
IDENTIFICATION OF DEFECT-PROPAGATION STAGE IN RIGID PIPES BY

MEANS OF ACOUSTIC-EMISSION DATA IN STREAMING FORMAT AND

NEURAL NETWORKS

Luiz Rennó Costa

Dissertação de Mestrado apresentada ao

Programa de Pós-graduação em Engenharia

Elétrica, COPPE, da Universidade Federal do

Rio de Janeiro, como parte dos requisitos

necessários à obtenção do t́ıtulo de Mestre em

Engenharia Elétrica.

Orientador: Luiz Pereira Calôba

Rio de Janeiro

Março de 2019

IDENTIFICATION OF DEFECT-PROPAGATION STAGE IN RIGID PIPES BY

MEANS OF ACOUSTIC-EMISSION DATA IN STREAMING FORMAT AND

NEURAL NETWORKS

Luiz Rennó Costa

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO

ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE

ENGENHARIA (COPPE) DA UNIVERSIDADE FEDERAL DO RIO DE

JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A

OBTENÇÃO DO GRAU DE MESTRE EM CIÊNCIAS EM ENGENHARIA

ELÉTRICA.

Examinada por:

Prof. Luiz Pereira Calôba, D.Ing.

Prof. Carlos Fernando Carlim Pinto, D.Sc.

Prof. Gabriela Ribeiro Pereira, D.Sc.

Dr. Sérgio Damasceno Soares, D.Sc.

Prof. Guilherme de Alencar Barreto, D.Sc.

RIO DE JANEIRO, RJ – BRASIL

MARÇO DE 2019

Costa, Luiz Rennó

Identification Of Defect-Propagation Stage In Rigid

Pipes By Means Of Acoustic-Emission Data In Streaming

Format And Neural Networks/Luiz Rennó Costa. – Rio de

Janeiro: UFRJ/COPPE, 2019.

XV, 82 p.: il.; 29, 7cm.

Orientador: Luiz Pereira Calôba

Dissertação (mestrado) – UFRJ/COPPE/Programa de

Engenharia Elétrica, 2019.

Referência Bibliográfica: p. 63 – 66.

1. Neural Networks. 2. Acoustic Emission. 3.

Industry 4.0. I. Calôba, Luiz Pereira. II. Universidade

Federal do Rio de Janeiro, COPPE, Programa de

Engenharia Elétrica. III. T́ıtulo.

iii

Lakad Matataaag! Normalin,

Normalin.

iv

Acknowledgements

Gostaria de agradecer a todos.

v

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos

necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

IDENTIFICAÇÃO DE ESTÁGIO DE PROPAGAÇÃO DE DEFEITOS EM

DUTOS RÍGIDOS POR MEIO DE DADOS DE EMISSÃO ACÚSTICA EM

FORMATO DE STREAMING E REDES NEURAIS

Luiz Rennó Costa

Março/2019

Orientador: Luiz Pereira Calôba

Programa: Engenharia Elétrica

Testes destrutivos e não destrutivos são a base para entender as propriedades

f́ısicas dos materiais. Por exemplo, defeitos em um tubo sob pressão podem se

propagar até produzir uma falha; portanto, uma correta identificação e análise

de defeitos é da extrema importância prática. Uma ampla classe de testes não

destrutivos explora o fato que materiais sob pressão emitem ondas acústicas. Estas

ondas geram dados que são analisados por um especialista para a avaliação do

material. Este trabalho propõe o uso de redes neurais feedforward para automatizar

o processo de análise de dados. Para alcançar este objetivo, as emissões acústicas

são divididas em três classes de acordo com seu “padrão”: Sem Propagação (NP),

Propagação Estável (SP) e Propagação Instável (UP). A capacidade de classificar

corretamente as emissões acústicas geradas por um defeito permite classificar por

qual o ńıvel de risco o sistema está passando. Foi posśıvel alcançar uma taxa de

classificação de mais de 85% para dois conjuntos distintos de dados, mostrando que

tais métodos têm potencial para aplicações práticas.

vi

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Master of Science (M.Sc.)

IDENTIFICATION OF DEFECT-PROPAGATION STAGE IN RIGID PIPES BY

MEANS OF ACOUSTIC-EMISSION DATA IN STREAMING FORMAT AND

NEURAL NETWORKS

Luiz Rennó Costa

March/2019

Advisor: Luiz Pereira Calôba

Department: Electrical Engineering

Destructive and non-destructive tests are basic for understanding physical

properties of materials. For instance, defects in a pipe under pressure can propagate

until failure; therefore, a proper identification and analysis of defects is of the

greatest practical importance. A wide class of non-destructive tests exploits the

fact that materials under pressure emit acoustic waves, and data from acoustic

emissions are analysed by a specialist. This thesis proposes the use of feedforward

neural networks to automate the process of data analysis. To achieve this goal,

acoustic emissions are divided into three classes according to their “pattern”: no

propagation (NP), stable propagation (SP) and unstable propagation (UP). The

ability of correctly classifying the acoustic emissions generated by a defect permits

to classify which level of risk the system is undergoing. A classification rate higher

than 85% was achieved using two distinct datasets, showing that such methods have

a potential for practical applications.

vii

Contents

List of Figures x

List of Tables xii

List of Symbols xiii

List of Acronyms xiv

1 Introduction 1

1.1 Introduction . 1

1.2 Objective . 2

1.3 Theory . 2

1.3.1 Learning . 2

1.3.2 Supervised Learning . 3

1.3.3 Unsupervised Learning . 4

1.4 Artificial Neural Networks . 4

1.5 Perceptron . 6

1.5.1 Multi Layer Perceptron . 7

1.5.2 Backpropagation . 8

1.6 Training a Machine Learning Model 13

1.6.1 k -fold Cross-Validation . 16

1.7 Mechanical Properties . 17

1.8 Acoustic Emission . 19

1.9 Bibliography Review . 20

2 Materials and Methods 22

2.1 Acoustic Emission Test . 22

2.2 Streaming Raw Data . 26

2.3 Preprocessing . 27

2.3.1 Resolution Analysis . 28

2.3.2 TOFD Removal . 29

2.3.3 Pressure Pump Removal . 31

viii

2.4 Wave Capture . 32

2.4.1 Estimating Noise Level . 33

2.4.2 Timing Parameters . 34

2.4.3 Acoustic Emission Parameters 37

2.4.4 Frequency Data . 37

2.5 Database Structure . 39

2.6 Model Definition . 39

2.6.1 Network Size . 40

2.6.2 Transition Time Estimation 41

2.6.3 Input Correlation Analysis . 42

2.6.4 Relevance Analysis . 43

3 Results 44

3.1 Preprocessing . 44

3.1.1 Resolution Analysis . 44

3.1.2 Frequency Data . 46

3.1.3 Input Correlation & Relevance Analysis 48

3.2 Transition-Time-Estimation . 54

3.3 Classification Results . 56

3.3.1 CP2 . 57

3.3.2 CP3 . 58

3.3.3 CP4 . 59

3.4 Conclusion . 61

4 Future Works 62

Bibliography 63

Appendix A Software Documentation 67

Appendix B Transition Time Estimation “Proof” 80

ix

List of Figures

1.1 Simplified Supervised Learning Schematic 4

1.2 Structure of a Neuron and its Connections. Taken from [1] 5

1.3 Structure of a Neuron with Abstract Inputs and Outputs. Adapted

from [2]. 6

1.4 Complete Perceptron Mathematical Model. 7

1.5 Multi Layer Perceptron Schematic. 7

1.6 Example of a Sigmoid Function. Adapted From [3]. 14

1.7 Example of Cross Validation with 4 Folds. 16

1.8 Stress Vector Illustration. Taken from [4]. 17

1.9 Force Lines Within a Cracked Material. Taken from [5]. 18

1.10 A Stress-Strain Curve . 19

1.11 A Schematic Tensioned Block With a Crack Radiating Acoustic Emis-

sion. 20

2.1 Sensor Array Disposition for Test CP2. 23

2.2 Sensor Array Disposition for Test CP3. 23

2.3 Pressure and Crack Dimension for Test CP2. 24

2.4 Pressure and Crack Dimension for Test CP3. 25

2.5 Pressure and Crack Dimension for Test CP4. 25

2.6 Schematic of The Low-Level Modifications Done to Signal Acquisi-

tion. With Two Example 16-bit Words (0x3CAB and 0x0E19). 26

2.7 Data from TDMS File 900, Both Channel 12 (a) and 7 (b) From Test

CP3 with Zero (0) Mean. 27

2.8 Bit Resolution Colormap for Test CP3. 28

2.9 Data from TDMS File 900, Highlighting the TOFD Characteristics. . 29

2.10 Data from TDMS File 900, Channel 12 Containing the Threshold and

Indexes that Respectively Surpass It. 30

2.11 Removal of Time-Of-Flight-Diffraction Sensor Signal. 31

2.12 Data From TDMS File 751, Channel 7. 32

2.13 Partial Data From TDMS File 900, Channel 7 Highlighting the Noise

Level . 34

x

2.14 Summary Streaming Data Treatment Workflow. 36

2.15 Correlation Plot Between Each Frequency and The Output Classes,

No-Propagation, Stable Propagation and Unstable Propagation for

Test CP3. 38

2.16 Network Size Investigation for Test CP3 40

2.17 Example of a Sliding Window With Length L = 4 for the Transition

Time Estimation Method. 41

2.18 Classification Error (Cost) Example for The Transition Time Estima-

tion Method Applied to a Linearly-Separable Dataset. 42

2.19 Linear Correlation Matrix for Test CP3 42

3.1 Bit Resolution Colormap for Test CP2. 45

3.2 Bit Resolution Colormap for Test CP3. 45

3.3 Bit Resolution Colormap for Test CP4. 46

3.4 Correlation Plot Between Each Frequency and The Output Classes:

No-Propagation, Stable Propagation and Unstable Propagation for

Test CP2. 47

3.5 Correlation Plot Between Each Frequency and The Output Classes:

No-Propagation, Stable Propagation and Unstable Propagation for

Test CP3. 47

3.6 Correlation Plot Between Each Frequency and The Output Classes:

No-Propagation, Stable Propagation and Unstable Propagation for

Test CP4. 48

3.7 Linear Correlation Matrix for Test CP2 49

3.8 Linear Correlation Matrix for Test CP3 49

3.9 Linear Correlation Matrix for Test CP4 50

3.10 Relevance Analysis by Class for Test CP2. 50

3.11 Relevance Analysis by Class for Test CP3 51

3.12 Relevance Analysis by Class for Test CP4 51

3.13 Network Size Investigation for Test CP2 53

3.14 Network Size Investigation for Test CP3 53

3.15 Network Size Investigation for Test CP4 54

3.16 Transition-Time-Estimation Method Applied to Test CP2 55

3.17 Transition-Time-Estimation Method Applied to Test CP3 55

3.18 Transition-Time-Estimation Method Applied to Test CP4 56

xi

List of Tables

1.1 Partial Data Description and Respective Type From the Adult

dataset [6]. 14

2.1 Streaming Sensors Frequency Range. 24

2.2 Hydrostatic Test Summary . 27

2.3 Extracted Acoustic Emission Parameters. 37

3.1 Amount of Relevant Data From the Resolution Analysis. 44

3.2 Aproximate Amount of Samples of The Test Set for Each Run Using

4 Classes for Tests CP2 and CP3. 57

3.3 Aproximate Amount of Samples of The Test Set for Each Run Using

6 Classes for Test CP4. 57

3.4 Mean (a) and Standard Deviation (b) of the Confusion Matrix Using

4 Classes for Test CP2 in Percentage. 58

3.5 Mean (a) and Standard Deviation (b) of the Confusion Matrix for

Test CP2 in Percentage. 58

3.6 Mean (a) and Standard Deviation (b) of the Confusion Matrix Using

4 Classes for Test CP3 in Percentage. 59

3.7 Mean (a) and Standard Deviation (b) of the Confusion Matrix for

Test CP3 in Percentage. 59

3.8 Mean (a) and Standard Deviation (b) of the Confusion Matrix With

All Classes for Test CP4 in Percentage. 60

3.9 Mean (a) and Standard Deviation (b) of the Confusion Matrix After

Joining Cycles for Test CP4 in Percentage. 60

xii

List of Symbols

Su Ultimate Strength, p. 18

Φ(·) Activation Function, p. 7

x̄ Mean of x, p. 15

◦ Hadamard (element-wise) product., p. 9

η Learning stepsize, p. 8

W(l) Weight Matrix for layer l, p. 8

ul Input of layer l., p. 8

zl Output of layer l., p. 8

� Hadamard (element-wise) division, p. 10

σx Standard Deviation of x, p. 15

x Model Input Data, p. 3

y Model Target Data, p. 3

xiii

List of Acronyms

ADC Analogue-to-Digital Converter, p. 24

AE Acoustic Emission, p. 1

AF Average Frequency, p. 37

AI Aritificial Intelligence, p. 5

ANN Artificial Neural Network, p. 6

ASL Average Signal Level, p. 37

CM Confusion Matrix, p. 57

CTP Count-To-Peak, p. 37

CV Cross-Validation, p. 16

FME First Moment Estimator, p. 12

GD Gradient Descent, p. 8

HDT Hit Definition Time, p. 34

HLT Hit Lockout Time, p. 34

KE Kaiser Effect, p. 20

LAMEF Laboratório de Metalurgia F́ısica, p. 22

LS Linearly-separable, p. 41

MA Mean Amplitude, p. 37

MLP Multi-Layer Perceptron, p. 7

ML Machine Learning, p. 3

NDT Non-Destructive Testing , p. 19

xiv

NI National Instruments, p. 24

PAC Physical Acoustics, p. 22

PCA Principal Component Analysis, p. 21

PDT Peak Definition Time, p. 34

PLA Perceptron Learning Algorithm, p. 6

RES Resolution Level, p. 37

RF Reverberation Frequency, p. 37

RMS Root-Mean-Square, p. 37

SME Second Moment Estimator, p. 12

SNR Signal-to-Noise Ratio, p. 33

SOM Self-Organizing Map, p. 20

TDMS Technical Data Management Streaming, p. 24

TOFD Time-Of-Flight Diffraction, p. 23

TTE Transition Time Estimation, p. 41

UFRGS Universidade Federal do Rio Grande do Sul, p. 22

VTHR Variable Threshold, p. 37

xv

Chapter 1

Introduction

1.1 Introduction

The increasing demand for energy over the past decades created a surge of renewable

sources, as opposed to the more traditional petroleum fuel. However, that still

is an essential fuel for our society, so that several companies like Shell, Exxon,

and Petrobras have extensive and complex networks for extracting and distributing

different kinds of liquid fuel through pipelines. Brazil for instance has roughly 8.000

kilometres (km) [7] of oil pipelines (both refined and crude) scattered throughout

the country.

In order to maintain and prevent failure of those extensive structures (which

could be catastrophic) several tests, both destructive and non-destructive were de-

veloped, and amongst the latter, one that stands out is the Acoustic-Emission (AE)

test. It relies on the radiation of acoustic (physical) waves that occurs when a

material undergoes irreversible changes both at a micro and macroscopic scale (Sec-

tion 1.8).

Acoustic-Emission testing is used to determine if a structure has a defect or

not. Which is intuitive since a irreversible change most likely means damage to the

structure. This thesis however tries to take it one step further.

Since each AE comes from a permanent damage, subsequent AEs should be

different. As the material is progressively damaged, the AEs should become all the

more frequent as well.

Those changes can come from the propagation of a crack, corrosion, or in other

words, irreversible damage to the material structure. Therefore it should be possible

to monitor and tell in real time how dangerous it is.

Unfortunately, operating pipelines produce a lot of noise, which can easily drown

the AE signal. Therefore, the capture and processing of the data is essential. In-

dustrial equipment are somewhat robust and have been used successfully as a tool

1

for this NDT. However, industrial AE equipment requires a specialized analyst to

interpret its data.

1.2 Objective

In order to bring this section of the industry to the trends of Industry 4.0, this

work proposes an adaptive model, capable of learning what the specialized analyst

does. Furthermore, this work takes it one step further proposing a fully fledged

data mining and processing software as an alternative to the existing industrial

equipment.

The main objective of this thesis is to develop an automated system to extract

AE waves from a streaming data source and an artificial neural network model to

determine which propagation stage the crack is at, based on the aforementioned

treated data.

1.3 Theory

This section gives a brief revision of the theoretical topics this thesis extends upon.

1.3.1 Learning

Learning is something all beings have experienced one way or another, it is intrinsic

to our nature and an essential process to our evolution as a society. It can be defined

as a acquisition of knowledge through interaction, be it with the outside world like

books, people, or with one’s own self.

Knowledge however, is a more abstract concept and can be interpreted in several

different ways, for instance, both knowing how to sew a scarf and differentiating

square from circle can be considered knowledge. The difference between those is

that in the latter, the knowledge is static, interacting with it means only identifying

which is which. Knowing how to sew a scarf however, means attaining domain over

the cloth’s process of transformation, given a simple piece of cloth (input), one would

always be able to transform it into a scarf.

The ability to learn a transformation process is something rather powerful be-

cause one can change properties of the output merely changing the input, instead

of relearning the whole process again, for example, being taught how to sew using

only blue cloth does not impede one to sew a red scarf, needed only to change the

fabric one applies the process.

Trying to create a machine that is able to act like we (thinking entities) do has

been an open challenge since the 1950s [8] and motivated countless studies amongst

2

several decades on the field of Machine Learning (ML).

It is important to note however that mathematical complexity is a central factor

in ML. Separating squares from circles can be done using rather simple mathematical

formulae, sewing a scarf not. One can even map all the hand movements and develop

formulae that reign it, but the complexity would make computation unrewarding.

The goal of ML is to create a simpler model capable of acquiring that complex

knowledge through learning.

However, another problem is still unresolved, how to measure the learning pro-

cess. One can find it learnt how to sew a scarf when it does not deforms when

pulled, or when it satisfies someone else. Expanding on that latter concept, one can

for instance, attribute a beauty scale for the scarf (suppose for simplicity that the

scale goes from 1 to 10), and only consider that it learnt how to sew a scarf when it

can reliably sew a scarf that receives a 10 from the beauty scale.

The creation of a measure capable of telling if learning is in fact happening is of

utmost importance for the learning process. We can then extend the definition of

learning to the acquisition of knowledge through interaction that, as a by-product,

increases the performance measure associated with that knowledge. The contrary

is also possible, instead of increasing a performance measure, one can decrease an

error measure.

Learning from the ML point of view can be separated in 3 main classes, Su-

pervised Learning (Section 1.3.2), Unsupervised Learning (Section 1.3.3) and Rein-

forced Learning. All those have the same principles, they all have a model, perfor-

mance measure and a task to perform. The main difference is how they receive and

interpret the input data.

1.3.2 Supervised Learning

As an undergrad is taking a calculus course, he is given several examples and ex-

ercises. Examples are composed of simpler questions and the necessary procedures,

after reading them and taking the more challenging exercises, he gives them to the

teacher, which in turn proceeds to tell him what he did right or wrong. He is then

given a score based on how many questions he had right (how many hit the “target”),

this procedure is repeated until the undergrad is satisfied with his score.

That is a prime example of Supervised Learning, as it can be defined as a method

to train the model by directly teaching it. This is achieved through the addition of

“labels” or “targets”. The procedure from a mathematical point of view (Figure 1.1)

is fairly straightforward, your input data x is fed to a model that yields the output

ỹ. The output is compared to the target y and a performance score or cost J(·) is

calculated.

3

Figure 1.1: Simplified Supervised Learning Schematic

1.3.3 Unsupervised Learning

Contrary to the aforementioned Supervised Learning method, Unsupervised Learn-

ing does not have a well specified “target” and therefore the model now has a

different purpose, to create some sort of structure based solely on the inputs and

the relationships between them. Unsupervised Learning typically translates to clus-

tering.

Clustering is the action of grouping together inputs that have some degree of

similarity, for instance, trying to separate different animals by the number of legs

they possess, or which environment they reside is a type of unsupervised clustering

since it depends only on the characteristics of the input data. A good example of

this approach is recommendation systems.

1.4 Artificial Neural Networks

What mainly highlights our species is the seemingly unending capacity to learn and

adapt, both individually and collectively as a society. One can not deny that one

of the main reasons for it is the development of our most complex and important

organs, the brain. The brain hosts 10 to 20 billion neurons, its main component.

Neurons are specialized cells physically interconnected through its dendrites and

axons (Figure 1.2). These connections are susceptible to electrical impulses called

synapses, sent through the axons and received from the dendrites.

4

Figure 1.2: Structure of a Neuron and its Connections. Taken from [1]

It has always been an interest of mankind to create an artificial brain. Sev-

eral cinematographic pieces depict (in a romanticized way) an Artificial Intelligence

(AI) like 2001, a Space Odyssey ; I, robot ; etc. This topic also inspired countless

researchers to study and develop mathematical models that try to mirror the be-

haviour of the brain.

It began in the end of 1943 when Warren S. McCulloch [9] and Walter Pitts

started to “translate” the neurons to a mathematical model using logical observa-

tions. They stated that the neuron behaved much like a “all-or-none” model, that

is, either it activated and sent forth a signal, or nothing happened. However, that

only allowed for binary inputs and outputs, which significantly hindered the model.

It was only after the definition of what is known as Hebb’s rule [10] that the

model would be revamped:

“Let us assume that the persistence or repetition of a reverberatory

activity (or ‘trace’) tends to induce lasting cellular changes that add to

its stability. ... When an axon of cell A is near enough to excite a

cell B and repeatedly or persistently takes part in firing it, some growth

process or metabolic change takes place in one or both cells such that

A’s efficiency, as one of the cells firing B, is increased.”

This rule basically states that interconnecting neurons have a change in synaptic

5

efficiency. It was then that Frank Rosenblatt [11] developed what is now known as a

Perceptron, creating weights that change according to the activation of the neuron.

The Artificial Neural Network (ANN) is a supervised learning model (as the

name states) inspired by that complex structure of the interconnected neurons,

mainly composed of Perceptrons.

1.5 Perceptron

The Perceptron can be interpreted as mathematical model for the neuron (Fig-

ure 1.3), it receives an input vector (x) through the dendrites, modifies it and

releases an output (y) down the axons.

Dendrite

Cell body

Axon TerminalAxon

Nucleus

x1

x2
...

xn

y1

y2
...

ym

Figure 1.3: Structure of a Neuron with Abstract Inputs and Outputs. Adapted
from [2].

Where xn and ym are elements from the n and m-dimensional input and output

vectors (x and y) respectively. Classically, this model was used as a binary classifier

using the synapses as weights, m = 1 and the addition of a bias (b) element, which

gives:

y = f(wx + b) = sign(wx + b) =

1, if wx + b > 0

−1, otherwise
(1.1)

Where w is a [1× n] vector of weights. This model can be interpreted as a line

in the input space that can both be translated (relative to the origin) and rotated.

That line acts as a boundary separating two regions, or in other words, classifying

two different groups of data.

The Perceptron Learning Algorithm (PLA) is rather simple, for

However, the boundary is still a straight line, meaning that if the data is not

linearly separable (vast majority of real cases) it is impossible to achieve zero clas-

sification error. It would be interesting then to create different sorts of non-linear

6

boundaries, to achieve that, one can “smooth” the underlying function f(wx) using

for example tanh(·), arctan(·), etc.

Also, this thesis is going to adopt a slightly different notation, wx + b → wx

where w0 = 0 and x0 = 1 thus giving:

y = f(wx + b) = f(wx)→ Φ(wx) (1.2)

Where w are the synapses (weights) and Φ(·) is an arbitrary mapping (activation

function). It is important to note that there is a certain “flow” of information from

x to y, there is no feedback in the Perceptron model (Figure 1.4).

Figure 1.4: Complete Perceptron Mathematical Model.

1.5.1 Multi Layer Perceptron

The perceptron is a simple model, and thus rather limited. However, like the brain,

real adaptive prowess comes when interconnecting several layers of perceptrons (Fig-

ure 1.5). Therefore creating a Multi Layer Perceptron (MLP) network. These kind

of ANN are referred to as shallow or vanilla networks.

Figure 1.5: Multi Layer Perceptron Schematic.

7

Although one may think this to be a rather straightforward modification, it was

not until 1986 when Hinton et al. developed an algorithm that was capable of

efficiently training such a complex network, Backpropagation [12].

1.5.2 Backpropagation

Backpropagation as a learning algorithm for ANNs was first defined in 1986 [12],

this work gave fuel to researchers since ANNs where always hindered by the com-

putational power available at the time.

First, defining W(l) the weight matrix for layer l, and using the notation W =

(W(1), ...,W(M)), the neural network defines a function y = f(x; W).

Where x is the vector of the independent variables, and W can be interpreted

as a parameter. While y is a notation for the output of the model, ỹ is the value

that is actually observed, in correspondence of some x. Given an observation pair

(x, ỹ), there is an associated loss J(y, ỹ) that measures how far the model output

y is from the actual output ỹ. For instance, one common choice is the Euclidean

square norm J(y, ỹ) = ‖y − ỹ‖2.

J(ξ) = ξξT
∣∣∣ ξ(y, ỹ) = y − ỹ (1.3)

Given a sample (x(i), ỹ(i)) of N observations, i = 1, . . . , N , the loss function J(ξ)

is defined as the sum (or average) of the costs for each observation in the sample.

Training a network means to find the value of W that minimizes J . Seeing it as an

optimization problem, several solutions can be applied, for instance, one can apply

Gradient Descent (GD), an optimization algorithm that uses the gradient:

W(l)[k + 1] = W(l)[k]− η ∂J

∂W(l)

[k] (1.4)

Where k is the kth iteration. However, calculating this gradient for the inner

layers is a bit tricky since it depends on the outer layers. This can be done by

iterating each layer backwards (from output to input). Before detailing the algorithm

per se, a few variables and notation need defining. The input of the l-th layer is

denominated u(l) = W(l)z(l−1), where z(l−1) is the output of the previous layer, l−1.

Calculating the gradient on the last layer gives:

∂J(ξ)

∂W(M)

=
∂J(ξ)

∂ξ

∂J(ξ)

∂y

∂y

∂z(M)

∂z(M)

∂u(M)

∂u(M)

∂W(M)

(1.5)

Since y = z(M), z(M) = Φ(u(M)) and u(M) = W(M)z(M−1), Equation 1.5 yields:

∂J(ξ)

∂W(M)

=
∂Φ(u(M))

∂u(M)

◦ ∂J(ξ)

∂y
zT
(M−1) (1.6)

8

Where ◦ is the Hadamard (element-wise) product. Although the transition from

Eq. 1.5 to Eq. 1.6 may not be trivial, dimensional analysis can be done to check if at

least the dimensions match. ∂J(ξ)
∂y

is a [Ny×P] matrix, z(M−1) has [Ny×P] dimension

and
∂Φ(u(M))

∂u(M)
is a [Ny × P] matrix. With P being the number of observation points

used and Ny the output dimensionality (number of parameters).

Calculating the gradient for the second-to-last layer using Eq. 1.5:

∂J(ξ)

∂W(M−1)
=
∂Φ(u(M−1))

∂u(M−1)
◦WT

(M)

(
∂Φ(u(M))

∂u(M)

◦ ∂J(ξ)

∂y

)
zT
(M−1) (1.7)

Defining:

δ(M) =
∂Φ(u(M))

∂u(M)

◦ ∂J(ξ)

∂y
(1.8)

It is possible to rewrite Equations 1.6 and 1.7 as:

∂J(ξ)

∂W(M)

= δ(M)z
T
(M−1) (1.9)

∂J(ξ)

∂W(M−1)
= δ(M−1)z

T
(M−2) (1.10)

Where:

δ(M−1) =
∂Φ(u(M−1))

∂u(M−1)
◦
(
WT

(M)δ(M)

)
(1.11)

Thus one can arrive at the two main formulae for applying any optimization

method that requires the first order gradient:

δ(l) =
∂Φ(u(l))

∂u(l)

◦
(
WT

(l+1)δ(l+1)

)
(1.12)

∂J(ξ)

∂W(l)

= δ(l)z
T
(l−1) (1.13)

Needed only to define:

δ(M+1) =
∂J(ξ)

∂y
(1.14)

W(M+1) = I (1.15)

The fact that δ(l) depends on ∂J(ξ)
∂y

and it is calculated from the exterior layers

to the interior, one can interpret δ(l) as a portion of the error that is “propagated”

from layer l+ 1 “back” to layer l, thus the name of the algorithm, Backpropagation.

9

With Equations 1.12 - 1.15 one can implement an ANN with generic neurons

and any number of hidden layers. Although both Φ(·) and Φ′(·) need to be defined,

alongside ∂J(ξ)
∂y

. Note that the algorithm is independent of a specific J(ξ). Any cost

function can be used as long as its derivative with regard to y exists. The simplest

implementation (Algorithm 1) can be applied to both single input samples or batch

learning, being careful to take out the mean gradient between all the used samples.

Algorithm 1: Backpropagation Pseudocode.

Input: x: (N × S) Matrix of input data.
Input: y: (L× S) Matrix of labels or measurements.
Input: η: Gradient Descent stepsize.
Input: W: Initial Weights.
Output: W: Trained Weights.

1 u0 ← x /* Initial network input assigment */

2 while W not converged do
3 foreach layer do /* Feedforward (0 to M) */

4 z(l) ← Φ(Wu(l))
5 u(l+1) ← z(l) /* Layer (l) ouput to (l + 1) input */

6 end

7 δ(M+1) ← ∂J(ξ)
∂y

8 W(M+1) ← I
9 foreach backwards layer do /* Backpropagation (M to 0) */

10 δ(l) ← Φ′(u(l)) ◦
(
WT

(l+1)δ(l+1)

)
11

∂J(ξ)
∂W(l)

← δ(l)z
T
(l−1)

12 W(l) ←W(l) − η ∂J(ξ)
∂W(l)

/* Update Weights */

13 end

14 end

Bare bone backpropagation is based on a first degree Gradient Descent, which

makes it a flawed algorithm when dealing with highly non-linear complex surfaces

(which are more likely the case when dealing with real data). A few useful modifi-

cations can be implemented, specially rmsprop. It accumulates a moving average of

the squared gradient for each weight and uses it to change W accordingly:

R[k] = ρR[k − 1] + (1− ρ)

(
∂J(ξ)

∂W(l)

[k]

)◦2
(1.16)

∂J(ξ)

∂W(l)

[k] =
∂J(ξ)

∂W(l)

�
√

R[k], (1.17)

where � represents the Hadamard (element-wise) division. The rmsprop algorithm

can be achieved including a simple line to track the averaged gradient and modifying

how the weights are updated (highlighted in Algorithm 2).

10

Algorithm 2: Rmsprop Pseudocode.

Input: x: (N × S) Matrix of input data.
Input: y: (L× S) Matrix of labels or measurements.
Input: η: Gradient Descent stepsize.
Input: ρ ∈ [0, 1): Exponential decay rate.
Input: W: Initial Weights.
Output: W: Trained Weights.

1 u(0) ← x /* Initial network input assigment */

2 R← 0
3 while W not converged do
4 foreach layer do /* Feedforward (0 to M) */

5 z(l) ← Φ(Wu(l))
6 u(l+1) ← z(l) /* Layer (l) ouput to (l + 1) input */

7 end

8 δ(M+1) ← ∂J(ξ)
∂y

9 W(M+1) ← I
10 foreach backwards layer do /* Backpropagation (M to 0) */

11 δ(l) ← Φ′(u(l)) ◦
(
WT

(l+1)δ(l+1)

)
12

∂J(ξ)
∂W(l)

← δ(l)z
T
(l−1)

13 R(l) ← ρR(l) + (1− ρ)
(

∂J(ξ)
∂W(l)

)◦2
/* Moving Average */

14 W(l) ←W(l) − η ∂J(ξ)
∂W(l)

�
√

R(l) /* Update Weights */

15 end

16 end

11

Other modifications to the vanilla backpropagation can be useful, like Nes-

terov’s momentum [13] and learning rate (η) decay. Also, several other useful

optimization algorithms can be used, like Adam [14], Levenberg-Marquardt [15],

ADADELTA [16], etc. Adam in particular is a very interesting algorithm, it is a

slightly modified version of the rmsprop. Adam estimates both first and second or-

der momentum, while rmsprop estimates only the latter (Equation 1.16), however,

instead of using both quantities directly, the algorithm bias-correct both estimates:

M [k] = ρ1M [k − 1] + (1− ρ1)
(
∂J(ξ)

∂W(l)

[k]

)
(1.18)

R[k] = ρ2R[k − 1] + (1− ρ2)
(
∂J(ξ)

∂W(l)

[k]

)◦2
(1.19)

M̂ [k] = M [k]/(1− ρk1) (1.20)

R̂[k] = R[k]/(1− ρk1) (1.21)

Equations 1.18 and 1.19 represent the moving average for the first and second

order moments respectively. That is, both equations represent the First Moment Es-

timator (FME) and Second Momentum Estimator (SME). Equations 1.20 and 1.21

are bias-corrected counterparts to the FME and SME. Note that Equations 1.19

and 1.16 are the same. The changes with respect to the rmsprop algorithm are

12

highlighted in red (Algorithm 3).

Algorithm 3: Adam Pseudocode. Adapted from [14]

Input: x: (N × S) Matrix of input data.

Input: y: (L× S) Matrix of labels or measurements.

Input: η: Gradient Descent stepsize.

Input: ρ1,ρ2 ∈ [0, 1): Exponential decay rates.

Input: W: Initial Weights.

Output: W: Trained Weights.

1 u(0) ← x /* Initial network input assigment */

2 R← 0

3 n← 0

4 while W not converged do

5 n← n+ 1

6 foreach layer do /* Feedforward (0 to M) */

7 z(l) ← Φ(Wu(l))

8 u(l+1) ← z(l) /* Layer (l) ouput to (l + 1) input */

9 end

10 δ(M+1) ← ∂J(ξ)
∂y

11 W(M+1) ← I

12 foreach backwards layer do /* Backpropagation (M to 0) */

13 δ(l) ← Φ′(u(l)) ◦
(
WT

(l+1)δ(l+1)

)
14

∂J(ξ)
∂W(l)

← δ(l)z
T
(l−1)

15 M(l) ← ρ1M(l) + (1− ρ1)
(

∂J(ξ)
∂W(l)

)
/* FME */

16 R(l) ← ρ2R(l) + (1− ρ2)
(

∂J(ξ)
∂W(l)

)◦2
/* SME */

17 M̂(l) ←M(l)/(1− ρn1) /* Bias-Corrected FME */

18 R̂(l) ← R(l)/(1− ρn2) /* Bias-Corrected SME */

19 W(l) ←W(l) − ηM̂(l) �
(√

R̂(l) + ε

)
/* Update Weights */

20 end

21 end

1.6 Training a Machine Learning Model

Outlying the model is but the beginning, a ML model without useful and relevant

data is worthless. Data can come in varying forms, not only numbers. Take for

instance the Adult dataset (Table 1.1) from UCI Machine Learning Repository [6].

Taking only 6 variables from the 15 originally extracted already demonstrates the

type variability. This dataset is used to predict whether a person (single record) has

13

an Yearly Income of over 50.000 dollars.

Name Type

Age Numerical (integer)

Education Categorical (string)

Sex Binary (string)

Marital-Status Categorical (string)

Hours-Per-Week Numerical (integer)

Yearly Income Binary (boolean)

Table 1.1: Partial Data Description and Respective Type From the Adult dataset [6].

As the reader probably noticed, the algorithms previously defined (Section 1.5.2)

can only be applied to numerical matrices. The step of taking raw data and preparing

it to be “fed” to the model is known as Preprocessing.

Preprocessing is a topic on its own and has no right way to be done. Each

dataset needs to be treated individually, although a few techniques are somewhat

universal. Its important to note that for an ANN, usually Φ(·) is a sigmoid function

(Figure 1.6). These functions have a derivative close to 0 when near the borders

(‖Wx‖ >> 0). This fading derivative stops the learning process since the weight

adaptation directly depends on the gradient.

Figure 1.6: Example of a Sigmoid Function. Adapted From [3].

One way to avoid the fading gradient (at least in the beginning of the training

process) is to normalize the data to a small range, say [−1, 1]. This normalization

also makes different variables equally relevant since they can have vastly dissonant

dynamic ranges. A good way to normalize data is by the Z-Score normalization

(Equation 1.22). It changes the mean (x̄) and variance (σx) to 0 and 1 respectively:

x′ =
x− x̄
σx

(1.22)

14

Where x̄ and σx are the mean and standard deviation of the parameter. Note that

this is just an exemplary normalization, there are several others that can be equally

beneficial (or even more so) when applying to a specific training dataset. This is

done on numerical variables, now if one has a categorical input (i.e. Marital-Status

from Table 1.1) one must convert it to numbers. The simplest way would be to

increasingly enumerate them:

“Married” = 1

“Single” = 2

“Divorced” = 3

...

(1.23)

The problem with that codification is that the distance between the labels also

varies. For instance, the difference between “Divorced“ and “Married” is 3− 1 = 2

while “Single“ and “Married” are 2 − 1 = 1 unit apart. This causes imbalances in

the training and must be avoided. In order to make sure all categories have the

same importance, a transformation is needed. A good one is the maximally-sparse

codification:

vj =

1, if j = Ci

−1, otherwise
(1.24)

Where i is the previous categorical notation (Eq. 1.23) and j is the j-th element

of the vector. Applying Eq. 1.24 yields:

“Married′′ = [1, −1, −1, ...]T

“Single′′ = [−1, 1, −1, ...]T

“Divorced′′ = [−1, −1, 1, ...]T

...

(1.25)

This ensures equally spaced categories since their distance is constant. Taking

the Euclidean norm on any 2 different labels gives:

‖“Married′′ − “Divorced′′‖ = ‖[2, 0, −2, 0, ...]T‖ = 2
√

2 (1.26)

Before applying the relevant transformations, one had a matrix P × N , being

P the number of chosen parameters plus any and N the amount of observation

samples. This categorical transformation adds Pc rows, 1 for each different label.

15

One needs to be careful, a simple parameter with 10 category adds 10 rows to the

input matrix, raising complexity.

However, the model can only learn from collected samples. One can not state

that having a small error in training will always imply in a small error deploying

the model with new data. In order to guarantee it one must create a new subset

from the collected samples, normally called Test Set. The test works as “unknown”

samples to the model, therefore trying to simulate real environments. Evaluating

how the error in the test set progresses as the training goes is of utmost importance.

In sum, if the model applied to the test set yields acceptably low error, one has a

satisfactory model.

Additionally, one can further split the training set into a Validation set. It serves

as a monitoring measurement, a Test set that is continuously monitored throughout

training. This set is important for stopping the algorithm as soon as a minimum

is found, saving computational energy and time. The test set is only used after

training has completed. A good way to achieve a balanced split between the sets is

using a k -fold Cross-Validation

1.6.1 k-fold Cross-Validation

Cross-Validation (CV) is a technique used to train and validate a ML model. It

divides the entire dataset in k complementary divided parts, using 1 as testing and

the other k−1 as training samples. The samples that are used for testing are cycled

throughout the iterations of the CV (Figure 1.7). This cycling ensures that all data

is used for evaluating the model. It gives insight on how the model should behave

in practice, with unknown data.

Figure 1.7: Example of Cross Validation with 4 Folds.

The results from the test set for each iteration are combined using both statistical

mean and standard deviation. These results are performance measures previously set

for the model. Some good metrics for classification include Cross-Entropy, Accuracy

and Confusion Matrix.

16

These metrics help determine if the model is both accurate (error close to zero)

and precise (low variance). Cross-Validation is also used to determine the best value

for a specific hyperparameter. A good example for that is the evaluation of the best

ANN architecture by changing the number of layers in the hidden layer.

1.7 Mechanical Properties

An important fundamental quantity for materials is stress. It is defined as the force

across a boundary divided by its area (Equation 1.27), it is essentially pressure and

even has the same units, pascals (Pa). Given a simple geometric shaped material

and uniform stress distribution (Figure 1.8) one can easily define the stress vector:

Figure 1.8: Stress Vector Illustration. Taken from [4].

Where F is the load applied to the object, A is the cross-section area and thus

σ can be defined as:

σ =
F

A
(1.27)

However, how stress applies to a more general case, supposing several different

loads (with varying orientations) is highly non-linear. Also, the material can have

stress intensifiers, like holes or cracks. Such imperfections cause a localized rise of

stress due to the concentration of force lines (Figure 1.9) around the crack.

17

Figure 1.9: Force Lines Within a Cracked Material. Taken from [5].

These stresses (concentrated or not) generate strains, a deformation measure-

ment. Most mechanical properties can be obtained from the stress-strain curve

(Figure 1.10) which describes the stress applied to the material (usually with a sim-

ple geometric shape) while measuring its displacement. The curve starts with a

linear relation between strain and stress, this implicates elastic deformation. When

applying increasingly larger loads, the curve starts showing non-linear relationships,

this implies plastic (permanent) deformation. The stress reached when the material

has 0.2% plastic displacement is called Yield Strength (Sy). The maximum stress

value is known as Ultimate Strength (Su) and the maximum strain that the material

can tolerate before breaking is known as Fracture Strain (σf). This is the behaviour

for a metallic material.

18

Figure 1.10: A Stress-Strain Curve

It is important to notice that as the material begins to present plastic deforma-

tion, less stress is needed to strain the material. Since cracks and other imperfec-

tions concentrate stress, it is easy to see how dangerous they are. Applying load

to a cracked material can easily make the crack propagate since stress concentrates

around it, easily reaching σf near the crack.

Therefore inspection and maintenance are of the utmost importance. Identifying

the defect without jeopardizing the structure can be done through Non-Destructive

Testing (NDT). It is a class of methods that do not result in damage or destruc-

tion to the material’s structure. Such NDT techniques include for instance liquid

penetration (using a coloured liquid to identify cracks), visual testing and acoustic

emission (AE).

1.8 Acoustic Emission

Materials with discontinuity have stress risers by definition (Figure 1.9). These

discontinuities accumulate significant amount of stress. Once the crack propagates

due to external effects (such as increased loading), the accumulated stress energy

gets rapidly dissipated, generating acoustic (elastic) waves (Figure 1.11). This is

a phenomenon first studied by Joseph Kaiser dating back to post World War II

Germany in the 1950s [17].

19

T

T

Figure 1.11: A Schematic Tensioned Block With a Crack Radiating Acoustic Emis-
sion.

His work shed light on the AE phenomenon and showed its potential as a tool for

inspecting and monitoring structural defects [18] [19]. One of the most important

findings is the so called Kaiser Effect (KE). It describes a pattern of AE from a

body under cyclic mechanical stress. If an AE is radiated from a material under

certain load, there will be no further emissions until the stress is exceeded.

Since AE comes from irreversible changes, it is reasonable to expect that this phe-

nomenon can help identify different problems, such as crack propagation. Another

strong point of AE analysis is that it propagates throughout the material, making

it theoretically possible to evaluate the danger from afar. Unfortunately, this thesis

will not discuss how distance between the AE source and sensors affects the AE

because there is no reliable information regarding the sensors physical disposition.

It is known however that it heavily affects the AE signal [20].

1.9 Bibliography Review

Studies on AE and its uses dates all the way back to the 1950s’ with Kaiser [17] which

highlighted the potential of AE as a tool for inspection. As technology progressed,

the classical way of manually analysing and interpreting the AE data became obso-

lete, and new techniques surfaced.

Several different techniques have been studied on this subject, Sun et al. [21]

proposed a classifier based on Self-Organizing Maps (SOM) to help distinguish the

crack-related AE from interference and noise. The SOM is first used to extract fea-

tures by looking at the weight vectors. Once the SOM finishes training, it can be

seen which neurons were activated by each class (in this case, real AE or interfer-

ence). Then a test set is applied to the SOM in order to classify it based on these

“defining” neurons.

20

Huguet et al. [22] also employs a SOM in order to cluster the AE data. However,

what differs this from the previous work is that the objective of this paper is to

identify damage modes. These damage modes are very similar to the NP, SP and

UP classes defined for this thesis. The article defines them as matrix cracking,

debonding, pull-out and fibre fracture. The SOM receives the AE parameter data

and creates clusters for the classes. It also discusses the important of the threshold

parameter for the AE tests.

Da Silva et al. [23] started a chain of researches that culminated in this thesis.

The objective of that work was to apply an ANN model capable of analysing weld

bead defects. It used the same relevance criterion applied to this work (Section 2.6.4)

in order to treat the data and determine the important features. It also implemented

a non-linear Principal Component Analysis (PCA) to further clean the data.

Two years later, a subsequent work from Da Silva et al. [24] tried classifying the

AE data from a crack inserted on a 3meter closed cylindric steel pipe. A progressive

hydrostatic loading was done to steadily increase the internal pressure. After col-

lecting the AE data (in the form of parameters) they calculated a correlation matrix

(similar to Figure 2.15) and made a relevance analysis (Section 2.6.4) in order to

determine which AE parameters were the most important. The classification was

done using 2 classes, No-Propagation and Propagation. The classifier also bears

resemblance to this thesis, it was also an ANN, albeit with 7 neurons on its single

hidden layer.

The first big change in the landscape came from Pinto et al. [25], [26] which used

a similar test object and hydrostatic loading. The main change was with respect to

the amount of classes. Instead of separating into two [24], the authors found that it

would be wiser to differentiate 3 classes, No Propagation, Stable Propagation and

Unstable Propagation, the same classes used in this work. Also used an ANN as the

classifier.

Orlando Géa [27] tried to tackle exactly the same aforementioned problem, how-

ever, with a different dataset. While Pinto [26] used only the parameters from the

AE, Géa [27] focused on the time series waveform from the AE. In both works, it was

shown that frequency-domain parameters are highly valuable to the classifier. These

works mix both unsupervised and supervised learning methods including SOMs.

The newest work, from Luiza Marnet [28], uses data from the same test as this

thesis, however, the author only used AE parameter data. After applying the same

method described further ahead (Section 2.6.2), it was shown that there are 4 classes

instead of 3. A semi-supervised (both supervised and unsupervised) method using

an ANN and SOM was implemented with good results.

21

Chapter 2

Materials and Methods

This chapter focus on describing the used materials and methods utilized in this

thesis. The acoustic emission tests (Section 2.1) had 3 separate data acquisition

systems, one using an industrial device (DISP-16C) made by Physical Acoustics

(PAC), one with another industrial device (AMSY-5) made by Vallen Systems and

a custom one denominated Streaming.

Both Streaming and Vallen data were analysed throughout the project duration,

however, this thesis concentrates solely on the Streaming data. Both are similar in

the way that they acquire temporal data from the AE (not its parameters), however,

the AE waveforms captured by the Vallen system had several disadvantages when

compared to the Streaming counterpart.

The Vallen data is a collection of fixed length AEs concatenated to form a L×N
matrix where L is the AE length and N the number of captured AEs. This matrix

was provided as a MATLAB formatted data file (.MAT) containing the waveform us-

ing 64-bit double-precision floating-point format. Unfortunately, this system is not

guaranteed to capture all waveforms, this severely hinders some essential prepro-

cessing stages (Sections 2.3.2 and 2.3.3), making it a rather unreliable (the captured

AE may not be from the crack propagation) and with no means of improving its

reliability, therefore all of the Vallen data was discarded.

Thus, this chapter begins detailing the destructive test done, extends to the raw

data format used, describes all the preprocessing done and the reasoning behind it,

then details the waveform capture procedure all the way to creating the final dataset

used to train a neural network model (Section 1.4) with parameters from both the

AE temporal data and its frequency spectrum.

2.1 Acoustic Emission Test

The AE tests were performed by engineers of the Physical Metallurgy Laboratory

(LAMEF) at the Federal University of Rio Grande do Sul (UFRGS). It used a close-

22

ended steel (API XL 60 series) pipe with 20 inch diameter, 40 metre length and

1.45 centimetres of thickness. The pipe has a protective rubber cape (normally used

when in operation). A semi-elliptical pre-crack extending until half of its thickness

(approximately 0.7cm) was inserted at half its length.

An array of sensors was then disposed on top of the naked steel and the rubber

coating (Figures 2.1 and 2.2) throughout the tube’s length. The crack was sur-

rounded by measuring devices, either strain gauges or Time-Of-Flight Diffraction

(TOFD) [29], [30] sensors. These devices are used to determine the depth of the

crack.

Figure 2.1: Sensor Array Disposition for Test CP2.

Figure 2.2: Sensor Array Disposition for Test CP3.

Three different streaming sensors (Figure 2.1) were used, the R1.5 [31], R15 [32]

and WD [33] sensors. Their inner workings and configuration (including conditioning

circuits) will not be discussed in this work. It is important to note however, that they

work on different frequency ranges (Table 2.1) and naturally have diverse responses.

23

Table 2.1: Streaming Sensors Frequency Range.

Sensor Frequency Range (kHz)

R1.5 5 - 20

R15 50 - 400

WD 100 - 900

These sensors were then sampled using a (not specified) 16 bit Analogue-to-

Digital Converter (ADC) at 2.5GHz during the whole test. The contiguous data

was then put into special formatted files created by National Instruments (NI), the

Technical Data Management Streaming (TDMS) file [34].

After fixing the sensor array, the pipe is filled with water, thus starting the

hydrostatic test. This consists of two periodical sections, a gradual increase followed

by a static plateau. Both of equal duration, approximately 10 minutes. These two

sections are repeated until the maximum test pressure Pt is reached and kept for (at

most) the same amount of time, 10 minutes (Figures 2.3, 2.4 and 2.5). This regular

increase in pressure until burst is denominated cycle. In total, 4 (four) tests were

done, with the first one discarded since it did not burst. These were denominated

CP1, CP2, CP3 and CP4 respectively. Unfortunately, there is no information about

the sensor placement for test CP4.

0 2000 4000 6000 8000 10000

Time (s)

0

50

100

150

200

250

P
re

ss
ur

e
(b

ar
)

6.5

7

7.5

8

8.5

9

9.5

10

10.5

11
C

ra
ck

 D
ep

th
 (

m
m

)

Figure 2.3: Pressure and Crack Dimension for Test CP2.

24

0 2000 4000 6000 8000 10000

Time (s)

0

50

100

150

200

250

300

P
re

ss
ur

e
(b

ar
)

6.5

7

7.5

8

8.5

9

9.5

10

10.5

C
ra

ck
 D

ep
th

 (
m

m
)

Figure 2.4: Pressure and Crack Dimension for Test CP3.

0 0.5 1 1.5 2 2.5 3

Time (s) #104

0

50

100

150

200

250

300

P
re

ss
ur

e
(b

ar
)

7

7.5

8

8.5

9

9.5

10

10.5

11
C

ra
ck

 D
ep

th
 (

m
m

)

Figure 2.5: Pressure and Crack Dimension for Test CP4.

25

Strange readings such as noise, (Figure 2.4), plateaus and linear behaviour (Fig-

ure 2.5) for the crack development are to be expected since its width is measured by

an optical feedback from the TOFD sensors. An image is relayed to the engineers

operating the test and is used to determine depth of the discontinuity.

The most important aspect of the graphs is the way the crack propagates ac-

cording to the rise (or lack thereof). If the pressure rises and the crack is still at the

same depth, one classifies this behaviour as No Propagation. As the crack follows

the pressure, rising alongside it, it is known as Stable Propagation and if the crack

propagates without a rise in pressure, it behaves explosively and is denominated

Unstable Propagation.

This is the way the classes were previously separated and its done so by specialists

and in previous works [27], [26].

2.2 Streaming Raw Data

Normally, these files can be opened using some specific NI software like DIAdem but

the LAMEF engineers made slight modifications (Figure 2.6) when saving the ADC

data, using a 32bit word (normally holding one sample) made of two concatenated

16bit integers (that came from the ADC), thus effectively doubling the amount of

data stored without requiring additional space.

Figure 2.6: Schematic of The Low-Level Modifications Done to Signal Acquisition.
With Two Example 16-bit Words (0x3CAB and 0x0E19).

In order to read the TDMS files, LAMEF provided a special compiled LABView

routine that transforms each TDMS file to a binary one and a MATLAB script that

loads the file to memory. Out of all the tests, only the first one (CP1) did not burst,

26

even after 5 filling cycles, since identifying the burst is essential (Section 1.2) all

CP1 data was discarded and it will not be discussed any further.

A single TDMS file translates to roughly 6.7 seconds (Figure 2.7), containing 224

samples taken from its 16 different sensors (channels) leading to a 224 × 16 integer

(16-bit) matrix. In sum (Table 2.2), all data came from (eventually) ruptured ducts

and theoretically contain useful data.

Table 2.2: Hydrostatic Test Summary

Test Date
Pre-Crack Depth

(millimetres)
Rupture Cycle

Pressure

at Rupture

(bar)

Data Volume

(Gigabytes)
Files

CP1 18/03/2015 5.5 X - 3900 X

CP2 28/07/2015 7.9 1 230 900 1513

CP3 06/11/2015 6.6 1 264 900 1500

CP4 23/05/2016 7.0 2 283 1500 4261

0 1 2 3 4 5 6 7

Time (s)

-400

-300

-200

-100

0

100

200

300

400

A
m

pl
itu

de

(a) TDMS File 900, Channel 12.

0 1 2 3 4 5 6 7

Time (s)

-150

-100

-50

0

50

100

150

A
m

pl
itu

de

(b) TDMS File 900, Channel 7.

Figure 2.7: Data from TDMS File 900, Both Channel 12 (a) and 7 (b) From Test
CP3 with Zero (0) Mean.

2.3 Preprocessing

The preprocessing was likely the lengthiest part of this thesis, it is mainly divided

in 3 big blocks, an initial resolution analysis (Section 2.3.1) to determine which

files contain useful information, a TOFD signal removal (Section 2.3.2) and a final

identification and cleaning of the pressure pump AE signal (Section 2.3.3).

27

These three stages are invaluable for treating the enormous amount of data (≈
1TB per test) and coming up with a reliable and efficient way to extract AE from

the propagating crack (Section 2.4).

2.3.1 Resolution Analysis

Upon first inspection, not all files seemed to contain relevant data (Figure 2.7a), most

of them contained only a noise bar (Figure 2.7b) thus creating the first problem,

determining which files (and channels) contained relevant information so that time

would not be wasted trying to find AE waves immersed on noise.

One simple way to determine digital signal quality is through its resolution,

signals that are encoded using 10 bits (therefore 1024 digital levels) should have

more valuable information than signals encoded with 2 bits (therefore 4 digital

levels). Using that as a base, it was heuristically stipulated that 8 bits would be the

bare minimum (since it gives approximately 1% of the ADC’s dynamic range).

The count of digital levels and effective bits used to encode each file and channel

was determined (Figure 2.8) and only those that had a minimum of 8 bits were

considered good enough to be further inspected.

200 400 600 800 1000 1200 1400

File

2

4

6

8

10

12

14

16

C
ha

nn
el

4

5

6

7

8

9

10

11

12

13

14

Figure 2.8: Bit Resolution Colormap for Test CP3.

28

2.3.2 TOFD Removal

TOFD was not a concern in previous works (Section 1.9) since it was not evident

(even though it can be seen analysing the parameter data). This however, is not

true when working with Streaming data, the TOFD signal is clear and has a well

defined period and also comes in blocks (Figure 2.9).

Each block consist of 5 AEs separated by 20ms (Figure 2.9b) and each block is

1 second away from each other (Figure 2.9a). These well defined periods can then

be used to completely remove all TOFD signals from the entire test.

0 1 2 3 4 5 6 7

Time (s)

-400

-300

-200

-100

0

100

200

300

400

A
m

pl
itu

de

(a) TDMS File 900, Channel 12.

0.66 0.68 0.7 0.72 0.74

Time (s)

-400

-300

-200

-100

0

100

200

300

400

A
m

pl
itu

de

(b) TDMS File 900, Channel 12 Focused on
a Single TOFD Block

Figure 2.9: Data from TDMS File 900, Highlighting the TOFD Characteristics.

To remove those, it is necessary to first identify it, without going into much

detail (those are in Section 2.4) a threshold level is defined for each file/channel

combination and each point is compared to that threshold, if its amplitude surpasses

it, it receives a 1 (TRUE) and 0 (FALSE) if not (Figure 2.10).

29

0.66 0.68 0.7 0.72 0.74
-400

-200

0

200

400

A
m

pl
itu

de

Raw Data Threshold

0.66 0.68 0.7 0.72 0.74

Time (s)

0

1

Figure 2.10: Data from TDMS File 900, Channel 12 Containing the Threshold and
Indexes that Respectively Surpass It.

Once the beginning of each TOFD wave is found, a simple check is done to

verify if they are separated by 20ms+−10%. If so, their indexes are saved and the

waves are thus identified. In order to allow a finer control over the TOFD block

removal, an additional number of samples is taken from both before and after each

wave (Figure 2.11). A total of 50000 samples (25000 for each side) were chosen to

guarantee the entire block removal, the downside is that any AE that happens to fall

inside a TOFD block is also lost, however, considering that each block takes 100ms

each second, that equates to 10% of data being discarded, which is quite acceptable.

30

0.66 0.68 0.7 0.72 0.74
-400

-200

0

200

400

0.66 0.68 0.7 0.72 0.74

Time (s)

-400

-200

0

200

400

A
m

pl
itu

de

Figure 2.11: Removal of Time-Of-Flight-Diffraction Sensor Signal.

2.3.3 Pressure Pump Removal

Noise from the pressure pump was also not considered in previous works (Section 1.9)

and it is an indispensable part of the test, used to fill and pressure the duct. This was

discovered by accident when, by analysing multiple files at once, a huge unknown

(and somewhat periodic) signal appeared (Figure 2.12).

31

0 1 2 3 4 5 6 7

Time (s)

-400

-300

-200

-100

0

100

200

300

400

A
m

pl
itu

de

Figure 2.12: Data From TDMS File 751, Channel 7.

Once crossing the files in which that signal appeared with the logs provided by

the LAMEF engineers, it was possible to infer that these signals only appeared at

the beginning and end of pressure rising, thus concluding that it is indeed a AE

signal generated by the bomb and not the crack propagating.

Its removal was done manually, all 7000 more files were checked 10 at a time (a

total of more than 700 different plots) and all files that had even a portion of the

bomb signal were discarded.

2.4 Wave Capture

Both Section 2.3 and the current one contain all that was done in order to transform

over 3 Terabytes of noise filled data into a usable, clean and expandable database

containing useful acoustic emission data.

It begins by defining a noise level for each file/channel combination and using this

information to create a floating threshold level that works similar to that described

in Section 2.3.2, once that threshold is exceed (both positive or negatively) the

beginning of a “hit” is defined, and specific timing parameters (Section 2.4.2) are

used to determine its end, thus extracting individual AE waves.

For each of those waves an array of time-domain parameters (Section 2.4.3) is

32

calculated alongside its power spectrum (Section 2.4.4). Both are then processed

(Section 2.6) again to be used as input for the neural network.

2.4.1 Estimating Noise Level

Normally, AE tests use industrial equipment with a fixed Threshold (a level that

when exceeded triggers the wave capture) which may or may not be changed

throughout the test by its technician. However, instead of trying to define a fixed

level for each channel and file, a fluctuating limit was created based on the level of

noise for each file/channel. This is interesting since the Signal-to-Noise Ratio (SNR)

can (and does) change a lot because of the varying amplitude of the AE signals. Us-

ing an adaptive limit based on the noise level itself is an attempt to stabilize the

SNR for each captured wave.

It is based on a simple metric of standard deviation (Equation 2.1) applied to

each file and channel. In other words, suppose the data from one channel, a 224 × 1

array, knowing that AE is a relatively rare event and that there exists a bar of white

noise (Figure 2.7), it is safe to say that this array is mostly composed of Gaussian

white noise.

σX =
√
E[(X − µX)2] =

√√√√ 1

N

N∑
i=1

(xi − µX)2 (2.1)

Where X is the array of size N = 224, σX is its standard deviation, µX its mean

and xi the i-th array element. Considering that this is composed mostly of Gaussian

white noise, it is possible to state:

NoiseX ≈ 3σX (2.2)

This provides a noise level estimate (Figure 2.13) that is then (heuristically)

amplified by a factor of 3 to create a fluctuating threshold able to isolate acoustic

emissions.

33

0 0.5 1 1.5 2 2.5 3

Time (s)

-400

-300

-200

-100

0

100

200

300

400

A
m

pl
itu

de

Raw Data
Noise Level

Figure 2.13: Partial Data From TDMS File 900, Channel 7 Highlighting the Noise
Level

2.4.2 Timing Parameters

Defining a threshold is the first step in completely extracting AE information from

the data. The DISP16C (used on professional AE tests) user’s manual [35] specifies

3 timing parameters used to capture AE, these are the Hit Definition Time (HDT),

Hit Lockout Time (HLT) and Peak Definition Time (PDT). However, PDT is used

to determine which peak is the highest (important for calculating AE parameters)

while capturing the wave at real time. Since this work uses static data (recorded

from the streaming), determining the highest peak makes no sense because there is

only one highest peak for each hit (the maximum amplitude), therefore its definition

will not be covered in this thesis, if needed, the reader can find it at [35].

HDT is the most important parameter and is used to define and fix the end of

the “hit”. Suppose a signal that exceeds the threshold at a certain time t0, once

HDT seconds has elapsed while the signal had no threshold crossings (stayed within

the threshold limits) a hit and its end are defined. If one sets this parameter too

high, adjacent events may appear as a single hit and if set too low, a single AE may

be separated into multiple hits.

HLT can be interpreted as a “dead time” after the definition of a hit, it is a slot

of time where no hit can begin even if the signal exceeds the threshold. It is used to

34

eliminate lower amplitude echoes that can occur from the AE’s reflection throughout

the system. It used to have more importance in the 1980’s when computational

power was rather limited [35].

The tuning of these hyper-parameters is not studied in this thesis since the

script made to capture the waves takes around 8 hours for each CP, so it would

be extremely time-consuming and deviate from the main objective of this work,

although the author would highly recommend this analysis. Those parameters are

then defined as suggested by the LAMEF engineers:

• HDT: 1000µs

• HLT: 800µs

• PDT: N/A

This concludes all necessary steps to extract clean acoustic emission waves and

without external interference (at least of what was able to be seen from these tests).

In sum (Figure 2.14) it begins by selecting the important files, ones that have a

higher change of containing useful AE by checking the overall resolution per chan-

nel. For each file, TOFD signals are identified and properly removed (Figure 2.11)

by exploiting their periodicity. Files containing noise from the pressure pump (Fig-

ure 2.12) are manually inspected and discarded. From the remaining valid ones, a

white noise level estimate is calculated and used to create a “Variable Threshold”.

This Variable Threshold is then used to identify AE according to the instructions

from [35], using HDT and HLT as previously stated.

35

Figure 2.14: Summary Streaming Data Treatment Workflow.

36

2.4.3 Acoustic Emission Parameters

For each captured wave (Section 2.4) an array of parameters is extracted (Table 2.3)

based on [35]. In total, 10 time domain parameters were extracted, 5 less than the

standard 14 used in [28]. This is because not all parameters had their exact formulae

written on the manual, some only had a brief description, other had certain unknown

related variables (for example, software pre-amplifier configured on a test-by-test

basis). There are 9 “classical” parameters, and one developed for this thesis, the

Variable Threshold (VTHR).

Table 2.3: Extracted Acoustic Emission Parameters.

Parameter (P) [Unit] Description Definition

Rise Time (RT) [s]
Amount of time between the Hit start and

the peak amplitude
-

Count (C)
Number of times the acoustic emission

exceeded the Variable Threshold.
-

Energy (E) Classical energy of the acoustic emission.
∫ tf
t0
Hit(t)2dt

Duration (D) [s] Duration of the acoustic emission. tf − t0

RMS (RMS) Acoustic emission Root Mean Squared value.
√

1
(tf−t0)

∫ tf
t0
Hit(t)2dt

Max Amplitude (A) Peak amplitude of the acoustic emission. max(Hit(t))

Max Amplitude dB (AdB) [dB] Peak amplitude of the acoustic emission (in dB). 10log(A)

Mean Amplitude (MA) Mean amplitude of the rectified signal. 1
(tf−t0)

∫ tf
t0
|Hit(t)|dt

Resolution Level (RES)
Count of digital levels (resolution) used to digitalize

the Hit.
-

Average Signal Level (ASL) [dB] Amplitude (in dB) moving average. -

Count-To-Peak (CTP)

Number of times the acoustic emission

exceeded the Variable Threshold before the

Maximum Amplitude is reached.

-

Average Frequency (AF) A rough frequency estimation Count and Duration. using C
D

Reverberation Frequency (RF) - (C−CTP)
(D−RT)

Variable Threshold (VTHR) Variable used to determine the beginning of the Hit.
3×NoiseLevel
(Section 2.4.1).

2.4.4 Frequency Data

An important set of frequency domain parameters were listed as relevant by other

related works [28] [27] [26], called FREQ-PP1, FREQ-PP2, FREQ-PP3 and FREQ-

PP4. They are the mean relative power for each respective frequency range (Equa-

tion 2.3), according to [35], these ranges are manually configured before testing. In

37

this thesis, a technique based on linear correlation was developed to estimate which

frequency slots would be the most important at classifying the AE derived from the

crack.

FREQ− PPX =

∫
FX
|H(f)|2df∫ Fs/2

0
|H(f)|2df

(2.3)

Where FX is the frequency range, Fs is the sampling frequency, H(f) is the

Fourier Transform of the wave, and | · | its magnitude.

This technique consists of a visual analysis of a correlation plot (Figure 2.15)

between each calculated frequency for each wave and their respective target class

output (binary function). In other words, it is a correlation between input and

output where a single frequency point (for all captured waves) is used as input,

repeating that for each frequency we can create a correlation graph for all output

classes, NP, SP and UP. Important to note that the highest possible frequency is

1.5MHz, more than 3 times the maximum frequency present in the graph. This is

due to highly uncorrelated noise on the higher frequencies thus giving no relevant

information (and therefore discarded).

Figure 2.15: Correlation Plot Between Each Frequency and The Output Classes,
No-Propagation, Stable Propagation and Unstable Propagation for Test CP3.

This plot highlights which frequency points have distinct numerical signals (posi-

38

tive or negative) for each pair of output classes, meaning that the highlighted (green)

points indicate a positive correlation to one class and negative correlation to another

(both classes are indicated by the y-axis label).

To further clarify this explanation, take for instance the second graph (Fig-

ure 2.15), all points (blue and green) are from the correlation between each fre-

quency and the output class SP, the green points then represent which frequencies

that have a different numerical sign when compared to the UP class. The frequency

ranges (FX) are then defined by visually clustering these points.

2.5 Database Structure

After extracting the available AE waveforms, calculating a lengthy array of param-

eters, a simple database was consolidated. It is composed of 3 MATLAB files (one

for each test) and contain a plethora of variables, their design was object-oriented

and consists mainly of 3 classes (Appendix A), StreamingClass, Wave and Streaming

Model.

Each StreamingClass object has an array of Waves that is dynamically allocated

when identifying the AE waves (Section 2.4), however, in order not to add another

considerable amount of time to the already lengthy process of extracting AE from the

data, the captured waves parameters are only calculated after all files are processed.

Each Wave holds all calculated parameters (Section 2.4.3) and also some impor-

tant meta-data like absolute time regarding the whole test, the relative trigger index

from the file, etc. This allows for different sized waves to be stored alongside their

parameters, creating a more generic approach from both PAC and VALLEN alter-

natives, since it can not only store parameters, but also variable-length waveforms

(VALLEN only stores waves with the same length).

2.6 Model Definition

The proposed model for this thesis is an ANN (Section 1.4), since this is a extremely

non-linear phenomenon and most likely requires a robust model with a good gener-

alization capability [36]. The parameters chosen for the ANN were:

• Batch Size: 20

• Learning Rate (η): 0.1

• Patience: 50

• Maximum number of epochs: 1000

39

• Training Algorithm: Adam (Algorithm 3)

• Loss Function: Categorical Cross Entropy

Batch size is the amount of samples to be used per iteration (epoch) of the

algorithm. Patience is the maximum amount of iterations that the algorithm will

run while the validation-set error does not improve.

The subsequent sections detail how the number of neurons and their disposition

was chosen (Section 2.6.1), identification of the separation indexes that best divide

the three classes (Section 2.6.2) and the final definition of the important inputs to

feed the ANN (Sections 2.6.3 and 2.6.4).

All analyses were done for each test (Section 3.1.3) to determine if the relevant

inputs are immutable, as they should (supposing the tests were done with the same

sensors).

2.6.1 Network Size

In order to define the network size, 20 different networks were trained and compared

using cross validation (Section 1.6.1) and the classification rate for each class (Fig-

ure 2.16). The best network is chosen weighting both computational complexity and

classification performance, in this case, accuracy.

0 5 10 15 20
Neurons

40

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

NP SP PI

Figure 2.16: Network Size Investigation for Test CP3

40

2.6.2 Transition Time Estimation

Transition Time Estimation (TTE) is a technique idealized by Francesco Noseda

that helps define the point that best separates two sequential different patterns

(distributions) which is exactly the case for this work since the target classes NP,

SP and UP (in principle) happen one after another.

It was previously implemented on a related past work [28] with relatively good

success. As studies about it are still in its first steps, there is no theoretical proof

for it yet, although an attempt was made by the author (Appendix B).

The idea behind it is simple, suppose two linearly-separable (LS) distributions,

f and g, and a transition time nt. The unknown phenomenon Γ[n] behaves like f

before tT and g after:

Γ[n] = γ =

f, if n < nt

g, if n ≥ nt

(2.4)

Now, one takes P/2 points randomly from each distribution. In order to deter-

mine nt, one slides a window of length L across the P -point dataset (Figure 2.17).

This window labels (to the model) both halves differently. In order words, L/2

points are labelled “Class 1”(red) and “Class 2” (blue). Eventually, as the window

reaches the end (n = nf) almost all samples have already been labelled as both

classes at different times (thus the blue-to-red gradient).

Figure 2.17: Example of a Sliding Window With Length L = 4 for the Transition
Time Estimation Method.

The important variable to observe is the classification error (EC [n]). EC is a

stochastic process (Appendix B). For each n, there is an expected error and an

associated variance σ2. However, not much can be inferred since they depend on

the data distribution and the model used. However, one thing can be assured, while

the window contains only the samples from one class (distribution), the probability

of the error being zero (LS samples) is bound by a function of the window length L

(Appendix B):

Pmax(E[n] = 0) = 1− 1

2L−1 ∀n
∣∣ C([n− L/2, n+ L/2]) = Ci (2.5)

41

Where Ci is the i-th class, which can be either 1 or 2. As the window slides

across the samples, one should reach a classification error shaped much like a fun-

nel (Figure 2.18). This “error-funnel” has a few interesting properties (proof on

Appendix B), given that the classifier is guaranteed to separate two LS sets, the

minimum error Emin is exactly 0.

Figure 2.18: Classification Error (Cost) Example for The Transition Time Estima-
tion Method Applied to a Linearly-Separable Dataset.

2.6.3 Input Correlation Analysis

After defining the best output targets, an analysis was done to discover which inputs

are important for the classification (this spans until the end of Section 2.6.4) starting

with the correlation analysis.

This consists of inspecting the correlation matrix (Figure 2.19) and spotting

inputs with significant correlation coefficient. Coefficients near +1 indicate that

those inputs contain very similar information, if one rises the other does so as well,

and the opposite can be said if the coefficient is near −1, once one variable rises the

other one lowers.

Ri
se

 T
im

e
Co

un
t

En
er

gy
Du

ra
tio

n
RM

S
M

ax
. A

m
p.

 d
B

Re
so

lu
tio

n
Co

un
t

Av
g.

 S
ig

. L
ev

el
M

ax
. A

m
p.

Va
ria

bl
e

Th
re

sh
ol

d
In

iti
at

io
n

Fr
eq

ue
nc

y
Re

ve
rb

er
at

io
n

Fr
eq

ue
nc

y
Co

un
t-t

o-
Pe

ak
Av

g.
 F

re
qu

en
cy

Rise Time
Count

Energy
Duration

RMS
Max. Amp. dB

Resolution Count
Avg. Sig. Level

Max. Amp.
Variable Threshold

Initiation Frequency
Reverberation Frequency

Count-to-Peak
Avg. Frequency

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 2.19: Linear Correlation Matrix for Test CP3

42

This is a good indicator of overlapping information from the inputs and combined

with the relevance analysis (Section 2.6.4), one can determine which inputs are going

to be discarded.

2.6.4 Relevance Analysis

Although linear correlation can show “overlapping information” between inputs, it

is (as the name implies) a linear indicator. If those inputs have different non-linear

relationships, the correlation coefficient may not indicate such. Considering the

output is a binary function (classifier), correlation between input and output may

not be the best metric to measure its importance to the model.

In order to complement the correlation analysis method, a relevance [37] one was

implemented. It has a simple implementation, after training and testing a model

with all inputs, each input is replaced by their mean and the model is tested again.

A general (Equation 2.6) and by class (Equation 2.7) accuracy metric is then used

to measure relevance.

Ri =
1

N

N∑
n=1

(mn −Min)
∣∣∣ xi = µxi

(2.6)

Rik =
1

N

N∑
n=1

(mnk −Mink)
∣∣∣ xi = µxi

(2.7)

Where i is the i-th parameter, xi, N is the amount of different models to be

compared, mn is a model trained with all parameters and Min the model trained

replacing xi with its mean µxi
. Also, for Equation 2.7, k is class k (in this case, NP,

SP or UP).

Parameters that are important for classifying have high positive value, the ones

that possess negative relevance show that by removing those inputs the result gets

better, indicating that those are most likely noise regarding the classification.

43

Chapter 3

Results

This chapter focus on all the results of this work, including those from the prepro-

cessing stages. Each technique was applied individually to each CP and compared

in this chapter.

3.1 Preprocessing

3.1.1 Resolution Analysis

The resolution colormap for the tests (Figures 3.1, 3.2 and 3.3) show that only a

few files were encoded with over 10 bits. Moreover, the vast majority of the data

was encoded with less than 8 bits. Several channels were as good as dead, such as

channels 8 − 10 from test CP2. Others, albeit possessing an acceptable resolution

(channel 8 from test CP4) have nothing but noise.

This strongly suggests that something was incorrectly calibrated or the system is

so noisy that most AE were immersed. This severely hinders the effectiveness of the

model since noise tends to appear at the output (if shown at the input). Moreover,

the files and channels that met the minimum bits requirement (8 bits) represent a

small fraction of the entire data (Table 3.1).

This step was fundamental to this work since it allowed only a portion of the

data to be inspected. And it also showed that (at least for these datasets) the data

is intrinsically precarious.

Table 3.1: Amount of Relevant Data From the Resolution Analysis.

Test Total Data (Files × Channels) Possibly Relevant Data Ratio (%)
CP2 24208 1310 5.41
CP3 23984 3781 15.76
CP4 68176 6296 9.23

44

200 400 600 800 1000 1200 1400

File

2

4

6

8

10

12

14

16

C
ha

nn
el

4

5

6

7

8

9

10

11

12

13

14

Figure 3.1: Bit Resolution Colormap for Test CP2.

200 400 600 800 1000 1200 1400

File

2

4

6

8

10

12

14

16

C
ha

nn
el

4

5

6

7

8

9

10

11

12

13

14

Figure 3.2: Bit Resolution Colormap for Test CP3.

45

1000 2000 3000 4000

File

2

4

6

8

10

12

14

16

C
ha

nn
el

4

5

6

7

8

9

10

11

12

13

14

Figure 3.3: Bit Resolution Colormap for Test CP4.

3.1.2 Frequency Data

The relevant frequency ranges were determined after visually analysing the correla-

tion plots for each CP (Figures 3.4, 3.5 and 3.6). In total, 8 frequency ranges were

chosen:

• Ω1 = 0− 2.250kHz

• Ω2 = 3.09− 4.96kHz

• Ω3 = 5.50− 9.54kHz

• Ω4 = 10.34− 27.81kHz

• Ω5 = 31.01− 50.12kHz

• Ω6 = 50.66− 58.71kHz

• Ω7 = 62.21− 71.07kHz

• Ω8 = 82.09− 113.03kHz

46

Figure 3.4: Correlation Plot Between Each Frequency and The Output Classes:
No-Propagation, Stable Propagation and Unstable Propagation for Test CP2.

Figure 3.5: Correlation Plot Between Each Frequency and The Output Classes:
No-Propagation, Stable Propagation and Unstable Propagation for Test CP3.

47

Figure 3.6: Correlation Plot Between Each Frequency and The Output Classes:
No-Propagation, Stable Propagation and Unstable Propagation for Test CP4.

3.1.3 Input Correlation & Relevance Analysis

All three correlation matrices (Figures 3.7, 3.8 and 3.9) have mainly three areas

of high correlation. Most are expected, for instance, Max. Amp. dB and Max.

Amp represent the same quantity, but with different scales. There are no significant

negative correlation coefficients. In all, these results indicate that a good portion

of these parameters can be eliminated. In order to rule out which parameters are

important to the classifier, one needs to complement the aforementioned results with

a Relevance Analysis.

48

Ri
se

 T
im

e
Co

un
t

En
er

gy
Du

ra
tio

n
RM

S
M

ax
. A

m
p.

 d
B

Re
so

lu
tio

n
Co

un
t

Av
g.

 S
ig

. L
ev

el
M

ax
. A

m
p.

Va
ria

bl
e

Th
re

sh
ol

d
In

iti
at

io
n

Fr
eq

ue
nc

y
Re

ve
rb

er
at

io
n

Fr
eq

ue
nc

y
Co

un
t-t

o-
Pe

ak
Av

g.
 F

re
qu

en
cy

Rise Time
Count

Energy
Duration

RMS
Max. Amp. dB

Resolution Count
Avg. Sig. Level

Max. Amp.
Variable Threshold

Initiation Frequency
Reverberation Frequency

Count-to-Peak
Avg. Frequency

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 3.7: Linear Correlation Matrix for Test CP2

Ri
se

 T
im

e
Co

un
t

En
er

gy
Du

ra
tio

n
RM

S
M

ax
. A

m
p.

 d
B

Re
so

lu
tio

n
Co

un
t

Av
g.

 S
ig

. L
ev

el
M

ax
. A

m
p.

Va
ria

bl
e

Th
re

sh
ol

d
In

iti
at

io
n

Fr
eq

ue
nc

y
Re

ve
rb

er
at

io
n

Fr
eq

ue
nc

y
Co

un
t-t

o-
Pe

ak
Av

g.
 F

re
qu

en
cy

Rise Time
Count

Energy
Duration

RMS
Max. Amp. dB

Resolution Count
Avg. Sig. Level

Max. Amp.
Variable Threshold

Initiation Frequency
Reverberation Frequency

Count-to-Peak
Avg. Frequency

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 3.8: Linear Correlation Matrix for Test CP3

49

Ri
se

 T
im

e
Co

un
t

En
er

gy
Du

ra
tio

n
RM

S
M

ax
. A

m
p.

 d
B

Re
so

lu
tio

n
Co

un
t

Av
g.

 S
ig

. L
ev

el
M

ax
. A

m
p.

Va
ria

bl
e

Th
re

sh
ol

d
In

iti
at

io
n

Fr
eq

ue
nc

y
Re

ve
rb

er
at

io
n

Fr
eq

ue
nc

y
Co

un
t-t

o-
Pe

ak
Av

g.
 F

re
qu

en
cy

Rise Time
Count

Energy
Duration

RMS
Max. Amp. dB

Resolution Count
Avg. Sig. Level

Max. Amp.
Variable Threshold

Initiation Frequency
Reverberation Frequency

Count-to-Peak
Avg. Frequency

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 3.9: Linear Correlation Matrix for Test CP4

The relevance was calculated for each class (Figures 3.10, 3.11 and 3.12). For

all tests, the last 5 parameters were highly relevant for both NP and SP classes.

The first 5 parameters however were shown to have a relatively low relevance for all

classes.

Ri
se

 T
im

e
Co

un
t

En
er

gy
Du

ra
tio

n
RM

S
M

ax
. A

m
p.

 d
B

Re
so

. L
ev

el
 C

ou
nt

Av
g.

 S
ig

. L
ev

el
M

ax
. A

m
pl

itu
de

Va
ria

bl
e

Th
re

sh
ol

d
In

it.
 F

re
qu

en
cy

Re
ve

rb
. F

re
qu

en
cy

Co
un

t-T
o-

Pe
ak

Av
g.

 F
re

qu
en

cy

0.0

0.2

0.4

0.6

0.8

Re
le

va
nc

e

NP
SP
UP

Figure 3.10: Relevance Analysis by Class for Test CP2.

50

Ri
se

 T
im

e
Co

un
t

En
er

gy
Du

ra
tio

n
RM

S
M

ax
. A

m
p.

 d
B

Re
so

. L
ev

el
 C

ou
nt

Av
g.

 S
ig

. L
ev

el
M

ax
. A

m
pl

itu
de

Va
ria

bl
e

Th
re

sh
ol

d
In

it.
 F

re
qu

en
cy

Re
ve

rb
. F

re
qu

en
cy

Co
un

t-T
o-

Pe
ak

Av
g.

 F
re

qu
en

cy

0.0

0.2

0.4

0.6

0.8

Re
le

va
nc

e

NP
SP
UP

Figure 3.11: Relevance Analysis by Class for Test CP3

Ri
se

 T
im

e
Co

un
t

En
er

gy
Du

ra
tio

n
RM

S
M

ax
. A

m
p.

 d
B

Re
so

. L
ev

el
 C

ou
nt

Av
g.

 S
ig

. L
ev

el
M

ax
. A

m
pl

itu
de

Va
ria

bl
e

Th
re

sh
ol

d
In

it.
 F

re
qu

en
cy

Re
ve

rb
. F

re
qu

en
cy

Co
un

t-T
o-

Pe
ak

Av
g.

 F
re

qu
en

cy

0.0

0.2

0.4

0.6

Re
le

va
nc

e

NP
SP
UP

Figure 3.12: Relevance Analysis by Class for Test CP4

The analysis for test CP2 (Figure 3.10) displays a strong relevance for class SP

of parameters Average Signal Level and Max. Amplitude that is not present at the

later tests. Excluding the first five parameters, all others have a significant (higher

than 30%) relevance for class NP (arguably the hardest one to differentiate). Class

SP is mainly separated by the last 5 parameters, considering the high relevance

(higher than 70%).

Taking both analyses into consideration, in an attempt to select only the relevant

51

parameters and minimize overlapping information, the AE parameters chosen to

“feed” the ANN were:

• Average Frequency

• Count-To-Peak

• Initiation Frequency

• Max. Amplitude

• Variable Threshold

According to the results from test CP2, the last 7 parameters are the most rele-

vant. Out of those 7, the last 3 (Count-To-Peak, Reverberation Frequency and Avg.

Frequency) are correlated (Figure 3.7), specially the last two. Therefore, Count-To-

Peak and Avg. Frequency were chosen. Initiation Frequency is not correlated to any

other variable, a strong relevance across all tests demonstrated that this parameter

is essential and therefore was picked. Max. Amplitude and Variable Threshold, to-

gether with the aforementioned parameters, amount to the 5 most relevant inputs.

These are also highly correlated to the other relevant parameters like Average Signal

Level.

After defining the inputs for the ANN, one still needs to determine the best

architecture. For this work, a shallow neural network with a single hidden layer

was used. The amount of neurons was varied from 1 to 20. The samples were

separated using 5-fold cross-validation (Section 1.6.1). According to this analysis, a

satisfying size for the ANN would be 15 neurons at the hidden layer (Figures 3.13,

3.14 and 3.15).

52

0 5 10 15 20
Neurons

60

65

70

75

80

85

90

95

Ac
cu

ra
cy

 (%
)

NP SP PI

Figure 3.13: Network Size Investigation for Test CP2

0 5 10 15 20
Neurons

40

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

NP SP PI

Figure 3.14: Network Size Investigation for Test CP3

53

0 5 10 15 20
Neurons

20

30

40

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

NP SP PI

Figure 3.15: Network Size Investigation for Test CP4

In sum, the model consists of a shallow artificial neural network (Section 1.4) with

15 neurons on its single hidden layer, “fed” with 13 inputs. Five extracted directly

from the time-domain AE parameters (Section 2.4.3) and 8 frequency parameters

(Section 2.4.4). An additional pre-processing stage was done to ensure that the

mean and standard deviation of each parameter were set to 0 and 1 respectively

(Z-Score normalization).

3.2 Transition-Time-Estimation

The TTE method was applied at a later stage and presented some interesting results.

For all tests, the cost graph displayed 3 valleys per cycle (test CP4 has 2 cycles).

This is an indication that there is a fourth class to be considered. The same results

were found on a related work that applied this technique [28] which supports the

idea that there are 4 classes instead of 3.

54

0.2 0.4 0.6 0.8 1.0
Time (s) 1e4

0.20

0.21

0.22

0.23

0.24

0.25

0.26

M
ea

n
Sq

ua
re

d
Er

ro
r

Figure 3.16: Transition-Time-Estimation Method Applied to Test CP2

0.2 0.4 0.6 0.8
Time (s) 1e4

0.7

0.8

0.9

1.0

1.1

1.2

1.3

M
ea

n
Sq

ua
re

d
Er

ro
r

Figure 3.17: Transition-Time-Estimation Method Applied to Test CP3

55

0.5 1.0 1.5 2.0 2.5
Time (s) 1e4

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

M
ea

n
Sq

ua
re

d
Er

ro
r

Figure 3.18: Transition-Time-Estimation Method Applied to Test CP4

The results for test CP4 (Figure 3.18) show when the cycle is restarted (around

1.5e4s) and have an abnormal amount of valleys due to it. However, it is possible

to notice that both cycles have 3 valleys, which is in accordance with the previous

results.

3.3 Classification Results

For each test, 25 different networks and training/validation/test shuffled sets were

instantiated. The train-validation-test split was done following a 0.7/0.15/0.15 ratio.

The only test that had a different division (0.7/0.3) was test CP2 due to the highly

unbalanced classes. For each one of the 25 simulations, 4 different neural networks

were created and only the best was selected. This gives a total of 100 different neural

networks.

In total, the tests had 1494, 1978 and 2934 samples for tests CP2, CP3 and

CP4 respectively. The classes were balanced in the training by means of altering

the cost based on what class that sample belongs. In other words, if we have 10

samples, divided as 2/5/3 for classes NP, SP and UP, their respective weights would

be 0.5/0.2/0.333 when calculating the error from each sample.

Although the results from TTE (Section 3.2) indicate 4 classes for tests CP2

and CP3, there was a higher classification error rate using a 4-class labelling. The

best class division came from ignoring the first valley. In other words, the division

56

between NP and SP was given by the second valley (Figures 3.16 and 3.17) instead

of the first. The additional classes were interpreted as “transition” classes, and

therefore gained the label “NP/SP”.

The metric used is the Confusion Matrix (CM). The rows represent the real class,

while columns predicted class. For each test, the approximate amount of samples

for each model can be seen below (Tables 3.2 and 3.3):

Class CP2 CP3

NP 56 18

NP/SP 22 37

SP 8 127

UP 136 116

Table 3.2: Aproximate Amount of Samples of The Test Set for Each Run Using 4
Classes for Tests CP2 and CP3.

Class CP4

NP1 65

SP1 40

UP1 50

NP2 24

SP2 84

UP2 170

Table 3.3: Aproximate Amount of Samples of The Test Set for Each Run Using 6
Classes for Test CP4.

3.3.1 CP2

According to the TTE method (Section 3.2), there should be 4 classes, however,

the results were unsatisfactory (Table 3.4a). With over 50% and 32% confusion

between the first two classes, and an overall bad classification rate. The standard

deviation (Table 3.4b) indicates that the model was not capable of separating the

classes (apart from the UP class).

Merging the first two classes did not seem to improve the results much further,

showing over 71% incorrect predictions for class SP (Table 3.5a). This indicates

that the separation between these two classes is highly non-trivial (at least for this

dataset). This can be due to the extremely unpredictable and complex phenomenon

that is AE. It is possible that the division between classes is more of a fuzzy than a

hard division.

57

The classes are also really unbalanced, the least populated one (SP) has around

70 samples for the test set even with 30% of the data. This also hinders the classifi-

cation task. Due to the low amount of samples, the standard deviation also becomes

high (Table 3.5b), indicating that the model was not stable.

(%) NP NP/SP SP UP

NP 57.71 32.21 10.07 0.00

NP/SP 52.18 36.36 11.45 0.00

SP 48.80 24.00 7.20 20.00

UP 0.67 0.18 0.35 98.80

(a)

(%) NP NP/SP SP UP

NP 40.64 39.46 27.27 0.00

NP/SP 45.96 44.54 31.02 0.00

SP 29.98 29.39 19.50 0.00

UP 0.92 0.47 1.31 1.40

(b)

Table 3.4: Mean (a) and Standard Deviation (b) of the Confusion Matrix Using 4
Classes for Test CP2 in Percentage.

(%) NP SP UP

NP 92.83 7.17 0.00

SP 71.50 20.56 7.94

UP 1.25 0.02 98.73

(a)

(%) NP SP UP

NP 6.33 6.33 0.00

SP 11.80 12.19 0.62

UP 0.46 0.08 0.46

(b)

Table 3.5: Mean (a) and Standard Deviation (b) of the Confusion Matrix for Test
CP2 in Percentage.

3.3.2 CP3

The results from test CP3 are very analogous to the previously presented CP2

results. Again the TTE method indicated an existence of 4 different patterns, but

after training the ANNs, there is still a high rate of confusion between classes NP

and NP/SP (21%). It is important to note that there is a significant rate of confusion

between classes NP and SP which should not happen (for this specific class division).

This is because the “distance” between the two classes is (supposedly) too far. Even

still, it was decided that the amount of confusion between the first two classes was

too significant, and the classes were fused, much like what was done previously.

58

This skyrocketed the classification rate, test CP3 presented a satisfactory result

(Table 3.7a), yielding 89% and (approximately) 97% correct predictions for classes

SP and UP. Unfortunately, the performance for class NP was lower, achieving around

79%. This is a slight step-down from Test CP2 but with high rates of correct

predictions still. The values of the standard deviation (lower than 2%) indicate that

the model is robust and stable. Important to note that the standard deviation got

lower, meaning that the 4 classes division was a more unstable one.

(%) NP NP/SP SP UP

NP 63.56 8.67 27.78 0.00

NP/SP 21.56 54.44 24.00 0.00

SP 29.07 2.20 67.91 0.82

UP 0.86 0.86 1.72 96.55

(a)

(Samples) NP NP/SP SP UP

NP 4.99 4.99 0.00 0.00

NP/SP 2.64 2.22 1.91 0.00

SP 2.23 0.63 2.24 0.27

UP 0.00 0.00 0.00 0.00

(b)

Table 3.6: Mean (a) and Standard Deviation (b) of the Confusion Matrix Using 4
Classes for Test CP3 in Percentage.

(%) NP SP UP

NP 78.79 21.21 0.00

SP 10.85 89.15 0.00

UP 2.54 0.50 96.96

(a)

(%) NP SP UP

NP 0.81 0.81 0.00

SP 1.50 1.50 0.00

UP 0.52 0.53 0.30

(b)

Table 3.7: Mean (a) and Standard Deviation (b) of the Confusion Matrix for Test
CP3 in Percentage.

3.3.3 CP4

Test CP4 is different since it had 2 cycles. The TTE method applied to this dataset

created not 4, but 7 different patterns (Figure 3.18). Considering what was done to

the previous tests, the first division was also discarded (between NP and NP/SP)

which brings a total of 6 classes. These 6 classes were then divided into 2 sets of

NP, SP and UP, each set per cycle.

59

This division did not yield good results, as the correct predictions (excepting

the UP2 class) did not reach 62%. The CM (Table 3.8a) shows a big confusion for

the first cycle as a whole. The model could not identify class NP1 well, since it is

heavily spread across all other classes.

An attempt to join all these classes together as done simply fusing the cycles,

that is, NP1 was joined with NP2 and so forth. This still did not convey good results

(Table 3.9a) with a low 53% correct prediction rate for class SP. The high values of

standard deviation (Table 3.9b) also show that the model is not stable. However,

classes NP and UP are reasonably well defined, with correct prediction rates of 84%

and 76% approximately.

(%) NP1 SP1 UP1 NP2 SP2 UP2

NP1 56.61 10.73 23.45 8.06 1.15 0.00

SP1 25.10 49.80 19.60 4.60 0.10 0.80

UP1 37.70 7.56 41.41 11.93 1.11 0.30

NP2 14.24 15.20 9.12 61.12 0.32 0.00

SP2 23.75 3.85 5.65 5.30 40.65 20.80

UP2 0.00 0.34 0.16 0.16 3.57 95.77

(a)

(%) NP1 SP1 UP1 NP2 SP2 UP2

NP1 5.32 3.93 5.11 2.17 1.07 0.00

SP1 4.55 4.41 4.57 2.80 0.49 1.17

UP1 3.95 2.51 4.74 2.46 1.05 0.68

NP2 3.93 3.20 3.49 2.66 1.09 0.00

SP2 3.12 1.41 2.94 1.67 5.42 5.27

UP2 0.00 0.45 0.26 0.30 1.25 1.51

(b)

Table 3.8: Mean (a) and Standard Deviation (b) of the Confusion Matrix With All
Classes for Test CP4 in Percentage.

(%) NP SP UP

NP 84.93 11.07 4.00

SP 33.72 52.71 13.57

UP 20.09 6.23 73.69

(a)

(%) NP SP UP

NP 3.79 3.93 0.88

SP 2.08 7.74 7.09

UP 0.87 2.07 1.71

(b)

Table 3.9: Mean (a) and Standard Deviation (b) of the Confusion Matrix After
Joining Cycles for Test CP4 in Percentage.

60

3.4 Conclusion

In the end the objectives were met, the tools that eventually can build a fully

automated system to extract and process big amounts of data from an AE test were

implemented. However, it is unclear if an ANN-based classifier can differentiate the

3 pre-determined stages of the crack.

The results for test CP3 are acceptable and usable, which is not the case for

the other two tests, CP2 and CP4. For test CP2, the lack of enough samples from

classes SP and NP took a heavy toll on the classifier. Test CP4 did not burst, which

also hindered significantly the quality of the data. A lot of different techniques to

preprocess it were implemented but unfortunately it was not enough to overcome its

unpredictability. Furthermore, the author highly stresses the importance of a more

controlled hydrostatic test.

However, the fact that these techniques resulted in a good classification for test

CP3 indicates that it should be possible to apply a shallow neural network classifier

for this problem. Unfortunately, considering the overall state of this dataset, it was

not possible to achieve a good result.

The TTE method works to an extent. Although its results match that from [28],

the subsequent application of these results to the data did not work out. A possible

reason would be that the window size was not big enough, resulting in fluctuations

of possible pattern combinations within the same class. Also, it is possible that a

single class possesses more than one pattern, or is even a multi-modal distribution.

61

Chapter 4

Future Works

After working for over an year with the data, the author started to develop a feeling

that trying to classify each AE instance separately is but a hindrance. The parameter

extracted in this work (VTHR) was an attempt to feed information about context to

the neural network. A related past work [26] developed a way to create information

about the context by changing the classification based on past samples.

Since context seems to be key, a possibly good alternative to a shallow MLP

would be some architecture that learns the context. Recurrent Neural Networks have

been used for this purpose (albeit in the field of text interpretation) and could pose a

solid model for this problem. Different models could also be used for distinguishing

the first two classes (the biggest challenge) like the AdaBoost classifier.

Other points would be to perfect the TTE method or further investigate other

transformations for the AE, like the Wavelet Transform. A prototype could also be

built with a fully automated data collection, filtering and interpreting.

62

Bibliography

[1] “English: Drawing Illustrating the Process of Synaptic Transmission in Neurons,

Cropped from Original in an NIA Brochure.” 2009-12-30, first publication

of original unknown.

[2] WIKIMEDIA COMMONS. “Neuron”. https://upload.wikimedia.org/

wikipedia/commons/b/b5/Neuron.svg, dez. 2006.

[3] MARTINTHOMA. “English: Sigmoid Function”. maio 2014.

[4] JORGE STOLFI FROM WIKIMEDIA COMMONS. “File:Axial Stress

Noavg.Svg”, Wikipedia, fev. 2013.

[5] IGOR KOKCHAROV FROM WIKIMEDIA COMMONS.

“File:CrackForceLines.Png”, Wikipedia, dez. 2018.

[6] RONNY KOHAVI AND BARRY BECKER. “UCI Machine Learning Repos-

itory: Adult Data Set”. https://archive.ics.uci.edu/ml/datasets/Adult,

1994.

[7] “Energy and Air Pollution - World Energy Outlook 2016 Special Report”, p.

266, 2016.

[8] TURING, A. M. “Computing Machinery And Intelligence”, Mind, v. LIX, n.

236, pp. 433–460, 1950. ISSN: 0026-4423, 1460-2113. doi: 10.1093/mind/

LIX.236.433.

[9] MCCULLOCH, W. S., PITTS, W. “A Logical Calculus of the Ideas Immanent

in Nervous Activity”, Bulletin of Mathematical Biophysics, v. 5, n. 4,

pp. 115–133, dez. 1943. ISSN: 1522-9602. doi: 10.1007/BF02478259.

[10] MORRIS, R. G. D.O. Hebb: The Organization of Behavior, Wiley: New York;

1949, v. 50. 1999 Nov-Dec.

[11] FRANK ROSENBLATT. The Perceptron, A Perceiving and Recognizing Au-

tomaton. Relatório Técnico 85-460-1, Cornell Aeronautical Laboratory,

INC, Buffalo, N. Y., jan. 1957.

63

https://upload.wikimedia.org/wikipedia/commons/b/b5/Neuron.svg
https://upload.wikimedia.org/wikipedia/commons/b/b5/Neuron.svg

[12] RUMELHART, D. E., HINTON, G. E., WILLIAMS, R. J. “Learning Represen-

tations by Back-Propagating Errors”, Nature, v. 323, n. 6088, pp. 533–536,

out. 1986. ISSN: 1476-4687. doi: 10.1038/323533a0.

[13] RUDER, S. “An Overview of Gradient Descent Optimization Algorithms”,

arXiv:1609.04747 [cs], set. 2016.

[14] KINGMA, D. P., BA, J. “Adam: A Method for Stochastic Optimization”,

arXiv:1412.6980 [cs], dez. 2014.

[15] MORÉ, J. J. “The Levenberg-Marquardt Algorithm: Implementation and The-

ory”. In: Numerical Analysis, Lecture Notes in Mathematics, Springer,

Berlin, Heidelberg, pp. 105–116, 1978. ISBN: 978-3-540-08538-6 978-3-

540-35972-2. doi: 10.1007/BFb0067700.

[16] ZEILER, M. D. “ADADELTA: An Adaptive Learning Rate Method”, dez.

2012.

[17] JOSEPH KAISER. Untersuchungen über das Auftreten von Geräuschen beim

Zugversuch. Tese de Doutorado, Technische Hochschule München, Ger-

many, 1950.

[18] DUNEGAN, H. L., HARRIS, D. O., TATRO, C. A. “Fracture Analysis by

Use of Acoustic Emission”, Engineering Fracture Mechanics, v. 1, n. 1,

pp. 105–122, jun. 1968. ISSN: 0013-7944. doi: 10.1016/0013-7944(68)

90018-0.

[19] LINDLEY, T. C., PALMER, I. G., RICHARDS, C. E. “Acoustic Emis-

sion Monitoring of Fatigue Crack Growth”, Materials Science and En-

gineering, v. 32, n. 1, pp. 1–15, jan. 1978. ISSN: 0025-5416. doi:

10.1016/0025-5416(78)90206-9.

[20] NI, Q.-Q., IWAMOTO, M. “Wavelet Transform of Acoustic Emission Sig-

nals in Failure of Model Composites”, Engineering Fracture Mechan-

ics, v. 69, n. 6, pp. 717–728, abr. 2002. ISSN: 0013-7944. doi:

10.1016/S0013-7944(01)00105-9.

[21] SUN, H., KAVEH, M., TEWFIK, A. “Self-Organizing Map Neural Network for

Transient Signal Classification in Mechanical Diagnostics”, pp. 539–543,

jan. 1999.

[22] HUGUET, S., GODIN, N., GAERTNER, R., et al. “Use of Acoustic Emission

to Identify Damage Modes in Glass Fibre Reinforced Polyester”, Com-

64

posites Science and Technology, v. 62, n. 10-11, pp. 1433–1444, ago. 2002.

doi: 10.1016/s0266-3538(02)00087-8.

[23] DA SILVA, R. R., CALÔBA, L. P., SIQUEIRA, M. H., et al. “Pattern Recog-

nition of Weld Defects Detected by Radiographic Test”, NDT & E In-

ternational, v. 37, n. 6, pp. 461–470, set. 2004. ISSN: 09638695. doi:

10.1016/j.ndteint.2003.12.004.

[24] DA SILVA, R. R., SOARES, S. D., CALÔBA, L. P., et al. “Detection of the

Propagation of Defects in Pressurised Pipes by Means of the Acoustic

Emission Technique Using Artificial Neural Networks”, Insight - Non-

Destructive Testing and Condition Monitoring, v. 48, n. 1, pp. 45–51, jan.

2006. ISSN: 13542575. doi: 10.1784/insi.2006.48.1.45.

[25] PINTO, C., SILVA, R., CALÔBA, L., et al. “Uso de redes neurais artificiais

na detecção de propagação de defeitos em dutos ŕıgidos”, Matéria (Rio

de Janeiro), v. 17, n. 3, pp. 1084–1097, 2012. ISSN: 1517-7076. doi:

10.1590/S1517-70762012000300006.

[26] CARLOS FERNANDO CARLIM PINTO. Monitoração De Defeitos Em Du-

tos Rı́gidos Por Análise Dos Parâmetros De Emissão Acústica Utilizando

Redes Neurais. Tese de Doutorado, Federal University of Rio de Janeiro,

Rio de Janeiro, RJ, dez. 2014.

[27] ORLANDO GÉA. Monitoramento Da Propagação De Defeitos Em Dutos

Rı́gidos Por Redes Neurais: Estudo Da Emissão Acústica Baseado Na

Forma De Onda. Tese de Doutorado, Federal University of Rio de Janeiro,

Rio de Janeiro, RJ, dez. 2015.

[28] LUIZA RIBEIRO MARNET. Monitoramento de Defeitos em Dutos Rı́gidos

Longos por Parâmetros de Emissão Acústica e Redes Neurais. Tese de

Doutorado, Federal University of Rio de Janeiro, Rio de Janeiro, RJ,

2018.

[29] CHARLESWORTH, J. P., TEMPLE, J. A. G. Engineering Applications of

Ultrasonic Time-of-Flight Diffraction. United States, Research Studies

Press, 2001. ISBN: 978-0-86380-239-3.

[30] SILK, M. G., LIDINGTON, B. H. “The Potential of Scattered or Diffracted

Ultrasound in the Determination of Crack Depth”, Non-Destructive

Testing, v. 8, n. 3, pp. 146–151, jun. 1975. ISSN: 0029-1021. doi:

10.1016/0029-1021(75)90024-9.

65

[31] PHYSICAL ACOUSTICS. “R1.5 - 5-20 kHz Very Low Frequency AE Sen-

sor”. https://www.physicalacoustics.com/by-product/sensors/R1.5-5-20-

kHz-Very-Low-Frequency-AE-Sensor, .

[32] PHYSICAL ACOUSTICS. “R15I-AST - 150 kHz Integral Preamp AE

Sensor”. https://www.physicalacoustics.com/by-product/sensors/R15I-

AST-150-kHz-Integral-Preamp-AE-Sensor, .

[33] PHYSICAL ACOUSTICS. “WD - 100-900 kHz Wideband Differential AE Sen-

sor”. https://www.physicalacoustics.com/by-product/sensors/WD-100-

900-kHz-Wideband-Differential-AE-Sensor, .

[34] NATIONAL INSTRUMENTS. “The NI TDMS File Format”. .

[35] MISTRAS GROUP. “DiSP with AEwin USER’S MANUAL”. jul. 2011.

[36] TAMURA, S., TATEISHI, M. “Capabilities of a Four-Layered Feedforward

Neural Network: Four Layers versus Three”, IEEE Transactions on Neu-

ral Networks, v. 8, n. 2, pp. 251–255, mar. 1997. ISSN: 1045-9227. doi:

10.1109/72.557662.

[37] JOSÉ MANOEL DE SEIXAS, LUIZ PEREIRA CALÔBA, IGOR DELPINO.

“Relevance Criteria for Variance Selection in Classifier Designs”. In: In-

ternational Conference on Engineering Applications of Neural Networks,

pp. 451–454, 1996.

66

Petro Acoustic Emission
Documentation

Release alpha

Luiz Renno Costa

Feb 25, 2019

Appendix A Software Documentation

67

CONTENTS:

1 Streaming 2
1.1 Streaming Class . 2

1.1.1 Main Parameters . 2
1.1.2 Constructor . 4
1.1.3 Methods . 4

1.2 Model Class . 6
1.2.1 Main Parameters . 6
1.2.2 Constructor . 7
1.2.3 Methods . 7

1.3 Wave Class . 8
1.3.1 Constructor . 9
1.3.2 Methods . 9

1.4 User Guide . 9

MATLAB Module Index 11

i68

Petro Acoustic Emission Documentation, Release alpha

This documentation is incomplete and its meant to be a guideline for anyone interested in
learning how the project’s code is structured. Not all methods are documented, only the ones
that the author judged relevant. Eventually all methods and parameters will be documented.

CONTENTS: 169

CHAPTER

ONE

STREAMING

This is the Streaming module.

1.1 Streaming Class

1.1.1 Main Parameters

class Matlab.Streaming.classDesign.@StreamingClass.StreamingClass(CPString,
varar-
gin)

The main class, it holds all information regarding an AE streaming test.

Parameters

• Waves (Wave Array) – A holder for all waves captured through-
out the test.

• StreamingModel (StreamingModel Object) – Used for all
modelling purposes, holds inputs, targets, etc.

• hdt (double) – Timing parameter, in seconds (Check PAC Man-
ual).

• hlt (double) – Timing parameter, in seconds (Check PAC Man-
ual).

• pdt (double) – Timing parameter, in seconds (Check PAC Man-
ual).

• countWaveform (double) – Amount of captured Waveforms

• spIndexes (double Array) – Contains all indexes of the NP
class. (sp -> NP)

• peIndexes (double Array) – Contains all indexes of the SP
class. (pe -> SP)

• piIndexes (double Array) – Contains all indexes of the UP
class. (pi -> UP)

270

Petro Acoustic Emission Documentation, Release alpha

• timePE (double) – Starting time for SP class in seconds. (pe ->
SP)

• timePI (double) – Starting time for UP class in seconds. (pi ->
UP)

• cycleDividers (double Array) – Holds which files are the
cycle dividers, concerning the streaming files.

• adjusted (Bool) – Flag that indicates if the time parameters were
already adjusted.

• noiseLevelMatrix (Cell Array) – Variable that holds the
noise level per file per channel. Each component of the array cor-
responds to a diffent cycle (demarked by cycleDividers).

• fields (Cell Array) – An array of fixed strings for each Wave
object parameter.

• description (string) – A description for the test.

• folderTDMS (Cell Array) – Holds which folders the TDMS
files are. MUST BE ABSOLUTE PATH.

• folderMatlabCopy (string) – Path for the local .mat files
copied from the streaming files.

• fileTemplate (Cell Array) – Strings that specify the file-
name format. Used for reading the TDMS or .mat local files.

• TOFDReferenceChannel (double) – Holds which streaming
channel is the reference when calculating time delays between chan-
nels.

• sortedFolder (double Array) – Variable used ONLY for the
CP4 test. It tells which file is in which folder. This is needed since the
files for CP4 are split between two folders and in a somewhat-random
order.

• totalFiles (double Array) – Total files for each nominated
cycle (demarked by cycleDividers).

• numBitsFileChannel (Cell Array) – An array which each
element is a matrix of the bit resolution per file and channel of each
cycle (demarked by cycleDividers).

• numUniqueElementsChannel (Cell Array) – The same as
numBitsFileChannel, but with the total amount of digital levels used
instead of bits.

• filesToSkip (Cell Array) – An array of lists that holds which
files to skip when reading the test. Filled manually.

• tofdDifferences (struct) – Variable that holds which chan-
nels to remove TOFD from, and how they are related, that is, how
they are delayed in relation to each other.

1.1. Streaming Class 371

Petro Acoustic Emission Documentation, Release alpha

• minBits (double) – The minimum acceptable bits level for in-
specting a TDMS file for waves.

• power (double array) – Matrix with the single-sided power
spectrum for each wave.

• normalizedPower (double array) – Matrix with the normal-
ized single-sided power spectrum for each wave.

• phase (double array) – Matrix with the phase for each wave.

• frequencyArray (double array) – An array with each fre-
quency.

• freqSlots (double) – Array with the frequency slots used to
generate the frequency inputs for the model.

1.1.2 Constructor

StreamingClass.StreamingClass(CPString, varargin)
The main constructor for the whole project. Instantiates a StreamingClass object that
holds everything necessary to read and analyse all TDSM files related to an acoustic emis-
sion test. All parameters were defined to ensure the best usage. Some can be changed,
like timePE. Others however, can not, as changing them will completely break the con-
structor, or heavily endanger the quality of the collected data.

Parameters

• CPString (string) – String to control which test to start
analysing. Can be either ‘CP2’, ‘CP3’ or ‘CP4’.

• varargin – Can be used to specify which cycle/file combination to
start. Must be (initialCycle, initialFile), otherwhise initialFile = 1.

1.1.3 Methods

Matlab.Streaming.classDesign.@StreamingClass.adjustCycles(this)
Adjusts the triggerTime for the waves from different cycles. After adjusting the cycles,
the adjusted parameter is set to TRUE (1).

Matlab.Streaming.classDesign.@StreamingClass.divideClasses(this)
Divides the 3 classes based on this.timePE and this.timePI. Also creates the arrays that
hold the wave indexes for each class and the target to be used on the model.

1.1. Streaming Class 472

Petro Acoustic Emission Documentation, Release alpha

Matlab.Streaming.classDesign.@StreamingClass.identifyWaves(obj,
raw-
Data,
chan-
nels,
fs,
noise-
Level,
fileNum-
ber,
lastIn-
dex,
back-
up-
Path,
cy-
cle)

Identifies all acoustic emission waves from within a streaming file. This function follows
the guidelines contained on the PAC Manual describing how the AE capture is done.
It uses only two (HDT and HLT) of the three timing parameters. The threshold is a
multiplied noiseLevel (by a euristically defined number).

Parameters

• channels (double array) – Array containing all channels to
investigate.

• rawData (int16 Array) – The raw collected wave data.

• fs (double) – Sampling Frequency

• noiseLevel (double Array) – An array with the estimated
noise level per channel.

• fileNumber (double) – Which file to investigate.

• backupPath (string) – Absolute path to the local .mat files.

• cycle (double) – Tells which cycle the file is located at.

Returns A StreamingClass object with the captured waves stored.

Returns The indexes where the last captured waves ended (per channel).

Matlab.Streaming.classDesign.@StreamingClass.propertyVector(this,
prop-
er-
tyS-
tring)

Returns a array of a chosen property for ALL captured Waves.

Parameters propertyString (string) – Which wave parameter to ex-
port.

Returns Array of an Wave property.

1.1. Streaming Class 573

Petro Acoustic Emission Documentation, Release alpha

Matlab.Streaming.classDesign.@StreamingClass.createFrequencyData(this,
fs)

Calculates FFT of N points for all waves. Used to calculate normalizedPower, power,
phase and frequencyArray.

Parameters fs (double) – Sampling Frequency, normally 2.5Ghz.

Returns StreamingClass object with normalizedPower, power, phase, and
frequencyArray calculated.

Matlab.Streaming.classDesign.@StreamingClass.defineInputs(this)
Creates the input matrix to be used for training any model. It changes the input parameter
inside the StreamingModel object.

Returns A StreamingClass object with defined inputs stores at the Stream-
ingModel object.

Returns The matrix used to feed the model.

Matlab.Streaming.classDesign.@StreamingClass.reportStreaming(this,
lan-
guage)

Creates several figures to report a StreamingClass object

Parameters language (String) – Allows the user to select the language
(not working).

Returns A struct holding all figure handles.

1.2 Model Class

1.2.1 Main Parameters

class Matlab.Streaming.classDesign.@StreamingModel.StreamingModel(input,
tar-
get)

StreamingModel class, used to hold any important variables to train a neural network
model. With the frequency data from the correlation analysis.

Parameters

• target (double Array) – Target variable for training.

• input (double Array) – Input variable for training.

• corrStruct (struct) – Structure containing the results from the
correlation analysis.

• frequencyDivisions (double Array) – Relevant frequen-
cies (from the correlation analysis).

• indexesChosenFrequencies (bool Array) – Logical ar-
ray for the chosen frequencies.

1.2. Model Class 674

Petro Acoustic Emission Documentation, Release alpha

• figHandles (Handle) – Figure handles from the correlation anal-
ysis.

• frequencyArray (double Array) – Array of frequencies.

• trainedModel (struct) – Contains all information regarding
the trained model (like confusion matrices).

• variables (Cell Array) – Strings that specify which acoustic
emission parameters were used.

1.2.2 Constructor

StreamingModel.StreamingModel(input, target)

1.2.3 Methods

Matlab.Streaming.classDesign.@StreamingModel.trainModel(this,
in-
cludeIn-
dexes,
neu-
ral-
Net-
Struc-
ture)

Matlab.Streaming.classDesign.@StreamingModel.corrAnalysis(this,
in-
put-
Vari-
able,
vari-
ableString)

Matlab.Streaming.classDesign.@StreamingModel.corrAnalysisChannel(this,
in-
put-
Vari-
able,
vari-
ableString,
chan-
nel,
chAr-
ray)

1.2. Model Class 775

Petro Acoustic Emission Documentation, Release alpha

1.3 Wave Class

The wave class contains all acoustic emission parameters and a method that calculates those
parameters using the acoustic emission waveform data.

class Matlab.Streaming.classDesign.@Wave.Wave(varargin)
Class that contains an acoustic emission wave and its parameters

Parameters

• rawData (int16 array) – Array that stores the entire wave, the
values have no phisical meaning.

• channel (uint8) – Channel where the wave was captured from.

• riseTime (double) – Time between triggerTime and the Maxmi-
mum Amplitude in seconds.

• count (double) – Amount of times the wave has positively crossed
over the Threshold.

• energy (double) – Energy of wave,

• duration (double) – Duration of the wave, in seconds.

• rms (double) – RMS energy of the wave.

• maxAmplitudeDB (double) – Maximum amplitude of the wave,
in dB.

• resolutionLevelCount (uint16) – Amount of levels used to
digitilize the wave.

• averageSignalLevel (double) –

• countToPeak (double) – Amount of times the wave has posi-
tively crossed the Threshold until the Max. Amplitude time.

• averageFrequency (double) – Average Frequency of the
wave.

• reverberationFrequency (double) – Reverberation Fre-
quency of the wave.

• initiationFrequency (double) – Initiation Frequency of the
wave.

• maxAmplitude (int16) – Maximum amplitude of the wave.

• threshold (double) – The threshold used to capture the wave
(3*noiseLevel of the file).

• meanAmplitude (double) – Mean of the Amplitude of the wave.

• absoluteTriggerIndex (double) – The index (with respect
to the file) where the trigger first ocurred.

1.3. Wave Class 876

Petro Acoustic Emission Documentation, Release alpha

• triggerTime (uint32) – Absolute time of the entire test when
the wave was capture, in seconds.

• relativeTriggerIndex (double) – Always 5000 (irrelevant
parameter)

• splitFile (Bool) – A Boolean that informs if the wave was cap-
ture between files.

• splitIndex (double) – The index on the latter file (from the
split) where the wave ended.

• file (double) – Which file the wave was captured from.

1.3.1 Constructor

Wave.Wave(varargin)
Wave class constructor, receives a variable-size input, however only instantiates 6 inputs.

Parameters varargin (Cell Array) – All necessary parameters to in-
stantiate a Wave Object. In order: rawData, channel, threshold, trigger-
Time, absoluteTriggerIndex, relativeTriggerIndex.

1.3.2 Methods

Matlab.Streaming.classDesign.@Wave.calculateParameters(wave,
fs,
stream-
ing-
Class)

Method that calculates the AE wave parameters according to PAC Manual

Parameters

• fs (double) – Sampling frequency, usually $fs=2.5Ghz$.

• streamingClass (streamingClass) – An instance of stream-
ingClass.

Returns An Wave object with calculated parameters.

1.4 User Guide

This user guide contains only an example script that loads the tests data and trains a simple
neural network on top. It is meant to give an extremely simple way to start using the developed
code.

1.4. User Guide 977

Petro Acoustic Emission Documentation, Release alpha

1 % A basic example for the Petro Acoustic Emission work
2 %
3 % Loads the complete data from the 3 tests and
4 % trains it with a simple neural network with 10 neurons.
5 %
6 % This script is meant to be a starting point for
7 % anyone wanting to further indulge in the projects
8 % usage.
9

10 load('streamingOBJCP2.mat') % Loads CP2 object.
11 load('streamingOBJCP3.mat') % Loads CP3 object.
12 load('streamingOBJCP4.mat') % Loads CP4 object.
13 load('frequencyDivisions.mat') % Loads frequencyDivisions variable.
14

15 % Script that does pre-calculations like FFTs,
16 % a few wave removals, etc.
17 prepareCPS;
18

19 % Cell array with each CP.
20 cps_cell = {CP2, CP3, CP4}
21

22 % Iterates each CP
23 for cp_index = cps_cell:
24

25 % Uses the frequency ranges from 'frequencyDivisions'
26 % to create the frequency variables from
27 % the normalized power spectrum.
28 cp.StreamingModel.frequencyDivisions.normalizedPower =

→˓frequencyDivisions;
29 [cp, ~] = cp.defineInputs();
30

31 % Trains the model using a simple one-layered
32 % neural network with 10 neurons.
33 cp.StreamingModel = cp.StreamingModel.trainModel([],[10]);
34

35 % Calculates the mean of the confusion matrix
36 % in percentage form.
37 100*mean(cp.StreamingModel.trainedModel.confusionMatrix.

→˓percentValidation,3)
38

39 % Calculates the standard deviation of the confusion matrix
40 % in percentage form.
41 100*std(cp.StreamingModel.trainedModel.confusionMatrix.

→˓percentValidation, [], 3)
42

43 end

1.4. User Guide 1078

MATLAB MODULE INDEX

m
Matlab.Streaming.classDesign.@StreamingClass,

2
Matlab.Streaming.classDesign.@StreamingModel,

6
Matlab.Streaming.classDesign.@Wave,

8

1179

Appendix B

Transition Time Estimation

“Proof”

First and foremost, this is not a complete proof of the method, this only proves two

things:

• E[n0] > 0, E[nf] > 0 asymptotically.

• E[nt] = 0.

Where E[n] is any metric of classification error (MSE, categorical cross entropy,

etc) at iteration n. nt, n0 and nf are the transition, initial and final iteration of the

algorithm. For all intended purposes, the two distributions have no overlap in all

dimensions, that is, they are LS.

By definition, a PLA has 0 classification error if the data presented to it is LS.

With this, we have by definition:

E[nt] = 0 (B.1)

Because when n = nt, the window has L/2 samples from each class, and by

feeding it to a PLA, the error is always 0. However, when the window has only

samples from one class, there is still a chance that the error is 0, given that the

points happened to spread themselves around a line. Therefore the first objective is

to prove:

Lemma 1. Given a limited distribution f , the probability that two subsets of N/2

points taken from the f are linearly separable is bounded by P = 1/2N−1.

Proof. The only two binary sets capable of being separated by a line would be N/2

zeros followed by N/2 ones, or vice-versa. This gives a probability of:

P = 2P
N/2
0 P

N/2
1 , (B.2)

80

where P0 is the probability of being classified as Class 0, P1 is analogous. Know-

ing that P0 + P1 = 1 one can reach:

P = 2P
N/2
0 (1− P0)

N/2 (B.3)

In order to find the maximum value for this equation, one derives in respect with

P0, making N/2 = k one has:

∂P

∂P0

= 2kP k−1
0 (1− P0)

k − 2kP k
0 (1− P0)

k−1 (B.4)

Setting Equation B.4 equal to zero yields:

2kP k−1
0 (1− P0)

k = 2kP k
0 (1− P0)

k−1

P−10 = (1− P0)
−1

P0 = 1− P0

P0 =
1

2

(B.5)

Therefore, the maximum probability, Pmax is given when P0 = P1 = 1/2, which

applying to Equation yields:

Pmax = 2

(
1

2

)N/2(
1

2

)N/2

Pmax = 2

(
1

2

)N

=
1

2N−1

(B.6)

And, by definition, Pmax > P .

Therefore, as long as the window is big enough, the probability that E[n] > 0

for all n given that:

C[n+ k] = i | −L
2
≤ k ≤ L

2
, i = 0ORi = 1 (B.7)

which means that, as long all samples within the window’s boundary are from

the same binary class i.

This means that, given a sufficiently large L, as long as P/2 > L the probability

of having no initial error is asymptotically close to 0. If one has L = 50, P (E[n0] =

0) ≈ 8.9e− 16. This implies that the graph should look like a funnel (Figure 2.17).

The problem is that, by the writing of this work, there is no proof that the error

monotonically descends to 0. One can however, try to explain it by induction and

considering how the gradient changes.

81

Given a model with parameters θ, one can define an update rule like:

θ[k] = θ[k − 1]− η ∂θ
∂ξi

, (B.8)

Where ξi is the error prevenient from sample i. This error can be defined as

the distance from the model’s output and the target’s label. If we suppose that

the θ space is convex, this update rule will always reach the best θ possible, θ∗.

However, if we suddenly start changing correct labels to wrong labels, the gradient

will change, and this update rule will make θ move further away from θ∗.

So this means that, as long as the window has a gradual increase of correct

labels inside it, the error should decrease accordingly. This means that having a set

of samples like 000000—001111 is better than 000000—000011. Simply because the

former has more samples with the correct labelling, and the gradient will be “more

correct” than it would when comparing with the latter case.

82

	List of Figures
	List of Tables
	List of Symbols
	List of Acronyms
	Introduction
	Introduction
	Objective
	Theory
	Learning
	Supervised Learning
	Unsupervised Learning

	Artificial Neural Networks
	Perceptron
	Multi Layer Perceptron
	Backpropagation

	Training a Machine Learning Model
	k-fold Cross-Validation

	Mechanical Properties
	Acoustic Emission
	Bibliography Review

	Materials and Methods
	Acoustic Emission Test
	Streaming Raw Data
	Preprocessing
	Resolution Analysis
	TOFD Removal
	Pressure Pump Removal

	Wave Capture
	Estimating Noise Level
	Timing Parameters
	Acoustic Emission Parameters
	Frequency Data

	Database Structure
	Model Definition
	Network Size
	Transition Time Estimation
	Input Correlation Analysis
	Relevance Analysis

	Results
	Preprocessing
	Resolution Analysis
	Frequency Data
	Input Correlation & Relevance Analysis

	Transition-Time-Estimation
	Classification Results
	CP2
	CP3
	CP4

	Conclusion

	Future Works
	Bibliography
	Appendix Software Documentation
	Appendix Transition Time Estimation ``Proof''

