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Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos
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MODELO DE COLUNA DE PERFURAÇÃO COM VIBRAÇÕES

LATERAL-TORCIONAL ACOPLADAS COM AMORTECIMENTO

ESTOCÁSTICO NÃO-PROPORCIONAL

Lucas Passos Volpi

Julho/2020

Orientador: Thiago Gamboa Ritto

Programa: Engenharia Mecânica

Nesta dissertação, a dinâmica de uma de perfuração é analisada. A coluna de

perfuração é uma estrutura semelhante a um rotor que perfura formações até atingir

o reservatório de petróleo. Esta estrutura é extremamente esbelta e está suscet́ıvel

à diferentes fenômenos não-lineares. Inicialmente, um modelo é desenvolvido,

onde o Método dos Elementos Finitos é utilizado para discretizar uma geometria

cont́ınua, levando a um sistema de equações diferenciais. As não-linearidades

geométricas obtidas incluem o efeito estático de forças axiais do problema. Este

modelo considera uma excentricidade cont́ınua ao longo do seu eixo, não comumente

aplicada em uma coluna de perfuração. Em adição, considera-se forças generalizadas

no impacto, capazes de causar a torção da coluna. Em sequência, modelos de

amortecimento proporcional distintos são apresentados para os graus de liberdade

laterais. Nestes, três relações de amortecimento são exploradas. Depois, incertezas

globais e não paramétricas são adicionadas aos modelos de amortecimento com a

teoria de matrizes aleatórias. Assim, procura-se reconhecer as incertezas inerentes

dos modelos, assim como atribuir uma não-proporcionalidade muitas vezes presente

em modelos não-lineares com interações fluido-estrutura. Uma técnica de redução

de ordem é aplicada e, em sequência, simulações numéricas são realizadas para se

obter respostas no domı́nio do tempo. Com estes resultados, mapas contendo a

dinâmica do modelo são criados. Por fim, o Método de Monte Carlo é usado nos

modelos estocásticos para se gerar mapas contendo a probabilidade de ocorrência

de fenômenos cŕıticos.
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In this dissertation, drill-string dynamics are analyzed. The drill-string consists

of a rotor-like structure that drills rock formations until the oil reservoir is reached.

The structure in question is extremely slender and prone to different non-linear

phenomena. A numerical model is developed, where the Finite Element Method

is used to discretize a continuous drill-string geometry, which leads to a system of

non-linear differential equations. Geometric nonlinearities includes the static effects

of relevant axial forces of the problem. The model considers a continuous unbalance

force approach not commonly used in the literature and lateral-torsional generalized

impact forces. In the sequence, distinct damping models are presented for the

drill-string lateral dynamics. Three damping ratio relations are explored, originating

different proportional damping matrices. Later, uncertainties are introduced in the

damping matrices with the random matrix theory, which adds global non-parametric

uncertainties to the damping term. With this stochastic model, it is – to some extent

– acknowledged that the complete nature of the dissipation forces in the process

might be unknown and that a nonlinear dynamic with fluid-structure interaction

may present non-proportional damping. A model order reduction technique is used,

based on the most relevant modes, and numerical simulations are conducted in order

to obtain the time-domain response in different drilling configurations. With these,

maps detailing possible regimes are presented. The Monte Carlo Method is applied

for numerical simulations of the stochastic models. Maps containing probabilities

of events are then calculated. Finally, the impact of the proportional damping

hypothesis is qualitatively evaluated..
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Chapter 1

Introduction

The drilling operation is a key process in gas and oil industry. Long distances

in different environments must be drilled in order to reach the oil reservoir for

extraction. With the increase in exploration, new technologies are often developed.

In a few decades, exploration reached new depths, such as deep well drilling and

ultra deep well drilling. In the latter, drill-strings used can present kilometers of

length.

On the one hand, there is a key stage in the oil industry. On the other hand,

there is a complex, costly and time consuming process. In order to minimize costs

and maximize efficiency, the drilling dynamics have been in the highlight of research

for the last decades.

One of the main components of the drilling process is the drill-string. It is a

slender structure, that can reach up to 9 km. The drill-string is divided in two main

components, the drill-pipes and the Bottom Hole Assembly – or BHA. The former is

composed of slender pipes and occupies most of the extension of the drill-string. The

BHA, however, is considerably stiffer and is where the drill-bit and other equipment

is located. At the top, there is a hoisting system and a rotatory table responsible for

controlling the force applied at bottom – known as weight on bit – and for rotating

the structure, respectively. During the drilling process, drilling fluid – or drilling

mud – is used to remove the cuttings. In Fig. 1.1 a sketch of a drill-string can be

seen, where the main regions considered in this work are presented.

The structure is susceptible to a set of vibrations, some even unavoidable. While

some are harmless, others can lead to efficiency loss and, in extreme cases, can even

jeopardize the operation. Those vibrations are commonly associated with the types

of motion. Hence, they are usually divided in three distinct cases: axial, torsional

and lateral – or transversal – vibrations.

Axial vibrations are a direct consequence of the interaction of the drill-bit and

the rock formation. In extreme cases, there is a periodic impact between the bit

and the rock formation, known as bit-bounce.

1



Drill-Pipes

BHA Stabillizers

Figure 1.1: Drill-string sketch with some components.

Torsional vibrations are also often associated with the bit-rock interaction. In

a critical scenario, it is known as stick-slip. This consists on the stagnation of the

bit – the stick phase – followed by the torsion of the drill-string. After a while,

the bit is released, causing it to accelerate – the slip phase. After reaching high

rotating speeds, the bit decelerates until stagnation, which culminates in a periodic

sticking-slipping motion.

Lateral vibrations are a direct consequence of the unbalance of the drill-string.

In general, it can be divided in two categories: (i) forward whirl and (ii) backward

whirl. The former is unavoidable and is defined by the translation of the drill-string

in the same direction of the rotation applied. If this translation presents the same

frequency as the rotation, it is called synchronous whirl and, otherwise, asynchronous

whirl. The backward whirl, however, is the consequence of the contact between the

drill-string and the borehole wall. With this contact, friction forces might induce

a rolling motion, which leads to the translation of the drill-string in the opposite

direction of the the rotation applied.

Although classified independently, each aforementioned phenomenon is thor-

oughly interconnected through a set of characteristics, such as axial loads, torsional

speed, nonlinearities, impact and so on. Thus, despite the complexity, coupled be-

havior is often modeled in order to effectively characterize drill-string vibrations.

A set of goals is explored in this work. Formerly, the development of a model

that can capture different complex nonlinear phenomena. In sequence, apply in a

practical model distinct damping approaches evaluating it’s impact in the dynamics.

Finally, to add global uncertainties in the damping approaches. With the latter, it is

expected to, in part, acknowledge that a linear proportional damping might not fully

2



reproduce the complexity of the dynamics, which involves fluid-structure interaction

and geometric nonlinearities.

This work starts with a literature review of some studies regarding drill-string

dynamics and damping. In sequence, the drill-string is modeled with the Finite El-

ement Method, tanking into a account an intrinsic structural unbalance in the BHA

and torques due to impact with the borehole wall. In the sequence, three different

proportional damping models are presented for the drill-string lateral vibrations.

Next, non-proportional stochastic damping models are provided by disturbing each

of the proportional damping models. After the models are developed, the results

obtained are explored. This section starts with a mesh convergence analysis, fol-

lowed by a model simplification analysis. With the model successfully simplified,

different regime identification procedure are explored and exemplified. With those,

the regime of different drilling scenarios is analyzed and identified for each damp-

ing model. Finally, the stochastic models are similarly explored, identifying the

probability of occurrence of each phenomenon previously identified.

3



Chapter 2

Literature Review

Throughout the second half of the twentieth century, a variety of modelling tech-

niques was applied in drill-string vibrations. Those range from discrete lumped pa-

rameters to continuous models where each may contain different types of interactions

with the surrounding environment. While lumped parameters thrives at simplicity

— being computationally efficient and useful for the identification of phenomena —

continuous models presents a wealth in detail that is often lost in simplified models.

At first, studies regarding drill-string vibrations were mostly limited to axial and

torsional vibrations. In time, it was observed that a bending motion was present

and that some failure cases could not be explained solely by torsional and axial vi-

brations. Hence, there was a growing interest in the effects of lateral vibrations. As

some of the theory of lateral vibrations is inherited from rotordynamics theory, the

study of the latter is relevant to modelling lateral vibrations.

In this section, some relevant works in torsional vibrations will be briefly pre-

sented and, in sequence, some works in lateral vibrations. Often, one work will

present coupling between torsional and lateral vibration and thus, a third section

contains coupled models. Finally, some works regarding damping modelling are

briefly presented.

2.1 Drill-string models

2.1.1 Drill-string torsional dynamics

Here, some works that are relevant for drill-string torsional dynamics are presented

chronologically. Those may range from bit-rock interaction modelling, the stick-slip

phenomenon itself and torsional vibration control. This section starts with over-

all research regarding drill-string torsional dynamics, followed by a brief literature

review of bit-rock interaction and stick-slip models.

4



Halsey et al. [27] performed an analysis regarding drill-string torsional frequencies

where an analytical model is compared to experimental data of a vertical drilling

rig. It is shown that analytical values are in agreement with experimental data and

a few other observations were stated, such as: in a range of lower frequencies, the

drill-string behaves as a torsional pendulum and that boundary conditions can be

modeled as fixed in the upper end and free at the bottom. In accordance, several

works considered models with reduced degrees of freedom. In a similar fashion,

Germay et al. [25] used a continuous formulation considering a time-delayed stick-

slip approach without damping effects. With this model, the authors concluded

that general behavior of the system from both lumped parameter and continuous

models are alike, that is, the tendencies related to applied speed and weight on bit

are comparable. However, continuous models provided detailed response, with stick-

slip occurrence in a different spectrum of frequencies. Another analysis regarding

a reduced size system was conducted by Kapitaniak et al. [35], where a lumped

parameter model, a continuous model and an experimental model where compared.

With both numerical models calibrated, the authors highlighted that even though

the lumped parameter model could represent the dynamics, the continuous model

presented higher accuracy. These studies gives relevant insights on the applicability

of lumped parameter strategies in contrast with an finite element method approach,

as well as in model order reduction techniques.

Another relevant aspect, is the presence of uncertainties in the process. Ritto and

Sampaio [65] considered uncertainties in the top speed applied. With it, the authors

proposed efficiency coefficients to evaluate the effectiveness of the input power when

considering both the rock cutting and the advance of the drill-string. Finally, it

is observed that drill-string length, top speed and friction can directly affect the

efficiency and that uncertainties in top speed may lead to different dynamics in

some configurations. Uncertainties present in the problem are often associated with

unpredictable components, such as rock formation.

Naturally, the bit-rock interaction models represent a primordial aspect in tor-

sional vibrations as the stick-slip phenomenon is directly connected with this non-

linear interaction. In 1985 Karnopp [36] introduced a model for general stick-slip

friction. In it, the authors considered a discontinuous generalized force that can be

divided in two stages, one during the stick and the other during the slip. They de-

fined a small range of velocities where the stick forces would actuate and, outside

this gap, slip forces would be present. According to the authors, this approach al-

lowed a simple and computationally efficient analysis of the stick-slip motion. This

model, although initially applied to general types of dynamical systems, was later

on explored in the analysis of drill-string vibrations.

In 1991, Lin and Wang [44] developed a continuous model for the dry-friction of
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the stick-slip, according to an exponential law. Through simulations, the authors

analyzed the impact of parameters in the overall dynamics and, at last, summed

up the effects of drill-string length, rotating speed and damping effects on torsional

vibrations. Another continuous model was provided by Tucker and Wang [75]. It

considers the weakening of the torque on bit with the increase in speed. With this

model, the authors conduct several operational procedures to minimize severe tor-

sional vibrations. In contrast, Detournay and Defourny [19] developed a discontinu-

ous bit-rock interaction model based on the cutting forces and on the depth-of-cut,

where the model was successfully tested with experimental data. In 2004, Richard

et al. [58] gave continuation to the work developed in Detournay and Defourny [19],

adding an axial coupling term and a time-delay relation, where the bit-rock interac-

tion would depend on past instants. While both approaches are broadly used, the

presence of discontinuities adds to the complexity of the system. Hence, a continuous

bit-rock interaction model that can successfully predict the nonlinear phenomenon

is often used.

As the bit-rock presents highly complex interaction and, added to the unpre-

dictable nature of the rock formation, this interaction is considered a source of

uncertainties. Ritto et al. [60] modeled the drill-string with torsional-axial dynam-

ics in order to optimize the rate of penetration during the drilling process. One of

the key aspects in this work was the inclusion of uncertainties related to the bit-

rock interaction. Nogueira [56] proposed a stochastic model for torsional vibrations,

where friction at the bottom and damping ratio were considered as random vari-

ables. Ritto [62] applied a Bayesian approach to identify the parameters for the

bit-rock interface, where an additive white noise was considered, as in a measur-

ing equipment. In 2017, Lobo et al. [47] studied transition of rock surfaces through

different transition function. Afterwards, a stochastic model was developed, which

took in account different times and magnitudes in each transition.

Based on experimental data, Ritto et al. [63] proposed a three-stage bit-rock

interaction model. The first two stages are linearly dependent in the rotational

speed at the bit and the last a cubic polynomial. With it, a stability analysis

was conducted, where it was noticed that higher weight on bits and lower applied

rotations would lead to an increase in severity. This interaction model successfully

characterize overall stick-slip occurrence, where it increases in higher weight on bits

and decreases when high rotations are applied.

2.1.2 Drill-string lateral dynamics

Initially, drill-string failure was assumed to be associated mainly with torsional and

axial vibrations. However, as stated by Allen [4] in 1987, vibrations in the BHA
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could not be solely described through the study of axial and torsional vibrations.

As those models became unable to explain BHA failure, lateral vibrations models

joined the spotlight of drill-string studies. These dynamics are often modeled as

a slender rotor-like structure and hence, most of these models intersect with rotor

models. In here, some relevant works in rotordynamics are presented as they are

often fundamental in the comprehension of drill-string lateral dynamics.

A relevant study in the area started in 1972, with the finite element method in

rotordynamics. Ruhl and Booker [68] considered the dynamic limited to a plane

and hence, no gyroscopic effects were analyzed. In this paper, synchronous whirl

was successfully observed and it was concluded that finite element method can be

considered practical and accurate for rotor vibration purposes. In a continuation to

this study, Nelson and McVaugh [54] applied the finite element method to an ec-

centric rotor. Not only it considered movement in the space, it added inertia and

gyroscopic moments disregarding any torsion effect. A few years later, in 1980,

Nelson [53] continued the previous analysis accounting shear components by intro-

ducing the Timoshenko Beam theory to the former model. Later in that year, Zorzi

and Nelson [89] generalized the model in order to compute axial torques and tor-

sion buckling. This last methodology is convenient to model continuous rotor-like

structures under axial torques, such as the drill-string. Even though these analyses

were mainly linear, similar modelling approaches were extrapolated to drill-strings

[37–39, 66, 67]. In 1987, Burgess et al. [10] a finite element model was developed

to predict BHA failure, as the author observed that BHA failure might be related

to the impact between the BHA and the borehole wall. Through nonlinear static

modal analyses, assisted by field data, the authors concluded that, for shallow wells,

lateral models can achieve fast and reliable results in predicting failure. In a similar

fashion, in 1992, Spanos and Payne [72] applied the finite element method to dis-

cretize the lateral geometry of the BHA. Experimental data was used to aid in the

damping model and, in sequence, several sensibility analyses were conducted regard-

ing damping, added fluid mass, weight on bit and stabilizer boundary conditions.

This presented a versatile methodology in for modelling drill-string dynamics.

In contrast to models achieved with the finite element method, several works

with a lumped parameter approach have been used. Stroud and Lines [74] con-

ducted numerical and experimental simulations in identification of backward whirl

in horizontal drill-strings. In this Jeffcot-like rotor model, the authors were able to

successfully qualitatively reproduce the experimental data. Kapitaniak et al. [34]

conducted a study in the identification of forward and backward whirls in lateral vi-

brations. The lumped parameter model proposed was calibrated with experimental

data. In sequence, different configurations of mass and angular speed were ana-

lyzed in a set of initial conditions and, finally, probabilities of occurrence of each
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phenomenon was conducted, highlighting that different whirls may coexist. A year

later, Kapitaniak et al. [33] stated that not only both forward and backward whirl

were found to coexist but also chaotic-like behavior was observed experimentally

for the first time. In addition, reduced order models were compared with continu-

ous models. In one particular case, Neubauer et al. [55] used the shooting method

to calibrate the initial conditions of a lumped parameter in order to optimize the

system’s integration, where a finite element model was used as comparison criteria.

With this, a lumped parameter model could be used to obtain an equivalent analy-

sis. In this case, however, permanent contact was considered in an inclined borehole

wall. While this may be feasible in an inclined borehole, vertical drilling will often

present a discontinuous impact, which increases the complexity of the calibration

process.

As conducted by Jansen [31], Christoforou and Yigit [14] proposed a lumped

parameter model for lateral vibrations where the nonlinear nature of the problem

was analyzed. The authors used the virtual work method to achieve the equations of

motion with inclusion of a Hertizian’s contact during impact, friction during contact

and gyroscopic moments. Later on, both backward whirl and impact regimen were

observed. In the former case, the authors concluded that the dynamic presented

an attractor. This represented a development in the nonlinear nature of drill-string

lateral vibrations.

Aside from modelling the drill-string, the fluid-structure coupling became a key

point in lateral dynamics. In 1970, Fritz [23] modeled and studied the effect of an-

nular fluids in long rotor-like machinery. In this work, it was assumed an encased

vibrating rotor surrounded by an incompressible fluid, observing that the hydrody-

namic mass can reduce the rotor critical speed. Later on, the fluid interaction model

developed in this paper was used in several drill-string models [5, 38, 41, 46]. Sim-

ilar effects were observed in 1991 by Jansen [31], where an added fluid mass and

fluid drag where considered in a drill-string model for lateral vibrations. In this

case, lateral dynamics were modeled as a Jeffcot rotor, where several analysis were

conducted. In this work, the damping of the dynamics was restricted to the fluid

interaction, where a nonlinear damping model was considered. In 2009, Ritto et al.

[66] modeled a linear coupling between fluid and structure in drill-string dynam-

ics. The system of equations was then discretized with the finite element method

followed by modal and dynamics analyses, where it was stated that the fluid flow in-

side the drill-string may cause instabilities. It also led to higher lateral vibrations in

upper sections of the drill-string, while the effects on torsional and axial vibrations

are not as accentuated.
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2.1.3 Coupled models

While there is expressive research related to uncoupled drill-string vibrations, the

study of coupled dynamics is often a relevant as the complexity of the system might

lead to non-trivial configurations. Thus, in this section, some models for coupled

dynamics are explored. Even though drill-string axial vibrations are not explored in

this work, some works shown here may present either lateral-axial, torsional-axial

or fully-coupled models.

In 1960, Finnie and Bailey [22] conducted experimental research regarding both

axial and torsional vibrations. In this pioneer work, the authors highlighted that

a relevant, however unexplained, interaction between axial and torsional dynamics

was registered. A year later, Bogdanoff and Goldberg [9] assumed that the drill-

strings were susceptible to uncertainties in both axial and torsional directions. For

that, it was assumed constant generalized forces with random fluctuations which

are correlated for both torsional and axial vibrations. It is interesting to notice that

random torques were modeled in order to consider torques due to the contact of the

drill-string with the borehole wall in the whole extension. In other words, the effects

of lateral vibrations in the torsional direction were considered as random variables. A

few years later, in 1968, Deily et al. [17] presented a study of downhole measurement

data concerning axial loads, torques, bending moments, axial, angular and radial

accelerations, and pressure inside and outside the drill-string. Although the analysis

focused on the effects of axial vibrations, the authors highlighted bending — or

lateral — vibrations with the same direction and frequency of the rotation of the

drill-string, a phenomenon formerly identified as forward whirl in rotordynamics.

At this point, it was acknowledged that the drill-string failure was connected not

only to axial and torsional dynamics, but also to lateral dynamics. Later on 1989,

Shyu [70] presented a thesis with detailed information regarding lateral and axial

vibrations. In it, the dynamics were modeled through a lumped parameter approach

and the effects of axial loads and torques were analyzed. In the same work, lateral

and axial dynamics were linearly coupled and a set of cases was studied regarding

lateral dynamics. Finally, it was concluded that forward whirl can be a source of

abrasive damage to the BHA, while backward whirl causes high speeds and high

bending cycles. This explained in details how lateral vibrations could be associated

with drill-string failure.

In 1998, Yigit [86] coupled both lateral and torsional dynamics. The coupling

used in this model regarded how each dynamic affected one another. In other words,

lateral vibrations would impact torsional and torsional vibrations would impact lat-

eral. Regarding lateral vibrations, this coupling was done through the assumption

that the BHA was rigid to torsion and hence, the rotation at the bit would be
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the same as in the BHA. Another effect would be that the lateral stiffness would

be susceptible to torsion. In sequence, the torques generated by lateral interaction

would affect directly in the torque. Finally, the authors modeled the impact by the

conservation of momentum. This is, when a threshold was surpassed, the integra-

tion process would be interrupted and new initial conditions would be recalculated

restarting the whole process. At the end, it was concluded that the coupling be-

tween dynamics affects expressively the system’s behavior. In 2000, Yigit [87] stated

that this complex coupled dynamics might lead to unwanted consequences in lat-

eral vibrations when controlling torsional vibrations. In accordance, Christoforou

and Yigit [15] highlighted that the interdependence between dynamics adds to the

complexity of successfully controlling a drill-string with torsional and lateral vibra-

tions. Also exploring this type of coupling, Volpi et al. [80], interpreted the models

response with different degrees of coupling. It was observed that the dynamics were

not only connected, but that lateral dynamics could disrupt severe torsional vibra-

tions. In addition, small changes in torsional dynamics could lead to severe changes

in lateral phenomena.

In 2002, Leine and Van Campen [41] conducted an analytical study of the in-

teraction between torsional and lateral vibrations were explored. Through a simple

lumped parameter model, the authors analyzed different equilibrium and periodic

configurations for both lateral and torsional vibrations. In sequence, a combination

of both was explored. With these models, different type of regimen were observed:

from regions of stick-slip to regions of backward whirl.

In 2003, [48] proposed a lateral-torsional lumped parameter model where the

bending angle was taken into account, and then it was compared to experimen-

tal data. Numerical simulations provided a qualitative chaotic-like behavior, with

impact dynamics sensible to initial conditions. When comparing with the experi-

mental data, the authors concluded that the model suffices in describing local BHA

behavior.

In 2005, Khulief and Al-Naser [37] discretized a fully coupled continuous model

with the finite element method. Considering nonlinearities due to coupling and the

stiffening effect of axial loads, the authors conducted modal and dynamics study

with full and reduced order models with intention to provide further tools in drill-

string analysis. Two years later, Khulief et al. [39] used the finite element method

to discretize the drill-string and gave sequence to previous works. Although the

model account’s for a coupled dynamics, the study focused in stick-slip oscillations.

The authors proposition was to include a reliable model to understand the complex

dynamics, acknowledging that further development was necessary to account lateral

and axial dynamics.

In 2009, Ritto et al. [67] developed a fully-coupled non-linear model approxi-
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mated by the finite element method. In it, impact, fluid and bit-rock interactions

were taken in account. In sequence, the authors modeled the effects of uncertainties

in the bit-rock interaction, with the application of the non-parametric probabilistic

approach Soize [71]. Finally, it is stated that the nonlinear model presents sensibil-

ity to uncertainties and both torsional and axial responses are highly dependent on

said uncertainties. The importance of uncertainties was previously observed in dif-

ferent instances. For example, in 2003, Christoforou and Yigit [15] considered that a

next step in successfully controlling a drill-string would be considering the presence

of uncertainties.

Another source relevant dissipative term is borehole wall friction. Liao et al.

[42] developed a multiple degree of freedom lumped parameter model with coupled

lateral-torsional dynamics. In it, the authors conducted a sensibility analysis in the

friction coefficient, where, depending on the coefficient, the system may operate in

a safe configuration. Later, in 2020, In Volpi et al. [81], lateral-torsional vibrations

were explored with uncertainties in the borehole wall friction parameter. In this

analysis, a lumped parameter model was used in different drilling configurations.

For each, the regimen was identified and classified. In sequence, a stochastic model

with random friction was used to obtain the probability of occurrence of each phe-

nomenon. As seen before, the system’s regime is highly dependent on the friction

coefficient, as small friction coefficients led to a sliding motion and, in extreme cases,

even impact.

The unbalance is also a major source of lateral vibrations and its configurations

can affect the response. In 2017, Vijayan et al. [79] examined the borehole interaction

in a lateral-axial coupled model. In this study, stabilizers were treated as eccentric

masses, instead of bearings – which is often adopted. The analysis was conducted

observing the frequency domain, where a series of frequency jumps associated with

the backward whirl were observed, which are directly connected with the intensity

of the eccentricity and phase angle between possible unbalances. This conclusion

is in accordance with the work from 1992, from Spanos and Payne [72], where the

author registered that the nature of unbalance could greatly influence the model’s

response.

2.2 Damping models

In a system as complex as the drill-string, the presence of damping should not

be overlooked. It can be originated by an intrinsic structural damping or by a

fluid interaction. However, few information concerning the constitutive nature of

the damping is provided. Hence, in this section a set of damping strategies and

properties are mentioned.
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Considering a viscously damped system, a general equation of motion can be

expressed by:

Mq̈ +Cq̇ +Kq = f , (2.1)

where matrix M , C and K are the mass, damping and stiffness matrices, respec-

tively. When modelling viscous damping, a proportional damping approach is com-

mon. Given that the nature of the damping might not be straight forward, a pro-

portional damping provides a practical solution for many systems. Maybe the most

used is the ’Rayleigh damping’:

C = b1M + b2K, (2.2)

where, in this case, C ∈ Rm×m, M ∈ Rm×m and K ∈ Rm×m. b1 ∈ R+ and

b2 ∈ R+ are model constants. This model expresses the overall damping as a linear

combination of both mass and stiffness matrices, preserving the classical normal

modes of the undamped system. In 1964, [43] provided a set of necessary and

sufficient conditions needed in order to obtain damped linear systems with those

classical normal modes. In it, the authors concluded that it is necessary to have

configuration where (M )−1C and (M)−1K must commute in order to obtain said

configuration. A generalization of the proportional damping was developed in [12],

where it could be modeled by a polynomial relation of the mass and stiffness matrix:

C = M−1

N−1∑
j=0

aj(M
−1K)j, (2.3)

In [1], extensive work regarding different types of proportional damping is de-

tailed. At first, the author focus on the modelling of viscous damping. In the

sequence a generalization of the previous conditions for existence of classical modes

are developed. With this method, there is great flexibility in modelling a propor-

tional damping when the damping ratios are known, i.e.: ξ = ξ(ωn), where ξ is the

damping ratio and ωn a natural frequency. Briefly, it is stated that:

C = M−1f1(M−1K,K−1M ) +K−1f2(M−1K,K−1M ), (2.4)

where f1 and f2 are arbitrary functions. For the proportional damping, f1 and f2

are both constants. This method, while not as straight forward as the Rayleigh

damping, it extremely flexible, being able to model different curves as long as the

relation between damping ratio and natural frequencies are known. The author

highlights that a generalized function can be written in the form of Taylor Series.

Hence, this method is a convenient form of the generalized proportional damping

shown in Eq. 2.3. Further examples are provided in Appendix C.
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In this same work, non-viscous damping is also explored. This type of damping

depends on the past history of the dynamics. Hence, the system of equations can

be expressed as:

Mq̈ +

∫ ∞
−∞
G(t− τ)q̇(τ)d∆τ +Kq = f . (2.5)

In the previous equations, the damping can be seen as Kernel functions. It is shown

that, when said restrictions are met, it can be diagonalized.

However, damping in structures are seldom proportional. The assumption of

proportionality is a consequence of a damping matrix that is diagonally dominant

in the modal coordinates. Several modelling strategies were developed throughout

the years in order to identify and quantify non-proportional damping.

In 1989, Ibrahimbegovic and Wilson [30] provided an algorithm for non-

proportional damping. In it, off diagonal terms in modal base are considered as

external forces. In sequence, the authors provided an integration method for this

type of problem. In 1990, Bellos and Inman [6] developed an approximated method-

ology for frequency domain analysis for non-proportionally damped system. The

main hypothesis is that off-diagonal terms can be estimated through known transfer

functions of a proportionally damped reference. In 2012 Canor et al. [11] explored

an uncoupling technique for stochastic process. It considers off-diagonal terms in

small order and decouples a non-proportional damping assuming an asymptotic ex-

pansion of the modal transfer function. Later on, the authors apply the technique

to large scale systems related to the civil engineering context. These approaches try

to decouple the system of equation, which, in general, facilitates the analysis.

However, estimating both the complex modes and the non-proportional damping

is highly complex procedure. In 1991, Minas and Inman [49] developed a method-

ology for estimating non-proportional damping from complex modal information.

This is based on the estimation of unknown complex mode shapes from known ones,

using the least squares method. In 2004, Adhikari [2] proposed an optimal com-

plex mode and, in addition, an index for measuring non-proportionality. One of the

purposes was to evaluate the impact of off diagonal terms in the damping matrix.

Also to understand the effects of non-proportional damping, in 2009 Denoël

and Degée [18] explored the effects of slightly coupled modes. This coupling is a

consequence of the non-proportionality and, in this work, was considered a coupling

of small degree – which does not violate the hypothesis of diagonally dominant

damping.

It has been noted that the relevance of damping in drill-string modelling is a key

aspect in the dynamics. Wiercigroch [83] acknowledged the damping as a critical

stabilizing term in torsional dynamics. The effects of damping in drill-string is also

analyzed with a semi-analytical approach by Besselink et al. [8], where the inclusion
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of axial dissipation in the BHA. In Jansen [31] acknowledged the damping in lateral

dynamics to be restricted to the fluid drag. This approach leads to a nonlinear

damping coefficient dependent on the cross-section total speed – which intrinsically

couples lateral degrees of freedom. Damping due to fluid interaction is also explored

by Ritto et al. [66], where an additional damping matrix is observed when a linear

variation in pressure is considered in the present fluid. Khulief and Al-Sulaiman

[38] considered the drilling fluid for lateral displacements, which led to another

transversely coupled damping matrix. Ambrus et al. [5], for instance, assumed a

similar fluid interaction model in a lumped parameter model, with the addition to

a coupling term between torsional dynamics. While these approaches often leads

to additional mass and stiffness matrices, the resulting damping is not necessarily

proportional.
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Chapter 3

Drill-string model

The modeling of drill-string dynamics is in constant development. Simple models

range from lumped parameters to continuous models. Whereas this work explores

a continuous formulation, several research that preceded this study focused in a

lumped parameter approach. Those preliminary research were relevant to under-

stand the drill-string’s overall behavior. In [80], the effects of coupled dynamics

were observed, in [81], the importance of the borehole-BHA interaction was made

clear by a stochastic model. Other stochastic models were proposed and analyzed,

where the effectiveness of regime identification tools were tested. In Appendix E,

more details regarding the lumped parameter model and those prior works are pre-

sented. In this section, both the deterministic and stochastic models are developed

for the analysis. In order to analyze this set of complex nonlinear dynamics, the fi-

nite element method (FEM) is used to discretize a continuous drill-string geometry.

At first, a brief review of continuum mechanics is conducted and, in the sequence,

the equations of motion are developed, starting with the kinematics of the problem,

constitutive relations and energy equations. Finally, the Finite Element Method is

applied to the weak-form equation obtained, which leads to a system of nonlinear

differential equations.

3.1 Lateral-torsional dynamics model

In this section, the tools provided previously are applied to the specific case of

lateral-torsional dynamics in the drill-string. This section is divided in two parts: in

the first part, the system’s kinematics, constitutive relations and energy equations

are explored. In the second part, the extended Hamilton principle is applied to

the equations developed and the system is discretized through the finite element

method.
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Kinematics

This work considers that, due to the length of drill-string, shear effects are negli-

gible and that deformations are of small proportion. Hence, the kinematics for the

drill-string can be modeled through the Rayleigh beam theory. Figure 3.1 presents

a sketch of a beam under deflection in a plane and in space. From the cross-section

behavior, it is possible to identify kinematic restriction for the cross-section defor-

mation.
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Figure 3.1: Sketch of a beam where (a) is an arbitrary deflection and (b) kinematic
behavior in a plane and (c) sketch of a spacial deformation of an arbitrary section.

For small rotations, the angles are assumed to be:

ϕy = −∂uz
∂x

and ϕz = −∂uy
∂x

, (3.1)

where ϕy and ϕz are the angle of rotation around their respective axis in the deformed

configuration. As seen in Fig. ?? the total displacement along the cross-section can

be represented as[? ]:

ux = zϕy − yϕz, (3.2)
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uy = v + y(cosφ− 1)− z sinφ

uz = w + z(cosφ− 1) + y sinφ, (3.3)

where ux is the cross-section displacement. v and w are deformations in the direction

of y and z axis, respectively. ux, uy and uz are the total displacements in each

direction and φ the torsion angle. These relation can be achieved by rotating the

overall deformations to a main frame of reference [61]. As this model does not

account for axial dynamics, the deformation in the origin of the cross-section is zero

(ux(x, y = 0, z = 0, t) = 0). From this section onward, in order to simplify the

notation the partial derivative is presented as: ∂{}
∂x

= {}′.

Constitutive relations

When an isotropic behavior is considered, the material’s constitutive equation can

be expressed by the generalized Hooke’s law [61]:

S =
E

2(1 + ν)
E +

νE

(1 + ν)(1− 2ν)
tr(E)I, (3.4)

where E is the Young’s modulus and ν the Poisson’s ratio. In Voigt’s notation, the

constitutive relation becomes:

σxx

σyy

σzz

τxy

τxz

τyz


=

E(1− ν)

(1 + ν)(1− 2ν)



1 ν
1−ν

ν
1−ν 0 0 0

ν
1−ν 1 ν

1−ν 0 0 0
ν

1−ν
ν

1−ν 1 0 0 0

0 0 0 1−2ν
2(1−ν)

0 0

0 0 0 0 1−2ν
2(1−ν)

0

0 0 0 0 0 1−2ν
2(1−ν)





εxx

εyy

εzz

γxy

γxz

γyz


. (3.5)

Assuming σyy = σzz = τyz = 0, the constitutive relation is greatly reduced to:
σxx

τxy

τxz

 =

E 0 0

0 G 0

0 0 G



εxx

γxy

γxz

 . (3.6)

Energy equations

The vibrations of the drill-string are closely related to what is expected from rotor-

like structure. In this case, potential energy is mainly a consequence of the strain,

while kinetic energy is divided in it’s translational and rotational components:

U =
1

2

∫
∀
εTσd∀, (3.7)
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T =
1

2

∫
L

(ρAvTv + ωT Iω)dx, (3.8)

where ∀ is the volume, ρ the volumetric density, ω =
{
ωx ωy ωz

}
the rotation

speed in each respective direction in the inertial frame of reference, v the speed of

the gravity center, A the cross-section’s area and I is the inertia matrix. In general,

the work in the system is expressed by:

W =

∫
f · dx, (3.9)

where f is the vector containing acting forces. Those are treated as external forces

and are presented further on.

The potential energy is estimated based on the kinematic assumptions. By the

definition provided in Eq. 3.7 and the constitutive relations previously mentioned

in Eq. 3.6, it is rewritten as:

U =
1

2

∫
∀
(Eε2xx + 4G(γ2

xy + γ2
xz))d∀. (3.10)

Where, according to Eqs. 3.2 and 3.3:

ε2xx = (z2w′′2 − 2zyv′′w′′ + y2v′′2)+

u′x(z
2w′′2 − 2zyv′′w′′ + y2v′′2)+

u′xφ
′2(y2 + z2) + u′x(v

′2 + w′2)+

2u′xφ
′(w′(y cos (φ)− z sin (φ))− v′(z cos (φ) + y sin (φ))), (3.11)

where terms in the order of ∂{}
∂x

4
were considered small (e.g.: ∂x

∂x

4 ≈ 0 ). In sequence,

as E is constant through the area and due to the tubular cross section:∫
A

y2dA =

∫
A

z2dA = Ixx

∫
A

yzdA =

∫
A

z3dA =

∫
A

y3dA =

∫
A

yz2dA =

∫
A

y2zdA = 0 (3.12)

and ∫
A

u′xdA =
fa(x)

E
, (3.13)

where fa(x) is the axial force in an arbitrary section [39], shown in Appendix A.

The relations presented in Eq.3.11, when integrated in the area, can be presented

as: ∫
A

ε2xxdA = Ixx(v
′′2 + w′′2) + fa(x)(v′2 + w′2)+
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+2Ixxφ
′(v′′w′ − w′′v′) cos (φ)

− 2Ixxφ
′(v′′v′ + w′′w′) sin (φ). (3.14)

The same procedure is applied to γ2
xy + γ2

xz:

4

∫
A

(γ2
xy + γ2

xz)dA = Ipφ
′2 + 2Ixxφ

′(ϕzϕ
′
y − ϕyϕ′z), (3.15)

where, once more, terms of the order of ∂{}
∂x

4
were considered irrelevant.

Finally, relations presented in Eqs. 3.14 and 3.15 are applied to the potential

energy equation (Eq. 3.10) and divided in two parts:

U = UL + UNL, (3.16)

where:

UL =
1

2

∫
L

(IxxE(v′′2 + w′′2) + fa(x)(v′2 + w′2) +GIpφ
′2)dx (3.17)

and

UNL =

∫
L

Ixxφ
′(E(v′′w′ − w′′v′) cos (φ)− E(v′′v′ + w′′w′) sin (φ))dx.

In order to calculate the kinetic energy, it is necessary to rewrite the system of

equations in the inertial frame of reference. To accomplish it, both translation and

rotation speeds are modeled. In Fig. 3.2, a schematic of a section of the drill-string

is presented, where the geometric center is defined (g.c.) and the distance between

the gravity center and geometric center is defined by e(x, t). The overall distance

between the frame of reference and gravity center can be expressed as:

d(x, 0, 0, t) =


0

v(x, t)

w(x, t)

+


0

ey(x, t)

ez(x, t)

 , (3.18)

where ey = e sin (φ+ α0) and ez = e cos (φ+ α0) are the distances of the gravity

center from the geometric center where e = |e|, and α0 is the angle in an initial

moment.
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Figure 3.2: A schematic of the drill-string where in (a) the geometric center (g.c.)
and the distance between the g.c. and the actual gravity center is defined by the
vector e(x, t) and in (b) an upper view of a section of the drill-string.

The translation speed can be calculated by:

v = ḋ =


0

v̇ + eφ̇ cos (φ+ α0)

ẇ − eφ̇ sin (φ+ α0)

 (3.19)

As previously, the rotations must be set to a frame of reference. The rotation

around the x axis the y axis are defined by the transformations:

Θx =

1 0 0

0 cos (ϕx) − sin (ϕx)

0 sin (ϕx) cos (ϕx)

 , Θy =

 cos (ϕy) 0 sin (ϕy)

0 1 0

− sin (ϕy) 0 cos (ϕy)

 , (3.20)

respectively, where ϕx is the rotation angle around the x axis and ϕy is the rotation

angle around the y axis.

Considering a generic rotation speed:

ω =


ωx

ωy

ωz

 , (3.21)

the rotating speed around the inertial frame of reference can be calculated by ac-

counting the rotation of each axis around a reference. In this case, the reference

considered is the x axis, which leads to:

20




ωx

ωy

ωz

 =


φ̇

0

0

+ Θx


0

ϕ̇y

0

+ ΘxΘy


0

0

ϕ̇z

 . (3.22)

As rotations due to bending are considered small, the rotation vector becomes:
ωx

ωy

ωz

 =


φ̇+ ϕ̇zϕy

ϕ̇y cos (φ)− ϕ̇z sin (φ)

ϕ̇z cos (φ) + ϕ̇y sin (φ)

 . (3.23)

When Eq. 3.23 is applied to the kinetic energy equation, it becomes:

T =

∫
L

(ρA(v̇2 + 2v̇ėy + ė2
y + ẇ2 + 2v̇ėz + ė2

z)

+ ρIxx(ϕ̇
2
y + ϕ̇2

z) + ρIp(φ̇
2 + 2φ̇ϕ̇zϕy + (ϕ̇zϕy)

2))dx (3.24)

where Ip is the rotating inertia of the drill-string and A is the cross-section area.

Once more the small bending angles simplification gives that (ϕ̇zϕy)
2 ≈ 0. Moreover,

the sum ė2
y + ė2

z in Eq. 3.24 can be reduced to:

ė2
y + ė2

z = e2φ̇2 cos2 (φ+ α0) + e2φ̇2 sin2 (φ+ α0) = e2φ̇2. (3.25)

3.2 Weak form and finite element formulation

From the energy equations provided, the extended Hamilton’s Principle is applied

to achieve a weak form of the equations of motion. In a general form, the principle

is defined by:

δH =

∫ t2

t1

(δU − δT − δW )dt = 0, (3.26)

where δU , δT and δW are the varitions of the energies previously defined, t1 and t2

are an initial and final time. The variational of the problem’s potential energy is:∫ t2

t1

δUdt =

∫ t2

t1

(δUL + δUNL)dt, (3.27)

where ∫ t2

t1

δULdt =

∫ t2

t1

∫
L

[EIxx(δv
′′v′′ + δw′′w′′) + fa(x)(δv′v′ + δw′w′) +GIpδφ

′φ′]dxdt (3.28)
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and ∫ t2

t1

δUNLdt =

∫ t2

t1

∫
L

[Ixxδφ
′(E(v′′w′ − w′′v′) cos (φ)− E(v′′v′ + w′′w′) sin (φ) +G(ϕzϕ

′
y − ϕyϕ′z))

+Ixxφ
′(E(δv′′w′+δw′v′′−δw′′v′−δv′w′′) cos (φ)−E(δv′′v′+δv′v′′+δw′′w′+δw′w′′) sin (φ)

−E(v′′w′ − w′′v′)δφ sin (φ)− E(v′′v′ + w′′w′)δφ cos (φ)

+GIxx(φ
′(δϕzϕ

′
y + δϕ′yϕz − δϕyϕ′z − δϕ′zϕy) + δφ′(ϕzϕ

′
y − ϕyϕ′z))]dxdt (3.29)

The same is done to kinetic energy, which provides:∫ t2

t1

δTdt =
1

2

∫ t2

t1

∫
L

2ρ[A(δv̇v̇ + δẇẇ + e2δφ̇φ̇+

δėyv̇ + δėzẇ + δv̇ėy + δẇėz)+

Ixx(δϕ̇yϕ̇y + δϕ̇zϕ̇z) + Ip(δφ̇φ̇)+

+ Ip(δφ̇ϕ̇zϕy + δϕ̇zφ̇ϕy + δϕyφ̇ϕ̇z)]dx (3.30)

As the order of the integrals does not affect the calculation, it is integrated by parts

in the time domain:∫ t2

t1

δTdt = −1

2

∫ t2

t1

∫
L

2ρ[A(δvv̈ + δwẅ + δφe2φ̈+

δeyv̈ + δezẅ + δvëy + δwëz)+

Ixx(δϕyϕ̈y + δϕzϕ̈z) + Ip(δφφ̈)+

− Ip(δφ(ϕ̈zϕy + ϕ̇zϕ̇y) + δϕz(φ̈ϕy + φ̇ϕ̇y)− δϕyφ̇ϕ̇z)]dx, (3.31)

, for a generic variable q, δq(t1) = δq(t2) = 0. Also:

δey = δφe cos (φ+ α0) δez = −δφe sin (φ+ α0) (3.32)

and

ëy = eφ̈ cos (φ+ α0)− eφ̇2 sin (φ+ α0) (3.33)

ëz = −eφ̈ sin (φ+ α0)− eφ̇2 cos (φ+ α0). (3.34)

In order to solve this variational problem, the virtual displacement is treated as

a weight function. In the finite element method, the interpolation function for the

weights and the displacements are alike. For the displacements:

v(x, t) = Nv(x)q(e)(t), w(x, t) = Nw(x)q(e)(t),
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ϕy(x, t) = Nϕy(x)q(e)(t), ϕz(x, t) = Nϕz(x)q(e)(t), (3.35)

φ(x, t) = Nφ(x)q(e)(t) (3.36)

where q(e) is the element’s generalized displacement and Nv, Nw, Nϕy , Nϕz and

Nφ the element’s shape functions, which are further detailed in Appendix B. As the

virtual displacements are interpolated by the same shape functions, the variational

problem leads to:

M (e)q̈(e) +K(e)q(e) = f (e)
ec + f

(e)
G + f

(e)
K + f

(e)
M + f

(e)
Mec, (3.37)

where:

M (e) =

∫
L

(ρA(NT
v Nv+N

T
wNw)+ρIxx(N

T
ϕy
Nϕy+NT

ϕz
Nϕz)+ρ(Ip+ρAe

2)NT
φNφ)dx

(3.38)

K(e) =

∫
L

[EIxx(N
′′T
v N

′′
v +N ′′Tw N

′′
w) + Fa(x)(N ′Tv N

′
v +N ′Tw N

′
w) +GIpN

T
φNφ]dx

(3.39)

and the set of nonlinear generalized forces are defined on the right side of the equa-

tion. The first is:

f (e)
ec =

∫
L

ρA[NT
v Nφq

(e)Nφ sin (φ+ α0) +NT
wNφq

(e)Nφ cos (φ+ α0)]q(e)dx (3.40)

as the nonlinear force due to eccentricity. As the BHA is usually heavier and with

different equipment and of less regular geometry than the drill-pipes, in this work,

the eccentricity is considered to be solely in this region and, as it is stiffer to torsion,

φ and φ̇ are assumed constant within the BHA element. With this condition and

some trigonometric properties, the force can be rewritten as:

f (e)
ec =

∫
L

ρA(ez0(x)NT
v − ey0(x)NT

w )dx φ̇(e)2 sin (φ(e))

+

∫
L

ρA(ey0(x)NT
v + eyz0(x)NT

w )dx φ̇(e)2 cos (φ(e)), (3.41)

where φ(e) is the torsion angle of the element and ey0(x) = e(x) sin (θ0) and ez0(x) =

e(x) cos (θ0). Naturally, this force will depend on the eccentricity profile of the drill-

string. In this case, the distribution along the element was considered linear in both

directions, as provided in [54]. The force related to gyroscopic effects is:

f eG =

∫
L

ρIp[N
T
φNϕz q̇

(e)Nϕy −NT
ϕz
Nφq̇

(e)Nϕy +NT
ϕy
Nφq̇

(e)Nϕz ]q̇
(e)dx. (3.42)
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Forces associated with the nonlinear stiffness terms are:

f
(e)
K =

−
∫
L

[EIxxN
′T
φ (N ′′v q

(e)N ′w −N ′′wq(e)N ′v) cos (φ)−

EIxxN
′T
φ (N ′′v q

(e)N ′v +N ′′wq
(e)N ′w) sin (φ)

+EIxx(N
′′T
v N

′
wq

(e)N ′φ +N ′Tw N
′′
v q

(e)N ′φ −N ′′Tw N ′vq(e)N ′φ −N ′Tv N ′′wq(e)N ′φ) cos (φ)

−EIxx(N ′′Tv N ′vq(e)N ′φ +N ′Tv N
′′
v q

(e)N ′φ +N ′′Tw N
′
wq

(e)N ′φ +N ′Tw N
′′
wq

(e)N ′φ) sin (φ)

−EIxxNT
φ ((N ′′v q

(e)N ′w −N ′′wq(e)N ′v) sin (φ) + (N ′′v q
(e)N ′v +N ′′wq

(e)]N ′w) cos (φ))

+GIxxN
′T
φ (Nϕzq

(e)N ′ϕy
−Nϕyq

(e)N ′ϕz
) +GIxx(N

T
ϕz
N ′φq

(e)N ′ϕy
+N ′Tϕy

N ′φq
(e)Nϕz

−NT
ϕy
N ′φq

(e)N ′ϕz
−N ′Tϕz

N ′φq
(e)Nϕy)]q(e)dx (3.43)

Nonlinear mass components are divided in two parts, one originated by general

nonlinearities:

f
(e)
M =

∫
L

ρA[NT
φNϕyq

(e)Nϕz −NT
ϕz
Nϕyq

(e)Nφ]q̈(e)dx,

and another closely related to the unbalanced mass:

f
(e)
Mec =

∫
L

eAρ[NT
φ (Nwe sin (φ+ α0)−Nne cos (φ+ α0))

−NT
v Nφ cos (φ+ α0) +NT

wNφ sin (φ+ α0)]q̈dx, (3.44)

In order to reduce the extension in notations, the right side sum of forces developed

in this section is summed as nonlinear internal forces of the element: f
(e)
in . In the

sequence, both the external forces and the damping models used for the analysis

ought to be detailed.

3.3 Boundary conditions and external forces

In the previous section, the model development is thoroughly detailed for elemental

components. In this section, the global model is written in the form:

Mq̈ +Kq = fin + fout. (3.45)

whereM andK are the global mass and stiffness matrix and fin en-globes nonlinear

internal forces previously provided. The focus of this section is in detailing the

boundary conditions and global external forces, which are contained in the vector
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fout.

In Fig. 3.3, a sketch of the modelled drill-string is presented. In it, both lower

and upper extremities are considered pinned. In other words, the controller used

in the upper end limits lateral displacement - without limiting bending. The same

behavior is assumed for the drill bit in the lower end. It is also considered that the

speed at the top of the drill-string is constant during the whole process. This leads

to another boundary condition, one of known displacement regarding the torsional

dynamics. In the finite element approach, a known displacement implies in a known

value of the system of differential equations. Normally, it can be treated as an

external force, e.g.: 
k11 · · · k1n

...
. . .

...

kn1 · · · knn



q1

...

qn

 =


f1

...

fn

 , (3.46)

where q1 is known:
k22 · · · k2n

...
. . .

...

kn2 · · · knn



q2

...

qn

 =


f2

...

fn

− q1


f21

...

fn1

 . (3.47)

In the particular case of a fixed boundary, the displacement is treated as zero. From

the set of equations above, it can be observed that, in practice, it is equivalent to

erasing the lines and columns associated with the fixed degree of freedom.
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Figure 3.3: A sketch of the drill-string with constant speed at the top Ω, the hook
load fh, the weight fw(x), the weight on bit Wob, torque on bit Tbit, springs modeling
stabilizers and pinned regions.

Similarly, the force due to the constant rotation at the top is modeled as:

fΩ = −Kφ1Ωt, (3.48)

where Kφ1 is the first column associated with the torsional degree of freedom of

the stiffness matrix. Naturally, in the presence of a damping matrix, this force is

modeled as:

fΩ = −Kφ1Ωt−Cφ1Ω, (3.49)

where Cφ1 is a the respective column of a generic damping matrix.

Three axial forces are also depicted in Fig.3.3. The former is the weight fw(x)

and the second is the hook load responsible for hoisting the system, fh, and the last

is a consequence of the contact between the drill-bit and the rock formation and, in

this work, is addressed as ’weight on bit’ (Wob). While the weight on bit is assumed

constant, the weight varies linearly within a BHA section. As axial dynamics are

disregarded, it is easy to observe that:

fh = Wob − fw(L), (3.50)
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where fw(L) is the weight at the end of the drill-string. In an arbitrary section, the

axial force is:

fa(x) = Wob − fw(x). (3.51)

The force fa(x) is used to calculate the stiffness matrix defined in Eq. 3.39 and is

a coupling term between axial and lateral dynamics. In this particular case, axial

dynamics is disregarded, which leads to a linear coupling. Further development on

the axial force modelling is presented in Appendix A.

Figure 3.3 also presents a torque due to the bit-rock interaction, Tbit. Although

this torque has been extensive modelled in literature, in this work, it is based on

the smooth model provided in [56, 75]:

Tbit = Woba0

(
tanh(a1φ̇n) +

a2φ̇n

1 + a3φ̇n

)
, (3.52)

where n addresses the last node and a0, a1, a2 and a3 are model constants. In Fig.

3.4 a sample behavior of the bit rock interaction can be observed for Wob = 220

kN. It can noticed that there is a symmetry in respect to the origin. The system,

however, is not expected to achieve negative rotating speeds.

Figure 3.4: Torque on bit relation from the smooth bit-rock interaction model with
a Wob of 220 kN.

Stabilizers are modeled as linear springs between some points of the BHA and

the borehole wall (as presented in Fig. 3.3). Briefly, this force is modeled as:

fs = −Ksq, (3.53)

where Ks is a matrix containing the wall stiffness (kbw) at the degrees of freedom

associated with lateral displacements for the nodes with stabilizers – i.e. degrees

of freedom associated with v or w. Naturally, an intuitive approach is to add a
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stabilizer stiffness matrix to the global stiffness matrix:

Keq = K +Ks. (3.54)

Finally, the model considers two contact forces, one due to the the impact with

the borehole wall and another due to the rubbing between the drill-string and bore-

hole wall. The impact force is considered as elastic during contact and, once more,

acts solely in the v and w displacements degrees of freedom. In the ith node, the

impact force is:

fbwi
=


0

Hi(r)ks(rci − ri) sin (θi)

Hi(r)ks(rci − ri) cos (θi)

 , (3.55)

where ks is the borehole wall stiffness, H(r) is the Heaviside function:

Hi(r) =

1 if ri > rci

0 if ri < rci

, (3.56)

ri is the radial displacement:

ri =
√
v2
i + w2

i (3.57)

and rci is the clearance between the drill-string and the borehole wall:

rci =
Dbw −Doi

2
, (3.58)

where Dbw is the borehole wall diameter and Doi the drill-string outer diameter in

the ith node. In any other degree of freedom, fbwi
= 0. Finally, θi is the whirl angle,

where:

sin (θi) =
vi
ri

and cos (θi) =
wi
ri
. (3.59)

The rubbing force is modelled as a smooth Coulomb friction force:

fbwi
= tanh [Vr(Doiφ̇i + 2riθ̇i)]


0

−µHi(r)ks(rci − ri) cos (θi)

µHi(r)ks(rci − ri) sin (θi)

 , (3.60)

where the first part extracts the direction of the movement and Vr as a model

constant. Figure 3.5 shows the behavior of this approximation. In this case, two

distinct values for the model constant are presented and, it possible to observe how

the overall behavior approaches the sign{} function as Vr is increased.
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Figure 3.5: Example of the approximation of the function tanh{}.

Finally, contact forces also generate torques capable of affecting torsional dy-

namics. In Fig. 3.6 presents the impact forces in Cartesian coordinates through an

upper view in the ith node.
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Figure 3.6: A sketch of the upper view of a drill-string section where b is the distance
between the gravity center and the contact point. fz and fy are contact forces in
their respective directions.

The distance between the impact point and the gravitational center is defined

as:

b = R0 − e, (3.61)

where:

R0 =
1

2


0

Doi sin (θi)

Doi cos (θi)

 . (3.62)

Components of impact forces are easily extracted from previous equations. The
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torque due to impact can then by defined as:

Tbwi
= b× fz + b× fy. (3.63)

Expanding this relation, there is a resulting torque of:

Tbwi
= Hi(r)ks(rci − ri).

[(tanh [Vr(Doiφ̇i + 2riθ̇i)]µ sin (θi) + cos (θi))(Roi sin (θi)− e sin (φi − α0))

− (tanh [Vr(Doiφ̇i + 2riθ̇i)]µ cos (θi)+sin (θi))(Roi cos (θi)−e cos (φi − α0))]. (3.64)

3.4 Reduced order model

In this section, a reduced order model is discussed. While there are several types

of reduction [7], this order reduction technique is solely based on the modal reduc-

tion, which uses the modes of vibration from the linear undamped model. Those are

obtained from the traditional eigenvalue problem, where Φ and λ are the matrix

containing the eigenvectors, or modes, and the eigenvalues, respectively. Eigenfre-

quencies are obtained from the square root of each eigenvalue ωni
=
√
λi.

The matrix containing modal information is normalized as:

ΦTMΦ = I. (3.65)

Matrix Φ is reduced by disregarding high order modes, i.e., by removing eigenvectors

associated with frequencies outside a desired range. For example, given a matrix

Φ of size m ×m and the first n relevant modes, the reduction matrix is Φr of size

m × n. The relation between original nodal displacements and the reduced order

nodal displacements is:

q = Φrqr. (3.66)

When the transformation is applied and the the equation is multiplied by ΦT
r by

the left side:

ΦT
rMΦrq̈r + ΦT

rCΦrq̇r + ΦT
rKΦrqr = ΦT

r F , (3.67)

or

Mrq̈r +Crq̇r +Krqr = Fr. (3.68)

Yet, the first step is defining the range of modes used in the reduction. This

procedure is explained on the Appendix D, based on the response of the non-reduced

model.
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Chapter 4

Damping models

4.1 Deterministic damping models

In order to model the damping of the structure, different strategies were adopted.

While torsional stick-slip vibrations are often classified as a low-frequency phe-

nomenon, it is a source of excitation in the lateral degrees of freedom of a coupled

model. Although its frequency is low, some parts of the drill-string goes from near –

or complete – stagnation to high rotating speeds. In other words, this low frequency

torsional vibration actually provides a wide spectrum of excitation frequencies for

coupled lateral vibrations. In addition, during a backward whirl regime, the whirl

frequency can be seen as a function of the gap between the drill-string and the bore-

hole wall and the excitation frequency. Both phenomena can be concomitant and

thus, a combination of stick-slip and backward whirl can present a broad spectrum

of excitation frequencies. Simultaneously, some fluid models, such as presented in

[31], consider higher damping when higher frequencies are applied – which only adds

to the system’s complexity. The main objective of this section is not only to pro-

vide distinct models, with different characteristics –to capture and simplify effects,

such as fluid interaction – but also to help understand the consequences of those

characteristics in a complex coupled dynamic.

In every approach presented in this work, the damping matrix is divided in two

distinct parts:

C = CT +CL, (4.1)

whereCT is the damping solely in torsional vibrations andCL is the damping mainly

in lateral vibrations. The former is considered to be:

CT = b1MT + b2KT , (4.2)

where MT and KT are the linear inertia and stiffness matrices associated with
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torsional degrees of freedom and b1 ∈ R+ and b2 ∈ R+ are model constants.

The latter, will be modeled through three distinct approaches: (1) Rayleigh pro-

portional damping, (2) arbitrary fitted function and (3) polynomial fitted damping

ratio – or the extended Rayleigh damping [12]. For cases (2) and (3), the approach

used is in accordance with the methodology presented in [1].

For this, curves adjusted from the information provided in [16] were used. Those

values are from experimental analysis in a simply supported beam. Even though

different from the work at hand, it was used as a base to model the damping. The

values provided in said work are presented in Tab. 4.1.

Table 4.1: Table with damping coefficient provided in [16].

ξ (%) ω (Hz) ω∗

0.40 6.78 1.00
0.20 26.93 3.97
0.27 60.46 8.92
0.38 106.59 15.72
0.40 166.46 24.55
0.44 242.49 35.77

For every model, the first step is used with an dimensionless notation. For it,

the first natural frequency was used for the dimensionless frequency:

ω(∗) =
ω

ω1

(4.3)

1. When the Rayleigh proportional damping is used, the relation between damp-

ing ratio and frequency is given by [84]:

ξ(ω(∗)) =
1

2

(
b

(∗)
1

ω∗
+ b

(∗)
2 ω(∗)

)
. (4.4)

Parameters b
(∗)
1 and b

(∗)
2 are calculated from the experimental data. In se-

quence, dimensional parameters are calculated by:

bL1 = b
(∗)
1 ω1 and bL2 =

b
(∗)
2

ω1

(4.5)

which leads to a damping defined as:

CL1 = bL1ML + bL2KL, (4.6)

where both the models constants bL1 and bL2 ∈ R+.

2. One consequence of the Rayleigh proportional damping model is that it leads
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to high damping ratios in higher frequencies. In order to better adjust the

damping ratio experimental data, a new curve is proposed as:

ξ =
1

2

(
β1

ω
+ β2

√
ω

)
. (4.7)

Although the first term of the equation coincides with the Rayleigh propor-

tional damping, the second term was chosen in order to minimize overdamping

the system.

Constants β1 and β2 were calculated by adjusting the dimensionless curve with

the least square method:

ξ =
1

2

(
β

(∗)
1

ω∗
+ β∗2
√
ω∗
)
. (4.8)

Next, the relations:

β1 = β∗1ω1 and β2 =
β

(∗)
2√
ω1

(4.9)

were used to finally calculate the model’s constants, once more, those can only

assume positive values: β1 and β2 ∈ R+.

Applying the procedure detailed in [1], the damping matrix can be obtained

by:

CL2 = β1ML + β2ML(M−1
L KL)3/4, (4.10)

where the operation
√
A = B where BTB = A. Further details regarding how

matrix CL2 are provided in Appendix C.

3. This last model is originated from the same set of data, where the curve was

interpolated through a polynomial relation – an extended Rayleigh propor-

tional damping approach [12]. In order to simplify the operation and avoid

higher order matricial roots, exponents of the polynomial were chosen in a

fashion where:

ξ =
k∑

n=0

cnω
2n−1. (4.11)

The dimensionless equation can be written as:

ξ =
k∑

n=0

c(∗)
n ω(∗)2n−1

, (4.12)
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and the coefficients are calculated as:

γk =
c

(∗)
n

ω2n−1
1

(4.13)

Once more, the procedure leads to:

CL3 = 2M−1
L

k∑
n=0

cn(M−1
L KL)n. (4.14)

However, matrix operations often leads to numerical error. In this case, even

though the inversion o the matrix ML leads to small errors, the operation M−k
L may

be problematic for high values of k. Hence, in order to obtain smaller values, the

second and the third experimental points were not used. While it can be possible

that cn ∈ R – assuming a finite range of damped frequencies – having cn ∈ R+

guarantees that ξ(ω) ∈ R+. This relation can be verified in Eq. 4.11.

In Fig. 4.1 presents the dimensionless curves and the dimensionless experimental

data. As expected, the second curve provides smaller damping ratios in higher

frequencies – and slightly greater ratios for lower frequencies. For the polynomial

fitting, it can be seen that ignoring the second and the third points did not present

discrepancies in the curves fitting.

Figure 4.1: Dimensionless curves proposed when compared with dimensionless ex-
perimental data provided in [16].

4.2 Stochastic non-proportional damping model

The damping models previously developed are different structures of proportional

damping. This, however, is not necessarily true: a structure may present non-
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proportional damping, specially considering the nonlinear nature of the problem and

the fluid-structure interaction. Hence, in this section, stochastic damping models are

developed to account for uncertainties in the deterministic models, including errors

in the proportionality assumption. There are two main objectives to this approach.

The former is, as aforementioned, to model errors in the deterministic modeling

strategy, as the damping coefficients achieved with those models can vary from

the obtained - specially considering that only the first six natural frequencies are

available. The latter, is to add off-diagonal terms, acknowledging that a nonlinear

structure with fluid interaction might not be proportionally undamped.

The random damping matrix follows the procedure developed in [71], where a

random positive semi-definite matrix is generated. The choice of a positive-definite

damping guarantees the stability of the final system. As detailed in [64], a random

matrix ensemble can be achieved by:

Ĉ = LT ĜL, (4.15)

where Ĉ is a random damping in the modal base, L is an upper triangular matrix

where LTL = ΦTCΦ and Ĝ is a random germ matrix of mean value equal the

identity matrix.

To generate the germ matrix, consider an upper triangular matrix ÛG, where

ÛGij
follows a normal distribution of zero mean and variance of σvar = δ(m+ 1)−1/2

if i < j and, if i = j, ÛGij
= δ[2(m+1)V̂i]

−1/2, where V̂i follows a gamma distribution

with unitary scale parameter and shape parameter as (m + 1)/2δ + (1− i/2). The

constant m is the system’s dimension, i and j refers to the matrix element in the

ith line and jth column, and δ the dispersion parameter given by:

δ =
1

m
E{||G− I||2}1/2. (4.16)

With the UG matrix, the germ matrix is expressed as Ĝ = ÛT
GÛG. Even though

the stochastic damping model was considered only in lateral directions, each was

assumed uncoupled from the other. For that, a reduced system considering only

lateral degrees of freedom was obtained by excluding torsional degrees of freedom.

In sequence, each direction was separated in two distinct – however equivalent –

unforced system of equations:

Myq̈y +Cyq̇y +Kyqy = 0 (4.17)

and

Mzq̈z +Czq̇z +Kzqz = 0, (4.18)
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where My, Cy, Ky and qy are the mass, damping, stiffness and nodal degrees of

freedom in the j direction and Mz, Cz, Kz and qz are the mass, damping, stiffness

and nodal degrees of freedom in the k direction. This lateral damping matrix can

be any of those models previously presented. Considering the eigenvalue problem of

undamped system, the lateral eigenfrequencies Ωy and Ωz are obtained from the Eqs.

4.17 and 4.18. The eigenmodes obtained – and normalized – are presented as Φy and

Φz for the same respective equations. Due to the symmetry, the eigenfrequencies

calculated are the same: ΩL = Ωy = Ωz. In the modal base, the matrices can be

rewritten as:

ΦT
yMyΦy = ΦT

zMzΦz = I

ΦT
yKyΦy = ΦT

zKzΦz = Ω2
L

ΦT
yCyΦy = ΦT

zCzΦz = C
(m)
L . (4.19)

The random lateral damping matrix was then generated by:

ĈL = LTLĜLL, (4.20)

where C
(m)
L = LTLLL. Hence, in the modal base, the damping matrices for both

directions are the same, preserving the symmetry of the system. As an example,

consider a three degrees of freedom proportional damping matrix in the modal base:

C(m) =

2ξ1ωn1 0 0

0 2ξ2ωn2 0

0 0 2ξ3ωn3

 , (4.21)

where ξi = ξ(ωni
) is always positive. The Cholesky decomposition is:

LL =


√

2ξ1ωn1 0 0

0
√

2ξ2ωn2 0

0 0
√

2ξ3ωn3

 (4.22)

and LL = LTL. In accordance with this random matrix ensemble, a viable value for

Ĝ is of the form:

Ĝ =

 1.0983 0.0164 −0.0453

0.0164 0.9889 −0.0022

−0.0453 −0.0022 1.0179

 . (4.23)

The stochastic damping can be calculated as:

Ĉ(m) = LTLĜLL : (4.24)
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Ĉ(m) =

 2.190 ξ1ωn1 0.032
√
ξ1ωn1ξ2ωn2 0.091

√
ξ1ωn1ξ3ωn3

0.032
√
ξ1ωn1ξ2ωn2 1.978 ξ2ωn2 −0.004

√
ξ2ωn2ξ3ωn3

0.091
√
ξ1ωn1ξ3ωn3 −0.004

√
ξ2ωn2ξ3ωn3 2.036 ξ3ωn3

 . (4.25)

From the example above, it is possible to see that the damping is non proportional

yet, it is still symmetric and positive definite.
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Chapter 5

Results

In this section, the results obtained from the model are presented. Initially, the

properties of the model are shown followed shortly by a convergence analysis. In

the sequence, comparisons between the model and its respective simplification are

presented with time-domain simulations.

For all the simulations provided, the same eccentricity profile was adopted. As

stated previously in Chapter 3.2, the eccentricity chosen behaves linearly. In order

to simplify the analysis, it was assumed that the modulus of the eccentricity e = |e|
is constant and that e = 0.05Do of the respective section. The phase angle θ0 was

assumed to vary from π in each BHA section. As it can be seen in Fig. 5.1, two

consecutive BHA sections will present eccentricity in opposite directions.

BHA section 1

BHA section 2

BHA section 3

BHA section 4

�(�) = 0.05�0

Figure 5.1: A sketch of the eccentricity profile used.

In Tab. 5.1, overall information regarding the drill-string properties are pre-
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sented, including the dimensions of each BHA section.
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In order to conduct the numerical simulations, the MATLAB environment was

used. In it, symbolical mathematics was used to create the elemental matrices – both

linear and nonlinear–, next, a code for the system’s global assembly was implemented

for every model, including reduced order models, and the central difference method

was applied for time-domain integrations. In accordance to [85], explicit methods

such as this is well-suited for impact dynamics due to the need of reduced time steps.

As the system of equations may reach high dimensions, methods that require a state-

space formulation are, although popular, prohibitively time-consuming. Hence, the

central difference method was chosen for each time-domain integration. For the

complete order model, the time-step converged when ∆t = 2.5 ·10−4 s. The reduced-

order model with the first five hundred modes converged with a time-step of ∆t =

1 · 10−2 s. Further comparison between full-order and reduced-order models are

presented in Appendix D.

5.1 Mesh convergence analysis

The mesh convergence analysis considers, as a reference, the model without nonlin-

earities and is divided in two steps. The former, evaluates the natural frequencies

obtained through the model with different meshes. If all the frequencies converge

to the same values within a established frequency threshold, it is considered as con-

verged. The latter, consists in a Modal Assurance Criterion [57], that is used to

evaluate the correlation of modes when the number of elements is increased. If all

the modes in the threshold present a high correlation (M > 0.99 ) with a mesh of

higher density, it is considered as converged. Finally, the mesh where both these

conditions are met is used for subsequent simulations. In Tab. 5.2, the number of

elements used in analysis are presented. In this section, the converge results shown

are for Wob = 220 kN.

Table 5.2: Element distribution.

Region n 2n 3n 4n 5n

Drill-pipes 48 96 144 192 240
BHA 1 24 48 72 96 120
BHA 2 12 24 36 48 60
BHA 3 12 24 36 48 60
BHA 4 4 8 12 16 20

Total d.o.f. 500 1000 1500 2000 2500

In Fig. 5.2, natural frequencies obtained for the meshes are depicted. Figure

5.2a presents solely torsional frequencies while Fig. 5.2b lateral frequencies in one of

the directions i.e., redundant frequencies due to the symmetry around the x-axis are
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not presented. A traced line points the maximum expected frequency for the drill-

string modelled. Even though the rotation applied in the top will seldom be close to

the threshold provided, some of the nonlinear phenomena might implicate in higher

frequencies. From Fig. 5.2a, frequency convergence is achieved with the first mesh

for torsional degrees of freedom. However, from Fig. 5.2b, lateral eigenfrequencies

converge only on the second mesh. It can also be observed that, whereas only some

torsional natural frequencies are contained in the established threshold, more than

a hundred and fifty lateral eigenfrequencies are found in the same interval.

0 5 10 15
0

2

4

6

8

(a)

0 50 100 150 200
0

2

4

6

8

(b)

Figure 5.2: Natural frequencies obtained through the model with different meshes.
In (a) are depicted torsional frequencies for each mode and in (b) lateral frequencies.

The MAC analysis consists in the correlation between two modes. In this case,

it can be represented as:

Mij =
|ΦT

i Φj|
(ΦT

i Φi)(ΦT
j Φj)

, (5.1)

where Φm is the eigenvector of the mth mode. This provides a matrix Mij ∈ [0, 1]

that contains the correlation between every lateral mode. When i = j, it is expected

thatMii ≈ 1, which would correspond to similar modes. For this analysis, only the
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correlation between correspondent modes is studied, and hence, only the values of

Mii are presented.

In Fig. 5.4, lateral modal correlation are presented for each mesh. Each color

depictsM between two meshes for the first two hundred modes. The modes obtained

by the last mesh (5n) were used as reference for the comparison. As before, the first

mesh clearly diverges. In this case, however, the divergence of the second mesh

was also observed. At first glace, the third mesh seems to diverge only after the

threshold. However, under close inspection, it can be observed that it starts to

diverge close to the 140th mode. Hence, a safe mesh choice is the fourth mesh,

where the first signs of divergence are close to the second hundred of modes.

50 100 150 200
0

0.5

1

Figure 5.3

Figure 5.4: Modal Assurance Criterion applied to different meshes. In this case,
each mesh was compared with the one with more elements.

5.2 Complete and simplified models

In this section, the effects of nonlinearities presented in the forces fK , fM and fG

are studied (Eqs. 3.42 through 3.44 in global coordinates). In other words, nonlinear

forces due to the unbalance were kept. This is achieved through comparison between

simulations with and without said forces. The former model is referred as the

’complete model’, while the latter as the ’simplified model’.

In this section, three distinct cases are presented. The first with severe torsional

vibrations and forward whirl, the second without severe torsional vibration and

with forward whirl and the third with severe torsional vibrations and backward

whirl. Case 1 is presented in Fig. 5.5, with Wob = 220kN and Ω = 0.67 Hz. In

Fig. 5.5a, radial displacement is shown for the middle node in the last BHA section
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and an arbitrary time interval is zoomed. In Fig. 5.5b, the bit rotational speed

development through time is depicted. For this case, it is clear that the nonlinear

forces did not present a sensible impact in the dynamic.

The second case is depicted in Fig. 5.6. For this simulation considered Wob =

100kN and Ω = 1.33 Hz. In summary, the same conclusion can be drawn from Case

1: that the nonlinearities had no major effect in the dynamics.

Figure 5.7 shows the third case, Wob = 220kN and Ω = 1 Hz. It can be noticed

that the results diverge after a few seconds. This is observed because a region in the

drill-string impacts the borehole wall and its effects are propagated to the observed

node. This phenomenon leads to different quantitative results when the simplifi-

cation is applied. Although the physical accuracy of the simplified model might

quantitatively diverge from the complete model, the former can accurately quali-

tatively represent the dynamic. In other words, the simplified model successfully

identifies the impact point, the severe torsional vibration and the whirl regimen.
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Figure 5.5: Numerical simulations for the complete and simplified models for Ω =
0.67 Hz (40 rpm) and Wob = 220 kN.
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Figure 5.6: Numerical simulations for the complete and simplified models for Ω =
1.67 Hz (80 rpm) and Wob = 100 kN.

44



0 50 100
0

0.02

0.04

0.06

0.08

0.1

(a)

0 50 100

0

0.5

1

1.5

2

2.5
Complete
Simplified

(b)

Figure 5.7: Numerical simulations for the complete and simplified models for Ω =
1.00 Hz (60 rpm) and Wob = 220 kN.

Finally, it can be seen that, without impact, the simplified model presents sim-

ilar results when compared with the complete model and, while the impact may

lead to different dynamics, the result is, in general, qualitatively equivalent. As

the numerical integration of nonlinear matrices are computationally expensive, the

simplified model presents faster performance. Hence, from this point onward this

simplification is adopted for most of the numerical simulations in this work.

5.3 Deterministic response

This section is divided in three parts: (i) phenomena identification analysis, (ii)

damping effects and (iii) dynamics maps. In order to evaluate the response in time

domain, some criteria is defined. Those are used to identify possible phenomena as

severe torsional vibrations, forward whirl and backward whirl.

Severe torsional vibrations are evaluated by the measure of a normalized ampli-

tude coefficient, known as the torsional vibration severity index. This index consid-

ers the minimum and maximum bit speeds in the steady state:

S =
φ̇stmax − φ̇stmin

2Ω
, (5.2)

where φstmax and φstmin are the maximum and minimum bit speed in the steady state.

A severe torsional vibration is assumed if S > 0.8.

The type of whirl is analysed from a fast Fourier transform (FFT) on the simu-

lated data. For that, information is rewritten in polar complex coordinates as:

zi = vi + jwi, (5.3)

where vi and wi are, as previously described, the displacements in the ith node
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and zi is the radius in complex coordinates. Finally, the complex unit is defined

as: j =
√
−1. In sequence, the transform is applied to zi. Frequencies provided

by this analysis are the whirl frequency whereas the sign indicates the direction of

the movement. In other words, negative frequencies indicates backward whirl. The

structure may present both forward and backward whirls due to its flexible behavior.

Hence, the dominating frequency is tracked. In order to identify it, the frequency

of highest amplitude is analyzed and, if it is a negative frequency, the drill-string is

considered to be in a backward whirl regime.

Both of these criteria are applied in a final fraction of the data, considering

only the last 20% of the simulation in order extract a steady state response. As

the system presents nonlinearities, a time interval for the integration was chosen to

capture any possible impact and its aftermath.

5.3.1 Phenomena identification

At this part, different phenomena is detailed. With the previous definition, four

distinct events are assumed possible: (i) no torsional vibration, (ii) severe torsional

vibration, (iii) forward whirl and (vi) backward whirl. However, lateral and torsional

vibrations are not mutually exclusive, i.e.: it is possible to have severe torsional

vibrations with a backward whirl. Hence, the objective of this section is to present,

separately, each phenomena to exemplify and characterize the evaluation criteria

previously presented.

In Fig. 5.8, torsional speed at the bit is presented for three different cases. The

first case, there is a drilling configuration of Wob = 100 kN and a rotation applied

of Ω = 1.33 Hz, the second a Wob = 220 kN and a rotation applied of Ω = 0.67

Hz and the third of Wob = 160 kN and a rotation applied of Ω = 1.75 Hz. For

the first case, when the amplitude coefficient S is calculated, it can be seen that

it is close to zero (S100,1.33 ≈ 0). For the second case, a high amplitude coefficient

can be seen (S220,0.67 > 0.80), and thus, it is classified as severe. The last case, it

can be observed that, whereas no severe torsional vibration is seen, some torsional

vibration is presented (S160,1.75 < 0.80). The main difference is that the former case,

the severe torsional vibration is a consequence of the bit-rock interaction, while the

latter is induced by the lateral impact between the drill-string and the borehole wall.
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Figure 5.8: Torsional speed at the bit for numerical simulations in different drilling
configurations: Case 1 presents Ω = 1.33 Hz (80 rpm) and Wob = 100 kN with
S100,1.33 > 0.008 ; Case 2 presents Ω = 0.67 Hz (40 rpm) and Wob = 220 kN with
S220,0.67 = 1.328; Case 3 presents Ω = 1.75 Hz (105 rpm) and Wob = 160 kN with
S160,1.75 = 0.634

In Figs. 5.9b and 5.9a presents the dominant whirl frequencies and the radial

displacements, respectively. Now, two distinct cases are shown: case 1, with Wob =

100 kN and a rotation applied of Ω = 1.33 and case 2, with Wob = 160 kN and a

rotation applied of Ω = 1.75. In the first case, it can be seen that the whirl frequency

of greatest amplitude is positive, indicating a forward whirl. The second case, a

negative whirl frequency dominates the dynamics. When the radial displacement is

observed, it can be seen that the forward whirl case is far from the clearance allowed

for that node, while the second case, the displacement is higher than the clearance

available – the drill-string slightly penetrates the borehole wall in permanent contact.
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Figure 5.9: Lateral data for numerical simulations in different drilling configurations:
Case 1 presents Ω = 1.33 Hz (80 rpm) and Wob = 100 kN; Case 2 presents Ω = 1.75
Hz (105 rpm) and Wob = 160 kN. In (a) the highest whirl frequency of greater
amplitude and in (b) the radial displacement is presented.
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The simulation with contact and backward whirl is the same of the data that pre-

sented torsional vibrations of lower intensity (Case 3), which reinforces the argument

that contact torques can lead to torsional vibrations.

5.3.2 Damping models dynamics

At this point, the results of deterministic damping models are presented. As an

reference, Fig. 5.10 presents the damping ratios for each model provided in different

frequencies.
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Figure 5.10: Damping ratios inside the frequency threshold established.

In Fig. 5.11 the dynamics in the three different damping models can be seen with

Wob = 100 kN and Ω = 1.33 Hz. In a continuous blue line, the Rayleigh proportional

damping is presented (CL1), in the red traced line the second proposed curve (CL2)

and in the black dotted line the polynomial damping model (CL3). Figure 5.11b

depicts the rotating speed at the bit and, through it, it can be clearly seen that it

rapidly converges to the applied speed, i.e.: no severe torsional vibration is observed.

In Fig.5.11a the radial displacement in the last BHA section is shown through time.

It can be noticed that whereas an overall behavior is maintained, minor effects can

be seen in this case. The last model presents a secondary low frequency in its

response and, at the same time, the lowest amplitude.
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Figure 5.11: Numerical simulations for the different damping models for Ω = 1.33
Hz (80 rpm) and Wob = 100 kN. In (a) the is the radial displacement of the geometric
center in the middle of the last BHA section and in (b) the rotating speed at the
bit.

In Fig. 5.12 a different drilling configuration is explored. In it, a Wob of 220

kN is used and a rotation of 0.67 Hz is applied at the top. This simulation is

presented in Fig. 5.12 in a diminished interval of time, which enables thorough

observation. In Fig.5.12b, it can be seen that the rotational speed oscillates with

high amplitudes. It goes to near stagnation to peaks of speed, configuring a severe

case of torsional vibration. In Fig.5.12a the radial displacement in the same node

as before is depicted. Even though the applied frequency is lower than the previous

case, some difference can be observed in the dynamics. This is a consequence of

the coupling between torsional and lateral dynamics, whereas the low frequency is

applied at the top, lateral frequencies acting in the BHA are strictly dependent

on the respective region rotating speed. In a similar fashion as before, the third

damping model captured low-frequency vibrations.

100 105 110 115 120
0

0.02

0.04

0.06

0.08

0.1

(a)

100 105 110 115 120

0

0.5

1

1.5

2

2.5

(b)

Figure 5.12: Numerical simulations for the different damping models models for
Ω = 0.67 Hz (40 rpm) and Wob = 220 kN.

In Fig. 5.13 a drilling configuration of Wob = 220 kN and Ω = 1 Hz (60 rpm) is
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used. The radial displacement is shown in 5.13a. It can be noticed that, although

qualitatively alike, each model presents its properties. Lateral displacements are

mostly alike in the steady state. Figure 5.13b presents the torsional speed at the

bit. It is possible to observe the effects of the lateral dynamics in the torsion of

the drill-string and, even though the radial the displacements presented similar

results, torsional speed is extremely different. Before the impact, this configuration

presented a severe torsional vibration due to the bit-rock interaction and, after

the impact, the dynamics changed considerably. The third model, that presents the

overdamping of higher frequencies, seems to have a slight increase in the penetration

of the borehole wall. Severe torsional vibrations lead to a high-frequency input in

lateral dynamics which may ultimately lead to the impact and the backward whirl –

another phenomena of higher frequency. At last, 5.13c presents the whirl frequency.

This analysis confirms the backward whirl dynamics. From this frequency domain

result, some of the damping properties can be observed. Whereas lower frequencies

– both positive and negative – show similar amplitudes, the behavior of higher

frequencies are strictly associated with the damping model. The third model is

strictly contained within a low frequency range (|θ̇| < 2). The second model captures

the widest range (|θ̇| < 7.5). Finally, the first model presents a in-between result

(|θ̇| < 4.5).
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Figure 5.13: Numerical simulations for the different damping models for Ω = 1 Hz
(60 rpm) and Wob = 220 kN. In: (a) the torsional speed at the top; (b) the radial
displacement and in (c) the frequency analysis of a backward whirl configuration.

In summary, in the simulation with forward whirl, the damping model does not

greatly affects the overall dynamics. When higher frequency excitation is introduced

in the system by torsional vibrations, some difference can be observed, as higher

frequencies are made more or less present depending on the model. When impact

is present, the qualitative result might be equivalent, but its quantitative value

diverges. As the nonlinear phenomena are made present in the dynamics, a wider

range of frequencies are observed. Hence, the damping models effects are highlighted.

5.3.3 Dynamic maps

As each phenomena was successfully observed, the idea is to evaluate the existence

of critical vibrations in different drilling configurations. For that, several simulations

were executed in a wide range of both weight on bit (Wob) and rotation applied at the

top (Ω). For each damping model, two maps regarding the dynamics were generated:

the former containing the torsional vibration severity index and the latter with the

whirl frequency. Each point in the map corresponds to a simulation with the same

initial conditions, i.e.: the initial conditions were reset in every run. In order to

minimize the integration time, the modal reduction was applied. It made use of
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the first five hundred modes, including the symmetrical lateral modes that were

considered independently and the rigid body mode. More information regarding the

modal reduction is provided in Appendix D.

In Fig. 5.14, the dynamic maps are presented, the former for torsional severity

index (Fig. 5.14a) and the latter for whirl frequencies (Fig. 5.14b) with the first

damping model. When analyzing Fig. 5.14a, it can be noticed a severe vibration

zone that increases as higher weight on bits and lower rotating speeds are used –

as it is usually seen in the literature. Outside that region, it is clear that most of

the indices calculated are small, configuring a low vibration zone. However, some

points of the map present torsional vibrations – severe or not. Those are mainly

due to lateral impact between the drill-string and the borehole wall. These impact

torques lead to torsional vibrations, some even of high intensity. Next, the whirl

frequencies are analyzed. When there are severe torsional vibrations due to the bit-

rock interaction, there might be impact, i.e.: torsional vibrations may lead to impact

and backward whirl. Most of the impact regions are associated with some resonance

frequency. Near those frequencies, the drill-string collides with the borehole wall.

As the weight on bit changes, the static coupling leads to changes in the lateral

eigenfrequencies and hence, these ’resonance lines’ show a slight slope. Different

backward whirl frequencies can be seen when the same rotation is applied at the

top. This can be a consequence of the region where is either impact or a sliding

motion are present. When there is pure rolling, the backward whirl frequency is

given by a geometric relation:

θ̇bw = −Ω
Ro

rc
. (5.4)

Hence, it can be seen that when there is pure rolling, the whirl frequency depends

on the applied rotation and ratio between the section’s radius and the clearance.

Then, even if the applied rotation is the same, impact in different regions leads to

distinct backward whirl frequencies. When the forward whirl is regarded, the whirl

frequency is the same as the frequency of the rotation applied, commonly seen in

rotordynamics as synchronous whirl.
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(a) (b)

Figure 5.14: Dynamic maps for the deterministic reduced order model with the first
five hundred modes with the first damping model (Rayleigh proportional model).
In (a), the torsional severity index and in (b) the whirl frequency.

The same analyses is conducted with the second damping model and is presented

in Fig. 5.15. As expected, there is a an increase in the occurrence of severe lateral

vibrations in higher frequencies. As seen before, the presence of both torsional and

lateral vibrations are closely related and the effects of a lower damping can be seen

clearly in both dynamic maps.

(a) (b)

Figure 5.15: Dynamic maps for the deterministic reduced order model with the first
five hundred modes with the second damping model (adapted Rayleigh proportional
model). In (a), the torsional severity index and in (b) the whirl frequency.

From Fig. 5.16, it can be seen that the third damping model shows severe

vibrations restricted to a low frequency range. This is mainly due to the fact that

whereas this model considered exact values to the known points, values outside of

the defined ones are not as well defined and, in this case, lead to the overdamping

of higher frequencies. Hence, while the severe torsional vibration zone is still well

defined, there are few regions with torsional vibrations due to impact.
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(a) (b)

Figure 5.16: Dynamic maps for the deterministic reduced order model with the first
five hundred modes with the third damping model (generalized Rayleigh propor-
tional model). In (a), the torsional severity index and in (b) the whirl frequency.

Finally, while the overall behavior was seen in every dynamic map, the effects of

different damping models are clear. High damping in higher frequencies reduces the

region of backward whirl significantly.

5.4 Stochastic response

In this section, the stochastic response is presented. It starts with a dispersion

analysis in the main diagonal of the damping matrix in the modal base, followed

by frequency domain results and, finally, stochastic maps, where the probability of

occurrence of a critical phenomena is determined. For every analysis shown here, the

Monte Carlo Method was used in addition to the quadratic mean convergence criteria

with the radial displacement. Each stochastic analysis is originated by globally

disturbing one of the three deterministic (proportional) damping matrices in the

reduced order model (see Appendix D for details regarding the reduced order model).

5.4.1 Dispersion analysis

As previously presented in Chapter 3 Section 4.2, the random matrix model depends

on two main constants, the system’s size and the dispersion parameter. While the

former is defined by either the mesh or the reduction applied, the latter, in this work,

is defined by analyzing its effects on the main diagonal of the stochastic damping

matrix on the modal base. With this, it is possible to observe how it is affecting the

physics of the model.

From the deterministic model, the random damping model is originated from

the damping matrix in the modal base. For the stochastic damping matrix, an

approximation of the damping ratio was extracted from the main diagonal of the
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matrix in the modal base:

ξi =
C

(m)
ii

2ωni

, (5.5)

where C
(m)
ii is the value of the damping for the ith mode, ωni

is the ith natural

frequency and ξi the respective damping ratio. Naturally, these values are expected

to follow any relations of ξ(ω) defined.

To evaluate the dispersion, the terms of the main diagonal of the stochastic

matrix were compared with the expected value with distinct values of δ. In the

sequence, the maximum relative error for each damping ration is calculated:

ξerrik =
|ξdeti − ξrndik |

ξdeti
, (5.6)

where ξerrik is the error in the damping ratio of the ith mode for the kth Monte

Carlo simulation. ξdeti is the deterministic damping ratio and ξrndik the stochastic

damping ratio approximation (of the e kth Monte Carlo simulation). Finally, the

greatest value of ξerrik for each mode was extracted and used as reference.

In Fig. 5.17, the relative error for each one of the damping models is presented

for a Wob = 220 kN and dispersion parameters of δ = 0.1,δ = 0.3 and δ = 0.5.

From Fig. 5.17a to 5.17c, it can be observed that the relative error for a particular

dispersion parameter is confined in-between well defined regions. In other words,

for a dispersion of δ = 0.1, the absolute error is lesser then 5%, for δ = 0.3, it is

roughly defined from 5− 10%, and for for δ = 0.5, from 10− 20%.
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Figure 5.17: Maximum relative errors in the damping ratio for each used mode for
a Wob = 220 kN and different dispersion parameters. In (a), the error is calculated
using the first damping model; in (b) the second damping model and in (c) the third
damping model.

To facilitate the comprehension of the previous analysis, Fig. 5.18 presents the

values of ξrndij obtained though 50 Monte Carlo simulations for a Wob = 220 kN. It

can observed how the increase of the dispersion values impact the damping ratios

without disrupting the tendency provided by the damping ratio relations.
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Figure 5.18: Damping ratio calculated from the main diagonal of the random damp-
ing matrices with a Wob = 220 kN. In (a), the error is calculated using the first
damping model; in (b) the second damping model and in (c) the third damping
model.

When comparing both Fig. 5.17 and 5.18, it can be seen that, while the latter is

intuitive, the former contains relevant information regarding the disruption of the

deterministic models provided.

5.4.2 Frequency domain analysis

In this section, the stochastic model is explored in the frequency domain. At first, it

is studied considering only the main diagonal of the stochastic damping matrix. In

the sequence, a decoupling technique presented in [6] is applied for this analysis. The

objective is to observe the impact of off-diagonal terms in the frequency response

function.

For this analysis, only the lateral degrees of freedom were observed. Due to the

system’s symmetry, this procedure is reduced to one single plane, either XY or XZ.

Also, as no torsion was regarded, the unbalance force at a constant rotating speed

becomes linear (Eq. 3.41). Finally, as the main objective is to understand the effects

of off-diagonal terms, no impact was considered.
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To obtain a decoupled model, the strategy developed in [6] is adopted. Given a

generic linear system in the modal base, it can be expressed as:

η̈ + Cη̇ + Λη = F , (5.7)

where η are the system’s coordinates in the modal base, C the damping matrix in

the modal base, Λ a diagonal matrix containing the square of the eigenfrequencies

and F a force vector. It can also be expressed as:

η̈i +
m∑
j=1

Cij η̇j + ω2
ni
η = Fi, i = 1, 2, ...,m. (5.8)

When the Fourier transform is applied, the system becomes:

− ω2η̃i + ωj

m∑
j=1

Cij η̃j + ω2
ni
η̃ = F̃i, (5.9)

the diagonal damping term can be separated:

− ω2η̃i + ωj(Ciiη̃i +
m∑
j 6=i

Cij η̃j) + ω2
ni
η̃ = F̃i, (5.10)

in sequence:

(−ω2 + ωjCii + ωj
m∑
j 6=i

Cij
η̃j
η̃i

+ ω2
ni

)η̃i = F̃i. (5.11)

The main hypothesis in this technique is that [6]:

η̃j
η̃i
≈ hi(ω)

hj(ω)
, (5.12)

where hi(ω) is the transfer function that corresponds to the ith eigenfrequency when

off-diagonal terms in the damping matrix in the modal base are disregarded. With

this methodology, there is no need to solve the eigenvalue problem for an expanded

system in the state-space for each random matrix, which grants efficiency to the

process.

In Fig. 5.19, the threshold of the stochastic frequency response is presented

for the first damping model in the middle of the last BHA section. In black there

are the maximum and minimum values for the damping with only the main diag-

onal (’Prop’), in blue there are the maximum and minimum for the damping with

off-diagonal terms (’Non-prop’). Each figure is a result for a different dispersion pa-

rameter – δ = 0.10,δ = 0.30 and δ = 0.50. In general, none of the three values for δ

affected significantly the dynamics, even though the maximum damping ratio error
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reached expressive values for the δ = 0.50. A small gap is only seen for the higher

dispersion and when the frequency is close to 2 Hz.
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Figure 5.19: Frequency domain response for the first stochastic damping model with
three different values for dispersion: (a) δ = 0.10, (b) δ = 0.30 and (c) δ = 0.50.

In Fig. 5.20, the behavior previously observed is repeated. It can be seen that

neither the increase in the dispersion nor the off-diagonal terms affected the overall

frequency response for frequency interval analyzed.

59



1 1.5 2
-100

-80

-60

-40

(a)

1 1.5 2
-100

-80

-60

-40

(b)

1 1.5 2
-100

-80

-60

-40

(c)

Figure 5.20: Frequency domain response for the second stochastic damping model
with three different values for dispersion: (a) δ = 0.10, (b) δ = 0.30 and (c) δ = 0.50.

Finally, in Fig. 5.21, the last damping model is presented. In it, it can be

observed that near the end of the frequency interval depicted, there is a region

sensible to the uncertainties of the model. While this effect can be seen in the

frequency response with only the damping main diagonal, the off-diagonal terms

present a visible increase in the band width. This behavior is a consequence of the

the amplitude in magnitude of the terms contained in the damping matrix.
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Figure 5.21: Frequency domain response for the second stochastic damping model
with three different values for dispersion: (a) δ = 0.10, (b) δ = 0.30 and (c) δ = 0.50.

5.4.3 Probability maps

In this section, the stochastic model is used to generate several probability maps.

Similar to the deterministic dynamic map, it explores different values for both Ω and

Wob and, for each simulation, the initial conditions are reset. In this case, however,

a point in the map is obtained through severe simulations and, in each case, the

occurrence of severe torsional vibration and backward whirl is registered. With it,

the probability of each phenomena is calculated. As previously stated, these maps

are achieved from the reduced order model with the first five hundred modes. Based

on the errors values calculated from the damping ratios, δ = 0.30 was used for each

map simulation.

In Fig. 5.22, the probability maps for first stochastic damping model is pre-

sented. Figure 5.22a shows the probability of several torsional vibrations (S > 0.8).

It can be noticed two well defined zones, the former always with severe torsional vi-

brations and other always without. Yet, the impact of a stochastic damping model

is clear. Regions close to lateral natural frequencies presented a small chance of

severe torsional vibrations. As lower frequencies are used, the greater is the proba-
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bility of torsional vibrations due to lateral impact. However, as higher Wob are used,

it can be seen that lateral impact can reduce the probability of torsional vibrations.

In Fig. 5.22b, it can be seen that close to a resonance frequency, there is backward

whirl. As a lower rotation is applied – and the drilling configuration nears a severe

torsional vibration region – the probability of backward whirl decreases.
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Figure 5.22: Probability maps for the stochastic model with the first stochastic
damping model (generalized Rayleigh proportional model). In (a), the torsional
vibration probability and in (b) the backward whirl probability.

In Fig. 5.23, the probability maps for the second stochastic damping model is

presented. Every effect seen in the first map is observed in a larger scale in these

maps. As observed in Chapter 3 Section 4.1, the second deterministic model presents

a slightly greater damping for lower frequencies and lower damping for higher ones

(when compared to the Rayleigh proportional damping). However, close to the lower

frequencies, the stochastic model presented a higher probability of severe torsional

vibrations due to contact. This is a consequence of both severe torsional vibrations

(due to the bit-rock interaction) and backward whirl, which enables high excitation

frequencies for the lateral model.
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Figure 5.23: Probability maps for the stochastic model with the second damping
model (adapted Rayleigh proportional model). In (a), the torsional severity index
and in (b) the whirl frequency.
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Finally, the last damping model is observed in Fig. 5.24. As previously, it

presents a high-probability zone for severe torsional vibrations that is closely related

with the incidence of backward whirl. In Fig. 5.24a, in contrast with the previous

ones, shows small incidence of severe torsional vibrations due to contact – even

though there is a great probability of backward whirl, as those high frequencies

are less prominent in the overall dynamics. When the backward whirl probability

map is observed in Fig. 5.24b, it is clear that the incidence of this phenomena is

not as present in higher frequencies, just as expected by the deterministic analysis.

However, the probability seems slightly higher for lower frequencies.
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Figure 5.24: Probability maps for the stochastic model with the third damping model
(generalized Rayleigh proportional model). In (a), the torsional severity index and
in (b) the whirl frequency.

From these maps, it is made clear how the damping model affects severe lateral

vibrations, specially considering when higher frequencies are overdamped. Another

conclusion, is that the presence of higher frequencies in lateral vibrations is likely

to increase the occurrence of severe torsional vibrations in lower speeds, due to the

coupling between lateral-torsional dynamics and the existence of a high-frequency

phenomenon (the backward whirl).
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Chapter 6

Summary and concluding remarks

This work started with a brief introduction which presented the drill-string and the

harmful types of vibrations, highlighting those that are explored here. In the se-

quence, a literature review is conducted with several works, where different models

and approaches were explored for distinct purposes. Even though this literature

review focused on drill-strings torsional and lateral vibrations, literature regard-

ing rotordynamics, the Finite Element Method, stochastic modelling and damping

strategies were of utmost relevance for this work.

The literature review was followed by the model’s development. At this point, the

main hypotheses of the model were presented and fundamental equations of kinemat-

ics, constitutive and energy relations were explored, which enabled the Hamilton’s

principle to be applied, leading to a set of differential equations in their variational

form. This formulation was solved in the space using the Finite Element Method,

providing a discretization of the geometry in the form of a system of nonlinear dif-

ferential equations in time. Boundary conditions and external forces were presented,

the former considered that no lateral displacements were possible at both extremi-

ties in the drill-strings and that a constant rotation is applied at the top. The latter

took into account a smooth bit-rock interaction model, a discontinuous linear-elastic

impact force, a smooth Coulomb friction force, a resulting torque from impact dy-

namics and linear-elastic stabilizers.

The next step was the development of deterministic damping models. Three

distinct models for lateral proportional damping were provided and calibrated from

experimental data found in the literature regarding a beam pinned in both ends

[16]. The first model consisted in the Rayleigh proportional damping. The second

was developed through the methodology developed in [1] and had the objective of

minimizing the overdamping in higher frequencies of the system. The third, even

though achieved by the methodology provided in [1], follows a generalization of

the Rayleigh proportional damping developed in [12]. This last model presented

higher damping ratios for higher frequencies which might be justified by the fluid
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interaction. This approach, however, proved to be problematic. Not only positive

damping ratios throughout the whole spectrum of frequencies were needed to obtain

a positive definite damping matrix, but also numerical errors were often associated

when high values of exponents for the inverse of the mass matrix were used.

With the deterministic damping models, other three stochastic damping models

were provided. These aimed to account for the uncertainties of the modeling itself

and for the effects of non-proportional terms, such as fluid interaction. Each model

was based on one of the deterministic, where the deterministic damping matrix in

modal base would be globally disturbed by a random germ, providing a random

non-diagonal matrix.

The last step in the modelling development, was to provide a reduced order

model based on the modal truncating method. This not only considered the modes

obtained by the eigenvalue/eigenvector problem but also the rigid body mode for

the torsional degrees of freedom.

With the model developed and presented, the results section started with the

drill-string’s mechanical properties and a mesh convergence analysis. In the se-

quence, a model simplification is studied where some geometric nonlinearities were

disregarded. It was observed that the main difference was in the quantitative results

during impact. However, for qualitative analysis, both models could be equivalent.

With the simplified model, a set of analyses was conducted. At first, different

tools for evaluating the dynamics were provided and exemplified. With these tools,

the different damping models were studied in different configuration and explored,

culminating in dynamic maps, where the occurrence of both severe torsional and

lateral vibrations were identified. Most of the backward whirl occurred near a reso-

nance frequency, which is in accordance with the expected ([79]). This also provided

lateral-induced torsional vibration, as well as torsional-induced backward whirl.

The last set of results concerned the stochastic models. Through them, sev-

eral analyses were conducted to evaluate how different dispersions could affect the

system. Finally, probability maps were created with the Monte Carlo Method and

the reduced order model to evaluate the chance of occurrence of severe vibrations.

As seen before, severe lateral vibrations often occurred near resonance. It is also

observed that, not only lateral impact may cause severe torsional vibrations, as it

can reduce its probability. Another important relation, is that the effects of higher

frequencies were made clear – specially when low rotations are applied to the drill-

string. The presence of high lateral frequencies was a source of severe torsional

vibrations.
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Appendix A

Axial force

The axial force is considered linear within a section of the drill-string (fa(x) =

αx + β). As the section changes, the values of α and β are updated. In Fig. A.1 a

schematic of a drill-string with four sections is presented. When x = 0, fa(0) = fh,

where fh = (
∑s

k=1 ρAkLk) −Wob, where s is the total number of sections, Lk and

Ak are the kth section’s length and area respectively.

�
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�ℎ

���

Figure A.1: Sketch of the drill-string’s sections.

In an arbitrary cross-section the axial force is modeled as fa(x) = fw(x)−Wob,

where fL(x) os the sustained weight in a depth of value x. The weight sustained in
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the an arbitrary depth in the kth section is:

fwk
(x) = ρAk

[( k∑
l=1

Lk

)
− x
]

+
s∑

p=k+1

ρApLp, (A.1)

where ρAk

[(∑k
l=1 Lk

)
− x
]

is the weight of the remaining section in a depth of x

and
∑s

p=k+1 ρApLp the weight of the sections that subsequent sections. Hence, the

axial force in the kth section is:

fak(x) = ρAk

[( k∑
l=1

Lk

)
− x
]

+

( s∑
p=k+1

ρApLp

)
−Wob. (A.2)

In Fig. A.2, a sample distribution used in the model is depicted. It considers the

geometry presented in Tab.5.1 and that Wob = 220kN. In this figure, the values

of the ordinate axis are inverted to maintain the direction’s agreement with the

referential presented in Fig. A.1. Each section is divided by horizontal traced lines

and the vertical traced line separates the sections under tension from those under

compression. It can be observed that the whole extension of the drill-pipes (the first

section) is under tension – which leads to an increase in the lateral stiffness. This

behavior changes in the last BHA sections.

0 500 1000 1500
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-2000
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Figure A.2: Sample axial force distribution with Wob = 220 kN.
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Appendix B

Shape functions

The shape functions for lateral degrees of freedom are formed by Hermitian polyno-

mials, from N1 to N4. As for torsional degrees of freedom, a linear polynomial was

used (N5 and N6):

N1 = 1− 3η2 + 2η3 (B.1)

N2 = Le(η − 2η2 + η3) (B.2)

N3 = 3η2 − 2η3 (B.3)

N4 = Le(−2η2 + η3) (B.4)

N5 = 1− η (B.5)

N6 = η (B.6)

where Le is the element’s length and η = x−Li

Le
is a normalization. Once again, Li is

the depth of the first node of the ith element:

Li =
i∑

n=1

Lei . (B.7)

Finally, the shape functions are defined as:

Nv =
{
N1 0 0 N2 0 N3 0 0 N4 0

}
, (B.8)

Nw =
{

0 N1 0 0 −N2 0 N3 0 0 −N4

}
, (B.9)

Nφ =
{

0 0 N5 0 0 0 0 N6 0 0
}
, (B.10)

Nϕy =
dNw

dx
=
dNw

dη

dη

dx
=

1

L2

dNw

dη
(B.11)
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and:

Nϕz =
1

Le

dNv

dη
. (B.12)

It should be noticed that the Eqs. 3.38 to 3.44 are written as a function of x for

continuity purposes and, during calculations, the integrals are normalized accord-

ingly.
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Appendix C

Damping models

In the literature, there is a variety of approaches for damping models. This Appendix

presents some of these modelling techniques with examples. These examples consider

linear lateral vibrations restricted to one of the planes under harmonic excitations. In

other words, the drill-string is considered rigid to torsion and a priori no gyroscopic

effects are taken into account. Even though the cases treated here consider a multiple

degree of freedom system, they can be applied to single degree of freedom systems.

C.0.1 Viscously damped systems

Viscously damped systems are usually written as:

Mq̈ +Cq̇ +Kq = F , (C.1)

where M , C and K are the inertia, damping and stiffness matrices respectively.

Vector F is a generalized force vector and q a generalized coordinate vector. Con-

sidering properly normalized modes of the undamped system as Φ, in the modal

base, the system becomes:

η̈ + Cη̇ + Λη = F , (C.2)

where η is the modal coordinates, C the modal damping, Λ a diagonal matrix

containing the square of the eigengrequencies and F a force vector in the modal

base. Until now, the matrix C is not necessarily diagonal. In other words, there is no

assumption regarding classical normal modes. In order to guarantee this condition

[12] proved that it is necessary to have:

KM−1C = CM−1K, (C.3)
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In [1], a modified version is stated, where, if M , C and K and there exists a base

transformation matrix where M , C and K are real diagonal matrices, then:

KM−1C = CM−1K, MK−1C = CK−1M , MC−1K = KC−1M .

(C.4)

Previously, [12] proposed a sufficient condition that if:

M−1C =
N−1∑
j=0

aj(M
−1K)j, (C.5)

then classical normal modes would exist. It is easy to see that, if N = 2, this

equation becomes the Rayleigh damping:

M−1C = a1I + a2M
−1K ↔ C = a1M + a2K, (C.6)

and hence, it can be considered a generalization of the Rayleigh damping.

In [1] is proposed that, if the system is positive definite, the damping matrix can

be written in the form of:

C = Mf1(M−1K,K−1M) +Kf2(M−1K,K−1M ), (C.7)

where f1 and f2 are known functions. If f1 and f2 can be written in terms of Taylor

series, it falls under the generalized Rayleigh damping case. However, rewriting in

a series of polynomials might lead to truncation errors and even numerical errors,

thus, this format might be convenient depending on the functions f1 and f2. Also in

[1], the author provides a step-by-step approach to this generalized damping given

a known frequency dependent damping ratio function ξ(ω). For example:

ξ(ω) =
1

2

(
β1

ω
+ β2

√
ω

)
, (C.8)

the set of operations are conducted: 2ωξ is substituted by M−1C, ω by
√
M−1K

and any constant a by aI. Hence, Eq. C.8 is rewritten as:

2ωξ = β1 + β2ω
3
2 (C.9)

and, in the sequence:

M−1C = β1I + β2

√
(M−1K)

3
2 , (C.10)

and finally as:

C = β1M + β2M (M−1K)
3
4 . (C.11)
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When returning to the modal base in Eq. C.2, the damping matrix recently calcu-

lated C will be a diagonal matrix where its values follow the relation of the damping

ratio function used.

To obtain frequency domain response, proportional damping models are some-

what convenient. The system in the modal base is uncoupled, and thus, can be

expressed as:

η̈i + 2ξiωni
η̇i + ω2

ni
ηi = Fi. (C.12)

Applying the Fourier transform:

(−Ω2 + 2ξiωni
Ωj + ω2

ni
)η̃i(Ω) = F̃i(Ω) (C.13)

or

η̃i(Ω) =
F̃i(Ω)

−Ω2 + 2ξiωni
Ωj + ω2

ni

(C.14)

back in the original base:

Φ−1q̃(Ω) = diag

(
1

−Ω2 + 2ξiωni
Ωj + ω2

ni

)
ΦT F̃i(Ω) (C.15)

and finally:

q̃(Ω) = Φ diag

(
1

−Ω2 + 2ξiωni
Ωj + ω2

ni

)
ΦT F̃i(Ω), (C.16)

where diag(hi(Ω)) indicates a diagonal matrix containing in the ith column/line and

is hi(Ω) the transfer function.

C.0.2 Non-viscous damped systems

In contrast with the viscous damping – that depend exclusively on the instantaneous

speed – non-viscous damping en-globes a broad area of damping strategies, usually

adopted to capture the hysteretic behavior of viscoelasticity. Here a set of these

models are explored. They are often referred as hysteretic, viscoelastic or, more

generally, as non-viscous damping.

One particular approach is to consider a ’complex stiffness’ term in the equations

[24]:

Mq̈ +Cq̇ + (K + jKD)q = F . (C.17)

IfKD andC follows a proportional damping relation, it is diagonal. In the frequency

domain, this methodology is straightforward, as another term is included in the

result:

q̃(Ω) = Φ diag

(
1

−Ω2 + 2ξiωni
Ωj + κij + ω2

ni

)
ΦT F̃i(Ω). (C.18)
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This methodology, however, might not be as simple in the time domain. In [24], a

proportional equivalent damping is proposed for small values of KD. This approach

considers the hysteretic damping in the modal base: Ceq = (Λ−1/2)(ΦTKDΦ). Once

again, while its application is direct, it is only valid for small hysteretic damping.

Maybe the most generic form of representation for a non-viscous damping is in

the form of a convolution integral of kernels:

Mq̈ +

∫ ∞
−∞
G(t− τ)q̇(τ)d∆τ +Kq = f , (C.19)

where G(t − τ) is a matrix containing kernel functions. These kernel functions are

used to account for a time history in the damping and can be modeled by different

procedures. In the particular case of G(t − τ) = Cδd(t − τ), where δd is the Dirac

delta, only the instantaneous speed is considered, falling in the viscous damping

category. As presented in [1], the conditions of existence of classical normal modes

are similar to the viscous case:

KM−1G(t− τ ) = G(t− τ )M−1K, MK−1G(t− τ ) = G(t− τ )K−1M ,

MG(t− τ )−1K = KG(t− τ )−1M . (C.20)

A important characteristic of the kernel function matrix, is that it must provide a

positive rate of energy dissipation [82]. A common approach is to use it as a function

of a damping matrix:

G(t) =
n∑
k

Ckfk(t). (C.21)

In [82], the authors proposed a state-space formulation for exponentially damped

systems for time-domain integration. In this particular case, G(t) =
∑n

k pkCke
pkt.

To exemplify the methodology, a simple case where n = 1 is used:

G(t) = pCept, (C.22)

where the constant damping matrix C is known and p is constant. The system is

then:

Mq̈ +C

∫ t

0

ep(t−τ)q̇(τ)d∆τ +Kq = f . (C.23)

A new variable is introduced in the system:

qd =

∫ t

0

pep(t−τ)q̇(τ)d∆τ (C.24)
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and its derivative in time:

q̇d =

∫ t

0

−p2ep(t−τ)q̇(τ)d∆τ + pq̇ = −pqd + pq̇. (C.25)

The original system is rewritten in the form of:

Mq̈ +Cqd +Kq = f (C.26)

and then as:

Mq̈ + (Cq̇ − 1

p
Cq̇d) +Kq = f , (C.27)

which can be rewritten as: C M −C/p
M O O

−C/p O C/p2



q̇

q̈

q̇d

+

K O O

O M O

O O −C/p



q

q̇

qd

 =


f

0

0

 , (C.28)

where O and 0 are a zero matrix and vector, respectively. The last line of the matrix

comes from the relation established in Eq. C.25. In this formulation, time-domain

results can be obtained from a symmetric state-space formulation. In this format,

it can also be seen that if p is of high magnitude, then the system of equations falls

in a viscous damping formulation.

In summary, it is easy to see how the generic damping approach can cover a

broad area of damping models, including the viscous damping.
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Appendix D

Modal reduction

In this appendix, the modal reduction is discussed. As mentioned in Section 3.3.4,

a frequency range was chosen and, in the sequence, the modes used in the reduction

are selected in accordance. In order to compare the final result, the modal reduction

was applied to the simplified model and compared with the complete model, both in

accordance with the defined in Section 5.5.2. The time domain analysis presented

uses the Rayleigh proportional damping model presented in Section 3.4.1.

In Fig. D.1, the radial displacement and rotating speed development through

time are presented for the complete model, with 2000 degrees of freedom, and the

reduced order with Wob = 100 kN and Ω = 1.33 Hz. For the reduced order, the

first 500 modes of the structure were used. Those modes en-globe torsional, lateral

and flexural modes in all directions in space, thus, symmetric modes are taken into

account. It is also important to notice that the rigid body mode in torsional direction

is present in the reduction. It can be noticed that, in this case, the modal reduction

provides coherent results when compared with the complete model.
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Figure D.1: Numerical simulations for the complete and reduced models for Ω = 1.33
Hz (80 rpm) and Wob = 100 kN. In the zoomed region defined from t = [50, 60] s.

In Fig. D.2, another simulation is shown. This time, the Wob = 220 kN and
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Ω = 0.67 Hz. It can be seen that while some difference can be seem in the dynamics,

the overall behaviour ir similar. Yet, after some time, a small phase angle can be

seem in Fig. D.3b. Once again, although this might imply in some information loss,

a qualitatively analysis is still accurate.
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Figure D.2: Numerical simulations for the complete and reduced models for Ω = 0.67
Hz (40 rpm) and Wob = 220 kN. In it, the complete model and with a modal
reduction with the first 500 modes.

Finally, Fig. D.3 depicts the simulation with Wob = 220 kN and Ω = 1 Hz

(60 rpm). As seen before in 5.5.2, the dynamics diverge after the impact moment.

However, it can be seen that, although the quantitative analyses are different, both

results are qualitatively equivalent. In other words, The reduced order model suc-

cessfully capture every nonlinear phenomena expected.
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Figure D.3: Numerical simulations for the complete and reduced models for Ω = 1
Hz (60 rpm) and Wob = 220 kN. In it, the complete model and with a modal
reduction with the first 500 modes.

While the complete model needed a time-step of ∆t = 2.5 · 10−4 to achieve

convergence, the reduced order model with the first five hundred modes converged
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with a time-step of ∆t = 1 · 10−2. Whereas some difference is seen in a quantitative

evaluation, the overall occurrence of phenomena is well preserved. In this case, a

trade-off between accuracy and processing time is done.

85



Appendix E

Lumped parameter model

The work presented in this dissertation focus solely on a continuous model, dis-

cretized by the lumped parameter model. However, the research started with

lumped parameter models, which gave major insights in the dynamics. Briefly, the

lumped parameter model followed a standard formulations found in the literature

[5, 13, 31, 74, 87]:

Imφ̈+ ct(φ− Ω) + kt(φ− Ωt) = Tbit + Tlat,

(m+mf )(r̈ − θ̇2r) + ch(r, ṙ, θ̇)ṙ + k(Tbit)r =

(m+mf )[eφ̇
2 cos (φ− θ) + eφ̈ sin (φ− θ)]− Fn,

(m+mf )(θ̈r + 2ṙθ̇) + ch(r, ṙ, θ̇)rθ̇ =

(m+mf )[eφ̇
2 sin (φ− θ)− eφ̈ cos (φ− θ)]− Ffat, (E.1)

where there are three degrees of freedom, one regarding drill-pipes torsion (φ) and

the other two associated with the radial displacement and the whirl angle of a BHA

section between stabilizers (r and θ, respectively). In the formulation above, Im

is an equivalent inertia, ct the torsional damping, kt the torsional stiffness, Tbit

the bi-rock interaction torque, Tlat the torques due to lateral dynamics. m and

mf are the BHA section’s mass and fluid added mass. ch(r, ṙ, θ̇) is a fluid drag

damping coefficient, that is proportional to the BHA cross-section’s displacement

speed: ch(r, ṙ, θ̇) = cl
√
ṙ2 + r2θ̇2. Constant e is the eccentricity, Fn and Ffat are the

elastic force and friction force during impact.

Several works were formerly conducted with this model. Different coupling con-

figurations were analyzed in [80], where it was observed that lateral vibrations could

disrupt severe torsional vibrations and that critical lateral vibrations were closely

related to torsional vibrations. In the sequence, in [81], the borehole wall friction

was modeled as a random variable. With this stochastic model, it was observed that
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the incidence of impact and backward whirl is greatly impacted by the borehole wall

friction. Other works were conducted regarding random variables: borehole wall,

unbalance and bit-rock interaction constants.
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