
ADAPTIVE FILTERING ALGORITHMS AND DATA-SELECTIVE

STRATEGIES FOR GRAPH SIGNAL ESTIMATION

Marcelo Jorge Mendes Spelta

Dissertação de Mestrado apresentada ao

Programa de Pós-graduação em Engenharia

Elétrica, COPPE, da Universidade Federal do

Rio de Janeiro, como parte dos requisitos

necessários à obtenção do t́ıtulo de Mestre em

Engenharia Elétrica.

Orientador: Wallace Alves Martins

Rio de Janeiro

Maio de 2019

ADAPTIVE FILTERING ALGORITHMS AND DATA-SELECTIVE

STRATEGIES FOR GRAPH SIGNAL ESTIMATION

Marcelo Jorge Mendes Spelta

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO

ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE

ENGENHARIA (COPPE) DA UNIVERSIDADE FEDERAL DO RIO DE

JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A

OBTENÇÃO DO GRAU DE MESTRE EM CIÊNCIAS EM ENGENHARIA

ELÉTRICA.

Examinada por:

Prof. Markus Vińıcius Santos Lima, D.Sc.

Prof. Paulo Sergio Ramirez Diniz, Ph.D.

Prof. José Antonio Apolinário Junior, D.Sc.

RIO DE JANEIRO, RJ – BRASIL

MAIO DE 2019

Spelta, Marcelo Jorge Mendes

Adaptive Filtering Algorithms and Data-selective

Strategies for Graph Signal Estimation/Marcelo Jorge

Mendes Spelta. – Rio de Janeiro: UFRJ/COPPE, 2019.

XXIV, 95 p.: il.; 29, 7cm.

Orientador: Wallace Alves Martins

Dissertação (mestrado) – UFRJ/COPPE/Programa de

Engenharia Elétrica, 2019.

Referências Bibliográficas: p. 85 – 92.

1. Graph signal processing. 2. Graph signal

estimation. 3. Adaptive filtering. 4. Data-selective

algorithms. 5. Set-membership filtering. I. Martins,

Wallace Alves. II. Universidade Federal do Rio de Janeiro,

COPPE, Programa de Engenharia Elétrica. III. T́ıtulo.

iii

Agradecimentos

Agradeço à minha mãe Fátima e ao meu pai Marcelo pelo carinho, companheirismo,

atenção e dedicação prestados ao longo de toda a vida e, em particular, durante

este peŕıodo turbulento de mestrado. Graças a vocês estive imerso num ambiente de

convivência agradável e estimulante para que desenvolvesse, de forma livre, minhas

habilidades e capacidades. As lições que aprendi com vocês nem sempre foram as

mais fáceis ou diretas, mas foram essenciais para a formação do indiv́ıduo que sou

hoje. Da mesma maneira, agradeço ao meu irmão Lucas pela amizade, conversas

e boas risadas em muitos momentos, e mesmo implicância em outros. Sobre este,

fiquei bastante surpreso com a sua escolha em cursar engenharia na graduação,

afinal, imaginava que ao testemunhar minha experiência pessoal haveria um esperado

desest́ımulo a seguir o mesmo caminho. A dúvida que paira no momento é se, após

a conclusão de sua longa graduação, haverá motivação prevista ou imprevista para

que prossiga na área de pesquisa, como ocorreu comigo. Apesar de alguns momentos

dif́ıceis nestes últimos anos, a existência deste forte ambiente familiar fez com que

eu encontrasse forças para continuar mesmo quando os obstáculos pareciam grandes

demais para serem transpostos. Por estas, além de muitas outras razões, como o

simples fato de suportar o meu humor instável, agradeço enormemente aos três pela

paciência e pelo companheirismo.

Ainda sobre famı́lia, agradeço o incessante amor e carinho dos meus avós mater-

nos Isolina e Francisco e paternos Eligio e Ilda, sendo que esta última infelizmente

nos deixou em 2017, mas a chama de sua presença continua a arder intensamente

no fundo dos nossos corações. Meus avós são muito diferentes entre si e, por conta

desta complementariedade de personalidades e experiências, com cada um deles tive

a oportunidade de aprender algo único: desde a vastidão deste páıs continental e

suas fronteiras, relatada por um antigo caminhoneiro, até a importância e beleza

das coisas simples, demonstrada regularmente pela pessoa mais tranquila que co-

nheci. Ao recordar da história dos três gatinhos que perderam as suas luvinhas, faço

também uma menção honrosa e agradecimento especial à tia Ligia, que desde sempre

nos anima com sua alegria e nos faz ficar acima do peso com suas receitas, e merece

a posição conquistada de terceira avó. Agradeço também aos demais membros da

minha famı́lia dos núcleos do Rio de Janeiro e de Vitória, que tanto contribúıram e

iv

contribuem à minha formação.

Deixando o ambiente familiar, gostaria de lembrar de alguns dos colegas e ami-

gos que fizeram parte de toda a longa caminhada até este momento. Com cada

um de vocês aprendi muito e espero que tenha deixado alguma lembrança, mesmo

que esta se resuma a algo simples ou bobo. Pelos inesquećıveis anos no imperial

Colégio Pedro II - Unidade Centro, agradeço a convivência com Luan, Renato, Vi-

cente e Wallace. A graduação em Engenharia Eletrônica na UFRJ trouxe consigo

anos dif́ıceis, mas também momentos relaxados e divertidos com os colegas Caios,

Carlos, Douglas, Michel, Raphael Barros, Rayssa e Zeneide. Durante o ano de

intercâmbio em Glasgow, agradeço também ao colega de quarto mineiro Gustavo

Augusto, que estava sempre disposto a me acompanhar no kebab. Anos mais tarde

tive a oportunidade de estagiar na empresa Open Labs, quando conheci os diver-

tidos companheiros de graduação Arthur e Gabriel, aos quais também gostaria de

agradecer. Com o mestrado na UFRJ fui apresentado a alguns e conheci melhor out-

ros dos incŕıveis colegas do laboratório SMT: Felipe, Gabriel, Igor, Lucas, Matheus,

Rafael Chaves, Roberto, Tadeu, Vińıcius e Wesley. Muito obrigado a todos vocês

pela paciência e os momentos compartilhados.

Quanto aos docentes, agradeço a todos os professores do Colégio Pedro II -

Unidade Centro, do Curso Técnico de Eletrônica do CEFET/RJ, do Departa-

mento de Engenharia Eletrônica da UFRJ e do Programa de Engenharia Elétrica

da COPPE/UFRJ, por contribúırem direta e indiretamente com a minha formação

acadêmica, profissional e pessoal. Dentre estes, agradeço especialmente aos pro-

fessores Carlos José Ribas D’Ávila, Eduardo Vieira Leão Nunes e Wallace Alves

Martins. O professor Carlos José me ajudou bastante no ińıcio da graduação e pas-

sou a me acompanhar desde então, estando sempre dispońıvel para sanar as mais

diversas dúvidas ou resolver qualquer pendência de forma bem eficiente. Enquanto

isso, o professor Eduardo Nunes foi um grande amigo que me orientou durante o pro-

jeto final da graduação e foi o responsável por instigar em mim o desejo de pesquisar

e iniciar o mestrado acadêmico. A opção por mudar de ênfase na pós-graduação,

migrando de controle para processamento de sinais, foi importante para que assimi-

lasse novos conhecimentos e permitiu que eu me aproximasse e conhecesse melhor

meu orientador de mestrado, e grande amigo, Wallace Martins. O professor Wal-

lace confiou em meu potencial desde a primeira troca de mensagens e merece um

enorme agradecimento pela excelente orientação durante o desenvolvimento deste

trabalho de mestrado. A ajuda dele fez com que eu valorizasse a minha capacidade

de produção, que foi refinada através de uma filtragem de conteúdo inicial e valiosas

sugestões de redação e śıntese que foram incorporadas a artigos submetidos e aceitos

em congressos. Além da notável paciência com os longos manuscritos enviados para

revisão, o professor Wallace demonstra caracteŕısticas inspiradoras a seus alunos,

v

como o grande apreço pelo conhecimento. Por essas e outras razões, eu o agradeço

por este peŕıodo de amizade e grande aprendizado. Além destes, gostaria de men-

cionar outros professores de relevância na minha formação: Carlos Teodósio, Jomar

Gozzi, Luiz Wagner, Markus Lima, Paulo Diniz, e Sérgio Lima Netto. Agradeço a

vocês pelos ensinamentos e o vasto conhecimento transmitido.

Agradeço também a atenção e disponibilidade dos professores Markus Vińıcius

Santos Lima, Paulo Sergio Ramirez Diniz e José Antonio Apolinário Junior, que

gentilmente aceitaram o convite para compor a banca avaliadora deste trabalho.

Por fim, agradeço ao Conselho Nacional de Desenvolvimento Cient́ıfico e Tec-

nológico (CNPq) pelo apoio financeiro fornecido durante a produção desta dis-

sertação e ao Programa de Engenharia Elétrica (PEE) da COPPE/UFRJ pela ajuda

de custo na participação de congressos acadêmicos.

vi

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos

necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

ALGORITMOS DE FILTRAGEM ADAPTATIVA E ESTRATÉGIAS

DATA-SELECTIVE PARA ESTIMAÇÃO DE SINAIS EM GRAFOS

Marcelo Jorge Mendes Spelta

Maio/2019

Orientador: Wallace Alves Martins

Programa: Engenharia Elétrica

Dado o potencial do processamento de sinais em grafos (GSP em inglês), um

campo de pesquisa recente que estende o processamento de sinais clássico a sinais

definidos sobre grafos, esta dissertação explora e propõe novos algoritmos para um

problema de GSP que foi recentemente reformulado considerando estratégias de

filtragem adaptativa. Após apresentar uma visão geral individualizada de filtragem

adaptativa e GSP, este trabalho ressalta a fusão destas áreas quando algoritmos

baseados nos métodos least-mean-square (LMS) e recursive least-squares (RLS) são

empregados para estimação em tempo real de sinais em grafos limitados em banda

com utilização de um número reduzido de medições ruidosas.

Com a extensão desta ideia, esta dissertação propõe o algoritmo normalized least-

mean-square (NLMS) para o mesmo contexto de GSP. Conforme a filtragem adap-

tativa clássica, a técnica NLMS obtida para estimação de sinais em grafos converge

mais rapidamente que o algoritmo LMS enquanto é menos complexa que o algoritmo

RLS. Análises detalhadas do erro e desvio médio quadráticos em estado estacionário

são fornecidas para o algoritmo NLMS proposto, sendo estas também empregadas

para complementar análises prévias dos algoritmos LMS e RLS para GSP. Adi-

cionalmente, duas estratégias diferentes de seletividade de dados (DS em inglês) são

propostas neste trabalho para reduzir a complexidade computacional geral ao so-

mente calcular atualizações do algoritmo quando o sinal de entrada contém inovação

suficiente. Escolhas adequadas de parâmetros de restrição são sugeridas com base

na análise destas estratégias de DS, e fórmulas fechadas são derivadas para o cálculo

estimado da probabilidade de atualização quando utilizados diferentes algoritmos

adaptativos. Por fim, este trabalho apresenta diversas simulações numéricas que

corroboram, com elevada acurácia, os resultados teóricos previstos.

vii

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Master of Science (M.Sc.)

ADAPTIVE FILTERING ALGORITHMS AND DATA-SELECTIVE

STRATEGIES FOR GRAPH SIGNAL ESTIMATION

Marcelo Jorge Mendes Spelta

May/2019

Advisor: Wallace Alves Martins

Department: Electrical Engineering

Considering the potential of graph signal processing (GSP), a recent research field

that extends classical signal processing to signals defined over graph structures, this

dissertation explores and proposes new algorithms to a GSP problem that has been

lately recast within the adaptive filtering framework. After presenting an overview

of both adaptive filtering and GSP, this work highlights the merging of these areas

when algorithms based on the least-mean-square (LMS) and recursive least-squares

(RLS) methods are used for the online estimation of bandlimited graph signals (GS)

using a reduced number of noisy measurements.

Extending this idea, this dissertation proposes a normalized least-mean-square

(NLMS) algorithm for the same GSP context. As in the classical adaptive filtering

framework, the resulting NLMS GS estimation technique is faster than the LMS

algorithm while being less complex than the RLS algorithm. Detailed steady-state

mean-squared error and deviation analyses are provided for the proposed NLMS

algorithm, and are also employed to complement previous results on the LMS and

RLS algorithms. Additionally, two different data-selective (DS) strategies are pro-

posed to reduce the overall computational complexity by only performing updates

when the input signal brings enough innovation. Proper definitions of constraint pa-

rameters are given based on the analysis of these DS strategies, and closed formulas

are derived for an estimate of the update probability when using different adaptive

algorithms. At last, this work presents many numerical simulations corroborating,

with high accuracy, the theoretical results predicted.

viii

Contents

List of Figures xii

List of Tables xiii

List of Symbols xiv

List of Abbreviations xxii

1 Introduction 1

1.1 The Inspiration for Graph Signal Processing 1

1.2 Adaptive Filtering Ideas for a GSP Problem 2

1.3 Contributions . 4

1.4 Publications . 5

1.5 Organization . 5

1.6 Notation . 6

2 Adaptive Filtering 8

2.1 Figures of Merit for Adaptive Filters 10

2.2 The LMS Algorithm . 11

2.3 The RLS Algorithm . 12

2.4 NLMS Algorithm . 14

2.5 AP Algorithm . 15

2.5.1 Alternative Derivation of the NLMS Algorithm 17

2.6 Proportionate AP Algorithm . 18

2.6.1 Derivation of the PAP Algorithm 19

3 Data Selection for Adaptive Filtering 21

3.1 Data Selection Strategies . 22

3.1.1 DS Adaptive Filtering . 22

3.1.2 SM Adaptive Filtering . 23

3.2 The SM-PAP Algorithm . 26

3.3 Optimal Constraint Vector for the SM-PAPA 27

ix

3.3.1 SM-PAPA Convex Cost-Function 29

3.3.2 Optimal CV Solution . 31

3.3.3 Discussion about Computing the Optimal CV 32

3.3.4 GP Method for Computing the Optimal CV 33

3.3.5 Numerical Simulations . 35

3.3.6 Summary of Contributions . 37

4 Graph Signal Processing 39

4.1 Basic Concepts about Graphs . 39

4.1.1 Graph Structure . 40

4.1.2 Graph Signal . 42

4.1.3 Graph Structure Inference . 43

4.2 GSP Frameworks . 44

4.3 GSP Toolset . 45

4.3.1 Graph Fourier Transform . 46

4.3.2 Sampling and Reconstruction of Graph Signals 47

4.3.3 Sampling Set Selection . 49

4.4 Adaptive Estimation of Graph Signals 51

4.4.1 The GSP LMS Algorithm . 52

4.4.2 The GSP RLS Algorithm . 53

4.4.3 Figures of Merit . 54

5 NLMS Algorithm and DS Strategies for GSP 57

5.1 NLMS Graph Signal Estimation Algorithm 58

5.1.1 Algorithm Derivation . 58

5.1.2 Stability and Convergence to Unbiased Solution 60

5.1.3 Computational Complexity Analysis 61

5.1.4 Steady-State FoM Analysis . 63

5.1.5 Remarks . 63

5.2 GSP LMS and RLS Complementary Analysis 64

5.2.1 LMS Algorithm Error Analysis 65

5.2.2 RLS Algorithm Error Analysis 66

5.3 GSP Data-selective Estimation Algorithms 67

5.3.1 Component-Wise Error Constraint Strategy 68

5.3.2 `2-Norm Error Constraint Strategy 69

6 GSP Database and Simulation Results 71

6.1 Approximating Temperature Measurements as a Bandlimited Graph

Signal . 72

6.2 Adaptive Algorithms for GS Estimation 75

x

6.2.1 Noise Scenarios . 75

6.2.2 Convergence Speed and Complexity Comparison 76

6.2.3 Steady-State FoM Predictions 76

6.2.4 Update Rate Steady-State Predictions 79

7 Conclusion and Future Works 82

7.1 Concluding Remarks . 82

7.2 Future Research Directions . 83

Bibliography 85

A Alternative Derivations of Adaptive Algorithms 93

A.1 Theoretical SM-PAPA Update Equation 93

A.2 GSP RLS Alternative Update Equations 94

A.3 NLMS Algorithm Alternative Derivation 94

xi

List of Figures

2.1 General setup of an adaptive-filtering environment. 9

2.2 Adaptive filter used in a system identification setup. 11

3.1 TC-CV for the SM-AP (SM-PAPA with G[k] = I) using L = 1. . . . 28

3.2 SC-CV for the SM-AP (SM-PAPA with G[k] = I) using L = 1. 29

3.3 Example of a piecewise-linear path in R3 obtained for the Cauchy

point γc search, the first stage of a gradient projection method. . . . 34

3.4 Cost-function C(γ[k]) in (3.24) and MSE for the AR1 input scenario. 36

3.5 Cost-function C(γ[k]) in (3.24) and MSE for the AR4 input scenario. 37

4.1 City of Konigsberg in Euler’s time. 40

4.2 Simple graph structures with 5 nodes and different numbers of edges. 41

4.3 Graph signal on an application scenario with the spatial location of

5 nearby cities and their current temperature measurements. 43

4.4 Inferred graph structure and graph signals representation of 1961-

1990 monthly average temperatures from Brazilian weather stations. . 45

6.1 Simple graph signal representation of 1961-1990 monthly average tem-

peratures from Brazilian weather stations. 72

6.2 July’s 1961-1990 average temperatures from Brazilian weather sta-

tions represented as: (a) graph signal with no connections and (b)

graph signal with edges determined by the closest-neighbor procedure. 73

6.3 Percentage of reconstruction error when the original signal is com-

pressed using P frequency components. 74

6.4 MSDG[k] behavior when applying the GSP LMS and NLMS algo-

rithms to different simulation scenarios described in Table 6.1. 77

6.5 MSDG[k] behavior when applying the GSP LMS, RLS, and NLMS

algorithms to the simulation scenario (ii). 77

6.6 MSDG[k] of the NLMS algorithm when using different factors κ for

the CW-EC DS strategy. 81

6.7 MSDG[k] of the NLMS algorithm when using different factors κ for

the `2N-EC DS strategy. 81

xii

List of Tables

3.1 Average iteration time interval and update percentage of different CV

selection rules for the SM-PAPA . 37

5.1 GSP adaptive filtering algorithms’ complexity for computing x̂o[k + 1] 62

6.1 MSD∗G, iterations until convergence and time for computing x̂o[k+ 1]

for adaptive GSP simulation scenarios 77

6.2 Theoretical and experimental MSE∗G and MSD∗G, and their respective

REs, for the GSP NLMS, LMS, and RLS algorithms in noise scenario

(ii) . 78

6.3 Theoretical and experimental MSE∗G and MSD∗G, and their respective

REs, for the GSP NLMS, LMS, and RLS algorithms in noise scenario

(iii) . 79

6.4 Stationary Pup and RE for the adaptive GSP algorithms using the

CW-EC and `2N-EC data-selective (DS) strategies in noise scenario

(ii) . 80

6.5 Stationary Pup and RE for the adaptive GSP algorithms using the

CW-EC and `2N-EC data-selective (DS) strategies in noise scenario

(iii) . 80

xiii

List of Symbols

v̆nvm Edge linking graph vertices vn and vm, p. 40

Copt(·) Cost-function for computing the optimal CV for the SM-PAPA,

p. 32

Cr(·) Cost-function of the classical RLS algorithm, p. 12

L Number of previous data, besides the current one, considered

in data reuse strategy, p. 16

M Order of the adaptive FIR filter, p. 9

N Number of nodes in a graph structure, p. 40

N ′ Number of graph nodes to be sampled, p. 50

P Number of frequency components used in the GSP estimate of

the bandlimited graph signal, p. 74

Pup Algorithm probability of update or update rate, p. 22

T Threshold value for indicating the existence of edge between

graph nodes based on the corresponding edge weight in graph

structure inference, p. 43

∆ŝF Difference between estimator ŝF and original GFT sF , p. 55

∆x̂o Difference between estimator x̂o and original GS xo, p. 55

∆ẽ2 Difference between a posteriori and a priori error vectors for

deriving the GSP NLMS algorithm, p. 59

Γ(·) Standard gamma function, p. 70

Γi(·) Upper incomplete gamma function, p. 70

Θ Feasibility set from set-membership filtering, p. 25

xiv

‖ · ‖2 `2-norm, p. 10

‖ · ‖G−1[k] Quadratic norm with respect to the positive definite matrix

G[k], p. 20

α Step-length parameter given by a line search scheme, p. 33

γ̄DS Threshold vector used in the GSP CW-EC strategy, p. 67

γ̄ Positive threshold for performing internal updates in algo-

rithms with data selection, p. 22

γ̄DS Threshold value used in the GSP `2N-EC strategy, p. 67

ē Normalized error vector, p. 69

x̄Po Estimate using only the P -largest frequency components of the

original bandlimited graph signal xo, p. 74

βR Forgetting factor of the GSP RLS algorithm, p. 53

βr Forgetting factor of classical RLS algorithm, p. 12

γ Constraint vector, p. 27

γ+ Constraint-vector update value at the end of an internal itera-

tion of an algorithm using the GP method, p. 33

γc Cauchy point constraint-vector value at an internal iteration

of an algorithm using the gradient projection method, p. 33

γ0 Constraint-vector value at the begin of an internal iteration of

an algorithm using the gradient projection method, p. 33

γopt Optimal constraint-vector for the SM-PAPA, p. 31

γsc Simple-choice constraint-vector, p. 28

γtc Trivial-choice constraint-vector, p. 27

λN Lagrange multipliers for solving the GSP NLMS convex prob-

lem, p. 94

λap Lagrange multipliers for solving the classical AP convex prob-

lem, p. 16

λpapa Lagrange multipliers for solving the classical PAPA convex

problem, p. 20

xv

λsm Lagrange multipliers for solving the classical SM-PAPA convex

problem, p. 93

ε A posteriori error vector for the adaptive GS estimation con-

text, p. 58

εdr A posteriori error signal vector in traditional adaptive filtering

context using data reuse, p. 16

α Frequency-domain vector assigned to the GSP error e, p. 63

αT
F Elements of α indexed by the frequency set F , p. 63

ψ Exact membership set from set-membership filtering, p. 24

ψL Exact membership set that only considers the current and L-

most recent previous data entries, p. 26

w Noise vector, p. 49

xw Noisy graph signal, p. 49

χ2
k Chi-squared distribution with k degrees of freedom, p. 69

δR Small positive number for preventing numerical instabilities in

the GSP RLS algorithm, p. 53

δap Small positive number for preventing numerical instabilities in

the classical AP algorithm, p. 17

δn Small positive number for preventing numerical instabilities in

the classical NLMS algorithm, p. 15

δpapa Small positive number for preventing numerical instabilities in

the classical proportionate AP algorithm (PAPA), p. 19

δr Small positive number for initializing the Rr matrix in tradi-

tional RLS algorithm evaluation, p. 13

δsm Small positive number for preventing numerical instabilities in

the classical SM-PAPA algorithm, p. 27

ĥ Adaptive Filter coefficients vector in traditional adaptive fil-

tering context, p. 9

ŝF Adaptive estimate of sF , p. 52

xvi

x̂o Adaptive estimate of bandlimited graph signal xo, p. 52

κ Update factor for defining the update rate of GSP data-

selective strategies, p. 68

λlon
i Longitude of node vi, p. 73

λ+
min(·) Minimum non-negative eigenvalue, p. 51

E(·) Expected value operation, p. 10

R Real numbers set, p. 9

A(·) Active set containing the indices where the vector position is

saturated, p. 34

E Edges set, p. 40

F Support or frequency set, p. 47

G(V , E) Graph structure G defined by the vertices set V and edges set

E , p. 40

H Constraint set from set-membership filtering, p. 24

I Set containing all possible input pairs (x, d), defined for the

SMF context, p. 25

LN(·) Lagrangian function for solving the GSP NLMS convex prob-

lem, p. 94

Lap(·) Lagrangian function for solving the classical AP convex prob-

lem, p. 16

Lpapa(·) Lagrangian function for solving the classical PAPA convex

problem, p. 20

Lsm(·) Lagrangian function for solving the classical SM-PAPA convex

problem, p. 93

N Set containing integers from 1 up to N ({1, 2, ..., N}), p. 46

P(·) Projection function, p. 33

S Sampling set, p. 49

V Vertices set, p. 40

xvii

µL Convergence factor of the GSP LMS algorithm, p. 52

µN Convergence factor of the GSP NLMS algorithm, p. 59

µap Convergence factor for the traditional AP algorithm, p. 17

µlmax Maximum value of µl that results in a convergent traditional

LMS algorithm, p. 12

µl Convergence factor for the traditional LMS algorithm, p. 12

µn Convergence factor for the traditional NLMS algorithm, p. 15

µpapa Convergence factor for the classical proportionate AP algo-

rithm (PAPA), p. 19

∇ĥ(·) Gradient operation with respect to the vector ĥ, p. 12

νsm Ancillary variable of the SM-PAPA computing the proportion-

ate elements gi, p. 36

σ2
en Variance of the nth GSP error component en, p. 56

σ2
wa

Variance for scaling the common noise effect 1 in the general

covariance matrix Cw definition, p. 75

σ2
wb

Variance for scaling the random noise effect rw in the general

covariance matrix Cw definition, p. 75

σ2
wn

Variance of the nth element of the noise vector w, p. 63

τ Internal parameter of the SM-PAPA implementation for choos-

ing the proportionate elements gi, p. 35

θ Variance parameter of the Gaussian kernel function for graph

structure inference, p. 44

ε A posteriori error signal in traditional adaptive filtering con-

text, p. 14

ϕlat
i Latitude of node vi, p. 73

0 Vector of zero components, p. 13

1 Vector with all components equal to 1, p. 75

A Adjacency matrix, p. 41

xviii

BN Ancillary matrix for practical implementation of the GSP

NLMS algorithm, p. 59

BR Ancillary matrix for practical implementation of the GSP RLS

algorithm, p. 55

Cw Covariance matrix related to the noise vector w, p. 49

DS Sampling matrix for sampling the positions indicated by S, p.

48

G Proportionate matrix used in classical proportionate adaptive

filtering algorithms, p. 19

I Identity matrix, p. 13

L Laplacian matrix, p. 41

ML Extension of the GSP LMS convergence factor µL for deriving

the GSP NLMS algorithm, p. 58

MN Ancillary matrix used for simplifying the representation of the

GSP NLMS algorithm update expression, p. 60

MR Ancillary matrix used for simplifying the GSP RLS algorithm

update expression, p. 54

P Ancillary matrix for analyzing GSP LMS performance, p. 65

Q Ancillary matrix for analyzing GSP LMS performance, p. 65

RR Ancillary matrix for computing GSP RLS update, p. 54

Rr Ancillary matrix for computing traditional RLS update, p. 13

S∗L Stationary value of SL, p. 65

SN E[∆ŝF [k]∆ŝT
F [k]] when using NLMS update expression, p. 61

S∗N Stationary value of SN, p. 61

S∗R Stationary value of SR, p. 66

Ssm Ancillary matrix used for evaluating the optimal CV for the

SM-PAPA, p. 31

U Orthonormal eigenvectors matrix from either A or L, p. 46

xix

UF Matrix of eigenvectors u indexed by frequency set F , p. 47

Xdr Input signal matrix in traditional adaptive filtering context

using data reuse, p. 16

Z General positive definite matrix, p. 30

Λ Diagonal eigenvalues matrix from either A or L, p. 46

Φ Interpolation matrix, p. 48

Π Regularization matrix used in the GSP RLS algorithm, p. 53

b General vector, p. 30

ddr Desired signal vector in traditional adaptive filtering context

using data reuse, p. 16

e A priori error vector for the adaptive GS estimation context,

p. 52

edr A priori error signal vector in traditional adaptive filtering

context using data reuse, p. 16

h Coefficients vector of a FIR real system to be identified in

traditional adaptive filtering context, p. 10

pR Ancillary vector for computing GSP RLS update, p. 54

pr Ancillary vector for computing traditional RLS update, p. 13

rw Realization of a random vector whose entries follow a uniform

distribution between [0, 1], p. 75

s GFT of a graph signal xG, p. 46

sF Vector formed by the positions of the GFT s indexed by the

frequency set F , p. 47

u Orthonormal eigenvector of either A or L, p. 46

uT
nF

nth row of UF , p. 55

w Realization of the noise vector w, p. 49

x Input vector in traditional adaptive filtering context, p. 9

xw Realization of the noisy graph signal xw, p. 49

xx

xS Graph signal sampled at indices determined by S, p. 48

xG Graph signal, p. 42

xo Bandlimited graph signal, p. 47

y Filter output in traditional adaptive filtering context, p. 9

ydr Filter output vector in traditional adaptive filtering context

using data reuse, p. 16

anm Weight indicating the strength of the link between nodes vn

and vm, p. 41

d Desired signal in traditional adaptive filtering context, p. 9

dE(vi, vj) Euclidean distance between vertices vi and vj, p. 42

dH(vi, vj) Haversine distance between nodes vi and vj, p. 73

e A priori error signal in traditional adaptive filtering context,

p. 9

en nth component of the GSP error e, p. 55

gm Elements of the matrix G used in classical proportionate adap-

tive filtering algorithms, p. 18

rE Approximate Earth radius used in Haversine formula, p. 73

v Graph vertex, p. 40Ä
N
N ′

ä
Combination operation of choosing N ′ elements from a total

of N , p. 50

erf(·) Error function, p. 68

xxi

List of Abbreviations

`2N-EC `2-norm error constraint, p. 67

GSPA GSP framework based on ASP, p. 45

GSPL GSP framework based on the eigendecomposition of graph

characteristic matrices, p. 45

MSDG Mean-squared deviation for the GSP context, p. 49

SDG Squared deviation for the GSP context, p. 50

AC-LMS Adaptive censoring least-mean-square, p. 22

AC-RLS Adaptive censoring recursive least-squares, p. 22

AP Affine projection, p. 15

ARE Average reconstruction error, p. 74

AR Auto-regressive, p. 15

ASP Algebraic signal processing, p. 39

CDF Cumulative distribution function, p. 70

CV Constraint vector, p. 27

CW-EC Component-wise error constraint, p. 67

DR Data reuse, p. 15

DS Data-selective, p. 3

FIR Finite-duration impulse response, p. 8

FLOPs Floating-point operations, p. 61

FoM Figure of merit, p. 10

FoMs Figures of merit, p. 3

xxii

GFT Graph Fourier transform, p. 46

GP Gradient projection, p. 32

GSP Graph signal processing, p. 2

GS Graph signal, p. 2

IGFT Inverse graph Fourier transform, p. 46

IIR Infinite-duration impulse response, p. 8

IPAP Improved proportionate affine projection, p. 19

IPNLMS Improved proportionate normalized least-mean-square, p. 18

IP Interior-points, p. 32

IoT Internet of things, p. 1

KKT Karush–Kuhn–Tucker, p. 35

LMS Least-mean-square, p. 2

MSD Mean-squared deviation, p. 3

MSE Mean-squared error, p. 3

NLMS Normalized least-mean-square, p. 3

PAPA Proportionate affine projection algorithm, p. 19

PAP Proportionate affine projection, p. 18

PNLMS Proportionate normalized least-mean-square, p. 18

QP Quadratic programming, p. 32

RE Relative error, p. 78

RLS Recursive least-squares, p. 2

RV Random variable, p. 68

SC-CV Simple-choice constraint vector, p. 28

SM-AP Set-membership affine projection, p. 25

SM-NLMS Set-membership normalized least-mean-square, p. 25

xxiii

SM-PAPA Set-membership proportionate affine projection algorithm, p.

22

SM-PAP Set-membership proportionate affine projection, p. 26

SM-PNLMS Set-membership proportionate normalized least-mean-square,

p. 26

SMF Set-membership filtering, p. 23

SM Set-membership, p. 22

TC-CV Trivial-choice constraint vector, p. 27

WLS Weighted least-squares, p. 12

xxiv

Chapter 1

Introduction

1.1 The Inspiration for Graph Signal Processing

Although classical signal processing [1] provides a useful framework for handling

data defined on regular domains, such as time series and image grids, some modern

problems are better represented by more general structures. For instance, many

irregular datasets arise from popular research fields, such as internet of things (IoT)

and big data applications, and usually require performing processing tasks on their

irregular domains [2, 3]. Moreover, nowadays many aspects of human life are being

recorded at all levels: from personal data through health monitoring devices to

financial and banking data, social networks, shopping preferences, mobility patterns,

among an extensive list of applications that is constantly increasing [4]. Though

this huge amount of data might be processed individually based on standard tools

for revealing hidden information, neglecting their dependence results possibly in a

narrow understanding of a larger process, which suggests that the implementation of

a more general approach has the potential to provide a wider knowledge about the

considered data. While most of the scientific community adopts the generic machine

learning framework for handling these scenarios, in order to model properly these

data points and their complex interactions in lower dimensional cases, the signal

processing community has recently turned its attention to a general mathematical

structure called graph [5], which is commonly used for representing networks, and

has been trying to extend some classical signal processing results to this irregular-

structure domain [6, 7].

As a simple example, by considering any generic social network environment [4],

a possible model for it consists in taking this network users as nodes of a graph

structure, while their connections are represented by edges which may present dif-

ferent weights depending on the closeness of these individuals. The attributes of

an individual in a social network, such as its political preferences or academic level,

1

or of a geographical location in a weather station network, like the temperature or

solar irradiance, can be represented as signals on the underlying graph structure,

where the final goal is to extract useful information from it. From a signal process-

ing perspective [1], doing so requires extending classical concepts and tools, such as

Fourier transform [6, 7], filtering [6, 8], sampling [9–12], reconstruction [13–21], and

frequency response [8], to data residing on graphs, which leads us to the promising

research field of graph signal processing (GSP) [4, 6, 7].

The most natural application of GSP, which is further studied in this disser-

tation, is in the sensor network context where the graph structure represents the

relative distance between distributed sensors and the processing goals include de-

noising, compression, and reconstruction of sensor data. Since measurements from

neighboring nodes usually lead to smooth (low-pass) graph signals, based on a GSP

framework outliers or abnormal values can be detected by employing a simple pro-

cedure of high-pass filtering and thresholding. Moreover, this smooth feature is also

explored for providing compact representations of graph signals, which leads to use-

ful savings in data storage and energy resources when transmitting data. Besides

other interesting applications in sensor networks, such as using wavelets on graphs

to detect disruptive traffic events like congestion [22], GSP has reached alternative

research areas [4], finding application in biological systems known to have a net-

work structure, like the human brain [23], providing a more general approach to

the compression of regular structures in image processing [24], and suggesting a

comprehension on how information propagates in a network [25].

1.2 Adaptive Filtering Ideas for a GSP Problem

In particular, an interesting GSP application for sensor networks is the online re-

construction method proposed in [15], suggesting the use of a procedure based on

the least-mean-square (LMS) algorithm [26–29] for a bandlimited graph signal (GS)

estimation context, which represents the first attempt to merge the GSP field with

the well-established adaptive filtering area [28, 29]. This blending work is further

extended in [16–21], where the authors present centralized and distributed GS recon-

struction strategies, consolidating the use of adaptive methods in GSP. Besides the

LMS algorithm, centralized and distributed versions of the recursive least-squares

(RLS) algorithm [28, 30] are also proposed for the same reconstruction scenarios,

suggesting that the adoption of other adaptive filtering algorithms might provide

satisfying results. For a better understanding of the adaptive filtering ideas that

inspired previous algorithms for graph signal estimation, and most of the contribu-

tions of this dissertation, two supporting chapters about this subject are included

in this work.

2

As expected, the centralized GSP LMS and RLS-based algorithms proposed so

far present a clear resemblance to their original implementations, which comes from

the similarity of their mathematical derivation, and produce a well-known behavior

in terms of convergence speed and computational complexity. Like their classical

counterparts [28, 29], the LMS algorithm from [15] is much slower than the central-

ized RLS in [18, 19], as verified in [31] for both static and time-varying reference

graph signals. On the other hand, the RLS main drawback is its large computa-

tional complexity, which imposes a practical problem in applications with many

nodes. Considering these characteristics and the algorithms evolution in the adap-

tive filtering area [29], one expects that a normalized LMS (NLMS)-based method

might provide an interesting trade-off between the current algorithms. Thus, aiming

at proposing an adaptive technique for GS estimation that has faster convergence

speed than the LMS, while inducing a lower computational burden than the RLS,

this dissertation proposes a GSP NLMS algorithm. In particular, this method as-

sumes a simpler form than its classical version [28, 29, 32, 33] due to some particu-

larities of the GS estimation context, resulting in an algorithm whose convergence

is faster than the LMS in [15], but with the very same complexity.

Besides its derivation, this work provides a detailed theoretical analysis on the

steady-state behavior of the proposed NLMS algorithm, presenting a range of val-

ues for the underlying convergence factor that guarantee the algorithm stability

and ability to provide asymptotically unbiased GS estimates, as well as closed-

form expressions for estimating the corresponding mean-squared error (MSE) and

mean-squared deviation (MSD) . Moreover, based on the NLMS study, we employ

the same methodology and further complement the LMS and RLS analyses in [19]

by obtaining more general steady-state expressions for the related figures of merit

(FoMs).

Additionally, an important concern in several practical applications is power

consumption. As some classical adaptive filtering algorithms implement the data-

selection idea in order to obtain power savings [34–36], this dissertation also discusses

adapting this idea for the GSP context. Although some data-selection adaptive algo-

rithm families like the set-membership [34, 35] perform more complex computations

involving the estimation of a solution set, in this first approach we propose the use

of a simpler family called data-selective (DS) [36–38], which involves a more direct

implementation based on a point update. Since the GS estimation problem presents

some differences in comparison to the classical adaptive filtering problem, the nov-

elty test at each algorithm iteration uses an error vector instead of a scalar value

as in [36]. Thus, two novelty tests are proposed: one based on the individual error

component values, namely the component-wise error constraint strategy, and an-

other one that uses the vector squared `2-norm as a reference, the so-called `2-norm

3

error constraint strategy. Constraint parameters and update factors are suggested

for both DS strategies in order to provide accurate estimates of the update proba-

bility when using not only the proposed GSP NLMS, but also the GSP LMS and

RLS algorithms [19].

1.3 Contributions

The main contributions of this dissertation are:

• Proposing a GSP NLMS algorithm, along with a complete analysis that guar-

antees the algorithm convergence to an unbiased solution, verifies its reduced

computational complexity, and provides formulas for predicting the steady-

state behavior of useful error metrics;

• Complementing stationary results previously published in the literature for

the GSP LMS and RLS algorithms by extending the proposed GSP NLMS

steady-state analysis;

• Proposing data-selective strategies to be implemented along the GSP adaptive

algorithms in order to reduce their overall computational complexity. Based

on the predicted stationary error metrics for the GSP LMS, RLS, and NLMS

algorithms, this dissertation suggests particular parameters that result in a

simple relation between an update factor and the obtained update rate.

Additionally, some minor contributions of this work are:

• Proposing an optimal procedure for evaluating the constraint vector of the set-

membership proportionate affine projection algorithm. Additionally, a faster

method for computing this optimal variable is suggested [39];

• Introducing the emergent area of graph signal processing and illustrating some

of its concepts and framework tools based on didactic examples. Presenting

the scenario and inspiration for merging the adaptive filtering and GSP areas,

along with the adaptive GSP strategies proposed so far in the literature;

• Proposing a simple and useful GSP dataset [40] based on temperature mea-

surements obtained from Brazilian weather stations [41] and verifying that

these graph signals are approximately bandlimited [31];

• Sharing all MATLAB scripts and results obtained in the simulation scenarios

presented in this work. This material is available at [42].

4

1.4 Publications

This section summarizes the published works and submitted papers which resulted

from the contributions of this dissertation.

• Spelta, M. J. M., Martins, W. A.: Optimal Constraint Vectors for Set-

Membership Proportionate Affine Projection Algorithms. In: ”2018 IEEE

Statistical Signal Processing Workshop (SSP)”, pp. 523-527. Freiburg, Ger-

many (2018).

• Spelta, M. J. M., Martins, W. A.: Online Temperature Estimation using

Graph Signals. In: ”XXXVI Simpósio Brasileiro de Telecomunicações e Pro-

cessamento de Sinais - SBrT2018 ”, pp. 154-158. Campina Grande, Brazil

(2018).

• Submitted journal paper containing the contributions of Chapter 5, which are

the proposition and analysis of the NLMS algorithm and the DS strategies for

estimating bandlimited graph signals.

1.5 Organization

The text is organized as follows: Chapter 2 presents a general overview of classical

adaptive filtering, focusing on the inspiration behind the main adaptive algorithms

and their corresponding mathematical derivations. Besides the popular LMS, RLS,

and NLMS algorithms, this chapter also covers methods including the data reuse

idea, which intends to improve the convergence speed by considering previous data

in correlated input scenarios, such as the AP algorithm and its proportionate version

(PAP algorithm). In particular, the PAP algorithm aims to increase even further the

convergence speed of the data reuse implementation by exploring the approximately

sparse characteristic, i.e., the dominance of a few large components in a coefficients

vector, in some system identification applications.

Since most classical adaptive filtering algorithms require evaluating a new update

at each iteration, and this procedure might be useless when the input data does not

bring enough novelty to the current system state, Chapter 3 delves into two data

selection approaches for reducing the overall complexity of adaptive algorithms: the

data-selective and the set-membership strategies. While the simple DS approach is

further explored in later chapters, when the data selection idea is implemented along

GSP adaptive algorithms, the SM approach is described for presenting the particular

SM-PAPA. Based on a recent work, at the end of Chapter 3 this dissertation proposes

a consistent method for obtaining the optimal constraint vector for the SM-PAPA

5

[39], which is conveniently computed by implementing a fast algorithm relying on

the gradient projection method.

Chapter 4 starts the discussion about the emergent field of graph signal process-

ing by defining basic concepts, highlighting its potential, and using didactic exam-

ples to illustrate some framework tools and properties, such as the graph Fourier

transform and the graph frequency representation, respectively. This chapter also in-

troduces the relevant problem of online estimating bandlimited graph signals, which

combines the areas of adaptive filtering and GSP, and presents the GSP LMS and

RLS algorithms, recently suggested in the literature.

Inspired by the ideas and derivations discussed in previous chapters, the main

contributions of this dissertation are presented in Chapter 5, where the GSP NLMS

algorithm and two data-selective strategies for GSP adaptive algorithms are pro-

posed. Besides its mathematical derivation, we verify the necessary conditions for

guaranteeing the algorithm convergence, compare the proposed GSP NLMS with

the GSP LMS and RLS methods in terms of computational complexity, and de-

scribe a complete steady-state analysis that provides closed formulas for evaluating

useful error metrics. This analysis is successfully extended in this work to cover the

previously described GSP LMS and GSP RLS algorithms, and complements results

published in the literature. Moreover, besides proposing the data-selective strate-

gies for reducing the overall computational complexity of GSP adaptive algorithms,

Chapter 5 also suggests particular choices of the strategy internal parameters in

order to obtain reasonable estimates of the algorithm update rate after reaching its

stationary state.

Based on temperature measurements acquired from hundreds of weather stations

distributed around a large area, Chapter 6 provides a useful dataset for performing

GSP numerical experiments and verifies that, as expected due to their spatial corre-

lation, the presented temperature graph signals are approximately bandlimited. By

using these values, many numerical simulations are performed in Chapter 6 corrob-

orating the theoretical results predicted in Chapter 5 for different noise scenarios.

At last, Chapter 7 concludes this work by drawing some final remarks and sug-

gesting potential future research directions.

1.6 Notation

The notation used throughout this dissertation is as follows: vectors and matrices

are represented in boldface with lowercase and uppercase letters, such as in b and

Z, respectively. The notation diag(b) stands for the diagonal matrix composed

by the elements of b, b̂ corresponds to an estimate of vector b, (·)T denotes the

transpose operation, and 1 indicates a vector where all elements are equal to one.

6

The representations ‖·‖Z, ‖·‖2, and ‖·‖∞ stand for the quadratic norm with respect

to the positive definite matrix Z [43], `2-norm, and infinite-norm, respectively.

The symbols N and R denote the set of natural and real numbers, respectively,

while the stylized letters, like V and E , usually represent sets. The exceptions to the

latter notation are the letters G, employed for representing graph structures, and

L and P , used for describing the Lagrangian and projection functions, respectively.

The cardinality of a generic set A, i.e., the number of elements of this set, is written

as |A|. For stochastic processes, the vector b (in italic boldface) stands for a random

vector, whose realization is given by b and the notation E(·) represents the expected

value operation.

7

Chapter 2

Adaptive Filtering

In the signal processing context, filtering is an operation for extracting and ma-

nipulating the original information from an input signal, and mapping it into an

output signal [29]. This operation is implemented by a system called filter, which

is usually parameterized by a set of coefficients, or parameters, that are selected in

order to fulfill the designated processing task, usually given as prescribed specifica-

tions. As many scenarios assume static and well-defined systems, for meeting a set

of constant specifications the literature suggests many design techniques [1] which

result in filters with fixed (time-invariant) coefficients. However, in some situations

the specifications are not known or are not satisfied by time-invariant filters, thus

requiring the use of filters with parameters that change their values according to a

performance metric [29]. These time-varying structures are the so-called adaptive

filters.

Adaptive filters are completely specified in terms of three characteristics: the

application type, its filter implementation structure, and the selected algorithm

for performing the coefficients update. The type of application depends on the

problem setup, where some popular examples include system identification, channel

equalization, echo cancellation, and signal enhancement. Although many adaptive

filtering works discuss these traditional scenarios, alternative approaches suggest

new potential applications based on the original adaptive concept, such as the online

reconstruction of bandlimited graph signals [15], which is further explored in this

dissertation.

The filter structure is related to the realization chosen for implementing the

adaptive filter. For example, by restricting ourselves to digital filter realizations we

find two major classes: finite-duration impulse response (FIR) and infinite-duration

impulse response (IIR) filters. Though adaptive IIR filters seem a reasonable choice

for applications handling IIR systems, they are not as popular as their FIR counter-

part because they suffer from potential instabilities caused by updating a filter pole

to a region outside the unity circle [44]. On the other hand, adaptive FIR filters

8

Adaptive
Filter ĥ[k]

Adaptive
Algorithm

+

d[k]

y[k] −x[k]

e[k]

Figure 2.1: General setup of an adaptive-filtering environment.

only involve updates on the system zeros, guaranteeing that the current system is

always stable. Therefore, most of the literature studies adaptive FIR filters and the

scope of this dissertation is restricted to this structure of digital filters, which gives

us the general adaptive-filter configuration displayed in Figure 2.1.

Considering that the adaptive FIR filter has order M , it is characterized by a

set of M + 1 time-varying real coefficients {ĥ0[k], ĥ1[k], ..., ĥM−1[k], ĥM [k]} that are

compactly represented by the parameter vector ĥ[k] ∈ RM+1, where

ĥ[k] =
[
ĥ0[k] ĥ1[k] · · · ĥM−1[k] ĥM [k]

]T
. (2.1)

The filter output y[k] ∈ R depends on the filter coefficients ĥ[k] and the input

signals at time instant k. If the current system input is given by x[k], for a tapped-

delay line the M + 1 most recent system inputs are represented by the input vector

x[k] ∈ RM+1 described as

x[k] =
[
x[k] x[k − 1] · · · x[k − (M − 1)] x[k −M]

]T
. (2.2)

Additionally, in Figure 2.1, the filter output y[k] = ĥT[k] x[k] is compared to a

reference or desired signal denoted as d[k] ∈ R and results in an error signal e[k] ∈ R
given by

e[k] = d[k]− ĥT[k]x[k] . (2.3)

This error signal is of great importance in adaptive filters since it is the information

source of the Adaptive Algorithm block in Figure 2.1, indicating how the time-

varying coefficients of ĥ[k] must be updated in order to reduce some performance

metric considered by the current algorithm.

In particular, the Adaptive Algorithm block in Figure 2.1 is the most explored

characteristic in adaptive filtering since it provides a wider flexibility for improving

the overall performance in some sense. By adjusting the filter coefficients, the adap-

tive algorithm minimizes a prescribed criterion, represented as an objective function,

through a search method whose input is a metric based on the error signal in (2.3).

9

The algorithm selection is crucial since it determines important aspects of the over-

all process, like its computational complexity and the existence of biased optimal or

suboptimal solutions [29]. Thus, in order to further study this topic, Sections 2.2-2.6

present some traditional adaptive filtering algorithms. However, before delving into

this area, let us establish a solid ground for comparing the performance of different

adaptive filters.

2.1 Figures of Merit for Adaptive Filters

As there are many different adaptive algorithms, it is useful to first define some

performance metrics which will be later used for comparing the algorithms behavior.

Based on the instantaneous error in (2.3) and the stochastic nature of adaptive

filtering applications, the most commonly used figure of merit (FoM) is the mean-

squared error (MSE), described as

MSE[k] = E[e2[k]] , (2.4)

which models how well the adaptive structure is able to produce an output y[k] that

resembles the desired signal d[k]. Although the MSE in (2.4) is a general metric that

provides an overall performance description in any adaptive filtering application, the

analysis of some particular aspects can be enhanced by the observation of alternative

FoMs. For example, in a system identification application like the one presented

in Figure 2.2, where we use an adaptive filter structure with coefficients ĥ[k] for

estimating the possibly time-varying real system coefficients h[k], the metric known

as mean-squared deviation (MSD) and given by

MSD[k] = E
[
‖ĥ[k]− h[k]‖2

2

]
, (2.5)

provides a more precise information about how far the current estimate ĥ[k] is from

the unknown system parameters. However, the main disadvantage of using the MSD

in (2.5) is that it is a theoretical metric with no practical appeal since there is no

point in estimating the system vector h[k] if this vector is known beforehand for

evaluating (2.5). On the other hand, the MSE in (2.4) can be estimated in real-

time, which is effectively done by some adaptive algorithms, because the system has

both the desired signal d[k] and its output signal y[k].

As both the MSE and MSD metrics in (2.4) and (2.5), respectively, consider

the expected value of their scalar arguments, for simulation purposes one runs the

adaptive algorithm a specific large number of times to form the ensemble, then takes

the average of these ensemble runs to provide a better estimate of the expected value.

10

Adaptive
Filter ĥ[k]

Unknown
System h[k]

x[k]

Adaptive
Algorithm

+

+

Noise w[k]

y[k] −

e[k]

Figure 2.2: Adaptive filter used in a system identification setup.

This procedure relies on the law of large numbers [45], which states that the sample

average obtained from a large number of trials becomes closer to the expected value

of the underlying random variable as more trials are performed.

The usual behavior of an adaptive algorithm in a stationary environment, in

terms of MSE (or MSD), is that it first presents a transient period, then reaches

a steady-state behavior. For properly comparing the performance of two or more

adaptive strategies, this dissertation considers the approach in which we set the in-

ternal parameter of the algorithms so that they present the same steady-state value.

When this condition holds, we verify which algorithm first reaches the stationary

value and conclude that this method converges more quickly than the others.

Thus, it is expected that one usually searches for the fastest algorithm that pro-

duces the same stationary value. However, a typical trade-off for improving the

convergence speed of an algorithm is an increase in its complexity, which requires

a large number of arithmetic operations performed at each iteration. Then, it is

essential to mention that the computational complexity, i.e., the time and memory

necessary for performing an algorithm update at each iteration is also a critical

concern when designing adaptive filtering algorithms. This trade-off between con-

vergence speed and complexity is at the core of the derivation of adaptive algorithms,

as observed in the rest of this work.

2.2 The LMS Algorithm

The most popular adaptive algorithm is the least-mean-square (LMS) [26–29], which

basically consists in implementing the stochastic gradient idea for the mean-square

error (MSE) defined in (2.4). Since an instantaneous approach is considered, we

drop the expected value from expression (2.4) and search for the minimum value of

11

the squared error in (2.3). For implementing a first-order optimization algorithm

we find the gradient ∇ĥe
2[k] as

∇ĥe
2[k] = −2 (d[k]− xT[k]ĥ[k]) x[k]

= −2e[k] x[k] .
(2.6)

Then, following the steepest descent idea, which coincides with the negative gradient

direction when considering an objective function based on the Euclidean norm [43],

we define a positive convergence factor µl ∈ R∗+ and obtain the coefficients update

ĥ[k + 1] given by

ĥ[k + 1] = ĥ[k] + 2µl e[k] x[k] . (2.7)

Therefore, the LMS algorithm is implemented by updating the coefficients vec-

tor according to equation (2.7), where the only free parameter to be chosen by the

system designer is the convergence factor µl. The role of the factor µl is modify-

ing the algorithm convergence speed, accelerating it when the convergence factor is

increased. However, the price one pays for increasing the convergence speed (reduc-

ing convergence time) is that the steady-state error, usually described by the MSE

presented in (2.4), is increased. Therefore, the factor µl indicates a clear trade-off

between convergence speed and steady-state error.

Moreover, an important fact is that though µl must be positive, it cannot assume

large values since in these cases the algorithm becomes unstable. In order to obtain

a convergent algorithm one must select µl in the range]0, µlmax [, where µlmax ∈ R∗+
depends on the eigenvalues of the input signal correlation matrix [29], i.e., the upper

limit for the convergence factor is not trivially obtained. Thus, if the designer intends

to reduce the LMS algorithm convergence time, it is possible to increase the factor

µl up to the limit µlmax , which might be unknown or time-varying.

2.3 The RLS Algorithm

A usual alternative to the simple but slow LMS algorithm is the recursive least-

squares (RLS) algorithm [28, 29]. A crucial difference between these two methods

is that the LMS searches for an instantaneous solution that minimizes (2.4) while

the RLS intends to solve the exponentially weighted least-squares (WLS) problem

minimize
h[k]

Cr(ĥ[k]) =
k∑
i=0

βk−ir (d[i]− xT[i]ĥ[k])2 (2.8)

where 0� βr ≤ 1 is a design parameter called the forgetting factor. Since the RLS

cost-function Cr(ĥ[k]) is the sum of quadratic scalars weighted by a positive factor,

we conclude it is a convex function [43] and the argument ĥ[k] that minimizes it is

12

obtained by evaluating ∇ĥ[k]Cr(ĥ[k]) = 0. Based on this idea we find the solution

k∑
i=0

βk−ir d[i]x[i] =
Å k∑
i=0

βk−ir x[i]xT[i]
ã
ĥ[k] . (2.9)

For simplification sake, we define Rr[k] ∈ R(M+1)×(M+1) and pr[k] ∈ RM+1 as

Rr[k] =
k∑
i=0

βk−ix[i]xT[i] and pr[k] =
k∑
i=0

βk−id[i]x[i] , (2.10)

and, from (2.9), if matrix Rr has full rank we write the solution ˆh[k] of (2.8) as

ĥ[k] = R−1
r [k] pr[k] . (2.11)

Although the variables in (2.10) might appear to present a heavy computational

burden, they are efficiently evaluated at each time instant by the recursive forms

Rr[k] = βr Rr[k − 1] + x[k]xT[k] and pr[k] = βr pr[k − 1] + d[k]x[k] , (2.12)

with initial values Rr[−1] = δr I and pr[−1] = 0, where δr ∈ R∗+. This initialization

of Rr guarantees that it has full rank and that (2.11) is the solution to the convex

problem in (2.8). For additional information about the value of δr and more efficient

implementations of the simple RLS algorithm briefly stated above, as the evaluation

of the coefficients vector ĥ[k] in (2.11) based on the recursive expressions from (2.12),

refer to [29].

The main advantage of the RLS algorithm is its fast convergence to a steady-

state value even when the input signal presents a correlation matrix with a large

eigenvalue spread [29], a particular case which considerably slowed down the LMS

algorithm convergence speed. However, the most noticeable disadvantage of the RLS

algorithm is its large computation complexity, that is easily observed when compar-

ing the RLS update equations in (2.11) and (2.12) to the simple LMS equation in

(2.7). Moreover, some implementations of the RLS algorithm suffer from numerical

instabilities, such as the ever increasing diagonal elements of matrix Rr[k] in (2.12).

Thus, we verify that the convergence speed improvements brought by the RLS al-

gorithm also brings some undesired drawbacks, like the increased computational

complexity and its intrinsic instability. Depending on the application, the designer

might require an algorithm faster than the LMS but less complex than the RLS,

and this search leads us to analyzing an intermediate class of adaptive algorithms

based on the LMS algorithm.

13

2.4 NLMS Algorithm

Since the LMS algorithm described in Section 2.2 presents a fixed convergence fac-

tor µl whose main role is controlling the trade-off between convergence time and

steady-state error, a reasonable approach for improving the algorithm convergence

speed is implementing a time-varying factor µl[k] aimed at minimizing an instanta-

neous output error [29]. Before explicitly describing the instantaneous metric to be

minimized, based on the error signal e[k] in (2.3) we define the a posteriori error

ε[k] as

ε[k] = d[k]− ĥT[k + 1]x[k] . (2.13)

From this point on we call e[k] as the a priori error whenever necessary for avoiding

confusion with the recently defined a posteriori error ε[k]. In fact, the only difference

between them is that the a priori error in (2.3) uses the current coefficient vector

ĥ[k] while the a posteriori error in (2.13) replaces it with the updated vector ĥ[k+1].

Considering that the update vector ĥ[k + 1] is based on the LMS updating

equation in (2.7) with possibly time-varying factor µl[k], the a posteriori error can

be rewritten as
ε[k] = d[k]− ĥT[k]x[k]− 2µl[k]xT[k]x[k]e[k]

= (1− 2µl[k]xT[k]x[k]) e[k] .
(2.14)

As the normalized least-mean-square (NLMS) algorithm defines an instantaneous

error metric as ∆e[k] = ε2[k]− e2[k], from (2.14) we have that

∆e[k] = 4µl[k]xT[k]x[k] · (−1 + µl[k]xT[k]x[k]) · e2[k] . (2.15)

For minimizing ∆e[k] we evaluate ∂∆e[k]
∂µl[k]

= 0 based on (2.15) and obtain

µl[k] =
1

2 xT[k]x[k]
. (2.16)

Since this time-varying convergence step depends directly on the input vector inner

product xT[k]x[k] = ‖x[k]‖2
2, this relative factor produces a normalizing effect on

the update equation. For this reason the current method is known as normalized

LMS.

Therefore, according to the initial idea of substituting the original fixed factor

by a time-varying convergence step, if we use µl[k] from (2.16) into the LMS update

equation (2.7) we obtain an algorithm with faster convergence speed and with update

equation given by

ĥ[k + 1] = ĥ[k] +
x[k]e[k]

xT[k]x[k]
. (2.17)

However, as the product xT[k]x[k] in the denominator might assume very small

14

values, a practical implementation of the NLMS algorithm with equation (2.17)

might suffer from numerical instabilities. For overcoming this issue, we add a small

term δn ∈ R∗+ that limits the lower value that the denominator of (2.17) can assume.

Moreover, a fixed convergence factor µn ∈ R∗+ is usually introduced in (2.17) for

controlling the trade-off between convergence speed and steady-state values since

the derivations are based on squared error instantaneous values and not on the

MSE [29]. Therefore, the practical update equation for the NLMS algorithm is

given by

ĥ[k + 1] = ĥ[k] +
µn

δn + xT[k]x[k]
x[k]e[k] . (2.18)

As we observe from its update equation in (2.18), the NLMS algorithm is almost

as simple as the original LMS algorithm in (2.7), but considerably less complex than

the RLS update expressions in (2.11) and (2.12). In terms of convergence speed, it

is usually faster than the LMS algorithm, so it presents an interesting alternative for

applications which require reduced convergence time but cannot afford the consider-

able RLS algorithm complexity. Additionally, an advantage of the NLMS algorithm

in comparison to the LMS algorithm is that its convergence factor µn has the well

defined selection range 0 < µn < 2 (being usually chosen in the range 0 < µn ≤ 1),

whereas the LMS factor µl upper limit depends on the statistics of the input signal

[29].

2.5 AP Algorithm

So far we have considered general application environments, in which no specification

about the input signals, or the system itself, is previously known. However, as we

observe by the dependence between the convergence speed and the eigenvalue spread

of the input signal correlation matrix for the LMS algorithm [29], some performance

improvements can be obtained by algorithms that take some system characteristics

into account. For example, if the system input signal comes from either an auto-

regressive (AR) , moving average (MA), or auto-regressive moving average (ARMA)

process, its current and past input values present some statistical correlation, then,

it makes sense to use the value of previous system variables instead of just discarding

them, as the LMS and NLMS algorithms do. Thus, this data reuse (DR) concept is

very convenient for improving the convergence speed in situations with correlated

input signal and forms the base of the so-called affine projection (AP) algorithms.

Since AP algorithms present some slight differences to the traditional adaptive

filtering context, it is useful to define convenient system variables that extend the

original ideas of input, desired, and error signals. Basically, we just increase the

degree of the mathematical structures used for storing data, i.e., vectors and scalars

15

become matrices and vectors, respectively. For a system that reuses its L previous

data values, the input signal Xdr[k] ∈ R(M+1)×(L+1) is defined as

Xdr[k] =
[
x[k] x[k − 1] · · · x[k − L]

]
, (2.19)

where x[k] is the current input vector and x[k − l] is the lth past input entry. By

considering the input matrix in (2.19), the vector ydr ∈ RL+1 containing the current

and its previous L output values is written as

ydr[k] =
[
y[k] y[k − 1] ... y[k − L]

]T
= XT

dr[k]ĥ[k] . (2.20)

Likewise, we define the desired signal vector ddr[k] ∈ RL+1 and error signal vector

edr[k] ∈ RL+1 as

ddr[k] =
[
d[k] d[k − 1] ... d[k − L]

]T
, and

edr[k] =
[
e[k] e′[k − 1] ... e′[k − L]

]T
= ddr[k]− ydr[k] .

(2.21)

Then, from (2.20) and (2.21), we rewrite the affine projection a priori error vector

edr[k] as

edr[k] = ddr[k]−XT
dr[k]ĥ[k] , (2.22)

and, based on the a posteriori error presented in Section 2.4, we define εdr[k] as

εdr[k] = ddr[k]−XT
dr[k]ĥ[k + 1] . (2.23)

In general terms, the goal of the AP algorithm is to solve the convex problem [29]

minimize
ĥ[k+1]

1

2
‖ĥ[k + 1]− ĥ[k]‖2

2

subject to ddr[k]−XT
dr[k]ĥ[k + 1] = 0 .

(2.24)

In other words, the affine projection objective is: by considering the current co-

efficient vector ĥ[k], the algorithm searches for the closest vector update ĥ[k + 1]

(minimum disturbance principle) that respects the condition of forcing the a poste-

riori error εdr[k] to be zero.

For solving the original constrained convex problem, we use the method of La-

grange multipliers [43] and rewrite (2.24) as the following function to be minimized

Lap

î
ĥ[k + 1]

ó
=

1

2
‖ĥ[k + 1]− ĥ[k]‖2

2 + λT
ap[k] · (ddr[k]−XT

dr[k]ĥ[k + 1]) , (2.25)

where λap[k] ∈ RL+1 is the Lagrange multipliers vector for solving the classical AP

convex problem in (2.24).

16

By taking the gradient of (2.25) with respect to ĥ[k + 1] and equating this

expression to a zero vector we find that

ĥ[k + 1] = ĥ[k] + Xdr[k]λap[k] . (2.26)

In order to remove λap[k] from the above equation, we perform the steps

Xdr[k]λap[k] = ĥ[k + 1]− ĥ[k] ,

XT
dr[k]Xdr[k]λap[k] = XT

dr[k]ĥ[k + 1]−XT
dr[k]ĥ[k] ,

XT
dr[k]Xdr[k]λap[k] = ddr[k]−XT

dr[k]ĥ[k] = edr[k] ,

(2.27)

and, assuming that XT
dr[k]Xdr[k] has full rank, we conclude that

λap[k] =
Ä
XT

dr[k]Xdr[k]
ä−1

edr[k] . (2.28)

Thus, based on (2.26) and (2.28), the update vector is given by

ĥ[k + 1] = ĥ[k] + Xdr[k]
Ä
XT

dr[k]Xdr[k]
ä−1

edr[k] . (2.29)

However, similarly to the argument that prevents the use of expression (2.17) in

practical implementations of the NLMS algorithm, the update equation (2.29) might

be numerically ill-conditioned since the product (XT
dr[k]Xdr[k]) can be a singular or

almost singular matrix. For avoiding this potential problem we slightly modify the

original expression (2.29) by adding a positive definite matrix δap I, where δap ∈ R+ is

a small number that guarantees a stable computation of the inverse matrix operation.

Moreover, a convergence factor µap ∈ R∗+ is included in (2.29) for controlling the

trade-off between convergence speed and steady-state MSE. Therefore, the practical

update expression for the affine projection algorithm is

ĥ[k + 1] = ĥ[k] + µapXdr[k]
Ä
δap I + XT

dr[k]Xdr[k]
ä−1

edr[k] . (2.30)

2.5.1 Alternative Derivation of the NLMS Algorithm

Based on the coefficient vector update expressions (2.18) and (2.30), one verifies

that the NLMS algorithm is in fact a particular case of the affine projection algo-

rithm when the data reuse factor is L = 0. Thus, an interesting outcome from this

observation is the existence of an alternative derivation of the NLMS algorithm,

which has been originally obtained in Section 2.4 based on the use of a time-varying

convergence factor that improves the convergence speed of the LMS algorithm. By

following the AP approach suggested in (2.24), it is simple to verify that the partic-

17

ular case where L = 0 leads to the constrained problem

minimize
ĥ[k+1]

1

2
‖ĥ[k + 1]− ĥ[k]‖2

2

subject to d[k]− xT[k]ĥ[k + 1] = 0 .

(2.31)

Considering the developments involving the Lagrange multipliers method pre-

sented in Section 2.4, one finds that the solution of (2.31) is the theoretical NLMS

update equation (2.17). As better explained in Section 2.4, for practical applications

of the NLMS algorithm we implement expression (2.18) instead of the theoretical

equation (2.17).

2.6 Proportionate AP Algorithm

According to the affine projection basic idea, the a priori knowledge about the sys-

tem input statistics can be included into the adaptive algorithm derivation and pro-

duce methods with faster convergence speed when the system characteristic agrees

with the correlated input assumption. The disadvantage of this concept, besides in-

creasing the computational complexity in comparison with simpler methods like the

LMS and the NLMS algorithms, is that we lose some of the generality of the adap-

tive strategy because AP algorithms are less suitable for handling scenarios with

non-colored inputs. However, since the correlated input signal is a known character-

istic of many signal processing applications, specific strategies like the AP algorithm

are very useful. Following a similar approach, one might require an additional as-

sumption in order to improve even further the system overall converge speed. In

particular, the motivation for the proportionate affine projection (PAP) algorithm is

that, not only we can deal with correlated input signals, but also that the coefficients

vector converges to a vector characterized by a few dominant coefficients.

Originally suggested for reducing the convergence time of the NLMS algorithm

in echo cancelers [46, 47], the proportionate method relies on the idea that each

coefficient ĥm[k], m ∈ {0, 1, 2, ...,M}, must be updated according to a respective

factor gm[k] ∈ R which is heavily dependent on the value of ĥm[k]. Although the

name suggests a proportional relation between the coefficient ĥm[k] and its factor

gm[k], the original proportionate NLMS (PNLMS) work in [46] includes intermediate

computations that prevent gm[k] from being directly proportional to the magnitude

of the coefficient ĥm[k] in some cases. Moreover, due to the undesired PNLMS

behavior of being slower than the NLMS in dispersive environments, [47] overcomes

this issue by suggesting an improved PNLMS (IPNLMS) algorithm that performs

a slightly different set of operations for computing gm[k]. Although this work does

not intend to point out the differences between the PNLMS [46] and IPNLMS [47]

18

rules for selecting the mth proportionate factor gm[k], or its deviation from a directly

proportional relation, its goal is to indicate the clear dependence between this factor

and the absolute value of the respective mth adaptive filter coefficient ĥm[k], where

we have gm[k] > gm′ [k] if |ĥm[k]| > |ĥm′ [k]| for m 6= m′.

As there is a close relationship between the NLMS and the AP algorithms, as

explicitly discussed in Subsection 2.5.1, it is trivial to expect that the PNLMS

algorithm can be generalized into a proportionate affine projection (PAP) algorithm

[48]. This method intends to improve the overall convergence speed of the AP

algorithm when the adaptive filter converges to an approximately sparse vector by

including a diagonal proportionate matrix G[k] ∈ R(M+1)×(M+1) defined as

G[k] = diag(g0[k], g1[k], ..., gM−1[k], gM [k]) , (2.32)

where gm[k] ∈ R∗+ is the proportionate factor respective to the filter coefficient

hm[k], into the update equation (2.30). Although a practical PAP implementation

depends on the rule chosen for obtaining the factors gm[k] at each iteration, which

can be according to the PNLMS approach in [46] or the IPNLMS in [47] and result

in the original PAP algorithm [48] or in the improved PAP (IPAP) algorithm [49],

respectively, for avoiding confusion this work simply considers the effect of a general

diagonal matrix G[k] on the original AP expression (2.30) and refers to this general

scheme as the PAP algorithm (PAPA) . Thus, the practical update equation for the

PAP algorithm is given by [48–50]

ĥ[k + 1] = ĥ[k] + µpapaG[k]Xdr[k]
Ä
δpapa I + XT

dr[k]G[k]Xdr[k]
ä−1

edr[k] , (2.33)

where µpapa ∈ R∗+ is the algorithm convergence factor and δpapa is included for

preventing numerical instabilities.

2.6.1 Derivation of the PAP Algorithm

Based on the affine projection constrained convex problem (2.24) whose solution

provides the theoretical update equation (2.29), the proportionate affine projection

algorithm is defined in a similar way as

minimize
ĥ[k+1]

1

2
‖ĥ[k + 1]− ĥ[k]‖2

G−1[k]

subject to ddr[k]−XT
dr[k]ĥ[k + 1] = 0 ,

(2.34)

19

where ‖ · ‖G−1[k] represents the quadratic norm with respect to the positive definite

matrix G[k] [43]. Then, we have the following equivalence

1

2
‖ĥ[k + 1]− ĥ[k]‖2

G−1[k] =
1

2
(ĥ[k + 1]− ĥ[k])TG−1[k](ĥ[k + 1]− ĥ[k]) . (2.35)

By performing similar steps to the ones presented in Section 2.5, we turn (2.34)

into an unconstrained problem with objective function

Lpapa

î
ĥ[k+1]

ó
=

1

2
‖ĥ[k+1]−ĥ[k]‖2

G−1[k]+λ
T
papa[k]·(ddr[k]−XT

dr[k]ĥ[k+1]) , (2.36)

where λpapa[k] ∈ R(L+1) is the Lagrange multipliers vector. After evaluating the

gradient of (2.36) with respect to ĥ[k + 1] and equating it to 0, one finds the

expression

G−1[k]h[k + 1] = G−1[k]h[k] + Xdr[k]λpapa[k] , (2.37)

which, after a pre-multiplication by G[k], is conveniently represented as

ĥ[k + 1] = ĥ[k] + G[k]Xdr[k]λpapa[k] . (2.38)

Considering similar steps to the mathematical manipulation presented in (2.27), we

find that the Lagrangian multipliers vector λpapa[k] is

λpapa[k] = (XT
dr[k]G[k]Xdr[k])−1edr[k] , (2.39)

from which we substitute in (2.38) and obtain the PAPA theoretical update equation

ĥ[k + 1] = ĥ[k] + G[k]Xdr[k]
Ä
XT

dr[k]G[k]Xdr[k]
ä−1

edr[k] . (2.40)

The differences between the theoretical expression (2.40) and the practical up-

date equation (2.33) come from the addition of the δpapa I matrix for preventing

numerical instabilities and the inclusion of a factor µpapa for controlling the trade-

off between convergence speed and steady-state MSE. These practical considerations

have also been stated for the NLMS and AP algorithms in Sections 2.4 and 2.5, re-

spectively.

20

Chapter 3

Data Selection for Adaptive

Filtering

As discussed in Chapter 2, an interesting idea for improving the overall performance

of a general adaptive filtering algorithm is to take advantage of some prior knowledge

of the system or application in which it will be used. For instance, when one em-

ploys an adaptive algorithm for a system identification application with correlated

input signal, the implementation of the data reuse concept in the form of specific

algorithms such as the AP and the proportionate AP provides a faster convergence

in comparison to the NLMS algorithm. In a similar fashion, one straightforwardly

verifies that, after reaching their steady-state in stationary environment, the tradi-

tional adaptive algorithms from Chapter 2 keep updating the coefficients vector at

each iteration, even though these updates do not produce any improvement over the

algorithm estimate. Thus, a reasonable thought is that these unnecessary updates

do not need to be evaluated, which results in important power savings for the device

that runs the adaptive algorithm [51].

This idea of avoiding the computation of the coefficients vector update at cer-

tain iterations is called data selection and considers that not all acquired data brings

novelty to the current system estimate. For instance, by assuming that the system

additive noise is bounded, and that this bound is either known or can be estimated

[29], the data-selection idea labels the received information according to its useful-

ness and updates the algorithm parameters only when the input data is classified

as valuable. Therefore, by including simple data tests, the implementation of this

concept reduces the algorithm overall complexity since it prevents the complex com-

putation task of evaluating updates of internal parameters at every iteration. The

direct implication of this complexity reduction is that the device hosting the adap-

tive algorithm spends less energy in unnecessary computations, which results in

power savings that are extremely useful in battery critic applications, such as some

sensor networks or stand-alone IoT devices. Thus, one observes the strong appeal

21

that the data selection concept offers for increasing the lifetime of sensor networks.

This work highlights the implementation of data selection along with adaptive

filtering based on the data-selective (DS) [36] and set-membership (SM) [34, 35]

family of algorithms, which both assess the input data novelty by comparing an

absolute error metric to a pre-selected threshold γ̄ ∈ R+. According to this approach,

the algorithm parameters are only updated when the absolute error is larger than

this threshold, when it considers that the input presents useful data. Then, it follows

that the algorithm update rate Pup ∈ [0, 1] is controlled by properly selecting γ̄.

This chapter first discusses the difference between the DS and SM data selection

strategies. The simpler DS method will be recalled in Chapter 5, where we use it

for implementing data selection strategies along GSP adaptive algorithms, while the

more complex SM idea motivates the derivation of the set-membership proportionate

affine projection algorithm (SM-PAPA) [52], an algorithm that takes advantage of

the data reuse and data selection ideas in scenarios described by an approximately

sparse impulse response and a correlated input signal. The SM-PAPA is further

explained in Section 3.2 and draws special attention because this work proposes an

optimal procedure for computing an internal parameter of the SM-PAPA based on

[53] and suggest a convex problem solver method that improves the evaluation time

in comparison to the solver employed in [53]. These contributions of the current

dissertation are presented in Section 3.3, and corroborated by numerical simulations

in Subsection 3.3.5.

3.1 Data Selection Strategies

3.1.1 DS Adaptive Filtering

Since traditional adaptive algorithms like the ones presented in Chapter 2 perform

a coefficients vector update at each iteration, the simplest idea for preventing this

procedure is to evaluate an error metric and compute a proper update, according

to the usual algorithm update rule, only when the input data is considered to have

enough novelty. In opposition, if the error metric does not indicate the presence of

useful information, the algorithm simply maintains its current coefficients vector,

i.e., ĥ[k + 1] = ĥ[k].

Although it is based on a trivial procedure, this approach has been adopted

recently for the LMS method, with a data-selective LMS algorithm proposed in

[54] and later rederived and renamed as the adaptive censoring LMS (AC-LMS) in

[37, 38]. The work of [37, 38] also discusses the use of this data-selection strategy

along the RLS adaptive estimation, resulting in the so-called adaptive censoring

RLS (AC-RLS) algorithm. The implementation of this adaptive censoring strategy

22

is summarized in Algorithm 1 and consists in updating the algorithm internal vari-

ables only when the selected error metric |e[k]| is larger than the threshold value

γ̄, indicating that the current data pair (x[k], d[k]) brings enough novelty to the

system.

Algorithm 1 Data-selective strategy original idea

1: e[k] = d[k]− ĥT[k]x[k] % Error metric
2: if (|e[k]| ≤ γ̄) then % Current pair (x[k], d[k]) brings no novelty
3: Do not update internal variables
4: ĥ[k + 1] = ĥ[k]
5: else % Absolute error |e[k]| > γ̄
6: Update internal variables and ĥ[k + 1] according to the original algorithm

As suggested in [36], the censoring scheme described in Algorithm 1 can be

improved by including an additional if test in order to remove data outliers, which

are identified by large values of the instantaneous absolute error |e[k]|. Based on

this slightly more complex approach, [36] presents advanced versions of the LMS

and RLS algorithms incorporating data censorship and proposes a data-selective

implementation of the affine projection (AP) algorithm. Although this dissertation

considers the simpler censoring method stated in Algorithm 1, disregarding the

additional outliers detection step suggested in [36], a clear influence from [36] is the

idea of calling the current strategy by the name of data-selective (DS) algorithms

instead of employing the adaptive censoring (AC) term as in [37, 38].

Thus, in this work we consider that a data-selective strategy is given by the

generic procedure presented in Algorithm 1. Besides its implementation simplicity,

another practical advantage of this data selection method over traditional adaptive

filtering approaches, such as the set-membership idea discussed in the next section, is

that the DS strategy provides a more precise estimation of the algorithm stationary

update rate. This improved estimate relies on the γ̄ parameter selection and provides

a useful tool for designing practical systems with energy restrictions.

3.1.2 SM Adaptive Filtering

An alternative to the simplistic data-selective strategy presented in the previous

subsection is the set-membership approach [29, 55], which induces a set of solutions

at each iteration, searching for an update vector inside an estimated region, while

the DS method performs a more straightforward point update. The set-membership

filtering (SMF) consists in a general framework for handling linear in parameters

adaptive-filtering problems, as the general setup described in Figure 2.1, where the

filter output and error signal are given by ĥT[k]x[k] and (2.3), respectively.

23

The motivation behind the SMF concept is that the requirement of forcing the a

posteriori error ε[k] to be zero in algorithms such as the NLMS is often unnecessary

since there is usually a certain amount of environmental noise that unjustifies this

too-precise approach. Thus, the SMF framework idea is to relax the original a

posteriori error requirement and, based on the current signals, to search for an

updated coefficients vector ĥ[k+1] so that |ε[k]| = |d[k]−ĥT[k+1]x[k]| is bounded by

a threshold parameter γ̄ ∈ R∗+, which is related to an estimation of the environment

noise. In other words, at each iteration we search for an update ĥ[k + 1] inside a

region described by the inequality

|d[k]− ĥT[k + 1]x[k]| ≤ γ̄ . (3.1)

By considering the current input vector and desired signal as the pair (x[k], d[k]),

we define the constraint set H[k] as the set of vectors ĥ[k+ 1] that satisfy (3.1), i.e.,

H[k] = { ĥ[k + 1] ∈ RM+1 : |d[k]− ĥT[k + 1]x[k]| ≤ γ̄ } . (3.2)

As the constraint set H[k] in (3.2) is bounded by the parallel hyperplanes d[k]−
ĥT[k + 1]x[k] = γ̄ and d[k] − ĥT[k + 1]x[k] = −γ̄, the search region for the update

vector ĥ[k + 1] is located between these two hyperplanes in the parameter space

ĥ[k + 1]. However, since each new iteration k brings an updated pair of signals

(x[k], d[k]), if we consider all past information about the system in order to improve

the search region, we notice that as we increment the number of iterations this

search region might be modified because at this moment it is not enough to satisfy

the previous k data pairs (x[i], d[i]), where i ∈ {0, 1, ..., k − 1}, but also the most

recent information represented by (x[k], d[k]) and the constraint setH[k]. Therefore,

the current suitable region for updating ĥ[k + 1] is called the exact membership set

ψ[k] and is formally represented as

ψ[k] =
k⋂
i=0

H[k] . (3.3)

From the polytope defined in (3.3), it is trivial to verify thatψ[k] = ψ[k−1]∩H[k]

and conclude that the current estimation of the exact membership set ψ[k] can be

performed recursively by obtaining the region intersecting both the previous set

ψ[k − 1] and the region between hyperplanes given by H[k]. Then, two possible

scenarios can happen: either (i) H[k] contains ψ[k − 1] (H[k] ⊇ ψ[k − 1]) or (ii) it

does not (H[k] 6⊇ ψ[k − 1]).

Considering a data-selection perspective, when (i) happens there is no need to

update the algorithm estimate of ψ[k] because the ψ[k−1] estimate already satisfies

24

the new information brought by the data pair (x[k], d[k]). In this case we consider

that the input information does not bring enough novelty to the current system,

which can maintain its previous estimate and the current coefficients vector (ĥ[k +

1] = ĥ[k]). On the other hand, if (ii) is true we need to restrict the exact membership

set ψ[k] region even further by taking the intersection between ψ[k − 1] and H[k].

The practical outcome of this procedure is that the coefficients vector ĥ[k+ 1] must

be properly updated into the more restricted set ψ[k] in (3.3) because the algorithm

decides that the current input pair (x[k], d[k]) brings novelty to the overall system

estimate.

Thus, when considering all the previous data pairs (x[i], d[i]) with i ∈ {0, 1, ..., k},
as the number of iteration increases we expect to reduce the region determined by

(3.3) so that it converges to a theoretical set Θ referred to as the feasibility set. In

simple terms, this feasibility set considers all the possible input pairs (x, d), denoted

as the set I, and defines the set of all possible coefficients vectors ĥ that result in an

output bounded by γ̄ when (x, d) ∈ I. Then, the formal definition of the feasibility

set Θ is given by

Θ =
⋂

(x,d)∈I
{ĥ ∈ RM+1 : |d− ĥTx| ≤ γ̄} . (3.4)

Since all practical input pairs (x[i], d[i]) with i ∈ {0, 1, ..., k} up to a time instant

k are elements of the more general set I, it is clear that the feasibility set Θ in (3.4)

is always a subset of the exact membership set ψ[k] in (3.3). Then, the feasibility set

consists in a theoretical limiting set for the estimated exact membership set ψ[k].

Therefore, the SMF general goal is to obtain adaptively an estimate that belongs

to the theoretical feasibility set Θ. This estimate is based on the practical exact

membership set ψ[k] update idea, which implements a data-selection scheme that

wisely prevents unnecessary updates when the previous set ψ[k] already satisfies

the new requirement described by H[k]. However, implementation issues for SM

adaptive filtering prevent the use of all data pairs (x[i], d[i]) with i ∈ {0, 1, ..., k} for

estimating the feasibility set, and practical approaches only consider the most recent

data pairs in their estimates. For example, a set-membership NLMS (SM-NLMS)

algorithm [55] only considers the current input pair (x[k], d[k]), so its estimate of

the feasibility set Θ is based solely on the constraint set H[k]. On the other hand,

data reuse strategies like the AP and proportionate AP algorithms hold information

about previous data pairs, which allows them to perform a better estimation of Θ. In

the next section we explore the particular case of the set-membership proportionate

affine projection algorithm (SM-PAPA) [52], that generalizes both the SM-NLMS

[55] and set-membership affine projection (SM-AP) [34] algorithms.

25

3.2 The SM-PAP Algorithm

In practical terms, the main difference between the derivation of the traditional

NLMS, AP and proportionate AP adaptive algorithms from Chapter 2 and their set-

membership (SM) counterparts is that the SM versions require the update vector

ĥ[k + 1] to belong to the intersection of recent constraint sets H[i], where i ∈
{k − L, k − (L− 1), ..., k − 1, k} and L is the data reuse factor. On the other hand,

the traditional versions of algorithms NLMS, AP, and PAP solve the respective

constrained problems (2.31), (2.24) and (2.34) in which the requirement over ĥ[k +

1] is that the a posteriori error becomes zero. For example, the convex problem

related to the derivation of the set-membership proportionate NLMS (SM-PNLMS)

is simply given by [52]

minimize
ĥ[k+1]

‖ĥ[k + 1]− ĥ[k]‖2
G−1[k]

subject to |d[k]− xT[k]ĥ[k + 1]| ≤ γ̄ ,

(3.5)

where G[k] is the positive-definite proportional matrix defined in (2.32) and the

inequality |ε[k]| ≤ γ̄ represents the set-membership requirement ĥ[k + 1] ∈ H[k].

Since data-reuse adaptive algorithms, such as the AP and proportionate AP

algorithms, do not rely solely on the current data pair (x[k], d[k]), their estimate

of the feasibility set Θ is improved by considering the current measurements and

its L previous data pairs stored. Thus, the set-membership proportionate affine

projection (SM-PAP) algorithm is derived based on the exact membership set

ψL[k] =
k⋂

i=(k−L)

H[k] , (3.6)

which only considers the current and the L-most recent previous data entries, and

is summarized by the equivalent l∞-norm requirement

‖ddr(k)−XT
dr(k)ĥ[k + 1]‖∞ ≤ γ̄ , (3.7)

i.e., all the components of the current a posteriori error εdr[k] must have absolute

value equal or smaller than γ̄. Then, the SM-PAPA intends to solve the inequality

constrained convex problem [52]

minimize
ĥ[k+1]

‖ĥ[k + 1]− ĥ[k]‖2
G−1[k]

subject to ‖ddr[k]−XT
dr[k]ĥ[k + 1]‖∞ ≤ γ̄ .

(3.8)

As the l∞-norm constraint upon the a posteriori error in (3.7) presents an obsta-

cle for finding an analytic solution to this convex problem, a convenient idea for esti-

26

mating (3.8) is to approach a related problem where we define a vector γ[k] ∈ RL+1,

whose components satisfy |γi[k]| ≤ γ̄, and replace the inequality constraint in (3.8)

by the linear constraint ddr(k) −XT
dr[k]ĥ[k + 1] = γ[k]. Therefore, it is clear that

the solution ĥ[k + 1] to the alternative problem

minimize
ĥ[k+1]

‖ĥ[k + 1]− ĥ[k]‖2
G−1[k]

subject to ddr[k]−XT
dr[k]ĥ[k + 1] = γ[k] ,

(3.9)

which, according to Appendix A.1, is given by the equation

ĥ[k + 1] = ĥ[k] + G[k]Xdr[k] · [XT
dr[k]G[k]Xdr[k]]−1 · [edr[k]− γ[k]] , (3.10)

satisfy the l∞-norm inequality in (3.7). However, it does not necessarily solve the

original problem in (3.8) because there is no guarantee that the obtained vector

ĥ[k + 1] ∈ ψL[k] provides the smallest disturbance ‖ĥ[k + 1]− ĥ[k]‖2
G−1[k].

By considering the SM data selection idea from Subsection 3.1.2 and the possi-

ble numerical instabilities of the term [XT
dr[k]G[k]Xdr[k]]−1 in (3.10), the SM-PAP

practical implementation is based on the following update expression [52]

ĥ[k+1] =

ĥ[k]+G[k]Xdr[k] [δsmI+XT
dr[k]G[k]Xdr[k]]−1[edr[k]− γ[k]], if |e[k]| > γ̄ ,

ĥ[k] , otherwise ,

(3.11)

where δsm is a small positive value.

When observing (3.11), one notices that the parameter γ[k] has not been properly

defined yet since we have only stated that ‖γ[k]‖∞ ≤ γ̄. In fact, this variable

selection is important to the algorithm overall behavior because it leads to a better

or worse implementation of the theoretical SM-PAPA problem (3.8). This vector

γ[k] is the so-called constraint vector (CV) and has been usually selected in the

literature according to some heuristics, as in [29, 56–59]. Based on the recent work

[53], a different approach is suggested in the next section, where the optimal CV

idea is generalized in order to cover the SM-PAPA and provide a particular choice

of γ[k], called an optimal CV, that improves the performance of the SM-PAPA

implementation (3.11) in terms of some FoMs.

3.3 Optimal Constraint Vector for the SM-PAPA

The simplest way to define the constraint vector is by implementing the trivial-choice

CV (TC-CV) [29] γtc, where we use γ[k] = γtc = 0 and the update equation (3.11)

becomes identical to the PAPA expression (2.33) when an algorithm update (|e[k]| >

27

γ̄) is required. Although very similar to the conventional PAPA, the SM-PAPA with

TC-CV provides a considerable reduction in computational complexity and, due to

the data-selective strategy considered in Subsection 3.1.1 (without special treatment

for outliers), one can conclude that the TC-CV SM-PAPA is equivalent to this data-

selective strategy. The main problem with the trivial choice method can be observed

in Figure 3.1, where one notices that the update vector ĥ[k + 1] is too far from the

current vector ĥ[k] and right in the center of region ψ1[k] = H[k] ∩H[k − 1]. Since

the SM-PAPA original problem in (3.8) intends to minimize this distance between

current and updated vectors, more complex CV definitions must be considered.

ψ1[k]

H[k]

d[k − 1]− ĥTx[k − 1] = γ̄

d[k − 1]− ĥTx[k − 1] = −γ̄

H[k − 1]
d[k − 1]− ĥTx[k − 1] = 0

ĥ[k + 1]

ĥ[k]

d[k]− ĥTx[k] = −γ̄ d[k]− ĥTx[k] = γ̄

d[k]− ĥTx[k] = 0

Figure 3.1: TC-CV for the SM-AP (SM-PAPA with G[k] = I) using L = 1.

A reasonably good selection method for defining γ[k] is the simple-choice con-

straint vector (SC-CV) [29], which is easily implemented and usually provides better

results than the TC-CV. Based on the theoretical update equation (3.10), the SC-

CV method relies on the fact that εdr[k] = ddr[k]−XT
dr[k]ĥ[k+ 1] = γ[k] and define

the SC-CV γsc[k] = [γsc0 [k] γsc1 [k] ... γscL−1
[k] γscL [k]]T as

γscl [k] =


γ̄
e[k]

|e[k]|
, if l = 0 ,

e′[k − l] , otherwise ,

(3.12)

where e[k] and e′[k − l] (l ∈ {1, 2, ..., L}) represent the components of the current

error vector edr[k] in (2.21).

The SC-CV in (3.12) assumes that the current vector ĥ[k] is already inside the

set formed by ∩k−1
i=k−LH[i], so it only needs to satisfy the most recent requirement

d[k]− xT[k]ĥ[k] to be also inside of H[k]. In order to achieve this, it simply places

the 0th component of γsc[k] at the closest border of H[k], which is represented by

28

γsc0 [k] = γ̄ e[k]
|e[k]| = γ̄ · sign[e[k]], as illustrated in Figure 3.2.

ψ1[k]

H[k]

d[k − 1]− ĥTx[k − 1] = γ̄

d[k − 1]− ĥTx[k − 1] = −γ̄

H[k − 1]

d[k − 1]− ĥTx[k − 1] = −γ̄2[k − 1]
ĥ[k]

ĥ[k + 1]

d[k]− ĥTx[k] = −γ̄ d[k]− ĥTx[k] = γ̄

Figure 3.2: SC-CV for the SM-AP (SM-PAPA with G[k] = I) using L = 1.

Like the TC and SC methods, the adaptive filtering literature presents some

different heuristic CV choices for the SM-AP and SM-PAPA [56–59]. Among these,

the briefly described SC-CV [29, 34] deserves special attention due to its ease of

implementation and the fact that it usually induces the best MSE performance.

However, it is still an heuristic approach and it considers the theoretical update

expression in (3.10) instead of the practical update implementation (with the addi-

tion of δsmI for numerical stability) of (3.11). Thus, motivated by the systematic

approach proposed in [53] for obtaining an optimal CV for the SM-AP algorithm,

this dissertation proposes a generalization of this method for the SM-PAPA. For

understanding this idea, in the next subsection we present the relation between the

practical SM-PAPA update equation (3.11) and a convex cost-function, which will

be later used as the reference for evaluating the optimal CV.

3.3.1 SM-PAPA Convex Cost-Function

As we have observed, the theoretical solution (3.10) is the vector that solves the

alternative constraint problem (3.9), which is an estimate of the original SM-PAPA

idea that aims to obtain the solution to the l∞-norm inequality constraint minimiza-

tion task in (3.8). However, the addition of δsmI in the SM-PAPA implementation

in (3.11) requires updating results in a deviation from the original problems (3.8)

and (3.9). In fact, based on [53], we demonstrate in this work that the practical SM-

PAPA update equation in (3.11), when |e[k]| > γ̄, is equivalent to the optimization

29

problem

minimize
ĥ[k+1]

‖ĥ[k + 1]− ĥ[k]‖2
G−1 +

1

δsm

‖ddr[k]−XT
dr[k]ĥ[k + 1]− γ[k]‖2

2 . (3.13)

As the squared norm ‖ · ‖2
2 function is convex and the sum operation preserves

convexity [43], we find that the practical SM-PAPA cost-function in (3.13) is convex,

from where we conclude it presents a single minimum point.

In order to prove the relation between (3.11) and (3.13) we first recall that, since

‖b‖Z = ‖Z1/2b‖2 for a positive definite matrix Z and a vector b with compatible

dimension [43], (3.13) can be rewritten considering the l2-norm as

minimize
ĥ[k+1]

‖G−1/2
Ä
ĥ[k+1]− ĥ[k]

ä
‖2

2 +
1

δsm

‖ddr[k]−XT
dr[k]ĥ[k+1]−γ[k]‖2

2 . (3.14)

Thus, the optimization problem (3.13) can be solved analitically by expanding the

cost-function expression in (3.14), taking its gradient with respect to ĥ[k + 1], and

equating the result to zero, which results in

ĥ[k+ 1] =

G−1[k] +
Xdr[k]XT

dr[k]

δsm

−1G−1[k]ĥ[k] +
Xdr[k]

δsm

(ddr[k]−γ[k])

. (3.15)

As the proportionate matrix G[k] is diagonal and positive definite, one can easily

compute G−1/2[k] such that the inverse matrix in (3.15) is rewritten as

[
G−1[k] +

Xdr[k]X
T
dr[k]

δsm

]−1

= G
1
2 [k]

(
I+

1

δsm
G

1
2 [k]Xdr[k]X

T
dr[k]G

1
2 [k]

)−1

G
1
2 [k] . (3.16)

By using the matrix inversion lemma (Woodbury matrix identity) [29] on the

right-hand side of (3.16), we obtain the alternative expression

[
G−1[k] +

Xdr[k]X
T
dr[k]

δsm

]−1

=
(
I[k]−G[k]Xdr[k](δsmI+XT

dr[k]G[k]Xdr[k])
−1XT

dr[k]
)
G[k] ,

(3.17)

which is used in (3.15), yielding

ĥ[k + 1] = ĥ[k]−G[k]Xdr[k]
(
δsmI+XT

dr[k]G[k]Xdr[k]
)−1

XT
dr[k]ĥ[k]+

G[k]Xdr[k]

δsm

[
I−

(
δsmI+XT

dr[k]G[k]Xdr[k]
)−1

XT
dr[k]G[k]Xdr[k]

](
ddr[k]− γ[k]

)
.

(3.18)

However, as the matrix identity
ï
I −

Ä
δsmI + Z

ä−1
Z
ò

= δsmI
Ä
δsmI + Z

ä−1
holds

30

and edr[k] = ddr[k]−XT
dr[k]ĥ[k], from (3.18) we finally have that

ĥ[k + 1] = ĥ[k] + G[k]Xdr[k]
Å
δsmI + XT

dr[k]G[k]Xdr[k]
ã−1Å

edr[k]− γ[k]
ã
. (3.19)

Therefore, as (3.19) is equal to the update rule in (3.11), we have proved that the

SM-PAPA practical update equation is related to the convex problem of minimizing

the cost function (3.13) with respect to ĥ[k + 1]. By considering this result for

the SM-PAPA, we suggest a systematic method for selecting an optimal constraint

vector γopt[k] at each iteration of the algorithm.

3.3.2 Optimal CV Solution

Considering the practical SM-PAPA cost-function minimized in (3.13), we notice the

presence of the constraint vector γ[k], which has not been taken into account yet. In

order to provide a non-heuristic method for defining γ[k], [53] suggests incorporating

the CV as an additional variable that must be tuned so that it minimizes the convex

cost-function. Based on the proposal for SM-AP algorithms [53], we extend this idea

for handling the more general SM-PAPA and find that

minimize
ĥ[k+1],γopt[k]

‖ĥ[k + 1]− ĥ[k]‖2
G−1[k]+

1

δsm

‖ddr[k]−XT
dr[k]ĥ[k + 1]−γopt[k]‖2

2

subject to ‖γopt[k]‖∞ ≤ γ̄ .

(3.20)

Thus, we define the optimal CV [53] as the solution γopt[k] that minimizes (3.20).

According to Subsection 3.3.1, by first minimizing (3.20) with respect to ĥ[k+1]

one obtains (3.19). Then, if we substitute this expression for ĥ[k + 1] into (3.20),

the term ‖ĥ[k + 1]− ĥ[k]‖2
G−1[k] becomes

‖G−
1
2 [k] · [ĥ[k + 1]− ĥ[k]]‖2

2 = [edr[k]− γopt[k]]T
Å
δsmI + XT

dr[k]G[k]XT
dr[k]

ã−1

·

·XT
dr[k]G[k]Xdr[k]

Å
δsmI + XT

dr[k]G[k]XT
dr[k]

ã−1

[edr[k]− γopt[k]] .

(3.21)

Similarly, we verify that the second term in (3.20) is rewritten as

‖ddr[k]−XT
dr[k]ĥ[k + 1]− γopt[k]‖2

2 =

=

∥∥∥∥∥δsm

ï
δsmI + XT

dr[k]G[k]XT
dr[k]

ò−1ï
edr[k]− γopt[k]

ò∥∥∥∥∥2

2

.
(3.22)

Therefore, by defining the positive definite matrix Ssm[k] ∈ R(L+1)×(L+1) as

Ssm[k] =
Ä
δsmI + XT

dr[k]G[k]Xdr[k]
ä−1

, (3.23)

31

and summing expressions (3.21) and [δ−1
sm×(3.22)], one concludes that the original

minimization task (3.20) becomes the strictly convex quadratic programming (QP)

box-constrained problem

minimize
γopt[k]

Copt(γopt[k]) = [γopt[k]− edr[k]]T · Ssm[k] · [γopt[k]− edr[k]]

subject to ‖γopt[k]‖∞ ≤ γ̄ ,
(3.24)

which must be evaluated at each algorithm iteration k for finding the current optimal

constraint-vector γ[k] = γopt[k] to be be used along the SM-PAPA update equation

(3.19).

3.3.3 Discussion about Computing the Optimal CV

According to [53], optimization problems such as (3.24) can be numerically solved

using either efficient interior-points (IP) methods for precise results [43] or proximal-

gradient algorithms for computational efficiency [60]. For instance, a simple way for

computing the optimal CV γopt[k] in (3.24) is by calling a convex problem solver,

such as the MATLAB-based toolbox CVX [61], whenever an update of ĥ[k + 1] is

required.

Although the usefulness of this simple procedure for evaluating the optimal

γopt[k] offline, its use is restricted in real-time applications since each call of an

IP-based solver like CVX might be very time-consuming. Thus, in order to evaluate

the optimal CV in real-time applications, this work suggests an alternative way for

solving quickly and with acceptable precision the bound-constrained QP problem in

(3.24).

As QP problems are the simplest, yet the most frequently encountered class

of constrained nonlinear optimization problems [62], there are several classes of

algorithms for solving them. Considering the case with inequality constraints, the

already mentioned IP method [43] is a good choice for large problems, but may

underperform when compared to other algorithms that take specific characteristics

of the current problem into account.

Particularly, the most effective method for solving a box-constrained QP problem

is the gradient projection (GP) [63, 64]. As the GP method can quickly verify the

constraint active set and perform subspace minimization, simplifying the search task,

a GP implementation is expected to solve bound-constrained QP problems faster

than IP methods, which never eliminate inequalities and work on the complete

dimensional space. Besides faster convergence, the GP method also presents many

good properties such as the simplicity and the warm start possibility [65]. Therefore,

differently from the IP solver in [53], this dissertation proposes using a GP approach

32

for computing the minimization problem (3.24), which is further explained in the

next subsection.

3.3.4 GP Method for Computing the Optimal CV

Gradient Projection (GP) methods [63, 64, 66] are simple procedures that might be

seen as natural extensions of the steepest-descent idea for handling box-constrained

problems. Consequently, the GP shares most of the advantages and disadvantages

presented by algorithms based on the gradient of a function [66].

Basically, the idea behind using gradient projection methods for evaluating the

optimal CV γopt in (3.24) consists in computing a new algorithm iterate γ+ ∈ RL+1

from an initial point γ0 ∈ RL+1 based on two stages. First, the algorithm searches

for the so-called Cauchy point γc ∈ RL+1, which locally minimizes the quadratic

cost-function Copt(γopt[k]) along a specific path. This path is formed by a sequence

of lines, being initially based on the negative gradient direction −∇γoptCopt(γ0) (like

the steepest-descent algorithm) but bending whenever a bound on γopt is found in

order to keep the CV inside the feasible domain (in this work, ‖γopt‖∞ ≤ γ̄).

The name gradient projection comes from the fact that the Cauchy point search

can be summarized by computing

γc = P(γ0 − α · ∇γoptCopt(γ0)) , (3.25)

where ∇γoptCopt(γ0) represents the gradient of a quadratic function C(γopt) with

respect to γopt evaluated at point γ0, P(·) is the projection function and α is the

step-length parameter given by a line search scheme, such as the Armijo rule [63, 66].

For illustration purposes, in the particular case of the convex problem (3.24), if we

consider a non-projected vector γ ′ = γ0 − α∇γoptCopt(γ0) with (L+ 1) components

γ ′ = [γ′0 γ′1 ... γ′L]T, the individual effect of the projection function P(·) on its

argument ith component γ′i is described by

P(γ′i) =


−γ̄ , if γ′i < −γ̄ ,

γ̄ , if γ′i > γ̄

γ′i , otherwise (|γ′i| ≤ γ̄) ,

(3.26)

and its overall effect can be observed in Figure 3.3.

As illustrated in Figure 3.3, we notice that the minimum search for the Cauchy

point is restricted to the surface of the box defined by the problem constraints

after the first bend. Thus, one expects that, after the Cauchy point γc has been

33

γ0

γc

γ0 − α · ∇Copt

Figure 3.3: Example of a piecewise-linear path in R3 obtained for the Cauchy point
γc search, the first stage of a gradient projection method.

computed, its components γc
i define the current active set A(γc) as

A(γc) = { i | γc
i = γ̄ or γc

i = −γ̄ } . (3.27)

Based on the active set A(γc), the second stage of the GP method explores the face

of the feasible box region on which γc lies by solving a subproblem where the active

components γi (i ∈ A(γc)) are fixed at γc
i [64], which are either −γ̄ or γ̄ in the

optimal CV particular case. Thus, the second stage reduces the original subspace

dimension in (3.24) from (L + 1) to
î
(L + 1) − |A(γc)|

ó
, resulting in the simpler

problem

minimize
γ+

Copt(γ
+) = [γ+ − edr[k]]T · S[k] · [γ+ − edr[k]] ,

subject to γ+
i = γc

i , i ∈ A(γc) ,

|γ+
i | ≤ γ̄ , i /∈ A(γc) ,

(3.28)

which provides the current iteration update vector γ+. Although the reduced con-

vex problem (3.28) presents a single solution, it does not have to be solved exactly

and this is not even desirable since the subproblem (3.28) may be almost as diffi-

cult as the original minimization task in (3.24) [64]. As a matter of fact, the only

requirement for the GP procedure global convergence is that the cost-function in

approximate solution γ+ obtained from (3.28) is no worse than that for γc, i.e.,

Copt(γ
+) ≤ Copt(γ

c). Although one can simply choose γ+ = γc, some works sug-

gest implementing an intermediate selection between this approach and the proper

solution of (3.28), such as conjugate gradient iterations mentioned in [64].

34

Thus, by computing the vector γ+ one reaches the end of the GP algorithm inter-

nal iteration. These iterations are performed until the Karush–Kuhn–Tucker (KKT)

conditions are satisfied [43]. For further reference about particular implementations

of GP methods, a detailed description is presented in [63] and [64].

3.3.5 Numerical Simulations

This subsection compares the performance of three SM-PAPA with different CV

selection rules: the SC-CV from (3.12), the optimal CV computed using interior-

point (IP) methods, as suggested in [53], and the gradient projection (GP) method

proposed in Subsection 3.3.4. For the IP approach we employ the widely known

CVX convex optimization toolbox [61], whereas for the GP implementation we use

the MATLAB script developed by C. T. Kelley in [67], which is a practical coded

version of the algorithm presented in [66].

We use the SM-PAPA for a system identification setup like Figure 2.2, where the

system impulse response is described by a sparse vector h ∈ R16. Additionally, in

order to verify how fast the algorithms can readapt, a proportional increase in the

non-zero system coefficients hm ∈ h (m ∈ {0, 1, ..., 15}) occurs at k = 1000. Thus,

the system impulse responses are given by

h1 = [1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0]T, 0 ≤ k < 1000 , and

h2 = [2, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 2, 2, 2, 0]T, 1000 ≤ k ≤ 4000 .

Based on [53], we expect that the optimal CV brings about more noticeable

improvements in setups with statiscally colored inputs when compared to the SC-

CV. Thus, this simulation focuses only on correlated input signals, as the ones

generated by auto-regressive (AR) processes.

Considering that wx[k] is a white Gaussian real-valued noise with unitary vari-

ance σ2
wx

= 1, the input signal x[k] is drawn from the following AR processes:

• AR1: x[k] = 0.95x[k − 1] + wx[k];

• AR4: x[k] = 0.95x[k− 1] + 0.19x[k− 2] + 0.09x[k− 3]− 0.5x[k− 4] +wx[k].

Furthermore, taking a measurement noise with variance σ2
w = 10−3 at the system

output, we follow the practical suggestion from [29] and choose an update threshold

of γ̄ =
√

5σw ≈ 0.071 for the SM-PAPA. Additionally, we use a data reuse factor

L = 3, initialize the coefficients vector as ĥ[0] = 0 (ĥ[k] ∈ R16), and adopt the SM-

PAPA internal parameters δsm = 5 · 10−7 as the regularization factor and τ = 0.9

for updating the proportionate matrix G[k] in (2.32) according to the rule in [52]

35

when e[k] > γ̄, which is conveniently written as

νsm[k] = 1− γ̄

|e[k]|
,

gi[k] =
1− τ νsm[k]

16
+
τ νsm[k] |ĥi[k]|∑15

i=0 |ĥi[k]|
, i ∈ {0, 1, ..., 15} ,

(3.29)

in the current application. If ĥ[k] = 0, as in the first algorithm iteration, it is

considered that the second term in the right-hand side of gi[k] in (3.29) assumes a

null value.

For comparing the performances induced by the three CVs we choose the follow-

ing FoMs: cost-function value C(γ[k]) in (3.24), MSE in (2.4), percentage of updates,

and the average iteration time interval in steady-state (last 500 iterations). This last

FoM is based on MATLAB-functions tic and toc and aims to measure roughly the

time interval taken for calculating the new CV γ(k) for each rule. Thus, although

the absolute value of this FoM depends on the simulation environment used, its

relative result gives a good idea about the speed of each implementation.

For simulation purposes, each algorithm has been performed for 4000 iterations

in every run and, for evaluating the estimated FoMs, the average of 250 runs has

been taken. The numerical results verified for the simulations involving the three CV

selection rules are presented in Figures 3.4 and 3.5, where the cost-function and MSE

time-varying behaviors are illustrated, and Table 3.1, that summarizes the FoMs

average iteration time interval and percentage of updates. In particular, the optimal

CV based on an IP implementation is not explicitly illustrated in Figures 3.4 and

3.5 because it is virtually identical to the signals obtained using the GP optimal CV.

0 2000 4000

-40

-20

0

20

0 2000 4000

-20

0

20

Figure 3.4: Cost-function C(γ[k]) in (3.24) and MSE for the AR1 input scenario.

Based on the information presented, one can notice that using the optimal CV

approach in systems with correlated input signals results in lower steady-state values

for the cost-function C(γ[k]) and MSE, besides the reduced number of coefficient

updates, in comparison to the SC-CV. However, due to its simplicity, the SC-CV

36

0 2000 4000

-40

-20

0

20

0 2000 4000

-20

0

20

Figure 3.5: Cost-function C(γ[k]) in (3.24) and MSE for the AR4 input scenario.

Table 3.1: Average iteration time interval and update percentage of different CV
selection rules for the SM-PAPA

AR1 input AR4 input

CV Rule

Average
Iteration

Time Interval
[s]

Updates [%]

Average
Iteration

Time Interval
[s]

Updates [%]

Simple-Choice 2.8 · 10−7 12.9% 5.6 · 10−7 20.7%

IP Optimal 1.8 · 10−2 11.3% 2.4 · 10−2 17.0%

GP Optimal 2.0 · 10−4 11.3% 5.3 · 10−4 17.0%

is much faster than the optimal CV implementations when it comes to the average

time interval taken at every iteration for calculating γ[k].

Moreover, an important conclusion drawn from the comparison between optimal

CV selection rules in Table 3.1, and one of the contributions of this work, is that the

use of a GP method for obtaining the optimal CV results in faster implementations

than those based on IP methods. Although the average time interval results pre-

sented in Table 3.1 focus on the steady-state performance, by plotting the computing

time interval in both transient and steady states, one can verify a similar behavior

in which the GP-based implementation is much faster than the IP-based one, being

more than 45 times faster in the steady-state region for both input signals tested.

3.3.6 Summary of Contributions

The optimal CV for SM-PAPA presented in this section extended an exact for-

mulation from [53] to the family of set-membership proportionate affine projection

algorithms. The theoretical generalization is corroborated by a numerical perfor-

mance comparison with the simple-choice CV, which indicates that the optimal CV

37

approach presents advantages for colored input signals in sparse environments.

In addition, the gradient projection method for obtaining the optimal CV pro-

duces similar overall results when compared to a standard interior-point implemen-

tation. The great advantage of the suggested GP approach is that it is considerably

faster than the IP-based method, enabling its use in real-time applications.

38

Chapter 4

Graph Signal Processing

In this chapter we first present the basic ideas concerning the graph signal processing

(GSP) framework, where we start by describing the mathematical graph structure

and defining the graph signal concept, which allows us to discuss the two alternative

approaches for implementing GSP: based on the algebraic signal processing (ASP)

and on the graph spectral theory [6]. Then, we analyze the extension of classical

signal processing ideas, such as Fourier transform and compact representation of

information, for defining bandlimited graph signals and obtaining proper methods

for sampling and reconstructing these signals. Finally, the last part of this chapter

deals with the adaptive approach for online estimating bandlimited graph signals,

presenting the recently suggested connection between the adaptive filtering and the

GSP research areas, where LMS and RLS-based algorithms are employed for solving

an original GSP problem.

4.1 Basic Concepts about Graphs

Intended for modeling relations among objects, a graph is a generic mathematical

structure made up of two simple elements: vertices (or nodes) and edges (or links).

The use of these elements arise naturally in some practical applications, as the ones

involving spatial distances between different regions, and allow useful abstractions

for solving specific problems. For example, let us consider the classical problem

of the seven bridges of Konigsberg (now Kaliningrad, Russia), whose solution by

Leonard Euler led to the development of the mathematical branch known as graph

theory [5]. Since the city of Konigsberg was formed by four landmasses connected by

seven bridges in Euler’s time, as can be observed in Figure 4.1a, a practical question

arises when one asks if it is possible for a citizen to walk through the town so that

each bridge would be crossed exactly once.

For solving this problem, Euler devised a convenient representation where the

landmasses become vertices and the bridges are seen as edges connecting these nodes,

39

(a) Map showing the city bridges. (b) Respective graph representation.

Figure 4.1: City of Konigsberg in Euler’s time. Taken from [5].

as shown in Figure 4.1b. Based on this graph representation, Euler proved that it

was impossible to cross each bridge of Konigsberg once and only once because the

graph in Figure 4.1b presented nodes of odd degree [5], i.e., with an odd number

of edges connected to them. The importance of this result is that its generalization

can be applied to similar problems, where the problem essence is extracted from its

particularities, in the same way as basic arithmetic operations do not require a pre-

cise knowledge about the objects they operate on. The main results and properties

of graph structures gave rise to the research field of graph theory [5].

4.1.1 Graph Structure

In general terms, a graph structure G = (V , E) with N nodes or vertices is formally

defined by the vertices set V = {v1, v2, ..., vN} and edges set E . Although a general

graph might present any number of edges connecting two vertices vn, vm ∈ V , as

happens for the Konigsberg graph in Figure 4.1b, in this work we assume that

the connection between two nodes has at most one edge (multiple edge graphs are

not considered). Then, the N -node structure G = (V , E) has at most N(N − 1)/2

edges, which are uniquely characterized by the notation v̆nvm if the relation between

vertices vn and vm exists. This observation allows us to uniquely represent the edges

set as E = {v̆nvm}. For didactic purpose, we present some simple graph structures

with 5 vertices and different edge set cardinality (|E|) in Figure 4.2. These three

graphs Ga = (Va, Ea), Gb = (Vb, Eb) and Gc = (Vc, Ec) have the same vertex set

Va = Vb = Vc = {v1, v2, v3, v4, v5}, but different edge sets respectively given by

Ea = {v̄1v2, v̄1v4, v̄2v3, v̄2v4, v̄4v5} ,

Eb = {v̄1v3, v̄1v5, v̄2v3, v̄2v4, v̄3v4, v̄3v5} ,

Ec = {v̄1v2, v̄1v3, v̄1v4, v̄1v5, v̄2v3, v̄2v4, v̄2v5, v̄3v4, v̄3v5, v̄4v5} .

(4.1)

40

v1

v2

v3

v4

v5

(a) Ga(Va, Ea) with |Ea| = 5.

v1 v2

v3

v4v5

(b) Gb(Vb, Eb) with |Eb| = 6.

v1 v2

v3

v4

v5

(c) Gc(Vc, Ec) with |Ec| = 10.

Figure 4.2: Simple graph structures with 5 nodes and different numbers of edges.

Since a graph structure intends to properly represent the relation between ob-

jects, and the intensity of these connections are not necessarily the same throughout

the whole graph, it is useful to include an auxiliary parameter for indicating stronger

or weaker node links in a graph. For describing the connection strength between

nodes vn and vm ∈ V , we consider that each edge v̆nvm ∈ E is associated with a non-

null weight anm ∈ R∗, which can be understood as a proximity or similarity metric.

Based on these values, by taking the weight anm as an element of the nth row and

mth column, one can obtain an N ×N matrix called the adjacency matrix A, which

is useful since it stores information about the graph connections in a compact rep-

resentation, being widely used in some GSP approaches [4, 7, 8]. Additionally, an

alternative graph representation is given by the Laplacian matrix L ∈ RN×N defined

as L = K−A, where K is a diagonal matrix with diagonal entries kn =
∑N
m=1 anm

[4]. By considering the bull graph Ga(Va, Ea) in Figure 4.2a, the simplest way of

assigning edge weights is to consider that anm = 1 if v̆nvm ∈ Ea and anm = 0 if

v̆nvm /∈ Ea, which results in the respective adjacency and Laplacian matrices given

by

A′a =



0 1 0 1 0

1 0 1 1 0

0 1 0 0 0

1 1 0 0 1

0 0 0 1 0


, L′a =



2 −1 0 −1 0

−1 3 −1 −1 0

0 −1 1 0 0

−1 −1 0 3 −1

0 0 0 −1 1


. (4.2)

On the other hand, if we wish to describe the connections among some nodes

as stronger than others, we employ the edge weights as {a12, a14, a23, a24, a45} =

41

{2, 2, 1, 2, 1} and obtain the adjacency and Laplacian matrices

A′′a =



0 2 0 2 0

2 0 1 2 0

0 1 0 0 0

2 2 0 0 1

0 0 0 1 0


, L′′a =



4 −2 0 −2 0

−2 5 −1 −2 0

0 −1 1 0 0

−2 −2 0 5 −1

0 0 0 −1 1


. (4.3)

In particular, from (4.2) and (4.3) we observe that both the adjacency and Laplacian

matrices are symmetric, i.e., they are equal to their transpose. Although this matrix

property is not true for directed graphs (digraphs), in which anm 6= amn for some

n,m ∈ N = {1, 2, . . . , N}, as this work only considers undirected graph structures,

where anm = amn, it follows that both A and L are always symmetric in our scope.

4.1.2 Graph Signal

So far we have discussed about the graph structure, a topic which is extensively

studied in the research field of graph theory [5] since many useful graph properties

can be obtained by a proper structural analysis. However, in certain practical prob-

lems the simple abstraction of objects and their relations as vertices and weighted

edges, respectively, is not enough for a complete description of the problem. For

example, let us consider Figure 4.3a, where we have data about the location of 5

cities, designated as the nodes {v1, v2, v3, v4, v5}, and their respective temperature

values at a specific time instant. If we consider an explicit connection between cities

when their Euclidean distance dE(vi, vj) (equal to
»

(∆x)2 + (∆y)2) is smaller than

3, it is trivial to conclude that the bull graph in Figure 4.2a can be used for the

abstraction of the current scenario. Even though the city distances might be more

accurately reported by assigning different values of edge weights for different dis-

tances, the temperature values are still not properly represented by the use of the

graph structure only.

Thus, based on our simple example of temperature values across neighbor cities,

it is natural to come up with the idea of a graph signal, in which scalar values are

assigned to the vertices of a graph structure. In formal terms, by considering a

generic graph structure G = (V , E) with N vertices, one defines on the nodes of G
the graph signal (GS) x : V → R, that can be compactly represented as a vector

xG ∈ RN , whose nth entry xGn contains the function value at vertex vn ∈ V [6]. For

instance, the problem data presented in Figure 4.3a corresponds to the graph signal

42

City Coordinates Temp.

(x, y) (◦ C)

v1 (0, 0) 10

v2 (1,
√
3) 15

v3 (2, 1 +
√
3) 20

v4 (−1,
√
3) 15

v5 (−2, 1 +
√
3) 20

(a) Summary of the problem data.

v1

v2

v3

v4

v5

(b) GS representation 1.

10 15 20

v1

v2

v3

v4

v5

(c) GS representation 2.

Figure 4.3: Graph signal concept illustrated on an application scenario with the
spatial location of 5 nearby cities and their current temperature measurements.

x′G ∈ R5 given by

x′G =
ï
10 15 20 15 20

òT
, (4.4)

which is also graphically represented as in Figure 4.3b or in Figure 4.3c. In par-

ticular, the graphic representation in Figure 4.3c is more compact than the one in

Figure 4.3b, thus, it will be used in this work as the default description for illustrat-

ing the GS over the graph structure.

4.1.3 Graph Structure Inference

Although some practical applications exhibit an explicit graph structure represen-

tation, such as the Konigsberg bridge problem summarized in Figure 4.1, there are

cases in which one has a signal dataset obtained from individual objects but does

not know how these objects relate to each other, i.e., the graph structure remains

implicit. A clear example of this scenario has been given in the previous subsection,

where we did not have the explicit graph structure for precisely describing the re-

lations among cities but, since we assumed that nearby regions behave in a more

similar way than far-away regions, we follow a set of rules and try to estimate the

actual structure. Basically, in this case we evaluated the Euclidean distance between

cities and assumed the existence of a graph edge when this distance was smaller than

a threshold T ∈ R.

Besides this trivial procedure for estimating the graph structure, where we just

indicate the existence of a simple edge between nodes, the inference process can be

improved if we assign different weights to each possible edge, in which these weights

are somewhat proportional to a proximity or similarity metric between vertices. For

example, by considering an N -node sensor network application that each sensor is

taken as a graph vertex vn (n ∈ N), as we expect that closer sensors provide a

more similar measurement, we may adopt the Euclidean distance dE(vi, vj) among

43

vertices vi and vj to evaluate their relatedness. However, as one wishes to obtain

higher weights for closer nodes, a suitable metric mapping for evaluating the edge

weight aij is to use the Gaussian kernel weighting function [6]

aij = exp

Ñ
−d2

E(vi, vj)

2θ2

é
, (4.5)

where θ is an internal variance parameter that depends on the application. Moreover,

in a similar way to the simpler inference method, we only evaluate (4.5) if the

Euclidean distance dE(vi, vj) is smaller than the threshold T .

Although this inference method based on a threshold metric seems reasonable

for general applications, it presents some disadvantages in more irregular scenarios,

where one has a graph with both dense and sparsely populated regions. In these

cases, the threshold selection leads to a trade-off between keeping the graph con-

nected and finding a sparse adjacency matrix since, for covering a large distance

between nodes, we choose a large threshold T that implies in increasing the number

of edges [68]. In order to overcome this issue and obtain a graph structure that

maintains a regular number of edges among vertices, an alternative method is to

connect each node to its K closest neighbors and assign the edge weights according

to a given similarity metric [6], such as the mapping expression in (4.5). A prac-

tical example of this scenario, where implementing the K-closest-neighbor strategy

presents some advantages, occurs when one deals with certain datasets collected

from sensors spread across the Brazilian territory, such as the temperature measure-

ments from weather stations [41] later presented in Section 6.1. As we observe from

the average temperature measurements taken in three distinct months of the year

in Figure 4.4, the spatial distribution of weather stations is irregular, which justifies

the use of the 8 closest neighbors for estimating the graph structure.

4.2 GSP Frameworks

Since we start modeling the information represented on a graph structure as a sig-

nal defined over its nodes, as suggested in Subsection 4.1.2, we expect to extend

classical signal processing ideas in order to further explore this graph signal repre-

sentation. However, at this point it is necessary to distinguish between two distinct

GSP frameworks that grew independently throughout the last years and have been

established as default mindsets when dealing with graph signals [68].

The first approach [7, 8] is based on the algebraic signal processing (ASP) theory

[69, 70], which uses the graph adjacency matrix A as elementary block by associating

it to the graph shift operation, from where most of the further developments, covering

44

(a) January (b) April (c) July

Figure 4.4: Inferred graph structure and graph signals representation of 1961-1990
monthly average temperatures (in ◦C) from Brazilian weather stations [41]. This
graph structure inference is based on the K closest neighbors strategy.

aspects such as graph filtering, arise. On the other hand, the second framework [6]

relies on graph spectral theory, a research branch of graph theory concerned with the

eigendecomposition of graph characteristic matrices, and uses the graph Laplacian

matrix L for defining the basis of its signal space [68]. Due to their relation with the

adjacency and Laplacian matrices described in Subsection 4.1.1, these alternative

approaches are conveniently called as GSPA and GSPL, respectively, in [68], where

further particularities between these two frameworks are discussed. Additionally,

another work that also pinpoints these GSP approach differences is [4]. In terms of

practical applications, the GSPL imposes the graph structure to be an undirected

graph with non-negative real edge weights, while the GSPA framework does not

require any restrictions on the graph structure or edge weight values [3].

4.3 GSP Toolset

Although the GSP frameworks developed so far extend a wide range of traditional

signal processing ideas [1], such as graph filtering, wavelet decomposition, denoising

and filter banks on graphs [4], in this dissertation we focus on a particular branch of

the GSP analysis, based on the useful properties that some graph signals present in

their frequency domain. Thus, in this section we introduce the idea of performing

a Fourier transform on a graph signal, which results in a sparse representation for

smooth graph signals, that can be sampled and perfectly reconstructed if some con-

ditions are satisfied. The recovery of sampled bandlimited graph signals from noisy

measurements is the inspiration for a first attempt on merging the well-establish

adaptive filtering research with the emerging area of GSP, culminating in the im-

45

plementation of LMS and RLS-based algorithms for graph signal estimation [19]

further explained in Section 4.4.

4.3.1 Graph Fourier Transform

Motivated by the classical signal processing tool known as the Fourier transform [1],

which expands an original time-domain signal into a Fourier basis of signals that are

linear-filtering invariant, one can define the graph Fourier transform (GFT) of a GS

xG ∈ RN as its projection onto a set of orthonormal vectors {un} ⊂ RN , where n ∈
N . Those basis vectors are usually chosen as the orthonormal eigenvectors of either

the adjacency matrix A [7, 8] or the Laplacian matrix L [6], depending on the GSP

approach considered (GSPA or GSPL, respectively), so that the information inherent

to the graph structure is naturally embedded in the resulting frequency-domain

representation. Although the choice for the more general approach GSPA may lead

to a particular case where matrix A is not diagonalizable and the GSP definition

requires the use of a Jordan form [7], as we only consider undirected graphs in this

work, both matrices L and A are real symmetric and their spectral decompositions

assume the form UΛUT, where Λ ∈ RN×N is the diagonal eigenvalues matrix and

U ∈ RN×N is the orthonormal eigenvectors matrix formed by the eigenvectors {un}
as columns of U. Thus, the GFT of a graph signal xG is given by [6, 7]

s = UTxG , (4.6)

and, for recovering xG from its frequency-domain representation s, one defines the

inverse graph Fourier transform (IGFT) as

xG = Us . (4.7)

For illustration purpose, let us consider the simple 5-node graph structure dis-

played in Figure 4.3, which we choose to be represented either by the adjacency

matrix A′′a or Laplacian matrix L′′a in (4.3), and the temperature graph signal x′G in

(4.4). Based on the adjacency matrix A′′a, we compute the orthonormal eigenvectors

matrix U′′A and obtain the respective frequency-domain representation s′′A according

46

to the GFT expression (4.6) as

s′′A =



0.0000 0.7648 0.3333 0.0000 0.5513

0.6533 −0.4135 −0.0000 0.2706 0.5736

−0.2706 0.1912 −0.6667 0.6533 0.1378

−0.6533 −0.4135 0.0000 −0.2706 0.5736

0.2706 0.1912 −0.6667 −0.6533 0.1378



T 

10

15

20

15

20


=



0.0000

2.8934

−23.3333

0.0000

28.2344


.

(4.8)

In a similar way, if we use the Laplacian L′′a in (4.3), we first evaluate U′′L and,

using the GFT in (4.6), find its respective frequency-domain signal s′′L as

s′′L =



−0.4472 0.0000 −0.4865 0.7505 0.0000

−0.4472 0.1133 −0.2979 −0.4596 0.6980

−0.4472 0.6980 0.5412 0.0843 −0.1133

−0.4472 −0.1133 −0.2979 −0.4596 −0.6980

−0.4472 −0.6980 0.5412 0.0843 0.1133



T 

10

15

20

15

20


=



−35.7771

0.0000

7.8445

−2.9093

0.0000


.

(4.9)

From both results in (4.8) and (4.9) we observe that the graph signal x′G in (4.4)

presents an interesting property in its frequency domain since it can be represented

by a reduced number of non-null values. This useful sparsity property in an alter-

native domain can be exploited in order to provide a more compact representation

of the original signal.

4.3.2 Sampling and Reconstruction of Graph Signals

Similarly to the definition used for time signals, we can extend the idea of bandlim-

ited signals to graph structures and say that a graph signal xo ∈ RN is bandlimited

or spectrally sparse (ssparse) when its frequency representation s given by the GFT

in (4.6) is sparse [12], as in (4.8) and (4.9). Taking F as an index subset of N
(F ⊆ N), a graph signal xo is defined as F -ssparse if s is such that sN\F is a zero

vector [12], i.e., the components of s with indices in N\F are equal to zero, where

N\F denotes the difference between sets N and F . In other words, this support or

frequency set of F can be described as F = {f ∈ N | sf 6= 0} [15]. For example,

based on the frequency-domain signals s′′A and s′′L from (4.8) and (4.9) we have the

support sets FA = {2, 3, 5} and FL = {1, 3, 4}, respectively. Then, we conclude that

the graph signal x′ is bandlimited with respect to both GSPA or GSPL approaches.

Moreover, if we consider that UF ∈ RN×|F| and sF ∈ R|F| are, respectively,

47

the matrix formed by eigenvectors and the frequency representation indexed by the

elements in F , from (4.7) we can write that

xo = UFsF . (4.10)

So, by only using the columns of U′′A and positions of s′′A that are indexed by the

support set FA = {2, 3, 5} we rewrite the graph signal x′G as



10

15

20

15

20


︸ ︷︷ ︸

x′G

=



0.7648 0.3333 0.5513

−0.4135 −0.0000 0.5736

0.1912 −0.6667 0.1378

−0.4135 0.0000 0.5736

0.1912 −0.6667 0.1378


︸ ︷︷ ︸

U′′AFA


2.8934

−23.3333

28.2344


︸ ︷︷ ︸

s′′AFA

. (4.11)

As bandlimited time signals can be sampled and reconstructed with no loss of

information as long as the Nyquist criterion is satisfied, we describe now a similar

result for graph signals. In terms of sampling and reconstruction of bandlimited

graph signals, some works [11, 20] describe these operations over a GS xo as the

result of pre-multiplying it by a sampling matrix DS ∈ RN×N and an interpolation

matrix Φ ∈ RN×N . Sampling is the operation of collecting only a limited number

of values from the GS, whose reading positions are determined by the sampling set

S ⊆ V . In this context, let DS ∈ RN×N denote a diagonal matrix with entries dSn ,

where dSn = 1 if vn ∈ S and dSn = 0 otherwise. Thus, one can write the sampled

vector xS ∈ RN as

xS = DSxG . (4.12)

In order to recover a original bandlimited signal xo from its sampled version xS ,

that is xo = ΦDSxo, we remember the IGFT expression of an F -ssparse signal in

(4.10) and verify that, when
Ä
UT
FDSUF

ä
has full rank, the interpolation matrix Φ

can be chosen as [10, 11]

Φ = UF
Ä
UT
FDSUF

ä−1
UT
F . (4.13)

Thus, by considering expressions (4.12) and (4.13), it is clear that the sampling and

interpolation procedure described by ΦDSxo results in the original graph signal

48

xo = UFsF [11, 71]. This conclusion follows from observing that

ΦDSxo =
î
UF
Ä
UT
FDSUF

ä−1
UT
F
ó î

DS
ó î

UFsF
ó

= UF

ïÄ
UT
FDSUF

ä−1Ä
UT
FDSUF

äò
sF

= UFsF = xo .

(4.14)

Therefore, we conclude that perfect reconstruction of an F -ssparse graph sig-

nal from its sampled version xS is possible as long as the chosen sampling set S
guarantees that [10, 11]

rank(DSUF) = |F| . (4.15)

As rank(DS) = |S|, from (4.15) we conclude that a necessary condition for per-

fect recovery of a sampled graph signal is that |S| ≥ |F| [11, 71], i.e., the number of

samples retained must be at least the amount of non-zero frequency components of

s. This condition is not sufficient, though, and for guaranteeing perfect reconstruc-

tion the sampling set S must be chosen in such a way that (4.15) is satisfied. This

fact clarifies the importance of an adequate choice for the sampling set S and its

connection to the graph structure UF , a topic discussed in the next subsection.

4.3.3 Sampling Set Selection

As so far we have considered recovering a bandlimited graph signal xo[k] from sam-

pled values xS [k], any choice of sampling set S respecting condition (4.15) results

in a perfect recovery of the original graph signal when applying the interpolation

matrix in (4.13). However, in a practical situation where one acquires data from

distributed sensors we expect the obtained measurements to be corrupted by noise,

which influences the performance of the traditional reconstruction method.

Based on this assumption, a more adequate modeling for a practical graph signal

obtained from distributed measurements across a sensor network is represented by

xw[k] = xo[k] +w[k] , (4.16)

where xw[k] is the noisy random signal1 available at the vertices of the graph,

xo[k] ∈ RN is the original bandlimited graph signal, and w[k] is a zero-mean noise

vector with covariance matrix Cw[k] ∈ RN×N .

Considering the noisy model in (4.16), if one evaluates some common figures of

merit (FoM) for an estimated graph signal x̂o[k], such as the mean-squared deviation

(MSDG) defined as

MSDG = E
¶
‖x̂o[k]− xo[k]‖2

2

©
, (4.17)

1In this work, x denotes a random vector with realizations denoted as x.

49

or the squared deviation (SDG) given by

SDG = ‖x̂o[k]− xo[k]‖2
2 , (4.18)

it is simple to verify that an estimate x̂o[k] based on the linear interpolation proce-

dure ΦDS , where Φ is given by (4.13), results in

MSDG(S) = E
{
‖
Ä
UT
FDSUF

ä−1
UT
FDSw[k]‖2

2

}
,

SDG(S) = ‖(UT
FDSUF)−1UT

FDSw[k]‖2
2 ,

(4.19)

where we recalled that UT
FUF = I. Both expressions in (4.19) present an explicit

dependency on DS , which indicates that the sampling set S must be properly cho-

sen to reduce a desired FoM. Nonetheless, the resulting optimization problem of

choosing N ′ indices from the N available in N = {1, 2, ..., N} to form the set S is

combinatorial in nature, requiring an intensive computational procedure for large N

since the number of possible sets is given by(
N

N ′

)
=

N !

(N −N ′)!N ′!
. (4.20)

Although the number of possible sets is just
Ä

5
3

ä
= 10 for the didactic bandlimited

graph signal with frequency representation described by (4.11), this number assumes

huge orders for certain real-world problems where many nodes are considered. For

instance, for the temperature measurements illustrated in Figure 4.4 and further

analyzed in Section 6.1, the parameters N = 299 and N ′ = 210 provide a total of
299!

89!210!
sets to be tested for finding the one that results in the smallest chosen metric.

Hence, in order to obtain an interesting trade-off between reasonable reconstruc-

tion performance and time required for calculating the sampling set S, a common

approach is to employ a greedy algorithm for minimizing a specific FoM. A greedy

algorithm basically reduces the overall computational complexity by searching for

an optimal selection at each stage and expecting to find a near optimal final value.

Detailed information regarding the reconstruction performance of greedy strategies

in GSP is presented in [12].

Particularly, in this work we consider the sampling set method displayed in

Algorithm 2, which employs at each iteration a greedy search for the index n ∈ N
to be added to the current set S in order to maximize the minimum non-negative

eigenvalue of (UT
FDS∪{n}UF). This method has been initially suggested in [11] and

takes the same form as one of the sampling strategies described in [15]. In fact,

following an idea similar to [11], it can be shown that Algorithm 2 uses a greedy

scheme for minimizing the SDG in (4.19).

50

Algorithm 2 Greedy algorithm for selection of S
1: S ← ∅
2: while |S| < N ′ do
3: n′ = argmax

n∈N
λ+

min(UT
FDS∪{n}UF)

4: S ← S + {n′}
5: end
6: return S

Although more general selection approaches allow adaptive graph sampling [15,

17, 19, 20], in which DS [k] might change at each instant k, this dissertation assumes

a static sampling matrix DS for simplifying some of its future derivations. This

premise relies on a practical appeal since, in many sensor network scenarios, the

sampled nodes are fixed and previously defined due to external particularities of

the problem, such as the costs of sensor placement. In mathematical terms, this

assumption implies there is prior knowledge about the signal representation in the

frequency domain, which defines UF , while the adaptive sampling idea is more

suitable for the cases where the support F is unknown. In particular, for the recovery

of bandlimited graph signals scenarios analyzed ahead, we consider the existence of

two previously known static matrices DS and UF . Although this assumption might

not be realistic for some practical applications, such as when the graph structure is

time-varying, it is still useful because it allows us to focus exclusively on the adaptive

algorithms for online reconstruction of bandlimited graph signals presented in the

remaining parts of this work.

4.4 Adaptive Estimation of Graph Signals

A first attempt to merge the traditional area of adaptive filtering [29], discussed

in Chapter 2, with the brand-new field of GSP is done in [15], where the authors

suggest LMS-based strategies for handling the problem of graph signal reconstruc-

tion. Soon after, an RLS-based algorithm is also proposed in [18] for an identical

estimation task. These adaptive approaches for graph reconstruction are inspired

by the possibility of robust online estimation and tracking of time-varying graph

signals. The robustness of the adaptive approach is handy to work in noisy scenar-

ios such as (4.16), when we expect an adaptive strategy to provide a smaller MSDG

in comparison to an instantaneous signal interpolation.

Basically, the adaptive estimation of graph signals deals with a scenario where

one intends to recover a bandlimited, or approximately bandlimited, reference GS

xo[k] ∈ RN from a reduced set S ⊆ V of noisy measurements represented as xw[k]

in (4.16). Since only the node signals indexed by S are acquired, the reference

51

measurements at time instant k are in fact DSxw[k]. Then, we define the estimation

error vector e[k] ∈ RN as the difference between the measured noisy signal DSxw[k]

and the respective positions of the current estimate x̂o, i.e.,

e[k] = DS(xw[k]−UF ŝF [k]) , (4.21)

where ŝF [k] ∈ R|F| is the frequency-domain estimate of x̂o[k], as given in (4.10).

Although both standard and GSP adaptive scenarios are motivated by similar

ideas, the corresponding instantaneous errors for the adaptive filtering framework in

(2.3) and its recast version for the GSP context in (4.21) have distinct dimensions.

Besides that, (4.21) replaces the influence of the input signal x[k] in (2.3) with the

graph structure represented by UF , taken here as time invariant. Thus, due to these

slight differences, we expect the GS estimation algorithms to resemble their classical

counterparts, yet presenting some peculiarities. To investigate these differences, we

present the GSP LMS [15] and RLS [18] algorithms and establish the equivalent

FoMs for evaluating the performance of adaptive methods for GS estimation.

4.4.1 The GSP LMS Algorithm

As argued in Section 2.2, the LMS algorithm [26, 29] stands out as one of the most

popular techniques due to its simple implementation and reduced computational

complexity. Based on the theoretical Wiener filter formulation, the LMS method

takes a practical approach by replacing the minimization of the MSE in (2.4) with

the minimization of the instantaneous squared error in (2.3) to define its expression

for computing the coefficients vector update ĥ[k + 1] as in (2.7).

In an attempt to produce an LMS-based equivalent algorithm for the GS re-

construction context, [15] considers the error signal available as e[k] from (4.21)

and, with a clear inspiration from the Wiener filter idea, defines a reference convex

problem as

min.
sF

E
î
‖DS(xw[k]−UFsF)‖2

2

ó
. (4.22)

Similarly to the original LMS, the GSP LMS algorithm in [15, 19] employs a

stochastic gradient approach to solve (4.22) and finds an update expression for

ŝF [k+1]. Then, from the IGFT in (4.7) one easily obtains a vertex-domain estimate

x̂o[k] for the bandlimited GS xo[k], which corresponds to the GSP LMS update

equation [15, 19]

x̂o[k + 1] = x̂o[k] + µLUFUT
Fe[k] , (4.23)

where µL ∈ R+ is a design parameter whose purpose is to control the trade-off

between increasing the convergence speed and reducing the steady-state error. Due

to its resemblance to the classical LMS parameter µl in Section 2.2, µL is also called

52

convergence factor. An analysis about the range of µL that guarantees algorithm

stability is presented in [15, 19], while the simple LMS-based procedure for the online

estimation of a graph signal using is displayed in Algorithm 3.

As discussed in Chapter 2, alternative LMS-based algorithms have been proposed

in order to take advantage of unexplored features of the original method, mainly

for enhancing its convergence speed. A particular LMS-based algorithm that is

worth mentioning is the normalized least-mean-squares (NLMS) algorithm [28, 29]

analyzed in Section 2.4, which usually improves the convergence speed by using a

time-varying convergence factor. Considering these issues, we shall extend the idea

of finding LMS-based strategies for GS estimation [15, 21] and propose the GSP

NLMS algorithm in Section 5.1.

Algorithm 3 LMS estimation of graph signals

1: k ← 0
2: while (true) do
3: e[k] = DS(xw[k]− x̂o[k])
4: x̂o[k + 1] = x̂o[k] + µL UFUT

Fe[k]
5: k ← k + 1

6: end

4.4.2 The GSP RLS Algorithm

An alternative approach to enhance convergence speed with respect to the LMS

algorithm is to consider a different cost function, like the weighted least-squares

(WLS) from which the original RLS algorithm in Section 2.3 is derived [28, 29]. By

following a similar idea, the authors in [19] propose the GSP RLS via a centralized

version of the RLS method for online reconstruction of graph signals, which results

in an algorithm with faster convergence but higher computational burden than the

GSP LMS, as verified in [18, 31].

Instead of finding an instantaneous solution to the convex problem (4.22), the

GSP RLS [19] evaluates its frequency-domain update estimate ŝF [k + 1] by mini-

mizing the objective function

min.
sF

k∑
l=1

βk−lR ‖DS(xw[l]−UFsF)‖2
C−1

w [k]
+ βkR‖sF‖2

Π, (4.24)

where the forgetting factor βR is in the range 0 � βR ≤ 1, and the regularization

matrix Π, which is usually taken as Π = δRI with a small δR > 0, is included to

account for ill-conditioning in the first iterations.

An online method for evaluating the WLS solution of (4.24) employs the ancillary

53

variables RR[k] ∈ R|F|×|F| and pR[k] ∈ R|F| defined recursively as

RR[k] = βRRR[k − 1] + UT
FDSC

−1
w [k]DSUF ,

pR[k] = βRpR[k − 1] + UT
FDSC

−1
w [k]DSxw[k] .

(4.25)

From these variables, the solution ŝF [k+1] of (4.24) satisfies RR[k] ŝF [k+1] = pR[k].

Since RR[k] has full rank, one finds from (4.7) that the estimate x̂o[k + 1] for the

RLS algorithm is

x̂o[k + 1] = UFR−1
R [k]pR[k]. (4.26)

In particular, it is worth mentioning that equations in (4.25) are more general

than the ones in [18, 19] because they allow the symmetric matrix Cw[k] to assume

non-diagonal structures, a case not covered in the original work. Moreover, though

the GSP RLS algorithm in [18, 19] suggests the use of (4.25) and (4.26) for computing

the estimate x̂o[k+ 1], Appendix A.2 shows that these expressions are equivalent to

RR[k] = βRRR[k − 1] + UT
FDSC

−1
w [k]DSUF ,

x̂o[k + 1] = x̂o[k] + UFR−1
R [k]UT

FDSC
−1
w [k]e[k] .

(4.27)

Then, in contrast to its original expanded form in [18, 31], we explicitly present the

GSP RLS procedure in Algorithm 4 using its compact representation (4.27) and the

initialization RR[−1] = Π suggested in [18, 19].

Additionally, by considering RR[−1] = Π and C−1
w [k] = C−1

w , we rewrite RR[k]

in (4.27) as

RR[k] = βk+1
R Π + (UT

FDSC
−1
w DSUF)

(1− βkR)

(1− βR)
. (4.28)

Particularly, as k →∞, one has that βkR → 0. Thus, by defining

MR = (UT
FDSC

−1
w DSUF)−1UT

FDS , (4.29)

we verify that, when k increases, the GSP RLS update tends to the simple expression

x̂o[k + 1] = x̂o[k] + (1− βR)UFMRC−1
w e[k] , (4.30)

which will be further explored for providing steady-state error metrics at the algo-

rithm complementary analysis in Section 5.2.

4.4.3 Figures of Merit

Relying on the same motivation mentioned in Section 2.1, where we discussed the use

of metrics for comparing the performance of traditional adaptive filtering algorithms,

54

Algorithm 4 RLS estimation of graph signals

1: k ← 0
2: RR[−1] = Π
3: BR = UT

FDS
4: while (true) do
5: RR[k] = βRRR[k − 1] + BRC−1

w [k]BT
R

6: x̂o[k + 1] = x̂o[k] + UFR−1
R [k]BRC−1

w [k]e[k]
7: k ← k + 1

8: end

we naturally wish to adopt similar figures of merit for the brand new idea of using

adaptive algorithms in GSP. Considering expressions (2.4) and (2.5), the extension

of the traditional MSE and MSD to the GSP estimation context is straightforward,

being given by

MSEG[k]=E{‖e[k]‖2
2} and MSDG[k]=E{‖∆x̂o[k]‖2

2}, (4.31)

where ∆x̂o[k] = x̂o[k] − xo[k] is the difference between the current estimator x̂o[k]

and the original GS xo[k], and we use the subscript G for avoiding confusion with

(2.4) and (2.5). In particular, for bandlimited graph signals, if we define

∆ŝF [k] = ŝF [k]− sF [k] , (4.32)

and use the compact representation in (4.10) and the property UT
FUF = I, from

(4.31) we find that the MSDG is equivalent to

MSDG[k] = E{‖∆ŝF [k]‖2
2} . (4.33)

A disadvantage of using the scalar metric MSEG[k] in (4.31) is that it potentially

hides the occurrence of large error entries in (4.21). Then, we define an alternative

FoM for estimating each component of the error vector e[k]. This more general FoM

relies on statistics of en[k], the nth component of e[k] in (4.21), and provides a more

accurate insight of the algorithm overall performance. Note that, from (4.16), (4.21),

and (4.32), one has

en[k] = dn(wn[k]− uT
nF

∆ŝF [k]) , (4.34)

where dn ∈ {0, 1}, wn[k] is the nth entry of w[k], and uT
nF

is the nth row of UF .

If one works with an asymptotically unbiased estimator ŝF [k] such that E[∆ŝF [k]]

converges to the null vector in steady state, which holds true for both GSP LMS

and RLS algorithms [19], and by recalling that the noise vector w[k] has zero mean,

then one has E[en[k]]→ 0 as k grows to infinity.

By assuming that w[k] is uncorrelated with ∆ŝF [k], then taking the expected

55

value of the squared expression in (4.34) allows one to compute the steady-state

error variance

σ2
en = lim

k→∞
dn(E[w2

n[k]] + uT
nF

E[∆ŝF [k]∆ŝT
F [k]]unF), (4.35)

thus yielding, from (4.31), the following steady-state MSEG:

MSE∗G = lim
k→∞

MSEG[k] =
N∑
n=1

σ2
en . (4.36)

Similarly, based on the MSDG in (4.33), one can also define

MSD∗G = lim
k→∞

MSD[k] = lim
k→∞

tr{E[∆ŝF [k]∆ŝT
F [k]] }, (4.37)

in which the matrix trace tr{·} operator is employed to show the dependency of this

FoM on the steady-state matrix E[∆ŝF [∞]∆ŝT
F [∞]]. This matrix plays a central

role in this work, being the first one to be computed for each algorithm in order to

evaluate expressions (4.35), (4.36), and (4.37).

Although the stationary value MSD∗G is provided for the GSP RLS algorithm

in [19] and approximated for the GSP LMS algorithm in small convergence factor

scenarios in [15, 19], Section 5.2 generalizes these results and obtain closed formulas

for evaluating the MSD∗G and MSE∗G for the GSP LMS and RLS algorithms in any

situation. Moreover, considering the GSP NLMS algorithm proposed in Chapter 5,

we also provide the same stationary figures of merit for the new adaptive algorithm

for graph signal estimation. Additionally, the solid results about the individual error

estimates in (4.35) for the LMS, RLS, and NLMS algorithms are used as the basis

for the data-selective adaptive strategies suggested in Section 5.3.

56

Chapter 5

NLMS Algorithm and DS

Strategies for GSP

Inspired by the LMS and RLS methods described in Section 4.4 for solving the GSP

problem of online reconstructing bandlimited graph signals, one certainly longs for

further exploring the adaptive algorithms from Chapter 2 in order to provide alter-

native methods to the basic algorithms proposed so far. Considering the well-known

advantages of the normalized LMS (NLMS) over both the LMS and the RLS algo-

rithms in the traditional adaptive filtering context, being usually faster than the

LMS and much less complex than the RLS, the appeal for deriving an NLMS-based

procedure for the GSP framework is clear. Thus, based on the traditional NLMS

derivation from Section 2.4 we propose the GSP NLMS algorithm in Section 5.1,

which intends to provide a faster convergence algorithm but with the same compu-

tational complexity of the GSP LMS method from Subsection 4.4.1.

Besides its derivation, Section 5.1 also presents a complete analysis on the pro-

posed GSP NLMS algorithm, which includes: the internal parameter selection range

that guarantees the algorithm stability and convergence to an unbiased solution; a

computational complexity comparison in terms of flops with the GSP LMS and RLS

methods; remarks highlighting the beneficial effects of using the NLMS algorithm in-

stead of the similar LMS procedure; and closed formulas for the stationary figures of

merit (FoMs) suggested in Subsection 4.4.3. In particular, these steady-state FoMs

are also obtained for the LMS and RLS algorithms in Section 5.2, complementing

the previous analysis presented in [19]. Then, this work provides the expressions

for evaluating the error metrics suggested in Subsection 4.4.3 for all adaptive GSP

algorithms proposed until this moment.

At last, considering the appeal of using the data-selection idea, presented in

Chapter 3, for reducing the overall computational complexity in adaptive filter-

ing algorithms, which results in useful power savings depending on the application,

we propose implementing the simple data-selective strategy described in Subsec-

57

tion 3.1.1 along adaptive GSP algorithms. Due to the multidimensional error signal

used in the GSP context, in contrast to the scalar error in traditional adaptive

filtering, we suggest two different approaches for assessing the novelty brought by

the input data and implement the data-selective strategy with the adaptive GSP

algorithms in both approaches. Moreover, as precise estimates are obtained for the

stationary individual error variances σ2
en in Sections 5.1 and 5.2, Subsections 5.3.1

and 5.3.2 provide constraint vector choices and expressions that directly relate an

algorithm internal parameter, known as the update factor κ, to the expected update

rate when using the GSP LMS, RLS and NLMS algorithms.

Therefore, this chapter contains the main original contributions of this disserta-

tion, which intends to expand the current adaptive GSP framework by proposing

an NLMS-based algorithm and adopting data selection ideas for graph signal ap-

plications. Both of these contributions are supported by a detailed analysis in the

present chapter and corroborated by numerical simulations in Chapter 6.

5.1 NLMS Graph Signal Estimation Algorithm

5.1.1 Algorithm Derivation

Inspired by the traditional NLMS algorithm derivation in Section 2.4, we search for

a possibly time-varying factor µL ∈ R+ that improves the overall convergence rate

of the GSP LMS algorithm described in Subsection 4.4.1. However, as in the GSP

context one has to deal with an error vector e[k] instead of a scalar error e[k], we

generalize this idea of a convergence factor µL and adopt a possibly time-varying

symmetric convergence matrix ML[k] ∈ R|F|×|F|. Then, from (4.23) the frequency-

domain update equation becomes

ŝF [k + 1] = ŝF [k] + ML[k]UT
FDS(xw[k]−UF ŝF [k]) . (5.1)

Following the same reasoning for defining the GSP error vector e[k] in (4.21), we

can also define the a posteriori reconstruction error vector ε[k] as

ε[k] = DS(xw[k]−UF ŝF [k + 1]) . (5.2)

In order to avoid confusion with the recently defined a posteriori error ε[k], we shall

call e[k] in (4.21) as the a priori error.

According to equations (5.1) and (5.2), the a posteriori error ε[k] can be rewritten

as function of the a priori error, i.e.

ε[k] = DS(I−UFML[k]UT
F)e[k] . (5.3)

58

Since an instantaneous estimate of how close the error vectors are to each other

is given by ∆ẽ2[k] = ‖ε[k]‖2
2 − ‖e[k]‖2

2, when using equation (5.3) we find that

∆ẽ2[k]=eT[k]UF(−2ML[k] + ML[k]UT
FDSUFML[k])UT

Fe[k]. (5.4)

In order to select the symmetric matrix ML[k] that minimizes ∆ẽ2[k], we take

the derivative of (5.4) with respect to ML[k] [72], yielding

2
î
(UT
FDSUF)ML[k]− I

ó
UT
Fe[k]eT[k]UF = 0 , (5.5)

so that the constant symmetric matrix ML = (UT
FDSUF)−1 minimizes the squared

error difference ∆ẽ2[k]. Based on this result, the frequency-domain update expres-

sion given by

ŝF [k + 1] = ŝF [k] + (UT
FDSUF)−1UT

Fe[k] (5.6)

should be able to yield faster convergence to its steady-state value than the GSP

LMS in Subsection 4.4.1.

As in the original NLMS algorithm from Section 2.4, we also include an additional

fixed convergence factor µN ∈ R+ for controlling the trade-off between convergence

speed and steady state performance, resulting in the vertex-domain update equation

x̂o[k + 1] = x̂o[k] + µNUF(UT
FDSUF)−1UT

Fe[k] . (5.7)

For a practical implementation of the GSP NLMS algorithm, one notices that

(UT
FDSUF)−1 can be written as LNLT

N, where LN ∈ R|F|×|F| is a lower triangu-

lar matrix obtained using the Cholesky decomposition. Then, after defining the

ancillary matrix BN ∈ RN×|F| as BN = UFLN, the suggested implementation of the

GSP NLMS is presented in Algorithm 5.

Algorithm 5 NLMS estimation of graph signals

1: k ← 0
2: Find LN such that (UT

FDSUF)−1 = LN LT
N

3: BN = UFLN

4: while (true) do
5: e[k] = DS(xw[k]− x̂o[k])
6: x̂o[k + 1] = x̂o[k] + µNBNBT

Ne[k]
7: k ← k + 1

8: end

Alternatively, by considering the bond between the NLMS and the AP algo-

rithms illustrated in Subsection 2.5.1, a different derivation of the GSP NLMS al-

gorithm can be obtained by solving the following constrained convex problem in

the frequency domain: to minimize the distance between the current ŝF [k] and the

59

updated estimate ŝF [k + 1] (minimum disturbance principle), such that the Fourier

transform of the a posteriori error ε[k] is equal to zero on the frequency support F .

Mathematically, one has

minimize
ŝF [k+1]

‖ŝF [k + 1]− ŝF [k]‖2
2

subject to UT
FDS(xw[k]−UF ŝF [k + 1]) = 0 ,

(5.8)

whose solution ŝF [k+1] is given by (5.6). This result can be simply verified by writing

the Lagrangian of (5.8) and following the intermediate steps presented in Appendix

A.3. Likewise, by defining a constraint-vector γ[k], if we consider UT
Fε[k] = γ[k]

instead of the null a posteriori error constraint in (5.8), it is trivial to show that

a similar demonstration can lead to the derivation of a SM-NLMS algorithm, an

adaptive method with data selection inspired by the SM-PAPA in Section 3.2.

5.1.2 Stability and Convergence to Unbiased Solution

As the GSP NLMS procedure in Algorithm 5 allows one to select different normal-

ized convergence factors for controlling the trade-off between convergence speed and

steady-state FoM values, it is essential to determine for which range of µN values

ŝF [k] is guaranteed to be asymptotically unbiased. As we shall focus on steady-state

values, let us assume a time-invariant reference graph signal such that sF [k] = sF

and a time-invariant noise covariance matrix so that Cw[k] = Cw.

Based on the definition of ∆ŝF [k] in (4.32) and the corresponding frequency-

domain representation ŝF of (5.7), if we define the ancillary constant matrix MN ∈
R|F|×N as

MN = (UT
FDSUF)−1UT

FDS (5.9)

it follows that

∆ŝF [k + 1] = (1− µN)∆ŝF [k] + µNMNw[k] . (5.10)

By taking the expected value on both sides of (5.10) we find the recursive expression

E{∆ŝF [k + 1]} = (1− µN)E{∆ŝF [k]} , (5.11)

which allows one to write

E{∆ŝF [k]} = (1− µN)k E{∆ŝF [0]} . (5.12)

Considering that E{∆ŝF [0]} can be any vector, to guarantee that E{∆ŝF [k]}
in (5.12) converges to a null vector as k increases, we must choose a parameter µN

such that |1− µN| < 1. As a result, the interval that guarantees convergence to an

60

unbiased solution is

0 < µN < 2 . (5.13)

In addition, by defining SN[k] = E[∆ŝF [k]∆ŝT
F [k]], one has from (5.10) that

SN[k + 1] = (1− µN)2SN[k] + µ2
NMNCwMT

N, (5.14)

which is a difference equation that converges to a solution as long as |1 − µN| < 1,

i.e., the condition in (5.13) holds true. In this case, stability is guaranteed and

E[∆ŝF [k]∆ŝT
F [k]] approaches S∗N ∈ R|F|×|F| as k →∞, given as

S∗N = SN[∞] =
µN

2− µN

MNCwMT
N . (5.15)

Therefore, the µN parameter range that assures a stable behavior for the proposed

NLMS algorithm is more straightforward than the range predicted in [15] for the GSP

LMS algorithm, which depends on the eigenvalues of UT
FDSUF . In fact, this well

defined convergence range is also an advantage of the traditional NLMS algorithm

in comparison to its LMS counterpart [28, 29]. Furthermore, the convergence range

discussed in Section 2.4 for the traditional NLMS algorithm agrees with the predicted

interval (5.13) obtained for the GSP NLMS algorithm.

5.1.3 Computational Complexity Analysis

In order to provide a fair comparison of the computational complexity among the

GSP LMS, RLS, and NLMS algorithms, we estimate the amount of floating-point

operations (FLOPs) required to evaluate the estimate x̂o[k + 1] at each iteration.

As all algorithms present some common steps, we focus on the differences among

them, which basically consist in how the update of x̂o[k + 1] is performed.

According to the LMS and the NLMS practical procedures in Algorithms 3 and 5,

which simply differ in the update expression implemented, we assume the N × |F|
constant matrices UF and BN to be pre-evaluated structures stored for efficient

algorithm implementation. For evaluating x̂o[k+ 1] in both cases, we propose using

the expressions

x̂o[k + 1] = x̂o[k] +
ï
UF

ï
µL (UT

Fe[k])
ó ò

and

x̂o[k + 1] = x̂o[k] +
ï
BN

î
µN (BT

Ne[k])
ó ò
,

(5.16)

for the GSP LMS and the GSP NLMS algorithms, respectively. Then, for computing

x̂o[k+1] we follow the operations order indicated in (5.16) and first perform a matrix-

vector product between a |F| ×N matrix and the N -dimensional error signal e[k],

61

Table 5.1: GSP adaptive filtering algorithms’ complexity for computing x̂o[k + 1]

Algorithm x̂o[k + 1] FLOPs/iteration

LMS (4.23) 4|F|N
RLS (4.27) 1

3
|F|3 + 4|F|N + 4|F|2 − 2|F|

NLMS (5.7) 4|F|N

which requires |F|N multiplications and |F|(N − 1) sums for producing a vector

with |F| components. The resulting vector is scaled by the algorithm convergence

factor µL or µN, increasing by |F| the amount of scalar multiplications, and yields

a new vector with the same dimensionality. The product of an N × |F| matrix with

this |F|-dimensional vector takes |F|N multiplications and N(|F| − 1) sums, and

the desired update vector is obtained after the summation of this vector with x̂o[k],

which accounts for an increase of N sums. Thus, the LMS and the NLMS strategies

demand 2|F|N multiplication and 2|F|N sum operations, resulting in 4|F|N FLOPs

per iteration.

For the RLS algorithm we first assume that Cw[k] = Cw, which allows us to

consider that matrix (UT
FDSC

−1
w) ∈ R|F|×N and (UT

FDSC
−1
w DSUF) ∈ R|F|×|F| are

fixed and known. In this case, the steps for updating the current system estimate

x̂o[k + 1] can be computed as

RR[k] = (βRRR[k − 1]) + (UT
FDSC

−1
w DSUF) ,

x̂o[k + 1] = x̂o[k] +
ß

UF

ï
R−1

R [k] [(UT
FDSC

−1
w) e[k]]

ò ™
.

(5.17)

Then, x̂o[k+1] requires |F|(2N+|F|) multiplications and |F|(2N+|F|−2) sums for

its computation. Although calculating RR[k] in (5.17) involves |F|2 sums and |F|2

multiplications, the algorithm still requires the inversion of this |F| × |F| matrix,

adding 1
3
|F|3 FLOPs per iteration via Cholesky factorization [73]. Thus, its overall

number of FLOPs per iteration is 1
3
|F|3 + 4|F|N + 4|F|2 − 2|F|.

Table 5.1 contains a summary of these results. This analysis only considered the

update expressions for each GSP adaptive algorithm because the remaining steps of

the adaptive techniques are the same. Although an efficient implementation of these

adaptive algorithms can take advantage from the null values of e[k] and reduce the

amount of arithmetic operations, from TABLE 5.1 it is straightforward to conclude

that the RLS algorithm presents a heavier computational burden than the LMS and

NLMS methods.

62

5.1.4 Steady-State FoM Analysis

In this subsection we derive the steady-state values of the FoMs σ2
en , MSE∗G, and

MSD∗G discussed in Subsection 4.4.3, when using the GSP NLMS.

From (4.35) and (5.15), and by defining σ2
wn

= E{w2
n[k]}, the steady-state value

for σ2
en is given by

σ2
en = dn

ñ
σ2
wn

+
µN

2− µN

uT
nF

MNCwMT
NunF

ô
. (5.18)

Moreover, according to (4.36), we find the MSE∗G for the GSP NLMS by simply

summing σ2
en for all n ∈ N , which results in

MSE∗G =
N∑
n=1

dn

ñ
σ2
wn

+
µN

2− µN

uT
nF

MNCwMT
NunF

ô
. (5.19)

Finally, based on (4.37) and (5.15), the MSD∗G is

MSD∗G =
µN

2− µN

tr
¶
MNCwMT

N

©
. (5.20)

5.1.5 Remarks

Let us get a better feeling regarding the effect of matrix (UT
FDSUF)−1 by comparing

the GSP LMS and NLMS update equations. As {un} is a basis of RN , then there

exists α[k] ∈ RN such that e[k] = DSUα[k]. Without loss of generality, we can

write U = [UF UF] and α[k] = [αT
F [k] αT

F [k]]T, where F = N \ F . Note that

α[k] is the frequency-domain representation of w[k] + (xo[k]− x̂o[k]). In this case,

vector (xo[k] − x̂o[k]) is F -ssparse, which means that αF [k] has only contributions

from the measurement noise.

In the GSP LMS algorithm, the error signal e[k] is multiplied by matrix µLBL =

µLUFUT
F , thus yielding, in the frequency domain, the correction term

ŝF [k + 1]− ŝF [k] = µL(UT
FDSUF)αF [k] + wL[k] , (5.21)

where wL[k] = µL

Ä
UT
FDSUF

ä
αF [k] is essentially noise after processing.1 As

for the GSP NLMS algorithm, the error signal is multiplied by matrix µNBN =

µNUF(UT
FDSUF)−1UT

F , thus yielding, again in the frequency domain, the correc-

tion term

ŝF [k + 1]− ŝF [k] = µNαF [k] + wN[k] , (5.22)

where wN[k] = µN(UT
FDSUF)−1

Ä
UT
FDSUF

ä
αF [k].

1Roughly speaking, UT
FDSUF tends to be close to 0, since UT

FUF = 0.

63

By comparing expressions (5.21) and (5.22) one can see that the estimation

error within the frequency support F in the NLMS has a clean and direct impact

on the correction of the previous estimate ŝF [k], without distortions as in the LMS

case, imposed by the factor
Ä
UT
FDSUF

ä
. The so-called normalization of the NLMS

is responsible for this effect, which turns out to be a key aspect for enhancing

the algorithm performance, as will be demonstrated with numerical simulations in

Section 6.2.

In addition, it is noticeable that the proposed NLMS update equation in (5.7)

resembles the RLS long-term expression in (4.30), thus indicating that the inclusion

of
Ä
UT
FDSUF

ä−1
brings about some RLS-like features to the resulting algorithm.

Particularly, when the covariance matrix is given by Cw = σ2
wI, with σ2

w > 0, both

algorithms present an equivalent performance for large k if the NLMS convergence

factor µN and the RLS forgetting factor βR follow the relation

µN = 1− βR . (5.23)

Differently from its traditional counterpart, the GSP NLMS algorithm relies on

a fixed normalization term
Ä
UT
FDSUF

ä−1
for a constant graph structure, yielding

an update expression (5.7) that requires the same computational complexity as the

GSP LMS algorithm. Besides, the GSP NLMS algorithm has a strong practical

appeal since it presents a well-defined range of values for its convergence factor µN

that guarantees the method stability, in opposition to the equivalent factor choice

for the LMS algorithm [15].

5.2 GSP LMS and RLS Complementary Analysis

The analyses of the GSP LMS and RLS algorithms in [19] cover the possibility of

signal reconstruction via sparse sampling and the MSD analysis, along with the

proposition of optimal sampling strategies. Here, we extend those analyses by gen-

eralizing the stationary MSDG formula for the GSP LMS algorithm, whose previous

expressions assume a small convergence factor µL approximation, and incorporating

the steady-state FoMs σ2
en and MSEG from Subsection 4.4.3 for both LMS and RLS-

based methods. Based on the accurate estimates for the error variances evaluated

in this section, the GSP LMS and the GSP RLS algorithms can also be used with

the data-selection strategies, as we shall see in Section 5.3.

64

5.2.1 LMS Algorithm Error Analysis

From (4.23) and (4.32), one can write

∆ŝF [k + 1] = (I− µLUT
FDSUF)∆ŝF [k] + µLUT

FDSw[k] , (5.24)

thus implying that

E[∆ŝF [k + 1]∆ŝT
F [k + 1]] = µ2

LUT
FDSCwDSUF+

+(I−µLUT
FDSUF)E[∆ŝF [k]∆ŝT

F [k]](I−µLUT
FDSUF) .

(5.25)

If µL is in the range that guarantees the algorithm stability [15], then matrix

E[∆ŝF [k]∆ŝT
F [k]] converges to S∗L ∈ R|F|×|F| when k → ∞. Thus, by defining

P,Q ∈ R|F|×|F| such that

P = UT
FDSUF and Q = UT

FDSCwDSUF , (5.26)

we verify that the stationary expression (5.25) can be written as

S∗L = µ2
LQ + (I− µLP)S∗L(I− µLP)

S∗L = µ2
LQ + S∗L − µLPS∗L − µLS∗LP + µ2

LPS∗LP
(5.27)

where it follows that

PS∗L + S∗LP− µLPS∗LP = µLQ . (5.28)

However, for solving the implicit equation (5.28) we notice that it is, in fact, a

generalized Lyapunov matrix equation [74], being equivalent to

[(I⊗P)+(P⊗ I)−µL(P⊗P)] vec(S∗L)=µL vec(Q), (5.29)

where ⊗ indicates the Kronecker product [75] and vec(S∗L) represents the vectoriza-

tion of S∗L, performed by stacking its columns into a single column vector. When

the left-hand side matrix of (5.29) has full rank, vec(S∗L) is obtained by solving

vec(S∗L)=µL [(I⊗P)+(P⊗ I)−µL(P⊗P)]−1vec(Q). (5.30)

After recovering matrix S∗L from its vectorized version, the nth variance σ2
en for

the GSP LMS algorithm is computed by replacing S∗L in (4.35), yielding

σ2
en = dn (σ2

wn
+ uT

nF
S∗LunF) , (5.31)

65

and from (4.36)

MSE∗G =
N∑
n=1

dn
Ä
σ2
wn

+ uT
nF

S∗LunF
ä
. (5.32)

Moreover, an additional result that comes straightforwardly from the knowledge

of S∗L is the MSD∗G in (4.37), so that

MSD∗G = tr{S∗L} . (5.33)

Although a steady-state MSDG analysis for the LMS algorithm is presented in [15,

19], it is based on an approximation assuming small values of the convergence factor

µL. Thus, it requires a relatively small µL for providing better estimates of MSD∗G.

On the other hand, as the derivation of (5.33) presented in this subsection does not

rely on this assumption, it is more general than the previous analysis in [15, 19],

being valid for any µL that guarantees the algorithm stability.

5.2.2 RLS Algorithm Error Analysis

Similarly, the GSP RLS analysis starts by rewriting (4.30) as

∆ŝF [k + 1]=βR∆ŝF [k] + (1− βR)MRC−1
w w[k] . (5.34)

If we evaluate the outer product of (5.34) and take its expected value we find that

E[∆ŝF [k + 1]∆ŝT
F [k + 1]] = β2

RE[∆ŝF [k]∆ŝT
F [k]]+

+ (1− βR)2MRC−1
w DSCwDSC

−1
w MT

R .
(5.35)

Then, by considering the convergence of E[∆ŝF [k]∆ŝT
F [k]] to S∗R ∈ R|F|×|F| as k

grows to infinity, one gets

S∗R =
1− βR

1 + βR

·MRC−1
w DSCwDSC

−1
w MT

R , (5.36)

allowing us to write the corresponding stationary FoMs for the GSP RLS algorithm

σ2
en = dn

Ä
σ2
wn

+ uT
nF

S∗RunF
ä
, (5.37)

MSE∗G =
N∑
n=1

dn
Ä
σ2
wn

+ uT
nF

S∗RunF
ä
, (5.38)

MSD∗G = tr {S∗R} . (5.39)

66

5.3 GSP Data-selective Estimation Algorithms

As a direct application of the recently developed field of graph signal processing is

its use in distributed networks, which can be battery-powered, topics related to en-

ergy consumption in GSP procedures draw special attention because the adoption of

power savings strategies might considerably increase the lifespan of an autonomous

network. In particular, a promising idea is that the freshly proposed adaptive al-

gorithms for graph signal estimation can be more efficiently implemented if we use

them along a data selection approach similar to the ones presented in Section 3.1,

where the adaptive algorithm only updates its signal estimation when it verifies

that the current input data brings enough novelty to the current system estimate.

Then, the overall computation complexity is reduced since the algorithm internal

parameters are not updated at each iteration, which provides useful power savings

for devices with strict energy consumption requirements.

Although the adoption of the data selection concepts from Section 3.1 along

the GSP LMS, RLS and NLMS algorithms seems trivial, the main challenge one

faces is related to the dimensionality of the error signal in the current graph sig-

nal application, which requires an alternative definition for assessing data novelty

in the GSP scenario. This occurs because the update decision on traditional algo-

rithms [34, 36] depends on the scalar error (2.3) and the GS estimation problem

deals with the error vector e[k] in (4.21). Thus, in order to check data innovation

we consider two approaches: the first one performs component-wise comparisons

between the error vector e[k] and a threshold vector γ̄DS ∈ RN
+ , while the second

one compares a squared `2-norm error-based metric with a scalar γ̄DS ∈ R+. Due

to their characteristics, these strategies are called component-wise error constraint

(CW-EC) and `2-norm error constraint (`2N-EC), respectively. These two differ-

ent testing approaches are presented and further discussed in Subsections 5.3.1 and

5.3.2, respectively.

Finally, after testing the update condition, the proposed data-selection strate-

gies either maintain their previous internal values, if the current error condition

test returns true, or perform the usual algorithm update otherwise. This update

approach for GS estimation is based on the data-selective adaptive scheme from

Subsection 3.1.1, which is a straightforward method for obtaining DS versions of

the adaptive GSP algorithms LMS, RLS, and NLMS by simply using the specific

update expressions (4.23), (4.26), and (5.7), respectively. In the next subsections

we detail the two proposed DS strategies for GS estimation and suggest practical

choices for the thresholds that allow to control the mean update rate of the DS

adaptive algorithms.

67

5.3.1 Component-Wise Error Constraint Strategy

The first update idea consists in defining a threshold vector γ̄DS =

[γ̄DS1 γ̄DS2 . . . γ̄DSN
]T such that the nth error component en[k] from (4.21) is

compared to its respective bound γ̄DSn ∈ R+. If all absolute components |en[k]|
are smaller than their respective γ̄DSn , the strategy assumes the input data does

not bring enough innovation to the current system. In other words, considering

that function abs(·) performs a component-wise modulus operation on its argument

vector, when

abs(e[k]) � γ̄DS (5.40)

is true, there is no algorithm update. Otherwise, if any en[k] has a larger absolute

value than its respective γ̄DSn , we evaluate the new estimate according to (4.23),

(4.26), or (5.7), depending on the choice of the LMS, RLS, or NLMS algorithms.

Although the CW-EC data-selective constraint-vector γ̄DS can be defined in

many different ways, its choice influences the algorithm behavior in terms of the

update probability/rate. In order to provide a fair estimate of the update rate

Pup ∈ [0, 1] for the component-wise strategy, we consider that each en[k] is mod-

eled as a zero-mean Gaussian random variable (RV) with variance σ2
en . Based on

expressions (5.18), (5.31), and (5.37) for the NLMS, LMS, and RLS algorithms,

respectively, we find the variances σ2
en for the particular algorithm and define γ̄DS

as

γ̄DS = κ
ï
σe1 σe2 . . . σeN

òT
, (5.41)

in which the so-called update factor κ ∈ R+ is a design parameter included to fine

tune the update rate.

The probability that all error entries will be in their respect intervals

[−κσen , κ σen] is
î
erf(κ/

√
2)
ó|S|

, since only |S| components of e[k] are non-zero, and

the error function erf
Ä
γ̄DSn/(

√
2σen)

ä
describes the probability of en[k] to fall in the

interval [−γ̄DSn , γ̄DSn] [76]. However, as the update rate is the complement of this

value, the update probability Pup for the CW-EC DS estimation algorithm is

Pup = 1−

erf

Ñ
κ√
2

é|S| , (5.42)

Alternatively, if the designer expects a Pup update rate, we find that

κ =
√

2 · erf−1
(
|S|
»

1− Pup

)
. (5.43)

The proposed CW-EC strategy in Algorithm 6 adds 2|S| FLOPs per iteration

(|S| modulus operations and |S| comparisons) to the algorithm complexity due to

68

the test condition (5.40). However, it provides a considerable reduction of the overall

complexity by avoiding unnecessary updates when condition (5.40) holds.

Algorithm 6 CW-EC data-selective strategy

1: Define update factor κ ∈ R∗+ via (5.43)

2: Evaluate γ̄DS = κ
[
σe1 σe2 . . . σeN

]T
, where σen is given by (5.18), (5.31), or

(5.37)
3: k ← 0
4: while (true) do
5: e[k] = DS(xw[k]− x̂o[k])
6: if (abs(e[k]) � γ̄DS) then
7: x̂o[k + 1] = x̂o[k]
8: else
9: Find x̂o[k + 1] using (5.7), (4.23), or (4.26)

10: k ← k + 1

11: end

5.3.2 `2-Norm Error Constraint Strategy

An alternative to the CW-EC strategy consists in representing the instantaneous

error vector e[k] by a single scalar value, which is directly compared to a scalar

threshold γ̄DS ∈ R+. In order to map e[k] into a scalar value we first define the nor-

malized error vector ē[k] ∈ RN according to its individual components ēn described

by

ēn =


en[k]

σen
, if σen 6= 0 ,

0 , otherwise ,

(5.44)

where σen comes from (5.18), (5.31), or (5.37). Then, we select the squared `2-norm

‖ē[k]‖2
2 for performing the scalar mapping. The `2N-EC strategy consists in verifying

if the condition

‖ē[k]‖2
2 ≤ γ̄DS (5.45)

holds true, in which case there is no algorithm update.

By choosing an update expression based on either the NLMS, the LMS, or the

RLS algorithms, we once again consider that each en[k] is modeled as a zero-mean

Gaussian RV with variance σ2
en . As the square of a normal RV results in a chi-

squared RV χ2
1 with one-degree of freedom [77], then ‖ē[k]‖2

2 is described by a χ2
|S|

distribution, i.e., a chi-squared distribution with |S| degrees of freedom.

For an update factor κ ∈ R+, if we consider the threshold value

γ̄DS = κ |S| , (5.46)

69

and remember the cumulative distribution function (CDF) of a chi-squared distri-

bution with |S| degrees of freedom [77], the probability Pup for the `2N-EC strategy

is estimated as

Pup =
Γi(0.5κ|S|)
Γ(0.5|S|)

, (5.47)

where Γ(·) denotes the standard gamma function, and Γi(0.5κ|S|) =∫∞
0.5κ|S| t

0.5|S|−1e−tdt is an upper incomplete gamma function. Alternatively, if the

designer expects a Pup update rate, we find that

κ =
2

|S|
Γ−1

i (Pup · Γ(0.5|S|)) . (5.48)

Finally, the proposed `2N-EC DS strategy is summarized in Algorithm 7.

Algorithm 7 `2N-EC data-selective strategy

1: Define update factor κ ∈ R∗+ via (5.48)
2: Evaluate γ̄DS = κ |S|
3: k ← 0
4: while (true) do
5: e[k] = DS(xw[k]− x̂o[k])
6: Obtain ē[k], whose entries ēn[k] are given by (5.44)
7: if (‖ē[k]‖2

2 ≤ γ̄DS) then
8: x̂o[k + 1] = x̂o[k]
9: else
10: Find x̂o[k + 1] using (5.7), (4.23), or (4.26)

11: k ← k + 1

12: end

70

Chapter 6

GSP Database and Simulation

Results

This chapter suggests a practical application of GSP and, based on this scenario,

corroborates the contributions proposed in Chapter 5 by assessing their performance

through a large number of numerical simulations. The simulations discussed in this

chapter have been performed in a MATLAB environment and are available at the

GitHub repository [42].

Initially, Section 6.1 introduces a GSP database obtained from a set of monthly

average temperature measurements acquired from Brazilian weather stations [41].

The relevance of this section comes from the fact that it applies some GSP concepts

and ideas discussed in Chapter 4, suggesting a practical procedure for GSP modeling

that can be extended to different datasets with spatial correlation and providing the

bandlimited GS scenario adopted in Section 6.2.

Relying on this real-world inspired scenario, Section 6.2 delves into the recent

research branch that uses adaptive filtering-based algorithm for solving the problem

of online estimating a bandlimited graph signal from sampled noisy measurements.

The GSP LMS, RLS, and NLMS algorithms are compared in terms of convergence

speed and computational complexity in Subsection 6.2.2, where one clearly notices

the advantages offered by the NLMS-based algorithm proposed in Section 5.1. Fur-

thermore, the accuracy of the stationary FoMs and update rate (when using the

data-selective strategies from Section 5.3) predictions for the GSP LMS, RLS, and

NLMS algorithms is demonstrated in Subsections 6.2.3 and 6.2.4.

71

Longitude

L
at

it
u
d
e

10

15

20

25

(a) January

Longitude

L
at

it
u
d
e

10

15

20

25

(b) April

Longitude

L
at

it
u
d
e

10

15

20

25

(c) July

Figure 6.1: Simple graph signal representation of 1961-1990 monthly average tem-
peratures (in ◦C) from Brazilian weather stations.

6.1 Approximating Temperature Measurements

as a Bandlimited Graph Signal

Based on the promising idea of turning smooth data compiled across a geographic

region into a graph signal and graph structure in order to exploit the recent GSP

framework, this section shows that the temperature graph signal extracted from

Brazilian weather stations is approximately bandlimited. In particular, the current

section is useful for demonstrating some GSP concepts and ideas introduced in

Chapter 4 and providing the bandlimited GS scenario considered in Section 6.2.

For data acquisition, two datasets are collected from the Instituto Nacional de

Meteorologia (INMET) website [41]: the first one contains the latitude and longitude

coordinates of active weather stations, while the second dataset presents a monthly

average temperature recorded in some of these stations, during the 1961-1990 period.

From these data we obtain a total of 299 nodes for the graph G = (V , E), in which

each of these vertices represents a weather station. Thus, a node vn of the graph

G and its signal value xn[k] are given, respectively, by the geographical coordinates

and the average temperature of the associated weather station in a given month, as

illustrated for the months of January, April, and July in Figure 6.1.

As we have no explicit connection between weather stations, we are free to design

the set E and choose the weights {aij}, inferring the underlying graph structure. As

discussed in Subsection 4.1.3, since the Brazilian weather stations in Figure 4.4 are

irregularly distributed, for preventing a graph with both dense and sparsely popu-

lated regions we adopt an approach that constructs the graph edges by connecting

a vertex vn to, at least, its 8 closest neighbor nodes. However, the closest nodes

identification depends on the definition of a distance metric among nodes. As each

vertex is represented by its geographical coordinates, we consider that the distance

between two nodes is given by the Haversine formula [78], which evaluates the great-

72

Longitude

L
at

itu
de

10

15

20

25

(a) GS with no edges. (b) GS along connected graph structure.

Figure 6.2: July’s 1961-1990 average temperatures (in ◦C) from Brazilian weather
stations [41] represented as: (a) graph signal with no connections and (b) graph
signal with edges determined by the closest-neighbor procedure.

circle distance between points using their latitude and longitude coordinates. For

example, if one assumes two vertices vi and vj with latitudes ϕlat
i and ϕlat

j , and

longitudes λlon
i and λlon

j , respectively, the Haversine distance dH(i, j) between these

two nodes is given by

dH(i, j) = 2 rE arcsin

Ñ√
sin2

Åϕlat
i − ϕlat

j

2

ã
+ cos(ϕlat

i) cos(ϕlat
j) sin2

Åλlon
i − λlon

j

2

ãé
,

(6.1)

where rE represents the approximate Earth radius (since the Earth is not a perfect

sphere), taken here as rE = 6360 km. Thus, based on this procedure we obtain the

graph structure previously displayed in Figure 4.4. In particular, the original GS

with no connections and its version considering the edges evaluated are illustrated

in Figure 6.2b for the month of July.

As GSP techniques require the use of either the Laplacian L or adjacency matrix

A introduced in Subsection 4.1.1, we need to define the edge weights {aij} of A,

which can be seen as a similarity measure between neighboring vertices. Following

the suggestion in Subsection 4.1.3, if there is an the edge connecting nodes vi and

vj (v̄ivj ∈ E), for evaluating the respective non-null weight aij we adopt the Gaus-

sian kernel weighting function in (4.5), where in this case we replace the Euclidean

distance dE with the Haversine distance dH(vi, vj) between vertices vi and vj, as

in (6.1). The kernel parameter θ is chosen as 2 · 103 after testing different values

through numerical simulations and verifying that, for the graph signal considered,

73

this selection provides edge weights that result in a frequency representation with

desired bandlimited characteristics.

A common assumption in GSP literature is that smooth signals on graphs present

a bandlimited or approximately bandlimited frequency representation, in this case

given by their low-frequency components or eigenvectors. As a graph signal xw[k]

obtained from temperature measurements across the country presents this smooth

behavior (despite minor outlier points) at every instant k, we expect xw[k] to be

approximately bandlimited. However, before doing so we need to decide how many

frequency components are necessary for representing the graph signal with an ac-

ceptable deviation error.

As this task consists in a signal compression problem, we take a similar procedure

to [7] and evaluate the average reconstruction error (ARE) ‖xo − x̄Po ‖2/‖xo‖2 for

different estimates x̄Po using only the P -largest frequency components of the original

bandlimited graph signal xo, taken as the signal from the July dataset depicted in

Figure 6.2b. These frequency components are respective to the eigendecomposition

of the adjacency matrix A, i.e., we follow the GSPA approach from Section 4.2.

Then, the signal x̄Po is obtained by sorting the absolute values of the frequency-

domain signal s obtained from (4.6) and selecting the indices p of the P -largest

components |sn| to form the auxiliar set FP . Based on these indices p ∈ FP ⊆ N ,

we pick the pth eigenvector of U and the pth frequency component of s to define

UFP
and sFP

. Then, the estimate x̄Po using P components is given by UFP
sFP

.

Following this compression procedure, we compute the ARE percentage for dif-

ferent values of used components P and display the error results when using from

50 up to 250 frequency components in Figure 6.3. Assuming that a deviation error

of 2.5% is acceptable in the current application, we approximate the original graph

signal by its P = 200 largest frequency components. From this assumption we can

define the bandlimited set F = FP , where |F| = P .

Figure 6.3: Percentage of reconstruction error when the original signal is compressed
using P frequency components.

74

Based on this approximately F -ssparse signal xo, we need to take a practical

project decision and select both the amount |S| and which vertices vn ∈ V of the

graph signal should be sampled. As stated in [12], increasing the number of samples

in S always decreases the MSDG in (4.17). However, as we also want to reduce the

amount of nodes to be measured, we consider that |S| = 210 provides a reasonable

trade-off and then find the sampling set S by using Algorithm 2, with M = |S| =

210. Then, at this point we obtain the reference bandlimited GS xo, the frequency

set F , the sampling set S, and their respective matrices UF and DS to be used

in the next subsections simulations. For practical purposes, xo, UF and DS are

explicitly presented in [42].

6.2 Adaptive Algorithms for GS Estimation

For assessing the theoretical predictions from Sections 5.1, 5.2 and 5.3, this part of

the work delves into the adaptive GS estimation ideas and evaluates the performance

of the GSP NLMS, LMS, and RLS adaptive algorithms when using the approximate

bandlimited graph signal xo obtained from Section 6.1. Then, at this point one

has the constant matrices UF and DS , and the reference bandlimited graph signal

xo = UFsF . To complete the description of the simulation environment used in this

adaptive setup, the last point one needs to introduce is the noise scenarios in which

the sampled graph signals are exposed.

6.2.1 Noise Scenarios

In order to evaluate the adaptive GSP algorithms in different noise scenarios, one

adopts a generic covariance matrix Cw represented as

Cw = diag
Ä
σ2
wa

1 + σ2
wb

rw
ä
, (6.2)

where 1 ∈ RN is a vector with all components equal to 1, rw ∈ RN is a realization

of a random vector whose entries follow a uniform distribution between [0, 1], and

σ2
wa
, σ2

wb
∈ R+ are variances that scale the elements of 1 and rw, respectively.

Although the theoretical predictions provided are valid for any symmetric Cw,

the presented simulation environment focuses on diagonal matrices because this work

considers that the sensor positions are distant from each other, then, the influence

of correlated noise is not expected on more than one graph vertex measurement.

For Cw in (6.2), σ2
wa

represents the noise variance commonly estimated in all nodes,

which might be caused by the same type of sensor device being used in all locations,

while σ2
wb

accounts for the noise variance differences among nodes.

75

Thus, the noise signal w[k] in (4.16) employed for each simulation presented in

the next subsections is defined as zero-mean Gaussian according to three scenarios:

(i) σ2
wa

= 0.001 and σ2
wb

= 0.000;

(ii) σ2
wa

= 0.010 and σ2
wb

= 0.000; and

(iii) σ2
wa

= 0.005 and σ2
wb

= 0.010.

6.2.2 Convergence Speed and Complexity Comparison

Based on the noise scenarios (i) and (iii), numerical simulations are performed to

analyze the overall performance of the proposed GSP NLMS algorithm in comparison

to the LMS [15] and RLS [18] strategies. For each noise scenario the three adaptive

GSP algorithms are applied, with respective convergence/forgetting factors adjusted

in order to provide a similar MSD∗G. At each simulation run we evaluate 5000

iterations, where the reference GS xo is scaled by a 1.2 factor at k = 2500 to observe

the algorithms’ tracking abilities. Then, it is assumed that: the algorithm has

converged after reaching 1.025 ·MSD∗G for the first time, the steady-state FoMs are

computed using the last 1000 iterations of each run, and the update time uses the

”tic/toc” MATLAB functions to provide the reader with a rough idea of how long

it takes to compute x̂o[k + 1] for each algorithm simulated. Based on the average

values of a 1000-run ensemble, the simulations numerical results are summarized in

Table 6.1.

From Table 6.1 one observes that the GSP NLMS algorithm converges consider-

ably (more than 10 times) faster than the LMS algorithm, but slightly (about twice)

slower than the RLS algorithm. This convergence speed comparison is made clear

by the MSDG[k] plots in Figures 6.4 and 6.5, where we only compare the NLMS

and LMS methods in Figure 6.4 and display the three algorithms in Figure 6.5. A

particular point about Figure 6.5 is that the transition at k = 2500 indicates that

the NLMS algorithm behaves like the RLS for large k, as pointed out in Subsec-

tion 5.1.5. Another conclusion from Table 6.1 is that the computation complexity

for performing the NLMS update is comparable to the one for the LMS, being much

smaller than the required for the RLS algorithm.1

6.2.3 Steady-State FoM Predictions

Next, we investigate the accuracy of the steady-state MSE∗G and MSD∗G predicted

for the NLMS algorithm in Subsection 5.1.4 and for the LMS and RLS algorithms

1Although these complexity results cannot be directly compared to the FLOPs estimation in
Subsection 5.1.3, they corroborate the idea from Subsection 5.1.3 that the GSP NLMS complexity
is similar to the one for the GSP LMS algorithm.

76

Table 6.1: MSD∗G, iterations until convergence and time for computing x̂o[k+ 1] for
adaptive GSP simulation scenarios

Entry
Simulation Setup Simulation Results

Alg. Factor Cw MSD∗G Converg. Upd. Time

(L.I) LMS 0.280 (i) 0.0313 1727 iter. 32 µs

(R.I) RLS 0.930 (i) 0.0313 65 iter. 1952 µs

(N.I) NLMS 0.070 (i) 0.0314 137 iter. 31 µs

(L.II) LMS 0.280 (iii) 0.3121 1479 iter. 31 µs

(R.II) RLS 0.930 (iii) 0.3107 58 iter. 1916 µs

(N.II) NLMS 0.070 (iii) 0.3115 114 iter. 31 µs

(L.III) LMS 0.721 (iii) 1.0034 533 iter. 32 µs

(R.III) RLS 0.792 (iii) 0.9922 18 iter. 1941 µs

(N.III) NLMS 0.208 (iii) 0.9961 34 iter. 32 µs

0 1000 2000 3000 4000
-20

0

20

40

Figure 6.4: MSDG[k] behavior when applying the GSP LMS and NLMS algorithms
to different simulation scenarios described in Table 6.1.

0 1000 2000 3000 4000

0

20

40

Figure 6.5: MSDG[k] behavior when applying the GSP LMS, RLS, and NLMS
algorithms to the simulation scenario (ii).

in Section 5.2. By adopting the noise scenarios (ii) and (iii) described in Subsec-

tion 6.2.1, we use different convergence/forgetting factors (µN, µL, and βR) to assess

77

Table 6.2: Theoretical and experimental MSE∗G and MSD∗G, and their respective
REs, for the GSP NLMS, LMS, and RLS algorithms in noise scenario (ii)

Algor. Factor
MSE∗G MSD∗G

Theory Simul. RE[%] Theory Simul. RE[%]

NLMS

0.05 2.1513 2.1512 0.005 0.2217 0.2212 0.226

0.10 2.2053 2.2052 0.005 0.4550 0.4549 0.022

0.25 2.3857 2.3855 0.008 1.2350 1.2358 -0.065

0.50 2.7667 2.7665 0.007 2.8817 2.8822 -0.017

LMS

0.20 2.2600 2.2599 0.004 0.2160 0.2159 0.046

0.50 2.5717 2.5711 0.023 0.6179 0.6179 0.000

1.00 3.4617 3.4638 -0.061 1.6803 1.6815 -0.071

RLS

0.95 2.1513 2.1516 -0.014 0.2217 0.2217 0.000

0.90 2.2053 2.2050 0.014 0.4550 0.4551 -0.022

0.75 2.3857 2.3857 0.000 1.2350 1.2362 -0.097

the theoretical predictions in diverse conditions. At each simulation run we eval-

uate 3000, 12000, and 1500 iterations for the NLMS, LMS, and RLS algorithms,

respectively, where the last 1000 iterations of each run are assumed to be part of

the steady state. By taking an average of the MSEG[k] and MSDG[k] measurements

at steady state for an ensemble of 1000 runs, the obtained experimental results are

presented in Tables 6.2 and 6.3 for noise scenarios (ii) and (iii), respectively. These

results are compared to the MSE∗G and MSD∗G theoretical predictions presented in:

(5.19) and (5.20) for the NLMS algorithm; (5.32) and (5.33) for the LMS algorithm;

and (5.38) and (5.39) for the RLS algorithm. Additionally, for clarifying how close

the specified theoretical and simulated FoMs are, in Tables 6.2 and 6.3 it is also

included a relative error (RE) metric computed as

Relative error (RE) =
Theory value− Simul. result

Simul. result
. (6.3)

According to Tables 6.2 and 6.3, one verifies that the MSE∗G and MSD∗G predic-

tions provided for the NLMS, LMS, and RLS algorithms are very accurate across

all different simulation scenarios. In particular, all results yield an RE smaller than

0.25% with respect to their theoretical estimates. Although both the MSE∗G and

MSD∗G predictions have been obtained in this work for all three adaptive GSP al-

gorithms, it is worth mentioning that the MSD∗G for the LMS and RLS algorithms

has been previously presented in [19]. However, the analysis for the LMS algorithm

requires µL to be small and it presents an approximation that provides worse esti-

mates of MSD∗G as µL increases. On the other hand, from Tables 6.2 and 6.3 one

78

Table 6.3: Theoretical and experimental MSE∗G and MSD∗G, and their respective
REs, for the GSP NLMS, LMS, and RLS algorithms in noise scenario (iii)

Algor. Factor
MSE∗G MSD∗G

Theory Simul. RE[%] Theory Simul. RE[%]

NLMS

0.05 2.1464 2.1460 0.019 0.2202 0.2200 0.091

0.10 2.2003 2.2004 -0.005 0.4520 0.4522 -0.044

0.25 2.3804 2.3801 0.013 1.2268 1.2264 0.033

0.50 2.7607 2.7605 0.007 2.8626 2.8623 0.010

LMS

0.20 2.2600 2.2598 0.009 0.2160 0.2161 -0.046

0.50 2.5673 2.5674 -0.004 0.6171 0.6171 0.000

1.00 3.4585 3.4595 -0.029 1.6793 1.6804 -0.065

RLS

0.95 2.1513 2.1512 0.005 0.2217 0.2217 0.000

0.90 2.1999 2.1998 0.005 0.4501 0.4501 0.000

0.75 2.3794 2.3795 -0.004 1.2216 1.2221 -0.041

concludes that the accurate predictions for the LMS algorithm using (5.33) do not

degrade with large µL factors.

6.2.4 Update Rate Steady-State Predictions

Finally, we perform a few numerical simulations to analyze the behavior of the

CW-EC and `2N-EC data-selective strategies from Subsections 5.3.1 and 5.3.2, re-

spectively, assessing the accuracy of update rate expressions (5.42) and (5.47). For

simplicity, the CW-EC and `2N-EC strategies are referred to as the DS schemes

(I) and (II), respectively. By using the noise scenarios (ii) and (iii) described in

Subsection 6.2.1, different values of update factor κ are used for each DS scheme.

For each of these environments we apply either the GSP NLMS, LMS, or RLS as

the adaptive algorithm with factors µN = 0.1, µL = 0.5, and βR = 0.9, in a total

of 2500, 10000, and 2000 iterations for run, respectively. To compute Pup only the

last 1000 iterations of each run are considered, and the update rate is evaluated by

taking the average across an ensemble with 1000 runs. The scenario descriptions,

theoretical predictions, and experimental results for the DS adaptive GSP strategies

are shown in Tables 6.4 and 6.5.

Based on these tables, one concludes that the estimates (5.42) and (5.47) provide

fair predictions about the update probability, where the largest RE evaluated is

less than 2.5%. For both DS strategies, it is observed that a κ increase implies

in a reduction of Pup, which is an interesting feature since it enhances the overall

computational complexity reduction. However, the trade-off for increasing κ is a

reduction in the algorithm convergence speed, as can be noted in the MSDG behavior

79

Table 6.4: Stationary Pup and RE for the adaptive GSP algorithms using the CW-
EC and `2N-EC data-selective (DS) strategies in noise scenario (ii)

DS κ
Theory NLMS LMS RLS

Pup[%] Pup[%] RE[%] Pup[%] RE[%] Pup[%] RE[%]

CW-EC

3.00 43.319 43.314 0.012 43.300 0.044 43.325 -0.014

3.50 9.310 9.322 -0.129 9.339 -0.311 9.319 -0.097

3.75 3.646 3.658 -0.328 3.640 0.165 3.635 0.303

`2N-EC

1.00 48.702 48.599 0.212 48.781 -0.162 48.744 -0.086

1.10 15.276 15.301 -0.163 15.375 -0.644 15.214 0.408

1.15 6.701 6.682 0.284 6.841 -2.046 6.724 -0.342

Table 6.5: Stationary Pup and RE for the adaptive GSP algorithms using the CW-
EC and `2N-EC data-selective (DS) strategies in noise scenario (iii)

DS κ
Theory NLMS LMS RLS

Pup[%] Pup[%] RE[%] Pup[%] RE[%] Pup[%] RE[%]

CW-EC

3.00 43.319 43.322 -0.007 43.343 -0.055 43.382 -0.145

3.50 9.310 9.283 0.291 9.244 0.714 9.272 0.410

3.75 3.646 3.647 -0.027 3.650 -0.110 3.678 -0.870

`2N-EC

1.00 48.702 48.682 0.041 48.645 0.117 48.718 -0.033

1.10 15.276 15.317 -0.268 15.356 -0.521 15.296 -0.131

1.15 6.701 6.730 -0.431 6.791 -1.325 6.733 -0.475

for the CW-EC and `2N-EC strategies in Figures 6.6 and 6.7, respectively. Therefore,

as Tables 6.4 and 6.5, and Figures 6.6 and 6.7 indicate, one may reduce the overall

complexity of the adaptive GSP algorithm by increasing the update factor of the

DS strategy, at the cost of slowing down its convergence speed.

80

100 200 300 400 500

-5

0

5

10

Figure 6.6: MSDG[k] of the NLMS algorithm when using different factors κ for the
CW-EC DS strategy.

100 150 200 250

-4

-2

0

2

Figure 6.7: MSDG[k] of the NLMS algorithm when using different factors κ for the
`2N-EC DS strategy.

81

Chapter 7

Conclusion and Future Works

7.1 Concluding Remarks

This dissertation extended some current adaptive filtering algorithms for handling

the problem of online estimation of bandlimited graph signals from sampled noisy

measurements. Considering that a recent line of research has recast the traditional

LMS and RLS adaptive filtering algorithms into the GSP context, this work further

explored this idea and proposed the respective NLMS algorithm and data-selective

strategies for the same estimation scenario. The GSP NLMS algorithm has been de-

signed such that it improves the convergence speed of the GSP LMS procedure, while

requiring noticeable computational savings in comparison to the GSP RLS method.

In particular, it has been verified that the GSP NLMS algorithm demands the same

computational complexity of the GSP LMS. Moreover, we proposed a steady-state

analysis of the NLMS method that provides closed-form expressions for evaluating

important figures of merit that describe the algorithm behavior. This analysis has

been extended to cover the previously suggested GSP LMS and RLS algorithms,

complementing previous studies in the literature. At last, this dissertation proposed

two alternative data-selective strategies to be implemented along the GSP adaptive

algorithms in order to reduce the overall computational complexity and yield power

savings. By adopting some particular choices of internal parameters, it has been

demonstrated through a steady-state analysis that these data-selective strategies

produce convenient formulas for obtaining specific update rates when using either

the GSP LMS, the GSP RLS, or the GSP NLMS algorithms.

Along the way to describe the aforementioned contributions, this dissertation

reviewed some traditional adaptive filtering concepts and algorithms, including the

motivation and derivation of the LMS, RLS, NLMS, AP, and proportionate AP algo-

rithms. Inspired by the appeal of reducing the computational complexity of adaptive

procedures, the data selection idea has been introduced by adopting two different

82

approaches: the simpler data-selective strategy, later used along the adaptive GSP

algorithms, and the set-membership approach. In particular, this work revisited a

set-membership algorithm named SM-PAPA and presented some contributions for

improving its practical performance. Additionally, this dissertation stated the mo-

tivation behind GSP, defining its basic elements, describing some framework tools,

and discussing the extended signal processing concepts more relevant to the scope

of this work. Focusing on bandlimited graph signals, the problem of online recov-

ering the original signal from sampled noisy measurements has been stated and

the recently proposed methods based on the LMS and RLS algorithms have been

described. Then, after reviewing the most important topics on both traditional

adaptive filtering and graph signal processing, this dissertation built on previous

works and proposed the main theoretical contributions of this work, detailed in the

last paragraph.

Simulation results indicated that the proposed GSP NLMS algorithm is indeed

much faster than, while being approximately as complex as, the original GSP LMS

method, which suggests an interesting alternative to the GSP RLS algorithm if one

wishes to employ an adaptive GSP procedure that yields a reduced convergence

time with low complexity. Moreover, the numerical results also demonstrated that

both the steady-state metrics estimates in the analyses for the GSP LMS, RLS,

and NLMS and the update probability predicted for the data-selective techniques

are very accurate. This outcome strongly corroborated the complete analysis pro-

posed and the expressions obtained, highlighting the analytical importance of the

contributions provided in this dissertation. At last, for the data-selective strategies

it has been noticed that the overall computational complexity can be reduced by

increasing a simple internal parameter, but the intrinsic trade-off of this operation

is an increase in the algorithm convergence time.

It is worth mentioning that the implementation of this work’s proposed tech-

niques and assessed simulation scenarios have been made available at [42].

7.2 Future Research Directions

As future works, there are two clear research directions: deriving alternative methods

based on traditional adaptive filtering algorithms and implementing the data selec-

tion idea by following a different data selection strategy, such as the set-membership

approach. The motivation supporting the first suggestion comes from the desire of

exploring particular features in applications, which is the same inspiration for ob-

taining new adaptive filtering algorithms and has the potential of providing improve-

ments in certain figures of merit. On the other hand, the first steps on the second

clear research direction are suggested in this work (Subsection 5.1.1) for deriving an

83

SM-NLMS algorithm, that might outperform the data-selective approach considered

in this work for implementing the data selection concept. Moreover, another data

selection approach that can be adopted for generalizing the GSP RLS algorithm is

the RLS BEACON in [35].

Alternatively, other possible non-trivial contributions involve improving the GSP

NLMS algorithm by considering time-varying graph structures and sampling sets,

and deriving distributed implementations. Furthermore, one can explore new real-

world scenarios that might benefit from the use of the GSP framework and investi-

gate the impacts of using the online adaptive estimation in comparison to traditional

reconstruction techniques.

84

Bibliography

[1] DINIZ, P. S. R., DA SILVA, E. A. B., NETTO, S. L. Digital signal processing:

system analysis and design. Cambridge University Press, 2010. doi: 10.

1017/CBO9780511781667.

[2] CHEN, Y., KAR, S., MOURA, J. M. F. “The internet of things: secure dis-

tributed inference”, IEEE Signal Processing Magazine, v. 35, n. 5, pp. 64–

75, Sep. 2018. ISSN: 1053-5888. doi: 10.1109/MSP.2018.2842097.

[3] SANDRYHAILA, A., MOURA, J. M. F. “Big data analysis with signal pro-

cessing on graphs: representation and processing of massive data sets

with irregular structure”, IEEE Signal Processing Magazine, v. 31, n. 5,

pp. 80–90, Sept 2014. ISSN: 1053-5888. doi: 10.1109/MSP.2014.2329213.

[4] ORTEGA, A., FROSSARD, P., KOVAČEVIĆ, J., et al. “Graph signal pro-

cessing: overview, challenges, and applications”, Proceedings of the

IEEE, v. 106, n. 5, pp. 808–828, May 2018. ISSN: 0018-9219. doi:

10.1109/JPROC.2018.2820126.

[5] BONDY, J. A., MURTY, U. S. R. Graph theory with applications. Macmillan,

1976.

[6] SHUMAN, D. I., NARANG, S. K., FROSSARD, P., et al. “The emerging field of

signal processing on graphs: extending high-dimensional data analysis to

networks and other irregular domains”, IEEE Signal Processing Magazine,

v. 30, n. 3, pp. 83–98, May 2013. ISSN: 1053-5888. doi: 10.1109/MSP.

2012.2235192.

[7] SANDRYHAILA, A., MOURA, J. M. F. “Discrete signal processing on graphs”,

IEEE Transactions on Signal Processing, v. 61, n. 7, pp. 1644–1656, April

2013. ISSN: 1053-587X. doi: 10.1109/TSP.2013.2238935.

[8] SANDRYHAILA, A., MOURA, J. M. F. “Discrete signal processing on graphs:

frequency analysis”, IEEE Transactions on Signal Processing, v. 62, n. 12,

pp. 3042–3054, June 2014. ISSN: 1053-587X. doi: 10.1109/TSP.2014.

2321121.

85

[9] ANIS, A., GADDE, A., ORTEGA, A. “Towards a sampling theorem for signals

on arbitrary graphs”. In: 2014 IEEE International Conference on Acous-

tics, Speech and Signal Processing (ICASSP), pp. 3864–3868, May 2014.

doi: 10.1109/ICASSP.2014.6854325.

[10] CHEN, S., SANDRYHAILA, A., KOVAČEVIĆ, J. “Sampling theory for graph

signals”. In: 2015 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), pp. 3392–3396, April 2015. doi: 10.

1109/ICASSP.2015.7178600.

[11] CHEN, S., VARMA, R., SANDRYHAILA, A., et al. “Discrete signal processing

on graphs: sampling theory”, IEEE Transactions on Signal Processing,

v. 63, n. 24, pp. 6510–6523, Dec 2015. ISSN: 1053-587X. doi: 10.1109/

TSP.2015.2469645.

[12] CHAMON, L. F. O., RIBEIRO, A. “Greedy sampling of graph signals”, IEEE

Transactions on Signal Processing, v. 66, n. 1, pp. 34–47, Jan 2018. ISSN:

1053-587X. doi: 10.1109/TSP.2017.2755586.

[13] CHEN, S., SANDRYHAILA, A., MOURA, J. M. F., et al. “Signal recovery

on graphs: variation minimization”, IEEE Transactions on Signal Pro-

cessing, v. 63, n. 17, pp. 4609–4624, Sep. 2015. ISSN: 1053-587X. doi:

10.1109/TSP.2015.2441042.

[14] CHEN, S., VARMA, R., SINGH, A., et al. “Signal recovery on graphs: funda-

mental limits of sampling strategies”, IEEE Transactions on Signal and

Information Processing over Networks, v. 2, n. 4, pp. 539–554, Dec 2016.

ISSN: 2373-776X. doi: 10.1109/TSIPN.2016.2614903.

[15] LORENZO, P. D., BARBAROSSA, S., BANELLI, P., et al. “Adaptive least

mean squares estimation of graph signals”, IEEE Transactions on Signal

and Information Processing over Networks, v. 2, n. 4, pp. 555–568, Dec

2016. ISSN: 2373-776X. doi: 10.1109/TSIPN.2016.2613687.

[16] LORENZO, P. D., BANELLI, P., BARBAROSSA, S., et al. “Distributed

adaptive learning of graph signals”, IEEE Transactions on Signal Pro-

cessing, v. 65, n. 16, pp. 4193–4208, Aug 2017. ISSN: 1053-587X. doi:

10.1109/TSP.2017.2708035.

[17] LORENZO, P. D., BANELLI, P., BARBAROSSA, S. “Optimal sampling

strategies for adaptive learning of graph signals”. In: 2017 25th European

Signal Processing Conference (EUSIPCO), pp. 1684–1688, Aug 2017. doi:

10.23919/EUSIPCO.2017.8081496.

86

[18] LORENZO, P. D., ISUFI, E., BANELLI, P., et al. “Distributed recursive least

squares strategies for adaptive reconstruction of graph signals”. In: 2017

25th European Signal Processing Conference (EUSIPCO), pp. 2289–2293,

Aug 2017. doi: 10.23919/EUSIPCO.2017.8081618.

[19] LORENZO, P. D., BANELLI, P., ISUFI, E., et al. “Adaptive graph signal

processing: algorithms and optimal sampling strategies”, IEEE Transac-

tions on Signal Processing, v. 66, n. 13, pp. 3584–3598, July 2018. ISSN:

1053-587X. doi: 10.1109/TSP.2018.2835384.

[20] LORENZO, P., BARBAROSSA, S., BANELLI, P. “Chapter 9 - Sam-

pling and recovery of graph signals”. In: Djurić, P. M., Richard, C.

(Eds.), Cooperative and graph signal processing, Academic Press, pp.

261 – 282, 2018. ISBN: 978-0-12-813677-5. doi: https://doi.org/

10.1016/B978-0-12-813677-5.00009-2. Dispońıvel em: <http://www.

sciencedirect.com/science/article/pii/B9780128136775000092>.

[21] LORENZO, P. D., CECI, E. “Online recovery of time-varying signals defined

over dynamic graphs”. In: 2018 26th European Signal Processing Confer-

ence (EUSIPCO), pp. 131–135, Sep. 2018. doi: 10.23919/EUSIPCO.2018.

8553473.

[22] MOHAN, D. M., ASIF, M. T., MITROVIC, N., et al. “Wavelets on graphs

with application to transportation networks”. In: 17th International IEEE

Conference on Intelligent Transportation Systems (ITSC), pp. 1707–1712,

Oct 2014. doi: 10.1109/ITSC.2014.6957939.

[23] HUANG, W., GOLDSBERRY, L., WYMBS, N. F., et al. “Graph frequency

analysis of brain signals”, IEEE Journal of Selected Topics in Signal Pro-

cessing, v. 10, n. 7, pp. 1189–1203, Oct 2016. ISSN: 1932-4553. doi:

10.1109/JSTSP.2016.2600859.

[24] FRACASTORO, G., THANOU, D., FROSSARD, P. “Graph transform learn-

ing for image compression”. In: 2016 Picture Coding Symposium (PCS),

pp. 1–5, Dec 2016. doi: 10.1109/PCS.2016.7906368.

[25] THANOU, D., DONG, X., KRESSNER, D., et al. “Learning heat diffusion

graphs”, IEEE Transactions on Signal and Information Processing over

Networks, v. 3, n. 3, pp. 484–499, Sep. 2017. ISSN: 2373-776X. doi:

10.1109/TSIPN.2017.2731164.

87

http://www.sciencedirect.com/science/article/pii/B9780128136775000092
http://www.sciencedirect.com/science/article/pii/B9780128136775000092

[26] WIDROW, B., HOFF, M. E. “Adaptive switching circuits”, WESCOM Conv.

Rec., , n. pt 4, pp. 96–140, Aug 1960. ISSN: 0018-9219. doi: 10.1109/

PROC.1976.10286.

[27] WIDROW, B., MCCOOL, J. M., LARIMORE, M. G., et al. “Stationary and

nonstationary learning characteristics of the LMS adaptive filter ”, Pro-

ceedings of the IEEE, v. 64, n. 8, pp. 1151–1162, Aug 1976. ISSN: 0018-

9219. doi: 10.1109/PROC.1976.10286.

[28] SAYED, A. H. Adaptive filters. John Wiley & Sons, 2011.

[29] DINIZ, P. S. R. Adaptive filtering: algorithms and practical implementation.

Springer, 2013.

[30] ELEFTHERIOU, E., FALCONER, D. “Tracking properties and steady-state

performance of RLS adaptive filter algorithms”, IEEE Transactions on

Acoustics, Speech, and Signal Processing, v. 34, n. 5, pp. 1097–1110, Oc-

tober 1986. ISSN: 0096-3518. doi: 10.1109/TASSP.1986.1164950.

[31] SPELTA, M. J. M., MARTINS, W. A. “Online temperature estimation using

graph signals”. In: XXXVI Simpósio Brasileiro de Telecomunicações e

Processamento de Sinais - SBrT2018, pp. 154–158, 2018.

[32] NAGUMO, J., NODA, A. “A learning method for system identification”, IEEE

Transactions on Automatic Control, v. 12, n. 3, pp. 282–287, June 1967.

ISSN: 0018-9286. doi: 10.1109/TAC.1967.1098599.

[33] SLOCK, D. T. M. “On the convergence behavior of the LMS and the normalized

LMS algorithms ”, IEEE Transactions on Signal Processing, v. 41, n. 9,

pp. 2811–2825, Sep. 1993. ISSN: 1053-587X. doi: 10.1109/78.236504.

[34] WERNER, S., DINIZ, P. S. R. “Set-membership affine projection algorithm”,

IEEE Signal Processing Letters, v. 8, n. 8, pp. 231–235, Aug 2001. ISSN:

1070-9908. doi: 10.1109/97.935739.

[35] NAGARAJ, S., GOLLAMUDI, S., KAPOOR, S., et al. “BEACON: an adaptive

set-membership filtering technique with sparse updates”, IEEE Transac-

tions on Signal Processing, v. 47, n. 11, pp. 2928–2941, Nov 1999. ISSN:

1053-587X. doi: 10.1109/78.796429.

[36] DINIZ, P. S. R. “On data-selective adaptive filtering”, IEEE Transactions on

Signal Processing, v. 66, n. 16, pp. 4239–4252, Aug 2018. ISSN: 1053-

587X. doi: 10.1109/TSP.2018.2847657.

88

[37] BERBERIDIS, D., KEKATOS, V., GIANNAKIS, G. B. “Online censoring

for large-scale regressions with application to streaming big data”, IEEE

Transactions on Signal Processing, v. 64, n. 15, pp. 3854–3867, Aug 2016.

ISSN: 1053-587X. doi: 10.1109/TSP.2016.2546225.

[38] BERBERIDIS, D. K., KEKATOS, V., WANG, G., et al. “Adaptive censoring

for large-scale regressions”. In: 2015 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), pp. 5475–5479, April

2015. doi: 10.1109/ICASSP.2015.7179018.

[39] SPELTA, M. J. M., MARTINS, W. A. “Optimal constraint vectors for set-

membership proportionate affine projection algorithms”. In: 2018 IEEE

Statistical Signal Processing Workshop (SSP), pp. 523–527, June 2018.

doi: 10.1109/SSP.2018.8450820.

[40] SPELTA, M. J. M. “Brazilian Weather Stations”. http://github.com/

mspelta/brazilian-weather-stations, 2018.

[41] INSTITUTO NACIONAL DE METEOROLOGIA (INMET) . “Normais cli-

matológicas do Brasil”. http://www.inmet.gov.br/portal/index.php?

r=clima/normaisClimatologicas.

[42] SPELTA, M. J. M. “MSc Dissertation”. https://github.com/mspelta/msc_

dissertation, 2019.

[43] BOYD, S., VANDENBERGUE, L. Convex optimization. Cambridge University

Press, 2004.

[44] NETTO, S. L., DINIZ, P. S. R., AGATHOKLIS, P. “Adaptive IIR filtering

algorithms for system identification: a general framework”, IEEE Trans-

actions on Education, v. 38, n. 1, pp. 54–66, Feb 1995. ISSN: 0018-9359.

doi: 10.1109/13.350221.

[45] PAPOULIS, A. Probability, Random Variables, and Stochastic Processes. Mc-

Graw Hill, 1991.

[46] DUTTWEILER, D. L. “Proportionate normalized least-mean-squares adapta-

tion in echo cancelers”, IEEE Transactions on Speech and Audio Process-

ing, v. 8, n. 5, pp. 508–518, September 2000.

[47] BENESTY, J., GAY, S. L. “An improved PNLMS algorithm”. In: Proceed-

ings of IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP ’02), v. 2, pp. 1881–1884. IEEE, 2002.

89

http://github.com/mspelta/brazilian-weather-stations
http://github.com/mspelta/brazilian-weather-stations
http://www.inmet.gov.br/portal/index.php?r=clima/normaisClimatologicas
http://www.inmet.gov.br/portal/index.php?r=clima/normaisClimatologicas
https://github.com/mspelta/msc_dissertation
https://github.com/mspelta/msc_dissertation

[48] BENESTY, J., GÄNSLER, T., D.MORGAN, et al. Advances in network and

acoustic echo cancellation. Springer, 2001.

[49] HOSHUYAMA, O., GOUBRAN, R. A., SUGIYAMA, A. “A generalized pro-

portionate variable step-size algorithm for fast changing acoustic environ-

ments”. In: Proceedings of IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP ’04), v. 4, pp. 161–164. IEEE,

2004.

[50] GÄNSLER, T., GAY, S. L., SONDHI, M. M., et al. “Double-talk robust fast

converging algorithms for network echo cancellation”, IEEE Transactions

on Speech and Audio Processing, v. 8, n. 6, pp. 656–663, November 2000.

[51] YAZDANPANAH, H., LIMA, M. V. S., DINIZ, P. S. R. “On the robustness

of set-membership adaptive filtering algorithms”, EURASIP Journal on

Advances in Signal Processing, v. 2017, n. 1, pp. 72, Oct 2017.

[52] WERNER, S., APOLINÁRIO JR., J. A., DINIZ, P. S. R. “Set-membership

proportionate affine projection algorithms”, EURASIP Journal on Audio,

Speech, and Music Processing, v. 2007, n. 1, pp. 1–10, January 2007.

[53] MARTINS, W. A., LIMA, M. V. S., DINIZ, P. S. R., et al. “Optimal con-

straint vectors for set-membership affine projection algorithms”, Signal

Processing, v. 134, pp. 285–294, May 2017.

[54] GALDINO, J. F., APOLINÁRIO JR., J. A., DE CAMPOS, M. L. R. “A set-

membership NLMS algorithm with time-varying error bound”. In: Pro-

ceedings of the IEEE Int. Symp. Circuits Syst., pp. 277–280. IEEE, 2006.

[55] GOLLAMUDI, S., NAGARAJ, S., KAPOOR, S., et al. “Set-membership fil-

tering and a set-membership normalized LMS algorithm with an adaptive

step size”, IEEE Signal Processing Letters, v. 5, n. 5, pp. 111–114, May

1998. ISSN: 1070-9908. doi: 10.1109/97.668945.

[56] LIMA, M. V. S., FERREIRA, T. N., MARTINS, W. A., et al. “Sparsity-aware

data-selective adaptive filters”, IEEE Trans. Signal Process., v. 62, n. 17,

pp. 4557–4572, September 2014.

[57] LIMA, M. V. S., DINIZ, P. S. R. “Steady-state analysis of the set-membership

affine projection algorithm”. In: 2010 IEEE International Conference on

Acoustics, Speech and Signal Processing, pp. 3802–3805, 2010.

90

[58] LIMA, M. V. S., DINIZ, P. S. R. “Steady-state MSE performance of the set-

membership affine projection algorithm”, Circuits, Systems, and Signal

Processing, v. 32, pp. 1811–1837, 2013.

[59] LIMA, M. V. S., DINIZ, P. S. R. “Fast learning set theoretic estimation”. In:

Proceedings of the 21st European Signal Processing Conference (EUSIPCO

2013), pp. 1–5. IEEE, 2013.

[60] JIANG, K., SUN, D., TOH, K.-C. “An inexact accelerated proximal gradient

method for large scale linearly constrained convex SDP”, SIAM J. optim,

v. 22, n. 3, pp. 1042–1064, 2012.

[61] GRANT, M., BOYD, S. “CVX MATLAB software for disciplined convex pro-

gramming, version 2.0 beta”. 2014. Dispońıvel em: <http://cvxr.com/

cvx/>.

[62] ANTONIOU, A., LU, W. Practical optimization: algorithms and engineering

applications. Springer, 2007.

[63] BERTSEKAS, D. P. Nonlinear programming. Athena Scientific, 1999.

[64] NOCEDAL, J., WRIGHT, S. J. Numerical optimization. Springer, 2006.

[65] SANTIN, O., HAVLENA, V. “Combined gradient and newton projection

quadratic programming solver for MPC”. In: Proceedings of the 18th

World Congress - The International Federation of Automatic Control,

v. 44, pp. 5567–5572, 2011.

[66] KELLEY, C. T. Iterative methods for optimization. Society for Industrial and

Applied Mathematics, 1999.

[67] KELLEY, C. T. “Gradient projection method MATLAB implementation”.

1998. Dispońıvel em: <http://www.siam.org/books/kelley/fr18/

OPT_CODE/gradproj.m>.

[68] RIBEIRO, G., LIMA, J. “Graph signal processing in a nutshell”, Journal of

Communication and Information Systems, v. 33, n. 1, Jul. 2018. doi: 10.

14209/jcis.2018.22. Dispońıvel em: <https://jcis.sbrt.org.br/jcis/

article/view/563>.

[69] PÜSCHEL, M., MOURA, J. M. F. “Algebraic signal processing theory”, CoRR,

v. abs/cs/0612077, 2006. Dispońıvel em: <http://arxiv.org/abs/cs/

0612077>.

91

http://cvxr.com/cvx/
http://cvxr.com/cvx/
http://www.siam.org/books/kelley/fr18/OPT_CODE/gradproj.m
http://www.siam.org/books/kelley/fr18/OPT_CODE/gradproj.m
https://jcis.sbrt.org.br/jcis/article/view/563
https://jcis.sbrt.org.br/jcis/article/view/563
http://arxiv.org/abs/cs/0612077
http://arxiv.org/abs/cs/0612077

[70] PÜSCHEL, M., MOURA, J. M. F. “Algebraic signal processing theory: foun-

dation and 1-D time”, IEEE Transactions on Signal Processing, v. 56,

n. 8, pp. 3572–3585, Aug 2008. ISSN: 1053-587X. doi: 10.1109/TSP.2008.

925261.

[71] NARANG, S. K., GADDE, A., ORTEGA, A. “Signal processing techniques

for interpolation in graph structured data”. In: 2013 IEEE International

Conference on Acoustics, Speech and Signal Processing, pp. 5445–5449,

May 2013. doi: 10.1109/ICASSP.2013.6638704.

[72] PETERSEN, K. B., PEDERSEN, M. S. The matrix cookbook, 2012 (accessed

November 9, 2018). Dispońıvel em: <https://www.math.uwaterloo.

ca/~hwolkowi/matrixcookbook.pdf>.

[73] TREFETHEN, L. N., III, D. B. Numerical linear algebra. SIAM: Society for

Industrial and Applied Mathematics, 1997.

[74] DAMM, T. “Direct methods and ADI-preconditioned Krylov subspace methods

for generalized Lyapunov equations”, Numerical Lin. Alg. with Applic.,

v. 15, pp. 853–871, 2008.

[75] LAUB, A. J. Matrix analysis for scientists and engineers. Philadelphia, PA,

USA, SIAM: Society for Industrial and Applied Mathematics, 2004. ISBN:

9780898715767.

[76] ANDREWS, L. C. Special functions of mathematics for engineers. Oxford

Univ. Press, 1998.

[77] HOGG, R. V., CRAIG, A. T. Introduction to mathematical statistics. Macmil-

lan Publishing Co, Inc., 1978.

[78] MAHMOUD, H., AKKARI, N. “Shortest path calculation: a comparative study

for location-based recommender system”. In: 2016 World Symposium on

Computer Applications Research (WSCAR), pp. 1–5, March 2016. doi:

10.1109/WSCAR.2016.16.

92

https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

Appendix A

Alternative Derivations of

Adaptive Algorithms

A.1 Theoretical SM-PAPA Update Equation

Based on the PAPA derivation presented in Subsection 2.6.1, for solving (3.9) we

first write the respective Lagrangian

Lsm

î
ĥ[k + 1]

ó
=

1

2
‖ĥ[k + 1]− ĥ[k]‖2

G−1[k]+

+ λT
sm[k] · (ddr[k]−XT

dr[k]ĥ[k + 1]− γ[k]) ,
(A.1)

where λsm[k] ∈ RL+1 represents the SM-PAPA Lagrange multipliers vector.

Considering that the constraint vector γ[k] is not dependent on the value of

ĥ[k + 1], by taking the gradient of (A.1) with respect to ĥ[k + 1] and equating this

expression to zero, we obtain that

ĥ[k + 1] = ĥ[k] + G[k]Xdr[k]λsm[k] . (A.2)

Since (3.9) indicates that XT
dr[k]ĥ[k + 1] = ddr[k] − γ[k] and we know that e[k] =

ddr[k]−XT
dr[k]ĥ[k], from equation (A.2) we find that

XT
dr[k]G[k]Xdr[k]λsm[k] = XT

dr[k]ĥ[k + 1]−XT
dr[k]ĥ[k] ,

XT
dr[k]G[k]Xdr[k]λsm[k] = ddr[k]−XT

dr[k]ĥ[k]− γ[k] ,

XT
dr[k]G[k]Xdr[k]λsm[k] = e[k]− γ[k] .

(A.3)

Assuming that Xdr[k] ∈ R(M+1)×(L+1) has rank L + 1 (where L < M), the matrix

XT
dr[k]G[k]Xdr[k] is non-singular. So, we rewrite the SM-PAPA Lagrange multiplier

λsm[k] as

λsm[k] =
Å
XT

dr[k]G[k]Xdr[k]
ã−1Ä

e[k]− γ[k]
ä
, (A.4)

93

and substitute this expression in (A.2), resulting in the update equation

ĥ[k + 1] = ĥ[k] + G[k]Xdr[k] ·
Å
XT

dr[k]G[k]Xdr[k]
ã−1Ä

e[k]− γ[k]
ä
. (A.5)

A.2 GSP RLS Alternative Update Equations

Due to its initialization as a diagonal matrix, from (4.25) one finds that RR[k] is

symmetric. Then, based on (4.25), by taking G[k] = DSUFR−1
R [k − 1]UT

FDS , the

matrix inversion lemma states that R−1
R [k] can be written as

R−1
R [k]=

î
I−R−1

R [k − 1]UT
FDS(βRCw+ G[k])−1DSUF

ó
β−1

R R−1
R [k − 1] . (A.6)

From (4.7) and x̂o[k+1] in (4.26), it is clear that R−1
R [k]pR[k] is equal to ŝF [k+1].

Thus, by multiplying R−1
R [k] in (A.6) and pR[k] from (4.25) we find ŝF [k+1]. Based

on (4.6), x̂o[k + 1] is

x̂o[k+1] = x̂o[k] + UFR−1
R [k − 1]UT

FDS(βRCw + G[k])−1e[k] . (A.7)

When right-multiplying (A.6) by UT
FDSC

−1
w it follows that

R−1
R [k]UT

FDSC
−1
w = R−1

R [k − 1]UT
FDS(βRCw + G[k])−1 ,

which allows us to rewrite expression (A.7) as

x̂o[k + 1] = x̂o[k] + UFR−1
R [k]UT

FDSC
−1
w e[k] . (A.8)

A.3 NLMS Algorithm Alternative Derivation

For solving the constrained convex problem (5.8), we consider a Lagrange multipliers

vector given by λN ∈ R|F| and write the Lagrangian function

LN

î
ŝF [k + 1]

ó
= ‖ŝF [k + 1]− ŝF [k]‖2

2 − λT
NUT

FDS(xw[k]−UF ŝF [k + 1]) . (A.9)

Then, when taking the derivate of (A.9) with respect to ŝF [k+ 1] and equating this

expression to zero, we obtain that

ŝF [k + 1]− ŝF [k] =
1

2
UT
FDSUFλN . (A.10)

After left-multiplying both sides of (A.10) by (UT
FDSUF) and, recalling the a

94

posteriori error constraint DS(xw[k]−UF ŝF [k + 1]) = 0 in (5.8), we have that

UT
FDS(xw[k]−UF ŝF [k]) =

1

2
(UT
FDSUF)2λN . (A.11)

As the a priori error is defined as e[k] = xw[k]−UF ŝF [k], from (A.11) we find that

the Lagrange multipliers vector λN is given by

λN = 2(UT
FDSUF)−2UT

F e[k] . (A.12)

Finally, by replacing expression (A.12) in (A.10) we find the frequency-domain

update expression

ŝF [k + 1] = ŝF [k] + (UT
FDSUF)−1UT

F e[k] , (A.13)

which is identical to the NLMS update equation for graph signal estimation in (5.6).

95

	List of Figures
	List of Tables
	List of Symbols
	List of Abbreviations
	Introduction
	The Inspiration for Graph Signal Processing
	Adaptive Filtering Ideas for a GSP Problem
	Contributions
	Publications
	Organization
	Notation

	Adaptive Filtering
	Figures of Merit for Adaptive Filters
	The LMS Algorithm
	The RLS Algorithm
	NLMS Algorithm
	AP Algorithm
	Alternative Derivation of the NLMS Algorithm

	Proportionate AP Algorithm
	Derivation of the PAP Algorithm

	Data Selection for Adaptive Filtering
	Data Selection Strategies
	DS Adaptive Filtering
	SM Adaptive Filtering

	The SM-PAP Algorithm
	Optimal Constraint Vector for the SM-PAPA
	SM-PAPA Convex Cost-Function
	Optimal CV Solution
	Discussion about Computing the Optimal CV
	GP Method for Computing the Optimal CV
	Numerical Simulations
	Summary of Contributions

	Graph Signal Processing
	Basic Concepts about Graphs
	Graph Structure
	Graph Signal
	Graph Structure Inference

	GSP Frameworks
	GSP Toolset
	Graph Fourier Transform
	Sampling and Reconstruction of Graph Signals
	Sampling Set Selection

	Adaptive Estimation of Graph Signals
	The GSP LMS Algorithm
	The GSP RLS Algorithm
	Figures of Merit

	NLMS Algorithm and DS Strategies for GSP
	NLMS Graph Signal Estimation Algorithm
	Algorithm Derivation
	Stability and Convergence to Unbiased Solution
	Computational Complexity Analysis
	Steady-State FoM Analysis
	Remarks

	GSP LMS and RLS Complementary Analysis
	LMS Algorithm Error Analysis
	RLS Algorithm Error Analysis

	GSP Data-selective Estimation Algorithms
	Component-Wise Error Constraint Strategy
	2-Norm Error Constraint Strategy

	GSP Database and Simulation Results
	Approximating Temperature Measurements as a Bandlimited Graph Signal
	Adaptive Algorithms for GS Estimation
	Noise Scenarios
	Convergence Speed and Complexity Comparison
	Steady-State FoM Predictions
	Update Rate Steady-State Predictions

	Conclusion and Future Works
	Concluding Remarks
	Future Research Directions

	Bibliography
	Alternative Derivations of Adaptive Algorithms
	Theoretical SM-PAPA Update Equation
	GSP RLS Alternative Update Equations
	NLMS Algorithm Alternative Derivation

