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Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos necessários
para a obtenção do grau de Doutor em Ciências (D.Sc.)

CALIBRAÇÃO ORIENTADA POR DADOS DE MODELOS
COMPUTACIONAIS DE COMBUSTÃO EMPREGANDO CINÉTICA QUÍMICA

REDUZIDA

Rodolfo da Silva Machado de Freitas

Agosto/2020

Orientador: Fernando Alves Rochinha

Programa: Engenharia Mecânica

Nesta tese, é adotada uma abordagem probabilística de discrepância encapsulada
para entender os limites do uso de cinética química reduzida em modelos
computacionais de combustão e também melhorar a capacidade de tais modelos
prever quantidades de interesse importantes. Além disso, é proposta uma
abordagem de aprendizagem profundo de discrepância de modelo encapsulada.
Mais especificamente, uma rede neural profunda é imersa como uma função
aditiva para modelar a evolução temporal das concentrações de espécies químicas
que servem como termo fontes para o escoamento. Uma calibração orientada a
dados é adotada com um conjunto de dados produzido por simulações numéricas
de mecanismos detalhados, em uma calibração bayesiana modelo-a-modelo. Os
métodos propostos são avaliados em cenários de combustão de referência,
amplamente utilizados para avaliar o papel desempenhado pela cinética química nas
principais propriedades físico-químicas que caracterizam os sistemas de combustão.
Os cenários correspondem aos casos de aplicação de combustão homogênea durante
autoignição e propagação da chama. Os resultados demonstram a capacidade das
abordagens adotadas para otimizações de modelos de cinética química. Mostra-se
como o alcance de aplicação do modelo químico reduzido pode ser estendida para
prever quantidades de interesse sem aumentar o número de espécies reagentes no
sistema de combustão e a um custo computacional reduzido.
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In this thesis, a probabilistic embedded discrepancy approach to understanding
the limits of the use of reduced chemical kinetics in computational combustion
models and also to improve the ability of such models to predict key quantities of
interest is adopted. Also, an embedded deep learning model discrepancy approach
is proposed. More specifically, a deep neural network is embedded as an additive
function to model the temporal evolution of chemical species concentrations that
serves as a source to the flow field. A data-driven calibration is adopted with data
set produced by numerical simulation of detailed mechanisms, in a model-to-model
Bayesian calibration. These proposed strategies are evaluated in benchmark
combustion scenarios widely used to evaluate the role played by chemical kinetics on
main physicochemical properties characterizing combustion systems. The scenarios
correspond to the application cases of homogeneous combustion during autoignition
and flame propagation. The results demonstrate the ability of adopted approaches
for model calibration in chemical kinetics. It is shown how the application range of
the reduced chemical model can be extended to predict quantities of interest without
increasing the number of reacting species in the combustion system and at a reduced
computational cost.
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Chapter 1

Introduction

The development of computational models for characterization of physical systems is
of major relevance in engineering applications. In particular, computational models
are an essential topic of combustion research nowadays. In large applications,
combustion simulations are supporting the design and optimization of internal
combustion engines, such as solid-fuel rocket motors, industrial burners and furnaces,
and gas turbine combustors, using the power of parallel supercomputers [3].

From a macroscopic perspective, the governing equations for combustion are the
Navier-Stokes equations, which include the balance of mass, momentum and energy
in addition to conservation for N chemical species into mixture, including source
terms associated with chemical reactions [4, 5]. Computational combustion models
of practical engineering systems require an extensive computational burden. Those
simulations must combine the capability to predict the relevant flow features with
the ability to solve the relevant chemistry involved in the combustion process, as
well as any other important physical phenomena. Thus, like many other research
areas, combustion researches is highly dependent on the progress of the computer
power.

The continual growth in computing power has become feasible the increase in
the size and complexity of combustion models. This growth can be measured by the
number of grid points in Computational Fluid Dynamics (CFD) calculations, in the
number of chemical species and reactions in the chemical kinetics mechanisms, in
the spatial refinement of Direct Numerical Simulations (DNS) of turbulent flows.
Therefore, increasing computer power enabled combustion models to embed a
greater level of complexity and realism in computational simulations. Specifically,
this has made possible to emerge more coupled physical and chemical processes
in the models, a more complex turbulence model, a more sophisticated radiation
model, multiple phase phenomena such as a spray model or a soot model, or moving
objects such as intake valves or piston blades [3].

In power and propulsion applications such as engines, the thermal energy
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contained in the fuel is usually converted to heat through combustion. This process
is responsible not only to provide the heat release rate and power output, but also for
dictating the formation of pollutants. Also, there is a complex interaction between
the chemical reactions and the flow field, specially when the flow is turbulent.
There are many studies dedicated to developing computational predictive models
for turbulent flows [6] and turbulent reacting flows [7, 8], with the latter showing
a high influence of the chemistry in the flow. While CFD has been traditionally
used in the context of Reynolds-Averaged Navier-Stokes (RANS), the application
of Large-Eddy-Simulation (LES) and direct numerical simulations (DNS) has been
largely extended [9] thanks to the advances in computing power.

Despite the advancement in numerical calculations and computing power, the
challenge of modeling detailed chemistry is not alleviated. The majority of
computational combustion models to simulate practical applications fall in the use
of low fidelity chemical mechanisms to make these simulations computationally
feasible since chemical reaction mechanisms are frequently the most computationally
demanding of a computational combustion model.

Chemical mechanisms and kinetics models describe the processes and rates of
chemical reactions [4]. In general, the chemistry involved in the oxidation process
of a reactive mixture can be excessively complex and highly non-linear. Detailed
description of a reactive process, for example the hydrocarbon combustion, typically
involves hundreds or thousands of chemical reactions with hundreds of chemical
species, leading to tens of thousands of chemical kinetic parameters [10]. In the
most common formulation, a time-dependent stiff differential equation describes the
evolution of the mass fraction for each chemical species.

Reaction mechanisms capable of describing chemical kinetics must be able to
correctly describe the separate chemical evolution of the major species relevant
to pollutant formation along with the heat release rate coming from combustion.
The use of detailed chemical kinetic models in CFD, including LES or DNS,
can pose a significant challenge for the calculation of turbulent reacting flows in
complex geometries under engine-like conditions, unless techniques for chemistry
reduction are used [11, 12]. Usually to reduce the computational cost, reduced
reaction mechanisms are employed to describe the kinetics of the combustion process
[10–12]. However, reduced mechanisms can be inadequate, leading to a detectable
inconsistency between model predictions and observations [13]. Therefore, consisting
in a major source of uncertainties in the modelling.

In addition to errors introduced by computing the reactive process chemistry by
reduced kinetics, there is a large number of parametric uncertainties in chemical
kinetics models. In practice, kinetic parameters are estimated through indirect,
scarce and noisy measurements. Hence, there is a large number of parametric
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uncertainties in chemical kinetics models, involving reaction rate constants and
thermodynamic parameters, many of which are poorly known [14–16]. They also
present strong non-linearities that can intensify small parametric uncertainties,
leading to large uncertainties in predictions.

1.1 Objectives

In the present work, the motivation relies on the use of computer models for
describing biogas combustion. More particularly, on Uncertainty Quantification
(UQ) related problems. Biogas is a mixture of methane diluted with CO2, it is
composed of 40–75% of methane, 25–55% of carbon dioxide (and possibly 0–10%
of hydrogen). Biogas originates from the fermentation of biomass by anaerobic
bacteria. It can be produced from organic wastes, energetic plants and sources
of biomass. Its many applications include the combined generation of heat and
electricity and its conversion into liquid or gaseous fuels and hydrogen [17, 18].

One of the major problems related to the application of biogas is that such fuels
do not have reliable models for describing the closure equations of chemistry kinetics.
Reaction mechanisms capable of describing biogas chemical kinetics must be able to
correctly describe the chemical evolution of the major or relevant species along with
the heat release rate coming from the exothermic process. However, this is not a
sufficient condition since the simultaneous presence of methane and carbon dioxide
can change the chemical behavior of the whole system in an unpredictable fashion.
Consequently, there is a need to evaluate how well reaction mechanisms accounting
for the combustion of hydrocarbons perform for the combustion of biogas. In
general, detailed kinetic mechanisms developed for simulation of light hydrocarbons
combustion appears to be appropriate for reliable simulations of biogas combustion
[19].

Given the considerable computational costs involved, CFD simulations of real
combustion industrial systems necessitates the utilization of simplified chemical
kinetic models [20] which themselves are obtained from the systematic reduction
of detailed reaction mechanisms [21, 22]. The accuracy and reliability of a reduced
model are always inferior to those of the detailed mechanism.

As biogas combustion processes are likely to be used more extensively due to the
lower emissions, it is needed the evaluation of using reduced mechanisms for biogas
combustion simulations. The purpose of this work is to analyze the impact of using
reduced kinetic mechanisms in biogas combustion through an UQ perspective.

Particularly, model discrepancy (also referred to as model errors or structural
errors), expressing the difference between high and low fidelity models regarding the
captured physics, is a critical issue that affects different realms of computational
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models and engineering. A discrepancy in the model is demonstrated when the
imperfections lead to a detectable inconsistency between the model and observations
[13, 23]. In combustion processes, model discrepancies resulting from employing
simplified physics or chemistry, motivated by the need for seeking a balance between
easiness of computation and accuracy along the simulations, tend to be difficult to
handle.

In order to improve the predictability of the kinetics in combustion modeling,
a probabilistic perspective can be adopted to describe such uncertainty. Stochastic
Bayesian inference in the realm of UQ has become a common approach to handle
model inadequacy [24–26] and parametric uncertainties. It is considered a powerful
framework for combining experimental (or field) data with prior knowledge to
develop chemical kinetics models and quantify the associated uncertainties in model
structure [1].

As a start point, the aim of the present work is focused on employ advanced
UQ techniques in calibrating reduced kinetic models for this flow conditions,
thereby enabling predictions with quantified uncertainty that provide an indication
of the error in particular quantities of interest, relative to the detailed model.
A model-to-model Bayesian calibration approach is adopted to understanding
the limits of such low-fidelity models. The objective is the calibration of a
reduced chemistry model designed for biogas combustion using Bayesian embedded
model-error representation [27]. The key advantage of this method is that it
represents discrepancy due to model structure, and associated predictive uncertainty.
In the present context, it offers predictions with error bars, to any model output
variable, that include structural uncertainty due to the simple form of the reduced
kinetic models, relative to a detailed model.

Also, it is presented a topic that involves the construction of a surrogate model
using deep learning to evaluate the degree of uncertainty due to the fluctuations of
model parameters. Deep neural networks are becoming a widely use tool in surrogate
constructing community due to their robustness and generalization property. In
order to improve the computational efficiency, a deep neural network surrogate is
constructed for uncertainty quantification analysis.

The final topic of the present work involves the construction of a neural network
model discrepancy. The model discrepancy representation is embedded as a source
term in the equations describing the evolution of the chemical system. Also, the
model inadequacy is constructed using a deep neural network, wherein chemical
system outputs are fed repeatedly back into the neural network as inputs to compute
the full evolution of the chemical system.
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1.2 Outline

Building upon the above introduction and objectives, this dissertation is laid out
as follows. Chapter 2 presents the Kinetics and Combustion models used in the
present thesis. Next, Chapter 3 presents a model-to-model Bayesian calibration
approach to understanding the limits of using reduced models to predict biogas
combustion performance. Also, an embedded machine learning approach is proposed
to characterize the model error inherent in the use of low-fidelity physical models.
In Chapter 4, the results achieved are presented. These consist of combustion
properties obtained using a calibrated reduced mechanism that accounts for model
discrepancy via probabilistic embedding. After, a deep neural surrogate model
is constructed to evaluate the variability of the flame characteristics in different
operations conditions, defined by equivalence ratio, pressure and inlet temperature,
promoted by the Arrhenius parameters of the reduced mechanism. Finally, the
results of the embedded deep learning discrepancy model approach are depicted.
Chapter 5 presents the conclusions and future research directions.1
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Chapter 2

Mathematical Models

The development of physics-based computational models combines reliable
theoretical first principles (governing equations) with phenomenological accumulated
knowledge (closure equations). Also, a physics-based model can be informally
defined as an inputs-outputs relationship. More specifically, a model describes how
predictions of specific quantities of interest (QoI’s) of the system are related to
input variables [1, 28–30]. In particular, mathematical modeling of combustion or
reacting flows involves multiple species reacting through multiple chemical reactions.
Most computational combustion models are built based on balance equations of
fluid mechanics, which are combined with chemical kinetic models, being those
derived, often, by experts and a limited number of experiments. Figure 2.1 depicts
an overview of a typical combustion model. Inputs may be related to operating
conditions variables such as pressure, inlet temperature, fuel/oxidizer mixture, etc,
with specific outputs such as burnt mass fractions, ignition delay time, flame speed,
delivered energy, etc.

In combustion flows, fuel and oxidizer combine and react to form products. In
this process, the reactants through various chemical pathways will form intermediate
species, which will ultimately react to form the combustion products. Hence,
combustion modeling must combine the capability to solve the relevant flow features
with the ability to solve the relevant chemistry, as well as any other important
physical phenomena. Traditionally, the majority of combustion processes are

Figure 2.1: An overview of a combustion model, adapted from [1].
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modeled through balance equations for reacting flows [5]. Being that, reactive flows
are all types of fluid flows in which chemical reactions occurs. So, this chapter
presents a brief overview of mathematical models for reacting flows, as well as the
introduction of the main physicochemical properties that characterize them. More
specifically, physicochemical properties are physical properties, i.e. any property
that is measurable, whose value describes a state of a physical system, and properties
or chemical attributes that define a chemical process. In the following, a brief
introduction to the basic concepts of chemical kinetics models is introduced followed
by a description of the combustion scenarios studied in this thesis. The scenarios,
organized in a hierarchy from the most simple to more complex, consist of the
zero-dimensional reactor [31, 32] and laminar premixed flame [4, 5, 31, 33]. These
are well-known scenarios explored from theoretical, experimental and numerical
standpoints. Computational models for these scenarios are very important because
they are one of the few models where comparisons can be performed between the
computation predictions and results from theory and experiments. Furthermore,
the laminar flame is widely used to validate chemical models and is the foundation
to build more complex turbulent combustion models such as flamelet models, which
each element of the flame front can be viewed as a small laminar flame [5]. In
fact, those scenarios are often used in the literature to evaluate the accuracy and
reliability of reaction mechanisms [34].

2.1 Governing equations for reacting flows

In combustion flows, more specifically chemically reacting flows, chemical reactions
are triggered by the flow local thermodynamic states and species (hydrocarbons,
oxygen, hydrogen, etc) concentrations. So, there are important differences between
the mathematical modeling of reacting and non-reacting flows. First, a reacting
gas is a non-isothermal mixture of species which must be treatable individually,
where the reacting species and the rates at which these reactions take place require
modeling. Since the flow conveys a mixture of species, transport coefficients such
as heat diffusivity, species diffusion, viscosity, and others physical properties require
specific attention.

Here, the governing equations for chemically reacting flows are presented from
a continuum mechanics perspective [4, 5]. So, the compressible Navier-Stokes
equations is extended to chemical reacting flows as follows,

∂ρ

∂t
+∇ · (ρv) = 0 (2.1)

7



∂ρYk
∂t

+∇ · [ρYk(v + Vk)] = ω̇k, k = 1, .., N (2.2)

ρ

(
∂v
∂t

+ v · ∇v
)

= −∇p+∇ · τ + ρ

N∑
k=1

Ykfk (2.3)

ρcp

(
∂T

∂t
+ v · ∇T

)
= ω̇T +

(
∂p

∂t
+ v · ∇p

)
+−∇·q+ Q̇+ Φ +ρ

N∑
k=1

YkfkVk (2.4)

where the governing equations consist of mass conservation (2.1), chemical species
conservation (2.2), momentum conservation (2.3), and energy conservation (2.4). In
Eqs. (2.1)-(2.4), ρ, cp, T , v are the density, specific heat capacity, temperature of
the mixture and velocity vector of the fluid respectively, while Vk and ω̇k are the
diffusion velocity and net production rate of chemical species k from 1 to N (total
number of species), respectively.

Additionally, the term fk in the momentum equation represents the volume force
acting on species. Moreover, Q̇ represents a heat source term. The energy flux q
due the heat and species diffusion is expressed as follows

q = −λ∇T + ρ
N∑
k=1

hkYkVk. (2.5)

where, Φ is the mixture viscous heating source term.
Note that in a three-dimensional geometry combustion models require solving

for N+5 variables instead of 5. Since the detailed description of a reactive
process typically involves hundreds of chemical species, the first significant effort
in computational combustion models is due to the increase in the number of
conservation equations to compute.

Also, the closure equations which describe the chemical interactions between
species are modeled using a set of differential equations defined by the law of mass
action [4]. More specifically, these chemical interactions acting as source terms into
chemical species conservation equation (2.2), through the net production rates of
species ω̇k, and also the heat release ω̇T due to the chemical process in the energy
equation (2.4). These chemical closure relations are further explored in the next
section.

After defining the governing equations for reacting flows, the main physical
properties of combustion models are introduced. In most combustion models,
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chemical species are characterized through their mass fractions Yk defined by

Yk =
mk

m
k = 1, . . . , N (2.6)

where N and is the number of chemical species in the reacting mixture, mk is the
mass of species k present in a given volume V , and m is the total mass of mixture.

Considering that the mixture is composed of N perfect gases, the total pressure
is defined by the sum of the partial pressures

p =
N∑
k=1

pk with pk = ρk
RT

Wk

(2.7)

where T is the temperature, R = 8.314 J/molK is the ideal gas constant, ρk = ρYk

and Wk are the density and molecular weight of the k-th species, respectively. Here,
the density of the mixture is given by,

ρ =
N∑
k=1

ρk. (2.8)

So, the total pressure of the mixture is,

p = ρ
RT

W
(2.9)

where W is the mean molecular weight of the mixture defined as follows,

1

W
=

N∑
k=1

Yk
Wk

. (2.10)

For reacting flows, the enthalpy hk of the chemical species is defined by,

hk =

∫ T

T0

cpkdT + ∆h0
k (2.11)

where ∆h0
k is the mass enthalpy of formation of species k at reference temperature T0.

Usually, the standard reference temperature used to calculate formation enthalpies
is set to T0 = 298.15K [35]. cpk is heat capacity at constant pressure of the species,
wherein the heat capacity of the mixture is given as

cp =
N∑
k=1

cpkYk. (2.12)
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Therefore, the total enthalpy is given by

h =
N∑
k=1

hkYk =
N∑
k=1

(∫ T

T0

cpkdT + ∆h0
k

)
Yk =

∫ T

T0

cpdT +
N∑
k=1

∆h0
kYk (2.13)

, while the total energy in reacting flows is given by e = h− p/ρ.

2.2 Chemical kinetics

Chemical kinetics is the study of reaction rates to infer the rate in which reactants are
transformed into products in a chemical process [36, 37]. Chemical kinetics includes
the study of how different conditions can influence the speed of a chemical reaction
and yield information about the mechanism reaction and transition states, as well
as the construction of mathematical models that can describe the characteristics
of a chemical reaction. More specifically, in reacting flows the chemical kinetics is
responsible for determining the rates of heat release ω̇T of the chemical process and
also dictating the formation of the major combustion products ω̇k.

The rate of the reaction can be expressed in terms of the concentration of any of
the reacting substances or of any reaction product, i.e., the rate may be expressed
as the rate of decrease of the concentration of a reactant or the rate of increase
of a reaction product [33]. To introduce the main concepts, consider an arbitrary
chemical reaction

N∑
k=1

ν
′

kΓk 

N∑
k=1

ν
′′

kΓk (2.14)

where ν
′′

k and ν
′

k are the stoichiometric coefficients of reactants and products
of species k, respectively, and Γk is the chemical symbol for species k. The
phenomenological law of mass action states that the rate of a reaction is proportional
to the product of the concentrations of the reactants [4]. For the general reaction
given in equation (2.14), the reaction rate is defined as

r = Kf (T )
N∏
k=1

C
ν
′
k
k −Kb(T )

N∏
k=1

C
ν
′′
k
k , (2.15)

where Ck = ρYk
Wk

denotes the molar concentration of all species k.
Here it is worth mentioning that the stiffness associated with the prediction

of reaction rates creates a central difficulty for computational combustion models.
Usually, space and time scales associated with the reaction rates terms are very
small, tend to be very smaller than the scales associated with the flow, and
requires computational meshes and temporal discretizations which can be orders
of magnitude smaller than non-reacting flows [5].
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For the chemical species k, the net production rates ω̇k is the sum of the reaction
rates produced by all M reactions into chemical mechanism

ω̇k = Wk

M∑
j=1

νk,jrj (2.16)

where νk,j = ν
′′

k,j − ν
′

k,j.
The proportionality factors Kf (T ) and Kb(T ) are called the forward and reverse

specific reaction rates of the reaction. Here, the reaction rate Kf (T ) is determined
by Arrhenius law

Kf (T ) = AT be−
E
RT (2.17)

where A is the pre-exponential Arrhenius factor, b is the temperature exponent, E
is the activation energy.

The backwards rate Kb is computed from the forward rate through the
equilibrium constant

Kb =
Kf(

p
RT

)∑N
k=1 νk exp

(
∆s
R
− ∆h

RT

) (2.18)

where P = 1 bar, and ∆s and ∆h are the entropy and enthalpy changes occurring
when passing from reactants to products in the reaction, respectively. These
quantities are obtained from tabulations.

Finally, the heat release due to the chemical process is given by

ω̇T = −
N∑
k=1

hkω̇k (2.19)

where hk is the enthalpy of the chemical species.

2.3 Benchmark Combustion Scenarios

In this section, it is presented benchmark combustion scenarios used to evaluate the
role played by chemical kinetics on main physicochemical properties characterizing
combustion systems. The scenarios correspond to the application cases of
homogeneous combustion during autoignition and flame propagation. More
specifically, it is worked on the homogeneous 0-D reactor, the simplest form
of a chemical reacting system, where in this scenario all states variables are
homogeneously distributed in a control volume, and transient state changes are
due to chemical reactions. Also, it is investigated the basic combustion scenario
describing a 1-D laminar flame propagating into a premixed gas. Both scenarios
are widely used as building blocks of more complex simulations such as turbulent
combustion. Here, these two scenarios are employed to evaluate the accuracy and
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reliability of chemical mechanisms. More specifically, the aim is to evaluate the
impact of using low-fidelity chemical kinetics on combustion systems. Furthermore,
it aims to develop embedded-like discrepancy terms to understanding the limits of
such low-fidelity models in combustion modeling. That will be more explored in the
next chapter.

2.3.1 Zero-dimensional reactor

A zero-dimensional reactor represents the simplest form of a chemically reacting
system. It can be viewed as a volume reduced to a single point, such that the
combustion is homogeneous in space and only a temporal evolution of the quantities,
as shown for the temperature in Fig. 2.2. In this simplified context, the chemical
species balance Eq. (2.2), in terms of mass fractions Yk, of a mixture of N species
is reduced to,

∂Yk
∂t

=
ω̇k
ρ
, k = 1, · · · , N. (2.20)

Assuming the 0-D setting implies that convection and diffusion are neglected,
hence, temperature changes occur only due to the energy provided by the combustion
of the species. In the constant-pressure case, the internal energy depends only on
the temperature and the species mass fractions Yk. Thus, the energy balance Eq.
(2.4) is reduced to

∂T

∂t
= − 1

ρcp

N∑
k=1

hkω̇k. (2.21)

The ideal gas state equation provides the density as

ρ =
pW

RT
, (2.22)

where W the molar mass of the mixture. Further, the enthalpy hk of each chemical
species k in the gas mixture can be found in the literature, where the standard
NASA polynomials [35] data fits are used to compute this quantity.

In a homogeneous 0-D reactor simulation, the auto-ignition delay time is an
important quantity of interest. Ignition delay times are substantially mostly
kinetically controlled, thus they can be used to validate or calibrate chemical
mechanisms. More specifically, the autoignition delay time is the period necessary to
the preheated mixture achieves the reaction zone, wherein the combustion reactions
occur, as shown in Fig. 2.2.
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Figure 2.2: Overview of temperature evolution in a 0D-reactor.

2.3.2 One-dimensional laminar premixed flame

The hypothesis of a freely laminar propagation, i.e., the flame is contained in an
infinite domain with zero gradients of state variables (velocity, temperature and mass
fractions) at either end [38], allows to assume the problem as a one-dimensional
confined flame propagating the combustion towards the non-burnt mixture and
achieving a steady state [4, 5, 38, 39]. The laminar premixed flame calculation is
based on the solution of a freely propagating laminar flame in adiabatic conditions.
So, the governing equations for reaction flows can be simplified as follows

∂ρ

∂t
+
∂ρv

∂x
= 0 (2.23)

∂ρYk
∂t

+
∂

∂x
(ρ(v + Vk)Yk) = ω̇k k = 1, . . . , N (2.24)

ρcp

(
∂T

∂t
+ v

∂T

∂x

)
= ω̇T +

∂

∂x

(
λ
∂T

∂x

)
− ρ∂T

∂x

(
N∑
k=1

cp,kYkVk

)
(2.25)

These governing equations describe a flame propagating from the burnt to the
unburnt gas at a speed that reaches a constant value sL when transients are ignored.

Note that the momentum conservation equation (2.3) is not necessary anymore
when the flame reaches the steady-state, the conservation equations can be written
in the reference frame of a flame moving at a constant speed sL. Therefore,

ρv = ρ0sL (2.26)
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where ρ0 is the non-burnt density mixture.
The boundary conditions for this scenario in the unburnt mixture are

T (−∞) = Tu, (2.27)

Yk(−∞) = Mk(φ), k = 1, · · · , N, (2.28)

where Tu is the non-burnt mixture temperature and Mk(φ) is the known incoming
mass fraction of the k-th species in function of the equivalence ratio φ. In the burnt
mixture, the boundaries conditions are

dT

dx
(+∞) = 0, (2.29)

dYk
dx

(+∞) = 0, , k = 1, · · · , N. (2.30)

Also, in a freely propagating flame, the mass flow rate Ṁ is not known, it is an
eigenvalue to be determined. The flow rate is calculated by introducing the trivial
differential equation,

dṀ

dx
= 0, (2.31)

and an additional boundary condition to the scenario. The extra boundary condition
is chosen arbitrarily. However, it must be chosen to ensure that the spatial gradients
of the state variables vanishing at either end. Typically, the temperature at one
additional point is imposed, wherein a natural choice is to impose the temperature
at the origin x = 0,

T (0) = Ti (2.32)

which also removes the translational invariance of the problem [38].
The problem set-up is closed if a chemical model is given and if proper boundary

conditions are provided. Here, the flame is considered an ideal gas mixture with
pressure assumed as constant and with a non-unity Lewis number (Le 6= 1). The
Lewis number compares the diffusion speeds of heat and species k. It is used to
characterize fluid flows where there is simultaneous heat and mass transfer [5]. The
Lewis number is defined as Lek = λ/ρcpDk.

In the present work, this problem is solved using the Cantera software [40] with
the possibility to choose different chemistry mechanisms to close the mathematical
problem. Here, the goal is to predict key quantities of interest of the flame such as
laminar flame speed sL, i.e, the speed at which the flame front is moving with respect
to the fresh gases in a one-dimensional geometry, adiabatic flame temperature, burnt
molar/mass fractions and flame thickness. The flame thickness is an important
property of numerical combustion problems because this thickness controls the
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required mesh resolution. In most combustion approaches, the flame structure must
be resolved and enough points must be localized within the flame thickness [5].
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Chapter 3

Model Calibration

Typically, weak points in the modeling of reaction flows, as in many other physics
based computational models, are associated with the closure equations. That is,
for instance, the case of turbulent combustion simulation [8, 41] in which mass,
momentum and energy balance, and species transport equations are combined with
reaction mechanisms, being those derived, often, by experts and a limited number
of experiments. Such construction of the closure reaction mechanisms leads to
uncertainties for the modeling. On one side, due to the estimation of parameters,
impacted by noise and indirect measurements. In addition, model discrepancies (also
referred to as model errors or structural errors) resulting from employing simplified
physics or chemistry, motivated by the need for seeking a balance between easiness
of computation and accuracy, tend to be more difficult to handle. Specifically,
simplified chemistry or reduced chemical models are reaction models that always
contain fewer reactions, and usually, the number of species included in the reduced
model is smaller than the detailed models. Being the detailed mechanisms those
with large numbers of reactions describing complex chemical systems with reliable
accuracy. Also, reduced chemical models can be seen as subsets of the species and
reactions from the detailed model.

This chapter provides an overview of the calibration approach employed to
account model discrepancies via probabilistic embedding within the model. Also, an
embedded deep learning model discrepancy approach is proposed. More specifically,
a deep neural network is embedded as an additive function to model the temporal
evolution of chemical species concentrations that serves as a source to the flow field.
Here, it is followed a traditional route in physics-based models, wherein the closure
models are calibrated in the simplest scenario and validated in a more complex one.
More specifically, in traditional combustion modeling, the chemical kinetics model is
calibrated in the 0D homogeneous scenario and extrapolated to a more complex and
challenging simulations such as the 1D laminar flame scenario. Consequently, this
chapter depicts an overview of the model discrepancy approaches used to improve
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the ability to predict key QoI’s in computational combustion models, from low to
high fidelity chemical models. An overview of surrogate modeling construction using
deep neural network is described in the last section.

3.1 Model Discrepancy Approaches

Model calibration has a central role on the development of computer models and
consists on using data from field and experimental observations, or even from
simulations based on higher fidelity models, to tune lower fidelity models, learn
about parameters and identify sources of uncertainty. In the past years, Bayesian
inference has been widely used to model model inadequacy [24–26]. This approach is
considered a strong framework for combining previous knowledge and experimental
data to developed chemical models, as well as quantify the associated uncertainties
due to structural deficiencies of the model [1]. Also, machine learning and artificial
intelligence techniques can be used to characterize the error inherent to the use of
low-fidelity physics-based models. More specifically, neural network architectures
can be constructed to characterize the discrepancy term due to the use of limited
physics and be embedded in the computational model [42], allowing to improve
the predictability of low fidelity models as well as to quantify uncertainties in the
predictions due to the use of such models. Both approaches are pursued in the next
subsections.

3.1.1 A probabilistic approach

Now, a Bayesian embedded discrepancy approach is employed to enhance the
predictive ability of the final modal and understanding the limits of using reduced
chemical models. Here, the description of this strategy follows the article published
in [43] by me and co-authors Prof. Fernando A. Rochinha, Prof. Xi Jiang (Queen
Mary-University of London), and Dr. Daniel Mira (Barcelona Supercomputing
Center). This approach provides a way to reduce systematically the cost of chemical
kinetics in simulations while quantifying the accuracy of predictions of key QoI’s.

As a starting point, it is worth highlighting a pioneer seminal approach proposed
by Kennedy and O’Hagan (KO) [44]. They introduced a Bayesian approach for
parameter calibration taking into account model discrepancies. It is built upon an
observation equation considering the model discrepancy bias through an additive
term, expressed as,

z = G(s) + e = f(s,θ) + ε(s) + e, (3.1)

where z is a vector of observable outputs, s is a vector containing input variables
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that define a scenario S (e.g., boundary and initial conditions, geometry, material
properties), G(s) represents the physical truth, and e is the observation noise. The
dependence on state variables is omitted to keep the notation simple. Moreover,
f(s,θ) is a short notation for the model, which is a function of the input variable s

and parameters to be calibrated θ, and ε(s) denotes the model discrepancy assumed
as a Gaussian vector or process. However, the KO approach carries a number of
challenges [27]. First, the imposition of a statistical structure for model discrepancy
ε(s) can lead to violation of physical constraints, particularly when considering
physics-based models. Another challenge, is that this approach provides a model
discrepancy correction to specific cases only. In the case of physical system models
intended for predicting numerous quantities of interest, there is no provision for an
associated discrepancy correction.

Instead of dealing with these difficulties, a calibration approach [27] that accounts
for model discrepancy via probabilistic embedding within the model is investigated
here. In particular, the model error is embedded in the key parameters of the model
f(s,θ(α)). More specifically, the model discrepancy is embedded in the Arrhenius
(kinetic) parameters of the reduced chemical model, since these parameters play
an essential role in the computing of the net production rates of species, as well
as the heat release in the chemical process [15]. Thus, θ is a random vector with
a Probability Distribution Function (PDF) depending on the hyper-parameters α
that one wishes to learn from Bayesian inference. An advantage of this approach
is that since the error is now embedded in the model parameters, it can easily
be propagated through the computer model to get the related uncertainty on any
quantity of interest impacted by the model parameters.

In this context, given the data D, the calibration builds on the following
expression derived from Bayes’s formula [45, 46],

p(α|D)︸ ︷︷ ︸
posterior

∝ p(D|α)︸ ︷︷ ︸
likelihood

p(α)︸︷︷︸
prior

(3.2)

where α is the vector of hyper-parameters to be identified, describing the inputs θ
as random variables.

The prior p(α) is chosen to encode accumulated knowledge about the model
parameters. Prior selection is a challenge for any Bayesian method. In this
context, p(α) can be selected according to some physical considerations, e.g., expert
knowledge, or as a result of a previous calibration. An additional difficulty arises
from the fact that α are not physical model parameters, but rather parameters
that define the discrepancy term. Furthermore, prior selection offers several
opportunities for imposing specific constraints or regularization. It is important
to choose appropriate priors that capture the initial knowledge on α before any
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observational or simulation data is available. In this work, the priors are strictly
uniform, potentially with physics-based support constraints.

As the model discrepancy are embedded in the parameters θ, It is followed
the approach adopted in [47] which the model parameters are expanded using
a first-order Gauss-Hermite Polynomial Chaos Expansion (PCE) [48]. Thus, a
multivariate normal distribution for θ is adopted, that is,

θ0 = α00 + α01ξ1

θ1 = α10 + α11ξ1 + α12ξ2

...

θi = αi0 + αi1ξ1 + αi2ξ2 + · · ·+ αiiξi (3.3)

Here ξi are independent and identically distributed (i.i.d.) standard normal random
variables and αij are the components of the vector of hyper-parameters to be inferred.
It is worth highlighting that for a fixed sample of the hyper-parameters, θ is a
stochastic vector characterized by the hyper-parameters and the random vector ξ.
Thus, the model discrepancy is characterized by a random variable.

The likelihood function p(D|α) connects the parameters and the data through
the computer model. The construction of an appropriate likelihood is therefore a
crucial component of the present approach [27]. The full likelihood, consistent with
the observation, is computed by integrating θ,

p(D|α) =

∫ +∞

−∞
p(D|θ)p(θ|α)dθ. (3.4)

The equation above is computationally demanding, even in the case in which p(D|θ)

is a Dirac-function as the original model is deterministic, for the noiseless case
(e = 0) [49]. For each value of θ, there is a set of differential equations to be
solved. Also, in the noiseless case, equation (3.4) tends to be degenerate [27].
Hence, the construction of a justifiable likelihood is perhaps the most critical step for
obtaining the posterior probability distribution. In the present work, it is assumed
an Approximate Bayesian Computation (ABC) method. This method is useful when
a proper likelihood is not known or is prohibitively expensive to evaluate [27].

The ABC method a pseudo-likelihood PDF that have as a goal to minimize the
distance between the computer model mean µi(α) and the data Di for each data
point i, and requires that the standard deviation σi(α) of the model predictions fi
to be consistent with the data spread around the mean model prediction, implying

19



the likelihood form

L(D|α) =
1

λ
√

2π

N∏
i=1

exp

(
(µi(α)−Di)

2 + (σi(α)− |µi(α)−Di|)2

2λ2

)
. (3.5)

Here, λ is the tolerance parameter, which controls the width the likelihood type
[27]. The mean µi(α) and standard deviation σi(α) have to be estimated at each
data point i to compute the likelihood. To alleviate the computational burden in
predict the statistics, polynomial chaos expansions are used to efficiently compute
µi(α) and σi(α).

The posterior p(α|D) represents the degree of belief about model parameters
after the data D is incorporated. The posterior distribution is complex, and we
can not derive analytical expressions for it. Therefore, it is needed to resort to
numerical schemes to generate samples that characterize the probabilistic structure
of α and, indirectly, of θ. Thus, the posterior distribution, conditioned on the
data, of any quantities of interest (QoIs) q is formally obtained integrating out the
hyper-parameters after the calibration through,

p(q|D) =

∫
θ(α)

p(q|α)p(α|D)dθ (3.6)

where p(q|α) is the multivariate PDF induced by the computer model f (̂s,θ(α)).
The notation ŝ refers to the possibility of computing the QoIs for different scenarios.
Indeed, the aims of calibration and validation are to enhance the predictability of
the computer model scenarios where observed data is not available.

Here, the posterior distribution is characterized by sampling using Markov
chain Monte Carlo (MCMC) methods [50–52]. Another common technique used
to characterize the posterior is the maximum a posteriori (MAP) value, which can
either be extracted from the full MCMC procedure, or computed via optimization
techniques [53, 54], that is, taking

αMAP = argmax p(α|D). (3.7)

3.1.2 A deterministic approach; neural network model

discrepancy

The objective of this section is to propose an alternative for the embedded model
discrepancy. The main idea is to combine the stochastic operator source term
approach proposed by [13, 23] to represent model inadequacy with machine learning
tools [2, 55–59, 59] to construct and train an embedded model discrepancy term.

In the model discrepancy approach [13], a stochastic operator representing the
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model error is embedded as a source term in the model equations

z = G(s) + e = f(θ, s) + ε(θ, s) + e (3.8)

where θ is a vector containing the model parameters, and s is the vector of
input variables defining a scenario S, and ε(θ, s)) denotes the stochastic operator
representing the model discrepancy.

This approach has been applied with reliable predictions in dynamic systems
[13, 23]. However, this model error approach has some difficulties. Firstly, defining
a mathematical structure, respecting physical constraints, for the stochastic operator
can be extremely challenging. Moreover, the stochastic operator can be composed
of a large number of parameters to be learned, which needs a large dataset in the
calibration process. Also, constructing reliable priors for such parameters can be a
challenge. As the model error is embedded within the model equations, it can be
impracticable to extrapolate the model discrepancy for a different scenario, i.e., a
scenario different from which it was learned.

Instead of dealing with the highlighted difficulties, it is proposed an alternative
for the embedded model discrepancy [13]. Here, the model error is embedded as a
source term in the flow field. More specifically, a source term is embedded as an
additive function to model the temporal evolution of chemical species concentrations
ω̇k. These concentrations act as source terms in the benchmark combustion scenarios
through the mass species conservation equations (2.20) and (2.24), as well as the
energy balance equations (2.21) and (2.25). Hence, the model error is embedded as
a source term as follows,

z = f(s,θ, κ(ε)) + e. (3.9)

where κ represents the closure models.
In order to make the idea more clear, the 0D scenario is retrieved and a specific

form of the above formal abstract mathematical representations is detailed. In such
scenario, the state variables are reduced to Y(t) (a vector containing as components
the fractional volumes of each species) and the temperature T (t). The resulting
nonlinear governing equations are replicated for the sake of clarity below,

dY

dt
=

1

ρ(T )

ω(Y,T ;w)︷ ︸︸ ︷
(ω(Y, T ) + ε(Y, T ;w))

dT

dt
=
−h(T ) · ω(Y, T ;w)

ρ(T )cp(T )
(3.10)

where the discrepancy is embedded to correct the energy released by the combustion
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of species into the system. In that case, even if the amount of each species is not
correct due to the use of a reduced kinetics, the calibrated model can make reliable
predictions about the temperature in the 0D scenario.

Since the model discrepancy is embedded in the reduced kinetics model, such
framework naturally allows consistency with the underlying model physics, even
beyond the 0D scenario detailed below. Here, to better illustrate the extrapolation
of such approach in a more complex scenario the chemical species conservation
equation (2.24) for 1D scenario is shown:

∂ρY

∂t
+

∂

∂x
(ρ(v + V)Y) = ω(Y, T ;w) (3.11)

where ω is a vector containing the species enhanced production rates.
A critical issue involving modeling the discrepancy term relies on assuming its

mathematical structure. In many complex dynamical systems, although data can
be abundant a formal mathematical structure for the governing equations remain
unrecognized. In recent years, machine learning has become an important research
area that allows integrating principles from physics to discovery a mathematical
structure of the governing equations [60–62]. It is noteworthy that, neural networks
have been widely used to model closure relations in many practical problems
arising from a variety of scientific and engineering applications [63–70]. Here, a
fully connected neural network (FCNN) [59] is assumed to capture an appropriate
functional form for the model correction. FCNNs have the ability, from given the
data (provided by experiments or a high fidelity model), to decode and detect
patterns and intrinsic correlations inherent to such term. Moreover, this approach
avoids the difficulties relied on assuming a mathematical structure for the model
error term.

Deep neural networks (DNNs) are simply networks with multiple intermediate
hidden layers, and FCNNs are a particular form of a DNN [59]. The input-output
relationship η : x→ y, vectors in Rn, is approximated through a sequential hierarchy
involving layers that are combinations of a set of neurons. The sizes of the input
and output layers are fixed and determined by the dimensionality of the input and
output. Figure 3.1a illustrates a neural network with two hidden layers. Each
neuron accepts one or more inputs and produces an output by performing a nonlinear
transformation. Figure 3.1b shows a schematic of a single neuron. Thus, the l-th
layer output of the network is given as follows

xl = σ(Wlxl−1 + bl), ∀ l ∈ {1, . . . , L} (3.12)

where σ(·) is the activation function, usually nonlinear. Wl ∈ Rdldl−1 is the weight
matrix, where dl is the number of neurons, in the l-th layer, bl is the bias vector and
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L is the number of layers in the network. Finally, x0 represents the network input.

(a) (b)

Figure 3.1: (a) Neural network structure. (b) Schematic of a single neuron. [2]

Therefore, the discrepancy term can be written in a compact form as

ε = f(Y, T ;w) (3.13)

where f(Y, T ;w) is the output of the neural network, and w is the vector of
parameters of the fully connected neural network. Here, it is worth highlighting
that all network parameters are constant in time. Hence, the time-dependence of
the model discrepancy is only due to the state variables. Also, the neural network
is implemented in the open source machine learning platform Tensorflow [71].

Since reliable data that represent values for the model error is extremely difficult
to define, the available data for training are quantities of interest characterizing the
combustion scenarios provided by numerical simulations of high-fidelity chemical
models. Here, the Cantera software is employed to generate the training dataset.
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Chapter 4

Results and Discussion

This chapter presents the main results of the thesis. Preliminary, section 4.1
provides a comparison between predictions carried out with detailed and reduced
mechanisms, in the basic scenarios of Chapter 2. Section 4.2 describes the learning
approach to calibrate the reduced mechanism that accounts for model discrepancy
via probabilistic embedding. Also, it is presented in section 4.2.3 the results of
the surrogate model for uncertainty quantification constructed using deep neural
networks, extrapolating the analysis to broader operating conditions. Finally, the
results of the embedded deep learning discrepancy model approach are shown in
section 4.3.

In order to be more clear, here it is proposed different forms of embedding
the model discrepancy. In section 4.2, a model in which the model discrepancy
is embedded in the chemical kinetics parameters is proposed. Also, a second model
similar to the previous one with a pre-exponential adjustment factor that redefines
the reaction rates as a function of the equivalence ratio is proposed to recovery the
flame characteristics in rich conditions. In section 4.3, a model in which the model
discrepancy is embedded as an additive term in the temporal evolution of chemical
species concentrations is proposed. Furthermore, it is proposed that the embedded
discrepancy model is reformulated as a multiplying factor in the net production
rates of species. Finally, it is constructed a embedded discrepancy that acts as a
correction term in the chemical kinetics parameters similar to what is shown section
4.2. However, a neural network is built to capture an appropriate functional form
of the model correction.
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4.1 Comparison between detailed and reduced

mechanisms

An accurate description of biogas-air combustion requires a detailed chemical
mechanism accounting for all relevant elementary reaction steps and intermediates.
A widely accepted model for the combustion of biogas is the detailed GRI3.0
mechanism [72], analysed in detail, with specific intent of proving its reasonability for
this application in [19, 73]. It consists of 325 elementary reactions and encompasses
53 species which accounts for the mass balance of H2, CO, CH4, N2 and includes
C1-C2 hydrocarbons, being those species containing one and two carbon atoms,
respectively.

Typically, to alleviate the high computational cost of the simulations, reduced
reaction mechanisms are employed. The results in Appendix A suggest that the
use of reduced schemes for methane/air oxidation would be a good starting point
to develop optimized schemes for biogas, as the variations in fundamental flame
parameters due to composition variations are relatively small and could be captured
by the same schemes. That influence of composition variations in physicochemical
properties of combustion is further confirmed in [74].

For the present purpose, it is employed a reduced mechanism based on 2-step
chemistry that has been widely used in the literature, also referred to as 2S-CM2
[31, 34, 75, 76]. This reduced scheme serves as proxy of more detailed kinetic models
and is calibrated against the mechanism GRI3.0. The 2-step 2S-CM2 mechanism
consists of 6 species with 2 global reactions:

CH4 +
3

2
O2 ⇒ CO + 2H2O (4.1)

CO +
1

2
O2 ⇐⇒ CO2. (4.2)

These two mechanisms are employed in basic scenarios, which consists of a
zero-dimensional reactor (section 2.3.1) and a laminar premixed flame (section 2.3.2).

Biogas is mainly composed of methane (CH4) and carbon dioxide (CO2), with
smaller amounts of oxygen, nitrogen and volatile organic compounds. In the present
work, the biogas mixtures are composed only by methane and carbon dioxide, as
shown in Table 4.1. Note that the baseline fuel is simply methane, a well-known fuel
whose utilization characteristics are well-studied [12, 34]. Therefore, biogas fuels can
be compared directly to methane in combustion analyses.
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Table 4.1: Biogas composition.

Biogas (Volume %) CH4 CO2

Baseline 100 0
BG1 75 25
BG2 50 50

4.1.1 Ignition delay time

Here, the ignition delay time for the 0D scenario is estimated when a maximum
temperature gradient occurs,

τ = max
(
∂T

∂t

)
. (4.3)

The ignition delay is computed using the detailed and reduced mechanisms for
biogas-air mixtures of Table 4.1 at different initial temperatures T0 ∈ [1000, 1300K]

and equivalent ratios φ ∈ [0.6, 1.4]. They are presented in Figure 4.1. The equivalent
ratio is a central parameter in combustion process. Rich mixtures are characterized
by φ > 1 (fuel is in excess), while lean regimes are achieved for φ < 1 ( oxidizer is
in excess).

During autoignition, there is a complex balance of chemical reactions that results
in certain delay to achieve chemical equilibrium. This is fundamentally a chemical
problem as convection and diffusion are not accounted for. In fact, considering
this 2-step model for autoignition reveals an important disagreement, as shown in
Fig. 4.1, when compared with the full GRI3.0 mechanism, for the prediction of the
autoignition delay time. The results show the autoignition delay time at different
initial temperatures and compositions for the considered fuel mixtures of Tab. 4.1.
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Figure 4.1: Ignition delay times over a range of T0 and φ.

4.1.2 Laminar premixed flame

One-dimensional laminar premixed flames can be used for better understanding and
advanced modeling of the combustion phenomena, such as the flamelet turbulent
model [77, 78], in real applications. Thus, accurately predictions of the flame
proprieties of biogas-air mixtures for various equivalent ratios are very important.
Figures 4.2 and 4.3 show the difference between the flame physicochemical properties
computed by GRI3.0 and 2S-CM2 mechanisms for the BG1-air mixture, over a range
of stoichiometric conditions φ ∈ [0.6, 1.4] at T0 = 300 K and P = 1 bar.
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Figure 4.2: Flame speed and adiabatic temperature conditioned to the equivalence
ratio at p = 1 bar and T0 = 300 K.
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Figure 4.3: Burned mole fractions dependence on the equivalent ratio for a premixed
flame at p = 1 bar and T0 = 300 K.

It is observed good predictions of the reduced scheme compared to the full GRI3.0
in lean conditions, while the performance in rich flames is far from satisfactory as
the mechanism has not been designed to operate in this regime. This is consistent
with other studies employing this reduced chemical kinetic mechanism for methane
combustion, and corrections of the kinetics parameters using empirical adjustments
are made to improve the predictions in this range [31, 34, 76]. Also, it can be
noted that when the biogas composition has a large amount of CO2, as in BG2,
the discrepancy caused by the reduced mechanisms increases. These result suggests
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that the reduced mechanism might be initially developed for lean conditions during
stable burning and dilution.

In the next section, a Bayesian approach to understanding the limits of employing
a reduced mechanism for methane/air in this renewable fuel is presented and also
to improve the ability of the reduced model to predict key QoIs of the benchmark
combustion scenarios.

4.2 A Bayesian Embedded Approach

From the results shown in section 4.1, it can be noted that the physicochemical
properties predicted by the reduced mechanism presents an unsatisfactory agreement
leading to a detectable inconsistency in biogas combustion. Therefore, the use of
reduced mechanisms needs to be taken with care, as these mechanisms are usually
calibrated to match certain properties for a given operation range, but they might
lead to significant errors when used outside their application range. A possible
approach to address this problem would be to either consider an extended mechanism
with the increase in computational cost during CFD simulations, or to provide a
calibration approach of the Arrhenius parameters to account for these effects.

In this context, enhancing the predictive ability of the computational models
through UQ can be used to extend the applicability of reduced schemes to
wider operating conditions as an robust alternative to empirical models. Here,
the preliminary steps of statistical calibration [27, 47] assessing if the Arrhenius
parameters are suitable for embedding the model discrepancy is followed. For
modelling the combustion chemistry of renewable biogas, it is necessary to consider
both the detailed model to provide data and a reference, that capture the key
features of biogas chemical reactions [19, 73], and a simplified model. At this point,
it is important to highlight that simplified methane models with standard Arrhenius
parameters have been tested before for biogas/methane combustion with no success
for certain conditions [31, 34, 76, 79]. Here, the intention is to achieve a better
performance through the embedding formulation, at least for laminar flames. This
approach is explored in the following sub-sections.

In order to investigate the impact of model discrepancies due to the use of a
reduced mechanism to compute the combustion properties, it is applied a Bayesian
calibration to handle the model discrepancy. To make sure that the mismatch of
predictions with the calibrated model is due to the use of reduced chemistry, instead
of using experimental data, high-fidelity computational simulations with the GRI3.0
detailed mechanism are employed. Besides, that provides more flexibility in the
analysis. As it becomes a model-to-model calibration, it is assumed that the data
represent the "truth" without any additive noise. The reference data for calibration
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are data taken from the oxidation process of constant pressure reactors to conduct
autoignition delay tests. The reduced mechanism is supposed to provide satisfactory
rates for lean premixed combustion, but not for autoignition. As shown in Fig. 4.1,
the autoignition delay times of the mixtures of the Table 4.1 have small deviations
between them. Thus, it is chosen as data the autoignition delay time for the BG1
mixture at atmospheric pressure, over a range of equivalent ratio φ ∈ [0.6, 1.4] and a
range of initial temperature T0 ∈ [1000, 1300K] varying by 0.1 and 15K, respectively.
Therefore, the reference data for calibration are composed by 189 autoignition delay
times of biogas/air.

4.2.1 First Calibration Experiment

To investigate the limits of the 2S-CM2 mechanism, the probabilistic embedding
approach [27] is employed. The irreversible reaction in the 2S-CM2 scheme is the
most relevant regarding the autoignition delay time and flame speed [80]. Thus,
it is taken the pre-exponential factor and activation energy of this reaction as the
uncertainty (to be identified). Here, the following models for the activation energy
and logarithm of the pre-exponential factor are chosen

E = θ0

lnA = θ1 (4.4)

where θi are the model parameters that we want to learn using Bayesian Inference.
Here, θ is adopted as in equation (3.3). For the prior, recall that the αij are

i.i.d uniform priors with large boundaries, i.e. noninformative priors, where the
starting points of α00 and α10 are the nominal values of the activation energy and
the pre-exponential factor, respectively [34]. Lastly, α1j > 0, for 1 6 j 6 2, in order
to avoid the sign-flip invariance [27].

In the calibration process, it is adopted the ABC likelihood (3.5). The tolerance
parameter ε, which acts as a penalty parameter of the likelihood, is assumed equal to
0.1 [27]. The Chaospy toolbox [81] is used for performing uncertainty quantification
using polynomial chaos expansions, leading to efficient computation of µi(α) and
σi(α) at each data point i. Also, the algorithm used here to sample from the posterior
distribution (3.2) is Metropolis-Hastings MCMC algorithm [53].

A total of 20,000 parameter samples are obtained using MCMC in this study.
Figure 4.4 illustrates the structure of 1D and 2D marginal PDFs of the parameters
αij. It can be noted that the parameters exhibit stronger non-Gaussian trends.
Observe the strong correlation between the parameters α00 and α10. These
parameters can be view as the expected values of the activation energy and the
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pre-exponential factor, respectively. Furthermore, it is verified that the PDFs of
such parameters present values higher than the nominal values [34]. Hence, the rate
in which the irreversible reaction occurs and the amount of CO and H2O formed in
the combustion process increase.
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Figure 4.4: 1D and 2D marginal PDFs of the parameters αij.

Using the PDF of vector α, it can be computed the realizations of lnA and
E, i.e. the push-forward of p(α|D) through the model. Here, it is taken 10,000
samples of α and, for each of them, 1,000 samples of ξ and compute samples of
the reaction parameters using the PCE (3.3). A strong correlation between the
Arrhenius parameters can be noted which is consistent with other studies employed
Bayesian approach [27, 47, 82], as shown in Fig. 4.5.
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The associated prediction uncertainties are shown in Fig. 4.6, where the posterior
predictions are illustrated for different equivalent ratios. The figures show that the
enhanced reduced model has predictive error bars that capture the GRI3.0 data
sufficiently well, given the present calibration procedure.
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Figure 4.6: The results of calibration 2S-CM2 model using the GRI3.0 detailed
model data, for various values of the equivalent ratio φ.

The calibration process is validated by predicting the autoignition delay time in
different scenarios, i.e., the Baseline and BG2 compositions. Figures 4.7 and 4.8 show
the autoignition delay time of the calibrated mechanism compared to the two-step
mechanism and the full GRI3.0. The results indicate a good agreement between
the calibrated model and the reference mechanism. The autoignition delay is a
chemical process that depends on the radical pool and requires to account for species
associated with the fuel decomposition process like formaldehyde or hydroxide [34].
It is therefore a chemical process difficult to capture by reduced chemical schemes.
These results show the ability of the probabilistic embedded approach to extend the
application range of the reduced model to predict autoignition without increasing
the number of reacting species in the CFD solver and at a reduced computational
cost.
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Figure 4.7: Autoignition delay time model predictions compared to GRI3.0: Baseline
composition.
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Figure 4.8: Autoignition delay time model predictions compared to GRI3.0: BG2
composition.
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The extrapolation of the calibration process is now extended to the flame
scenario, wherein the aim is to recover the flame properties (flame speed, flame
thickness, adiabatic temperature and burned molar fractions of CO and CO2) using
the enhanced calibrated model. Here, the flame thickness is computed by using the
temperature profile and estimated as follows

δ =
Tb − Tu

max
(
∂T
∂x

) (4.5)

where Tb and Tu are burnt and unburnt gases temperature, respectively.
The predicted values of the flame properties for the freely propagating laminar

premixed flames of methane and biogas are shown in Figs. 4.10, 4.9 and 4.11. The
results indicate that after calibration process for autoignition calibration process,
the updated 2S-CM2 model can still capture the flame speed and adiabatic flame
temperatures in lean and stoichiometric conditions as the original mechanism. The
flame speed is slightly overestimated, but the burnt gas temperature and the major
combustion products are in good agreement with the original model. The model has
been successfully extended to describe flame propagation and autoignition.

However, in rich conditions, no reliable solutions of the flame properties are
predicted using the reduced model. Furthermore, it is shown that the variability of
model parameters slightly influences the adiabatic flame temperature and only in
rich conditions the molar fractions of the combustion products are influenced by the
variability of the mechanism. As can be noted in Fig. 4.11 with the increase of the
CO2 in the biogas composition, the molar fraction predictions for rich conditions
are unsatisfactory and require further investigation.
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Figure 4.9: Flame speed predictions for the biogas-air premixed flame of the Tab.
4.1 at p = 1 bar and T0 = 300K.
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(b) Baseline adiabatic flame temperature
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(d) BG1 adiabatic flame temperature
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Figure 4.10: Flame thickness and adiabatic temperature predictions for the
biogas-air premixed flame of the Tab. 4.1 at p = 1 bar and T0 = 300K.
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Figure 4.11: Burned molar fractions predictions for the biogas-air premixed flame
of the Tab. 4.1 at p = 1 bar and T0 = 300K.

4.2.2 Second Calibration Experiment

As it has been shown in calibration experiment 4.2.1, the flame propagation and the
species involved in premixed combustion can not be reproduced using the enhanced
reduced mechanism at rich conditions. As proposed by Bibrzycki and Poinsot [34],
an empirical correlation based on a pre-exponential factor adjustment (PEA) that
redefines the constant rates as a function of the equivalence ratio φ can be used as
an attempt to reproduce the correct behaviour in rich conditions. In this section, it
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is applied a Bayesian calibration to the calibrated reduced model of the section 4.2.1
as an alternative to PEA in order to extend the applicability range of the reduced
scheme to rich conditions and autoignition problems. The corresponding values for
activation energy and logarithm of pre-exponential factor follow

E = θ0 = α0 + α1ξ1,

A = exp(lnA) ∗ F, lnA = (α10 + α11ξ1 + α12ξ2) , (4.6)

where F = β0φ
2+β1φ+β2 is the pre-exponetial factor adjustment function. Here, the

βj values used in the original model [34] for the adjustment function are adopted. For
the prior, the same priors of the case 4.2.1 are used, but we limited the α10 prior by
5%, i.e., α10 = α10(1 + 0.05η), where α10 is the nominal value of the pre-exponential
factor [34] and η is an independent random variable with uniform distribution in
the interval [−1, 1].

A total of 20,000 parameter samples are obtained using MCMC. As in case 4.2.1,
we take 10,000 samples of α and, for each of them, 1000 samples of ξ, and compute
samples of the reaction parameters using the PCE (4.6). Figure 4.12 shows that
there is a strong correlation between the lnA and E, as expected. Despite the
structural deficiencies of the new enhanced reduced mechanism, it has predictive
error bars that capture GRI3.0 data sufficiently well, as shown in Fig. 4.13.
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Figure 4.12: Posterior predictive and MAP marginal and joint distributions of the
Arrhenius rate parameters for φ = 1.0.
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Figure 4.13: The results of calibration 2S-CM2-PEA model using the GRI3.0
detailed model data, for various values of the equivalent ratio φ.

As in the experiment 4.2.1, the calibration process is validated predicting the
autoignition delay time for Baseline and BG2 compositions. Figures 4.14 and 4.15
illustrate the predictions of the calibrated mechanism for these mixtures. We can
note that the new enhanced reduced model has predictive error bars that capture
the data sufficiently well, given the present calibration procedure.
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Figure 4.14: Autoignition delay time model predictions compared to GRI3.0:
Baseline composition.
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Figure 4.15: Autoignition delay time model predictions compared to GRI3.0: BG2
composition.

The prediction of properties of the laminar premixed flames for the conditions
of the study (see Table 4.1), is shown in Figs. 4.16, 4.17 and 4.18. The plots
show that the new enhanced reduced model can capture well the flame proprieties
in lean and stoichiometric conditions. In addition, unlike the case 4.2.1, in rich
conditions the reduced model can predict very well the laminar flame speed.
Furthermore, the calibrated model can recovery the flame thickness tendency in rich
conditions. However, the reduced mechanism calibrated has structural deficiencies
that prevent the model from correctly reproducing the adiabatic flame temperature
and combustion products in rich conditions. It can be noted that the variability of
model parameters slightly influences the adiabatic temperature and the burned gas
compositions. This is further discussed in the next sub-section.
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Figure 4.16: Flame speed predictions for the biogas-air premixed flame of the Tab.
4.1 at p = 1 bar and T0 = 300K.
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(b) Baseline adiabatic flame temperature
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(c) BG1 flame thickness
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(e) BG2 flame thickness
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(f) BG2 adiabatic flame temperature

Figure 4.17: Flame thickness and adiabatic temperature predictions for the
biogas-air premixed flame of the Tab. 4.1 at p = 1 bar and T0 = 300K.
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Figure 4.18: Burned molar fractions predictions for the biogas-air premixed flame
of the Tab. 4.1 at p = 1 bar and T0 = 300K.

4.2.3 Extrapolating to broader operating conditions

Now, the aim is to investigate, through a UQ perspective, the sensitivities of the
flame speed [83] and flame thickness, key QoIs in this context, for the operating
condition variables: pressure p, inlet temperature T0, and equivalence ratio of the
mixture. This computational analysis might serve different purposes, like optimizing
the design of physical experiments under uncertainties [84, 85], to validate models,
or to enhance the understanding of the underlying phenomenology [83].
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In order to make this analysis feasible, it is introduced a machine-learning
model to alleviate the computational burden of providing flame speed and thickness
predictions with quantified uncertainty to broader operating conditions. We
developed a cheap-to-compute surrogate model to compute the premixed laminar
flames.

In the recent years, DNNs are becoming a popular tool in producing surrogates
in different domains involving physics-based models [2, 55–58, 61, 86] due to their
robustness and generalization property, i.e., covering scenarios that have not been
explored in the training process. The main idea of neural network surrogate models is
to approximate the multivariate input/output behaviour of complex systems trough
network architectures with hidden layers.

Here, the idea of densely connected convolutional networks (Dense-blocks) [87]
used for visual recognition and object characterization is extended for a fully densely
connected network regression strategy. Dense-block networks connect all layers
directly to each other, thereby helping the training process with the improvement
of information flow and gradients across the network [87]. Thus, given an input x0,
the output of l-th layer is

xl = H l([x0,x1, . . . ,xl−1]) (4.7)

where [x0,x1, . . . ,xl−1] refers to the concatenation of the predictions of the previous
layers, [0, . . . , l−1]. H l is a non-linear transformation, which can be a composition of
operations. In the present context, H l is a composition of two consecutive functions,
batch normalization [88] followed by a rectified linear unit (ReLU) [89]. Finally, the
dense-block presents two design parameters, the number of the layers L and the
growth rate K, which is the number of output features of each single layer.

Thus, to improve the computational efficiency, a surrogate model for uncertainty
quantification using deep densely connected networks is developed. The surrogate
model is expressed formally in a compact notation as:

y = f(p, T0, φ, E, lnA;w), (4.8)

where the output y represents the flame physicochemical properties (flame speed
and flame thickness), and w refers to network parameters to be identified along the
training. The randomness of the flame speed is induced by the calibrated parameters.

Training the neural network means learning about parameters w, using data
from the physics-based model, with respect to a certain loss function. The mean
squared error (MSE) is a loss function widely used for regression problems [90]. In
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the present work, the L2 regularized MSE training loss function is considered

LMSE =
1

N

N∑
i=1

‖fi − yi‖2
2 + αΩ(w) (4.9)

where N is the number of samples in the training, fi and yi are the outputs predicted
by the neural network and the physics-based model, respectively. Here the penalty
function is given by Ω(w) = 1

2
wTw.

The Stochastic Gradient Descent (SGD) algorithm [59] is used as the optimizer
for parameter learning in network training. The gradient descent algorithms attempt
to optimize the objective function by following the steepest descent direction given
by the negative of the gradient. Following this negative gradient for each new sample
or batch of samples chosen from the data set gives a local estimate of which direction
minimizes the cost and is referred to as stochastic gradient descent [91].

Taking a MSE loss function, the gradient of the loss g(w) with respect to w is
given as follows

g(w) =
1

M

M∑
i=1

∇wLMSE (4.10)

where M is the size of the batch. Then, the SGD follows the estimated gradient as

w← w − βg (4.11)

where β is the learning rate which controls how large a step to take in the direction
of the negative gradient. Several SGD algorithms are available [59]. Algorithm 1
presents a summary of the training strategy.

Algorithm 1 Network training strategy to optimize the networks parameters w
Require: Dense block network configurations, learning rate β, mini-batch size M ,

Adam hyperparameters.
1: w← w0

2: for number of epochs do
3: for each minibatch (xm, ym)Mm=1 of the training sample set do
4: g ← 1

M

∑M
i=1∇wLMSE

5: w← SGD(w, g, β)

6: end for
7: end for
8: return w

In the training process, the root mean squared error (RMSE) is used for
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monitoring the convergence of the training and test errors. It is defined as

RMSE =

√√√√ 1

Ntrain

Ntrain∑
i=1

‖yi − ŷi‖2
2 (4.12)

where Ntrain is the number of samples for training the surrogate model, and ŷi is
the neural network output. Note that the number of samples in the training phase
can be different from the number of samples in the test phase.

The performance analysis adopted in the present context aims to evaluate the
accuracy and efficiency of the neural network architecture in constructing a surrogate
model. Here, accuracy is measured from a distance criterion between the prediction
of the surrogate model and that predicted by the original model. To evaluate the
quality of the surrogate model two metrics are considered, which are the coefficient of
determination (R2-score) [92] and L2 relative error. The coefficient of determination
is defined as

R2 = 1−
∑Ntest

i=1 ‖yi − ŷi‖2
2∑Ntest

i=1 ‖yi − y‖2
2

(4.13)

where y = 1
Ntest

∑Ntest

i=1 yi is the mean of test samples. Finally, the L2 relative error
metric is defined as

ε2 =
1

Ntest

Ntest∑
i=1

(
yi − ŷi

yi

)2

. (4.14)

where Ntest is the number of samples in the test dataset.
The R2-score metric represents the normalized error, allowing the comparison

between surrogate models trained by different datasets, with values close to 1
corresponding to the best accuracy of the surrogate models.

The neural network is constructed using the open platform Tensorflow [71]. Here,
it is considered a dense block with L = 9 and K = 20. The total number of
parameters in the network is 18,912. Training the network means learning the
network parameters w using training data with respect to certain loss function.
It is adopted a supervised learning strategy, wherein the data set for the training
process is provided by simulations of 1D laminar flame using the Cantera software.
Also, it is used the MSE (4.9) for this purpose. The Adam optimizer algorithm is
used for parameter learning [93] considering a weight decay of 1×10−5 and an initial
learning rate of 1 × 10−3, where a learning rate scheduler is used dropping 5 times
on plateau of the rooted mean squared error (4.12). Finally, it is used 100 epochs
in the training process.

In general, combustion systems are operated with leaner mixtures to increase
the efficiency and reduce the formation of pollutants [94, 95]. Accordingly, the
surrogate is constructed bearing that in mind by choosing the surrogate input space
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of operating conditions: φ ∈ [0.6, 1.0], T0 ∈ [300, 450]K, and p ∈ [1.0, 2.0]bar.
For the training, this subdomain of the input space is divided in regular partitions
defined by 0.2, 50 K and 0.5 bar, respectively. The calibrated parameters E and
lnA, are chosen those from the enhanced model of Case 4.2.2. So, the training
set is built by randomly selecting 1000 samples of those parameters and combine
them with the operating inputs of the regular grid to obtain 36,000 input points,
having the corresponding outputs computed using the original flame speed model.
Moreover, 80% is used for training and the remaining 20% is used for the accuracy
assessment of the resulting surrogate model.

The network is trained on a Xeon E5-2630 2.30 GHz CPU which requires about
180 seconds for training 100 epochs. Figure 4.19 a shows the RMSE decay with the
number of epochs during the training process. It is noted that the RMSE decay
stabilizes after 60 epochs. Also, the accuracy is verified with the L2 relative error
that achieves values lower than 0.6% and the coefficient of determination of 0.997.
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Figure 4.19: (a) RMSE decay with the number of epochs in the training process.

For further illustrated the performance of the surrogate model to predict the
properties of a premixed laminar flame, Fig. 4.20 plots a comparison between the
flame speed and flame thickness obtained from Cantera and the surrogate model for
T0 = 330K and p = 1.2bar, where this condition is not considered when training
the network. It is shown that the neural network surrogate can accurately predict
the laminar flame properties even for operation conditions outside the training set,
predicting the flame speed and flame thickness with L2 relative errors lower than
1% and coefficient of determination equals 0.98. In terms of computational cost, the
surrogate model required around 3 seconds to compute the flame physicochemical
properties for all pre-exponential factors, activation energies, and equivalent ratios,
while in the Cantera software the time required to compute the flame properties
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is around 2 hours. This shows the computational efficiency of the surrogate model
to predict flame properties. The efficiency of the surrogate model is more explored
further ahead.

(a) flame speed - Cantera (b) flame speed - Surrogate model

(c) flame thickness - Cantera (d) flame thickness - Surrogate model

Figure 4.20: The flame physicochemical properties predicted by the original and
surrogate models.

After building the surrogate, now it is used the standard MC method to
propagate uncertainties arising from the calibration of the Arrhenius parameters into
the flame speed. Next, it is measured the degree of uncertainty of the predictions
using the coefficient of variation, defined as the ratio between the standard deviation
σy and the mean µy of the flame speed

cv(r) =
σy(r)

µy(r)
(4.15)

where vector r = (p, T0, φ) contains the operating condition.
Figures 4.21 and 4.22 give an overall picture by displaying a mapping between

the operating conditions and the uncertainty on flame properties expressed by
the coefficient of variation, after marginalizing out lnA and E with the use of
MC method. It is presented an explicit quantification of the induced uncertainty
resulting from the calibration into the predictions, that helps to understand the
limits of the calibrated model when leveraged to a more elaborate setting. More
specifically, to make more accessible the visualization of the results, it is depicted
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this mapping for six fixed pressures levels, allowing to make explicit the strong
dependence of the output uncertainties regarding different levels of such operating
input. A critical aspect to highlight in the very beginning is the high values of
cv in particular regions of the operating conditions, especially those near the low
bound for leaner mixtures. That might be, partially, explained by the burning
conditions near flammability limits [96], which bears the potential to amplify the
propagated uncertainties. However, it could also be attributed to the calibrated
model’s use beyond its intrinsic prediction limits. It is not possible to make
a definitive judgment without resorting to more data for the calibration process
covering such operating conditions, which falls outside this particular study. Also,
note that variabilities of flame properties are less pronounced at regions near the
stoichiometric condition, while the inlet temperature and pressure level significantly
impact the flame speed variability, especially at leaner conditions. Furthermore, it is
verified lower variabilities of flame thickness at higher inlet temperatures, which can
be explained by the simpler chemical pathways occurring as the mixture is preheated
and it is operated at higher temperatures. All these considerations convey critical
information to understand the limitations of the modeling. However, they can also
be employed, as mentioned before, in the design of physical experiments, allowing the
choice of optimal operating conditions less sensitive to uncertainties contaminating
the interpretation of the results.

Also, it is worth highlighting that such UQ analysis would need about 210,000
computer runs of the original model. The construction of the surrogate model
required 36,000 samples, which generates a significant computational gain. Such
efficiency can be computed as a function of the number of samples, as follows

G =

(
1− NS

NMC

)
× 100 (4.16)

where NS is the number of samples for surrogate model construction and NMC is the
number of samples needed to perform a UQ analysis similar to that performed here.
Thus, we achieve an efficiency of about 83% in the UQ analysis. This demonstrates
the ability of DNNs for surrogate model developments and optimization.
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(a) p = 1.0 bar (b) p = 1.2 bar

(c) p = 1.4 bar (d) p = 1.6 bar

(e) p = 1.8 bar (f) p = 2.0 bar

Figure 4.21: Flame speed variability at different operation conditions.
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(a) p = 1.0 bar (b) p = 1.2 bar

(c) p = 1.4 bar (d) p = 1.6 bar

(e) p = 1.8 bar (f) p = 2.0 bar

Figure 4.22: Flame thickness variability at different operation conditions.

4.3 Neural network model discrepancy

This section illustrates the development of alternatives for the model discrepancy
embedding presented before. Here, it is presented an approach which the
model discrepancy is embedded in the temporal evolution of chemical species
concentrations. Such an approach aims to improve the predictability of
physicochemical properties of the benchmark combustion scenarios using the reduced
chemical model correcting the chemical concentrations in each time-step. Also, a
DNN is used to capture an appropriate functional form for the model correction.
The proposed method is evaluated in a 0D reactor.
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In this context, the discrepancy term is incorporated at each time-step in the net
production rates of species. Then, the inputs of the neural network are the states
in the previous time of the homogeneous combustion process. The time-discretized
form of the 0-D reactor is given as follows

Y(t+ ∆t)−Y(t) = ∆t

[
ωe(Y(t), T (t))

ρ(t)

]
(4.17)

T (t+ ∆t)− T (t) = ∆t

[
h(Y (t), T (t)) · ωe(Y (t), T (t))

ρ(t)cp(t)

]
(4.18)

where ωe are the enhanced net production rates of species. The enhanced net
production rates in compact form is given as

ωe = ω(Y(t), T (t), ε) + ε(Y(t), T (t);w) (4.19)

where Y(t) is the vector of mass fractions and θ is vector that represents the kinetic
parameters. Here, the discrepancy term εk is modeled as a FCNN, where w is a
vector of parameters defining the FCNN.

The neural network is constructed using the open platform Tensorflow. Here,
the architecture of the network is inspired in [60]. In their work, several tests
for different numbers of hidden layers and different numbers of neurons per layer
are performed analyzing the FCNN accuracy acting as a surrogate model. After
try-and-error tests, it is fixed an architecture composed of four hidden layers with 20
neurons each. Here, a ReLU activation function is used in the outputs of the hidden
layers. That activation function imposes that the outputs of the hidden layers are
strictly positive. Also, a linear activation is imposed in the output layer allowing
both positive and negative values to the discrepancy term. The total number of
parameters of FCNN is 1440. Figure 4.23 depicts a schematic view of the FCNN
architecture. More specifically, it shows the model discrepancy construction, wherein
the input dimensionality depends on the number of species in the reduced mechanism
and temperature. The same is valid for the output dimensionality.

Also, the model discrepancy is trained with data produced by numerical
simulation of GRI3.0 detailed mechanisms available in Cantera software, in a
model-to-model calibration. More specifically, we adopt a supervised learning
strategy, wherein the the training dataset are physicochemical properties predicted
by numerical simulations of the 0-D homogeneous reactor using the GRI3.0 detailed
mechanism. As in section 4.2, it is chosen as training data the autoignition delay
time for the BG1 mixture at atmospheric pressure, over a range of equivalent
ratio φ ∈ [0.6, 1.4] and a range of initial temperature T0 ∈ [1000, 1300K] varying
by 0.2 and 30K, respectively. Therefore, the training dataset is composed by 55
autoignition delay times of biogas/air combustion.
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Figure 4.23: An overview of neural network architecture.

In the training process, it is adopted the L2 regularized MSE training loss
function equation (4.9). Since the loss function is dependent of the model outputs
and their derivatives in relation to the network parameters, providing derivatives
information can be a difficult task. To overcome this difficult, the PSO method
[97, 98] is used in the present study to train the model discrepancy. An overview
of this method is shown in appendix B.0.2. The PSO optimization scheme is
implemented using PySwarms [99], an extensible research toolkit for particle swarm
optimization in Python. Algorithm 2 details the optimization scheme, where it
allows integrating the machine learning tools within the Cantera package. The
number of particles, Nparticles, and the number of iterations, Niter, of the PSO scheme
are given as inputs. Here, after initial tests with the PSO scheme, we adopt the
number of particles and the number of iterations equals 20 and 10, respectively.
Such values are in good agreement with the literature [100]. Also, we follow [101]
and assume the PSO parameters as ωv = 0.9, c1 = 2.8 and c2 = 1.3. Here, for each
time-iteration, the model discrepancy term is updated receiving as input the vector
containing the chemical species and the temperature. After, using Cantera software,
the enhanced net production rate is computed and embedded in the equations of
the 0D scenario, correcting the chemical concentrations and the heat release in each
time-step. At the end of Algorithm 2, it is returned the trained parameters of
the neural network w. More specifically, the algorithm returns the particle that
minimizes the loss function (4.9). Also, the convergence of the training process is
monitored by observing the loss function decay.
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Algorithm 2 Optimization scheme of the neural network parameters.
Require: Training data, Nparticles, Niter, inertial weight ωv, cognitive learning factor

c1 and social learning factor c2

1: Initialize the swarm: position vector xp (randomly) and velocity vector vp

(randomly)
2: Architecture: Construct the neural network . Call Tensorflow
3: for iter = 1 to Niter do
4: for p = 1 to Nparticles do
5: Set w = xp

6: Initialize t = 0

7: for it = 1 to Nt do
8: Update the model discrepancy term: ε(Y(t), T (t);w)

9: Compute ωe = ω(Y(t), T (t),θ) + ε(Y(t), T (t);w) . Call Cantera
10: Solve the 0D problem:

11:
dY

dt
= ∆t

[
ωe(Y(t), T (t))

ρ(t)

]

12:
dT

dt
= ∆t

[
h(Y (t), T (t)) · ωe(Y (t), T (t))

ρ(t)cp(t)

]
13: t = t+ it ×∆t

14: end for
15: Assess the individual optimal position (B.1)
16: Assess the global optimal position (B.2)
17: Update the position and velocity: (B.4) and (B.3)
18: end for
19: end for
20: return w = arg min

xp

LMSE(xp)

Figure 4.24 shows the enhanced predictions associated with the machine learning
discrepancy source term. It can be seen that the enhanced reduced mechanism can
not recovery the autoignition delay time. That might be explained due to the
large discrepancy of the ignition process provides by the reduced model compared
with the detailed one. More specifically, the ignition process predicted using the
reduced model occurs in 10−4s, while for the detailed model this process occurs on
the second’s scale. Thus, embedding the discrepancy model as an additive source
term can not mitigate that large time scale error of the ignition process.

57



(a) φ = 0.7 (b) φ = 1.0

(c) φ = 1.2

Figure 4.24: Autoignition delay time model predictions compared to GRI3.0: BG1
composition.

It is well-known that the chemical kinetic parameters might have a pronounced
effect on the predicted ignition delay time. Sensitivity analysis of combustion
processes to the rate constants can reveal the rate-limiting steps controlling the
ignition process and provide valuable insights into the mechanism calibration, (see
appendix A). Several works [1, 15, 25, 26], try to optimize reduced mechanisms
searching best values (Bayesian Inference) of the kinetic parameters of the most
sensitive reactions. Also, such parameters are used to calculate the reaction rates,
from Arrhenius law, and act as multiplying factors in the net production rates of
the species. Here, to try enhance the predictability of our approach, the embedded
discrepancy model is reformulated as a multiplying factor in the net production rates
of species. More specifically, a selective choice is proposed embedding a multiplying
discrepancy term only in the species of the irreversible reaction, the most sensitive
reaction, in the 2S-CM2 reduced mechanism. Being more clear, the discrepancy
terms are embedded in the net production rates of CH4, O2, CO, and H2O. Thus,
the the proposed net production model is given as follows

ωke = ωk(Y(t), T (t),θ)× εk(Y(t), T (t); w). (4.20)

Without loss of generality, the same architecture with 4 hidden layers and 20
neurons is used to construct the multiplying discrepancy terms. Figure 4.25 depicts
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the autoignition delay times for BG1 composition. Note that the multiplicative
enhanced reduced model returns better predictions of the autoignition times mainly
in lower temperatures. Also, it is verified that this new enhanced model can predict
very well the delay times even for φ = 0.7, wherein this equivalence ratio is not used
in the training process. Here, it is worth highlighting that the only difficulty of this
strategy falls on the integration of machine learning tools to the black-box software.
However, the training process is relatively cheap taking around 10 minutes to train
the network parameters.

(a) φ = 0.7 (b) φ = 1.0

(c) φ = 1.2

Figure 4.25: Autoignition delay time model predictions compared to GRI3.0: BG1
composition.

Also, the DNN discrepancy model is validated by predicting the autoignition
delay time in different mixtures in which the fuels are the Baseline and the BG2
composition. Figures 4.26 and 4.27 show the predicted autoignition delay time using
the multiplicative enhanced mechanism compared to the two-step mechanism and
the full GRI3.0. The results indicate a good agreement between the enhanced model
and the reference mechanism for different fuels at different equivalence ratios and a
range of initial temperatures.
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(a) φ = 0.7 (b) φ = 1.0

(c) φ = 1.2

Figure 4.26: Autoignition delay time model predictions compared to GRI3.0:
Baseline composition.
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(a) φ = 0.7 (b) φ = 1.0

(c) φ = 1.2

Figure 4.27: Autoignition delay time model predictions compared to GRI3.0: BG2
composition.

Next, the validation of the calibrated model is stressed showing the time
evolution of methane mass fraction and temperature for mixtures in Table 4.1 at the
stoichiometric condition and initial temperature equals 1050K. Figure 4.28 shows
that embedding the model discrepancy as a multiplying factor predicts reliable
results of the temperature distribution. Also, it is worth highlighting that the
enhanced model predicts the autoignition delay times for the Baseline, BG1, and
BG2 compositions with L2 relative errors equal to 0.0739, 0.0743, and 0.0755,
respectively. However, after the ignition process, the enhanced model returns
unsatisfactory predictions of the burnt methane mass fractions. These results might
be, partially, attributed to the lack of data covering the temporal evolution of the
physicochemical properties in the learning process that uses only autoignition delay
times as data.
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(a) Baseline - CH4 mass fraction (b) Baseline - Temperature

(c) BG1 - CH4 mass fraction (d) BG1 - Temperature

(e) BG2 - CH4 mass fraction (f) BG2 - Temperature

Figure 4.28: Temporal distributions of methane mass fraction and temperature
predictions of the cases in Table 4.1.

Now, in an attempt to improve the ability of the enhanced model to predict
the temporal evolution of physicochemical properties, more data is added for the
learning process including the temporal evolution. More specifically, it is added to
the training set fifty equally time-spaced points of the temporal evolution of the
methane mass fraction and temperature for each operating condition. Also, it is
important to point out that from the point of view of producing these data, there
are no additional costs since they were produced previously during the autoignition
delay times computation. However, it is expected that the training cost slightly
increases. Then, the size of the training dataset is 5,555 evaluation points. Here,
it is considered the solutions of the temporal evolutions for BG1 composition to
build the training set. To better illustrate the new training dataset, Fig. 4.29 shows
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the new training points for a specific operating condition given by φ = 1.0 and
T0 = 1030K.

Figure 4.29: Training points for operating condition given by φ = 1.0 and T0 =
1030K: BG1 composition.

Figure 4.30 shows an improvement in the final calibrated model when compared
to the previous calibrated model that uses only autoignition delay times as data for
the training process. Also, the enhanced model computes the ignition process for
Baseline, BG1, and BG2 compositions with L2 relative errors of 0.0022, 0.0023 and
0.0025, respectively. Note that the final enhanced model can predict well the burnt
methane mass fractions after the ignition process, i.e, full consumption of methane
at the stoichiometric condition. However, it is verified a smooth transition between
the unburnt and burnt mixtures. Furthermore, note much better predictions of the
temporal evolutions of the temperature of all fuels using the final enhanced model.
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(a) Baseline - CH4 mass fraction (b) Baseline - Temperature

(c) BG1 - CH4 mass fraction (d) BG1 - Temperature

(e) BG2 - CH4 mass fraction (f) BG2 - Temperature

Figure 4.30: Temporal distributions of methane mass fraction and temperature
predictions of the cases in Table 4.1.

4.3.1 Embedding the neural network model discrepancy in

the chemical kinetics parameters

Here, due to the intrusive nature of the embedded discrepancy approach,
extrapolating the present approach to the 1D scenario falls on an implementation
challenge, since the black-box, more specifically the Cantera software, have to be
modified. To avoid the challenge of being intrusive in Cantera software, now it
is proposed a calibration process similar to that done in the section 4.2, where
the model discrepancy is embedded in the chemical kinetics parameters. However,
instead of assuming a functional form for the model discrepancy as was done in 4.2,
a neural network is built to capture an appropriate functional form for the model
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correction.
More specifically, it is constructed a model discrepancy that acts as a correction

term in the chemical kinetics parameters,

g = g × (1 + ε) (4.21)

where g represents the chemical kinetics parameter vector to be calibrated. The
model discrepancy ε is constructed using a neural network with the same architecture
of the section 4.3. However, the neural network inputs are now the operating
conditions given by the equivalence ratio and initial temperature. Furthermore,
a tangent hyperbolic activation function (tanh) is employed [59] in all layers of
the neural network. The tanh activation function imposes that the outputs of the
neural network be in the range, ε ∈ [−1, 1]. So, for ε = 0, g represents the chemical
kinetics parameters vector of the original reduced mechanism. Also, such imposition
ensures physical constraints that the pre-exponential factor in the Arrhenius law is
strictly positive. Moreover, for ε = −1, the reaction is suppressed in the reduced
mechanism.

As was done in section 4.2, the pre-exponential factor and the activation energy of
the irreversible reaction in the 2S-CM2 scheme are calibrated. Also, in the learning
process, the same optimization steps done in the previous section are followed, as
well as the same training dataset composed by the autoignition delay times and
temporal evolution of key quantities. Figure 4.31 shows that the enhanced model
improves the capacity of the reduced model to predict the autoignition process. The
enhanced model computes the autoignition process for Baseline, BG1, and BG2
compositions with L2 relative errors of 0.2230, 0.1960, and 0.1453, respectively.
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(a) Baseline - CH4 mass fraction (b) Baseline - Temperature

(c) BG1 - CH4 mass fraction (d) BG1 - Temperature

(e) BG2 - CH4 mass fraction (f) BG2 - Temperature

Figure 4.31: Temporal distributions of methane mass fraction and temperature
predictions of the cases in Table 4.1.

After the validation process, the learning process is extrapolated to the 1-D
scenario involving steady-state laminar flames. Here, the aim is to assess how
well the enhanced model recovers the flame properties, such as flame speed, flame
thickness, adiabatic temperature, and burned molar fractions of CO and CO2. The
flame properties for the Baseline, BG1 and BG2 compositions predicted by the
enhanced model are shown in Figs. 4.32, 4.33 and 4.34. These results indicate
that after calibration for the 0D reactor problem, the enhanced 2S-CM2 model
can still capture the major combustion products and adiabatic flame temperatures
in good agreement with the original mechanism. However, the flame speed is
underestimated while the flame thickness is overestimated, mainly in lean and
stoichiometric conditions.
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(a) Baseline flame speed (b) BG1 flame speed

(c) BG2 flame speed

Figure 4.32: Flame speed predictions for the biogas-air premixed flame of the Tab.
4.1 at p = 1 bar and T0 = 300K.
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(a) Baseline flame thickness (b) Baseline adiabatic flame temperature

(c) BG1 flame thickness (d) BG1 adiabatic flame temperature

(e) BG2 flame thickness (f) BG2 adiabatic flame temperature

Figure 4.33: Flame thickness and adiabatic temperature predictions for the
biogas-air premixed flame of the Tab. 4.1 at p = 1 bar and T0 = 300K.
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(a) Baseline CO2 burned molar fraction (b) Baseline CO burned molar fraction

(c) BG1 CO2 burned molar fraction (d) BG1 CO burned molar fraction

(e) BG2 CO2 burned molar fraction (f) BG2 CO burned molar fraction

Figure 4.34: Burned molar fractions predictions for the biogas-air premixed flame
of the Tab. 4.1 at p = 1 bar and T0 = 300K.

Aiming to recover the correct behavior of the flame properties, now is followed
the studies carried out in the section 4.2.2, where an empirical pre-exponential
factor adjustment is employed. More specifically, it is constructed the model
discrepancy term taking into account of the PEA to improve the predictability of
the reduced mechanism to 0D and 1D problems. Also, the same pre-exponential
factor adjustment function used previously is employed here, see section 4.2.2.

The predictions associated with the enhanced model are shown in Fig. 4.35.
The results show that that the enhanced model can predict satisfactorily well the
temporal evolutions of the methane mass fraction, and temperature for different
composition scenarios compared to the full GRI3.0 mechanism. Also, it is computed
the L2 relative errors of the ignition process and verified that the enhanced model
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returns the ignition predictions for the Baseline, BG1 and BG2 compositions with
an accuracy of 0.0679, 0.0481, 0.0178, respectively.

(a) Baseline - CH4 mass fraction (b) Baseline - Temperature

(c) BG1 - CH4 mass fraction (d) BG1 - Temperature

(e) BG2 - CH4 mass fraction (f) BG2 - Temperature

Figure 4.35: Temporal distributions of methane mass fraction and temperature
predictions of the cases in Table 4.1.

Now, the enhanced model with the pre-adjustment factor is extrapolated to the
1-D scenario. The flame properties for the freely propagating laminar premixed
flames of methane and biogas are shown in Figs. 4.36, 4.37 and 4.38. It can be seen
that the flame speed and flame thickness are in good agreement with the full GRI3.0
model, but the flame speed is slightly underestimated near stoichiometric regions
for Baseline and BG1 compositions, while it is slightly overestimated in rich regions
for BG2 composition. Also, the burnt gas temperature and the major combustion
products are in good agreement with the original reduced model. These results
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suggest that the enhanced model has been successfully extended to describe flame
propagation and autoignition scenarios. Furthermore, it is worth highlighting that
the training process is relatively cheap, much cheaper than the previous probabilistic
calibration approach. More specifically, the present approach is on the minute scale
while the probabilistic approach takes hours.

(a) Baseline flame speed (b) BG1 flame speed

(c) BG2 flame speed

Figure 4.36: Flame speed predictions for the biogas-air premixed flame of the Tab.
4.1 at p = 1 bar and T0 = 300K.
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(a) Baseline flame thickness (b) Baseline adiabatic flame temperature

(c) BG1 flame thickness (d) BG1 adiabatic flame temperature

(e) BG2 flame thickness (f) BG2 adiabatic flame temperature

Figure 4.37: Flame thickness and adiabatic temperature predictions for the
biogas-air premixed flame of the Tab. 4.1 at p = 1 bar and T0 = 300K.
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(a) Baseline CO2 burned molar fraction (b) Baseline CO burned molar fraction

(c) BG1 CO2 burned molar fraction (d) BG1 CO burned molar fraction

(e) BG2 CO2 burned molar fraction (f) BG2 CO burned molar fraction

Figure 4.38: Burned molar fractions predictions for the biogas-air premixed flame
of the Tab. 4.1 at p = 1 bar and T0 = 300K.
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Chapter 5

Final Comments

The present study addresses the critical problem of model inadequacy that affects
nearly all physics-based computational models. Here, the attention goes to
the impact of employing reduced kinetic mechanisms on premixed combustion
of biogas/methane-air mixtures. In such cases, unsatisfactory agreement in the
predictions of key quantities such as autoignition delay time, flame propagation, and
emissions are frequently observed when compared with experiments or high-fidelity
chemical kinetics models. The model discrepancy might be responsible for significant
bias in the model predictions, especially when involves biogas with large amounts
of CO2 in its composition, which requires some efforts to fix it.

The uncertainties produced by using simplified closure models, the reduced
kinetics, is tackled here, using probabilistic and deterministic perspectives, by
using Bayesian and machine learning tools. More specifically, to address this
challenge, the present work introduces different approaches to understand and
compute uncertainties on the computation of the autoignition delay time prediction
or laminar flames characteristics.

In a UQ probabilistic perspective, it is proposed two models based on embedding
the model discrepancy in Arrhenius parameters of the most sensitive reaction. The
calibrated model matched well the detailed model data, consequently, produced
reasonably small predictive error bars for the autoignition delay time predictions.
Furthermore, the calibrated model is extrapolated for the flame scenario, showing
the advantage of the embedded discrepancy approach proposed in [27], allowing
that the calibrated mechanism be propagated through different scenarios to predict
the related uncertainty of the flame properties. This form type of extrapolation
of the calibration process is not explored by Najm et al. [27, 47, 102]. Here, this
approach is presented as one contribution of the present work. It is verified in the
first calibration experiment that the flame characteristics can not be reproduced, at
rich conditions, using the enhanced reduced mechanism. However, the applicability
range of the reduced model can be extended calibrating it with a pre-exponential
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adjustment factor.
As mentioned before, a key aspect in model embedding is to allow a consistent

use of the calibrated model for situations of more practical interest. For instance, to
evaluate the variability of the flame speed and flame thickness in different operational
conditions, a deep neural network surrogate to the original model was developed to
alleviate the large computational burden associated with uncertainty quantification
employing Monte Carlo algorithms. The surrogate demonstrate be a robust and
cost effective tool, predicting accurate approximations of the flame properties. The
results showed high variability on the flame properties due to the fluctuations of
Arrhenius parameters especially those near the low bound for leaner mixtures,
which entails a high degree of uncertainty. That might be attributed to the burning
conditions near flammability, which bears the potential to amplify the propagated
uncertainties.

Also, it is proposed a deep neural model discrepancy approach to improve the
ability of the low fidelity models to produce reliable predictions of the combustion
process. Such an approach has revealed to be very flexible and able to generalize for
several forms to embed the model discrepancy. More specifically, it was proposed an
approach in which the model error is embedded in the temporal evolution of chemical
species concentrations. Moreover, a model discrepancy approach in which the
model discrepancy is embedded in the chemical kinetics parameters was proposed.
However, differently, to the probabilistic embedded approach, a neural network is
built to capture an appropriate functional form for the model correction. Both
approaches have shown to be very promising in modeling the model discrepancy.
Furthermore, it also serves as a good test for employing a combination of supervised
machine learning techniques with low fidelity models to raise their the predictability
and construct useful tools to support computational simulation of complex systems
such as turbulent combustion.

Those studies demonstrated the deficiency of the 2-step mechanism when
employed outside of the original applicability limits, and the efficacy of Bayesian
and machine learning tools to improve the modeling accuracy. Also, the results have
shown the benefit of the embedding the model discrepancy in the key parameters
of the model. The key advantage of that method is that it offers predictions, to
any model output variable, that include structural uncertainty due to the simple
form of the reduced chemical kinetics. Furthermore, the embedded approach allows
extrapolating the enhanced model for different scenarios.

Future studies can be focused on pollutant formation predictions, where more
complex chemical kinetic models will be needed. Also, extrapolating the machine
learning model discrepancy approach to more complex and challenging simulations
as found in turbulent combustion. Moreover, extending the application of machine
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learning techniques to practical combustion systems, such as enhancing efficiency
and emissions control [103], and modeling engine operating characteristics [104, 105].

Also, future research directions can be focused on the construction of efficiency
surrogate models using physics aware neural networks [2, 55–58, 60–62, 86, 106]
to deal with uncertainties in model inputs or parameters of such high demanding
computational combustion simulations, allowing to provide a link between sources of
uncertainties and their impacts on the QoI’s of the computational model. This link
can be used to mitigate possible negative impacts of these sources of uncertainties
and obtain better, cheaper and more robust predictions. Initial efforts in that
direction can be seen in [107], that is, in the construction of deep learning surrogate
models to quantify uncertainties in seismic imaging.
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Appendix A

Model predictive analysis:
parametric uncertainties

In addition to errors introduced by computing the reactive chemical process
by reduced kinetics, there is a large number of parametric uncertainties in
chemical kinetics models, which involve reaction rate constants and thermodynamic
parameters, much of which are poorly known [14–16]. The starting point here is
to investigate the effects of fuel variability and chemical kinetic uncertainties in
combustion using a UQ-based methodology. Furthermore, this study can serve as a
basis for further analysis, in an attempt to analyze the impact of the use of simplified
mechanisms for renewable fuels searching "best values" in a Bayesian perspective of
the kinetic parameters of the most sensitive reactions.

Here, the analysis performed relies on assuming a stochastic model for those
parameters to push forward such uncertainties through the simulations (forward
analysis) and try to understand the final impact on quantities of interest (QoI ),
outputs of the simulation. In this study, the PCE method is used to propagate
the parametric uncertainties, where the Dakota Sandia [108] software is used to
implement the UQ forward analysis.

Firstly, it is investigated the role played by small fluctuations on fuel composition
as it occurs in heterogeneous combustion systems. In general, the fuel mixture in
practical applications is not precisely known with the amount of CH4 varying around
a nominal value [109]. Following a probabilistic perspective, we model the mass
fraction of methane YCH4 = YCH4(1 + σξ), but keeping the amount of fuel fixed to
maintain the same equivalence ratio. The overline stands for the expected value
(mean), σ the standard deviation and ξ a uniform random variable (ξ ∼ U [−1, 1]).
For this analysis, we picked 6 fuel compositions given by the mean methane amount:
YCH4 = {50, 55, 60, 65, 70, 75}, and σ = 0.05. The consequences of this sole
uncertainties in the prediction of aforementioned QoIs are depicted in Fig. A.1 for
different equivalence ratios. It is observed more variability in flame physicochemical
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properties for low-concentration methane mixtures than highly CO2 diluted fuels, see
Figs. A.1 and A.2. For low CH4/CO2 ratios, the variability in flame thickness and
flame speed is larger. This occurs for both lean and rich mixtures with the effects of
dilution having a more important role than fuel/air stoichiometry. The uncertainties
in fuel composition also impact the resulting adiabatic flame temperature and the
formation of CO, following similar trends. This means the utilization of biogas fuels
in practical systems needs to account for variations in heat release rate and flame
propagation as those shown in Fig. A.1. Figure A.2 shows a view of such scenario
regarding only the flame speed, which is a crucial parameter during operation of
premixed systems. The same trends are also confirmed here.
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Figure A.1: Influence of fuel composition flame thickness, flame speed, adiabatic
temperature and mass fraction of CO. Variation of 5% CH4 at different CH4/CO2
ratios. (GRI3.0)
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Figure A.2: Influence of fuel composition on flame speed. Variation of 5% CH4 at
different equivalence ratios. (GRI3.0)

It is noted that the flame physicochemical properties presented higher
variabilities in mixtures with higher concentrations of CO2. Also, it is verified
that small fluctuations of fuel composition slightly impacts the QoIs, around 3%
of expected values. Thus, it is expected that uncertainties in the QoIs are due to
chemical kinetics parameter uncertainties.

Sensitivity analysis of fundamental flame properties to the reaction rates can
reveal the rate-limiting steps controlling the combustion processes and provide
valuable insights into mechanism optimization. Here, it is carried out an analysis of
the GRI3.0 mechanism from a UQ perspective. More specifically, it is investigated
the effects of kinetics parameters on characteristic flame properties. Also, this
study can serve as a basis to analyze the impact of using simplified mechanisms
for renewable fuels, such as searching "best values" in a Bayesian perspective of the
kinetic parameters of the most sensitive reactions.

In practice, kinetic parameters are estimated through indirect, scarce and noisy
measurements, so it is natural to think that they bear some level of uncertainty.
The aim here is to investigate the impacts caused by small fluctuations in kinetic
parameters in practical combustion systems. Now, the uncertainties in the Arrhenius
parameters are combined with those in the fuel composition studied before. It
is assumed that the reaction rate k for each elementary step is dictated by the
Arrhenius expression:

k(T ) = ATme−
E
RT , (A.1)

where R = 8.314 J mol−1 K−1 is the universal gas constant, T is the temperature,
E is the activation energy, A, a positive value, is the pre-exponential constant and
m is a model constant.

Due to the high number of reactions composing the detailed mechanism, a
sensitivity analysis was performed to identify those reactions that bear more
potential to impact the QoIs by the uncertainties. It helps us on obtaining
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computational savings along the UQ study. So, a local sensitivity analysis [50]
is employed with respect to the flame speed and flame thickness, employing the
normalized derivatives: (k/sL·∂sL/∂k) and (k/δL·∂δL/∂k). To study such sensitivity
on the main flame quantities, three fuel mixtures are considered and presented in
Table 4.1. A baseline fuel containing only methane is included for comparison.
Figure A.3 shows the flame speed and flame thickness sensitivities associated to the
key reactions in the mechanism for the three fuel mixtures.

The analysis depicted in Fig. A.3 reveals that the flame sensitivities are similar
for different fuels, where H + O2 ⇐⇒ O + OH is the most relevant regarding the
uncertainty propagation. Thus, it is proposed to investigate the impacts caused by
small fluctuations of the most sensitive reaction of GRI3.0 mechanism on the flame
physicochemical properties. We consider the combustion chemistry as a kinetic
problem with a probabilistic structure by assuming the Arrhenius factor (A) and
the activation energy (E) of the most relevant reaction as stochastic variables,
keeping all other parameters deterministics. Following a probabilistic perspective,
the stochastic variables are modeled as:

A = A(1 + σAξ),

E = E(1 + σEξ), (A.2)

where (A, σA) = (2.650 × 1016, 0.05) s−1 and (E, σE) = (17.041 × 103, 0.05)
cal/mol, while ξ is an independent random variable with uniform distribution
[-1, 1]. Therefore, the domains of variability of the stochastic variables A and E
are [2.5175 × 1016, 2.7825 × 1016] s−1 and [16.1889 × 103, 17.8931 × 103] cal/mol,
respectively. The uncertainties are presented in Figure A.4, the results indicate that
Arrhenius parameters play a major part in the kinetics, since small fluctuations
on Arrhenius parameters cause a high variability on the flame characteristics.
Nevertheless, the difference between the three cases is not significant. These results
suggest that the use of reduced schemes for methane/air oxidation would be a
good starting point to develop optimized schemes for biogas, as the variations in
fundamental flame parameters due to composition variations is relatively small and
could be captured by the same schemes.
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Figure A.3: Flame sensitivity analysis of difference fuels at stoichiometric conditions.
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Figure A.4: Influence of fuel composition and Arrhenius parameters on the flame
speed and thickness at different equivalent ratios.

95



Appendix B

Neural network model discrepancy -
First analysis

B.0.1 Hydrogen homogeneous combustion

Here, the neural network model discrepancy approach proposed in section 3.1.2 is
applied to chemical kinetics model of hydrogen during homogeneous combustion.
It is calibrated a five steps reduced model of H2/O2 combustion proposed by [11].
The data employed for calibration is provided by simulation results produced with a
detailed mechanism also proposed by [11]. More specifically, the detailed mechanism
is composed of 8 species and 21 reactions while the reduced mechanism contains 7
species and 5 reactions.

For the 0-d scenario, that low-fidelity mechanism can estimate with a good
agreement the ignition delay time when compared with the full mechanism.
However, the predictions of the temporal evolution of the states are far from
being satisfactory, mainly after the ignition process. Therefore, it is employed
a discrepancy term to the low fidelity mechanism which is embedded in the net
production rates of species according Eq. (4.20). Also, it is chosen as training data
fifty equally time-spaced points of the temporal evolution of the temperature profile
for H2-air mixture at atmospheric pressure, stoichiometric condition, and a range of
initial temperature T0 ∈ [1200, 1500K] varying by 30K. So, the training dataset is
composed of 550 temperature points.

Also, the PSO method with the same settings as section 4.3 is used to train
the model discrepancy term. Figures B.1(a), B.2(a), B.3(a) and B.4(a) show the
temporal evolution of the temperature for the operating conditions given by the
inlet temperatures equal 1200, 1300, 1400, and 1500 K, respectively. It can be seen
that the enhanced model can improve the ability of the reduced model to predict the
time-temperature distribution. More specifically, the enhanced model can compute
the temporal evolution with L2 relative errors lower than 10% compared to the
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full mechanism. Furthermore, it is verified that the improved reduced mechanism
predict with a satisfactory agreement the mass fractions of the major species, as
shown in Figs. B.1(b,c), B.2(b,c), B.3(b,c) and B.4(b,c).

(a) Temperature (b) H2 mass fraction

(c) H mass fraction

Figure B.1: Physicochemical properties for hydrogen combustion in the autoignition
process at at p = 1 bar and T0 = 1200K.
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(a) Temperature (b) H2 mass fraction

(c) H mass fraction

Figure B.2: Physicochemical properties for hydrogen combustion in the autoignition
process at at p = 1 bar and T0 = 1300K.

(a) Temperature (b) H2 mass fraction

(c) H mass fraction

Figure B.3: Physicochemical properties for hydrogen combustion in the autoignition
process at at p = 1 bar and T0 = 1400K.
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(a) Temperature (b) H2 mass fraction

(c) H mass fraction

Figure B.4: Physicochemical properties for hydrogen combustion in the autoignition
process at at p = 1 bar and T0 = 1500K.

B.0.2 Derivative-free optimization: Particle swarm

optimization

In many optimization problems arising from scientific, engineering, and machine
learning applications, objective and constraint functions are dependent only on
the experiments outputs and/or predictions of a black-box simulation that do not
provides derivative information. Such settings necessitate the use of methods for
derivative-free, or zeroth-order, optimization.

Particle swarm optimization (PSO) is a stochastic optimization scheme based
on the swarm population, simulating the animal social behavior, including insects,
herds, birds, and fishes [110]. PSO algorithm is a computational method for
optimizing the problem by improving the target solution iteratively.

In this scheme, each individual is called a particle defined as a potential solution
of the optimized problem in an D-dimensional search space, and it can memorize
the optimal position of the swarm and that of its own, as well as the velocity. In
each iteration, the particles information is combined together to adjust the velocity
of each dimension, which is used to compute the new position of the particle.
Particles change their states constantly in the high-dimensional search space until
they reach the global optimal. The unique connection among different dimensions
of the problem space is introduced via the objective functions.
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The mathematical description of PSO can be described as an ensemble of
particles constituting a swarm of size Nswarm, wherein the particle position vector
in the D-dimensional search space is xp = (xp1 , xp2 , . . . , xpD), velocity vector is
vp = (vp1 , vp2 , . . . , vpD), the individual optimal position that each particle has
experienced Pl = (Pl1 , Pl2 , . . . , PlD), and global optimal position that the swarm has
experienced Pg = (Pg1 , Pg2 , . . . , PgD). Here, without loss of generality, the individual
and the global optimal positions are those minimizing the objective function, i.e.,

Pl
t+1 =

xp
t+1, if f(xp

t+1) < f(Pl
t)

Pl
t, otherwise

(B.1)

Pg
t+1 =

xp
t+1, if f(xp

t+1) < f(Pg
t)

Pg
t, otherwise

(B.2)

, where f(·) represents the objective function.
The velocity and position of the particles in each iteration t is given as follows

vp
t+1 = ωvvp

t + c1r1(Pl
t − xp

t) + c2r2(Pg
t − xp

t) (B.3)

xp
t+1 = xp

t + vp
t+1 (B.4)

, where r1 and r2 are random numbers in U ∈ [0, 1]. In the velocity update equation
(B.3), we can note that in this updated formula, the first term takes account of
the previous particle velocity from inertial weight ωv. It means that the particle has
confidence in the previous state and starts moving from it. The second term depends
on the distance between the particle current position and its optimal position. So,
the particle moves resulting from its own experience. Thus, the parameter c1 is
called the cognitive learning factor. The third term relies on the distance between
the current position of the particle and the global optimal position in the swarm,
wherein the information is shared and cooperated among the particles, i.e., the
moving of the particle depends on the swarm moving. Thereby, c2 is called social
learning factor.

The PSO algorithm is shown in Algorithm 3.
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Algorithm 3 Particle swarm optimization
1: iter = 0
2: Initialize the swarm: position vector xp (randomly) and velocity vector vp

(randomly)
3: while iter ≤ itermax do
4: for i = 1 to Nswarm do
5: for j = 1 to D do
6: Update the velocity and position of the particles from Eqs.(B.3) and

(B.4).
7: end for
8: Assess the value of particle i
9: if f(xi

t+1) < f(Pi
t) then

10: Pi
t+1 = xi

t+1

11: end if
12: end for
13: k = argminf(Pi

t+1)

14: if f(xk
t+1) < f(Pg

t) then
15: Pg

t+1 = xk
t+1

16: end if
17: t+ 1

18: end while

Where iter is the number of iterations.
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