] BARNARD, S. T., SIMON, H. D. “Fast multilevel implementation of recursive spec-
tral bisection for partitioning unstructured problems”, Concurrency: Practice
and Experience, v. 6, n. 2, pp. 101–117, 1994.

[27] BIYIKOĞLU, T., LEYDOLD, J., STADLER, P. F. Laplacian Eigenvectors of Graphs, v.
1915, Lecture Notes in Mathematics. Springer-Verlag Berlin Heidelberg, 2007.

[28] KLEIN, D. J., RANDIĆ, M. “Resistance distance”, Journal of Mathematical Chem-
istry, v. 12, n. 1, pp. 81–95, 1993.

50

	List of Figures
	List of Symbols
	1 Introduction
	1.1 Contributions
	1.1.1 The graphdsp computer library

	1.2 Structure of this text
	1.3 Notation and conventions

	2 Graph signal processing fundamentals
	2.1 Introduction
	2.1.1 Unweighted and weighted graphs
	2.1.2 Edge weights and kernels
	2.1.3 Graph signals

	2.2 The graph Laplacian
	2.3 The graph Fourier transform
	2.3.1 Frequency interpretation and analogy to classical Fourier analysis
	2.3.2 Frequency-domain processing
	2.3.3 Wavelets

	3 The Least Mean Squares algorithm
	3.1 The algorithm
	3.2 Probabilistic sampling

	4 Further exploratory results
	4.1 Sparse wavelet representation
	4.1.1 Proposed algorithm
	4.1.2 Results and stability considerations

	4.2 Optimal sampling for Least Mean Squares

	5 Conclusions
	A List of selected routines from the pythongraphdsp package
	Bibliography

